1
|
Wang X, Li Y, Rensing C, Zhang X. Early inoculation and bacterial community assembly in plants: A review. Microbiol Res 2025; 296:128141. [PMID: 40120566 DOI: 10.1016/j.micres.2025.128141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 03/01/2025] [Accepted: 03/13/2025] [Indexed: 03/25/2025]
Abstract
The relationship between plants and early colonizing microbes is crucial for regulating agricultural ecosystems. Recent evidence strongly suggests that by introducing beneficial microbes during the seed or seedling stages, the diversity and assembly structure of the plant-related microbial community during later plant development can be altered, recruiting beneficial bacteria to enhance plant protection. However, the mechanisms of community assembly and their effects on plant growth are still not fully understood. To deepen our understanding of the importance of early inoculation for improving plant performance, this review comprehensively summarizes recent research advancements on the effects of early introduction on plant growth and adaptability. The mechanisms and ecological significance of early inoculation in the assembly of plant-related bacterial communities are discussed, with particular emphasis on the importance of seed endophytes, plant growth-promoting rhizobacteria (PGPR), and synthetic microbial consortia as microbial inoculants in enhancing plant health and productivity. Additionally, this review proposes a new strategy: sequential inoculation during the seed and seedling stages, aiming to maximize the effects of microbes.
Collapse
Affiliation(s)
- Xing Wang
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yuyi Li
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Christopher Rensing
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Xiaoxia Zhang
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
2
|
Delgado-Baquerizo M, Singh BK, Liu YR, Sáez-Sandino T, Coleine C, Muñoz-Rojas M, Bastida F, Trivedi P. Integrating ecological and evolutionary frameworks for SynCom success. THE NEW PHYTOLOGIST 2025; 246:1922-1933. [PMID: 40177999 DOI: 10.1111/nph.70112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 03/11/2025] [Indexed: 04/05/2025]
Abstract
Use of synthetic microbial communities (SynComs) is a promising approach that harnesses nature-based solutions to support soil fertility and food security, mitigate climate change impacts, and restore terrestrial ecosystems. Several microbial products are in the market, and many others are at different stages of development and commercialization. Yet, we are still far from being able to fully harness the potential and successful applications of such biotechnological tools. The limited field efficiency and efficacy of SynComs have significantly constrained commercial opportunities, resulting in market growth falling below expectations. To overcome these challenges and manage expectations, it is critical to address current limitations, failures, and potential environmental consequences of SynComs. In this Viewpoint, we explore how using multiple eco-evolutionary theories can inform SynCom design and success. We further discuss the current status of SynComs and identify the next steps needed to develop and deploy the next generation of tools to boost their ability to support multiple ecosystem services, including food security and environmental sustainability.
Collapse
Affiliation(s)
- Manuel Delgado-Baquerizo
- Laboratorio de Biodiversidad y Funcionamiento Ecosistémico, Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), Consejo Superior de Investigaciones Científicas (CSIC), Av. Reina Mercedes 10, E-41012, Sevilla, Spain
| | - Brajesh K Singh
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, 2751, NSW, Australia
| | - Yu-Rong Liu
- State Key Laboratory of Agricultural Microbiology and College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Tadeo Sáez-Sandino
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, 2751, NSW, Australia
| | - Claudia Coleine
- Department of Ecological and Biological Sciences, University of Tuscia, 01100, Viterbo, Italy
| | - Miriam Muñoz-Rojas
- Laboratorio de Biodiversidad y Funcionamiento Ecosistémico, Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), Consejo Superior de Investigaciones Científicas (CSIC), Av. Reina Mercedes 10, E-41012, Sevilla, Spain
| | - Felipe Bastida
- CEBAS-CSIC, Campus Universitario de Espinardo, E-30100, Murcia, Spain
| | - Pankaj Trivedi
- Microbiome Network and Department of Agricultural Biology, Colorado State University, Fort Collins, 80523, CO, USA
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance (IGCAST), Texas Tech University, Lubbock, TX, 79409, USA
| |
Collapse
|
3
|
Ma Y, Zuohereguli K, Zhang L, Kang Y, Shi L, Xu H, Ruan Y, Wen T, Mei X, Dong C, Xu Y, Shen Q. Soil Microbial Mechanisms to Improve Pear Seedling Growth by Applying Bacillus and Trichoderma-Amended Biofertilizers. PLANT, CELL & ENVIRONMENT 2025; 48:3968-3980. [PMID: 39871496 DOI: 10.1111/pce.15395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 12/16/2024] [Accepted: 01/06/2025] [Indexed: 01/29/2025]
Abstract
Bacillus velezensis SQR9 or Trichoderma harzianum NJAU4742-amended bioorganic fertilizers might significantly improve the soil microbial community and crop yields. However, the mechanisms these microorganisms act are far away from distinctness. We combined amplicon sequencing with culturable approaches to investigate the effects of these microorganisms on pear tree growth, rhizosphere nutrients and microbial mechanisms. The SQR9 and T4742 treatments increased the total biomass of pear trees by 68% and 84%, respectively, compared to the conventional organic fertilizer treatment (CK). SQR9 tends to increase soil organic matter and available phosphorus, while T4742 more effectively enhances nitrogen, potassium, iron and zinc levels. These effects were primarily linked to changes in the microbial community. T4742 treatment enriched twice as many differential microbes as SQR9. SQR9 significantly enriched Urebacillus, Streptomyces and Mycobacterium, while T4742 increased the abundance of Pseudomonas, Aspergillus and Penicillium. In vitro experiments revealed that secondary metabolites secreted by B. velezensis SQR9 and T. harzianum NJAU4742 stimulate the growth of key probiotics associated with their respective treatments, enhancing soil fertility and plant biomass. The study revealed the specific roles of these bioorganic fertilizers in agricultural applications, providing new insights for developing effective and targeted bioorganic fertilizer products and promoting sustainable agriculture.
Collapse
Affiliation(s)
- Yanwei Ma
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Key Lab of Organic-Based Fertilizers of China, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, China
| | - Kuerban Zuohereguli
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Key Lab of Organic-Based Fertilizers of China, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, China
| | - Lisheng Zhang
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Key Lab of Organic-Based Fertilizers of China, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, China
| | - Yalong Kang
- School of Ecology and Environmental Sciences, Yunnan University, Kunming, China
| | - Liwen Shi
- Beijing Jiagetiandi Tech. Co. Ltd., Beijing, China
| | - Hao Xu
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Key Lab of Organic-Based Fertilizers of China, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, China
| | - Yang Ruan
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Key Lab of Organic-Based Fertilizers of China, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, China
| | - Tao Wen
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Key Lab of Organic-Based Fertilizers of China, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, China
| | - Xinlan Mei
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Key Lab of Organic-Based Fertilizers of China, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, China
| | - Caixia Dong
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Key Lab of Organic-Based Fertilizers of China, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, China
| | - Yangchun Xu
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Key Lab of Organic-Based Fertilizers of China, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, China
| | - Qirong Shen
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Key Lab of Organic-Based Fertilizers of China, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
4
|
Benbrik B, Reid TE, Nkir D, Chaouki H, Aallam Y, Clark IM, Mauchline TH, Harris J, Pawlett M, Barakat A, Rchiad Z, Bargaz A. Unlocking the agro-physiological potential of wheat rhizoplane fungi under low P conditions using a niche-conserved consortium approach. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:2320-2337. [PMID: 40000427 DOI: 10.1093/jxb/eraf042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 01/30/2025] [Indexed: 02/27/2025]
Abstract
Plant growth-promoting fungi (PGPF) hold promise for enhancing crop yield. This study delves into the fungal diversity of the wheat rhizoplane across seven Moroccan agricultural regions, employing a niche-conserved strategy to construct fungal consortia (FC) exhibiting higher phosphorus (P) acquisition and plant growth promotion. This study combined culture-independent and culture-dependent methods exploring taxonomic and functional diversity in the rhizoplane of wheat plants obtained from 28 zones. Twenty fungal species from eight genera were isolated and confirmed through internal transcribed spacer (ITS) Sanger sequencing. P solubilization (PS) capacity was assessed for individual species, with Talaromyces sp. (F11) and Rhizopus arrhizus CMRC 585 (F12) exhibiting notable PS rates, potentially due to production of organic acids such as gluconic acid. PGPF traits and antagonism activities were considered when constructing 28 niche-conserved FC (using isolates from the same zone), seven intra-region FC (different zones within a region), and one inter-region FC. Under low P conditions, in planta inoculation with niche-conserved FC (notably FC14 and FC17) enhanced growth, physiological parameters, and P uptake of wheat, in both vegetative and reproductive stages. FC14 and FC17, composed of potent fungi such as F11 and F12, demonstrated superior plant growth benefits compared with intra- and inter-region constructed FC. Our study underscores the efficacy of the niche-conserved strategy in designing synthetic fungal community from isolates within the same niche, proving significant agro-physiological potential to enhance P uptake and plant growth of wheat.
