1
|
Hou Y, Wang W, Liu Z, Yu L, Zhao L. Boosting microalgae-based carbon sequestration with the artificial CO 2 concentration system. Crit Rev Biotechnol 2025:1-19. [PMID: 40374568 DOI: 10.1080/07388551.2025.2498464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 10/16/2024] [Accepted: 04/05/2025] [Indexed: 05/17/2025]
Abstract
Global warming caused by CO2 emissions has been considered as one of the major challenges of this century. In an endeavor to control and reduce CO2 emissions, a series of Carbon dioxide Capture, Utilization, and Storage (CCUS) technologies have been developed specifically for the sequestration of CO2 from atmospheric air. Microalgae, as versatile and universal photosynthetic microorganisms, represent a promising avenue for biological CO2 sequestration. Nevertheless, further advancements are necessary to optimize microalgae-based carbon sequestration technology in terms of light reaction and dark reaction. This review discusses the current status of microalgae-based artificial CO2 sequestration technique, with a particular focus on the selection of CO2-resistant species, optimization of cultivation for CO2 sequestration, design of carbon concentration reactor, and the potential of synthetic biology to enhance CO2 solubility and biofixation efficiency. Furthermore, a discussion of Life cycle assessment and Techno-economic analysis regarding microalgae-based carbon capture was performed. The aim of this comprehensive review is to stimulate further research into microalgae-based CO2 sequestration, addressing challenges and opportunities for future development.
Collapse
Affiliation(s)
- Yuyong Hou
- State Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- State Key Laboratory of Forage Breeding-by-Design and Utilization, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wenqiao Wang
- State Key Laboratory of Forage Breeding-by-Design and Utilization, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhiyong Liu
- State Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, China
| | - Longjiang Yu
- State Key Laboratory of Forage Breeding-by-Design and Utilization, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lei Zhao
- State Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- University of Chinese Academy of Sciences, Beijing, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, China
| |
Collapse
|
2
|
Abd-El-Aziz A, Elnagdy SM, Han J, Mihelič R, Wang X, Agathos SN, Li J. Bacteria-microalgae interactions from an evolutionary perspective and their biotechnological significance. Biotechnol Adv 2025; 82:108591. [PMID: 40328341 DOI: 10.1016/j.biotechadv.2025.108591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/03/2025] [Accepted: 04/29/2025] [Indexed: 05/08/2025]
Abstract
Interactions between bacteria and microalgae have been studied in natural environments and in industrial consortia. As results of co-evolution for millions of years in nature, they have developed complex symbiotic relationships, including mutualism, commensalism and parasitism, the nature of which is decided by mechanisms of the interaction. There are two main types of molecular interactions between microalgae and bacteria: exchange of nutrients and release of signalling molecules. Nutrient exchange includes transport of organic carbon from microalgae to bacteria and nutrient nitrogen released from nitrogen-fixing bacteria to microalgae, as well as reciprocal supply of micronutrients such as B vitamins and iron. Signalling molecules such as phytohormones secreted by microalgae and quorum sensing molecules secreted by bacteria have been shown to positively affect growth and metabolism of the symbiotic partner. However, there are still a number of potential microalgae-bacteria interactions that have not been well explored, including cyclic peptides, other quorum signalling molecules, and extracellular vesicles involved in exchange of genetic materials. A more thorough understanding of these interactions may not only result in a deeper understanding of the relationships between these symbiotic organisms but also have potential biotechnological applications. Upon new mechanisms of interaction being identified and characterized, novel bioprocesses of synthetic ecology might be developed especially for wastewater treatment and production of biofertilizers and biofuels.
Collapse
Affiliation(s)
- Ahmad Abd-El-Aziz
- College of Materials Science and Chemical Engineering, Harbin, 150001, and Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao, 266000 China.
| | - Sherif M Elnagdy
- College of Materials Science and Chemical Engineering, Harbin, 150001, and Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao, 266000 China; Botany and Microbiology Department, Faculty of Science, Cairo University, Cairo 12613, Egypt
| | - Jichang Han
- College of Food and Engineering, Ningbo University, Ningbo 315832, China
| | - Rok Mihelič
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | - Xulei Wang
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Spiros N Agathos
- College of Materials Science and Chemical Engineering, Harbin, 150001, and Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao, 266000 China; Earth & Life Institute, Catholic University of Louvain, Louvain-la-Neuve 1348, Belgium
| | - Jian Li
- College of Materials Science and Chemical Engineering, Harbin, 150001, and Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao, 266000 China.
| |
Collapse
|
3
|
Montoya L, Escobar-Briones E. Unveiling the significance of prokaryotic composition from ferromanganese crusts regarding the interlink between cobalt and vitamin B 12 in deep-sea ecosystems. Front Microbiol 2025; 16:1524057. [PMID: 40365069 PMCID: PMC12069332 DOI: 10.3389/fmicb.2025.1524057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 04/14/2025] [Indexed: 05/15/2025] Open
Abstract
The intricate relationship between prokaryotic vitamin B12 (cobalamin) producers and metazoans in deep-sea ecosystems, particularly within ferromanganese crusts and polymetallic nodules, is critical for understanding oceanic biogeochemical cycling of cobalt. Microbial communities are key regulators of essential biogeochemical cycles, with cobalt serving as a vital component in the synthesis of cobalamin, a metallocofactor indispensable for numerous metabolic processes. We analyzed the significance of cobalamin biosynthetic pathways confined to prokaryotes and emphasized the ecological importance of auxotrophic organisms that rely on exogenous sources of vitamin B12. Additionally, we recognize recent research regarding the spatial distribution of dissolved cobalt and its consequential effects on cobalamin production and bioavailability, indicating the scarcity of cobalt and cobalamin in marine environments. We propose that cobalt-rich environments may foster unique interactions between prokaryotic and eukaryotic organisms, potentially altering the food web dynamics owing to the localized abundance of this element. By investigating the roles of cobalt and cobalamin in nutrient cycling and interspecies interactions, we outlined key criteria for future research on deep-sea microbial communities and their contributions to the cobalt biogeochemical cycle.
Collapse
Affiliation(s)
- Lilia Montoya
- Consejo Nacional de Humanidades, Ciencias y Tecnologías, Mexico City, Mexico
| | - Elva Escobar-Briones
- Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autonoma de Mexico, Mexico City, Mexico
| |
Collapse
|
4
|
Pérez-Carrascal OM, Pratama AA, Sullivan MB, Küsel K. Unveiling plasmid diversity and functionality in pristine groundwater. ENVIRONMENTAL MICROBIOME 2025; 20:42. [PMID: 40275408 PMCID: PMC12023590 DOI: 10.1186/s40793-025-00703-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 04/08/2025] [Indexed: 04/26/2025]
Abstract
BACKGROUND Plasmids are key in creating a dynamic reservoir of genetic diversity, yet their impact on Earth's continental subsurface-an important microbial reservoir-remains unresolved. We analyzed 32 metagenomic samples from six groundwater wells within a hillslope aquifer system to assess the genetic and functional diversity of plasmids and to evaluate the role of these plasmids in horizontal gene transfer (HGT). RESULTS Our results revealed 4,609 non-redundant mobile genetic elements (MGEs), with 14% (664) confidently classified as plasmids. These plasmids displayed well-specific populations, with fewer than 15% shared across wells. Plasmids were linked to diverse microbial phyla, including Pseudomonadota (42.17%), Nitrospirota (3.31%), Candidate Phyla Radiation (CPR) bacteria (2.56%), and Omnitrophota (2.11%). The presence of plasmids in the dominant CPR bacteria is significant, as this group remains underexplored in this context. Plasmid composition strongly correlated with well-specific microbial communities, suggesting local selection pressures. Functional analyses highlighted that conjugative plasmids carry genes crucial for metabolic processes, such as cobalamin biosynthesis and hydrocarbon degradation. Importantly, we found no evidence of high confidence emerging antibiotic resistance genes, contrasting with findings from sewage and polluted groundwater. CONCLUSIONS Overall, our study emphasizes the diversity, composition, and eco-evolutionary role of plasmids in the groundwater microbiome. The absence of known antibiotic resistance genes highlights the need to preserve groundwater in its pristine state to safeguard its unique genetic and functional landscape.
Collapse
Affiliation(s)
- Olga María Pérez-Carrascal
- Aquatic Geomicrobiology, Institute of Biodiversity, Friedrich Schiller University Jena, Jena, Germany.
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany.
| | - Akbar Adjie Pratama
- Aquatic Geomicrobiology, Institute of Biodiversity, Friedrich Schiller University Jena, Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
| | - Matthew B Sullivan
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
- Byrd Polar and Climate Research Center, Ohio State University, Columbus, Ohio, USA
- Center of Microbiome Science, Ohio State University, Columbus, Ohio, USA
- Department of Civil, Environmental and Geodetic Engineering, Ohio State University, Columbus, Ohio, USA
| | - Kirsten Küsel
- Aquatic Geomicrobiology, Institute of Biodiversity, Friedrich Schiller University Jena, Jena, Germany.
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany.
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.
| |
Collapse
|
5
|
Guérin N, Seyman C, Orvain C, Bertrand L, Gourvil P, Probert I, Vacherie B, Brun É, Magdelenat G, Labadie K, Wincker P, Thurotte A, Carradec Q. Transcriptomic response of the picoalga Pelagomonas calceolata to nitrogen availability: new insights into cyanate lyase function. Microbiol Spectr 2025; 13:e0265424. [PMID: 40130850 PMCID: PMC12054182 DOI: 10.1128/spectrum.02654-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 02/12/2025] [Indexed: 03/26/2025] Open
Abstract
Cyanate (OCN-) is an organic nitrogen compound found in aquatic environments potentially involved in phytoplankton growth. Given the prevalence and activity of cyanate lyase genes in eukaryotic microalgae, cyanate has been suggested as an alternative source of nitrogen in the environment. However, the conditions under which cyanate lyase is expressed and the actual capacity of microalgae to assimilate cyanate remain largely underexplored. Here, we studied the nitrogen metabolism in the cosmopolitan open-ocean picoalga Pelagomonas calceolata (Pelagophyceae and Stramenopiles) in environmental metatranscriptomes and transcriptomes from culture experiments under different nitrogen sources and concentrations. We observed that cyanate lyase is upregulated in nitrate-poor oceanic regions, suggesting that cyanate is an important molecule contributing to the persistence of P. calceolata in oligotrophic environments. Non-axenic cultures of P. calceolata were capable of growing on various nitrogen sources, including nitrate, urea, and cyanate, but not ammonium. RNA sequencing of these cultures revealed that cyanate lyase was downregulated in the presence of cyanate, indicating that this gene is not involved in the catabolism of extracellular cyanate to ammonia. Based on environmental data sets and laboratory experiments, we propose that cyanate lyase is important in nitrate-poor environments to generate ammonia from cyanate produced by endogenous nitrogenous compound recycling rather than being used to metabolize imported extracellular cyanate as an alternative nitrogen source.IMPORTANCEVast oceanic regions are nutrient-poor, yet several microalgae thrive in these environments. While various acclimation strategies to these conditions have been discovered in a limited number of model microalgae, many important lineages remain understudied. Investigating nitrogen metabolism across different microalga lineages is crucial for understanding ecosystem functioning in low-nitrate areas, especially in the context of global ocean warming. This study describes the nitrogen metabolism of Pelagomonas calceolata, an abundant ochrophyte in temperate and tropical oceans. By utilizing both global scale in situ metatranscriptomes and laboratory-based transcriptomics, we uncover how P. calceolata adapts to low-nitrate conditions. Our findings reveal that P. calceolata can metabolize various nitrogenous compounds and relies on cyanate lyase to recycle endogenous nitrogen in low-nitrate conditions. This result paves the way for future investigations into the significance of cyanate metabolism within oceanic trophic webs.
Collapse
Affiliation(s)
- Nina Guérin
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry-Courcouronnes, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, R2022/Tara Oceans GO-SEE, Paris, France
| | - Chloé Seyman
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry-Courcouronnes, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, R2022/Tara Oceans GO-SEE, Paris, France
| | - Céline Orvain
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry-Courcouronnes, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, R2022/Tara Oceans GO-SEE, Paris, France
| | - Laurie Bertrand
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry-Courcouronnes, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, R2022/Tara Oceans GO-SEE, Paris, France
| | - Priscillia Gourvil
- FR2424, Station Biologique de Roscoff, Sorbonne Université, CNRS, Roscoff, Brittany, France
| | - Ian Probert
- FR2424, Station Biologique de Roscoff, Sorbonne Université, CNRS, Roscoff, Brittany, France
| | - Benoit Vacherie
- Genoscope, Institut François Jacob, CEA, Université Paris-Saclay, Evry-Courcouronnes, France
| | - Élodie Brun
- Genoscope, Institut François Jacob, CEA, Université Paris-Saclay, Evry-Courcouronnes, France
| | - Ghislaine Magdelenat
- Genoscope, Institut François Jacob, CEA, Université Paris-Saclay, Evry-Courcouronnes, France
| | - Karine Labadie
- Genoscope, Institut François Jacob, CEA, Université Paris-Saclay, Evry-Courcouronnes, France
| | - Patrick Wincker
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry-Courcouronnes, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, R2022/Tara Oceans GO-SEE, Paris, France
| | - Adrien Thurotte
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry-Courcouronnes, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, R2022/Tara Oceans GO-SEE, Paris, France
| | - Quentin Carradec
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry-Courcouronnes, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, R2022/Tara Oceans GO-SEE, Paris, France
| |
Collapse
|
6
|
Henderson A, Del Panta A, Schubert OT, Mitri S, van Vliet S. Disentangling the feedback loops driving spatial patterning in microbial communities. NPJ Biofilms Microbiomes 2025; 11:32. [PMID: 39979272 PMCID: PMC11842706 DOI: 10.1038/s41522-025-00666-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 02/10/2025] [Indexed: 02/22/2025] Open
Abstract
The properties of multispecies biofilms are determined by how species are arranged in space. How these patterns emerge is a complex and largely unsolved problem. Here, we synthesize the known factors affecting pattern formation, identify the interdependencies and feedback loops coupling them, and discuss approaches to disentangle their effects. Finally, we propose an interdisciplinary research program that could create a predictive understanding of pattern formation in microbial communities.
Collapse
Affiliation(s)
- Alyssa Henderson
- Department of Environmental Systems Science, ETH Zurich, Zurich, Switzerland
- Department of Environmental Microbiology, Eawag: Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - Alessia Del Panta
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
- Biozentrum, University of Basel, Basel, Switzerland
| | - Olga T Schubert
- Department of Environmental Systems Science, ETH Zurich, Zurich, Switzerland
- Department of Environmental Microbiology, Eawag: Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - Sara Mitri
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Simon van Vliet
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland.
