1
|
Xie P, Wang QS, Qu WY, Chen X, Feng YJ, Ma J, Ren NQ, Ho SH. Revealing real impact of microalgae on seasonal dynamics of bacterial community in a pilot-scale microalgal-bacterial consortium system. WATER RESEARCH 2025; 274:123145. [PMID: 39824020 DOI: 10.1016/j.watres.2025.123145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 12/24/2024] [Accepted: 01/13/2025] [Indexed: 01/20/2025]
Abstract
The microalgal-bacterial consortium (MBC) system is recognized as an advanced approach for nitrogen and phosphorus removal in wastewater treatment. However, the influence of microalgae on bacterial community dynamics and niche differentiation across varying seasonal conditions remains unexplored. In this study, we established a pilot-scale continuous-flow MBC system to disentangle, for the first time, the impact of microalgae on seasonal bacterial community succession by conducting monthly time-series sampling over a full seasonal cycle. Notably, a core microbiome consisting of 528 ASVs displaying significant seasonal rhythms was identified in both activated sludge (AS) and MBC systems. Unlike the random drift-driven assembly observed in the AS system, microalgae can recruit dominant species that respond to environmental fluctuations to form a core microbiome (heterogeneous selection), thereby enhancing community stability. Concurrently, microalgae facilitated niche differentiation within the core microbiome, driving transition from generalist to specialist species, which in turn promoted synergistic interactions that can improve nitrification and denitrification functions. Additionally, microalgae strengthened the correlation between functional species in the core microbiome and seasonal variations in light and temperature, as well as with regulating the efficiency of nitrogen and phosphorus removal by influencing the abundance of these functional species. These findings deepen our understanding of bacterial ecology based on microalgae management and provide a foundation further for the study of community regulation strategy of MBC systems.
Collapse
Affiliation(s)
- Peng Xie
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Qiu-Shi Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Wen-Ying Qu
- Coll Water Conservancy & Architecture Engneering, Shihezi University, Shihezi, 832000, PR China
| | - Xi Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Yu-Jie Feng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Nan-Qi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Shih-Hsin Ho
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China.
| |
Collapse
|
2
|
Gandar A, Giraudo M, Perion T, Houël E, Noguer T, Rodrigues AMS, Calas-Blanchard C, Stien D. Targeted and untargeted discovery of UV filters and emerging contaminants with environmental risk assessment on the Northwestern Mediterranean coast. MARINE POLLUTION BULLETIN 2025; 212:117567. [PMID: 39824136 DOI: 10.1016/j.marpolbul.2025.117567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/22/2024] [Accepted: 01/13/2025] [Indexed: 01/20/2025]
Abstract
Marine ecosystems, particularly coastal areas, are becoming increasingly vulnerable to pollution from human activities. Persistent organic pollutants and contaminants of emerging concern (CECs) are recognized as significant threats to both human and environmental health. Our study aimed to identify the molecules present in the seawater of two bathing areas in the Western Mediterranean Sea. Polar Organic Chemical Integrative Samplers were employed for passive sampling of UV filters and other contaminants in the seawater. The concentrations of UV filters bemotrizinol (BEMT), benzophenone-3 (BP3), diethylamino hydroxybenzoyl hexyl benzoate (DHHB), octyl triazone (ET), and octocrylene (OC) were measured at these bathing sites during the summer of 2022. In addition, non-targeted chemical analysis was used to complement the list of pollutants in the sampling areas, leading to the identification of 53 contaminants and three natural products. Dodecyltrimethylammonium (DTA) and tetradecyltrimethylammonium (TTA) ions, 1,3-diphenylguanidine (DPG), N,N-diethyl-m-toluamide (DEET), and crystal violet (CV) were successfully quantified. Risk assessments showed that DEET, DPG, and BP3 present low environmental risks at the detected concentrations, while CV, DTA, and TTA pose medium to high risks, warranting further investigation. OC was found to pose a significant risk to marine biodiversity, as its environmental concentrations exceeded predicted no-effect concentration values. Overall, this study highlights the complexity of environmental pollution in coastal bathing areas and underscores the urgent need for comprehensive risk assessments to safeguard marine life and public health.
Collapse
Affiliation(s)
- Aude Gandar
- Université de Perpignan Via Domitia, BAE, 52 Avenue Paul Alduy, F-66860 Perpignan Cedex, France; Sorbonne Université, CNRS, Laboratoire de Biodiversité et Biotechnologie Microbienne, UAR 3579, Observatoire Océanologique, Banyuls-sur-Mer, France
| | - Maeva Giraudo
- Sorbonne Université, CNRS, Laboratoire de Biodiversité et Biotechnologie Microbienne, UAR 3579, Observatoire Océanologique, Banyuls-sur-Mer, France
| | - Théo Perion
- Université de Perpignan Via Domitia, BAE, 52 Avenue Paul Alduy, F-66860 Perpignan Cedex, France; Sorbonne Université, CNRS, Laboratoire de Biodiversité et Biotechnologie Microbienne, UAR 3579, Observatoire Océanologique, Banyuls-sur-Mer, France
| | - Emeline Houël
- Sorbonne Université, CNRS, Laboratoire de Biodiversité et Biotechnologie Microbienne, UAR 3579, Observatoire Océanologique, Banyuls-sur-Mer, France
| | - Thierry Noguer
- Université de Perpignan Via Domitia, BAE, 52 Avenue Paul Alduy, F-66860 Perpignan Cedex, France; Sorbonne Université, CNRS, Laboratoire de Biodiversité et Biotechnologie Microbienne, UAR 3579, Observatoire Océanologique, Banyuls-sur-Mer, France
| | - Alice M S Rodrigues
- Sorbonne Université, CNRS, Laboratoire de Biodiversité et Biotechnologie Microbienne, UAR 3579, Observatoire Océanologique, Banyuls-sur-Mer, France
| | - Carole Calas-Blanchard
- Université de Perpignan Via Domitia, BAE, 52 Avenue Paul Alduy, F-66860 Perpignan Cedex, France; Sorbonne Université, CNRS, Laboratoire de Biodiversité et Biotechnologie Microbienne, UAR 3579, Observatoire Océanologique, Banyuls-sur-Mer, France.
| | - Didier Stien
- Sorbonne Université, CNRS, Laboratoire de Biodiversité et Biotechnologie Microbienne, UAR 3579, Observatoire Océanologique, Banyuls-sur-Mer, France.
| |
Collapse
|
3
|
Dal Bello M, Abreu CI. Temperature structuring of microbial communities on a global scale. Curr Opin Microbiol 2024; 82:102558. [PMID: 39423562 PMCID: PMC11609007 DOI: 10.1016/j.mib.2024.102558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/27/2024] [Accepted: 09/24/2024] [Indexed: 10/21/2024]
Abstract
Temperature is a fundamental physical constraint regulating key aspects of microbial life. Protein binding, membrane fluidity, central dogma processes, and metabolism are all tightly controlled by temperature, such that growth rate profiles across taxa and environments follow the same general curve. An open question in microbial ecology is how the effects of temperature on individual traits scale up to determine community structure and function at planetary scales. Here, we review recent theoretical and experimental efforts to connect physiological responses to the outcome of species interactions, the assembly of microbial communities, and their function as temperature changes. We identify open questions in the field and define a roadmap for future studies.
Collapse
Affiliation(s)
- Martina Dal Bello
- Physics of Living Systems, Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Clare I Abreu
- Department of Biology, Stanford University, Stanford, CA, USA.
| |
Collapse
|
4
|
Xu W, Xu Y, Sun R, Rey Redondo E, Leung KK, Wan SH, Li J, Yung CCM. Revealing the intricate temporal dynamics and adaptive responses of prokaryotic and eukaryotic microbes in the coastal South China Sea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 952:176019. [PMID: 39236827 DOI: 10.1016/j.scitotenv.2024.176019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/15/2024] [Accepted: 09/02/2024] [Indexed: 09/07/2024]
Abstract
This comprehensive two-year investigation in the coastal South China Sea has advanced our understanding of marine microbes at both community and genomic levels. By combining metagenomics and metatranscriptomics, we have revealed the intricate temporal dynamics and remarkable adaptability of microbial communities and phytoplankton metagenome-assembled genomes (MAGs) in response to environmental fluctuations. We observed distinct seasonal shifts in microbial community composition and function: cyanobacteria were predominant during warmer months, whereas photosynthetic protists were more abundant during colder seasons. Notably, metabolic marker KOs of photosynthesis were consistently active throughout the year, underscoring the persistent role of these processes irrespective of seasonal changes. Our analysis reveals that environmental parameters such as temperature, salinity, and nitrate concentrations profoundly influence microbial community composition, while temperature and silicate have emerged as crucial factors shaping their functional traits. Through the recovery and analysis of 37 phytoplankton MAGs, encompassing nine prokaryotic cyanobacteria and 28 eukaryotic protists from diverse phyla, we have gained insights into their genetic diversity and metabolic capabilities. Distinct profiles of photosynthesis-related pathways including carbon fixation, carotenoid biosynthesis, photosynthesis-antenna proteins, and photosynthesis among the MAGs indicated their genetic adaptations to changing environmental conditions. This study not only enhances our understanding of microbial dynamics in coastal marine ecosystems but also sheds light on the ecological roles and adaptive responses of different microbial groups to environmental changes.
Collapse
Affiliation(s)
- Wenqian Xu
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Yangbing Xu
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Ruixian Sun
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Elvira Rey Redondo
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Ka Kiu Leung
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Siu Hei Wan
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Jiying Li
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Charmaine C M Yung
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China.
| |
Collapse
|
5
|
Devic M, Dennu L, Lozano JC, Mariac C, Vergé V, Schatt P, Bouget FY, Sabot F. An INDEL genomic approach to explore population diversity of phytoplankton. BMC Genomics 2024; 25:1045. [PMID: 39506649 PMCID: PMC11539686 DOI: 10.1186/s12864-024-10896-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 10/14/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND Although metabarcoding and metagenomic approaches have generated large datasets on worldwide phytoplankton species diversity, the intraspecific genetic diversity underlying the genetic adaptation of marine phytoplankton to specific environmental niches remains largely unexplored. This is mainly due to the lack of biological resources and tools for monitoring the dynamics of this diversity in space and time. RESULTS To gain insight into population diversity, a novel method based on INDEL markers was developed on Bathycoccus prasinos (Mamiellophyceae), an abundant and cosmopolitan species with strong seasonal patterns. Long read sequencing was first used to characterize structural variants among the genomes of six B. prasinos strains sampled from geographically distinct regions in the world ocean. Markers derived from identified insertions/deletions were validated by PCR then used to genotype 55 B. prasinos strains isolated during the winter bloom 2018-2019 in the bay of Banyuls-sur-Mer (Mediterranean Sea, France). This led to their classification into eight multi-loci genotypes and the sequencing of strains representative of local diversity, further improving the available genetic diversity of B. prasinos. Finally, selected markers were directly tracked on environmental DNA sampled during 3 successive blooms from 2018 to 2021, showcasing a fast and cost-effective approach to follow local population dynamics. CONCLUSIONS This method, which involves (i) pre-identifying the genetic diversity of B. prasinos in environmental samples by PCR, (ii) isolating cells from selected environmental samples and (iii) identifying genotypes representative of B. prasinos diversity for sequencing, can be used to comprehensively describe the diversity and population dynamics not only in B. prasinos but also potentially in other generalist phytoplankton species.
Collapse
Affiliation(s)
- Martine Devic
- Laboratoire d'Océanographie Microbienne (LOMIC), CNRS/Sorbonne University, Observatoire Océanologique, UMR 7621, Banyuls s/ Mer, 66650, France.
| | - Louis Dennu
- Laboratoire d'Océanographie Microbienne (LOMIC), CNRS/Sorbonne University, Observatoire Océanologique, UMR 7621, Banyuls s/ Mer, 66650, France.
| | - Jean-Claude Lozano
- Laboratoire d'Océanographie Microbienne (LOMIC), CNRS/Sorbonne University, Observatoire Océanologique, UMR 7621, Banyuls s/ Mer, 66650, France
| | - Cédric Mariac
- Diversité, Adaptation Et Développement Des Plantes (DIADE) UMR 232, University of Montpellier, IRD, CIRAD, 911 Avenue Agropolis, BP 64501, 34394, Montpellier Cedex 5, France
| | - Valérie Vergé
- Laboratoire d'Océanographie Microbienne (LOMIC), CNRS/Sorbonne University, Observatoire Océanologique, UMR 7621, Banyuls s/ Mer, 66650, France
| | - Philippe Schatt
- Laboratoire d'Océanographie Microbienne (LOMIC), CNRS/Sorbonne University, Observatoire Océanologique, UMR 7621, Banyuls s/ Mer, 66650, France
| | - François-Yves Bouget
- Laboratoire d'Océanographie Microbienne (LOMIC), CNRS/Sorbonne University, Observatoire Océanologique, UMR 7621, Banyuls s/ Mer, 66650, France.
| | - François Sabot
- Diversité, Adaptation Et Développement Des Plantes (DIADE) UMR 232, University of Montpellier, IRD, CIRAD, 911 Avenue Agropolis, BP 64501, 34394, Montpellier Cedex 5, France.
| |
Collapse
|
6
|
Laperriere SM, Minch B, Weissman JL, Hou S, Yeh YC, Ignacio-Espinoza JC, Ahlgren NA, Moniruzzaman M, Fuhrman JA. Phylogenetic proximity drives temporal succession of marine giant viruses in a five-year metagenomic time-series. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.12.607631. [PMID: 39185240 PMCID: PMC11343133 DOI: 10.1101/2024.08.12.607631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Nucleocytoplasmic Large DNA Viruses (NCLDVs, also called giant viruses) are widespread in marine systems and infect a broad range of microbial eukaryotes (protists). Recent biogeographic work has provided global snapshots of NCLDV diversity and community composition across the world's oceans, yet little information exists about the guiding 'rules' underpinning their community dynamics over time. We leveraged a five-year monthly metagenomic time-series to quantify the community composition of NCLDVs off the coast of Southern California and characterize these populations' temporal dynamics. NCLDVs were dominated by Algavirales (Phycodnaviruses, 59%) and Imitervirales (Mimiviruses, 36%). We identified clusters of NCLDVs with distinct classes of seasonal and non-seasonal temporal dynamics. Overall, NCLDV population abundances were often highly dynamic with a strong seasonal signal. The Imitervirales group had highest relative abundance in the more oligotrophic late summer and fall, while Algavirales did so in winter. Generally, closely related strains had similar temporal dynamics, suggesting that evolutionary history is a key driver of the temporal niche of marine NCLDVs. However, a few closely-related strains had drastically different seasonal dynamics, suggesting that while phylogenetic proximity often indicates ecological similarity, occasionally phenology can shift rapidly, possibly due to host-switching. Finally, we identified distinct functional content and possible host interactions of two major NCLDV orders-including connections of Imitervirales with primary producers like the diatom Chaetoceros and widespread marine grazers like Paraphysomonas and Spirotrichea ciliates. Together, our results reveal key insights on season-specific effect of phylogenetically distinct giant virus communities on marine protist metabolism, biogeochemical fluxes and carbon cycling.
Collapse
Affiliation(s)
- Sarah M. Laperriere
- Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| | - Benjamin Minch
- Department of Marine Biology and Ecology, Rosenstiel School of Marine, Atmospheric, and Earth Sciences, University of Miami, Miami, FL, USA
| | - JL Weissman
- Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY, USA
- Institute for Advanced Computational Science, Stony Brook University, Stony Brook, NY, USA
| | - Shengwei Hou
- Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
- Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yi-Chun Yeh
- Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| | | | | | - Mohammad Moniruzzaman
- Department of Marine Biology and Ecology, Rosenstiel School of Marine, Atmospheric, and Earth Sciences, University of Miami, Miami, FL, USA
| | - Jed A. Fuhrman
- Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
7
|
West NJ, Landa M, Obernosterer I. Differential association of key bacterial groups with diatoms and Phaeocystis spp. during spring blooms in the Southern Ocean. Microbiologyopen 2024; 13:e1428. [PMID: 39119822 PMCID: PMC11310772 DOI: 10.1002/mbo3.1428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/10/2024] [Accepted: 07/10/2024] [Indexed: 08/10/2024] Open
Abstract
Interactions between phytoplankton and heterotrophic bacteria significantly influence the cycling of organic carbon in the ocean, with many of these interactions occurring at the micrometer scale. We explored potential associations between specific phytoplankton and bacteria in two size fractions, 0.8-3 µm and larger than 3 µm, at three naturally iron-fertilized stations and one high nutrient low chlorophyll station in the Southern Ocean. The composition of phytoplankton and bacterial communities was determined by sequencing the rbcL gene and 16S rRNA gene from DNA and RNA extracts, which represent presence and potential activity, respectively. Diatoms, particularly Thalassiosira, contributed significantly to the DNA sequences in the larger size fractions, while haptophytes were dominant in the smaller size fraction. Correlation analysis between the most abundant phytoplankton and bacterial operational taxonomic units revealed strong correlations between Phaeocystis and picoeukaryotes with SAR11, SAR116, Magnetospira, and Planktomarina. In contrast, most Thalassiosira operational taxonomic units showed the highest correlations with Polaribacter, Sulfitobacteria, Erythrobacter, and Sphingobium, while Fragilariopsis, Haslea, and Thalassionema were correlated with OM60, Fluviicola, and Ulvibacter. Our in-situ observations suggest distinct associations between phytoplankton and bacterial taxa, which could play crucial roles in nutrient cycling in the Southern Ocean.