Collapse
Affiliation(s)
- Brahim Benbrik
- AgroBiosciences Program, College of Agriculture and Environmental Sciences, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Tessa E Reid
- Sustainable Soils and Crops, Rothamsted Research, Harpenden, UK
| | - Dounia Nkir
- AgroBiosciences Program, College of Agriculture and Environmental Sciences, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Hicham Chaouki
- AgroBiosciences Program, College of Agriculture and Environmental Sciences, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Yassine Aallam
- AgroBiosciences Program, College of Agriculture and Environmental Sciences, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Ian M Clark
- Sustainable Soils and Crops, Rothamsted Research, Harpenden, UK
| | - Tim H Mauchline
- Sustainable Soils and Crops, Rothamsted Research, Harpenden, UK
| | - Jim Harris
- Environment and Agrifood, Faculty of Engineering and Applied Sciences, Cranfield University, Cranfield MK43 0AL, UK
| | - Mark Pawlett
- Environment and Agrifood, Faculty of Engineering and Applied Sciences, Cranfield University, Cranfield MK43 0AL, UK
| | - Abdellatif Barakat
- AgroBiosciences Program, College of Agriculture and Environmental Sciences, Mohammed VI Polytechnic University, Ben Guerir, Morocco
- IATE, Université de Montpellier, INRAE, Agro Institut. 2, Place Pierre Viala, 34060 Montpellier, France
| | - Zineb Rchiad
- Biosciences Division, CoreLabs, Mohammed 6 Polytechnic University, Ben Guerir, Morocco
| | - Adnane Bargaz
- AgroBiosciences Program, College of Agriculture and Environmental Sciences, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| |
Collapse
|
5
|
Kossalbayev BD, Wei M, Wang J, Pang Y, Lv M, Sadvakasova AK, Bauenova MO, Zhang X, Zhao W, Xu S, Huang Z. Growth promotion of synthetic microbial communities influenced by the function, diversity and interactions of their constituent strains and soil types. World J Microbiol Biotechnol 2025; 41:181. [PMID: 40415050 DOI: 10.1007/s11274-025-04403-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Accepted: 05/07/2025] [Indexed: 05/27/2025]
Abstract
The construction of efficient synthetic microbial communities (SMCs) is a major challenge for the scientific community. In this study, we constructed 15 SMCs with a diversity gradient of 1-4 by combining four strains with different functions, and investigated the effects of strain interactions, community diversity and in vitro functions on in vivo rice growth promotion in two soil types. The interactions between the 4 strains were tested using a modified dual culture plate assay. The in vitro functions (nitrogen fixation, phosphate and potassium solubilization, indoleacetic acid production, 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity, siderophore production) of the 15 SMCs were measured by the biochemical assay. The in vivo growth promotion of the 15 SMCs was investigated in rice pot experiments in 2 different soils. The study showed that the in vivo functions of SMCs were related to the soils in which they were grown and their in vitro functions and diversity. The in vitro functions of SMCs were closely related to the functions (especially ACC deaminase producing capabilities), diversity, and interactions of the constituent strains. It was concluded that the plant growth promotion of SMCs was influenced by the function, diversity and interactions of their constituent strains and soil types. This not only advances our understanding of microbe-microbe-plant interactions, but also sheds light on the rational design of effective SMCs for environmentally friendly agriculture.
Collapse
Affiliation(s)
- Bekzhan D Kossalbayev
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty, 050038, Kazakhstan
- Khoja Akhmet Yassawi International Kazakh-Turkish University, Turkistan, 161200, Kazakhstan
| | - Mo Wei
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
| | - Jingjing Wang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China.
| | - Yan Pang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
| | - Mingda Lv
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
| | - Asemgul K Sadvakasova
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty, 050038, Kazakhstan
| | - Meruyert O Bauenova
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty, 050038, Kazakhstan
| | - Xiaoxia Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
| | - Wei Zhao
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
| | - Song Xu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
| | - Zhiyong Huang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China.
| |
Collapse
|
6
|
Pantigoso HA, Ossowicki A, Stringlis IA, Carrión VJ. Hub metabolites at the root-microbiome interface: unlocking plant drought resilience. TRENDS IN PLANT SCIENCE 2025:S1360-1385(25)00106-2. [PMID: 40393817 DOI: 10.1016/j.tplants.2025.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 03/26/2025] [Accepted: 04/09/2025] [Indexed: 05/22/2025]
Abstract
Drought is one of the most devastating environmental challenges, severely affecting agriculture, ecosystems, and global food security. Effective strategies to predict and mitigate drought are limited. The root-soil-microbiome interface is pivotal in mediating plant resilience to drought. Recent studies highlight dynamics between plant root exudates and microbial communities, influencing stress tolerance through chemical signaling under drought. By integrating plant molecular biology, root chemistry, and microbiome research, we discuss insights into how these mechanisms can be harnessed to enhance crop resilience. Here, we focus on the interplay between plants and their microbiomes with metabolites as a central point of interactions. We synthesize recent developments, identify critical knowledge gaps, and propose future directions to leverage plant-microbe interactions to improve plant drought tolerance.
Collapse
Affiliation(s)
- Hugo A Pantigoso
- Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Adam Ossowicki
- Departamento de Microbiología, Facultad de Ciencias, Campus Universitario de Teatinos s/n, Universidad de Málaga, 29010 Málaga, Spain; Departamento de Protección de Cultivos, Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora', Campus Universitario de Teatinos, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), 29010 Málaga, Spain
| | - Ioannis A Stringlis
- Laboratory of Plant Pathology, Agricultural University of Athens, 75 Iera Odos str., 11855 Athens, Greece
| | - Víctor J Carrión
- Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands; Departamento de Microbiología, Facultad de Ciencias, Campus Universitario de Teatinos s/n, Universidad de Málaga, 29010 Málaga, Spain; Departamento de Protección de Cultivos, Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora', Campus Universitario de Teatinos, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), 29010 Málaga, Spain; Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands.
| |
Collapse
|
7
|
Lei Z, Wang H, Zhang H, Liu W, He Z, Wang Z, Zhang H, Wang Y, Tang Y, Hu C, Zhao X. Sultr1;2-Mediated Recruitment of Selenium-Oxidizing Bacteria Promotes Plant Selenium Uptake. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025. [PMID: 40388589 DOI: 10.1021/acs.jafc.5c01540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2025]
Abstract
Plants can shape their root microbiome to promote growth and selenium uptake. Here, we used metagenomics, 16S high-throughput sequencing, and liquid chromatography-mass spectrometry (LC-MS) metabolomics assays to investigate the role of Sultr1;2, which is the major selenium transporter gene, in recruiting microbial communities to regulate soil selenium bioavailability and plant selenium uptake. Results shows that the overexpression of Sultr1;2 in tomato significantly enriched Methylobacterium genus. The isolated strains of Methylobacterium possess multiple plant-growth-promoting functions and selenium oxidation capability and inoculation with these strains increases soil selenium availability. The upregulated metabolites of Sultr1;2-overexpressing tomato were significantly enriched in the arginine and proline metabolism pathway. The key upregulated metabolites significantly improved the growth rate and selenium-oxidizing ability of Methylobacterium strains, and the combined addition of key upregulated metabolites and synthetic microbial community significantly increased soil selenium bioavailability and plant selenium uptake. This study provides insights into leveraging plant genetic engineering to identify key functional microbial communities for sustainable selenium-rich agricultural development.