- Biozentrum, University of Basel, Basel, Switzerland.
| |
Collapse
|
7
|
Ahmed MA, Campbell BJ. Genome-resolved adaptation strategies of Rhodobacterales to changing conditions in the Chesapeake and Delaware Bays. Appl Environ Microbiol 2025; 91:e0235724. [PMID: 39772877 PMCID: PMC11837527 DOI: 10.1128/aem.02357-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 11/27/2024] [Indexed: 01/11/2025] Open
Abstract
The abundant and metabolically versatile aquatic bacterial order, Rhodobacterales, influences marine biogeochemical cycles. We assessed Rhodobacterales metagenome-assembled genome (MAG) abundance, estimated growth rates, and potential and expressed functions in the Chesapeake and Delaware Bays, two important US estuaries. Phylogenomics of draft and draft/closed Rhodobacterales genomes from this study and others placed 46 nearly complete MAGs from these bays into 11 genera, many were not well characterized. Their abundances varied between the bays and were influenced by temperature, salinity, and silicate and phosphate concentrations. Rhodobacterales genera possessed unique and shared genes for transporters, photoheterotrophy, complex carbon degradation, nitrogen, and sulfur metabolism reflecting their seasonal differences in abundance and activity. Planktomarina genomospecies were more ubiquitous than the more niche specialists, HIMB11, CPC320, LFER01, and MED-G52. Their estimated growth rates were correlated to various factors including phosphate and silicate concentrations, cell density, and light. Metatranscriptomic analysis of four abundant genomospecies commonly revealed that aerobic anoxygenic photoheterotrophy-associated transcripts were highly abundant at night. These Rhodobacterales also differentially expressed genes for CO oxidation and nutrient transport and use between different environmental conditions. Phosphate concentrations and light penetration in the Chesapeake Bay likely contributed to higher estimated growth rates of HIMB11 and LFER01, respectively, in summer where they maintained higher ribosome concentrations and prevented physiological gene expression constraints by downregulating transporter genes compared to the Delaware Bay. Our study highlights the spatial and temporal shifts in estuarine Rhodobacterales within and between these bays reflected through their abundance, unique metabolisms, estimated growth rates, and activity changes. IMPORTANCE In the complex web of global biogeochemical nutrient cycling, the Rhodobacterales emerge as key players, exerting a profound influence through their abundance and dynamic activity. While previous studies have primarily investigated these organisms within marine ecosystems, this study delves into their roles within estuarine environments using a combination of metagenomic and metatranscriptomic analyses. We uncovered a range of Rhodobacterales genera, from generalists to specialists, each exhibiting distinct abundance patterns and gene expression profiles. This diversity equips them with the capacity to thrive amidst the varying environmental conditions encountered within dynamic estuarine habitats. Crucially, our findings illuminate the adaptable nature of estuarine Rhodobacterales, revealing their various energy production pathways and diverse resource management, especially during phytoplankton or algal blooms. Whether adopting a free-living or particle-attached existence, these organisms demonstrate remarkable flexibility in their metabolic strategies, underscoring their pivotal role in driving ecosystem dynamics within estuarine ecosystems.
Collapse
Affiliation(s)
- Mir Alvee Ahmed
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, USA
| | - Barbara J. Campbell
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, USA
| |
Collapse
|
8
|
Swaney MH, Henriquez N, Campbell T, Handelsman J, Kalan LR. Skin-associated Corynebacterium amycolatum shares cobamides. mSphere 2025; 10:e0060624. [PMID: 39692507 PMCID: PMC11774034 DOI: 10.1128/msphere.00606-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 10/17/2024] [Indexed: 12/19/2024] Open
Abstract
The underlying interactions that occur to maintain skin microbiome composition, function, and overall skin health are largely unknown. Often, these types of interactions are mediated by microbial metabolites. Cobamides, the vitamin B12 family of cofactors, are essential for metabolism in many bacteria but are only synthesized by a fraction of prokaryotes, including certain skin-associated species. Therefore, we hypothesize that cobamide sharing mediates skin community dynamics. Preliminary work predicts that several skin-associated Corynebacterium species encode de novo cobamide biosynthesis and that their abundance is associated with skin microbiome diversity. Here, we show that commensal Corynebacterium amycolatum produces cobamides and that this synthesis can be tuned by cobalt limitation. To demonstrate cobamide sharing by C. amycolatum, we employed a co-culture assay using an E. coli cobamide auxotroph and showed that C. amycolatum produces sufficient cobamides to support Escherichia coli growth, both in liquid co-culture and when separated spatially on solid medium. We also generated a C. amycolatum non-cobamide-producing strain (cob-) using UV mutagenesis that contains mutated cobamide biosynthesis genes cobK (precorrin-6X reductase) and cobO (corrinoid adenosyltransferase) and confirm that disruption of cobamide biosynthesis abolishes the support of E. coli growth through cobamide sharing. Our study provides a unique model to study metabolite sharing by microorganisms, which will be critical for understanding the fundamental interactions that occur within complex microbiomes and for developing approaches to target the human microbiota for health advances. IMPORTANCE The human skin serves as a crucial barrier for the body and hosts a diverse community of microbes known as the skin microbiome. The interactions that occur to maintain a healthy skin microbiome are largely unknown but are thought to be driven in part, by nutrient sharing between species in close association. Here we show that the skin-associated bacteria Corynebacterium amycolatum produces and shares cobalamin, a cofactor essential for survival in organisms across all domains of life. This study provides a unique model to study metabolite sharing by skin microorganisms, which will be critical for understanding the fundamental interactions that occur within the skin microbiome and for developing therapeutic approaches aiming to engineer and manipulate the skin microbiota.
Collapse
Affiliation(s)
- M. H. Swaney
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, USA
- Microbiology Doctoral Training Program, University of Wisconsin, Madison, Wisconsin, USA
| | - N. Henriquez
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - T. Campbell
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - J. Handelsman
- Wisconsin Institute for Discovery, Madison, Wisconsin, USA
- Department of Plant Pathology, University of Wisconsin, Madison, Wisconsin, USA
| | - L. R. Kalan
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, USA
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
9
|
Jin M, Cai L, Lu L, Yu M, Zhang R. Combined metabolomic and genomic analyses reveal phage-specific and infection stage-specific alterations to marine Roseobacter metabolism. ISME COMMUNICATIONS 2025; 5:ycaf047. [PMID: 40206216 PMCID: PMC11981692 DOI: 10.1093/ismeco/ycaf047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/24/2025] [Accepted: 03/13/2025] [Indexed: 04/11/2025]
Abstract
Phages can reshape the metabolic network of hosts to support specific requirements for replication during infection. However, metabolomic profiling of phage-elicited host global metabolic alterations and the linkage of phage-encoded auxiliary metabolic genes to these alterations are understudied. In this study, the dynamics of intracellular metabolites of Dinoroseobacter shibae DFL12, a member of marine environmentally and biogeochemically relevant Roseobacter clade, in response to four distinct lytic roseophage infections were investigated. Metabolomic profiling indicated that roseophage infections significantly altered host metabolism in a phage-specific manner. Pathway enrichment analyses showed that the central carbon pathway and DNA, amino acid, and coenzyme metabolism were commonly altered by roseophages, revealing a central role of these pathways in phage replication. Furthermore, clear infection stage-specific host responses were observed, corresponding to different metabolic demands of phage replication in the early and late infection stages. Interestingly, the content of host vitamin B1, which is the essential nutrient provided by D. shibae to its symbiotic microalgae, increased in the early infection stage for most roseophages, implying that phage infection may impact the symbiosis of D. shibae with microalgae. Finally, combined metabolomic and phage genomics analyses showed that roseophages adopt different strategies to expand the host pyrimidine pool (recycling or de novo synthesis of pyrimidine nucleotides), and this difference was likely related to variation in the GC content between phage and host genomes. Collectively, these results highlight the potential importance of phage-specific and infection stage-specific host metabolic reprogramming in marine phage-host interactions, bacteria-microalgae symbiosis, and biogeochemical cycles.
Collapse
Affiliation(s)
- Min Jin
- State Key Laboratory Breeding Base of Marine Genetic Resource and Laboratory for Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361000, China
| | - Lanlan Cai
- Earth, Ocean and Atmospheric Sciences Thrust, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou 510000, China
| | - Longfei Lu
- Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai 536000, China
| | - Meishun Yu
- State Key Laboratory Breeding Base of Marine Genetic Resource and Laboratory for Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361000, China
| | - Rui Zhang
- Archaeal Biology Center, Synthetic Biology Research Center, Shenzhen Key Laboratory of Marine Microbiome Engineering, Key Laboratory of Marine Microbiome Engineering of Guangdong Higher Education Institutes, Institute for Advanced Study, Shenzhen University, Shenzhen 518000, China
| |
Collapse
|
10
|
Huelsmann M, Schubert OT, Ackermann M. A framework for understanding collective microbiome metabolism. Nat Microbiol 2024; 9:3097-3109. [PMID: 39604625 DOI: 10.1038/s41564-024-01850-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 10/10/2024] [Indexed: 11/29/2024]
Abstract
Microbiome metabolism underlies numerous vital ecosystem functions. Individual microbiome members often perform partial catabolism of substrates or do not express all of the metabolic functions required for growth. Microbiome members can complement each other by exchanging metabolic intermediates and cellular building blocks to achieve a collective metabolism. We currently lack a mechanistic framework to explain why microbiome members adopt partial metabolism and how metabolic functions are distributed among them. Here we argue that natural selection for proteome efficiency-that is, performing essential metabolic fluxes at a minimal protein investment-explains partial metabolism of microbiome members, which underpins the collective metabolism of microbiomes. Using the carbon cycle as an example, we discuss motifs of collective metabolism, the conditions under which these motifs increase the proteome efficiency of individuals and the metabolic interactions they result in. In summary, we propose a mechanistic framework for how collective metabolic functions emerge from selection on individuals.
Collapse
Affiliation(s)
- Matthias Huelsmann
- Department of Environmental Systems Science, Swiss Federal Institute of Technology Zurich (ETH Zurich), Zurich, Switzerland.
- Department of Environmental Microbiology, Swiss Federal Institute of Aquatic Science and Technology (Eawag), Dübendorf, Switzerland.
- PharmaBiome AG, Schlieren, Switzerland.
| | - Olga T Schubert
- Department of Environmental Systems Science, Swiss Federal Institute of Technology Zurich (ETH Zurich), Zurich, Switzerland
- Department of Environmental Microbiology, Swiss Federal Institute of Aquatic Science and Technology (Eawag), Dübendorf, Switzerland
| | - Martin Ackermann
- Department of Environmental Systems Science, Swiss Federal Institute of Technology Zurich (ETH Zurich), Zurich, Switzerland
- Department of Environmental Microbiology, Swiss Federal Institute of Aquatic Science and Technology (Eawag), Dübendorf, Switzerland
- School of Architecture, Civil and Environmental Engineering, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
11
|
Zhu J, Yu Z, He L, Cao X, Wang W, Song X. Phycosphere bacterial composition and function in colony and solitary Phaeocystis globosa strains providing novel insights into the algal blooms. MARINE POLLUTION BULLETIN 2024; 206:116700. [PMID: 39002214 DOI: 10.1016/j.marpolbul.2024.116700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/17/2024] [Accepted: 07/01/2024] [Indexed: 07/15/2024]
Abstract
Phycosphere bacteria can regulate the dynamics of different algal blooms that impact marine ecosystems. Phaeocystis globosa can alternate between solitary free-living cells and colonies and the latter morphotype is dominate during blooms. The mechanisms underlying the formation of these blooms have received much attention. High throughput sequencing results showed that the bacterial community composition differed significantly between colony and solitary strains in bacterial composition and function. It was found that the genera SM1A02 and Haliea were detected only among the colony strains and contribute to ammonium accumulation in colonies, and the genus Sulfitobacter was abundant among the colony strains that were excellent at producing DMS. In addition, the bacterial communities of the two colony strains exhibited stronger abilities for carbon and sulfur metabolism, energy metabolism, vitamin B synthesis, and signal transduction, providing inorganic and organic nutrients and facilitating tight communication with the host algae, thereby promoting growth and bloom development.
Collapse
Affiliation(s)
- Jianan Zhu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Centre for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Zhiming Yu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Centre for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Liyan He
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Centre for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Xihua Cao
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Centre for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Wentao Wang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Centre for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Xiuxian Song
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Centre for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
12
|
Martínez-Pérez C, Zweifel ST, Pioli R, Stocker R. Space, the final frontier: The spatial component of phytoplankton-bacterial interactions. Mol Microbiol 2024; 122:331-346. [PMID: 38970428 DOI: 10.1111/mmi.15293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/17/2024] [Accepted: 06/24/2024] [Indexed: 07/08/2024]
Abstract
Microscale interactions between marine phytoplankton and bacteria shape the microenvironment of individual cells, impacting their physiology and ultimately influencing global-scale biogeochemical processes like carbon and nutrient cycling. In dilute environments such as the ocean water column, metabolic exchange between microorganisms likely requires close proximity between partners. However, the biological strategies to achieve this physical proximity remain an understudied aspect of phytoplankton-bacterial associations. Understanding the mechanisms by which these microorganisms establish and sustain spatial relationships and the extent to which spatial proximity is necessary for interactions to occur, is critical to learning how spatial associations influence the ecology of phytoplankton and bacterial communities. Here, we provide an overview of current knowledge on the role of space in shaping interactions among ocean microorganisms, encompassing behavioural and metabolic evidence. We propose that characterising phytoplankton-bacterial interactions from a spatial perspective can contribute to a mechanistic understanding of the establishment and maintenance of these associations and, consequently, an enhanced ability to predict the impact of microscale processes on ecosystem-wide phenomena.