Collapse
Affiliation(s)
- Nyree J. West
- CNRS FR3724, Observatoire Océanologique de Banyuls (OOB)Sorbonne UniversitéBanyuls sur merFrance
| | - Marine Landa
- Laboratoire d'Océanographie Microbienne, LOMIC, CNRSSorbonne UniversitéBanyuls sur merFrance
| | - Ingrid Obernosterer
- Laboratoire d'Océanographie Microbienne, LOMIC, CNRSSorbonne UniversitéBanyuls sur merFrance
| |
Collapse
|
8
|
Ferrera I, Auladell A, Balagué V, Reñé A, Garcés E, Massana R, Gasol JM. Seasonal and interannual variability of the free-living and particle-associated bacteria of a coastal microbiome. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13299. [PMID: 39081120 PMCID: PMC11289420 DOI: 10.1111/1758-2229.13299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 05/08/2024] [Indexed: 08/03/2024]
Abstract
Marine microbial communities differ genetically, metabolically, and ecologically according to their lifestyle, and they may respond differently to environmental changes. In this study, we investigated the seasonal dynamics of bacterial assemblies in the free-living (FL) and particle-associated (PA) fractions across a span of 6 years in the Blanes Bay Microbial Observatory in the Northwestern Mediterranean. Both lifestyles showed marked seasonality. The trends in alpha diversity were similar, with lower values in spring-summer than in autumn-winter. Samples from both fractions were grouped seasonally and the percentage of community variability explained by the measured environmental variables was comparable (32% in FL and 31% in PA). Canonical analyses showed that biotic interactions were determinants of bacterioplankton dynamics and that their relevance varies depending on lifestyles. Time-decay curves confirmed a high degree of predictability in both fractions. Yet, 'seasonal' Amplicon Sequence Variants (ASVs) (as defined by Lomb Scargle time series analysis) in the PA communities represented 46% of the total relative abundance while these accounted for 30% in the FL fraction. These results demonstrate that bacteria inhabiting both fractions exhibit marked seasonality, highlighting the importance of accounting for both lifestyles to fully comprehend the dynamics of marine prokaryotic communities.
Collapse
Affiliation(s)
- Isabel Ferrera
- Department of Marine Biology and OceanographyInstitut de Ciències del Mar (ICM‐CSIC)BarcelonaCataloniaSpain
- Centro Oceanográfico de Málaga, Instituto Español de Oceanografía (IEO‐CSIC)MálagaSpain
| | - Adrià Auladell
- Department of Marine Biology and OceanographyInstitut de Ciències del Mar (ICM‐CSIC)BarcelonaCataloniaSpain
- Present address:
Institut de Biologia Evolutiva (IBE‐UPF‐CSIC)BarcelonaCataloniaSpain
| | - Vanessa Balagué
- Department of Marine Biology and OceanographyInstitut de Ciències del Mar (ICM‐CSIC)BarcelonaCataloniaSpain
| | - Albert Reñé
- Department of Marine Biology and OceanographyInstitut de Ciències del Mar (ICM‐CSIC)BarcelonaCataloniaSpain
| | - Esther Garcés
- Department of Marine Biology and OceanographyInstitut de Ciències del Mar (ICM‐CSIC)BarcelonaCataloniaSpain
| | - Ramon Massana
- Department of Marine Biology and OceanographyInstitut de Ciències del Mar (ICM‐CSIC)BarcelonaCataloniaSpain
| | - Josep M. Gasol
- Department of Marine Biology and OceanographyInstitut de Ciències del Mar (ICM‐CSIC)BarcelonaCataloniaSpain
| |
Collapse
|
9
|
Jing M, Yang W, Rao L, Chen J, Ding X, Zhou Y, Zhang Q, Lu K, Zhu J. Mechanisms of microbial coexistence in a patchy ecosystem: Differences in ecological niche overlap and species fitness between rhythmic and non-rhythmic species. WATER RESEARCH 2024; 256:121626. [PMID: 38642534 DOI: 10.1016/j.watres.2024.121626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 03/28/2024] [Accepted: 04/15/2024] [Indexed: 04/22/2024]
Abstract
Resource patchiness caused by external events breaks the continuity and homogeneity of resource distribution in the original ecosystem. For local organisms, this leads to drastic changes in the availability of resources, breaks down the co-existence of species, and reshuffles the local ecosystem. West Lake is a freshwater lake with resource patchiness caused by multiple exogenous disturbances that has strong environmental heterogeneity that prevents clear observation of seasonal changes in the microbial communities. Despite this, the emergence of rhythmic species in response to irregular changes in the environment has been helpful for observing microbial communities dynamics in patchy ecosystems. We investigated the ecological mechanisms of seasonal changes in microbial communities in West Lake by screening rhythmic species based on the ecological niche and modern coexistence theories. The results showed that rhythmic species were the dominant factors in microbial community changes and the effects of most environmental factors on the microbial community were indirectly realised through the rhythmic species. Random forest analyses showed that seasonal changes in the microbial community were similarly predicted by the rhythmic species. In addition, we incorporated species interactions and community phylogenetic patterns into stepwise multiple regression analyses, the results of which indicate that ecological niches and species fitness may drive the coexistence of these subcommunities. Thus, this study extends our understanding of seasonal changes in microbial communities and provides new ways for observing seasonal changes in microbial communities, especially in ecosystems with resource patches. Our study also show that combining community phylogenies with co-occurrence networks based on ecological niches and modern coexistence theory can further help us understand the ecological mechanisms of interspecies coexistence.
Collapse
Affiliation(s)
- MingFei Jing
- School of Marine Science, Ningbo University, No.169 Qixingnan Road, Beilun District, Ningbo, Zhejiang 315800, China
| | - Wen Yang
- School of Marine Science, Ningbo University, No.169 Qixingnan Road, Beilun District, Ningbo, Zhejiang 315800, China
| | - Lihua Rao
- Division of Hangzhou West Lake Aquatic Area Management, Hangzhou 310002, China
| | - Jun Chen
- Division of Hangzhou West Lake Aquatic Area Management, Hangzhou 310002, China
| | - Xiuying Ding
- Division of Hangzhou West Lake Aquatic Area Management, Hangzhou 310002, China
| | - Yinying Zhou
- Division of Hangzhou West Lake Aquatic Area Management, Hangzhou 310002, China
| | - Quanxiang Zhang
- School of Marine Science, Ningbo University, No.169 Qixingnan Road, Beilun District, Ningbo, Zhejiang 315800, China
| | - Kaihong Lu
- School of Marine Science, Ningbo University, No.169 Qixingnan Road, Beilun District, Ningbo, Zhejiang 315800, China
| | - Jinyong Zhu
- School of Marine Science, Ningbo University, No.169 Qixingnan Road, Beilun District, Ningbo, Zhejiang 315800, China.
| |
Collapse
|
10
|
Celussi M, Manna V, Banchi E, Fonti V, Bazzaro M, Flander-Putrle V, Klun K, Kralj M, Orel N, Tinta T. Annual recurrence of prokaryotic climax communities in shallow waters of the North Mediterranean. Environ Microbiol 2024; 26:e16595. [PMID: 38418391 DOI: 10.1111/1462-2920.16595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 02/02/2024] [Indexed: 03/01/2024]
Abstract
In temperate coastal environments, wide fluctuations of biotic and abiotic factors drive microbiome dynamics. To link recurrent ecological patterns with planktonic microbial communities, we analysed a monthly-sampled 3-year time series of 16S rRNA amplicon sequencing data, alongside environmental variables, collected at two stations in the northern Adriatic Sea. Time series multivariate analyses allowed us to identify three stable, mature communities (climaxes), whose recurrence was mainly driven by changes in photoperiod and temperature. Mixotrophs (e.g., Ca. Nitrosopumilus, SUP05 clade, and Marine Group II) thrived under oligotrophic, low-light conditions, whereas copiotrophs (e.g., NS4 and NS5 clades) bloomed at higher temperatures and substrate availability. The early spring climax was characterised by a more diverse set of amplicon sequence variants, including copiotrophs associated with phytoplankton-derived organic matter degradation, and photo-auto/heterotrophic organisms (e.g., Synechococcus sp., Roseobacter clade), whose rhythmicity was linked to photoperiod lengthening. Through the identification of recurrent climax assemblages, we begin to delineate a typology of ecosystem based on microbiome composition and functionality, allowing for the intercomparison of microbial assemblages among different biomes, a still underachieved goal in the omics era.
Collapse
Affiliation(s)
- Mauro Celussi
- National Institute of Oceanography and Applied Geophysics-OGS, Trieste, Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
| | - Vincenzo Manna
- National Institute of Oceanography and Applied Geophysics-OGS, Trieste, Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
| | - Elisa Banchi
- National Institute of Oceanography and Applied Geophysics-OGS, Trieste, Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
| | - Viviana Fonti
- National Institute of Oceanography and Applied Geophysics-OGS, Trieste, Italy
| | - Matteo Bazzaro
- National Institute of Oceanography and Applied Geophysics-OGS, Trieste, Italy
| | | | - Katja Klun
- Marine Biology Station Piran, National Institute of Biology, Piran, Slovenia
| | - Martina Kralj
- National Institute of Oceanography and Applied Geophysics-OGS, Trieste, Italy
| | - Neža Orel
- Marine Biology Station Piran, National Institute of Biology, Piran, Slovenia
| | - Tinkara Tinta
- Marine Biology Station Piran, National Institute of Biology, Piran, Slovenia
| |
Collapse
|
11
|
Zeng L, Wen J, Huang B, Yang Y, Huang Z, Zeng F, Fang H, Du H. Environmental DNA metabarcoding reveals the effect of environmental selection on phytoplankton community structure along a subtropical river. ENVIRONMENTAL RESEARCH 2024; 243:117708. [PMID: 37993044 DOI: 10.1016/j.envres.2023.117708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 11/08/2023] [Accepted: 11/15/2023] [Indexed: 11/24/2023]
Abstract
The Dongjiang River, a major tributary of the Pearl River system that supplies water to more than 40 million people in Guangdong Province and neighboring regions of China, harbors rich biodiversity, including many endemic and endangered species. However, human activities such as urbanization, agriculture, and industrialization have posed serious threats to its water quality and biodiversity. To assess the status and drivers of phytoplankton diversity, which is a key indicator of aquatic ecosystem health, this study used Environmental DNA (eDNA) metabarcoding combined with machine learning methods to explore spatial variations in the composition and structure of phytoplankton communities along the Dongjiang River, including its estuary. The results showed that phytoplankton diversity exhibited spatial distribution patterns, with higher community structure similarity and lower network complexity in the upstream than in the downstream regions. Environmental selection was the main mechanism shaping phytoplankton community composition, with natural factors driving the dominance of Pyrrophyta, Ochrophyta, and Cryptophyta in the upstream regions and estuaries. In contrast, the downstream regions was influenced by high concentrations of pollutants, resulting in increased abundance of Cryptophyta. The random forest model identified temperature, dissolved oxygen, chlorophyll a, NO2-, and NH4+ as the main factors influencing the primary phytoplankton communities and could be used to predict changes during wet periods. This study provides valuable insights into the factors influencing phytoplankton diversity and community composition in the Dongjiang River, and demonstrates the application value of eDNA metabarcoding technique in large-scale, long-distance river biodiversity monitoring.
Collapse
Affiliation(s)
- Luping Zeng
- The Key Laboratory of Water and Air Pollution Control of Guangdong Province, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, No. 18 Ruihe Road, Guangzhou, 510530, China
| | - Jing Wen
- The Key Laboratory of Water and Air Pollution Control of Guangdong Province, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, No. 18 Ruihe Road, Guangzhou, 510530, China
| | - Bangjie Huang
- The Key Laboratory of Water and Air Pollution Control of Guangdong Province, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, No. 18 Ruihe Road, Guangzhou, 510530, China
| | - Yang Yang
- Research Center of Hydrobiology, Department of Ecology, Jinan University, Guangzhou, 510632, China
| | - Zhiwei Huang
- The Key Laboratory of Water and Air Pollution Control of Guangdong Province, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, No. 18 Ruihe Road, Guangzhou, 510530, China
| | - Fantang Zeng
- The Key Laboratory of Water and Air Pollution Control of Guangdong Province, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, No. 18 Ruihe Road, Guangzhou, 510530, China
| | - Huaiyang Fang
- The Key Laboratory of Water and Air Pollution Control of Guangdong Province, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, No. 18 Ruihe Road, Guangzhou, 510530, China.
| | - Hongwei Du
- The Key Laboratory of Water and Air Pollution Control of Guangdong Province, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, No. 18 Ruihe Road, Guangzhou, 510530, China.
| |
Collapse
|
12
|
Meyneng M, Lemonnier H, Le Gendre R, Plougoulen G, Antypas F, Ansquer D, Serghine J, Schmitt S, Siano R. Subtropical coastal microbiome variations due to massive river runoff after a cyclonic event. ENVIRONMENTAL MICROBIOME 2024; 19:10. [PMID: 38291506 PMCID: PMC10829310 DOI: 10.1186/s40793-024-00554-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 01/23/2024] [Indexed: 02/01/2024]
Abstract
BACKGROUND Coastal ecosystem variability at tropical latitudes is dependent on climatic conditions. During the wet, rainy season, extreme climatic events such as cyclones, precipitation, and winds can be intense over a short period and may have a significant impact on the entire land‒sea continuum. This study focused on the effect of river runoff across the southwest coral lagoon ecosystem of Grand Terre Island of New Caledonia (South Pacific) after a cyclonic event, which is considered a pulse disturbance at our study site. The variability of coastal microbiomes, studied by the metabarcoding of V4 18S (protists) and V4-V5 16S (bacteria) rDNA genes, after the cyclone passage was associated with key environmental parameters describing the runoff impact (salinity, organic matter proxies, terrestrial rock origin metals) and compared to community structures observed during the dry season. RESULTS Microbiome biodiversity patterns of the dry season were destructured because of the runoff impact, and land-origin taxa were observed in the coastal areas. After the rainy event, different daily community dynamics were observed locally, with specific microbial taxa explaining these variabilities. Plume dispersal modeling revealed the extent of low salinity areas up to the coral reef area (16 km offshore), but a rapid (< 6 days) recovery to typical steady conditions of the lagoon's hydrology was observed. Conversely, during the same time, some biological components (microbial communities, Chl a) and biogeochemical components (particulate nickel, terrigenous organic matter) of the ecosystem did not recover to values observed during the dry season conditions. CONCLUSION The ecosystem resilience of subtropical ecosystems must be evaluated from a multidisciplinary, holistic perspective and over the long term. This allows evaluating the risk associated with a potential continued and long-term disequilibrium of the ecosystem, triggered by the change in the frequency and intensity of extreme climatic events in the era of planetary climatic changes.
Collapse
Affiliation(s)
- M Meyneng
- IFREMER, DYNECO, BP70, Plouzané, France
| | - H Lemonnier
- French Institute for Research in the Science of the Sea (IFREMER), Research Institute for Development (IRD), University of New Caledonia, University of Reunion, CNRS, UMR 9220 ENTROPIE, Nouméa, New Caledonia
| | - R Le Gendre
- French Institute for Research in the Science of the Sea (IFREMER), Research Institute for Development (IRD), University of New Caledonia, University of Reunion, CNRS, UMR 9220 ENTROPIE, Nouméa, New Caledonia
| | - G Plougoulen
- French Institute for Research in the Science of the Sea (IFREMER), Research Institute for Development (IRD), University of New Caledonia, University of Reunion, CNRS, UMR 9220 ENTROPIE, Nouméa, New Caledonia
| | - F Antypas
- French Institute for Research in the Science of the Sea (IFREMER), Research Institute for Development (IRD), University of New Caledonia, University of Reunion, CNRS, UMR 9220 ENTROPIE, Nouméa, New Caledonia
| | - D Ansquer
- French Institute for Research in the Science of the Sea (IFREMER), Research Institute for Development (IRD), University of New Caledonia, University of Reunion, CNRS, UMR 9220 ENTROPIE, Nouméa, New Caledonia
| | | | - S Schmitt
- IFREMER, DYNECO, BP70, Plouzané, France
| | - R Siano
- IFREMER, DYNECO, BP70, Plouzané, France.
| |
Collapse
|
13
|
Bittner MJ, Bannon CC, Rowland E, Sundh J, Bertrand EM, Andersson AF, Paerl RW, Riemann L. New chemical and microbial perspectives on vitamin B1 and vitamer dynamics of a coastal system. ISME COMMUNICATIONS 2024; 4:ycad016. [PMID: 38390520 PMCID: PMC10881298 DOI: 10.1093/ismeco/ycad016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 02/24/2024]
Abstract
Vitamin B1 (thiamin, B1) is an essential micronutrient for cells, yet intriguingly in aquatic systems most bacterioplankton are unable to synthesize it de novo (auxotrophy), requiring an exogenous source. Cycling of this valuable metabolite in aquatic systems has not been fully investigated and vitamers (B1-related compounds) have only begun to be measured and incorporated into the B1 cycle. Here, we identify potential key producers and consumers of B1 and gain new insights into the dynamics of B1 cycling through measurements of B1 and vitamers (HMP: 4-amino-5-hydroxymethyl-2-methylpyrimidine, HET: 4-methyl-5-thiazoleethanol, FAMP: N-formyl-4-amino-5-aminomethyl-2-methylpyrimidine) in the particulate and dissolved pool in a temperate coastal system. Dissolved B1 was not the primary limiting nutrient for bacterial production and was relatively stable across seasons with concentrations ranging from 74-117 pM, indicating a balance of supply and demand. However, vitamer concentration changed markedly with season as did transcripts related to vitamer salvage and transport suggesting use of vitamers by certain bacterioplankton, e.g. Pelagibacterales. Genomic and transcriptomic analyses showed that up to 78% of the bacterioplankton taxa were B1 auxotrophs. Notably, de novo B1 production was restricted to a few abundant bacterioplankton (e.g. Vulcanococcus, BACL14 (Burkholderiales), Verrucomicrobiales) across seasons. In summer, abundant picocyanobacteria were important putative B1 sources, based on transcriptional activity, leading to an increase in the B1 pool. Our results provide a new dynamic view of the players and processes involved in B1 cycling over time in coastal waters, and identify specific priority populations and processes for future study.