Collapse
Affiliation(s)
- Zheng Lei
- College of Resources and Environment, Huazhong Agricultural University/Research Center of Trace Elements, Wuhan 430070, China
- State Key Laboratory of Environmental Geochemistry, Guiyang 550081, China
- State Key Laboratory of North China Crop Improvement and Regulation, Baoding 071001, China
| | - Huaxing Wang
- College of Resources and Environment, Huazhong Agricultural University/Research Center of Trace Elements, Wuhan 430070, China
| | - Hua Zhang
- State Key Laboratory of Environmental Geochemistry, Guiyang 550081, China
| | - Wenju Liu
- State Key Laboratory of North China Crop Improvement and Regulation, Baoding 071001, China
| | - Zhenyu He
- Wuhan Center for Disease Prevention and Control, Department of Environmental Health and Food Safety, Wuhan 430022, China
| | - Zhen Wang
- School of Environmental Science and Engineering/Hubei Key Laboratory of Mine Environmental Pollution Control & Remediation, Hubei Polytechnic University, Huangshi 435003, China
| | - Huan Zhang
- College of Resources and Environment, Huazhong Agricultural University/Research Center of Trace Elements, Wuhan 430070, China
| | - Yin Wang
- College of Resources and Environment, Huazhong Agricultural University/Research Center of Trace Elements, Wuhan 430070, China
| | - Yanni Tang
- College of Resources and Environment, Huazhong Agricultural University/Research Center of Trace Elements, Wuhan 430070, China
| | - Chengxiao Hu
- College of Resources and Environment, Huazhong Agricultural University/Research Center of Trace Elements, Wuhan 430070, China
| | - Xiaohu Zhao
- College of Resources and Environment, Huazhong Agricultural University/Research Center of Trace Elements, Wuhan 430070, China
| |
Collapse
|
8
|
Jourdain L, Gu W. Designing synthetic microbial communities for enhanced anaerobic waste treatment. Appl Environ Microbiol 2025:e0040425. [PMID: 40377302 DOI: 10.1128/aem.00404-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2025] Open
Abstract
Synthetic microbial communities (SynComs) are powerful tools for investigating microbial interactions and community assembly by focusing on minimal yet functionally representative members. Here, we will highlight key principles for designing SynComs, specifically emphasizing the anaerobic digestion (AD) microbiome for waste treatment and upcycling. The AD process has traditionally been used to reduce organic waste volume while producing biogas as a renewable energy source. Its microbiome features well-defined trophic layers and metabolic groups. There has been growing interest in repurposing the AD process to produce value-added products and chemical precursors, contributing to sustainable waste management and the goals of a circular economy. Optimizing the AD process requires a better understanding of microbial interactions and the influence of both biotic and abiotic parameters, where SynComs offer great promise. Focusing on AD microbiomes, we review the principles of SynComs' design, including keystone taxa and function, cross-feeding interactions, and metabolic redundancy, as well as how modeling approaches could guide SynComs design. Furthermore, we address practical considerations for working with AD SynComs and examine constructed SynComs designed for anaerobic waste digestion. Finally, we discuss the challenges associated with designing and applying SynComs to enhance our understanding of the AD process. This review aims to explore the use of synthetic communities in studying anaerobic digestion and highlights their potential for developing innovative biotechnological processes.
Collapse
Affiliation(s)
- Lisa Jourdain
- MICROBE laboratory, Institute of Environmental Engineering, School of Architecture, Civil and Environmental Engineering, Swiss Federal Institute of Technology, Lausanne, Switzerland
| | - Wenyu Gu
- MICROBE laboratory, Institute of Environmental Engineering, School of Architecture, Civil and Environmental Engineering, Swiss Federal Institute of Technology, Lausanne, Switzerland
| |
Collapse
|
9
|
Zhu W, Han S, Cheng Y, Yu Z, Zhao G, He X. Root zone microbial communities of Artemisia ordosica Krasch. at different successional stages in Mu US Sandy Land: a metagenomic perspective with culturomics insights. Front Microbiol 2025; 16:1585700. [PMID: 40415944 PMCID: PMC12098380 DOI: 10.3389/fmicb.2025.1585700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Accepted: 04/22/2025] [Indexed: 05/27/2025] Open
Abstract
Phytoremediation offers a promising strategy for addressing the global challenge of land desertification. In the Mu Us Sandy Land of China, Artemisia ordosica Krasch. has emerged as a key species for desertification control. Its root-associated microbial communities may enhance the plant's adaptability to sandy, nutrient-poor environments. Despite their ecological significance, comprehensive investigations of these microbial communities remain limited. In this study, microbial communities in the root zone (i.e., rhizosphere soil, non-rhizosphere soil, and root endosphere) of A. ordosica were analyzed via high-throughput sequencing and different isolation approaches across successional stages (moving dunes, semi-fixed dunes, and fixed dunes) in the Mu Us Sandy Land of northern China. Metagenomic analysis revealed that microbial diversity was significantly higher in the rhizosphere and non-rhizosphere soils than in the root endosphere; moving dunes exhibited lower diversity than semi-fixed and fixed dunes. Meanwhile, distinct microbial community structures across successional stages were revealed by principal coordinates analysis (PCoA), demonstrating substantial differences between the root endosphere and other zones. Environmental factors, including nitrate nitrogen (NO3 --N), organic matter (OM), available potassium (AK), and total potassium (TK), significantly influenced microbial community composition. Moreover, dominant genera such as Arthrobacter and Paraphoma were identified, potentially contributing to A. ordosica growth. From a culturomics perspective, 93 bacterial isolates were obtained using conventional streak plate and colony pick methods, with Firmicutes (37.63%) and Bacillus (23.66%) identified as the dominant taxa. In parallel, 14 fungal strains were isolated, primarily belonging to Penicillium (35.71%) and Aspergillus (21.43%), both of which are well-documented for their stress tolerance in arid ecosystems. A high-throughput cultivation and identification method, tailored to recover rare and slow-growing bacteria, was employed and successfully broadened the cultured diversity to include Proteobacteria (46.43%) and representatives of the rarely cultivated Deinococcus-Thermus phylum. This study provides metagenomic with culturomics insights into the microbial communities associated with A. ordosica, enhancing the understanding of plant-microbe interactions in sandy land ecosystems.
Collapse
Affiliation(s)
- Wen Zhu
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing, China
| | - Shuo Han
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing, China
| | - Yao Cheng
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing, China
| | - Zhihong Yu
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing, China
| | - Guozhu Zhao
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing, China
| | - Xiangwei He
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing, China
| |
Collapse
|
10
|
Chen Z, Wang P, Zhao S, Sun Y, Liu Y, Chen S, Chen W, Zhao G, Wei G, Chen C. Functionalized Silica Nanoparticles Mitigate Salt Stress in Soybean: Comprehensive Insights of Physiological, Metabolomic, and Microbiome Responses. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:10814-10825. [PMID: 40272208 DOI: 10.1021/acs.jafc.5c00194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
Silica nanoparticles (SiO2 NPs) have potential for mitigating salt stress in crops; however, the effects of surface modifications in enhancing their effectiveness remain unclear. This study investigated the effects of pristine and functionalized SiO2 NPs (SiO2-NH2 and SiO2-COOH) on soybean growth, root metabolism, and microbiome dynamics under 200 mM NaCl stress. All SiO2 NPs treatments significantly reduced Na+/K+, with SiO2-COOH NPs showing the greatest efficacy, reducing by 46.6%. Enhanced salt tolerance correlated with altered root metabolism, including increased l-tyrosine, uridine, and indole-3-acetamide levels and enrichment of stress-response pathways. Furthermore, SiO2-COOH NPs enhanced microbial diversity, increasing the abundance of beneficial genera Variovorax and Pseudomonas in the endosphere, and Haliangium and Arthrobacter in the rhizosphere. Microbe-metabolite correlations suggest that altered root exudation under functionalized SiO2 NPs treatments selectively recruits beneficial bacteria, enhancing salt tolerance. These findings highlight the potential of functionalized SiO2 NPs, particularly SiO2-COOH, as nanoenabled biostimulants for sustainable agriculture.