Collapse
Affiliation(s)
- Clara Martínez-Pérez
- Department of Civil, Environmental and Geomatic Engineering, ETH Zurich, Zurich, Switzerland
| | - Sophie T Zweifel
- Department of Civil, Environmental and Geomatic Engineering, ETH Zurich, Zurich, Switzerland
| | - Roberto Pioli
- Department of Civil, Environmental and Geomatic Engineering, ETH Zurich, Zurich, Switzerland
| | - Roman Stocker
- Department of Civil, Environmental and Geomatic Engineering, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
13
|
Zhao N, Liu F, Dong W, Yu J, Halverson LJ, Xie B. Quantitative proteomics insights into Chlamydomonas reinhardtii thermal tolerance enhancement by a mutualistic interaction with Sinorhizobium meliloti. Microbiol Spectr 2024; 12:e0021924. [PMID: 39012118 DOI: 10.1128/spectrum.00219-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 06/21/2024] [Indexed: 07/17/2024] Open
Abstract
Interactions between photosynthetic microalgae and bacteria impact the physiology of both partners, which influence the fitness and ecological trajectories of each partner in an environmental context-dependent manner. Thermal tolerance of Chlamydomonas reinhardtii can be enhanced through a mutualistic interaction with vitamin B12 (cobalamin)-producing Sinorhizobium meliloti. Here, we used label-free quantitative proteomics to reveal the metabolic networks altered by the interaction under normal and high temperatures. We created a scenario where the growth of Sinorhizobium requires carbon provided by Chlamydomonas for growth in co-cultures, and survival of Chlamydomonas under high temperatures relies on cobalamin and possibly other metabolites produced by Sinorhizobium. Differential abundance analysis identified proteins produced by each partner in co-cultures compared to mono-cultures at each temperature. Proteins involved in cobalamin production by Sinorhizobium increased in the presence of Chlamydomonas under elevated temperatures, whereas in Chlamydomonas, there was an increase in cobalamin-dependent methionine synthase and certain proteins associated with methylation reactions. Co-cultivation and heat stress strongly modulated the central metabolism of both partners as well as various transporters that could facilitate nutrient cross-utilization. Co-cultivation modulated expression of various components of two- or one-component signal transduction systems, transcriptional activators/regulators, or sigma factors, suggesting complex regulatory networks modulate the interaction in a temperature-dependent manner. Notably, heat and general stress-response and antioxidant proteins were upregulated in co-cultures, suggesting that the interaction is inherently stressful to each partner despite the benefits of mutualism. Our results shed insight into the metabolic tradeoffs required for mutualism and how metabolic networks are modulated by elevated temperature. IMPORTANCE Photosynthetic microalgae are key primary producers in aquatic ecosystems, playing an important role in the global carbon cycle. Nearly every alga lives in association with a diverse community of microorganisms that influence each other and their metabolic activities or survival. One chemical produced by bacteria that influence algae is vitamin B12, an enzyme cofactor used for a variety of metabolic functions. The alga Chlamydomonas reinhardtii benefits from vitamin B12 produced by Sinorhizobium meliloti by producing the amino acid methionine under high temperatures which are required for Chlamydomonas thermotolerance. Yet, our understanding of this interaction under normal and stressful temperatures is poor. Here, we used quantitative proteomics to identify differentially expressed proteins to reveal metabolic adjustments made by Chlamydomonas and Sinorhizobium that could facilitate this mutualism. These findings will enhance our understanding of how photosynthetic algae and their associated microbiomes will respond as global temperatures increase.
Collapse
Affiliation(s)
- Na Zhao
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, China
- Translational Medicine Research Center, Guizhou Medical University, Guiyang, China
| | - Fei Liu
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, China
| | - Wenxiu Dong
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, China
| | - Jie Yu
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, China
| | - Larry J Halverson
- Department of Plant Pathology, Entomology, and Microbiology, Iowa State University, Ames, Iowa, USA
| | - Bo Xie
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, China
| |
Collapse
|
14
|
Isaac A, Mohamed AR, Amin SA. Rhodobacteraceae are key players in microbiome assembly of the diatom Asterionellopsis glacialis. Appl Environ Microbiol 2024; 90:e0057024. [PMID: 38809046 PMCID: PMC11218658 DOI: 10.1128/aem.00570-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 05/05/2024] [Indexed: 05/30/2024] Open
Abstract
The complex interactions between bacterioplankton and phytoplankton have prompted numerous studies that investigate phytoplankton microbiomes with the aim of characterizing beneficial or opportunistic taxa and elucidating core bacterial members. Oftentimes, this knowledge is garnered through 16S rRNA gene profiling of microbiomes from phytoplankton isolated across spatial and temporal scales, yet these studies do not offer insight into microbiome assembly and structuring. In this study, we aimed to identify taxa central to structuring and establishing the microbiome of the ubiquitous diatom Asterionellopsis glacialis. We introduced a diverse environmental bacterial community to A. glacialis in nutrient-rich or nutrient-poor media in a continuous dilution culture setup and profiled the bacterial community over 7 days. 16S rRNA amplicon sequencing showed that cyanobacteria (Coleofasciculaceae) and Rhodobacteraceae dominate the microbiome early on and maintain a persistent association throughout the experiment. Differential abundance, co-abundance networks, and differential association analyses revealed that specific members of the family Rhodobacteraceae, particularly Sulfitobacter amplicon sequence variants, become integral members in microbiome assembly. In the presence of the diatom, Sulfitobacter species and other Rhodobacteraceae developed positive associations with taxa that are typically in high abundance in marine ecosystems (Pelagibacter and Synechococcus), leading to restructuring of the microbiome compared to diatom-free controls. These positive associations developed predominantly under oligotrophic conditions, highlighting the importance of investigating phytoplankton microbiomes in as close to natural conditions as possible to avoid biases that develop under routine laboratory conditions. These findings offer further insight into phytoplankton-bacteria interactions and illustrate the importance of Rhodobacteraceae, not merely as phytoplankton symbionts but as key taxa involved in microbiome assembly. IMPORTANCE Most, if not all, microeukaryotic organisms harbor an associated microbial community, termed the microbiome. The microscale interactions that occur between these partners have global-scale consequences, influencing marine primary productivity, carbon cycling, and harmful algal blooms to name but a few. Over the last decade, there has been a growing interest in the study of phytoplankton microbiomes, particularly within the context of bloom dynamics. However, long-standing questions remain regarding the process of phytoplankton microbiome assembly. The significance of our research is to tease apart the mechanism of microbiome assembly with a particular focus on identifying bacterial taxa, which may not merely be symbionts but architects of the phytoplankton microbiome. Our results strengthen the understanding of the ecological mechanisms that underpin phytoplankton-bacteria interactions in order to accurately predict marine ecosystem responses to environmental perturbations.
Collapse
Affiliation(s)
- Ashley Isaac
- Marine Microbiomics Lab, Biology Program, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
- Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Amin R. Mohamed
- Marine Microbiomics Lab, Biology Program, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Shady A. Amin
- Marine Microbiomics Lab, Biology Program, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
- Mubadala ACCESS Center, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| |
Collapse
|
15
|
Hamilton M, Ferrer‐González FX, Moran MA. Heterotrophic bacteria trigger transcriptome remodelling in the photosynthetic picoeukaryote Micromonas commoda. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13285. [PMID: 38778545 PMCID: PMC11112143 DOI: 10.1111/1758-2229.13285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 04/30/2024] [Indexed: 05/25/2024]
Abstract
Marine biogeochemical cycles are built on interactions between surface ocean microbes, particularly those connecting phytoplankton primary producers to heterotrophic bacteria. Details of these associations are not well understood, especially in the case of direct influences of bacteria on phytoplankton physiology. Here we catalogue how the presence of three marine bacteria (Ruegeria pomeroyi DSS-3, Stenotrophomonas sp. SKA14 and Polaribacter dokdonensis MED152) individually and uniquely impact gene expression of the picoeukaryotic alga Micromonas commoda RCC 299. We find a dramatic transcriptomic remodelling by M. commoda after 8 h in co-culture, followed by an increase in cell numbers by 56 h compared with the axenic cultures. Some aspects of the algal transcriptomic response are conserved across all three bacterial co-cultures, including an unexpected reduction in relative expression of photosynthesis and carbon fixation pathways. Expression differences restricted to a single bacterium are also observed, with the Flavobacteriia P. dokdonensis uniquely eliciting changes in relative expression of algal genes involved in biotin biosynthesis and the acquisition and assimilation of nitrogen. This study reveals that M. commoda has rapid and extensive responses to heterotrophic bacteria in ways that are generalizable, as well as in a taxon specific manner, with implications for the diversity of phytoplankton-bacteria interactions ongoing in the surface ocean.
Collapse
Affiliation(s)
- Maria Hamilton
- Department of Marine SciencesUniversity of GeorgiaAthensGeorgiaUSA
| | | | - Mary Ann Moran
- Department of Marine SciencesUniversity of GeorgiaAthensGeorgiaUSA
| |
Collapse
|
16
|
Abate R, Oon YS, Oon YL, Bi Y. Microalgae-bacteria nexus for environmental remediation and renewable energy resources: Advances, mechanisms and biotechnological applications. Heliyon 2024; 10:e31170. [PMID: 38813150 PMCID: PMC11133723 DOI: 10.1016/j.heliyon.2024.e31170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/25/2024] [Accepted: 05/11/2024] [Indexed: 05/31/2024] Open
Abstract
Microalgae and bacteria, known for their resilience, rapid growth, and proximate ecological partnerships, play fundamental roles in environmental and biotechnological advancements. This comprehensive review explores the synergistic interactions between microalgae and bacteria as an innovative approach to address some of the most pressing environmental issues and the demands of clean and renewable freshwater and energy sources. Studies indicated that microalgae-bacteria consortia can considerably enhance the output of biotechnological applications; for instance, various reports showed during wastewater treatment the COD removal efficiency increased by 40%-90.5 % due to microalgae-bacteria consortia, suggesting its great potential amenability in biotechnology. This review critically synthesizes research works on the microalgae and bacteria nexus applied in the advancements of renewable energy generation, with a special focus on biohydrogen, reclamation of wastewater and desalination processes. The mechanisms of underlying interactions, the environmental factors influencing consortia performance, and the challenges and benefits of employing these bio-complexes over traditional methods are also discussed in detail. This paper also evaluates the biotechnological applications of these microorganism consortia for the augmentation of biomass production and the synthesis of valuable biochemicals. Furthermore, the review sheds light on the integration of microalgae-bacteria systems in microbial fuel cells for concurrent energy production, waste treatment, and resource recovery. This review postulates microalgae-bacteria consortia as a sustainable and efficient solution for clean water and energy, providing insights into future research directions and the potential for industrial-scale applications.
Collapse
Affiliation(s)
- Rediat Abate
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Yoong-Sin Oon
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, 430072, China
| | - Yoong-Ling Oon
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, 430072, China
| | - Yonghong Bi
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| |
Collapse
|
17
|
Kim KH, Kim JM, Baek JH, Jeong SE, Kim H, Yoon HS, Jeon CO. Metabolic relationships between marine red algae and algae-associated bacteria. MARINE LIFE SCIENCE & TECHNOLOGY 2024; 6:298-314. [PMID: 38827136 PMCID: PMC11136935 DOI: 10.1007/s42995-024-00227-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 12/28/2023] [Indexed: 06/04/2024]
Abstract
Mutualistic interactions between marine phototrophs and associated bacteria are an important strategy for their successful survival in the ocean, but little is known about their metabolic relationships. Here, bacterial communities in the algal sphere (AS) and bulk solution (BS) of nine marine red algal cultures were analyzed, and Roseibium and Phycisphaera were identified significantly more abundantly in AS than in BS. The metabolic features of Roseibium RMAR6-6 (isolated and genome-sequenced), Phycisphaera MAG 12 (obtained by metagenomic sequencing), and a marine red alga, Porphyridium purpureum CCMP1328 (from GenBank), were analyzed bioinformatically. RMAR6-6 has the genetic capability to fix nitrogen and produce B vitamins (B1, B2, B5, B6, B9, and B12), bacterioferritin, dimethylsulfoniopropionate (DMSP), and phenylacetate that may enhance algal growth, whereas MAG 12 may have a limited metabolic capability, not producing vitamins B9 and B12, DMSP, phenylacetate, and siderophores, but with the ability to produce bacitracin, possibly modulating algal microbiome. P. purpureum CCMP1328 lacks the genetic capability to fix nitrogen and produce vitamin B12, DMSP, phenylacetate, and siderophore. It was shown that the nitrogen-fixing ability of RMAR6-6 promoted the growth of P. purpureum, and DMSP reduced the oxidative stress of P. purpureum. The metabolic interactions between strain RMAR6-6 and P. purpureum CCMP1328 were also investigated by the transcriptomic analyses of their monoculture and co-culture. Taken together, potential metabolic relationships between Roseibium and P. purpureum were proposed. This study provides a better understanding of the metabolic relationships between marine algae and algae-associated bacteria for successful growth. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-024-00227-z.
Collapse
Affiliation(s)
- Kyung Hyun Kim
- Department of Biological Sciences and Biotechnology, Hannam University, Daejon, 34054 Republic of Korea
| | - Jeong Min Kim
- Department of Life Science, Chung-Ang University, Seoul, 06974 Republic of Korea
| | - Ju Hye Baek
- Department of Life Science, Chung-Ang University, Seoul, 06974 Republic of Korea
| | - Sang Eun Jeong
- Department of Life Science, Chung-Ang University, Seoul, 06974 Republic of Korea
| | - Hocheol Kim
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419 Republic of Korea
| | - Hwan Su Yoon
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419 Republic of Korea
| | - Che Ok Jeon
- Department of Life Science, Chung-Ang University, Seoul, 06974 Republic of Korea
| |
Collapse
|
18
|
Wienhausen G, Moraru C, Bruns S, Tran DQ, Sultana S, Wilkes H, Dlugosch L, Azam F, Simon M. Ligand cross-feeding resolves bacterial vitamin B 12 auxotrophies. Nature 2024; 629:886-892. [PMID: 38720071 DOI: 10.1038/s41586-024-07396-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 04/08/2024] [Indexed: 05/24/2024]
Abstract
Cobalamin (vitamin B12, herein referred to as B12) is an essential cofactor for most marine prokaryotes and eukaryotes1,2. Synthesized by a limited number of prokaryotes, its scarcity affects microbial interactions and community dynamics2-4. Here we show that two bacterial B12 auxotrophs can salvage different B12 building blocks and cooperate to synthesize B12. A Colwellia sp. synthesizes and releases the activated lower ligand α-ribazole, which is used by another B12 auxotroph, a Roseovarius sp., to produce the corrin ring and synthesize B12. Release of B12 by Roseovarius sp. happens only in co-culture with Colwellia sp. and only coincidently with the induction of a prophage encoded in Roseovarius sp. Subsequent growth of Colwellia sp. in these conditions may be due to the provision of B12 by lysed cells of Roseovarius sp. Further evidence is required to support a causative role for prophage induction in the release of B12. These complex microbial interactions of ligand cross-feeding and joint B12 biosynthesis seem to be widespread in marine pelagic ecosystems. In the western and northern tropical Atlantic Ocean, bacteria predicted to be capable of salvaging cobinamide and synthesizing only the activated lower ligand outnumber B12 producers. These findings add new players to our understanding of B12 supply to auxotrophic microorganisms in the ocean and possibly in other ecosystems.
Collapse
Affiliation(s)
- Gerrit Wienhausen
- Institute for Chemistry and Biology of the Marine Environment (ICBM), School of Mathematics and Science, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany.