Collapse
Affiliation(s)
- Meriel J Bittner
- Marine Biological Section, Department of Biology, University of Copenhagen, 3000 Helsingør, Denmark
| | - Catherine C Bannon
- Department of Biology, Dalhousie University, Halifax, B3H 4R2, Nova Scotia, Canada
| | - Elden Rowland
- Department of Biology, Dalhousie University, Halifax, B3H 4R2, Nova Scotia, Canada
| | - John Sundh
- Department of Biochemistry and Biophysics, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Stockholm University, Box 1031, 17121 Solna, Sweden
| | - Erin M Bertrand
- Department of Biology, Dalhousie University, Halifax, B3H 4R2, Nova Scotia, Canada
| | - Anders F Andersson
- Department of Gene Technology, Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, 17165 Stockholm, Sweden
| | - Ryan W Paerl
- Department of Marine, Earth and Atmospheric Sciences, North Carolina State University, Raleigh, NC 2769, United States
| | - Lasse Riemann
- Marine Biological Section, Department of Biology, University of Copenhagen, 3000 Helsingør, Denmark
| |
Collapse
|
14
|
Zhang Y, Liu J, Song D, Yao P, Zhu S, Zhou Y, Jin J, Zhang XH. Stochasticity-driven weekly fluctuations distinguished the temporal pattern of particle-associated microorganisms from its free-living counterparts in temperate coastal seawater. WATER RESEARCH 2024; 248:120849. [PMID: 37979570 DOI: 10.1016/j.watres.2023.120849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 11/03/2023] [Accepted: 11/07/2023] [Indexed: 11/20/2023]
Abstract
Microbial community dynamics directly determine their ecosystem functioning. Despite the well-known annual recurrence pattern, little is known how different lifestyles affect the temporal variation and how community assembly mechanisms change over different temporal scales. Here, through a high-resolution observation of size fractionated samples over 60 consecutive weeks, we investigate the distinction in weekly distribution pattern and assembly mechanism between free-living (FL) and particle-associated (PA) communities in highly dynamic coastal environments. A clear pattern of annual recurrence was observed, which was more pronounced in FL compared to PA, resulting in higher temporal specificity in the former samples. Both the two size fractions displayed significant temporal distance-decay patterns, yet the PA community showed a higher magnitude of community variation between adjacent weeks, likely caused by sudden, drastic and long-lived blooms of heterotrophic bacteria. Generally, determinism (environmental selection) had a greater effect on the community assembly than stochasticity (random birth, death, and dispersal events), with significant contributions from temperature and inorganic nutrients. However, a clear shift in the temporal assembly pattern was observed, transitioning from a prevalence of stochastic processes driving short-term (within a month) fluctuations to a dominance of deterministic processes over longer time intervals. Between adjacent weeks, stochasticity was more important in the community assembly of PA than FL. This study revealed that stochastic processes can lead to rapid, dramatic and irregular PA community fluctuations, indicating weak resistance and resilience to disturbances, which considering the role of PA microbes in carbon processing would significantly affect the coastal carbon cycle. Our results provided a new insight into the microbial community assembly mechanisms in the temporal dimension.
Collapse
Affiliation(s)
- Yulin Zhang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Jiwen Liu
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao 266237, China; Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Derui Song
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Peng Yao
- Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao 266237, China; Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Shaodong Zhu
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Yi Zhou
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Jian Jin
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Xiao-Hua Zhang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao 266237, China; Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
15
|
Beauvais M, Schatt P, Montiel L, Logares R, Galand PE, Bouget FY. Functional redundancy of seasonal vitamin B 12 biosynthesis pathways in coastal marine microbial communities. Environ Microbiol 2023; 25:3753-3770. [PMID: 38031968 DOI: 10.1111/1462-2920.16545] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 11/15/2023] [Indexed: 12/01/2023]
Abstract
Vitamin B12 (cobalamin) is a major cofactor required by most marine microbes, but only produced by a few prokaryotes in the ocean, which is globally B12 -depleted. Despite the ecological importance of B12 , the seasonality of B12 metabolisms and the organisms involved in its synthesis in the ocean remain poorly known. Here we use metagenomics to assess the monthly dynamics of B12 -related pathways and the functional diversity of associated microbial communities in the coastal NW Mediterranean Sea over 7 years. We show that genes related to potential B12 metabolisms were characterized by an annual succession of different organisms carrying distinct production pathways. During the most productive winter months, archaea (Nitrosopumilus and Nitrosopelagicus) were the main contributors to B12 synthesis potential through the anaerobic pathway (cbi genes). In turn, Alphaproteobacteria (HIMB11, UBA8309, Puniceispirillum) contributed to B12 synthesis potential in spring and summer through the aerobic pathway (cob genes). Cyanobacteria could produce pseudo-cobalamin from spring to autumn. Finally, we show that during years with environmental perturbations, the organisms usually carrying B12 synthesis genes were replaced by others having the same gene, thus maintaining the potential for B12 production. Such ecological insurance could contribute to the long-term functional resilience of marine microbial communities exposed to contrasting inter-annual environmental conditions.
Collapse
Affiliation(s)
- Maxime Beauvais
- Sorbonne Université, CNRS, Laboratoire d'Océanographie Microbienne (LOMIC), Observatoire Océanologique de Banyuls, Banyuls sur Mer, France
| | - Philippe Schatt
- Sorbonne Université, CNRS, Laboratoire d'Océanographie Microbienne (LOMIC), Observatoire Océanologique de Banyuls, Banyuls sur Mer, France
| | - Lidia Montiel
- Department of Marine Biology and Oceanography, Institute of Marine Sciences (ICM-CSIC), Barcelona, Spain
| | - Ramiro Logares
- Department of Marine Biology and Oceanography, Institute of Marine Sciences (ICM-CSIC), Barcelona, Spain
| | - Pierre E Galand
- Sorbonne Université, CNRS, Laboratoire d'Écogéochimie des Environnements Benthiques (LECOB), Observatoire Océanologique de Banyuls, Banyuls sur Mer, France
| | - François-Yves Bouget
- Sorbonne Université, CNRS, Laboratoire d'Océanographie Microbienne (LOMIC), Observatoire Océanologique de Banyuls, Banyuls sur Mer, France
| |
Collapse
|
16
|
Chen X, Xu G, Xiong P, Peng J, Fang K, Wan S, Wang B, Gu F, Li J, Xiong H. Dry and wet seasonal variations of the sediment fungal community composition in the semi-arid region of the Dali River, Northwest China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:123694-123709. [PMID: 37993647 DOI: 10.1007/s11356-023-31042-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/09/2023] [Indexed: 11/24/2023]
Abstract
Microbial communities play an important role in water quality regulation and biogeochemical cycling in freshwater ecosystems. However, there has been a lack of research on the seasonal variation of sediment microorganisms in the sediments of small river basins in typical semi-arid region. In this study, high-throughput DNA sequencing was used to investigate the fungal community and its influencing factors in the sediment of the Dali River in the dry and wet seasons. The results showed that there were obvious seasonal differences in fungal alpha diversity. The diversity and richness of fungi in the dry season were greater than that in the wet season, but the evenness of fungi in the dry season was lower than that in the wet season. In addition, Ascomycota and Basidiomycota were the most important phyla in the Dali River fungal community, but their distributions showed clear seasonal differences. In the dry season, the relative abundance of Ascomycota and Basidiomycota were 12.34-46.42% and 17.59-27.20%, respectively. In the wet season, the relative abundances of these two phyla were 24.33-36.56% and 5.75-12.26%, respectively. PICRUSt2 was used to predict the metabolic function of fungal community in the sediment, and it was found that at the first level, the proportion of biosynthesis in the dry season was higher than that in the wet season. The ecological network structure showed that the fungal community in the wet season was more complex and stable than that in the dry season. The characteristic fungi in the dry season sediment were chytrid fungi in the family Rhizophydiaceae and the order Rhizophydiales, whereas those in the wet season sediment were in the orders Eurotiales and Saccharomycetales. Canonical correspondence analysis (CCA) showed that the physicochemical properties of water and sediment together explained a greater proportion of the dry-season fungal community changes than of the wet-season changes. In the dry season, temperature and ammonia nitrogen in the water were the main factors affecting the change of fungal community, whereas in the wet season, total nitrogen concentration of the water, electrical conductivity, total organic carbon and available phosphorus of the sediment, pH, and temperature were the main factors affecting the changes in fungal community composition. The results of this study enhanced our understanding of microbial communities in semi-arid river ecosystems, and highlight the importance of the management and protection in river ecosystems.
Collapse
Affiliation(s)
- Xin Chen
- Key Laboratory of National Forestry Administration on Ecological Hydrology and Disaster Prevention in Arid Regions, Xi'an University of Technology, Xi'an, 710048, Shaanxi, China
| | - Guoce Xu
- Key Laboratory of National Forestry Administration on Ecological Hydrology and Disaster Prevention in Arid Regions, Xi'an University of Technology, Xi'an, 710048, Shaanxi, China.
| | - Ping Xiong
- Shaanxi Forestry Survey and Planning Institute, Xi'an, 710082, Shaanxi, China
| | - Jianbo Peng
- Shaanxi Forestry Survey and Planning Institute, Xi'an, 710082, Shaanxi, China
| | - Kang Fang
- Key Laboratory of National Forestry Administration on Ecological Hydrology and Disaster Prevention in Arid Regions, Xi'an University of Technology, Xi'an, 710048, Shaanxi, China
| | - Shun Wan
- Key Laboratory of National Forestry Administration on Ecological Hydrology and Disaster Prevention in Arid Regions, Xi'an University of Technology, Xi'an, 710048, Shaanxi, China
| | - Bin Wang
- Key Laboratory of National Forestry Administration on Ecological Hydrology and Disaster Prevention in Arid Regions, Xi'an University of Technology, Xi'an, 710048, Shaanxi, China
| | - Fengyou Gu
- Key Laboratory of National Forestry Administration on Ecological Hydrology and Disaster Prevention in Arid Regions, Xi'an University of Technology, Xi'an, 710048, Shaanxi, China
| | - Jing Li
- Key Laboratory of National Forestry Administration on Ecological Hydrology and Disaster Prevention in Arid Regions, Xi'an University of Technology, Xi'an, 710048, Shaanxi, China
| | - Haijing Xiong
- Key Laboratory of National Forestry Administration on Ecological Hydrology and Disaster Prevention in Arid Regions, Xi'an University of Technology, Xi'an, 710048, Shaanxi, China
| |
Collapse
|
17
|
Yang Q, Yan Y, Huang J, Wang Z, Feng M, Cheng H, Zhang P, Zhang H, Xu J, Zhang M. The Impact of Warming on Assembly Processes and Diversity Patterns of Bacterial Communities in Mesocosms. Microorganisms 2023; 11:2807. [PMID: 38004818 PMCID: PMC10672829 DOI: 10.3390/microorganisms11112807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/14/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023] Open
Abstract
Bacteria in lake water bodies and sediments play crucial roles in various biogeochemical processes. In this study, we conducted a comprehensive analysis of bacterioplankton and sedimentary bacteria community composition and assembly processes across multiple seasons in 18 outdoor mesocosms exposed to three temperature scenarios. Our findings reveal that warming and seasonal changes play a vital role in shaping microbial diversity, species interactions, and community assembly disparities in water and sediment ecosystems. We observed that the bacterioplankton networks were more fragile, potentially making them susceptible to disturbances, whereas sedimentary bacteria exhibited increased stability. Constant warming and heatwaves had contrasting effects: heatwaves increased stability in both planktonic and sedimentary bacteria communities, but planktonic bacterial networks became more fragile under constant warming. Regarding bacterial assembly, stochastic processes primarily influenced the composition of planktonic and sedimentary bacteria. Constant warming intensified the stochasticity of bacterioplankton year-round, while heatwaves caused a slight shift from stochastic to deterministic in spring and autumn. In contrast, sedimentary bacteria assembly is mainly dominated by drift and remained unaffected by warming. Our study enhances our understanding of how bacterioplankton and sedimentary bacteria communities respond to global warming across multiple seasons, shedding light on the complex dynamics of microbial ecosystems in lakes.
Collapse
Affiliation(s)
- Qian Yang
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (Q.Y.); (Y.Y.); (J.H.); (Z.W.); (M.F.); (H.C.)
| | - Yifeng Yan
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (Q.Y.); (Y.Y.); (J.H.); (Z.W.); (M.F.); (H.C.)
| | - Jinhe Huang
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (Q.Y.); (Y.Y.); (J.H.); (Z.W.); (M.F.); (H.C.)
| | - Zhaolei Wang
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (Q.Y.); (Y.Y.); (J.H.); (Z.W.); (M.F.); (H.C.)
| | - Mingjun Feng
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (Q.Y.); (Y.Y.); (J.H.); (Z.W.); (M.F.); (H.C.)
| | - Haowu Cheng
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (Q.Y.); (Y.Y.); (J.H.); (Z.W.); (M.F.); (H.C.)
| | - Peiyu Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (P.Z.); (H.Z.); (J.X.)
| | - Huan Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (P.Z.); (H.Z.); (J.X.)
| | - Jun Xu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (P.Z.); (H.Z.); (J.X.)
| | - Min Zhang
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (Q.Y.); (Y.Y.); (J.H.); (Z.W.); (M.F.); (H.C.)
| |
Collapse
|
18
|
Scheifler M, Magnanou E, Sanchez-Brosseau S, Desdevises Y. Host-microbiota-parasite interactions in two wild sparid fish species, Diplodus annularis and Oblada melanura (Teleostei, Sparidae) over a year: a pilot study. BMC Microbiol 2023; 23:340. [PMID: 37974095 PMCID: PMC10652623 DOI: 10.1186/s12866-023-03086-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 10/23/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND The microbiota in fish external mucus is mainly known for having a role in homeostasis and protection against pathogens, but recent evidence suggests it is also involved in the host-specificity of some ectoparasites. In this study, we investigated the influence of seasonality and environmental factors on both fish external microbiota and monogenean gill ectoparasites abundance and diversity and assessed the level of covariations between monogenean and bacterial communities across seasons. To do so, we assessed skin and gill microbiota of two sparid species, Oblada melanura and Diplodus annularis, over a year and collected their specific monogenean ectoparasites belonging to the Lamellodiscus genus. RESULTS Our results revealed that diversity and structure of skin and gill mucus microbiota were strongly affected by seasonality, mainly by the variations of temperature, with specific fish-associated bacterial taxa for each season. The diversity and abundance of parasites were also influenced by seasonality, with the abundance of some Lamellodiscus species significantly correlated to temperature. Numerous positive and negative correlations between the abundance of given bacterial genera and Lamellodiscus species were observed throughout the year, suggesting their differential interaction across seasons. CONCLUSIONS The present study is one of the first to demonstrate the influence of seasonality and related abiotic factors on fish external microbiota over a year. We further identified potential interactions between gill microbiota and parasite occurrence in wild fish populations, improving current knowledge and understanding of the establishment of host-specificity.
Collapse
Affiliation(s)
- Mathilde Scheifler
- Sorbonne Université, CNRS, Biologie Intégrative Des Organismes Marins, BIOM, Banyuls-sur-Mer, F-66650, France.
| | - Elodie Magnanou
- Sorbonne Université, CNRS, Biologie Intégrative Des Organismes Marins, BIOM, Banyuls-sur-Mer, F-66650, France
| | - Sophie Sanchez-Brosseau
- Sorbonne Université, CNRS, Biologie Intégrative Des Organismes Marins, BIOM, Banyuls-sur-Mer, F-66650, France
| | - Yves Desdevises
- Sorbonne Université, CNRS, Biologie Intégrative Des Organismes Marins, BIOM, Banyuls-sur-Mer, F-66650, France
| |
Collapse
|
19
|
Márton Z, Csitári B, Felföldi T, Hidas A, Jordán F, Szabó A, Székely AJ. Contrasting response of microeukaryotic and bacterial communities to the interplay of seasonality and local stressors in shallow soda lakes. FEMS Microbiol Ecol 2023; 99:fiad095. [PMID: 37586889 PMCID: PMC10449373 DOI: 10.1093/femsec/fiad095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/08/2023] [Accepted: 08/14/2023] [Indexed: 08/18/2023] Open
Abstract
Seasonal environmental variation is a leading driver of microbial planktonic community assembly and interactions. However, departures from usual seasonal trends are often reported. To understand the role of local stressors in modifying seasonal succession, we sampled fortnightly, throughout three seasons, five nearby shallow soda lakes exposed to identical seasonal and meteorological changes. We characterised their microeukaryotic and bacterial communities by amplicon sequencing of the 16S and 18S rRNA gene, respectively. Biological interactions were inferred by analyses of synchronous and time-shifted interaction networks, and the keystone taxa of the communities were topologically identified. The lakes showed similar succession patterns during the study period with spring being characterised by the relevance of trophic interactions and a certain level of community stability followed by a more dynamic and variable summer-autumn period. Adaptation to general seasonal changes happened through shared core microbiome of the lakes. Stochastic events such as desiccation disrupted common network attributes and introduced shifts from the prevalent seasonal trajectory. Our results demonstrated that, despite being extreme and highly variable habitats, shallow soda lakes exhibit certain similarities in the seasonality of their planktonic communities, yet local stressors such as droughts instigate deviations from prevalent trends to a greater extent for microeukaryotic than for bacterial communities.