Collapse
Affiliation(s)
- Zhidi Chen
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Pan Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
- College of Tea Science, Xinyang Agriculture and Forestry University, Xinyang 464000, Henan, China
| | - Simin Zhao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yangping Sun
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yidan Liu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Sanfeng Chen
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Wenfeng Chen
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences and Rhizobium Research Center, China Agricultural University, Beijing 100193, China
| | - Gangyong Zhao
- Tianjin Kunhe Bio-technology Group Co., Ltd., Tianjin 300450, China
| | - Gehong Wei
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Chun Chen
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
11
|
Liu S, Wu J, Cheng Z, Wang H, Jin Z, Zhang X, Zhang D, Xie J. Microbe-mediated stress resistance in plants: the roles played by core and stress-specific microbiota. MICROBIOME 2025; 13:111. [PMID: 40320520 PMCID: PMC12051278 DOI: 10.1186/s40168-025-02103-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 03/31/2025] [Indexed: 05/08/2025]
Abstract
BACKGROUND Plants in natural surroundings frequently encounter diverse forms of stress, and microbes are known to play a crucial role in assisting plants to withstand these challenges. However, the mining and utilization of plant-associated stress-resistant microbial sub-communities from the complex microbiome remains largely elusive. RESULTS This study was based on the microbial communities over 13 weeks under four treatments (control, drought, salt, and disease) to define the shared core microbiota and stress-specific microbiota. Through co-occurrence network analysis, the dynamic change networks of microbial communities under the four treatments were constructed, revealing distinct change trajectories corresponding to different treatments. Moreover, by simulating species extinction, the impact of the selective removal of microbes on network robustness was quantitatively assessed. It was found that under varying environmental conditions, core microbiota made significant potential contributions to the maintenance of network stability. Our assessment utilizing null and neutral models indicated that the assembly of stress-specific microbiota was predominantly driven by deterministic processes, whereas the assembly of core microbiota was governed by stochastic processes. We also identified the microbiome features from functional perspectives: the shared microbiota tended to enhance the ability of organisms to withstand multiple types of environmental stresses and stress-specific microbial communities were associated with the diverse mechanisms of mitigating specific stresses. Using a culturomic approach, 781 bacterial strains were isolated, and nine strains were selected to construct different SynComs. These experiments confirmed that communities containing stress-specific microbes effectively assist plants in coping with environmental stresses. CONCLUSIONS Collectively, we not only systematically revealed the dynamics variation patterns of rhizosphere microbiome under various stresses, but also sought constancy from the changes, identified the potential contributions of core microbiota and stress-specific microbiota to plant stress tolerance, and ultimately aimed at the beneficial microbial inoculation strategies for plants. Our research provides novel insights into understanding the microbe-mediated stress resistance process in plants. Video Abstract.
Collapse
Grants
- 2020132607 Forestry and Grassland Science and Technology Innovation Youth Top Talent Project of China
- 2020132607 Forestry and Grassland Science and Technology Innovation Youth Top Talent Project of China
- 2020132607 Forestry and Grassland Science and Technology Innovation Youth Top Talent Project of China
- 2020132607 Forestry and Grassland Science and Technology Innovation Youth Top Talent Project of China
- 2020132607 Forestry and Grassland Science and Technology Innovation Youth Top Talent Project of China
- 2020132607 Forestry and Grassland Science and Technology Innovation Youth Top Talent Project of China
- 2020132607 Forestry and Grassland Science and Technology Innovation Youth Top Talent Project of China
- 2020132607 Forestry and Grassland Science and Technology Innovation Youth Top Talent Project of China
- 2022YFD2201600, 2022YFD2200602, 2023YFD2200203 Fundamental Research Funds for the National Key R&D Program of China
- 2022YFD2201600, 2022YFD2200602, 2023YFD2200203 Fundamental Research Funds for the National Key R&D Program of China
- 2022YFD2201600, 2022YFD2200602, 2023YFD2200203 Fundamental Research Funds for the National Key R&D Program of China
- 2022YFD2201600, 2022YFD2200602, 2023YFD2200203 Fundamental Research Funds for the National Key R&D Program of China
- 2022YFD2201600, 2022YFD2200602, 2023YFD2200203 Fundamental Research Funds for the National Key R&D Program of China
- 2022YFD2201600, 2022YFD2200602, 2023YFD2200203 Fundamental Research Funds for the National Key R&D Program of China
- 2022YFD2201600, 2022YFD2200602, 2023YFD2200203 Fundamental Research Funds for the National Key R&D Program of China
- 2022YFD2201600, 2022YFD2200602, 2023YFD2200203 Fundamental Research Funds for the National Key R&D Program of China
- 32371906, 32022057 Project of the National Natural Science Foundation of China
- 32371906, 32022057 Project of the National Natural Science Foundation of China
- 32371906, 32022057 Project of the National Natural Science Foundation of China
- 32371906, 32022057 Project of the National Natural Science Foundation of China
- 32371906, 32022057 Project of the National Natural Science Foundation of China
- 32371906, 32022057 Project of the National Natural Science Foundation of China
- 32371906, 32022057 Project of the National Natural Science Foundation of China
- 32371906, 32022057 Project of the National Natural Science Foundation of China
- No. B20050 The 111 Project
- No. B20050 The 111 Project
- No. B20050 The 111 Project
- No. B20050 The 111 Project
- No. B20050 The 111 Project
- No. B20050 The 111 Project
- No. B20050 The 111 Project
- Fundamental Research Funds for the National Key R&D Program of China
Collapse
Affiliation(s)
- Sijia Liu
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, People's Republic of China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| | - Jiadong Wu
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, People's Republic of China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| | - Zhen Cheng
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, People's Republic of China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| | - Haofei Wang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, People's Republic of China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| | - Zhelun Jin
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, People's Republic of China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| | - Xiang Zhang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, People's Republic of China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| | - Deqiang Zhang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, People's Republic of China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| | - Jianbo Xie
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China.
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, People's Republic of China.
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China.
| |
Collapse
|
12
|
Ma Q, Zhou Y, Parales RE, Jiao S, Ruan Z, Li L. Effects of herbicide mixtures on the diversity and composition of microbial community and nitrogen cycling function on agricultural soil: A field experiment in Northeast China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 372:125965. [PMID: 40043878 DOI: 10.1016/j.envpol.2025.125965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/14/2025] [Accepted: 03/02/2025] [Indexed: 03/09/2025]
Abstract
Herbicide mixtures application is a widespread and effective practice in modern agriculture; however, a knowledge gap exists regarding the potential ecotoxicological effects of herbicide mixtures in agricultural systems. Here, the effects of various doses of herbicide mixtures (atrazine, nicosulfuron, and mesotrione) under different varieties of maize cultivation on the structure and function of microbial communities and soil chemical parameters were clarified through field experiments. The results showed that the application of herbicide mixtures increased the bacterial and fungal community alpha diversity at jointing and maturity, indicating a prolonged effect of the herbicide mixtures. Moreover, herbicide mixtures alter the composition of bacterial and fungal communities, with sensitive taxa suppressed and herbicide-tolerant taxa enriched. The herbicide mixtures significantly reduced the abundances of Bacillus even at lower doses, but Penicillum was enriched. FAPROTAX analysis and quantitative PCR (qPCR) results showed that herbicide mixtures inhibited the soil nitrogen-cycle process and related genes AOA-amoA, AOB-amoA, and nifH at maize seedling stage. Moreover, network analysis showed that low concentrations of the herbicide mixtures increased bacterial interactions while high concentrations inhibited them, which indicated that the network complexity may be herbicide concentration dependent. A synthetic community (SynCom) consisting of six bacterial strains was established for the biodegradation of the herbicide mixtures based on the analysis of the bacterial network, which resulted in an increase in the degradation efficiency of nicosulfuron by 15.90%. Moreover, potted maize experiment showed that the addition of the SynCom alleviated the toxic effects of herbicide mixtures on the plants. In summary, this study provides a comprehensive perspective for assessing the ecological risk at taxonomic and functional levels and the biodegradation approach of herbicide mixtures residue on agricultural soils in Northeastern China.