- Scripps Institution of Oceanography, Marine Biology Research Division, University of California San Diego, La Jolla, CA, USA.
| | - Cristina Moraru
- Institute for Chemistry and Biology of the Marine Environment (ICBM), School of Mathematics and Science, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
- Environmental Metagenomics, Research Center One Health Ruhr of the University Alliance Ruhr, Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany
| | - Stefan Bruns
- Institute for Chemistry and Biology of the Marine Environment (ICBM), School of Mathematics and Science, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Den Quoc Tran
- Institute for Chemistry and Biology of the Marine Environment (ICBM), School of Mathematics and Science, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Sabiha Sultana
- Institute for Chemistry and Biology of the Marine Environment (ICBM), School of Mathematics and Science, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Heinz Wilkes
- Institute for Chemistry and Biology of the Marine Environment (ICBM), School of Mathematics and Science, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Leon Dlugosch
- Institute for Chemistry and Biology of the Marine Environment (ICBM), School of Mathematics and Science, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Farooq Azam
- Scripps Institution of Oceanography, Marine Biology Research Division, University of California San Diego, La Jolla, CA, USA
| | - Meinhard Simon
- Institute for Chemistry and Biology of the Marine Environment (ICBM), School of Mathematics and Science, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany.
- Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg (HIFMB), Oldenburg, Germany.
| |
Collapse
|
19
|
Swaney MH, Henriquez N, Campbell T, Handelsman J, Kalan LR. Skin-associated Corynebacterium amycolatum shares cobamides. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.28.591522. [PMID: 38712214 PMCID: PMC11071462 DOI: 10.1101/2024.04.28.591522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
The underlying interactions that occur to maintain skin microbiome composition, function, and overall skin health are largely unknown. Often, these types of interactions are mediated by microbial metabolites. Cobamides, the vitamin B12 family of cofactors, are essential for metabolism in many bacteria, but are only synthesized by a small fraction of prokaryotes, including certain skin-associated species. Therefore, we hypothesize that cobamide sharing mediates skin community dynamics. Preliminary work predicts that several skin-associated Corynebacterium species encode de novo cobamide biosynthesis and that their abundance is associated with skin microbiome diversity. Here, we show that commensal Corynebacterium amycolatum produces cobamides and that this synthesis can be tuned by cobalt limitation. To demonstrate cobamide sharing by C. amycolatum, we employed a co-culture assay using an E. coli cobamide auxotroph and show that C. amycolatum produces sufficient cobamides to support E. coli growth, both in liquid co-culture and when separated spatially on solid medium. We also generated a C. amycolatum non-cobamide-producing strain (cob-) using UV mutagenesis that contains mutated cobamide biosynthesis genes cobK and cobO and confirm that disruption of cobamide biosynthesis abolishes support of E. coli growth through cobamide sharing. Our study provides a unique model to study metabolite sharing by microorganisms, which will be critical for understanding the fundamental interactions that occur within complex microbiomes and for developing approaches to target the human microbiota for health advances.
Collapse
Affiliation(s)
- M H Swaney
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
- Microbiology Doctoral Training Program, University of Wisconsin, Madison, WI, USA
| | - N Henriquez
- Michael G. DeGroote Institute for Infectious Disease Research, Hamilton, ON, CAN
| | - T Campbell
- Michael G. DeGroote Institute for Infectious Disease Research, Hamilton, ON, CAN
| | - J Handelsman
- Wisconsin Institute for Discovery, Madison, WI, USA
- Department of Plant Pathology, University of Wisconsin, Madison, WI, USA
| | - L R Kalan
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
- Michael G. DeGroote Institute for Infectious Disease Research, Hamilton, ON, CAN
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, CAN
- David Braley Centre for Antibiotic Discovery, Hamilton, ON, CAN
| |
Collapse
|
20
|
Jin Y, Ren S, Wu Y, Zhang X, Chen Z, Xie B. Microbial community structures and bacteria-Cylindrospermopsis raciborskii interactions in Yilong Lake. FEMS Microbiol Ecol 2024; 100:fiae048. [PMID: 38578661 PMCID: PMC11057442 DOI: 10.1093/femsec/fiae048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 03/27/2024] [Accepted: 04/03/2024] [Indexed: 04/06/2024] Open
Abstract
Cylindrospermopsis raciborskii-dominated harmful algae blooms have been reported globally in recent years. However, our understanding of the ecology of C. raciborskii in natural conditions is still poor. In this study, we collected the water samples from a C. raciborskii-blooming lake, Yilong Lake, in Yunnan province, China, and used both culture-dependent and culture-independent approaches to investigate their microbial communities and the interactions between C. raciborskii and the other bacteria. The composition and diversity of microbial communities were revealed with 16S rRNA gene high-throughput sequencing data analysis. Microbial co-occurrences analysis suggests C. raciborskii may have complex associations with other bacteria. Based on co-inoculation tests, we obtained 14 strains of bacterial strains from the water samples that exhibited either algicidal or promoting effects on a strain of C. raciborskii. Two bacterial isolates exhibited a consistent performance between co-occurrence analysis and experimental results. Effects of these bacteria-algae interspecies interactions on the bloom event are discussed. All these results may provide new insights into the C. raciborskii-dominated blooms and how its interspecies relationships with other bacteria may influence the bloom events in eutrophic waters throughout the world.
Collapse
Affiliation(s)
- Yuanpei Jin
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, China
| | - Sanguo Ren
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, China
| | - Yichi Wu
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, China
| | - Xu Zhang
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, China
| | - Zhengjun Chen
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Bo Xie
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, China
| |
Collapse
|
21
|
Carrasco Flores D, Hotter V, Vuong T, Hou Y, Bando Y, Scherlach K, Burgunter-Delamare B, Hermenau R, Komor AJ, Aiyar P, Rose M, Sasso S, Arndt HD, Hertweck C, Mittag M. A mutualistic bacterium rescues a green alga from an antagonist. Proc Natl Acad Sci U S A 2024; 121:e2401632121. [PMID: 38568970 PMCID: PMC11009677 DOI: 10.1073/pnas.2401632121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 03/11/2024] [Indexed: 04/05/2024] Open
Abstract
Photosynthetic protists, known as microalgae, are key contributors to primary production on Earth. Since early in evolution, they coexist with bacteria in nature, and their mode of interaction shapes ecosystems. We have recently shown that the bacterium Pseudomonas protegens acts algicidal on the microalga Chlamydomonas reinhardtii. It secretes a cyclic lipopeptide and a polyyne that deflagellate, blind, and lyse the algae [P. Aiyar et al., Nat. Commun. 8, 1756 (2017) and V. Hotter et al., Proc. Natl. Acad. Sci. U.S.A. 118, e2107695118 (2021)]. Here, we report about the bacterium Mycetocola lacteus, which establishes a mutualistic relationship with C. reinhardtii and acts as a helper. While M. lacteus enhances algal growth, it receives methionine as needed organic sulfur and the vitamins B1, B3, and B5 from the algae. In tripartite cultures with the alga and the antagonistic bacterium P. protegens, M. lacteus aids the algae in surviving the bacterial attack. By combining synthetic natural product chemistry with high-resolution mass spectrometry and an algal Ca2+ reporter line, we found that M. lacteus rescues the alga from the antagonistic bacterium by cleaving the ester bond of the cyclic lipopeptide involved. The resulting linearized seco acid does not trigger a cytosolic Ca2+ homeostasis imbalance that leads to algal deflagellation. Thus, the algae remain motile, can swim away from the antagonistic bacteria and survive the attack. All three involved genera cooccur in nature. Remarkably, related species of Pseudomonas and Mycetocola also act antagonistically against C. reinhardtii or as helper bacteria in tripartite cultures.
Collapse
Affiliation(s)
- David Carrasco Flores
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, General Botany, Friedrich Schiller University Jena, Jena07743, Germany
| | - Vivien Hotter
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, General Botany, Friedrich Schiller University Jena, Jena07743, Germany
| | - Trang Vuong
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, General Botany, Friedrich Schiller University Jena, Jena07743, Germany
| | - Yu Hou
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, General Botany, Friedrich Schiller University Jena, Jena07743, Germany
| | - Yuko Bando
- Institute for Organic Chemistry and Macromolecular Chemistry, Organic Chemistry, Friedrich Schiller University Jena, Jena07743, Germany
| | - Kirstin Scherlach
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (Hans Knöll Institute), Jena07745, Germany
| | - Bertille Burgunter-Delamare
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, General Botany, Friedrich Schiller University Jena, Jena07743, Germany
| | - Ron Hermenau
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (Hans Knöll Institute), Jena07745, Germany
| | - Anna J. Komor
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (Hans Knöll Institute), Jena07745, Germany
| | - Prasad Aiyar
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, General Botany, Friedrich Schiller University Jena, Jena07743, Germany
| | - Magdalena Rose
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, General Botany, Friedrich Schiller University Jena, Jena07743, Germany
- Institute of Biology, Plant Physiology, Leipzig University, Leipzig04103, Germany
| | - Severin Sasso
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, General Botany, Friedrich Schiller University Jena, Jena07743, Germany
- Institute of Biology, Plant Physiology, Leipzig University, Leipzig04103, Germany
| | - Hans-Dieter Arndt
- Institute for Organic Chemistry and Macromolecular Chemistry, Organic Chemistry, Friedrich Schiller University Jena, Jena07743, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena 07743, Germany
| | - Christian Hertweck
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (Hans Knöll Institute), Jena07745, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena 07743, Germany
- Faculty of Biological Sciences, Friedrich Schiller University Jena, Jena07743, Germany
| | - Maria Mittag
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, General Botany, Friedrich Schiller University Jena, Jena07743, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena 07743, Germany
| |
Collapse
|
22
|
Kuhlisch C, Shemi A, Barak-Gavish N, Schatz D, Vardi A. Algal blooms in the ocean: hot spots for chemically mediated microbial interactions. Nat Rev Microbiol 2024; 22:138-154. [PMID: 37833328 DOI: 10.1038/s41579-023-00975-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/14/2023] [Indexed: 10/15/2023]
Abstract
The cycling of major nutrients in the ocean is affected by large-scale phytoplankton blooms, which are hot spots of microbial life. Diverse microbial interactions regulate bloom dynamics. At the single-cell level, interactions between microorganisms are mediated by small molecules in the chemical crosstalk that determines the type of interaction, ranging from mutualism to pathogenicity. Algae interact with viruses, bacteria, parasites, grazers and other algae to modulate algal cell fate, and these interactions are dependent on the environmental context. Recent advances in mass spectrometry and single-cell technologies have led to the discovery of a growing number of infochemicals - metabolites that convey information - revealing the ability of algal cells to govern biotic interactions in the ocean. The diversity of infochemicals seems to account for the specificity in cellular response during microbial communication. Given the immense impact of algal blooms on biogeochemical cycles and climate regulation, a major challenge is to elucidate how microscale interactions control the fate of carbon and the recycling of major elements in the ocean. In this Review, we discuss microbial interactions and the role of infochemicals in algal blooms. We further explore factors that can impact microbial interactions and the available tools to decipher them in the natural environment.
Collapse
Affiliation(s)
- Constanze Kuhlisch
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Adva Shemi
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Noa Barak-Gavish
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | - Daniella Schatz
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Assaf Vardi
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
23
|
Gao N, Shu Y, Wang Y, Sun M, Wei Z, Song C, Zhang W, Sun Y, Hu X, Bao Z, Ding W. Acute Ammonia Causes Pathogenic Dysbiosis of Shrimp Gut Biofilms. Int J Mol Sci 2024; 25:2614. [PMID: 38473861 PMCID: PMC10932075 DOI: 10.3390/ijms25052614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/08/2024] [Accepted: 02/12/2024] [Indexed: 03/14/2024] Open
Abstract
Acute ammonia exposure has detrimental effects on shrimp, but the underlying mechanisms remain to be fully explored. In the present study, we investigated the impact of acute ammonia exposure on the gut microbiota of the white shrimp Litopenaeus vannamei and its association with shrimp mortality. Exposure to a lethal concentration of ammonia for 48 h resulted in increased mortality in L. vannamei, with severe damage to the hepatopancreas. Ammonia exposure led to a significant decrease in gut microbial diversity, along with the loss of beneficial bacterial taxa and the proliferation of pathogenic Vibrio strains. A phenotypic analysis revealed a transition from the dominance of aerobic to facultative anaerobic strains due to ammonia exposure. A functional analysis revealed that ammonia exposure led to an enrichment of genes related to biofilm formation, host colonization, and virulence pathogenicity. A species-level analysis and experiments suggest the key role of a Vibrio harveyi strain in causing shrimp disease and specificity under distinct environments. These findings provide new information on the mechanism of shrimp disease under environmental changes.
Collapse
Affiliation(s)
- Ning Gao
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572000, China; (N.G.); (Y.S.); (Y.W.); (Y.S.)
- Southern Marine Science and Engineer Guangdong Laboratory, Guangzhou 511458, China
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao 266003, China; (Z.W.); (C.S.)
| | - Yi Shu
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572000, China; (N.G.); (Y.S.); (Y.W.); (Y.S.)
- Southern Marine Science and Engineer Guangdong Laboratory, Guangzhou 511458, China
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao 266003, China; (Z.W.); (C.S.)
| | - Yongming Wang
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572000, China; (N.G.); (Y.S.); (Y.W.); (Y.S.)
- Southern Marine Science and Engineer Guangdong Laboratory, Guangzhou 511458, China
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao 266003, China; (Z.W.); (C.S.)
| | - Meng Sun
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China; (M.S.); (W.Z.)
| | - Zhongcheng Wei
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao 266003, China; (Z.W.); (C.S.)
| | - Chenxi Song
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao 266003, China; (Z.W.); (C.S.)
| | - Weipeng Zhang
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China; (M.S.); (W.Z.)
| | - Yue Sun
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572000, China; (N.G.); (Y.S.); (Y.W.); (Y.S.)
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao 266003, China; (Z.W.); (C.S.)
| | - Xiaoli Hu
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao 266003, China; (Z.W.); (C.S.)
| | - Zhenmin Bao
- Southern Marine Science and Engineer Guangdong Laboratory, Guangzhou 511458, China
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao 266003, China; (Z.W.); (C.S.)
| | - Wei Ding
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao 266003, China; (Z.W.); (C.S.)
| |
Collapse
|
24
|
Costas-Selas C, Martínez-García S, Delgadillo-Nuño E, Justel-Díez M, Fuentes-Lema A, Fernández E, Teira E. Linking the impact of bacteria on phytoplankton growth with microbial community composition and co-occurrence patterns. MARINE ENVIRONMENTAL RESEARCH 2024; 193:106262. [PMID: 38035521 DOI: 10.1016/j.marenvres.2023.106262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 11/06/2023] [Accepted: 11/09/2023] [Indexed: 12/02/2023]
Abstract
The interactions between microalgae and bacteria have recently emerged as key control factors which might contribute to a better understanding on how phytoplankton communities assemble and respond to environmental disturbances. We analyzed partial 16S rRNA and 18S rRNA genes from a total of 42 antibiotic bioassays, where phytoplankton growth was assessed in the presence or absence of an active bacterial community. A significant negative impact of bacteria was observed in 18 bioassays, a significant positive impact was detected in 5 of the cases, and a non-detectable effect occurred in 19 bioassays. Thalasiossira spp., Chlorophytes, Vibrionaceae and Alteromonadales were relatively more abundant in the samples where a positive effect of bacteria was observed compared to those where a negative impact was observed. Phytoplankton diversity was lower when bacteria negatively affect their growth than when the effect was beneficial. The phytoplankton-bacteria co-occurrence subnetwork included many significant Chlorophyta-Alteromonadales and Bacillariophyceae-Alteromonadales positive associations. Phytoplankton-bacteria co-exclusions were not detected in the network, which contrasts with the negative effect of bacteria on phytoplankton growth frequently detected in the bioassays, suggesting strong competitive interactions. Overall, this study adds strong evidence supporting the key role of phytoplankton-bacteria interactions in the microbial communities.