Collapse
Affiliation(s)
- Zsuzsanna Márton
- Institute of Aquatic Ecology, Centre for Ecological Research, H-1113 Budapest, Hungary
- National Multidisciplinary Laboratory for Climate Change, Centre for Ecological Research, H-1113 Budapest, Hungary
- Doctoral School of Environmental Sciences, Eötvös Loránd University, H-1117 Budapest, Hungary
| | - Bianka Csitári
- Doctoral School of Environmental Sciences, Eötvös Loránd University, H-1117 Budapest, Hungary
- Karolinska Institutet, 171 65 Stockholm, Sweden
- Uppsala University, 752 36 Uppsala, Sweden
| | - Tamás Felföldi
- Institute of Aquatic Ecology, Centre for Ecological Research, H-1113 Budapest, Hungary
- Department of Microbiology, Eötvös Loránd University, H-1117 Budapest, Hungary
| | - András Hidas
- Institute of Aquatic Ecology, Centre for Ecological Research, H-1113 Budapest, Hungary
- Doctoral School of Environmental Sciences, Eötvös Loránd University, H-1117 Budapest, Hungary
| | - Ferenc Jordán
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy
| | - Attila Szabó
- Institute of Aquatic Ecology, Centre for Ecological Research, H-1113 Budapest, Hungary
- Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden
| | - Anna J Székely
- Uppsala University, 752 36 Uppsala, Sweden
- Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden
| |
Collapse
|
20
|
Zhao Z, Zhang L, Zhang G, Gao H, Chen X, Li L, Ju F. Hydrodynamic and anthropogenic disturbances co-shape microbiota rhythmicity and community assembly within intertidal groundwater-surface water continuum. WATER RESEARCH 2023; 242:120236. [PMID: 37356162 DOI: 10.1016/j.watres.2023.120236] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/22/2023] [Accepted: 06/15/2023] [Indexed: 06/27/2023]
Abstract
Tidal hydrodynamics drive the groundwater-seawater exchange and shifts in microbiota structure in the coastal zone. However, how the coastal water microbiota structure and assembly patterns respond to periodic tidal fluctuations and anthropogenic disturbance remains unexplored in the intertidal groundwater-surface water (GW-SW) continuum, although it affects biogeochemical cycles and coastal water quality therein. Here, through hourly time-series sampling in the saltmarsh tidal creek, rhythmic patterns of microbiota structure in response to daily and monthly tidal fluctuations in intertidal surface water are disentangled for the first time. The similarity in archaeal community structures between groundwater and ebb-tide surface water (R2=0.06, p = 0.2) demonstrated archaeal transport through groundwater discharge, whereas multi-source transport mechanisms led to unique bacterial biota in ebb-tide water. Homogeneous selection (58.6%-69.3%) dominated microbiota assembly in the natural intertidal GW-SW continuum and the presence of 157 rhythmic ASVs identified at ebb tide and 141 at flood tide could be attributed to the difference in environmental selection between groundwater and seawater. For intertidal groundwater in the tidal creek affected by anthropogenically contaminated riverine inputs, higher microbial diversity and shift in community structure were primarily controlled by increased co-contribution of dispersal limitation and drift (jointly 57.8%) and enhanced microbial interactions. Overall, this study fills the knowledge gaps in the tide-driven water microbial dynamics in coastal transition zone and the response of intertidal groundwater microbiota to anthropogenic pollution of overlying waters. It also highlights the potential of microbiome analysis in enhancing coastal water quality monitoring and identifying anthropogenic pollution sources (e.g., pathogenic Vibrio in aquaculture) through the detection of rhythmic microbial variances associated with intertidal groundwater discharge and seawater intrusion.
Collapse
Affiliation(s)
- Ze Zhao
- College of Environmental & Resources Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China; Institute of Advanced Technology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, Zhejiang 310024, China; Center of Synthetic Biology and Integrated Bioengineering, Westlake University, Hangzhou, Zhejiang 310030, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
| | - Lu Zhang
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China; Institute of Advanced Technology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, Zhejiang 310024, China; Center of Synthetic Biology and Integrated Bioengineering, Westlake University, Hangzhou, Zhejiang 310030, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
| | - Guoqing Zhang
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China; Institute of Advanced Technology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, Zhejiang 310024, China; Center of Synthetic Biology and Integrated Bioengineering, Westlake University, Hangzhou, Zhejiang 310030, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
| | - Han Gao
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China; Institute of Advanced Technology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, Zhejiang 310024, China
| | - Xiaogang Chen
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China; Institute of Advanced Technology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, Zhejiang 310024, China
| | - Ling Li
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China; Institute of Advanced Technology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, Zhejiang 310024, China
| | - Feng Ju
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China; Institute of Advanced Technology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, Zhejiang 310024, China; Center of Synthetic Biology and Integrated Bioengineering, Westlake University, Hangzhou, Zhejiang 310030, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
21
|
Fridolfsson E, Bunse C, Lindehoff E, Farnelid H, Pontiller B, Bergström K, Pinhassi J, Legrand C, Hylander S. Multiyear analysis uncovers coordinated seasonality in stocks and composition of the planktonic food web in the Baltic Sea proper. Sci Rep 2023; 13:11865. [PMID: 37481661 PMCID: PMC10363133 DOI: 10.1038/s41598-023-38816-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 07/15/2023] [Indexed: 07/24/2023] Open
Abstract
The planktonic realm from bacteria to zooplankton provides the baseline for pelagic aquatic food webs. However, multiple trophic levels are seldomly included in time series studies, hampering a holistic understanding of the influence of seasonal dynamics and species interactions on food web structure and biogeochemical cycles. Here, we investigated plankton community composition, focusing on bacterio-, phyto- and large mesozooplankton, and how biotic and abiotic factors correlate at the Linnaeus Microbial Observatory (LMO) station in the Baltic Sea from 2011 to 2018. Plankton communities structures showed pronounced dynamic shifts with recurring patterns. Summarizing the parts of the planktonic microbial food web studied here to total carbon, a picture emerges with phytoplankton consistently contributing > 39% while bacterio- and large mesozooplankton contributed ~ 30% and ~ 7%, respectively, during summer. Cyanophyceae, Actinobacteria, Bacteroidetes, and Proteobacteria were important groups among the prokaryotes. Importantly, Dinophyceae, and not Bacillariophyceae, dominated the autotrophic spring bloom whereas Litostomatea (ciliates) and Appendicularia contributed significantly to the consumer entities together with the more traditionally observed mesozooplankton, Copepoda and Cladocera. Our findings of seasonality in both plankton composition and carbon stocks emphasize the importance of time series analyses of food web structure for characterizing the regulation of biogeochemical cycles and appropriately constraining ecosystem models.
Collapse
Affiliation(s)
- Emil Fridolfsson
- Centre for Ecology and Evolution in Microbial Model Systems - EEMiS, Linnaeus University, 39182, Kalmar, Sweden
| | - Carina Bunse
- Centre for Ecology and Evolution in Microbial Model Systems - EEMiS, Linnaeus University, 39182, Kalmar, Sweden
- Department of Marine Sciences, University of Gothenburg, 40530, Gothenburg, Sweden
| | - Elin Lindehoff
- Centre for Ecology and Evolution in Microbial Model Systems - EEMiS, Linnaeus University, 39182, Kalmar, Sweden
| | - Hanna Farnelid
- Centre for Ecology and Evolution in Microbial Model Systems - EEMiS, Linnaeus University, 39182, Kalmar, Sweden
| | - Benjamin Pontiller
- Centre for Ecology and Evolution in Microbial Model Systems - EEMiS, Linnaeus University, 39182, Kalmar, Sweden
- GEOMAR Helmholtz Centre for Ocean Research Kiel, E24105, Kiel, Germany
| | - Kristofer Bergström
- Centre for Ecology and Evolution in Microbial Model Systems - EEMiS, Linnaeus University, 39182, Kalmar, Sweden
| | - Jarone Pinhassi
- Centre for Ecology and Evolution in Microbial Model Systems - EEMiS, Linnaeus University, 39182, Kalmar, Sweden.
| | - Catherine Legrand
- Centre for Ecology and Evolution in Microbial Model Systems - EEMiS, Linnaeus University, 39182, Kalmar, Sweden.
- School of Business, Innovation and Sustainability, Halmstad University, 30118, Halmstad, Sweden.
| | - Samuel Hylander
- Centre for Ecology and Evolution in Microbial Model Systems - EEMiS, Linnaeus University, 39182, Kalmar, Sweden.
| |
Collapse
|
22
|
Šantić D, Stojan I, Matić F, Trumbić Ž, Vrdoljak Tomaš A, Fredotović Ž, Piwosz K, Lepen Pleić I, Šestanović S, Šolić M. Picoplankton diversity in an oligotrophic and high salinity environment in the central Adriatic Sea. Sci Rep 2023; 13:7617. [PMID: 37165047 PMCID: PMC10172355 DOI: 10.1038/s41598-023-34704-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 05/05/2023] [Indexed: 05/12/2023] Open
Abstract
By combining qualitative 16S metabarcoding and quantitative CARD-FISH methods with neural gas analysis, different patterns of the picoplankton community were revealed at finer taxonomic levels in response to changing environmental conditions in the Adriatic Sea. We present the results of a one-year study carried out in an oligotrophic environment where increased salinity was recently observed. We have shown that the initial state of community structure changes according to environmental conditions and is expressed as qualitative and quantitative changes. A general pattern of increasing diversity under harsh environmental conditions, particularly under the influence of increasing salinity at the expense of community abundance was observed. Considering the trend of changing seawater characteristics due to climate change, this study helps in understanding a possible structural change in the microbial community of the Adriatic Sea that could affect higher levels of the marine food web.
Collapse
Affiliation(s)
- Danijela Šantić
- Institute of Oceanography and Fisheries, Šetalište Ivana Meštrovića 63, Split, Croatia
| | - Iva Stojan
- Institute of Oceanography and Fisheries, Šetalište Ivana Meštrovića 63, Split, Croatia.
- Doctoral Study of Biophysics, Faculty of Science, University of Split, Ruđera Boškovića 37, Split, Croatia.
| | - Frano Matić
- University Department of Marine Studies, University of Split, Ruđera Boškovića 37, Split, Croatia
| | - Željka Trumbić
- University Department of Marine Studies, University of Split, Ruđera Boškovića 37, Split, Croatia
| | - Ana Vrdoljak Tomaš
- Institute of Oceanography and Fisheries, Šetalište Ivana Meštrovića 63, Split, Croatia
| | - Željana Fredotović
- Department of Biology, Faculty of Science, University of Split, Ruđera Boškovića 33, Split, Croatia
| | - Kasia Piwosz
- National Marine Fisheries Research Institute, Kołłątaja 1, Gdynia, Poland
| | - Ivana Lepen Pleić
- Institute of Oceanography and Fisheries, Šetalište Ivana Meštrovića 63, Split, Croatia
| | - Stefanija Šestanović
- Institute of Oceanography and Fisheries, Šetalište Ivana Meštrovića 63, Split, Croatia
| | - Mladen Šolić
- Institute of Oceanography and Fisheries, Šetalište Ivana Meštrovića 63, Split, Croatia
| |
Collapse
|
23
|
Abreu CI, Dal Bello M, Bunse C, Pinhassi J, Gore J. Warmer temperatures favor slower-growing bacteria in natural marine communities. SCIENCE ADVANCES 2023; 9:eade8352. [PMID: 37163596 PMCID: PMC10171810 DOI: 10.1126/sciadv.ade8352] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Earth's life-sustaining oceans harbor diverse bacterial communities that display varying composition across time and space. While particular patterns of variation have been linked to a range of factors, unifying rules are lacking, preventing the prediction of future changes. Here, analyzing the distribution of fast- and slow-growing bacteria in ocean datasets spanning seasons, latitude, and depth, we show that higher seawater temperatures universally favor slower-growing taxa, in agreement with theoretical predictions of how temperature-dependent growth rates differentially modulate the impact of mortality on species abundances. Changes in bacterial community structure promoted by temperature are independent of variations in nutrients along spatial and temporal gradients. Our results help explain why slow growers dominate at the ocean surface, during summer, and near the tropics and provide a framework to understand how bacterial communities will change in a warmer world.
Collapse
Affiliation(s)
- Clare I Abreu
- Physics of Living Systems, Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Martina Dal Bello
- Physics of Living Systems, Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Carina Bunse
- Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Jarone Pinhassi
- Centre for Ecology and Evolution of Microbial Model Systems, Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| | - Jeff Gore
- Physics of Living Systems, Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
24
|
Deutschmann IM, Krabberød AK, Latorre F, Delage E, Marrasé C, Balagué V, Gasol JM, Massana R, Eveillard D, Chaffron S, Logares R. Disentangling temporal associations in marine microbial networks. MICROBIOME 2023; 11:83. [PMID: 37081491 PMCID: PMC10120119 DOI: 10.1186/s40168-023-01523-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 03/19/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND Microbial interactions are fundamental for Earth's ecosystem functioning and biogeochemical cycling. Nevertheless, they are challenging to identify and remain barely known. Omics-based censuses are helpful in predicting microbial interactions through the statistical inference of single (static) association networks. Yet, microbial interactions are dynamic and we have limited knowledge of how they change over time. Here, we investigate the dynamics of microbial associations in a 10-year marine time series in the Mediterranean Sea using an approach inferring a time-resolved (temporal) network from a single static network. RESULTS A single static network including microbial eukaryotes and bacteria was built using metabarcoding data derived from 120 monthly samples. For the decade, we aimed to identify persistent, seasonal, and temporary microbial associations by determining a temporal network that captures the interactome of each individual sample. We found that the temporal network appears to follow an annual cycle, collapsing, and reassembling when transiting between colder and warmer waters. We observed higher association repeatability in colder than in warmer months. Only 16 associations could be validated using observations reported in literature, underlining our knowledge gap in marine microbial ecological interactions. CONCLUSIONS Our results indicate that marine microbial associations follow recurrent temporal dynamics in temperate zones, which need to be accounted for to better understand the functioning of the ocean microbiome. The constructed marine temporal network may serve as a resource for testing season-specific microbial interaction hypotheses. The applied approach can be transferred to microbiome studies in other ecosystems. Video Abstract.
Collapse
Affiliation(s)
- Ina Maria Deutschmann
- Institute of Marine Sciences (ICM), CSIC, Passeig Marítim de La Barceloneta, 37-49, 08003, Barcelona, Spain.
| | - Anders K Krabberød
- Department of Biosciences/Section for Genetics and Evolutionary Biology (EVOGENE), University of Oslo, p.b. 1066 Blindern, N-0316, Oslo, Norway
| | - Francisco Latorre
- Institute of Marine Sciences (ICM), CSIC, Passeig Marítim de La Barceloneta, 37-49, 08003, Barcelona, Spain
| | - Erwan Delage
- Nantes Université, École Centrale Nantes, CNRS, LS2N, UMR 6004, F-44000, Nantes, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, F-75016, Paris, France
| | - Cèlia Marrasé
- Institute of Marine Sciences (ICM), CSIC, Passeig Marítim de La Barceloneta, 37-49, 08003, Barcelona, Spain
| | - Vanessa Balagué
- Institute of Marine Sciences (ICM), CSIC, Passeig Marítim de La Barceloneta, 37-49, 08003, Barcelona, Spain
| | - Josep M Gasol
- Institute of Marine Sciences (ICM), CSIC, Passeig Marítim de La Barceloneta, 37-49, 08003, Barcelona, Spain
| | - Ramon Massana
- Institute of Marine Sciences (ICM), CSIC, Passeig Marítim de La Barceloneta, 37-49, 08003, Barcelona, Spain
| | - Damien Eveillard
- Nantes Université, École Centrale Nantes, CNRS, LS2N, UMR 6004, F-44000, Nantes, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, F-75016, Paris, France
| | - Samuel Chaffron
- Nantes Université, École Centrale Nantes, CNRS, LS2N, UMR 6004, F-44000, Nantes, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, F-75016, Paris, France
| | - Ramiro Logares
- Institute of Marine Sciences (ICM), CSIC, Passeig Marítim de La Barceloneta, 37-49, 08003, Barcelona, Spain.
| |
Collapse
|
25
|
Zhang Z, Li J, Li H, Wang L, Zhou Y, Li S, Zhang Z, Feng K, Deng Y. Environmental DNA metabarcoding reveals the influence of human activities on microeukaryotic plankton along the Chinese coastline. WATER RESEARCH 2023; 233:119730. [PMID: 36801577 DOI: 10.1016/j.watres.2023.119730] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/04/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
Microeukaryotic plankton, with its extremely diverse taxa, is a key component in both the marine food web and biogeochemical cycling. Coastal seas, which are home to the numerous microeukaryotic plankton that underpin the functions of these aquatic ecosystems, are often impacted by human activities. However, understanding the biogeographical patterns of diversity and community structure of microeukaryotic plankton and the role that major shaping factors play at the continent scale is still a challenge in coastal ecology. Here, the biogeographic patterns of biodiversity, community structure, and co-occurrence patterns were investigated by environmental DNA (eDNA) based approaches. Unlike most eDNA studies, we combined several methods (in silico PCR, mock and environmental communities) to systematically evaluate the specificity and coverage of primers to overcome the limitation of marker selection on biodiversity recovery. The 1380F/1510R primer set showed the best performance for the amplification of coastal plankton with the highest coverage, sensitivity, and resolution. We showed a unimodal pattern for planktonic alpha diversity with latitude (P < 0.001), and nutrient-related factors (NO3N, NO2N, and NH4N) were the leading predictors for spatial patterning. Significant regional biogeographic patterns and potential drivers for planktonic communities were found across coastal regions. All communities generally fitted the regional distance-decay relationship (DDR) model with the strongest spatial turnover rate was found in the Yalujiang (YLJ) estuary (P < 0.001). The environmental factors, especially inorganic nitrogen and heavy metals (HMs), had the greatest impact on planktonic community similarity in the Beibu Bay (BB) and East China Sea (ECS). Furthermore, we observed spatial plankton co-occurrence patterns, and the networked topology and structure were strongly driven by potential anthropogenic activity factors (nutrients and HMs). Overall, our study provided a systematic approach for metabarcode primer selection in eDNA-based biodiversity monitoring and revealed that the spatial pattern of the microeukaryotic plankton community was mainly controlled by regional human activity-related factors.