Collapse
Affiliation(s)
- Qingyun Ma
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Yiqing Zhou
- State Key Laboratory of Efficient Utilization of Arable Land in China, CAAS-CIAT Joint Laboratory in Advanced Technologies for Sustainable Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Rebecca E Parales
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, CA, USA
| | - Siyu Jiao
- State Key Laboratory of Efficient Utilization of Arable Land in China, CAAS-CIAT Joint Laboratory in Advanced Technologies for Sustainable Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China; Xinjiang Production & Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, College of Life Science and Technology, Tarim University, Alar, 843300, PR China
| | - Zhiyong Ruan
- State Key Laboratory of Efficient Utilization of Arable Land in China, CAAS-CIAT Joint Laboratory in Advanced Technologies for Sustainable Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China.
| | - Lin Li
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China.
| |
Collapse
|
13
|
Salma Santhosh S, Meena S, Baskar M, Karthikeyan S, Vanniarajan C, Ramesh T. Transformative strategies for saline soil restoration: Harnessing halotolerant microorganisms and advanced technologies. World J Microbiol Biotechnol 2025; 41:140. [PMID: 40289223 DOI: 10.1007/s11274-025-04342-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 03/27/2025] [Indexed: 04/30/2025]
Abstract
Soil salinity is a critical global challenge that severely impairs crop productivity and soil health by disrupting water uptake, nutrient acquisition, and ionic balance in plants, thereby posing a significant threat to food security. This review underscores innovative strategies to mitigate salinity stress, focusing on the pivotal role of halotolerant microorganisms and their synergistic interactions with plants. Halotolerant microorganisms enhance plant resilience through diverse mechanisms under salinity, including exopolysaccharide production, sodium sequestration, and phytohormone regulation. It improves ionic balance, nutrient uptake, and root development, facilitated by osmoregulatory and genetic adaptations. In this discussion, we explored emerging technologies, including genome editing (e.g., CRISPR-Cas9), synthetic biology, and advanced omics-based tools such as metagenomics and metatranscriptomics. These cutting-edge approaches offer profound insights into microbial diversity and their functional adaptations to saline environments. By leveraging these technologies, it is possible to design targeted bioremediation strategies through the customization of microbial functionalities to address specific environmental challenges effectively. Advanced methodologies, such as microbial volatile organic compounds (mVOCs), nanotechnology, and stress-tolerant microbial consortia, significantly enhance plant stress tolerance and facilitate soil restoration. Moreover, integrating digital technologies, including machine learning and artificial intelligence (AI), optimizes bioremediation processes by providing precise, scalable, and adaptable solutions tailored to diverse agricultural ecosystems. The synergistic application of halotolerant microbe-mediated approaches with advanced biotechnological and digital innovations presents a transformative strategy for saline soil restoration. Future research should focus on harmonizing these technologies and methodologies to maximize plant-microbe interactions and establish resilient, sustainable agricultural systems.
Collapse
Affiliation(s)
- S Salma Santhosh
- Department of Soil Science & Agricultural Chemistry, Anbil Dharmalingam Agricultural College & Research Institute, Tamil Nadu Agricultural University, Tiruchirappalli, Tamil Nadu, India.
| | - S Meena
- Department of Soil Science & Agricultural Chemistry, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India.
| | - M Baskar
- Department of Soil Science & Agricultural Chemistry, Anbil Dharmalingam Agricultural College & Research Institute, Tamil Nadu Agricultural University, Tiruchirappalli, Tamil Nadu, India
| | - S Karthikeyan
- Centre for Post Harvest Technology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India.
| | - C Vanniarajan
- Anbil Dharmalingam Agricultural College & Research Institute, Tamil Nadu Agricultural University, Tiruchirappalli, Tamil Nadu, India
| | - T Ramesh
- Department of Agronomy, Anbil Dharmalingam Agricultural College & Research Institute, Tamil Nadu Agricultural University, Tiruchirappalli, Tamil Nadu, India
| |
Collapse
|
14
|
Ren CG, Kong CC, Li SM, Wang XJ, Yu X, Wang YC, Qin S, Cui HL. Symbiotic microalgae and microbes: a new frontier in saline agriculture. Front Microbiol 2025; 16:1540274. [PMID: 40330728 PMCID: PMC12052889 DOI: 10.3389/fmicb.2025.1540274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 03/31/2025] [Indexed: 05/08/2025] Open
Abstract
With the growing human population worldwide, innovative agricultural development is needed to meet food security needs. However, this has inadvertently led to problematic irrigation practices and overuse of agrochemicals. Such practices can exacerbate soil salinization, which prevents plant growth. As a progressively widespread and escalating problem, soil salinization poses a major threat to global food security. Compared with the traditional use of microalgae or microorganisms that act on plant growth, microalgae-microorganism symbiosis has significant advantages in promoting plant growth. Microalgae and microorganisms can work together to provide a wide range of nutrients required by plants, and they exhibit nutrient complementarity, which supports plant growth. Here, the development potential of microalgae-microbial symbiosis for enhancing plant salt tolerance was investigated. Our review demonstrated that the metabolic complementarity between microalgae and microorganisms can enhance plant salt tolerance. The diversity of a microalgae-microorganism symbiotic system can improve ecosystem stability and resistance and reduce the incidence of plant disease under salt stress. These systems produce bioactive substances (e.g., phytohormones) that promote plant growth, which can improve crop yield, and they can improve soil structure by increasing organic matter and improving water storage capacity and soil fertility. Exploiting the synergistic effects between microalgae and beneficial microorganisms has biotechnological applications that offer novel solutions for saline agriculture to mitigate the deleterious effects of soil salinity on plant health and yield. However, there are several implementation challenges, such as allelopathic interactions and autotoxicity. To make microalgae-bacteria consortia economically viable for agricultural applications, optimal strains and species need to be identified and strategies need to be employed to obtain sufficient biomass in a cost-effective manner. By elucidating the synergistic mechanisms, ecological stability, and resource utilization potential of microalgae-microbial symbiotic systems, this review clarifies salt stress responses and promotes the shift of saline-alkali agriculture from single bioremediation to systematic ecological engineering.
Collapse
Affiliation(s)
- Cheng-Gang Ren
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| | - Cun-Cui Kong
- College of Resources and Environmental Engineering, Ludong University, Yantai, China
| | - Si-Ming Li
- College of Agronomy, Shanxi Agricultural University, Jinzhong, China
| | - Xiao-Jing Wang
- College of Resources and Environmental Engineering, Ludong University, Yantai, China
| | - Xiao Yu
- College of Agronomy, Shanxi Agricultural University, Jinzhong, China
| | - Yin-Chu Wang
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
- National Basic Science Data Center, Beijing, China
| | - Song Qin
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
- Academician Workstation of Agricultural High-Tech Industrial Area of the Yellow River Delta, National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying, China
| | - Hong-Li Cui
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| |
Collapse
|
15
|
Ma J, Peng Q, Chen S, Liu Z, Zhang W, Zhang C, Du X, Sun S, Peng W, Lei Z, Zhang L, Su P, Zhang D, Liu Y. Microbiome Migration from Soil to Leaves in Maize and Rice. Microorganisms 2025; 13:947. [PMID: 40284783 PMCID: PMC12029745 DOI: 10.3390/microorganisms13040947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 04/13/2025] [Accepted: 04/15/2025] [Indexed: 04/29/2025] Open
Abstract
The interactions between plants and microbes are essential for enhancing crop productivity. However, the mechanisms underlying host-specific microbiome migration and functional assembly remain poorly understood. In this study, microbiome migration from soil to leaves in rice (Oryza sativa) and maize (Zea mays) was analyzed through 16S rRNA sequencing and phenotypic assessments. When we used the same soil microbiome source to grow rice and maize, microbiota and functional traits were specifically enriched by maize in its phyllosphere and rhizosphere. This indicated that plants can selectively assemble microbiomes from a shared microbiota source. Therefore, 22 strains were isolated from the phyllospheres of rice and maize and used to construct a synthetic microbial community (SynCom). When the soil for rice and maize growth was inoculated with the SynCom, strains belonging to Bacillus were enriched in the maize phyllosphere compared to the rice phyllosphere. Additionally, a strain belonging to Rhizobium was enriched in the maize rhizosphere compared to the rice rhizosphere. These results suggest that plant species influence the migration of microbiota within their respective compartments. Compared with mock inoculation, SynCom inoculation significantly enhanced plant growth. When we compared the microbiomes, strains belonging to Achromobacter, which were assembled by both rice and maize, played a role in enhancing plant growth. Our findings underscore the importance of microbial migration dynamics and functional assembly in leveraging plant-microbe interactions for sustainable agriculture.