Collapse
Affiliation(s)
- Cecilia Costas-Selas
- Centro de Investigación Mariña, Universidade de Vigo, Departamento de Ecoloxía e Bioloxía Animal, 36310, Vigo, Spain.
| | - Sandra Martínez-García
- Centro de Investigación Mariña, Universidade de Vigo, Departamento de Ecoloxía e Bioloxía Animal, 36310, Vigo, Spain.
| | - Erick Delgadillo-Nuño
- Centro de Investigación Mariña, Universidade de Vigo, Departamento de Ecoloxía e Bioloxía Animal, 36310, Vigo, Spain.
| | - Maider Justel-Díez
- Centro de Investigación Mariña, Universidade de Vigo, Departamento de Ecoloxía e Bioloxía Animal, 36310, Vigo, Spain.
| | - Antonio Fuentes-Lema
- Centro de Investigación Mariña, Universidade de Vigo, Departamento de Ecoloxía e Bioloxía Animal, 36310, Vigo, Spain.
| | - Emilio Fernández
- Centro de Investigación Mariña, Universidade de Vigo, Departamento de Ecoloxía e Bioloxía Animal, 36310, Vigo, Spain.
| | - Eva Teira
- Centro de Investigación Mariña, Universidade de Vigo, Departamento de Ecoloxía e Bioloxía Animal, 36310, Vigo, Spain.
| |
Collapse
|
25
|
Tran DQ, Milke F, Niggemann J, Simon M. The diatom Thalassiosira rotula induces distinct growth responses and colonization patterns of Roseobacteraceae, Flavobacteria and Gammaproteobacteria. Environ Microbiol 2023; 25:3536-3555. [PMID: 37705313 DOI: 10.1111/1462-2920.16506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 09/03/2023] [Indexed: 09/15/2023]
Abstract
Diatoms as important phytoplankton components interact with and are colonized by heterotrophic bacteria. This colonization has been studied extensively in the past but a distinction between the bacterial colonization directly on diatom cells or on the aggregated organic material, exopolymeric substances (EPS), was little addressed. Here we show that the diatom Thalassiosira rotula and EPS were differently colonized by strains of Roseobacteraceae and Flavobacteriaceae in two and tree partner treatments and an enriched natural bacterial community as inoculum. In two partner treatments, the algae and EPS were generally less colonized than in the three partner treatments. Two strains benefitted greatly from the presence of another partner as the proportions of their subpopulations colonizing the diatom cell and the EPS were much enhanced relative to their two partner treatments. Highest proportions of bacteria colonizing the diatom and EPS occurred in the treatment inoculated with the enriched natural bacterial community. Dissolved organic carbon, amino acids and carbohydrates produced by T. rotula were differently used by the bacteria in the two and three partner treatments and most efficiently by the enriched natural bacterial community. Our approach is a valid model system to study physico-chemical bacteria-diatom interactions with increasing complexity.
Collapse
Affiliation(s)
- Den Quoc Tran
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany
| | - Felix Milke
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany
| | - Jutta Niggemann
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany
| | - Meinhard Simon
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
26
|
Beauvais M, Schatt P, Montiel L, Logares R, Galand PE, Bouget FY. Functional redundancy of seasonal vitamin B 12 biosynthesis pathways in coastal marine microbial communities. Environ Microbiol 2023; 25:3753-3770. [PMID: 38031968 DOI: 10.1111/1462-2920.16545] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 11/15/2023] [Indexed: 12/01/2023]
Abstract
Vitamin B12 (cobalamin) is a major cofactor required by most marine microbes, but only produced by a few prokaryotes in the ocean, which is globally B12 -depleted. Despite the ecological importance of B12 , the seasonality of B12 metabolisms and the organisms involved in its synthesis in the ocean remain poorly known. Here we use metagenomics to assess the monthly dynamics of B12 -related pathways and the functional diversity of associated microbial communities in the coastal NW Mediterranean Sea over 7 years. We show that genes related to potential B12 metabolisms were characterized by an annual succession of different organisms carrying distinct production pathways. During the most productive winter months, archaea (Nitrosopumilus and Nitrosopelagicus) were the main contributors to B12 synthesis potential through the anaerobic pathway (cbi genes). In turn, Alphaproteobacteria (HIMB11, UBA8309, Puniceispirillum) contributed to B12 synthesis potential in spring and summer through the aerobic pathway (cob genes). Cyanobacteria could produce pseudo-cobalamin from spring to autumn. Finally, we show that during years with environmental perturbations, the organisms usually carrying B12 synthesis genes were replaced by others having the same gene, thus maintaining the potential for B12 production. Such ecological insurance could contribute to the long-term functional resilience of marine microbial communities exposed to contrasting inter-annual environmental conditions.
Collapse
Affiliation(s)
- Maxime Beauvais
- Sorbonne Université, CNRS, Laboratoire d'Océanographie Microbienne (LOMIC), Observatoire Océanologique de Banyuls, Banyuls sur Mer, France
| | - Philippe Schatt
- Sorbonne Université, CNRS, Laboratoire d'Océanographie Microbienne (LOMIC), Observatoire Océanologique de Banyuls, Banyuls sur Mer, France
| | - Lidia Montiel
- Department of Marine Biology and Oceanography, Institute of Marine Sciences (ICM-CSIC), Barcelona, Spain
| | - Ramiro Logares
- Department of Marine Biology and Oceanography, Institute of Marine Sciences (ICM-CSIC), Barcelona, Spain
| | - Pierre E Galand
- Sorbonne Université, CNRS, Laboratoire d'Écogéochimie des Environnements Benthiques (LECOB), Observatoire Océanologique de Banyuls, Banyuls sur Mer, France
| | - François-Yves Bouget
- Sorbonne Université, CNRS, Laboratoire d'Océanographie Microbienne (LOMIC), Observatoire Océanologique de Banyuls, Banyuls sur Mer, France
| |
Collapse
|
27
|
Pushpakumara BLDU, Tandon K, Willis A, Verbruggen H. The Bacterial Microbiome of the Coral Skeleton Algal Symbiont Ostreobium Shows Preferential Associations and Signatures of Phylosymbiosis. MICROBIAL ECOLOGY 2023; 86:2032-2046. [PMID: 37002423 PMCID: PMC10497448 DOI: 10.1007/s00248-023-02209-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 03/16/2023] [Indexed: 06/19/2023]
Abstract
Ostreobium, the major algal symbiont of the coral skeleton, remains understudied despite extensive research on the coral holobiont. The enclosed nature of the coral skeleton might reduce the dispersal and exposure of residing bacteria to the outside environment, allowing stronger associations with the algae. Here, we describe the bacterial communities associated with cultured strains of 5 Ostreobium clades using 16S rRNA sequencing. We shed light on their likely physical associations by comparative analysis of three datasets generated to capture (1) all algae associated bacteria, (2) enriched tightly attached and potential intracellular bacteria, and (3) bacteria in spent media. Our data showed that while some bacteria may be loosely attached, some tend to be tightly attached or potentially intracellular. Although colonised with diverse bacteria, Ostreobium preferentially associated with 34 bacterial taxa revealing a core microbiome. These bacteria include known nitrogen cyclers, polysaccharide degraders, sulphate reducers, antimicrobial compound producers, methylotrophs, and vitamin B12 producers. By analysing co-occurrence networks of 16S rRNA datasets from Porites lutea and Paragoniastrea australensis skeleton samples, we show that the Ostreobium-bacterial associations present in the cultures are likely to also occur in their natural environment. Finally, our data show significant congruence between the Ostreobium phylogeny and the community composition of its tightly associated microbiome, largely due to the phylosymbiotic signal originating from the core bacterial taxa. This study offers insight into the Ostreobium microbiome and reveals preferential associations that warrant further testing from functional and evolutionary perspectives.
Collapse
Affiliation(s)
| | - Kshitij Tandon
- School of Biosciences, University of Melbourne, Victoria, 3010, Australia
| | - Anusuya Willis
- Australian National Algae Culture Collection, CSIRO, Tasmania, 7000, Victoria, Australia
| | - Heroen Verbruggen
- School of Biosciences, University of Melbourne, Victoria, 3010, Australia
| |
Collapse
|
28
|
Zhao Y, Liu Z, Zhang B, Cai J, Yao X, Zhang M, Deng Y, Hu B. Inter-bacterial mutualism promoted by public goods in a system characterized by deterministic temperature variation. Nat Commun 2023; 14:5394. [PMID: 37669961 PMCID: PMC10480208 DOI: 10.1038/s41467-023-41224-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 08/25/2023] [Indexed: 09/07/2023] Open
Abstract
Mutualism is commonly observed in nature but not often reported for bacterial communities. Although abiotic stress is thought to promote microbial mutualism, there is a paucity of research in this area. Here, we monitor microbial communities in a quasi-natural composting system, where temperature variation (20 °C-70 °C) is the main abiotic stress. Genomic analyses and culturing experiments provide evidence that temperature selects for slow-growing and stress-tolerant strains (i.e., Thermobifida fusca and Saccharomonospora viridis), and mutualistic interactions emerge between them and the remaining strains through the sharing of cobalamin. Comparison of 3000 bacterial pairings reveals that mutualism is common (~39.1%) and competition is rare (~13.9%) in pairs involving T. fusca and S. viridis. Overall, our work provides insights into how high temperature can favour mutualism and reduce competition at both the community and species levels.
Collapse
Affiliation(s)
- Yuxiang Zhao
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Zishu Liu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Baofeng Zhang
- Hangzhou Ecological and Environmental Monitoring Center, Hangzhou, China
| | - Jingjie Cai
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Xiangwu Yao
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Meng Zhang
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Ye Deng
- CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Baolan Hu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China.
- Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou, China.
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou, China.
| |
Collapse
|
29
|
Le Reun N, Bramucci A, Ajani P, Khalil A, Raina JB, Seymour JR. Temporal variability in the growth-enhancing effects of different bacteria within the microbiome of the diatom Actinocyclus sp. Front Microbiol 2023; 14:1230349. [PMID: 37608955 PMCID: PMC10440540 DOI: 10.3389/fmicb.2023.1230349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 07/18/2023] [Indexed: 08/24/2023] Open
Abstract
Reciprocal metabolite exchanges between diatoms and bacteria can enhance the growth of both partners and therefore fundamentally influence aquatic ecosystem productivity. Here, we examined the growth-promoting capabilities of 15 different bacterial isolates from the bacterial community associated with the marine diatom Actinocyclus sp. and investigated the magnitude and timing of their effect on the growth of this diatom. In the presence of its microbiome, Actinocyclus sp. growth was significantly enhanced relative to axenic cultures. Co-culture with each of the 15 bacterial isolates examined here (seven Rhodobacteraceae, four Vibrionaceae, two Pseudoalteromonadaceae, one Oceanospirillaceae and one Alteromonadaceae) increased the growth of the diatom host, with four isolates inducing rates of growth that were similar to those delivered by the diatom's full microbiome. However, the timing and duration of this effect differed between the different bacteria tested. Indeed, one Rhodobacteraceae and one Alteromonadaceae enhanced Actinocyclus sp. cell numbers between days 0-6 after co-incubation, five other Rhodobacteraceae promoted diatom cell numbers the most between days 8-12, whilst four Vibrionaceae, one Oceanospirillaceae and one Rhodobacteraceae enhanced Actinocyclus sp. cell abundance between days 14-16. These results are indicative of a succession of the growth-enhancing effects delivered by diverse bacteria throughout the Actinocyclus sp. life cycle, which will likely deliver sustained growth benefits to the diatom when its full microbiome is present.
Collapse
Affiliation(s)
- Nine Le Reun
- Climate Change Cluster, University of Technology Sydney (UTS), Sydney, NSW, Australia
| | - Anna Bramucci
- Climate Change Cluster, University of Technology Sydney (UTS), Sydney, NSW, Australia
| | - Penelope Ajani
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW, Australia
| | - Abeeha Khalil
- Climate Change Cluster, University of Technology Sydney (UTS), Sydney, NSW, Australia
| | - Jean-Baptiste Raina
- Climate Change Cluster, University of Technology Sydney (UTS), Sydney, NSW, Australia
| | - Justin R. Seymour
- Climate Change Cluster, University of Technology Sydney (UTS), Sydney, NSW, Australia
| |
Collapse
|
30
|
Sun KM, Wang J, Ju Q, Zhao Y, Kong X, Yuan C, Tian Y. The mitigating effects of diatom-bacteria biofilm on coastal harmful algal blooms: A lab-based study concerning species-specific competition and biofilm formation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 335:117544. [PMID: 36842356 DOI: 10.1016/j.jenvman.2023.117544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/15/2022] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
Harmful algal blooms (HABs) in coastal areas severely affected the health of ecosystem and human beings. The HABs control by biological methods, especially for biofilms, has been research hotspots in freshwater ecosystem. However, the biofilm-relating control of HABs in marine environment was very limited. In the present study, we found the population growth of two harmful algal species, Prorocentrum obtusidens Schiller (formerly P. donghaiense Lu) and Heterosigma akashiwo, were inhibited by a diatom-bacteria biofilm. The highest inhibitory rate was 79.6 ± 2.1% for P. obtusidens when co-cultured with biofilm suspension, and was 88.6 ± 5.8% for H. akashiwo when co-cultured with the biofilm filtrate without nutrient replenishment. When nitrate and phosphate were added, the inhibition rate for P. obtusidens was 72.3 ± 2.0%, but the population inhibition was not found in H. akashiwo. It suggested that P. obtusidens was mainly inhibited via interference competition, while the inhibition of H. akashiwo was resulted from exploitation competition. We further investigated the role of fatty acids for the interference competition in P. obtusidens, and found that fatty acids at their environmental-relevance concentrations can inhibit the photosynthetic capacity of P. obtusidens, but cannot inhibit the population growth. The community of biofilm shifted, and was finally dominated by the photoheterotrophic bacterium Dinoroseobacter shibae, and the diatom Fistulifera sp. with relative abundance of higher than 90%. Our study indicated that the diatom-bacteria biofilm was likely the candidate for the HABs control in marine environment. D. shibae and Fistulifera sp. were probably the effective species in the biofilm.