Collapse
Affiliation(s)
- Zheng Zhang
- CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Institute of Marine Science and Technology, Shandong University, Qingdao 266237, China
| | - Jiang Li
- Marine Bioresource and Environment Research Center, First Institute of Oceanography, Ministry of Natural Resources; Key Laboratory of Ecological Environment Science and Technology, Ministry of Natural Resources, Qingdao, China, 266061.
| | - Hongjun Li
- State Environmental Protection Key Laboratory of Coastal Ecosystem, National Marine Environmental Monitoring Center, Dalian, 116023, China
| | - Linlin Wang
- CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Institute of Marine Science and Technology, Shandong University, Qingdao 266237, China
| | - Yuqi Zhou
- Institute of Soil and Water Resources and Environmental Science College of Environmental and Natural Resource Sciences, Zhejiang University, China
| | - Shuzhen Li
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Zhaojing Zhang
- Institute of Marine Science and Technology, Shandong University, Qingdao 266237, China
| | - Kai Feng
- CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Ye Deng
- CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China; Institute of Marine Science and Technology, Shandong University, Qingdao 266237, China.
| |
Collapse
|
26
|
Rizos I, Debeljak P, Finet T, Klein D, Ayata SD, Not F, Bittner L. Beyond the limits of the unassigned protist microbiome: inferring large-scale spatio-temporal patterns of Syndiniales marine parasites. ISME COMMUNICATIONS 2023; 3:16. [PMID: 36854980 PMCID: PMC9975217 DOI: 10.1038/s43705-022-00203-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 03/02/2023]
Abstract
Marine protists are major components of the oceanic microbiome that remain largely unrepresented in culture collections and genomic reference databases. The exploration of this uncharted protist diversity in oceanic communities relies essentially on studying genetic markers from the environment as taxonomic barcodes. Here we report that across 6 large scale spatio-temporal planktonic surveys, half of the genetic barcodes remain taxonomically unassigned at the genus level, preventing a fine ecological understanding for numerous protist lineages. Among them, parasitic Syndiniales (Dinoflagellata) appear as the least described protist group. We have developed a computational workflow, integrating diverse 18S rDNA gene metabarcoding datasets, in order to infer large-scale ecological patterns at 100% similarity of the genetic marker, overcoming the limitation of taxonomic assignment. From a spatial perspective, we identified 2171 unassigned clusters, i.e., Syndiniales sequences with 100% similarity, exclusively shared between the Tropical/Subtropical Ocean and the Mediterranean Sea among all Syndiniales orders and 25 ubiquitous clusters shared within all the studied marine regions. From a temporal perspective, over 3 time-series, we highlighted 39 unassigned clusters that follow rhythmic patterns of recurrence and are the best indicators of parasite community's variation. These clusters withhold potential as ecosystem change indicators, mirroring their associated host community responses. Our results underline the importance of Syndiniales in structuring planktonic communities through space and time, raising questions regarding host-parasite association specificity and the trophic mode of persistent Syndiniales, while providing an innovative framework for prioritizing unassigned protist taxa for further description.
Collapse
Affiliation(s)
- Iris Rizos
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, Paris, France.
- Sorbonne Université, CNRS, AD2M-UMR7144 Station Biologique de Roscoff, 29680, Roscoff, France.
| | - Pavla Debeljak
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, Paris, France
| | - Thomas Finet
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, Paris, France
| | - Dylan Klein
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, Paris, France
| | - Sakina-Dorothée Ayata
- Sorbonne Université, Laboratoire d'Océanographie et du Climat: Expérimentation et Analyses Numériques (LOCEAN, SU/CNRS/IRD/MNHN), 75252, Paris Cedex 05, France
| | - Fabrice Not
- Sorbonne Université, CNRS, AD2M-UMR7144 Station Biologique de Roscoff, 29680, Roscoff, France
| | - Lucie Bittner
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, Paris, France
- Institut Universitaire de France, Paris, France
| |
Collapse
|
27
|
Häfker NS, Andreatta G, Manzotti A, Falciatore A, Raible F, Tessmar-Raible K. Rhythms and Clocks in Marine Organisms. ANNUAL REVIEW OF MARINE SCIENCE 2023; 15:509-538. [PMID: 36028229 DOI: 10.1146/annurev-marine-030422-113038] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The regular movements of waves and tides are obvious representations of the oceans' rhythmicity. But the rhythms of marine life span across ecological niches and timescales, including short (in the range of hours) and long (in the range of days and months) periods. These rhythms regulate the physiology and behavior of individuals, as well as their interactions with each other and with the environment. This review highlights examples of rhythmicity in marine animals and algae that represent important groups of marine life across different habitats. The examples cover ecologically highly relevant species and a growing number of laboratory model systems that are used to disentangle key mechanistic principles. The review introduces fundamental concepts of chronobiology, such as the distinction between rhythmic and endogenous oscillator-driven processes. It also addresses the relevance of studying diverse rhythms and oscillators, as well as their interconnection, for making better predictions of how species will respond to environmental perturbations, including climate change. As the review aims to address scientists from the diverse fields of marine biology, ecology, and molecular chronobiology, all of which have their own scientific terms, we provide definitions of key terms throughout the article.
Collapse
Affiliation(s)
- N Sören Häfker
- Max Perutz Labs, University of Vienna, Vienna BioCenter, Vienna, Austria; ,
- Research Platform "Rhythms of Life," University of Vienna, Vienna BioCenter, Vienna, Austria
| | - Gabriele Andreatta
- Max Perutz Labs, University of Vienna, Vienna BioCenter, Vienna, Austria; ,
- Research Platform "Rhythms of Life," University of Vienna, Vienna BioCenter, Vienna, Austria
| | - Alessandro Manzotti
- Laboratoire de Biologie du Chloroplaste et Perception de la Lumière chez les Microalgues, UMR 7141, CNRS, Sorbonne Université, Institut de Biologie Physico-Chimique, Paris, France;
| | - Angela Falciatore
- Laboratoire de Biologie du Chloroplaste et Perception de la Lumière chez les Microalgues, UMR 7141, CNRS, Sorbonne Université, Institut de Biologie Physico-Chimique, Paris, France;
| | - Florian Raible
- Max Perutz Labs, University of Vienna, Vienna BioCenter, Vienna, Austria; ,
- Research Platform "Rhythms of Life," University of Vienna, Vienna BioCenter, Vienna, Austria
| | - Kristin Tessmar-Raible
- Max Perutz Labs, University of Vienna, Vienna BioCenter, Vienna, Austria; ,
- Research Platform "Rhythms of Life," University of Vienna, Vienna BioCenter, Vienna, Austria
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
- Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
28
|
Conan P, Philip L, Ortega-Retuerta E, Odobel C, Duran C, Pandin C, Giraud C, Meistertzheim AL, Barbe V, Ter Hall A, Pujo-Pay M, Ghiglione JF. Evidence of coupled autotrophy and heterotrophy on plastic biofilms and its influence on surrounding seawater. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 315:120463. [PMID: 36272613 DOI: 10.1016/j.envpol.2022.120463] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/22/2022] [Accepted: 10/15/2022] [Indexed: 06/16/2023]
Abstract
We measured phytoplankton primary production and heterotrophic bacterial activities on microplastics and seawater in the Northwestern Mediterranean Sea during two 3-month spring periods over 2 consecutive years. Microorganisms growing on a 5 mm diameter low density polyethylene films (LDPE; 200 μm thick) faced two contrasting conditions depending on the year. Spring 2018 was characterized by consistent nutrient inputs and bloom development. In spring 2019, nutrient inputs and bloom were low. For the first time, we observed a clear coupling between primary production and heterotrophic prokaryote production on microplastics during both years, but with different intensity between years that reflected the crucial role of the trophic environmental conditions (nutrient supply) in shaping microbial activities on plastics. We found that high primary production on plastics could support the whole (net autotrophy) or the majority of the bacterial carbon demand needed for heterotrophic activities, supplemented by other carbon sources if surrounding waters are highly productive. We propose that microbial activity on plastics influences the microbial community in the surrounding seawater, especially when the environmental conditions are less favorable. An illustrative image of the role of plastics in the environment could be that of an inverter in an electrical circuit that mitigates both positive and negative variations. Our results highlight the potential role of the plastisphere in shaping biogeochemical cycles in the context of increasing amounts of plastic particles in the marine environment.
Collapse
Affiliation(s)
- Pascal Conan
- Sorbonne Université, CNRS LOMIC - UMR 7621, Laboratoire d'Océanographie Microbienne, 1 Avenue Pierre Fabre, 66650, Banyuls sur Mer, France; Sorbonne Université, CNRS OSU STAMAR - UAR2017, 4 Place Jussieu, 75252, Paris cedex 05, France.
| | - Léna Philip
- Sorbonne Université, CNRS LOMIC - UMR 7621, Laboratoire d'Océanographie Microbienne, 1 Avenue Pierre Fabre, 66650, Banyuls sur Mer, France; SAS Plastic@Sea, Sorbonne Université (UPMC), CNRS LOMIC - UMR 7621, Laboratoire d'Océanographie Microbienne, 1 Avenue Pierre Fabre, 66650, Banyuls sur Mer, France
| | - Eva Ortega-Retuerta
- Sorbonne Université, CNRS LOMIC - UMR 7621, Laboratoire d'Océanographie Microbienne, 1 Avenue Pierre Fabre, 66650, Banyuls sur Mer, France
| | - Charlène Odobel
- Sorbonne Université, CNRS LOMIC - UMR 7621, Laboratoire d'Océanographie Microbienne, 1 Avenue Pierre Fabre, 66650, Banyuls sur Mer, France
| | - Clélia Duran
- Sorbonne Université, CNRS LOMIC - UMR 7621, Laboratoire d'Océanographie Microbienne, 1 Avenue Pierre Fabre, 66650, Banyuls sur Mer, France
| | - Caroline Pandin
- Sorbonne Université, CNRS LOMIC - UMR 7621, Laboratoire d'Océanographie Microbienne, 1 Avenue Pierre Fabre, 66650, Banyuls sur Mer, France
| | - Carolane Giraud
- Sorbonne Université, CNRS LOMIC - UMR 7621, Laboratoire d'Océanographie Microbienne, 1 Avenue Pierre Fabre, 66650, Banyuls sur Mer, France; CNRS, UMR 9220 ENTROPIE, Ifremer (LEAD-NC), IRD, Univ Nouvelle-Calédonie, Univ La Réunion, Nouméa, New Caledonia
| | - Anne-Leila Meistertzheim
- SAS Plastic@Sea, Sorbonne Université (UPMC), CNRS LOMIC - UMR 7621, Laboratoire d'Océanographie Microbienne, 1 Avenue Pierre Fabre, 66650, Banyuls sur Mer, France
| | - Valérie Barbe
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057, Evry, France
| | - Alexandra Ter Hall
- CNRS, Université de Toulouse, Laboratoire des Interactions Moléculaires et Réactivité Chimique et Photochimique (IMRCP), UMR, 5623, Toulouse, France
| | - Mireille Pujo-Pay
- Sorbonne Université, CNRS LOMIC - UMR 7621, Laboratoire d'Océanographie Microbienne, 1 Avenue Pierre Fabre, 66650, Banyuls sur Mer, France
| | - Jean-François Ghiglione
- Sorbonne Université, CNRS LOMIC - UMR 7621, Laboratoire d'Océanographie Microbienne, 1 Avenue Pierre Fabre, 66650, Banyuls sur Mer, France
| |
Collapse
|
29
|
Pinhassi J, Farnelid H, García SM, Teira E, Galand PE, Obernosterer I, Quince C, Vila-Costa M, Gasol JM, Lundin D, Andersson AF, Labrenz M, Riemann L. Functional responses of key marine bacteria to environmental change - toward genetic counselling for coastal waters. Front Microbiol 2022; 13:869093. [PMID: 36532459 PMCID: PMC9751014 DOI: 10.3389/fmicb.2022.869093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 11/11/2022] [Indexed: 10/31/2024] Open
Abstract
Coastal ecosystems deteriorate globally due to human-induced stress factors, like nutrient loading and pollution. Bacteria are critical to marine ecosystems, e.g., by regulating nutrient cycles, synthesizing vitamins, or degrading pollutants, thereby providing essential ecosystem services ultimately affecting economic activities. Yet, until now bacteria are overlooked both as mediators and indicators of ecosystem health, mainly due to methodological limitations in assessing bacterial ecosystem functions. However, these limitations are largely overcome by the advances in molecular biology and bioinformatics methods for characterizing the genetics that underlie functional traits of key bacterial populations - "key" in providing important ecosystem services, being abundant, or by possessing high metabolic rates. It is therefore timely to analyze and define the functional responses of bacteria to human-induced effects on coastal ecosystem health. We posit that categorizing the responses of key marine bacterial populations to changes in environmental conditions through modern microbial oceanography methods will allow establishing the nascent field of genetic counselling for our coastal waters. This requires systematic field studies of linkages between functional traits of key bacterial populations and their ecosystem functions in coastal seas, complemented with systematic experimental analyses of the responses to different stressors. Research and training in environmental management along with dissemination of results and dialogue with societal actors are equally important to ensure the role of bacteria is understood as fundamentally important for coastal ecosystems. Using the responses of microorganisms as a tool to develop genetic counselling for coastal ecosystems can ultimately allow for integrating bacteria as indicators of environmental change.
Collapse
Affiliation(s)
- Jarone Pinhassi
- Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, Kalmar, Sweden
| | - Hanna Farnelid
- Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, Kalmar, Sweden
| | - Sandra Martínez García
- Departamento de Ecoloxía e Bioloxía Animal, Centro de Investigación Mariña, Universidade de Vigo, Vigo, Spain
| | - Eva Teira
- Departamento de Ecoloxía e Bioloxía Animal, Centro de Investigación Mariña, Universidade de Vigo, Vigo, Spain
| | - Pierre E. Galand
- CNRS, Laboratoire d’Ecogéochimie des Environnements Benthiques (LECOB), Sorbonne Université, Banyuls-sur-Mer, France
| | - Ingrid Obernosterer
- CNRS, Laboratoire d’Océanographie Microbienne (LOMIC), Sorbonne Université, Banyuls-sur-Mer, France
| | | | | | | | - Daniel Lundin
- Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, Kalmar, Sweden
| | - Anders F. Andersson
- Department of Gene Technology, Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
| | | | - Lasse Riemann
- Marine Biology Section, Department of Biology, University of Copenhagen, Helsingør, Denmark
| |
Collapse
|
30
|
Da Silva O, Ayata SD, Ser-Giacomi E, Leconte J, Pelletier E, Fauvelot C, Madoui MA, Guidi L, Lombard F, Bittner L. Genomic differentiation of three pico-phytoplankton species in the Mediterranean Sea. Environ Microbiol 2022; 24:6086-6099. [PMID: 36053818 PMCID: PMC10087736 DOI: 10.1111/1462-2920.16171] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 08/09/2022] [Indexed: 01/12/2023]
Abstract
For more than a decade, high-throughput sequencing has transformed the study of marine planktonic communities and has highlighted the extent of protist diversity in these ecosystems. Nevertheless, little is known relative to their genomic diversity at the species-scale as well as their major speciation mechanisms. An increasing number of data obtained from global scale sampling campaigns is becoming publicly available, and we postulate that metagenomic data could contribute to deciphering the processes shaping protist genomic differentiation in the marine realm. As a proof of concept, we developed a findable, accessible, interoperable and reusable (FAIR) pipeline and focused on the Mediterranean Sea to study three a priori abundant protist species: Bathycoccus prasinos, Pelagomonas calceolata and Phaeocystis cordata. We compared the genomic differentiation of each species in light of geographic, environmental and oceanographic distances. We highlighted that isolation-by-environment shapes the genomic differentiation of B. prasinos, whereas P. cordata is impacted by geographic distance (i.e. isolation-by-distance). At present time, the use of metagenomics to accurately estimate the genomic differentiation of protists remains challenging since coverages are lower compared to traditional population surveys. However, our approach sheds light on ecological and evolutionary processes occurring within natural marine populations and paves the way for future protist population metagenomic studies.