Collapse
Affiliation(s)
- Jiejia Ma
- Longping Branch, College of Biology, Hunan University, Changsha 410082, China; (J.M.); (S.C.); (Z.L.); (Z.L.); (D.Z.)
- State Key Laboratory of Hybrid Rice and Institute of Plant Protection, Academy of Agricultural Sciences, Changsha 410125, China; (Q.P.); (W.Z.); (W.P.); (L.Z.)
| | - Qianze Peng
- State Key Laboratory of Hybrid Rice and Institute of Plant Protection, Academy of Agricultural Sciences, Changsha 410125, China; (Q.P.); (W.Z.); (W.P.); (L.Z.)
| | - Silu Chen
- Longping Branch, College of Biology, Hunan University, Changsha 410082, China; (J.M.); (S.C.); (Z.L.); (Z.L.); (D.Z.)
- State Key Laboratory of Hybrid Rice and Institute of Plant Protection, Academy of Agricultural Sciences, Changsha 410125, China; (Q.P.); (W.Z.); (W.P.); (L.Z.)
| | - Zhuoxin Liu
- Longping Branch, College of Biology, Hunan University, Changsha 410082, China; (J.M.); (S.C.); (Z.L.); (Z.L.); (D.Z.)
- State Key Laboratory of Hybrid Rice and Institute of Plant Protection, Academy of Agricultural Sciences, Changsha 410125, China; (Q.P.); (W.Z.); (W.P.); (L.Z.)
| | - Weixing Zhang
- State Key Laboratory of Hybrid Rice and Institute of Plant Protection, Academy of Agricultural Sciences, Changsha 410125, China; (Q.P.); (W.Z.); (W.P.); (L.Z.)
| | - Chi Zhang
- Longping Branch, College of Biology, Hunan University, Changsha 410082, China; (J.M.); (S.C.); (Z.L.); (Z.L.); (D.Z.)
- State Key Laboratory of Hybrid Rice and Institute of Plant Protection, Academy of Agricultural Sciences, Changsha 410125, China; (Q.P.); (W.Z.); (W.P.); (L.Z.)
| | - Xiaohua Du
- State Key Laboratory of Hybrid Rice and Institute of Plant Protection, Academy of Agricultural Sciences, Changsha 410125, China; (Q.P.); (W.Z.); (W.P.); (L.Z.)
| | - Shue Sun
- State Key Laboratory of Hybrid Rice and Institute of Plant Protection, Academy of Agricultural Sciences, Changsha 410125, China; (Q.P.); (W.Z.); (W.P.); (L.Z.)
| | - Weiye Peng
- State Key Laboratory of Hybrid Rice and Institute of Plant Protection, Academy of Agricultural Sciences, Changsha 410125, China; (Q.P.); (W.Z.); (W.P.); (L.Z.)
| | - Ziling Lei
- Longping Branch, College of Biology, Hunan University, Changsha 410082, China; (J.M.); (S.C.); (Z.L.); (Z.L.); (D.Z.)
- State Key Laboratory of Hybrid Rice and Institute of Plant Protection, Academy of Agricultural Sciences, Changsha 410125, China; (Q.P.); (W.Z.); (W.P.); (L.Z.)
| | - Limei Zhang
- State Key Laboratory of Hybrid Rice and Institute of Plant Protection, Academy of Agricultural Sciences, Changsha 410125, China; (Q.P.); (W.Z.); (W.P.); (L.Z.)
| | - Pin Su
- Longping Branch, College of Biology, Hunan University, Changsha 410082, China; (J.M.); (S.C.); (Z.L.); (Z.L.); (D.Z.)
- State Key Laboratory of Hybrid Rice and Institute of Plant Protection, Academy of Agricultural Sciences, Changsha 410125, China; (Q.P.); (W.Z.); (W.P.); (L.Z.)
| | - Deyong Zhang
- Longping Branch, College of Biology, Hunan University, Changsha 410082, China; (J.M.); (S.C.); (Z.L.); (Z.L.); (D.Z.)
- State Key Laboratory of Hybrid Rice and Institute of Plant Protection, Academy of Agricultural Sciences, Changsha 410125, China; (Q.P.); (W.Z.); (W.P.); (L.Z.)
| | - Yong Liu
- Longping Branch, College of Biology, Hunan University, Changsha 410082, China; (J.M.); (S.C.); (Z.L.); (Z.L.); (D.Z.)
- State Key Laboratory of Hybrid Rice and Institute of Plant Protection, Academy of Agricultural Sciences, Changsha 410125, China; (Q.P.); (W.Z.); (W.P.); (L.Z.)
| |
Collapse
|
16
|
Li HP, Ma HB, Zhang JL. Halo-tolerant plant growth-promoting bacteria-mediated plant salt resistance and microbiome-based solutions for sustainable agriculture in saline soils. FEMS Microbiol Ecol 2025; 101:fiaf037. [PMID: 40194942 PMCID: PMC12051855 DOI: 10.1093/femsec/fiaf037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 02/26/2025] [Accepted: 04/07/2025] [Indexed: 04/09/2025] Open
Abstract
Soil salinization has been the major form of soil degradation under the dual influence of climate change and high-intensity human activities, threatening global agricultural sustainability and food security. High salt concentrations induce osmotic imbalance, ion stress, oxidative damage, and other hazards to plants, resulting in retarded growth, reduced biomass, and even total crop failure. Halo-tolerant plant growth promoting rhizobacteria (HT-PGPR), as a widely distributed group of beneficial soil microorganisms, are emerging as a valuable biological tool for mitigating the toxic effects of high salt concentrations and improve plant growth while remediating degraded saline soil. Here, the current status, harm, and treatment measures of global soil salinization are summarized. The mechanism of salt tolerance and growth promotion induced by HT-PGPR are reviewed. We highlight that advances in multiomics technologies are helpful for exploring the genetic and molecular mechanisms of microbiota centered on HT-PGPR to address the issue of plant losses in saline soil. Future research is urgently needed to comprehensively and robustly determine the interaction mechanism between the root microbiome centered on HT-PGPR and salt-stressed plants via advanced means to maximize the efficacy of HT-PGPR as a microbial agent.