Collapse
Affiliation(s)
- Kai-Ming Sun
- Institute of Oceanographic Instrumentation, Qilu University of Technology (Shandong Academy of Sciences), Qingdao, 266100, Shandong, China; SOA Key Laboratory of Science and Engineering for Marine Ecology and Environment, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, Shandong, China
| | - Jingru Wang
- Institute of Oceanographic Instrumentation, Qilu University of Technology (Shandong Academy of Sciences), Qingdao, 266100, Shandong, China
| | - Qing Ju
- Shandong Provincial Qingdao Eco-environment Monitoring Center, Qingdao, 266061, Shandong, China
| | - Yan Zhao
- College of Marine Life, Ocean University of China, Qingdao, 266003, Shandong, China
| | - Xiangfeng Kong
- Institute of Oceanographic Instrumentation, Qilu University of Technology (Shandong Academy of Sciences), Qingdao, 266100, Shandong, China
| | - Chao Yuan
- SOA Key Laboratory of Science and Engineering for Marine Ecology and Environment, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, Shandong, China.
| | - Yulu Tian
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China.
| |
Collapse
|
31
|
Petrou K. Phytoplankton-Bacteria Interactions 1.0. Microorganisms 2023; 11:1188. [PMID: 37317162 DOI: 10.3390/microorganisms11051188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 04/28/2023] [Indexed: 06/16/2023] Open
Abstract
Phytoplankton and bacteria regulate many essential functions in aquatic ecosystems [...].
Collapse
Affiliation(s)
- Katherina Petrou
- School of Life Sciences, University of Technology Sydney, Sydney, NSW 2007, Australia
| |
Collapse
|
32
|
Chen D, Wang G, Chen C, Feng Z, Jiang Y, Yu H, Li M, Chao Y, Tang Y, Wang S, Qiu R. The interplay between microalgae and toxic metal(loid)s: mechanisms and implications in AMD phycoremediation coupled with Fe/Mn mineralization. JOURNAL OF HAZARDOUS MATERIALS 2023; 454:131498. [PMID: 37146335 DOI: 10.1016/j.jhazmat.2023.131498] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 04/10/2023] [Accepted: 04/24/2023] [Indexed: 05/07/2023]
Abstract
Acid mine drainage (AMD) is low-pH with high concentration of sulfates and toxic metal(loid)s (e.g. As, Cd, Pb, Cu, Zn), thereby posing a global environmental problem. For decades, microalgae have been used to remediate metal(loid)s in AMD, as they have various adaptive mechanisms for tolerating extreme environmental stress. Their main phycoremediation mechanisms are biosorption, bioaccumulation, coupling with sulfate-reducing bacteria, alkalization, biotransformation, and Fe/Mn mineral formation. This review summarizes how microalgae cope with metal(loid) stress and their specific mechanisms of phycoremediation in AMD. Based on the universal physiological characteristics of microalgae and the properties of their secretions, several Fe/Mn mineralization mechanisms induced by photosynthesis, free radicals, microalgal-bacterial reciprocity, and algal organic matter are proposed. Notably, microalgae can also reduce Fe(III) and inhibit mineralization, which is environmentally unfavorable. Therefore, the comprehensive environmental effects of microalgal co-occurring and cyclical opposing processes must be carefully considered. Using chemical and biological perspectives, this review innovatively proposes several specific processes and mechanisms of Fe/Mn mineralization that are mediated by microalgae, providing a theoretical basis for the geochemistry of metal(loid)s and natural attenuation of pollutants in AMD.
Collapse
Affiliation(s)
- Daijie Chen
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Guobao Wang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory for Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Chiyu Chen
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Zekai Feng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Yuanyuan Jiang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Hang Yu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Mengyao Li
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Yuanqing Chao
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory for Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Yetao Tang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory for Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Shizhong Wang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory for Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China.
| | - Rongliang Qiu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| |
Collapse
|
33
|
Den TQ, Neu TR, Sultana S, Giebel HA, Simon M, Billerbeck S. Distinct glycoconjugate cell surface structures make the pelagic diatom Thalassiosira rotula an attractive habitat for bacteria. JOURNAL OF PHYCOLOGY 2023; 59:309-322. [PMID: 36471567 DOI: 10.1111/jpy.13308] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 11/14/2022] [Indexed: 05/28/2023]
Abstract
Interactions between marine diatoms and bacteria have been studied for decades. However, the visualization of physical interactions between these diatoms and their colonizers is still limited. To enhance our understanding of these specific interactions, a new Thalassiosira rotula isolate from the North Sea (strain 8673) was characterized by scanning electron microscopy and confocal laser scanning microscopy (CLSM) after staining with fluorescently labeled lectins targeting specific glycoconjugates. To investigate defined interactions of this strain with bacteria the new strain was made axenic and co-cultivated with a natural bacterial community and in two- or three-partner consortia with different bacteria of the Roseobacter group, Gammaproteobacteria and Bacteroidetes. The CLSM analysis of the consortia identified six out of 78 different lectins as very suitable to characterize glycoconjugates of T. rotula. The resulting images show that fucose-containing threads were the dominant glycoconjugates secreted by the T. rotula cells but chitin and to a lesser extent other glycoconjugates were also identified. Bacteria attached predominantly to the fucose glycoconjugates. The colonizing bacteria showed various attachment patterns such as adhering to the diatom threads in aggregates only or attaching to both the surfaces and the threads of the diatom. Interestingly the colonization patterns of single bacteria differed strikingly from those of bacterial co-cultures, indicating that interactions between two bacterial species impacted the colonization of the diatom. Our observations help to better understand physical interactions and specific colonization patterns of distinct bacterial mono- and co-cultures with an abundant diatom of costal seas.
Collapse
Affiliation(s)
- Tran Quoc Den
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany
| | - Thomas R Neu
- Helmholtz Centre for Environmental Research - UFZ, Magdeburg, Germany
| | - Sabiha Sultana
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany
| | - Helge-A Giebel
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany
| | - Meinhard Simon
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany
| | - Sara Billerbeck
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
34
|
Li J, Weinberger F, de Nys R, Thomas T, Egan S. A pathway to improve seaweed aquaculture through microbiota manipulation. Trends Biotechnol 2023; 41:545-556. [PMID: 36089422 DOI: 10.1016/j.tibtech.2022.08.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/13/2022] [Accepted: 08/17/2022] [Indexed: 11/19/2022]
Abstract
Eukaryotic hosts are associated with microbial communities that are critical to their function. Microbiota manipulation using beneficial microorganisms, for example, in the form of animal probiotics or plant growth-promoting microorganisms (PGPMs), can enhance host performance and health. Recently, seaweed beneficial microorganisms (SBMs) have been identified that promote the growth and development and/or improve disease resistance of seaweeds. This knowledge coincides with global initiatives seeking to expand and intensify seaweed aquaculture. Here, we provide a pathway with the potential to improve commercial cultivation of seaweeds through microbiota manipulation, highlighting that seaweed restoration practices can also benefit from further understanding SBMs and their modes of action. The challenges and opportunities of different approaches to identify and apply SBMs to seaweed aquaculture are discussed.
Collapse
Affiliation(s)
- Jiasui Li
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, Faculty of Science, The University of New South Wales, Kensington, NSW, 2052, Australia
| | - Florian Weinberger
- Marine Ecology Division, GEOMAR Helmholtz Centre for Ocean Research Kiel, Düsternbrooker Weg 20, 24105 Kiel, Germany
| | - Rocky de Nys
- Sea Forest Limited, 488 Freestone Point Road, Triabunna, Tasmania 7190, Australia and College of Science and Engineering, James Cook University, Townsville 4810, Australia
| | - Torsten Thomas
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, Faculty of Science, The University of New South Wales, Kensington, NSW, 2052, Australia
| | - Suhelen Egan
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, Faculty of Science, The University of New South Wales, Kensington, NSW, 2052, Australia.
| |
Collapse
|
35
|
Sultana S, Bruns S, Wilkes H, Simon M, Wienhausen G. Vitamin B 12 is not shared by all marine prototrophic bacteria with their environment. THE ISME JOURNAL 2023; 17:836-845. [PMID: 36914732 DOI: 10.1038/s41396-023-01391-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 02/20/2023] [Accepted: 02/23/2023] [Indexed: 03/14/2023]
Abstract
Vitamin B12 (cobalamin, herein B12) is an essential cofactor involved in amino acid synthesis and carbon resupply to the TCA cycle for most prokaryotes, eukaryotic microorganisms, and animals. Despite being required by most, B12 is produced by only a minor fraction of prokaryotes and therefore leads to complex interaction between prototrophs and auxotrophs. However, it is unknown how B12 is provided by prototrophs to auxotrophs. In this study, 33 B12 prototrophic alphaproteobacterial strains were grown in co-culture with Thalassiosira pseudonana, a B12 auxotrophic diatom, to determine the bacterial ability to support the growth of the diatom by sharing B12. Among these strains, 18 were identified to share B12 with the diatom, while nine were identified to retain B12 and not support growth of the diatom. The other bacteria either shared B12 with the diatom only with the addition of substrate or inhibited the growth of the diatom. Extracellular B12 measurements of B12-provider and B12-retainer strains confirmed that the cofactor could only be detected in the environment of the tested B12-provider strains. Intracellular B12 was measured by LC-MS and showed that the concentrations of the different B12-provider as well as B12-retainer strains differed substantially. Although B12 is essential for the vast majority of microorganisms, mechanisms that export this essential cofactor are still unknown. Our results suggest that a large proportion of bacteria that can synthesise B12 de novo cannot share the cofactor with their environment.
Collapse
Affiliation(s)
- Sabiha Sultana
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Carl von Ossietzky Str. 9-11, D-26129, Oldenburg, Germany
| | - Stefan Bruns
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Carl von Ossietzky Str. 9-11, D-26129, Oldenburg, Germany
| | - Heinz Wilkes
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Carl von Ossietzky Str. 9-11, D-26129, Oldenburg, Germany
| | - Meinhard Simon
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Carl von Ossietzky Str. 9-11, D-26129, Oldenburg, Germany.,Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg (HIFMB), Ammerländer Heerstraße 231, D-26129, Oldenburg, Germany
| | - Gerrit Wienhausen
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Carl von Ossietzky Str. 9-11, D-26129, Oldenburg, Germany. .,Institute for Medical Microbiology and Virology, Carl von Ossietzky University Oldenburg, D-26129, Oldenburg, Germany.
| |
Collapse
|
36
|
Tanabe Y, Yamaguchi H, Yoshida M, Kai A, Okazaki Y. Characterization of a bloom-associated alphaproteobacterial lineage, 'Candidatus Phycosocius': insights into freshwater algal-bacterial interactions. ISME COMMUNICATIONS 2023; 3:20. [PMID: 36906708 PMCID: PMC10008586 DOI: 10.1038/s43705-023-00228-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 02/23/2023] [Accepted: 03/01/2023] [Indexed: 03/13/2023]
Abstract
Marine bacterial lineages associated with algal blooms, such as the Roseobacter clade, have been well characterized in ecological and genomic contexts, yet such lineages have rarely been explored in freshwater blooms. This study performed phenotypic and genomic analyses of an alphaproteobacterial lineage 'Candidatus Phycosocius' (denoted the CaP clade), one of the few lineages ubiquitously associated with freshwater algal blooms, and described a novel species: 'Ca. Phycosocius spiralis.' Phylogenomic analyses indicated that the CaP clade is a deeply branching lineage in the Caulobacterales. Pangenome analyses revealed characteristic features of the CaP clade: aerobic anoxygenic photosynthesis and essential vitamin B auxotrophy. Genome size varies widely among members of the CaP clade (2.5-3.7 Mb), likely a result of independent genome reductions at each lineage. This includes a loss of tight adherence pilus genes (tad) in 'Ca. P. spiralis' that may reflect its adoption of a unique spiral cell shape and corkscrew-like burrowing activity at the algal surface. Notably, quorum sensing (QS) proteins showed incongruent phylogenies, suggesting that horizontal transfers of QS genes and QS-involved interactions with specific algal partners might drive CaP clade diversification. This study elucidates the ecophysiology and evolution of proteobacteria associated with freshwater algal blooms.
Collapse
Affiliation(s)
- Yuuhiko Tanabe
- Biodiversity Division, National Institute for Environmental Studies, Ibaraki, 305-8506, Japan.
- Algae Biomass and Energy System R&D Center, University of Tsukuba, Ibaraki, 305-8572, Japan.
| | - Haruyo Yamaguchi
- Biodiversity Division, National Institute for Environmental Studies, Ibaraki, 305-8506, Japan
| | - Masaki Yoshida
- Algae Biomass and Energy System R&D Center, University of Tsukuba, Ibaraki, 305-8572, Japan
| | - Atsushi Kai
- Algae Biomass and Energy System R&D Center, University of Tsukuba, Ibaraki, 305-8572, Japan
| | - Yusuke Okazaki
- Institute for Chemical Research, Kyoto University, Kyoto, 611-0011, Japan
| |
Collapse
|
37
|
Zheng X, Xu K, Naoum J, Lian Y, Wu B, He Z, Yan Q. Deciphering microeukaryotic-bacterial co-occurrence networks in coastal aquaculture ponds. MARINE LIFE SCIENCE & TECHNOLOGY 2023; 5:44-55. [PMID: 37073331 PMCID: PMC10077187 DOI: 10.1007/s42995-022-00159-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 12/06/2022] [Indexed: 05/03/2023]
Abstract
Microeukaryotes and bacteria are key drivers of primary productivity and nutrient cycling in aquaculture ecosystems. Although their diversity and composition have been widely investigated in aquaculture systems, the co-occurrence bipartite network between microeukaryotes and bacteria remains poorly understood. This study used the bipartite network analysis of high-throughput sequencing datasets to detect the co-occurrence relationships between microeukaryotes and bacteria in water and sediment from coastal aquaculture ponds. Chlorophyta and fungi were dominant phyla in the microeukaryotic-bacterial bipartite networks in water and sediment, respectively. Chlorophyta also had overrepresented links with bacteria in water. Most microeukaryotes and bacteria were classified as generalists, and tended to have symmetric positive and negative links with bacteria in both water and sediment. However, some microeukaryotes with high density of links showed asymmetric links with bacteria in water. Modularity detection in the bipartite network indicated that four microeukaryotes and twelve uncultured bacteria might be potential keystone taxa among the module connections. Moreover, the microeukaryotic-bacterial bipartite network in sediment harbored significantly more nestedness than that in water. The loss of microeukaryotes and generalists will more likely lead to the collapse of positive co-occurrence relationships between microeukaryotes and bacteria in both water and sediment. This study unveils the topology, dominant taxa, keystone species, and robustness in the microeukaryotic-bacterial bipartite networks in coastal aquaculture ecosystems. These species herein can be applied for further management of ecological services, and such knowledge may also be very useful for the regulation of other eutrophic ecosystems. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-022-00159-6.