Collapse
Affiliation(s)
- Ophélie Da Silva
- Sorbonne Université, CNRS, Laboratoire d'Océanographie de Villefranche, LOV, Villefranche-sur-Mer, France.,Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, Paris, France
| | - Sakina-Dorothée Ayata
- Sorbonne Université, CNRS, Laboratoire d'Océanographie de Villefranche, LOV, Villefranche-sur-Mer, France.,Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, Paris, France.,Sorbonne Université, UMR 7159 CNRS-IRD-MNHN, LOCEAN-IPSL, Paris, France
| | - Enrico Ser-Giacomi
- Sorbonne Université, UMR 7159 CNRS-IRD-MNHN, LOCEAN-IPSL, Paris, France.,Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Jade Leconte
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | - Eric Pelletier
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France.,Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, Paris, France
| | - Cécile Fauvelot
- Sorbonne Université, CNRS, Laboratoire d'Océanographie de Villefranche, LOV, Villefranche-sur-Mer, France.,Institut de Recherche pour le Développement (IRD), UMR ENTROPIE, Nouméa, New Caledonia
| | - Mohammed-Amin Madoui
- Service d'Etude des Prions et des Infections Atypiques (SEPIA), Institut François Jacob, Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Université Paris Saclay, Fontenay-aux-Roses, France
| | - Lionel Guidi
- Sorbonne Université, CNRS, Laboratoire d'Océanographie de Villefranche, LOV, Villefranche-sur-Mer, France.,Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, Paris, France
| | - Fabien Lombard
- Sorbonne Université, CNRS, Laboratoire d'Océanographie de Villefranche, LOV, Villefranche-sur-Mer, France.,Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, Paris, France.,Institut Universitaire de France (IUF), Paris, France
| | - Lucie Bittner
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, Paris, France.,Institut Universitaire de France (IUF), Paris, France
| |
Collapse
|
31
|
Garate L, Alonso‐Sáez L, Revilla M, Logares R, Lanzén A. Shared and contrasting associations in the dynamic nano- and picoplankton communities of two close but contrasting sites from the Bay of Biscay. Environ Microbiol 2022; 24:6052-6070. [PMID: 36054533 PMCID: PMC10087561 DOI: 10.1111/1462-2920.16153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 07/30/2022] [Indexed: 01/12/2023]
Abstract
Pico- and nanoplankton are key players in the marine ecosystems due to their implication in the biogeochemical cycles, nutrient recycling and the pelagic food webs. However, the specific dynamics and niches of most bacterial, archaeal and eukaryotic plankton remain unknown, as well as the interactions between them. Better characterization of these is critical for understanding and predicting ecosystem functioning under anthropogenic pressures. We used environmental DNA metabarcoding across a 6-year time series to explore the structure and seasonality of pico- and nanoplankton communities in two sites of the Bay of Biscay, one coastal and one offshore, and construct association networks to reveal potential keystone and connector taxa. Temporal trends in alpha diversity were similar between the two sites, and concurrent communities more similar than within the same site at different times. However, we found differences between the network topologies of the two sites, with both shared and site-specific keystones and connectors. For example, Micromonas, with lower abundance in the offshore site is a keystone here, indicating a stronger effect of associations such as resource competition. This study provides an example of how time series and association network analysis can reveal how similar communities may function differently despite being geographically close.
Collapse
Affiliation(s)
- Leire Garate
- AZTI, Marine ResearchBasque Research and Technology Alliance (BRTA)PasaiaSpain
| | - Laura Alonso‐Sáez
- AZTI, Marine ResearchBasque Research and Technology Alliance (BRTA)PasaiaSpain
| | - Marta Revilla
- AZTI, Marine ResearchBasque Research and Technology Alliance (BRTA)PasaiaSpain
| | - Ramiro Logares
- Institute of Marine Sciences (ICM)CSICBarcelonaCataloniaSpain
| | - Anders Lanzén
- AZTI, Marine ResearchBasque Research and Technology Alliance (BRTA)PasaiaSpain
- IKERBASQUEBasque Foundation for ScienceBilbaoBizkaiaSpain
| |
Collapse
|
32
|
Vaulot D, Sim CWH, Ong D, Teo B, Biwer C, Jamy M, Lopes dos Santos A. metaPR 2 : A database of eukaryotic 18S rRNA metabarcodes with an emphasis on protists. Mol Ecol Resour 2022; 22:3188-3201. [PMID: 35762265 PMCID: PMC9796713 DOI: 10.1111/1755-0998.13674] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 05/26/2022] [Accepted: 06/20/2022] [Indexed: 01/07/2023]
Abstract
In recent years, metabarcoding has become the method of choice for investigating the composition and assembly of microbial eukaryotic communities. The number of environmental data sets published has increased very rapidly. Although unprocessed sequence files are often publicly available, processed data, in particular clustered sequences, are rarely available in a usable format. Clustered sequences are reported as operational taxonomic units (OTUs) with different similarity levels or more recently as amplicon sequence variants (ASVs). This hampers comparative studies between different environments and data sets, for example examining the biogeographical patterns of specific groups/species, as well analysing the genetic microdiversity within these groups. Here, we present a newly-assembled database of processed 18S rRNA metabarcodes that are annotated with the PR2 reference sequence database. This database, called metaPR2 , contains 41 data sets corresponding to more than 4000 samples and 90,000 ASVs. The database, which is accessible through both a web-based interface (https://shiny.metapr2.org) and an R package, should prove very useful to all researchers working on protist diversity in a variety of systems.
Collapse
Affiliation(s)
- Daniel Vaulot
- UMR 7144, ECOMAP, CNRSSorbonne Université, Station Biologique de RoscoffRoscoffFrance
| | | | - Denise Ong
- Asian School of the EnvironmentNanyang Technological UniversitySingapore
| | - Bryan Teo
- Asian School of the EnvironmentNanyang Technological UniversitySingapore
| | - Charlie Biwer
- Department of Organismal Biology (Systematic Biology)Uppsala UniversityUppsalaSweden
| | - Mahwash Jamy
- Department of Organismal Biology (Systematic Biology)Uppsala UniversityUppsalaSweden
| | | |
Collapse
|
33
|
Debroas D, Hochart C, Galand PE. Seasonal microbial dynamics in the ocean inferred from assembled and unassembled data: a view on the unknown biosphere. ISME COMMUNICATIONS 2022; 2:87. [PMID: 37938749 PMCID: PMC9723795 DOI: 10.1038/s43705-022-00167-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 08/23/2022] [Accepted: 09/02/2022] [Indexed: 11/09/2023]
Abstract
In environmental metagenomic experiments, a very high proportion of the microbial sequencing data (> 70%) remains largely unexploited because rare and closely related genomes are missed in short-read assemblies. The identity and the potential metabolisms of a large fraction of natural microbial communities thus remain inaccessible to researchers. The purpose of this study was to explore the genomic content of unassembled metagenomic data and test their level of novelty. We used data from a three-year microbial metagenomic time series of the NW Mediterranean Sea, and conducted reference-free and database-guided analysis. The results revealed a significant genomic difference between the assembled and unassembled reads. The unassembled reads had a lower mean identity against public databases, and fewer metabolic pathways could be reconstructed. In addition, the unassembled fraction presented a clear temporal pattern, unlike the assembled ones, and a specific community composition that was similar to the rare communities defined by metabarcoding using the 16S rRNA gene. The rare gene pool was characterised by keystone bacterial taxa, and the presence of viruses, suggesting that viral lysis could maintain some taxa in a state of rarity. Our study demonstrates that unassembled metagenomic data can provide important information on the structure and functioning of microbial communities.
Collapse
Affiliation(s)
- Didier Debroas
- Université Clermont Auvergne, CNRS, Laboratoire Microorganismes: Genome et Environnement, 63000, Clermont-Ferrand, France.
| | - Corentin Hochart
- Sorbonne Universités, CNRS, Laboratoire d'Ecogéochimie des Environnements Benthiques (LECOB), Observatoire Océanologique de Banyuls, Banyuls sur Mer, France
| | - Pierre E Galand
- Sorbonne Universités, CNRS, Laboratoire d'Ecogéochimie des Environnements Benthiques (LECOB), Observatoire Océanologique de Banyuls, Banyuls sur Mer, France
| |
Collapse
|
34
|
Seasonal Succession and Temperature Response Pattern of a Microbial Community in the Yellow Sea Cold Water Mass. Appl Environ Microbiol 2022; 88:e0116922. [PMID: 36000863 PMCID: PMC9469719 DOI: 10.1128/aem.01169-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Explaining the temporal dynamics of marine microorganisms is critical for predicting their changing pattern under environmental disturbances. Although the effect of temperature on microbial seasonality has been widely studied, the phylogenetic structure of the temperature response pattern and the extent to which temperature shift leads to disruptive community changes are still unclear. Here, we explored the microbial seasonal dynamics in the Yellow Sea Cold Water Mass (YSCWM) that occurs in summer and disappears in winter and tested the temperature thresholds and phylogenetic coherence in response to temperature change. The existence of YSCWM generates strong temperature gradients in summer and confers little temperature change during seasonal transition, thus representing a unique intermediate state. The microbial community of YSCWM is more similar to that in the previous YSCWM in winter than that outside YSCWM. Temperature alone explains >50% of the community variation, suggesting that a temperature shift can induce a nearly seasonality-level community variance in summer. Persistence of most previous winter YSCWM inhabitants in YSCWM leads to conservation in predicted functional potentials and cooccurrence patterns, indicating a decisive role of temperature in maintaining functionality. Evaluation of the temperature threshold reveals that a small temperature change can lead to significant community turnover, with most taxa negatively responding to an elevation in temperature. The temperature response pattern is phylogenetically structured, and closely related taxa show an incohesive response. Our study provides novel insights into microbial seasonality and into how marine microorganisms respond to temperature fluctuations. IMPORTANCE Microbial seasonality is driven by a set of covarying factors including temperature. There is still a lack of understanding of the details of the phylogenetic structure and susceptibility of microbial communities in response to temperature variation. Through examination of the microbial community in a seasonally occurring summer cold water mass, which experiences little temperature change during seasonal transition, we show here that the cold water mass leads to nearly seasonality-level variations in community composition and predicted functional profile in summer. Moreover, massive community turnover occurs within a small temperature shift, with most taxa decreasing in abundance in response to increased temperature, and contrasting response patterns are observed between phylogenetically closely related taxa. These results suggest temperature as the fundamental factor over other covarying factors in structuring microbial seasonality, providing important insights into the variation mode of the microbial community under temperature disturbances.
Collapse
|
35
|
Raes EJ, Tolman J, Desai D, Ratten JM, Zorz J, Robicheau BM, Haider D, LaRoche J. Seasonal bacterial niche structures and chemolithoautotrophic ecotypes in a North Atlantic fjord. Sci Rep 2022; 12:15335. [PMID: 36097189 PMCID: PMC9468339 DOI: 10.1038/s41598-022-19165-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 08/25/2022] [Indexed: 11/27/2022] Open
Abstract
Quantifying the temporal change of bacterial communities is essential to understanding how both natural and anthropogenic pressures impact the functions of coastal marine ecosystems. Here we use weekly microbial DNA sampling across four years to show that bacterial phyla have distinct seasonal niches, with a richness peak in winter (i.e., an inverse relationship with daylength). Our results suggest that seasonal fluctuations, rather than the kinetic energy or resource hypotheses, dominated the pattern of bacterial diversity. These findings supplement those from global analyses which lack temporal replication and present few data from winter months in polar and temperate regions. Centered log-ratio transformed data provided new insights into the seasonal niche partitioning of conditionally rare phyla, such as Modulibacteria, Verrucomicrobiota, Synergistota, Deinococcota, and Fermentibacterota. These patterns could not be identified using the standard practice of ASV generation followed by rarefaction. Our study provides evidence that five globally relevant ecotypes of chemolithoautotrophic bacteria from the SUP05 lineage comprise a significant functional group with varying seasonal dominance patterns in the Bedford Basin.
Collapse
Affiliation(s)
- Eric J Raes
- Department of Biology, Dalhousie University, Halifax, NS, B3H 4R2, Canada.
- Flourishing Oceans, Minderoo Foundation, Broadway, WA, 6009, Australia.
| | - Jennifer Tolman
- Department of Biology, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Dhwani Desai
- Department of Biology, Dalhousie University, Halifax, NS, B3H 4R2, Canada
- Department of Pharmacology, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Jenni-Marie Ratten
- Department of Biology, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Jackie Zorz
- Department of Geoscience, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Brent M Robicheau
- Department of Biology, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Diana Haider
- Department of Biology, Dalhousie University, Halifax, NS, B3H 4R2, Canada
- Faculty of Computer Science, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Julie LaRoche
- Department of Biology, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| |
Collapse
|
36
|
Krabberød AK, Deutschmann IM, Bjorbækmo MFM, Balagué V, Giner CR, Ferrera I, Garcés E, Massana R, Gasol JM, Logares R. Long-term patterns of an interconnected core marine microbiota. ENVIRONMENTAL MICROBIOME 2022; 17:22. [PMID: 35526063 PMCID: PMC9080219 DOI: 10.1186/s40793-022-00417-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 04/20/2022] [Indexed: 05/05/2023]
Abstract
BACKGROUND Ocean microbes constitute ~ 70% of the marine biomass, are responsible for ~ 50% of the Earth's primary production and are crucial for global biogeochemical cycles. Marine microbiotas include core taxa that are usually key for ecosystem function. Despite their importance, core marine microbes are relatively unknown, which reflects the lack of consensus on how to identify them. So far, most core microbiotas have been defined based on species occurrence and abundance. Yet, species interactions are also important to identify core microbes, as communities include interacting species. Here, we investigate interconnected bacteria and small protists of the core pelagic microbiota populating a long-term marine-coastal observatory in the Mediterranean Sea over a decade. RESULTS Core microbes were defined as those present in > 30% of the monthly samples over 10 years, with the strongest associations. The core microbiota included 259 Operational Taxonomic Units (OTUs) including 182 bacteria, 77 protists, and 1411 strong and mostly positive (~ 95%) associations. Core bacteria tended to be associated with other bacteria, while core protists tended to be associated with bacteria. The richness and abundance of core OTUs varied annually, decreasing in stratified warmers waters and increasing in colder mixed waters. Most core OTUs had a preference for one season, mostly winter, which featured subnetworks with the highest connectivity. Groups of highly associated taxa tended to include protists and bacteria with predominance in the same season, particularly winter. A group of 13 highly-connected hub-OTUs, with potentially important ecological roles dominated in winter and spring. Similarly, 18 connector OTUs with a low degree but high centrality were mostly associated with summer or autumn and may represent transitions between seasonal communities. CONCLUSIONS We found a relatively small and dynamic interconnected core microbiota in a model temperate marine-coastal site, with potential interactions being more deterministic in winter than in other seasons. These core microbes would be essential for the functioning of this ecosystem over the year. Other non-core taxa may also carry out important functions but would be redundant and non-essential. Our work contributes to the understanding of the dynamics and potential interactions of core microbes possibly sustaining ocean ecosystem function.
Collapse
Affiliation(s)
- Anders K Krabberød
- Department of Biosciences, Section for Genetics and Evolutionary Biology (Evogene), University of Oslo, Blindernv. 31, 0316, Oslo, Norway.
| | - Ina M Deutschmann
- Institute of Marine Sciences (ICM), CSIC, Passeig Marítim de la Barceloneta, 37-49, 08003, Barcelona, Spain
| | - Marit F M Bjorbækmo
- Department of Biosciences, Section for Genetics and Evolutionary Biology (Evogene), University of Oslo, Blindernv. 31, 0316, Oslo, Norway
| | - Vanessa Balagué
- Institute of Marine Sciences (ICM), CSIC, Passeig Marítim de la Barceloneta, 37-49, 08003, Barcelona, Spain
| | - Caterina R Giner
- Institute of Marine Sciences (ICM), CSIC, Passeig Marítim de la Barceloneta, 37-49, 08003, Barcelona, Spain
| | - Isabel Ferrera
- Institute of Marine Sciences (ICM), CSIC, Passeig Marítim de la Barceloneta, 37-49, 08003, Barcelona, Spain
- Centro Oceanográfico de Málaga, Instituto Español de Oceanografía, IEO-CSIC, 29640, Fuengirola, Málaga, Spain
| | - Esther Garcés
- Institute of Marine Sciences (ICM), CSIC, Passeig Marítim de la Barceloneta, 37-49, 08003, Barcelona, Spain
| | - Ramon Massana
- Institute of Marine Sciences (ICM), CSIC, Passeig Marítim de la Barceloneta, 37-49, 08003, Barcelona, Spain
| | - Josep M Gasol
- Institute of Marine Sciences (ICM), CSIC, Passeig Marítim de la Barceloneta, 37-49, 08003, Barcelona, Spain
- Centre for Marine Ecosystems Research, School of Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Ramiro Logares
- Department of Biosciences, Section for Genetics and Evolutionary Biology (Evogene), University of Oslo, Blindernv. 31, 0316, Oslo, Norway.