Collapse
Affiliation(s)
- Hui-Ping Li
- School of Forestry and Prataculture, Ningxia University, Yinchuan, Ningxia 750021, China
- Ningxia Grassland and Animal Husbandry Engineering Technology Research Center, Ningxia 750021, China
- Key Laboratory for Model Innovation in Forage Production Efficiency, Ministry of Agriculture and Rural Affairs, Yinchuan 750021, China
| | - Hong-Bin Ma
- School of Forestry and Prataculture, Ningxia University, Yinchuan, Ningxia 750021, China
- Ningxia Grassland and Animal Husbandry Engineering Technology Research Center, Ningxia 750021, China
- Key Laboratory for Model Innovation in Forage Production Efficiency, Ministry of Agriculture and Rural Affairs, Yinchuan 750021, China
| | - Jin-Lin Zhang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
17
|
Shao Y, Gu S, Peng H, Zhang L, Li S, Berendsen RL, Yang T, Dong C, Wei Z, Xu Y, Shen Q. Synergic interactions between Trichoderma and the soil microbiomes improve plant iron availability and growth. NPJ Biofilms Microbiomes 2025; 11:56. [PMID: 40199867 PMCID: PMC11978894 DOI: 10.1038/s41522-025-00684-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 03/17/2025] [Indexed: 04/10/2025] Open
Abstract
Iron bioavailability is often limited especially in calcareous soils. Trichoderma harzianum strongly improves plant iron uptake and growth in calcareous soils. However, little is known about the mechanisms by which T. harzianum mobilizes iron in calcareous soils. Here, the model strain T. harzianum NJAU4742 and a synthetic microbial community (SynCom) was used to show that the efficacy of T. harzianum in enhancing plant iron nutrition in calcareous soils depends on the soil microbiome. Enhanced iron-mobilization functions of the SynCom were observed in the presence of T. harzianum NJAU4742. Concurrently, T. harzianum NJAU4742 improved the iron-mobilization capacity of the SynCom by enriching strains that are able to do so. Finally, Chryseobacterium populi was identified as a key driver of iron mobilization, while their synergistic colonization further enhances this process. This study unveils a pivotal mechanism by which T. harzianum NJAU4742-mediated re-structuring of the soil microbiome and ameliorates plant iron nutrition.
Collapse
Affiliation(s)
- Yadong Shao
- Jiangsu Provincial Key Laboratory for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, National Engineering Research Center for Organic-based Fertilizers, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Shaohua Gu
- Jiangsu Provincial Key Laboratory for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, National Engineering Research Center for Organic-based Fertilizers, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
- College of Resources and Environmental Sciences, State Key Laboratory of Nutrient Use and Management (SKL-NUM), National Academy of Agriculture Green Development, China Agricultural University, Beijing, 100193, China
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Haiying Peng
- Jiangsu Provincial Key Laboratory for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, National Engineering Research Center for Organic-based Fertilizers, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Lisheng Zhang
- Jiangsu Provincial Key Laboratory for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, National Engineering Research Center for Organic-based Fertilizers, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Sidong Li
- Jiangsu Provincial Key Laboratory for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, National Engineering Research Center for Organic-based Fertilizers, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Roeland L Berendsen
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Tianjie Yang
- Jiangsu Provincial Key Laboratory for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, National Engineering Research Center for Organic-based Fertilizers, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China.
| | - Caixia Dong
- Jiangsu Provincial Key Laboratory for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, National Engineering Research Center for Organic-based Fertilizers, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China.
| | - Zhong Wei
- Jiangsu Provincial Key Laboratory for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, National Engineering Research Center for Organic-based Fertilizers, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Yangchun Xu
- Jiangsu Provincial Key Laboratory for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, National Engineering Research Center for Organic-based Fertilizers, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Qirong Shen
- Jiangsu Provincial Key Laboratory for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, National Engineering Research Center for Organic-based Fertilizers, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
18
|
Ge AH, Wang E. Exploring the plant microbiome: A pathway to climate-smart crops. Cell 2025; 188:1469-1485. [PMID: 40118032 DOI: 10.1016/j.cell.2025.01.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/19/2024] [Accepted: 01/26/2025] [Indexed: 03/23/2025]
Abstract
The advent of semi-dwarf crop varieties and fertilizers during the Green Revolution boosted yields and food security. However, unintended consequences such as environmental pollution and greenhouse gas emissions underscore the need for strategies to mitigate these impacts. Manipulating rhizosphere microbiomes, an aspect overlooked during crop domestication, offers a pathway for sustainable agriculture. We propose that modulating plant microbiomes can help establish "climate-smart crops" that improve yield and reduce negative impacts on the environment. Our proposed framework integrates plant genotype, root exudates, and microbes to optimize nutrient cycling, improve stress resilience, and expedite carbon sequestration. Integrating unselected ecological traits into crop breeding can promote agricultural sustainability, illuminating the nexus between plant genetics and ecosystem functioning.
Collapse
Affiliation(s)
- An-Hui Ge
- New Cornerstone Science Laboratory, Key Laboratory of Plant Carbon Capture, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Ertao Wang
- New Cornerstone Science Laboratory, Key Laboratory of Plant Carbon Capture, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
19
|
Abou Jaoudé R, Luziatelli F, Ficca AG, Ruzzi M. Soil microbiome transplantation to enhance the drought response of Salvia officinalis L. Front Microbiol 2025; 16:1553922. [PMID: 40143859 PMCID: PMC11937098 DOI: 10.3389/fmicb.2025.1553922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Accepted: 02/24/2025] [Indexed: 03/28/2025] Open
Abstract
Introduction Soil microbiome transplantation is a promising technique for enhancing plant holobiont response to abiotic and biotic stresses. However, the rapid assessment of microbiome-plant functional integration in short-term experiments remains a challenge. Methods This study investigates the potential of three evergreen sclerophyll species, Pistacia lentiscus (PL), Rosmarinus officinalis (RO), and Juniperus phoenicea (JP), to serve as a reservoir for microbial communities able to confer enhanced tolerance to drought in Salvia officinalis cultivated under water shortage, by analyzing biomass production, plant phenotype, plant ecophysiological responses, and leaf metabolome. Results Our results showed that the inoculation with the three rhizomicrobiomes did not enhance total plant biomass, while it significantly influenced plant architecture, ecophysiology, and metabolic responses. The inoculation with the JP rhizomicrobiome led to a significant increase in root biomass, resulting in smaller leaves and a higher leaf number. These morphological changes suggest improved water acquisition and thermoregulation strategies. Furthermore, distinct stomatal conductance patterns were observed in plants inoculated with microbiomes from PJ and PL, indicating altered responses to drought stress. The metabolome analysis demonstrated that rhizomicrobiome transplantation significantly influenced the leaf metabolome of S. officinalis. All three rhizomicrobiomes promoted the accumulation of phenolic compounds, terpenoids, and alkaloids, known to play crucial roles in plant defense and stress response. Five molecules (genkwanin, beta-ionone, sumatrol, beta-peltatin-A-methyl ester, and cinnamoyl-beta-D-glucoside) were commonly accumulated in leaves of inoculated sage, independently of the microbiome. Furthermore, unique metabolic alterations were observed depending on the specific inoculated rhizomicrobiome, highlighting the specialized nature of plant-microbe interactions and the possible use of these specific molecules as biomarkers to monitor the recruitment of beneficial microorganisms. Discussion This study provides compelling evidence that microbiome transplantation can induce phenotypic and metabolic changes in recipient plants, potentially enhancing their resilience to water scarcity. Our findings emphasize the importance of considering multiple factors, including biomass, physiology, and metabolomics, when evaluating the effectiveness of microbiome engineering for improving plant stress tolerance.
Collapse
Affiliation(s)
- Renée Abou Jaoudé
- Department for Innovation in Biological, Agrofood and Forest Systems (DIBAF), University of Tuscia, Viterbo, Italy
| | | | | | - Maurizio Ruzzi
- Department for Innovation in Biological, Agrofood and Forest Systems (DIBAF), University of Tuscia, Viterbo, Italy
| |
Collapse
|
20
|
Zhang H, Liang L, Du X, Shi G, Wang X, Tang Y, Lei Z, Wang Y, Yi C, Hu C, Zhao X. Metabolism Interaction Between Bacillus cereus SESY and Brassica napus Contributes to Enhance Host Selenium Absorption and Accumulation. PLANT, CELL & ENVIRONMENT 2025; 48:2200-2220. [PMID: 39559947 DOI: 10.1111/pce.15278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 10/24/2024] [Accepted: 10/30/2024] [Indexed: 11/20/2024]
Abstract
The use of beneficial bacteria to enhance selenium absorption in crops has been widely studied. However, it is unclear how the interaction between bacteria and plants affects selenium absorption in crops. Here, pot experiments and Murashige and Skoog medium (MS) experiments were performed. Transcriptomic analyses were used to reveal the interaction between Bacillus cereus SESY and Brassica napus. The results indicated that B. cereus SESY can significantly increase the biomass and selenium content of B. napus. The genes related to the colonization, IAA synthesis, and l-cysteine synthesis and metabolism of B. cereus SESY were significantly stimulated by B. napus through transcriptional regulation. Further verification results showed that l-cysteine increased selenium content in B. napus roots and shoots by 62.9% and 88.4%, respectively. B. cereus SESY and l-cysteine consistently regulated the relative expression level of genes involved in plant hormone, amino acid metabolism, selenium absorption, and Se enzymatic and nonenzymatic metabolic pathway of B. napus. These genes were significantly correlated with selenium content and biomass of B. napus (p < 0.05). Overall, IAA biosynthesis, and l-cysteine biosynthesis and metabolism in B. cereus SESY stimulated by interactions triggered molecular and metabolic responses of B. napus, underpinning host selenium absorption and accumulation.