Collapse
Affiliation(s)
- Xiafei Zheng
- Ninghai Institute of Mariculture Breeding and Seed Industry, Zhejiang Wanli University, Ningbo, 315100 China
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, State Key Laboratory for Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, 510006 China
| | - Kui Xu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, State Key Laboratory for Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, 510006 China
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Engineering Research Center of Special Wild Vegetables Breeding and Comprehensive Utilization Technology, College of Life Sciences, Hubei Normal University, Huangshi, 435002 China
| | - Jonathan Naoum
- Department of Biological Sciences, Ecotoxicology of Aquatic Microorganisms Laboratory, GRIL-EcotoQ-TOXEN, Université Du Québec À Montréal, Succursale Centre-Ville, Montreal, QC Canada
| | - Yingli Lian
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, State Key Laboratory for Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, 510006 China
- Animal Husbandry and Fisheries Research Center of Guangdong Haid Group CO., Ltd. Key Laboratory of Microecological Resources and Utilization in Breeding Industry, Ministry of Agriculture and Rural Affairs, Guangzhou, 510006 China
| | - Bo Wu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, State Key Laboratory for Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, 510006 China
| | - Zhili He
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, State Key Laboratory for Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, 510006 China
| | - Qingyun Yan
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, State Key Laboratory for Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, 510006 China
| |
Collapse
|
38
|
Denise R, Babor J, Gerlt JA, de Crécy-Lagard V. Pyridoxal 5'-phosphate synthesis and salvage in Bacteria and Archaea: predicting pathway variant distributions and holes. Microb Genom 2023; 9:mgen000926. [PMID: 36729913 PMCID: PMC9997740 DOI: 10.1099/mgen.0.000926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 11/04/2022] [Indexed: 02/03/2023] Open
Abstract
Pyridoxal 5’-phosphate or PLP is a cofactor derived from B6 vitamers and essential for growth in all known organisms. PLP synthesis and salvage pathways are well characterized in a few model species even though key components, such as the vitamin B6 transporters, are still to be identified in many organisms including the model bacteria Escherichia coli or Bacillus subtilis . Using a comparative genomic approach, PLP synthesis and salvage pathways were predicted in 5840 bacterial and archaeal species with complete genomes. The distribution of the two known de novo biosynthesis pathways and previously identified cases of non-orthologous displacements were surveyed in the process. This analysis revealed that several PLP de novo pathway genes remain to be identified in many organisms, either because sequence similarity alone cannot be used to discriminate among several homologous candidates or due to non-orthologous displacements. Candidates for some of these pathway holes were identified using published TnSeq data, but many remain. We find that ~10 % of the analysed organisms rely on salvage but further analyses will be required to identify potential transporters. This work is a starting point to model the exchanges of B6 vitamers in communities, predict the sensitivity of a given organism to drugs targeting PLP synthesis enzymes, and identify numerous gaps in knowledge that will need to be tackled in the years to come.
Collapse
Affiliation(s)
- Rémi Denise
- Department of Microbiology and Cell Sciences, Gainesville, USA
- Present address: APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Jill Babor
- Department of Microbiology and Cell Sciences, Gainesville, USA
| | | | - Valérie de Crécy-Lagard
- Department of Microbiology and Cell Sciences, Gainesville, USA
- Genetics Institute, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
39
|
Barak-Gavish N, Dassa B, Kuhlisch C, Nussbaum I, Brandis A, Rosenberg G, Avraham R, Vardi A. Bacterial lifestyle switch in response to algal metabolites. eLife 2023; 12:e84400. [PMID: 36691727 PMCID: PMC9873259 DOI: 10.7554/elife.84400] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/05/2023] [Indexed: 01/19/2023] Open
Abstract
Unicellular algae, termed phytoplankton, greatly impact the marine environment by serving as the basis of marine food webs and by playing central roles in the biogeochemical cycling of elements. The interactions between phytoplankton and heterotrophic bacteria affect the fitness of both partners. It is becoming increasingly recognized that metabolic exchange determines the nature of such interactions, but the underlying molecular mechanisms remain underexplored. Here, we investigated the molecular and metabolic basis for the bacterial lifestyle switch, from coexistence to pathogenicity, in Sulfitobacter D7 during its interaction with Emiliania huxleyi, a cosmopolitan bloom-forming phytoplankter. To unravel the bacterial lifestyle switch, we analyzed bacterial transcriptomes in response to exudates derived from algae in exponential growth and stationary phase, which supported the Sulfitobacter D7 coexistence and pathogenicity lifestyles, respectively. In pathogenic mode, Sulfitobacter D7 upregulated flagellar motility and diverse transport systems, presumably to maximize assimilation of E. huxleyi-derived metabolites released by algal cells upon cell death. Algal dimethylsulfoniopropionate (DMSP) was a pivotal signaling molecule that mediated the transition between the lifestyles, supporting our previous findings. However, the coexisting and pathogenic lifestyles were evident only in the presence of additional algal metabolites. Specifically, we discovered that algae-produced benzoate promoted the growth of Sulfitobacter D7 and hindered the DMSP-induced lifestyle switch to pathogenicity, demonstrating that benzoate is important for maintaining the coexistence of algae and bacteria. We propose that bacteria can sense the physiological state of the algal host through changes in the metabolic composition, which will determine the bacterial lifestyle during interaction.
Collapse
Affiliation(s)
- Noa Barak-Gavish
- Department of Plant and Environmental Sciences, Weizmann Institute of ScienceRehovotIsrael
| | - Bareket Dassa
- Life Sciences Core Facilities, Weizmann Institute of ScienceRehovotIsrael
| | - Constanze Kuhlisch
- Department of Plant and Environmental Sciences, Weizmann Institute of ScienceRehovotIsrael
| | - Inbal Nussbaum
- Department of Plant and Environmental Sciences, Weizmann Institute of ScienceRehovotIsrael
| | - Alexander Brandis
- Life Sciences Core Facilities, Weizmann Institute of ScienceRehovotIsrael
| | - Gili Rosenberg
- Department of Biological Regulation, Weizmann Institute of ScienceRehovotIsrael
| | - Roi Avraham
- Department of Biological Regulation, Weizmann Institute of ScienceRehovotIsrael
| | - Assaf Vardi
- Department of Plant and Environmental Sciences, Weizmann Institute of ScienceRehovotIsrael
| |
Collapse
|
40
|
Ren S, Jin Y, Ma J, Zheng N, Zhang J, Peng X, Xie B. Isolation and characterization of algicidal bacteria from freshwater aquatic environments in China. Front Microbiol 2023; 14:1156291. [PMID: 36970679 PMCID: PMC10033687 DOI: 10.3389/fmicb.2023.1156291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 02/17/2023] [Indexed: 03/29/2023] Open
Abstract
Algicidal bacteria can inhibit the growth of algae or lyse algal cells, thus playing roles in shaping aquatic microbial communities and maintaining the functions of aquatic ecosystems. Nevertheless, our understanding of their diversities and distributions remains limited. In this study, we collected water samples from 17 freshwater sites in 14 cities in China and screened a total of 77 algicidal bacterial strains using several prokaryotic cyanobacteria and eukaryotic algae as target strains. According to their target-specificities, these strains were classified into three subgroups, cyanobacterial algicidal bacteria, algal algicidal bacteria, and broad-target algicidal bacteria, each displaying distinctive compositions and geographical distribution patterns. They are assigned to Proteobacteria, Firmicutes, Actinobacteria, and Bacteroidetes bacterial phyla, of which Pseudomonas and Bacillus are the most abundant gram-negative and gram-positive genus, respectively. A number of bacterial strains, such as Inhella inkyongensis and Massilia eburnean, are suggested as new algicidal bacteria. The diverse taxonomies, algal-inhibiting abilities and distributions of these isolates have suggested that there are rich algicidal bacterial resources in these aquatic environments. Our results provide new microbial resources for algal-bacterial interaction studies, and shed new insights into how algicidal bacteria can be used in the control of harmful algal blooms, as well as in algal biotechnology.
Collapse
|
41
|
Hallberg ZF, Seth EC, Thevasundaram K, Taga ME. Comparative Analysis of Corrinoid Profiles across Host-Associated and Environmental Samples. Biochemistry 2022; 61:2791-2796. [PMID: 36037062 DOI: 10.1021/acs.biochem.2c00367] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Vitamin B12 (the cyanated form of cobalamin cofactors) is best known for its essential role in human health. In addition to its function in human metabolism, cobalamin also plays important roles in microbial metabolism and can impact microbial community function. Cobalamin is a member of the structurally diverse family of cofactors known as cobamides that are produced exclusively by certain prokaryotes. Cobamides are considered shared nutrients in microbial communities because the majority of bacteria that possess cobamide-dependent enzymes cannot synthesize cobamides de novo. Furthermore, different microbes have evolved metabolic specificity for particular cobamides, and therefore, the availability of cobamides in the environment is important for cobamide-dependent microbes. Determining the cobamides present in an environment of interest is essential for understanding microbial metabolic interactions. By examining the abundances of different cobamides in diverse environments, including 10 obtained in this study, we find that, contrary to its preeminence in human metabolism, cobalamin is relatively rare in many microbial habitats. Comparison of cobamide profiles of mammalian gastrointestinal samples and wood-feeding insects reveals that host-associated cobamide abundances vary and that fecal cobamide profiles differ from those of their host gastrointestinal tracts. Environmental cobamide profiles obtained from aquatic, soil, and contaminated groundwater samples reveal that the cobamide compositions of environmental samples are highly variable. As the only commercially available cobamide, cobalamin is routinely supplied during microbial culturing efforts. However, these findings suggest that cobamides specific to a given microbiome may yield greater insight into nutrient utilization and physiological processes that occur in these habitats.
Collapse
Affiliation(s)
- Zachary F Hallberg
- Department of Plant & Microbial Biology, University of California, Berkeley, Berkeley, California 94720, United States
| | - Erica C Seth
- Department of Plant & Microbial Biology, University of California, Berkeley, Berkeley, California 94720, United States
| | - Kersh Thevasundaram
- Department of Molecular & Cell Biology, University of California, Berkeley, Berkeley, California 94720, United States
| | - Michiko E Taga
- Department of Plant & Microbial Biology, University of California, Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
42
|
Garate L, Alonso‐Sáez L, Revilla M, Logares R, Lanzén A. Shared and contrasting associations in the dynamic nano- and picoplankton communities of two close but contrasting sites from the Bay of Biscay. Environ Microbiol 2022; 24:6052-6070. [PMID: 36054533 PMCID: PMC10087561 DOI: 10.1111/1462-2920.16153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 07/30/2022] [Indexed: 01/12/2023]
Abstract
Pico- and nanoplankton are key players in the marine ecosystems due to their implication in the biogeochemical cycles, nutrient recycling and the pelagic food webs. However, the specific dynamics and niches of most bacterial, archaeal and eukaryotic plankton remain unknown, as well as the interactions between them. Better characterization of these is critical for understanding and predicting ecosystem functioning under anthropogenic pressures. We used environmental DNA metabarcoding across a 6-year time series to explore the structure and seasonality of pico- and nanoplankton communities in two sites of the Bay of Biscay, one coastal and one offshore, and construct association networks to reveal potential keystone and connector taxa. Temporal trends in alpha diversity were similar between the two sites, and concurrent communities more similar than within the same site at different times. However, we found differences between the network topologies of the two sites, with both shared and site-specific keystones and connectors. For example, Micromonas, with lower abundance in the offshore site is a keystone here, indicating a stronger effect of associations such as resource competition. This study provides an example of how time series and association network analysis can reveal how similar communities may function differently despite being geographically close.
Collapse
Affiliation(s)
- Leire Garate
- AZTI, Marine ResearchBasque Research and Technology Alliance (BRTA)PasaiaSpain
| | - Laura Alonso‐Sáez
- AZTI, Marine ResearchBasque Research and Technology Alliance (BRTA)PasaiaSpain
| | - Marta Revilla
- AZTI, Marine ResearchBasque Research and Technology Alliance (BRTA)PasaiaSpain
| | - Ramiro Logares
- Institute of Marine Sciences (ICM)CSICBarcelonaCataloniaSpain
| | - Anders Lanzén
- AZTI, Marine ResearchBasque Research and Technology Alliance (BRTA)PasaiaSpain
- IKERBASQUEBasque Foundation for ScienceBilbaoBizkaiaSpain
| |
Collapse
|
43
|
Costas-Selas C, Martínez-García S, Logares R, Hernández-Ruiz M, Teira E. Role of Bacterial Community Composition as a Driver of the Small-Sized Phytoplankton Community Structure in a Productive Coastal System. MICROBIAL ECOLOGY 2022:10.1007/s00248-022-02125-2. [PMID: 36305941 DOI: 10.1007/s00248-022-02125-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
We present here the first detailed description of the seasonal patterns in bacterial community composition (BCC) in shelf waters off the Ría de Vigo (Spain), based on monthly samplings during 2 years. Moreover, we studied the relationship between bacterial and small-sized eukaryotic community composition to identify potential biotic interactions among components of these two communities. Bacterial operational taxonomic unit (OTU) richness and diversity systematically peaked in autumn-winter, likely related to low resource availability during this period. BCC showed seasonal and vertical patterns, with Rhodobacteraceae and Flavobacteriaceae families dominating in surface waters, and SAR11 clade dominating at the base of the photic zone (30 m depth). BCC variability was significantly explained by environmental variables (e.g., temperature of water, solar radiation, or dissolved organic matter). Interestingly, a strong and significant correlation was found between BCC and small-sized eukaryotic community composition (ECC), which suggests that biotic interactions may play a major role as structuring factors of the microbial plankton in this productive area. In addition, co-occurrence network analyses revealed strong and significant, mostly positive, associations between bacteria and small-sized phytoplankton. Positive associations likely result from mutualistic relationships (e.g., between Dinophyceae and Rhodobacteraceae), while some negative correlations suggest antagonistic interactions (e.g., between Pseudo-nitzchia sp. and SAR11). These results support the key role of biotic interactions as structuring factors of the small-sized eukaryotic community, mostly driven by positive associations between small-sized phytoplankton and bacteria.