- Institute of Marine Sciences (ICM), CSIC, Passeig Marítim de la Barceloneta, 37-49, 08003, Barcelona, Spain.
| |
Collapse
|
37
|
Scheifler M, Sanchez-Brosseau S, Magnanou E, Desdevises Y. Diversity and structure of sparids external microbiota (Teleostei) and its link with monogenean ectoparasites. Anim Microbiome 2022; 4:27. [PMID: 35418308 PMCID: PMC9009028 DOI: 10.1186/s42523-022-00180-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 04/03/2022] [Indexed: 12/31/2022] Open
Abstract
Background Animal-associated microbial communities appear to be key factors in host physiology, ecology, evolution and its interactions with the surrounding environment. Teleost fish have received relatively little attention in the study of surface-associated microbiota. Besides the important role of microbiota in homeostasis and infection prevention, a few recent studies have shown that fish mucus microbiota may interact with and attract some specific parasitic species. However, our understanding of external microbial assemblages, in particular regarding the factors that determine their composition and potential interactions with parasites, is still limited. This is the objective of the present study that focuses on a well-known fish-parasite interaction, involving the Sparidae (Teleostei), and their specific monogenean ectoparasites of the Lamellodiscus genus. We characterized the skin and gill mucus bacterial communities using a 16S rRNA amplicon sequencing, tested how fish ecological traits and host evolutionary history are related to external microbiota, and assessed if some microbial taxa are related to some Lamellodiscus species. Results Our results revealed significant differences between skin and gill microbiota in terms of diversity and structure, and that sparids establish and maintain tissue and species-specific bacterial communities despite continuous exposure to water. No phylosymbiosis pattern was detected for either gill or skin microbiota, suggesting that other host-related and environmental factors are a better regulator of host-microbiota interactions. Diversity and structure of external microbiota were explained by host traits: host species, diet and body part. Numerous correlations between the abundance of given bacterial genera and the abundance of given Lamellodiscus species have been found in gill mucus, including species-specific associations. We also found that the external microbiota of the only unparasitized sparid species in this study, Boops boops, harbored significantly more Fusobacteria and three genera, Shewenella, Cetobacterium and Vibrio, compared to the other sparid species, suggesting their potential involvement in preventing monogenean infection. Conclusions This study is the first to explore the diversity and structure of skin and gill microbiota from a wild fish family and present novel evidence on the links between gill microbiota and monogenean species in diversity and abundance, paving the way for further studies on understanding host-microbiota-parasite interactions. Supplementary Information The online version contains supplementary material available at 10.1186/s42523-022-00180-1.
Collapse
Affiliation(s)
- Mathilde Scheifler
- Biologie Intégrative des Organismes Marins, BIOM, Observatoire Océanologique, Sorbonne Université - CNRS, 66650, Banyuls/Mer, France.
| | - Sophie Sanchez-Brosseau
- Biologie Intégrative des Organismes Marins, BIOM, Observatoire Océanologique, Sorbonne Université - CNRS, 66650, Banyuls/Mer, France
| | - Elodie Magnanou
- Biologie Intégrative des Organismes Marins, BIOM, Observatoire Océanologique, Sorbonne Université - CNRS, 66650, Banyuls/Mer, France
| | - Yves Desdevises
- Biologie Intégrative des Organismes Marins, BIOM, Observatoire Océanologique, Sorbonne Université - CNRS, 66650, Banyuls/Mer, France
| |
Collapse
|
38
|
Longobardi L, Dubroca L, Margiotta F, Sarno D, Zingone A. Photoperiod-driven rhythms reveal multi-decadal stability of phytoplankton communities in a highly fluctuating coastal environment. Sci Rep 2022; 12:3908. [PMID: 35273208 PMCID: PMC8913669 DOI: 10.1038/s41598-022-07009-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 02/09/2022] [Indexed: 11/09/2022] Open
Abstract
Phytoplankton play a pivotal role in global biogeochemical and trophic processes and provide essential ecosystem services. However, there is still no broad consensus on how and to what extent their community composition responds to environmental variability. Here, high-frequency oceanographic and biological data collected over more than 25 years in a coastal Mediterranean site are used to shed light on the temporal patterns of phytoplankton species and assemblages in their environmental context. Because of the proximity to the coast and due to large-scale variations, environmental conditions showed variability on the short and long-term scales. Nonetheless, an impressive regularity characterised the annual occurrence of phytoplankton species and their assemblages, which translated into their remarkable stability over decades. Photoperiod was the dominant factor related to community turnover and replacement, which points at a possible endogenous regulation of biological processes associated with species-specific phenological patterns, in analogy with terrestrial plants. These results highlight the considerable stability and resistance of phytoplankton communities in response to different environmental pressures, which contrast the view of these organisms as passively undergoing changes that occur at different temporal scales in their habitat, and show how, under certain conditions, biological processes may prevail over environmental forcing.
Collapse
Affiliation(s)
- Lorenzo Longobardi
- Integrative Marine Ecology Department, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy.
| | - Laurent Dubroca
- Institut Français de Recherche Pour l'Exploitation de la Mer, IFREMER, Laboratoire Ressources Halieutiques de Port-en-Bessin, 14520, Port-en-Bessin-Huppain, France
| | - Francesca Margiotta
- Research Infrastructures for Marine Biological Resources Department, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy
| | - Diana Sarno
- Research Infrastructures for Marine Biological Resources Department, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy
| | - Adriana Zingone
- Integrative Marine Ecology Department, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy. .,Research Infrastructures for Marine Biological Resources Department, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy.
| |
Collapse
|
39
|
Complex marine microbial communities partition metabolism of scarce resources over the diel cycle. Nat Ecol Evol 2022; 6:218-229. [DOI: 10.1038/s41559-021-01606-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 11/01/2021] [Indexed: 12/20/2022]
|
40
|
Auladell A, Barberán A, Logares R, Garcés E, Gasol JM, Ferrera I. Seasonal niche differentiation among closely related marine bacteria. THE ISME JOURNAL 2022; 16:178-189. [PMID: 34285363 PMCID: PMC8692485 DOI: 10.1038/s41396-021-01053-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 06/25/2021] [Accepted: 06/29/2021] [Indexed: 02/07/2023]
Abstract
Bacteria display dynamic abundance fluctuations over time in marine environments, where they play key biogeochemical roles. Here, we characterized the seasonal dynamics of marine bacteria in a coastal oligotrophic time series station, tested how similar the temporal niche of closely related taxa is, and what are the environmental parameters modulating their seasonal abundance patterns. We further explored how conserved the niche is at higher taxonomic levels. The community presented recurrent patterns of seasonality for 297 out of 6825 amplicon sequence variants (ASVs), which constituted almost half of the total relative abundance (47%). For certain genera, niche similarity decreased as nucleotide divergence in the 16S rRNA gene increased, a pattern compatible with the selection of similar taxa through environmental filtering. Additionally, we observed evidence of seasonal differentiation within various genera as seen by the distinct seasonal patterns of closely related taxa. At broader taxonomic levels, coherent seasonal trends did not exist at the class level, while the order and family ranks depended on the patterns that existed at the genus level. This study identifies the coexistence of closely related taxa for some bacterial groups and seasonal differentiation for others in a coastal marine environment subjected to a strong seasonality.
Collapse
Affiliation(s)
- Adrià Auladell
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar, ICM-CSIC, Barcelona, Catalunya, Spain.
| | - Albert Barberán
- Department of Environmental Science, University of Arizona, Tucson, AZ, USA
| | - Ramiro Logares
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar, ICM-CSIC, Barcelona, Catalunya, Spain
| | - Esther Garcés
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar, ICM-CSIC, Barcelona, Catalunya, Spain
| | - Josep M Gasol
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar, ICM-CSIC, Barcelona, Catalunya, Spain.
- Center for Marine Ecosystems Research, School of Science, Edith Cowan University, Joondalup, WA, Australia.
| | - Isabel Ferrera
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar, ICM-CSIC, Barcelona, Catalunya, Spain.
- Centro Oceanográfico de Málaga, Instituto Español de Oceanografía, IEO-CSIC, Fuengirola, Málaga, Spain.
| |
Collapse
|
41
|
Rain-Franco A, Mouquet N, Gougat-Barbera C, Bouvier T, Beier S. Niche breadth affects bacterial transcription patterns along a salinity gradient. Mol Ecol 2021; 31:1216-1233. [PMID: 34878694 DOI: 10.1111/mec.16316] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 11/04/2021] [Accepted: 11/12/2021] [Indexed: 11/29/2022]
Abstract
Understanding the molecular mechanisms that determine a species' life history is important for predicting their susceptibility to environmental change. While specialist species with a narrow niche breadth (NB) maximize their fitness in their optimum habitat, generalists with broad NB adapt to multiple environments. The main objective of this study was to identify general transcriptional patterns that would distinguish bacterial strains characterized by contrasted NBs along a salinity gradient. More specifically, we hypothesized that genes encoding fitness-related traits, such as biomass production, have a higher degree of transcriptional regulation in specialists than in generalists, because the fitness of specialists is more variable under environmental change. By contrast, we expected that generalists would exhibit enhanced transcriptional regulation of genes encoding traits that protect them against cellular damage. To test these hypotheses, we assessed the transcriptional regulation of fitness-related and adaptation-related genes of 11 bacterial strains in relation to their NB and stress exposure under changing salinity conditions. The results suggested that transcriptional regulation levels of fitness- and adaptation-related genes correlated with the NB and/or the stress exposure of the inspected strains. We further identified a shortlist of candidate stress marker genes that could be used in future studies to monitor the susceptibility of bacterial populations or communities to environmental changes.
Collapse
Affiliation(s)
- Angel Rain-Franco
- CNRS, Laboratoire d'Océanographie Microbienne, LOMIC, Sorbonne Université, Banyuls/mer, France
| | - Nicolas Mouquet
- MARBEC, CNRS, Ifremer, IRD, Université de Montpellier, Montpellier, France
| | | | - Thierry Bouvier
- MARBEC, CNRS, Ifremer, IRD, Université de Montpellier, Montpellier, France
| | - Sara Beier
- CNRS, Laboratoire d'Océanographie Microbienne, LOMIC, Sorbonne Université, Banyuls/mer, France.,Leibniz Institute for Baltic Sea Research, Warnemünde, Germany
| |
Collapse
|
42
|
Traving SJ, Kellogg CTE, Ross T, McLaughlin R, Kieft B, Ho GY, Peña A, Krzywinski M, Robert M, Hallam SJ. Prokaryotic responses to a warm temperature anomaly in northeast subarctic Pacific waters. Commun Biol 2021; 4:1217. [PMID: 34686760 PMCID: PMC8536700 DOI: 10.1038/s42003-021-02731-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 09/23/2021] [Indexed: 11/23/2022] Open
Abstract
Recent studies on marine heat waves describe water temperature anomalies causing changes in food web structure, bloom dynamics, biodiversity loss, and increased plant and animal mortality. However, little information is available on how water temperature anomalies impact prokaryotes (bacteria and archaea) inhabiting ocean waters. This is a nontrivial omission given their integral roles in driving major biogeochemical fluxes that influence ocean productivity and the climate system. Here we present a time-resolved study on the impact of a large-scale warm water surface anomaly in the northeast subarctic Pacific Ocean, colloquially known as the Blob, on prokaryotic community compositions. Multivariate statistical analyses identified significant depth- and season-dependent trends that were accentuated during the Blob. Moreover, network and indicator analyses identified shifts in specific prokaryotic assemblages from typically particle-associated before the Blob to taxa considered free-living and chemoautotrophic during the Blob, with potential implications for primary production and organic carbon conversion and export.
Collapse
Affiliation(s)
- Sachia J Traving
- Department of Microbiology & Immunology, University of British Columbia, Vancouver, BC, V6T 1Z1, Canada
- HADAL and Nordcee, Department of Biology, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | | | - Tetjana Ross
- Institute of Ocean Sciences, Fisheries and Ocean Canada, Sidney, BC, Canada
| | - Ryan McLaughlin
- Graduate Program in Bioinformatics, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Brandon Kieft
- Department of Microbiology & Immunology, University of British Columbia, Vancouver, BC, V6T 1Z1, Canada
| | - Grace Y Ho
- Department of Microbiology & Immunology, University of British Columbia, Vancouver, BC, V6T 1Z1, Canada
- Max Planck Institute for Marine Microbiology, Celsiusstraße 1, 28359, Bremen, Germany
| | - Angelica Peña
- Institute of Ocean Sciences, Fisheries and Ocean Canada, Sidney, BC, Canada
| | - Martin Krzywinski
- Genome Sciences Centre, BC Cancer Agency, Vancouver, BC, V5Z 4S6, Canada
| | - Marie Robert
- Institute of Ocean Sciences, Fisheries and Ocean Canada, Sidney, BC, Canada
| | - Steven J Hallam
- Department of Microbiology & Immunology, University of British Columbia, Vancouver, BC, V6T 1Z1, Canada.
- Graduate Program in Bioinformatics, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.
- Genome Science and Technology Program, University of British Columbia, 2329 West Mall, Vancouver, BC, V6T 1Z4, Canada.
- Life Sciences Institute, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.
- ECOSCOPE Training Program, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.
| |
Collapse
|
43
|
Lv J, Yuan R, Wang S. Water diversion induces more changes in bacterial and archaeal communities of river sediments than seasonality. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 293:112876. [PMID: 34098351 DOI: 10.1016/j.jenvman.2021.112876] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 05/01/2021] [Accepted: 05/21/2021] [Indexed: 06/12/2023]
Abstract
Previous studies have demonstrated that seasonal variation is often the most important factor affecting aquatic bacterial assemblages. Whether anthropogenic activities can dominate community dynamics remains unknown. Based on 16S rRNA high-throughput sequencing technology, this study revealed and compared the relative influence of water diversions and seasonality on bacterial and archaeal communities in river sediments from a region with obvious seasonality. The results indicate that the influence of water diversion on bacteria and archaea in water-receiving river sediments exceeded the influence of seasonal variation. Water diversion affected microbes by increasing EC, salinity, water flow rate, and organic matter carbon and nitrogen contents. Seasonal variations affected microbes by altering water temperature. Diversion responders but no season responders were classified by statistical methods in the microbial community. Diversion responder numbers were related to nitrogen concentrations, complex organic carbon contents and EC values, which were mainly affected by water diversion. With the joint impact of water diversion and seasonality, the correlations of bacterial and archaeal numbers with environmental factors were obviously weakened due to the increases in the ecological niche breadths of microorganisms. Natural seasonal changes in bacterial and archaeal communities were totally altered by changes in salinity, nutrients, and hydrological conditions induced by anthropogenic water diversions. These results highlight that human activity may be a stronger driver than natural seasonality in the alteration of bacterial and archaeal communities.
Collapse
Affiliation(s)
- Jiali Lv
- College of Environmental and Resource Sciences, Shanxi University, Taiyuan, 030006, China; Shanxi Laboratory for Yellow River, Taiyuan, 030006, China; Key Laboratory of Agricultural Water Resources Research, Innovation Academy for Seed Design, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050021, China; Sino-Danish College of University of Chinese Academy of Sciences, Beijing, 101408, China; Sino-Danish Centre for Education and Research, Beijing, 101408, China
| | - Ruiqiang Yuan
- College of Environmental and Resource Sciences, Shanxi University, Taiyuan, 030006, China; Shanxi Laboratory for Yellow River, Taiyuan, 030006, China.
| | - Shiqin Wang
- Key Laboratory of Agricultural Water Resources Research, Innovation Academy for Seed Design, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050021, China
| |
Collapse
|
44
|
Jacquin J, Callac N, Cheng J, Giraud C, Gorand Y, Denoual C, Pujo-Pay M, Conan P, Meistertzheim AL, Barbe V, Bruzaud S, Ghiglione JF. Microbial Diversity and Activity During the Biodegradation in Seawater of Various Substitutes to Conventional Plastic Cotton Swab Sticks. Front Microbiol 2021; 12:604395. [PMID: 34335485 PMCID: PMC8321090 DOI: 10.3389/fmicb.2021.604395] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 05/12/2021] [Indexed: 11/13/2022] Open
Abstract
The European Parliament recently approved a new law banning single-use plastic items for 2021 such as plastic plates, cutlery, straws, cotton swabs, and balloon sticks. Transition to a bioeconomy involves the substitution of these banned products with biodegradable materials. Several materials such as polylactic acid (PLA), polybutylene adipate terephthalate (PBAT), poly(butylene succinate) (PBS), polyhydroxybutyrate-valerate (PHBV), Bioplast, and Mater-Bi could be good candidates to substitute cotton swabs, but their biodegradability needs to be tested under marine conditions. In this study, we described the microbial life growing on these materials, and we evaluated their biodegradability in seawater, compared with controls made of non-biodegradable polypropylene (PP) or biodegradable cellulose. During the first 40 days in seawater, we detected clear changes in bacterial diversity (Illumina sequencing of 16S rRNA gene) and heterotrophic activity (incorporation of 3H-leucine) that coincided with the classic succession of initial colonization, growth, and maturation phases of a biofilm. Biodegradability of the cotton swab sticks was then tested during another 94 days under strict diet conditions with the different plastics as sole carbon source. The drastic decrease of the bacterial activity on PP, PLA, and PBS suggested no bacterial attack of these materials, whereas the bacterial activity in PBAT, Bioplast, Mater-Bi, and PHBV presented similar responses to the cellulose positive control. Interestingly, the different bacterial diversity trends observed for biodegradable vs. non-biodegradable plastics allowed to describe potential new candidates involved in the degradation of these materials under marine conditions. This better understanding of the bacterial diversity and activity dynamics during the colonization and biodegradation processes contributes to an expanding baseline to understand plastic biodegradation in marine conditions and provide a foundation for further decisions on the replacement of the banned single-used plastics.
Collapse
Affiliation(s)
- Justine Jacquin
- CNRS, UMR 7621, Laboratoire d'Océanographie Microbienne, Observatoire Océanologique de Banyuls, Sorbonne Université, Paris, France.,Innovation Plasturgie et Composites, Biopole Clermont Limagne, Saint-Beauzire, France
| | - Nolwenn Callac
- CNRS, UMR 7621, Laboratoire d'Océanographie Microbienne, Observatoire Océanologique de Banyuls, Sorbonne Université, Paris, France.,CNRS, UMR 9220 ENTROPIE, Ifremer (LEAD-NC), IRD, Univ Nouvelle-Calédonie, Univ La Réunion, Nouméa, New Caledonia
| | - Jingguang Cheng
- CNRS, UMR 7621, Laboratoire d'Océanographie Microbienne, Observatoire Océanologique de Banyuls, Sorbonne Université, Paris, France
| | - Carolane Giraud
- CNRS, UMR 7621, Laboratoire d'Océanographie Microbienne, Observatoire Océanologique de Banyuls, Sorbonne Université, Paris, France.,CNRS, UMR 9220 ENTROPIE, Ifremer (LEAD-NC), IRD, Univ Nouvelle-Calédonie, Univ La Réunion, Nouméa, New Caledonia
| | - Yonko Gorand
- Plateforme EnRMAT, Laboratoire PROMES, Rembla de la Thermodynamique, Perpignan, France
| | - Clement Denoual
- UMR CNRS 6027, Institut de Recherche Dupuy de Lôme (IRDL), Université de Bretagne-Sud, Lorient, France
| | - Mireille Pujo-Pay
- CNRS, UMR 7621, Laboratoire d'Océanographie Microbienne, Observatoire Océanologique de Banyuls, Sorbonne Université, Paris, France
| | - Pascal Conan
- CNRS, UMR 7621, Laboratoire d'Océanographie Microbienne, Observatoire Océanologique de Banyuls, Sorbonne Université, Paris, France
| | | | - Valerie Barbe
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | - Stéphane Bruzaud
- UMR CNRS 6027, Institut de Recherche Dupuy de Lôme (IRDL), Université de Bretagne-Sud, Lorient, France
| | - Jean-François Ghiglione
- CNRS, UMR 7621, Laboratoire d'Océanographie Microbienne, Observatoire Océanologique de Banyuls, Sorbonne Université, Paris, France
| |
Collapse
|
45
|
Vaulot D, Geisen S, Mahé F, Bass D. pr2-primers: An 18S rRNA primer database for protists. Mol Ecol Resour 2021; 22:168-179. [PMID: 34251760 DOI: 10.1111/1755-0998.13465] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 05/31/2021] [Accepted: 07/06/2021] [Indexed: 02/06/2023]
Abstract
Metabarcoding of microbial eukaryotes (collectively known as protists) has developed tremendously in the last decade, almost solely relying on the 18S rRNA gene. As microbial eukaryotes are extremely diverse, many primers and primer pairs have been developed. To cover a relevant and representative fraction of the protist community in a given study system, an informed primer choice is necessary, as no primer pair can target all protists equally well. As such, a smart primer choice is very difficult even for experts and there are very few online resources available to list existing primers. We built a database listing 285 primers and 83 unique primer pairs that have been used for eukaryotic 18S rRNA gene metabarcoding. In silico performance of primer pairs was tested against two sequence databases: PR2 version 4.12.0 for eukaryotes and a subset of silva version 132 for bacteria and archaea. We developed an R-based web application enabling browsing of the database, visualization of the taxonomic distribution of the amplified sequences with the number of mismatches, and testing any user-defined primer or primer set (https://app.pr2-primers.org). Taxonomic specificity of primer pairs, amplicon size and location of mismatches can also be determined. We identified universal primer sets that matched the largest number of sequences and analysed the specificity of some primer sets designed to target certain groups. This tool enables guided primer choices that will help a wide range of researchers to include protists as part of their investigations.
Collapse
Affiliation(s)
- Daniel Vaulot
- UMR 7144, ECOMAP, Station Biologique de Roscoff, CNRS, Sorbonne Université, Roscoff, France.,Asian School of the Environment, Nanyang Technological University, Singapore, Singapore
| | - Stefan Geisen
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands.,Laboratory of Nematology, Wageningen University, Wageningen, The Netherlands.,Nanjing Agricultural University, Nanjing, China
| | - Frédéric Mahé
- CIRAD, UMR PHIM, Montpellier, France.,PHIM, CIRAD, INRAE, Institut Agro, Univ Montpellier, Montpellier, France
| | - David Bass
- Centre for Environment, Fisheries and Aquaculture Science, Weymouth, UK.,Department of Life Sciences, The Natural History Museum, London, UK
| |
Collapse
|
46
|
Wilson JM, Chamberlain EJ, Erazo N, Carter ML, Bowman JS. Recurrent microbial community types driven by nearshore and seasonal processes in coastal Southern California. Environ Microbiol 2021; 23:3225-3239. [PMID: 33928761 DOI: 10.1111/1462-2920.15548] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 04/26/2021] [Indexed: 01/04/2023]
Abstract
A multitude of concurrent biological and physical processes contribute to microbial community turnover, especially in highly dynamic coastal environments. Characterizing what factors contribute most to shifts in microbial community structure and the specific organisms that correlate with changes in the products of photosynthesis improves our understanding of nearshore microbial ecosystem functions. We conducted high frequency sampling in nearshore Southern California in order to capture sub-weekly microbial community dynamics. Microbial communities were characterized by flow cytometry and 16S rRNA gene sequencing, and placed in the context of physicochemical parameters. Within our time-series, season and nutrient availability corresponded to changes in dominant microbial community members. Concurrent aseasonal drivers with overlapping scales of variability were also apparent when we used network analysis to assess the microbial community as subsets of the whole. Our analyses revealed the microbial community as a mosaic, with overlapping groups of taxa that varied on different timescales and correlated with unique abiotic and biotic factors. Specifically, a subnetwork associated with chlorophyll a exhibited rapid turnover, indicating that ecologically important subsets of the microbial community can change on timescales different than and in response to factors other than those that govern turnover of most members of the assemblage.
Collapse
Affiliation(s)
- Jesse M Wilson
- Scripps Institution of Oceanography, UCSD, La Jolla, CA, USA
| | | | - Natalia Erazo
- Scripps Institution of Oceanography, UCSD, La Jolla, CA, USA
| | | | - Jeff S Bowman
- Scripps Institution of Oceanography, UCSD, La Jolla, CA, USA.,Center for Microbiome Innovation, UCSD, La Jolla, CA, USA.,Center for Marine Biodiversity and Conservation, UCSD, La Jolla, CA, USA
| |
Collapse
|
47
|
Glasner B, Henríquez-Castillo C, Alfaro FD, Trefault N, Andrade S, De la Iglesia R. Decoupling of biotic and abiotic patterns in a coastal area affected by chronic metal micronutrients disturbances. MARINE POLLUTION BULLETIN 2021; 166:111608. [PMID: 33838915 DOI: 10.1016/j.marpolbul.2020.111608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 08/22/2020] [Accepted: 08/24/2020] [Indexed: 06/12/2023]
Abstract
Coastal systems are highly productive areas for primary productivity and ecosystem services and host a large number of human activities. Since industrialization, metal micronutrients in these regions have increased. Phytoplankton use metals as micronutrients in metabolic processes, but in excess, had deleterious effects. In coastal systems, picoeukaryotes represent a diverse and abundant group with widespread distribution and fundamental roles in biogeochemical cycling. We combined different approaches to explore picoeukaryotes seasonal variability in a chronically metal polluted coastal area at the south-eastern Pacific Ocean. Through remote and field measurements to monitor environmental conditions and 18S rRNA gene sequencing for taxonomic profiling, we determined metal chronic effect on picoeukaryote community's structure. Our results revealed a stable richness and a variable distribution of the relative abundance, despite the physicochemical seasonal variations. These results suggest that chronic metal contamination influences temporal heterogeneity of picoeukaryote communities, with a decoupling between abiotic and biotic patterns.
Collapse
Affiliation(s)
- B Glasner
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - C Henríquez-Castillo
- Laboratorio de Fisiología y Genética Marina (FIGEMA), Centro de Estudios Avanzados de Zonas Áridas (CEAZA), Coquimbo, Chile; Facultad de Ciencias del Mar, Universidad Catolica del Norte, Coquimbo, Chile
| | - F D Alfaro
- GEMA Center for Genomics, Ecology & Environment, Universidad Mayor, Camino La Piramide 5750, Huechuraba, Santiago, Chile; Instituto de Ecología & Biodiversidad (IEB), Casilla 653, Santiago, Chile
| | - N Trefault
- GEMA Center for Genomics, Ecology & Environment, Universidad Mayor, Camino La Piramide 5750, Huechuraba, Santiago, Chile
| | - S Andrade
- GEMA Center for Genomics, Ecology & Environment, Universidad Mayor, Camino La Piramide 5750, Huechuraba, Santiago, Chile
| | - R De la Iglesia
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
48
|
Pereira O, Hochart C, Boeuf D, Auguet JC, Debroas D, Galand PE. Seasonality of archaeal proteorhodopsin and associated Marine Group IIb ecotypes (Ca. Poseidoniales) in the North Western Mediterranean Sea. THE ISME JOURNAL 2021; 15:1302-1316. [PMID: 33288859 PMCID: PMC8115670 DOI: 10.1038/s41396-020-00851-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 11/09/2020] [Accepted: 11/18/2020] [Indexed: 01/04/2023]
Abstract
The Archaea Marine Group II (MGII) is widespread in the world's ocean where it plays an important role in the carbon cycle. Despite recent discoveries on the group's metabolisms, the ecology of this newly proposed order (Candidatus Poseidoniales) remains poorly understood. Here we used a combination of time-series metagenome-assembled genomes (MAGs) and high-frequency 16S rRNA data from the NW Mediterranean Sea to test if the taxonomic diversity within the MGIIb family (Candidatus Thalassarchaeaceae) reflects the presence of different ecotypes. The MAGs' seasonality revealed a MGIIb family composed of different subclades that have distinct lifestyles and physiologies. The vitamin metabolisms were notably different between ecotypes with, in some, a possible link to sunlight's energy. Diverse archaeal proteorhodopsin variants, with unusual signature in key amino acid residues, had distinct seasonal patterns corresponding to changing day length. In addition, we show that in summer, archaea, as opposed to bacteria, disappeared completely from surface waters. Our results shed light on the diversity and the distribution of the euryarchaeotal proteorhodopsin, and highlight that MGIIb is a diverse ecological group. The work shows that time-series based studies of the taxonomy, seasonality, and metabolisms of marine prokaryotes is critical to uncover their diverse role in the ocean.
Collapse
Affiliation(s)
- Olivier Pereira
- Sorbonne Universités, CNRS, Laboratoire d'Ecogéochimie des Environnements Benthiques (LECOB), Observatoire Océanologique, Banyuls sur Mer, France
- Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Southern University of Science and Technology, Shenzhen, China
| | - Corentin Hochart
- Sorbonne Universités, CNRS, Laboratoire d'Ecogéochimie des Environnements Benthiques (LECOB), Observatoire Océanologique, Banyuls sur Mer, France
| | - Dominique Boeuf
- Daniel K. Inouye Center for Microbial Oceanography, Research and Education, School of Ocean and Earth Science and Technology, University of Hawai'i at Mānoa, Honolulu, HI, United States, Honolulu, HI, 96822, USA
| | - Jean Christophe Auguet
- MARBEC, Université de Montpellier, CNRS, Ifremer, IRD, Montpellier, France, Montpellier, France
| | - Didier Debroas
- Université Clermont Auvergne, CNRS, Laboratoire Microorganismes: Genome et Environnement, 63000, Clermont-Ferrand, France
| | - Pierre E Galand
- Sorbonne Universités, CNRS, Laboratoire d'Ecogéochimie des Environnements Benthiques (LECOB), Observatoire Océanologique, Banyuls sur Mer, France.
| |
Collapse
|
49
|
Lv J, Niu Y, Yuan R, Wang S. Different Responses of Bacterial and Archaeal Communities in River Sediments to Water Diversion and Seasonal Changes. Microorganisms 2021; 9:microorganisms9040782. [PMID: 33917984 PMCID: PMC8068392 DOI: 10.3390/microorganisms9040782] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 11/16/2022] Open
Abstract
In recent years, different responses of archaea and bacteria to environmental changes have attracted increasing scientific interest. In the mid-latitude region, Fen River receives water transferred from the Yellow River, electrical conductivity (EC), concentrations of Cl- and Na+ in water, total phosphorus (TP), and Olsen phosphorus (OP) in sediments were significantly affected by water transfer. Meanwhile, temperature and oxidation-reduction potential (ORP) of water showed significant seasonal variations. Based on 16S rRNA high-throughput sequencing technology, the composition of bacteria and archaea in sediments was determined in winter and summer, respectively. Results showed that the dominance of bacterial core flora decreased and that of archaeal core flora increased after water diversion. The abundance and diversity of bacterial communities in river sediments were more sensitive to anthropogenic and naturally induced environmental changes than that of archaeal communities. Bacterial communities showed greater resistance than archaeal communities under long-term external disturbances, such as seasonal changes, because of rich species composition and complex community structure. Archaea were more stable than bacteria, especially under short-term drastic environmental disturbances, such as water transfer, due to their insensitivity to environmental changes. These results have important implications for understanding the responses of bacterial and archaeal communities to environmental changes in river ecosystems affected by water diversion.
Collapse
Affiliation(s)
- Jiali Lv
- School of Environment and Natural Resources, Shanxi University, Taiyuan 030006, China; (J.L.); (Y.N.)
- Key Laboratory of Agricultural Water Resources Research, Innovation Academy for Seed Design, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050021, China;
- Sino-Danish College of University of Chinese Academy of Sciences, Beijing 101408, China
| | - Yangdan Niu
- School of Environment and Natural Resources, Shanxi University, Taiyuan 030006, China; (J.L.); (Y.N.)
| | - Ruiqiang Yuan
- School of Environment and Natural Resources, Shanxi University, Taiyuan 030006, China; (J.L.); (Y.N.)
- Correspondence:
| | - Shiqin Wang
- Key Laboratory of Agricultural Water Resources Research, Innovation Academy for Seed Design, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050021, China;
| |
Collapse
|
50
|
Lambert S, Lozano JC, Bouget FY, Galand PE. Seasonal marine microorganisms change neighbours under contrasting environmental conditions. Environ Microbiol 2021; 23:2592-2604. [PMID: 33760330 DOI: 10.1111/1462-2920.15482] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/12/2020] [Accepted: 03/23/2021] [Indexed: 01/04/2023]
Abstract
Marine picoplankton contribute to global carbon sequestration and nutrient recycling. These processes are directly related to the composition of communities, which in turn depends on microbial interactions and environmental forcing. Under regular seasonal cycles, marine communities show strong predictable patterns of annual re-occurrences, but little is known about the effect of environmental perturbation on their organization. The aim of our study was to investigate the co-occurrence patterns of planktonic picoeukaryote, bacteria and archaea under contrasting environmental conditions. The study was designed to have high sampling frequency that could match both the biological rhythm of marine microbes and the short time scale of extreme weather events. Our results show that microbial networks changed from year to year depending on conditions. In addition, individual taxa became less interconnected and changed neighbours, which revealed an unfaithful relationship between marine microorganisms. This unexpected pattern suggests possible switches between organisms that have similar specific functions, or hints at the presence of organisms that share similar environmental niches without interacting. Despite the observed annual changes, the time series showed re-occurring communities that appear to recover from perturbations. Changing co-occurrence patterns between marine microorganisms may allow the long-term stability of ecosystems exposed to contrasting meteorological events.
Collapse
Affiliation(s)
- Stefan Lambert
- Sorbonne Université, CNRS, Laboratoire d'Océanographie Microbienne (LOMIC), Observatoire Océanologique de Banyuls, Banyuls sur Mer, France
| | - Jean-Claude Lozano
- Sorbonne Université, CNRS, Laboratoire d'Océanographie Microbienne (LOMIC), Observatoire Océanologique de Banyuls, Banyuls sur Mer, France
| | - François-Yves Bouget
- Sorbonne Université, CNRS, Laboratoire d'Océanographie Microbienne (LOMIC), Observatoire Océanologique de Banyuls, Banyuls sur Mer, France
| | - Pierre E Galand
- Sorbonne Université, CNRS, Laboratoire d'Ecogéochimie des Environnements Benthiques (LECOB), Observatoire Océanologique de Banyuls, Banyuls sur Mer, France
| |
Collapse
|