Collapse
Affiliation(s)
- Cecilia Costas-Selas
- Centro de Investigación Mariña, Universidade de Vigo, Departamento de Ecoloxía e Bioloxía Animal, 36310, Vigo, Spain.
| | - Sandra Martínez-García
- Centro de Investigación Mariña, Universidade de Vigo, Departamento de Ecoloxía e Bioloxía Animal, 36310, Vigo, Spain
| | - Ramiro Logares
- Departament de Biologia Marina I Oceanografia, Institut de Ciéncies del Mar (ICM), CSIC, Catalonia, Barcelona, Spain
| | - Marta Hernández-Ruiz
- Centro de Investigación Mariña, Universidade de Vigo, Departamento de Ecoloxía e Bioloxía Animal, 36310, Vigo, Spain
| | - Eva Teira
- Centro de Investigación Mariña, Universidade de Vigo, Departamento de Ecoloxía e Bioloxía Animal, 36310, Vigo, Spain
| |
Collapse
|
44
|
Abstract
The skin microbiome is a key player in human health, with diverse functions ranging from defense against pathogens to education of the immune system. While recent studies have begun to shed light on the valuable role that skin microorganisms have in maintaining the skin barrier, a detailed understanding of the complex interactions that shape healthy skin microbial communities is limited. Cobamides, the vitamin B12 class of cofactor, are essential for organisms across the tree of life. Because this vitamin is only produced by a limited fraction of prokaryotes, cobamide sharing is predicted to mediate community dynamics within microbial communities. Here, we provide the first large-scale metagenomic assessment of cobamide biosynthesis and utilization in the skin microbiome. We show that while numerous and diverse taxa across the major bacterial phyla on the skin encode cobamide-dependent enzymes, relatively few species encode de novo cobamide biosynthesis. We show that cobamide producers and users are integrated into the network structure of microbial communities across the different microenvironments of the skin and that changes in microbiome community structure and diversity are associated with the abundance of cobamide producers in the Corynebacterium genus, for both healthy and diseased skin states. Finally, we find that de novo cobamide biosynthesis is enriched only in Corynebacterium species associated with hosts, including those prevalent on human skin. We confirm that the cofactor is produced in excess through quantification of cobamide production by human skin-associated species isolated in the laboratory. Taken together, our results reveal the potential for cobamide sharing within skin microbial communities, which we hypothesize mediates microbiome community dynamics and host interactions. IMPORTANCE The skin microbiome is essential for maintaining skin health and function. However, the microbial interactions that dictate microbiome structure, stability, and function are not well understood. Here, we investigate the biosynthesis and use of cobamides, a cofactor needed by many organisms but only produced by select prokaryotes, within the human skin microbiome. We found that while a large proportion of skin taxa encode cobamide-dependent enzymes, only a select few encode de novo cobamide biosynthesis. Further, the abundance of cobamide-producing Corynebacterium species is associated with skin microbiome diversity and structure, and within this genus, de novo biosynthesis is enriched in host-associated species compared to environment-associated species. These findings identify cobamides as a potential mediator of skin microbiome dynamics and skin health.
Collapse
|
45
|
Specific bacterial microbiome enhances the sexual reproduction and auxospore production of the marine diatom, Odontella. PLoS One 2022; 17:e0276305. [PMID: 36260629 PMCID: PMC9581435 DOI: 10.1371/journal.pone.0276305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 10/04/2022] [Indexed: 11/19/2022] Open
Abstract
Auxospore production is a sexual reproductive strategy by diatoms to re-attain normal size after the size-reducing effect of clonal reproduction. Aside from the minimum size threshold used as a sex clock by diatoms, the environmental or chemical triggers that can induce sex in diatoms are still not well understood. Here we investigated the influence of six marine bacteria from five families on the production of sexual cells and auxospores of the ubiquitous marine polar centric diatom, Odontella sp. Microbiome association and co-occurrence with the diatom in culture and in nature were investigated using 16S rRNA amplicon sequencing. Indole acetic acid (IAA) secretion, a phytohormone that regulates plants' growth and sexual development, was explored as a potential inducer of sexual reproduction in Odontella and compared between bacterial associates. We found that Odontella co-cultured with Flavobacteriaceae (Polaribacter and Cellulophaga) have significantly more sexual cells and auxospores than bacteria-free Odontella and Odontella co-cultured with other bacteria from Vibrionaceae (Vibrio), Pseudoalteromonadaceae (Pseudoalteromonas), Rhodobacteraceae (Sulfitobacter), or Planococcaceae (Planococcus) family. Differences in IAA secretion were observed between bacterial isolates, but this did not correspond consistently with the diatom's clonal growth or production of sexual cells and auxospores. Microbiome composition survey of Odontella cultures showed that the diatom harbors homologous sequences of the four bacterial isolates at varying proportions, with Sulfitobacter and Polaribacter at high abundances. Microbiome surveys at Santa Cruz Wharf, Monterey Bay, from 2014-2015 showed that Odontella abundance is positively correlated with Flavobacteriaceae and Rhodobacteraceae abundances. Our study demonstrates that specific members of the diatom microbiome can enhance the host's sexual reproduction, with the interkingdom interaction driven by partner compatibility and long-term association. Sex-enhancing bacteria may even be needed by the diatom host to carry out the optimal inducement of sex under normal conditions, allowing for size restitution and maintaining genetic diversity in culture and in nature.
Collapse
|
46
|
Sanchez-Garcia S, Wang H, Wagner-Döbler I. The microbiome of the dinoflagellate Prorocentrum cordatum in laboratory culture and its changes at higher temperatures. Front Microbiol 2022; 13:952238. [PMID: 36246277 PMCID: PMC9555710 DOI: 10.3389/fmicb.2022.952238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 09/02/2022] [Indexed: 11/13/2022] Open
Abstract
In the ocean, phytoplankton are dependent on communities of bacteria living in the phycosphere, a hot spot of metabolic and genetic exchange. Many types of interactions between phytoplankton and phycosphere bacteria have been shown, but it is unclear if the microbial communities associated with microalgae strains in culture collections are beneficial or harmful to the host strain. Here, we studied the microbial communities associated with four strains of the dinoflagellate Prorocentrum cordatum that had been isolated from distant geographical locations and maintained in culture collection for hundreds of generations. Community composition was determined by 16S rRNA gene amplicon sequencing. The dinoflagellate host strain was the strongest parameter separating communities, while growth phase, lifestyle (particle-attached versus free-living) and temperature had only a modulating effect. Although the strains had been isolated from distant locations in the Atlantic and Pacific Ocean, 14 ASVs were shared among all strains, the most abundant ones being Gilvibacter, Marivita, uncultivated Rhodobacteraceae, Marinobacter, Hyphomonadaceae, Cupriavidus, Variovorax, and Paucibacter. Adaptation to higher temperatures resulted in specific changes in each phycosphere microbiome, including increased abundance of rare community members. We then compared the growth of the four xenic cultures to that of the axenic P. cordatum CCMP1329. At 20°C, growth of the xenic cultures was similar or slower than that of CCMP1329. At 26°C, all four xenic cultures experienced a death phase, while the axenic culture stably remained in the stationary phase. At 30°C, only two of the xenic cultures were able to grow. A shift of dinoflagellate metabolism from autotrophy to mixotrophy and competition between dinoflagellate and bacteria for limiting nutrients, including essential vitamins, may contribute to these differences in growth patterns.
Collapse
Affiliation(s)
| | | | - Irene Wagner-Döbler
- Institute of Microbiology, Technical University of Braunschweig, Braunschweig, Germany
| |
Collapse
|
47
|
Wienhausen G, Bruns S, Sultana S, Dlugosch L, Groon LA, Wilkes H, Simon M. The overlooked role of a biotin precursor for marine bacteria - desthiobiotin as an escape route for biotin auxotrophy. THE ISME JOURNAL 2022; 16:2599-2609. [PMID: 35963899 PMCID: PMC9561691 DOI: 10.1038/s41396-022-01304-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/19/2022] [Accepted: 07/28/2022] [Indexed: 11/30/2022]
Abstract
Biotin (vitamin B7) is involved in a wide range of essential biochemical reactions and a crucial micronutrient that is vital for many pro- and eukaryotic organisms. The few biotin measurements in the world’s oceans show that availability is subject to strong fluctuations. Numerous marine microorganisms exhibit biotin auxotrophy and therefore rely on supply by other organisms. Desthiobiotin is the primary precursor of biotin and has recently been detected at concentrations similar to biotin in seawater. The last enzymatic reaction in the biotin biosynthetic pathway converts desthiobiotin to biotin via the biotin synthase (BioB). The role of desthiobiotin as a precursor of biotin synthesis in microbial systems, however, is largely unknown. Here we demonstrate experimentally that bacteria can overcome biotin auxotrophy if they retain the bioB gene and desthiobiotin is available. A genomic search of 1068 bacteria predicts that the biotin biosynthetic potential varies greatly among different phylogenetic groups and that 20% encode solely bioB and thus can potentially overcome biotin auxotrophy. Many Actino- and Alphaproteobacteria cannot synthesize biotin de novo, but some possess solely bioB, whereas the vast majority of Gammaproteobacteria and Flavobacteriia exhibit the last four crucial biotin synthesis genes. We detected high intra- and extracellular concentrations of the precursor relative to biotin in the prototrophic bacterium, Vibrio campbellii, with extracellular desthiobiotin reaching up to 1.09 ± 0.15*106 molecules per cell during exponential growth. Our results provide evidence for the ecological role of desthiobiotin as an escape route to overcome biotin auxotrophy for bacteria in the ocean and presumably in other ecosystems.
Collapse
|
48
|
Coastal Transient Niches Shape the Microdiversity Pattern of a Bacterioplankton Population with Reduced Genomes. mBio 2022; 13:e0057122. [PMID: 35880883 PMCID: PMC9426536 DOI: 10.1128/mbio.00571-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Globally dominant marine bacterioplankton lineages are often limited in metabolic versatility, owing to their extensive genome reductions, and thus cannot take advantage of transient nutrient patches. It is therefore perplexing how the nutrient-poor bulk seawater sustains the pelagic streamlined lineages, each containing numerous populations. Here, we sequenced the genomes of 33 isolates of the recently discovered CHUG lineage (~2.6 Mbp), which have some of the smallest genomes in the globally abundant Roseobacter group (commonly over 4 Mbp). These genome-reduced bacteria were isolated from a transient habitat: seawater surrounding the brown alga, Sargassum hemiphyllum. Population genomic analyses showed that: (i) these isolates, despite sharing identical 16S rRNA genes, were differentiated into several genetically isolated populations through successive speciation events; (ii) only the first speciation event led to the genetic separation of both core and accessory genomes; and (iii) populations resulting from this event are differentiated at many loci involved in carbon utilization and oxygen respiration, corroborated by BiOLOG phenotype microarray assays and oxygen uptake kinetics experiments, respectively. These differentiated traits match well with the dynamic nature of the macroalgal seawater, in which the quantity and quality of carbon sources and the concentration of oxygen likely vary spatially and temporally, though other habitats, like fresh organic aggregates, cannot be ruled out. Our study implies that transient habitats in the overall nutrient-poor ocean can shape the microdiversity and population structure of genome-reduced bacterioplankton lineages.
Collapse
|
49
|
Nef C, Dittami S, Kaas R, Briand E, Noël C, Mairet F, Garnier M. Sharing Vitamin B 12 between Bacteria and Microalgae Does Not Systematically Occur: Case Study of the Haptophyte Tisochrysis lutea. Microorganisms 2022; 10:1337. [PMID: 35889056 PMCID: PMC9323062 DOI: 10.3390/microorganisms10071337] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 02/01/2023] Open
Abstract
Haptophyte microalgae are key contributors to microbial communities in many environments. It has been proposed recently that members of this group would be virtually all dependent on vitamin B12 (cobalamin), an enzymatic cofactor produced only by some bacteria and archaea. Here, we examined the processes of vitamin B12 acquisition by haptophytes. We tested whether co-cultivating the model species Tisochrysis lutea with B12-producing bacteria in vitamin-deprived conditions would allow the microalga to overcome B12 deprivation. While T. lutea can grow by scavenging vitamin B12 from bacterial extracts, co-culture experiments showed that the algae did not receive B12 from its associated bacteria, despite bacteria/algae ratios supposedly being sufficient to allow enough vitamin production. Since other studies reported mutualistic algae-bacteria interactions for cobalamin, these results question the specificity of such associations. Finally, cultivating T. lutea with a complex bacterial consortium in the absence of the vitamin partially rescued its growth, highlighting the importance of microbial interactions and diversity. This work suggests that direct sharing of vitamin B12 is specific to each species pair and that algae in complex natural communities can acquire it indirectly by other mechanisms (e.g., after bacterial lysis).
Collapse
Affiliation(s)
- Charlotte Nef
- Physiologie et Biotechnologie des Algues, IFREMER, Rue de l’Ile d’Yeu, F-44311 Nantes, France;
| | - Simon Dittami
- Station Biologique de Roscoff, Integrative Biology of Marine Models Laboratory, CNRS, Sorbonne University, F-29680 Roscoff, France;
| | - Raymond Kaas
- Physiologie et Biotechnologie des Algues, IFREMER, Rue de l’Ile d’Yeu, F-44311 Nantes, France;
| | - Enora Briand
- GENALG, PHYTOX, IFREMER, F-44000 Nantes, France; (E.B.); (M.G.)
| | - Cyril Noël
- SEBIMER, IRSI, IFREMER, F-29280 Brest, France;
| | | | | |
Collapse
|
50
|
Bunbury F, Deery E, Sayer AP, Bhardwaj V, Harrison EL, Warren MJ, Smith AG. Exploring the onset of B 12 -based mutualisms using a recently evolved Chlamydomonas auxotroph and B 12 -producing bacteria. Environ Microbiol 2022; 24:3134-3147. [PMID: 35593514 PMCID: PMC9545926 DOI: 10.1111/1462-2920.16035] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/28/2022] [Accepted: 04/29/2022] [Indexed: 12/01/2022]
Abstract
Cobalamin (vitamin B12 ) is a cofactor for essential metabolic reactions in multiple eukaryotic taxa, including major primary producers such as algae, and yet only prokaryotes can produce it. Many bacteria can colonize the algal phycosphere, forming stable communities that gain preferential access to photosynthate and in return provide compounds such as B12 . Extended coexistence can then drive gene loss, leading to greater algal-bacterial interdependence. In this study, we investigate how a recently evolved B12 -dependent strain of Chlamydomonas reinhardtii, metE7, forms a mutualism with certain bacteria, including the rhizobium Mesorhizobium loti and even a strain of the gut bacterium E. coli engineered to produce cobalamin. Although metE7 was supported by B12 producers, its growth in co-culture was slower than the B12 -independent wild-type, suggesting that high bacterial B12 provision may be necessary to favour B12 auxotrophs and their evolution. Moreover, we found that an E. coli strain that releases more B12 makes a better mutualistic partner, and although this trait may be more costly in isolation, greater B12 release provided an advantage in co-cultures. We hypothesize that, given the right conditions, bacteria that release more B12 may be selected for, particularly if they form close interactions with B12 -dependent algae.
Collapse
Affiliation(s)
- Freddy Bunbury
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK
| | - Evelyne Deery
- School of Biosciences, University of Kent, Canterbury, Kent, CT2 7NH, UK
| | - Andrew P Sayer
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK
| | - Vaibhav Bhardwaj
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK
| | - Ellen L Harrison
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK
| | - Martin J Warren
- School of Biosciences, University of Kent, Canterbury, Kent, CT2 7NH, UK.,Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ, UK
| | - Alison G Smith
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK
| |
Collapse
|