Collapse
Affiliation(s)
- Huan Zhang
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming, China
| | - Lianming Liang
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming, China
| | - Xiaoping Du
- Key Laboratory of Se-enriched Products Development and Quality Control, Ministry of Agriculture and Rural Affairs, Ankang, China
| | - Guangyu Shi
- Institute of Quality Standard and Monitoring Technology for Agro-Products, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Xu Wang
- College of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Yanni Tang
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Zheng Lei
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Yin Wang
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Ceng Yi
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Chengxiao Hu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Xiaohu Zhao
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
21
|
Xu X, Dinesen C, Pioppi A, Kovács ÁT, Lozano-Andrade CN. Composing a microbial symphony: synthetic communities for promoting plant growth. Trends Microbiol 2025:S0966-842X(25)00006-X. [PMID: 39966007 DOI: 10.1016/j.tim.2025.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 01/14/2025] [Accepted: 01/15/2025] [Indexed: 02/20/2025]
Abstract
Plant microbiomes are pivotal for host development, influencing growth, health, fitness, and evolution, and have emerged as promising resources for sustainable agriculture. However, leveraging these microbiomes to improve crop yield and resilience is challenging due to the huge diversity of plant-associated and soil microorganisms and their intricate interactions. Recently, synthetic microbial communities (SynComs) have been exploited as a reductionist approach to harness microbial benefits and to understand multispecies interactions. Additionally, the advanced functionality of SynComs promises to surpass classic single-strain-based biosolutions. Nevertheless, challenges remain in designing customized, robust, and predictable SynComs for agronomic use. Here, we synthesize and discuss the logical and implemented approaches used to design and assemble SynComs, highlighting important principles, challenges, and trends in utilizing SynComs as alternatives to agrochemicals.
Collapse
Affiliation(s)
- Xinming Xu
- Institute of Biology, Leiden University, 2333BE, Leiden, The Netherlands
| | - Caja Dinesen
- Institute of Biology, Leiden University, 2333BE, Leiden, The Netherlands; DTU Bioengineering, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Adele Pioppi
- Institute of Biology, Leiden University, 2333BE, Leiden, The Netherlands; DTU Bioengineering, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Ákos T Kovács
- Institute of Biology, Leiden University, 2333BE, Leiden, The Netherlands; DTU Bioengineering, Technical University of Denmark, 2800 Kongens Lyngby, Denmark.
| | | |
Collapse
|
22
|
Du Y, Zhang L, Yang Y, Cheng K, Li K, Zhou Y, Li L, Jin Y, He X. Assembly, network and functional compensation of specialists and generalists in poplar rhizosphere under salt stress. NPJ Biofilms Microbiomes 2025; 11:28. [PMID: 39948085 PMCID: PMC11825717 DOI: 10.1038/s41522-025-00662-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 01/27/2025] [Indexed: 02/16/2025] Open
Abstract
Salinity is a major challenge for plant growth, but Populus euphratica, a species native to desert regions, has a remarkable ability to tolerate salt stress. This study aimed to explore how salinity affects the rhizosphere microbiome of P. euphratica, focusing on diversity patterns, assembly mechanisms, network characterization, and the functional roles of specialists and generalists under salt stress conditions. The findings revealed that increased salinity enhances the complexity of the rhizosphere microbial network and the diversity of bacterial specialists. Specialists demonstrated a wider range of environmental adaptation and played a pivotal role in species interactions within the microbial network. Notably, salinity stress altered the structure and assembly of plant rhizosphere specialists, facilitating functional compensation and potentially augmenting the health of P. euphratica. This research offers critical insights into the microbiome dynamics of P. euphratica under salinity stress, advancing the understanding of specialists and generalists in the rhizosphere.
Collapse
Affiliation(s)
- Yao Du
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing, China
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Lei Zhang
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Beijing Water Science and Technology Institute, Beijing, China
| | - Yan Yang
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Kexin Cheng
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Kaihang Li
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Yingwen Zhou
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Lu Li
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Yi Jin
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Xiaoqing He
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing, China.
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China.
| |
Collapse
|
23
|
Lei J, Gu H, Liu Z, Hu X, Yu Z, Guan Q, Jin J, Liu X, Wang G, Liu J. Recruitment of specific rhizosphere microorganisms in saline-alkali tolerant rice improves adaptation to saline-alkali stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 963:178413. [PMID: 39824093 DOI: 10.1016/j.scitotenv.2025.178413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 12/09/2024] [Accepted: 01/05/2025] [Indexed: 01/20/2025]
Abstract
Increasing annual soil salinization poses a major threat to global ecological security. Soil microorganisms play an important role in improving plant adaptability to stress tolerance, however, the mechanism of saline-alkali tolerance to plants associated with rhizosphere microbiome is unclear. We investigated the composition and structure of the rhizospheric bacteria and fungi communities of the saline-alkali tolerant (Oryza sativa var. Changbai-9) and sensitive (Oryza sativa var. Kitaake) rice grown in saline-alkali and non-saline-alkali soils. The results demonstrated that the saline-alkali tolerant rice enriched the rhizosphere bacteria taxa, including Hydrogenophaga, Pseudomonas, and Aeromonas, and fungi taxa, such as Chaetomium, Cladosporium and Tausonia, which may facilitate rice growth and enhance rice saline-alkali tolerance. Saline-alkali tolerant rice reduced the Na+/K+ ratio and improved rice yield by enhancing the stability of co-occurrence network associated with recruiting bacterial and fungal keystone species. The rhizosphere bacteria of the saline-alkali tolerant rice exhibited a markedly elevated expression of functions related to the saline-alkali tolerance, including the ABC transporter and the two-component system, compared to sensitive rice under saline-alkali stress. Overall, the saline-alkali tolerant rice responds to saline-alkali stress by recruiting keystone rhizosphere microorganisms to enhance rice saline-alkali tolerance. This study provides a theoretical basis for using specific microorganisms to improve plant tolerance in saline-alkali soils.
Collapse
Affiliation(s)
- Jintian Lei
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haidong Gu
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhuxiu Liu
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China
| | - Xiaojing Hu
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China
| | - Zhenhua Yu
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China
| | - Qingjie Guan
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Northeast Forestry University, Harbin 150040, China.
| | - Jian Jin
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China
| | - Xiaobing Liu
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China
| | - Guanghua Wang
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China
| | - Junjie Liu
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China.
| |
Collapse
|
24
|
Zhu J, Jia Q, Tang QY, Osman G, Gu MY, Wang N, Zhang ZD. Application of Synthetic Microbial Communities of Kalidium schrenkianum in Enhancing Wheat Salt Stress Tolerance. Int J Mol Sci 2025; 26:860. [PMID: 39859574 PMCID: PMC11765726 DOI: 10.3390/ijms26020860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/08/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
Soil salinization poses a significant challenge to global agriculture, particularly in arid and semi-arid regions like Xinjiang. Kalidium schrenkianum, a halophytic plant adapted to saline-alkaline conditions, harbors endophytic microorganisms with potential plant growth-promoting properties. In this study, 177 endophytic bacterial strains were isolated from K. schrenkianum, and 11 key strains were identified through functional screening based on salt tolerance, nutrient solubilization, and growth-promoting traits. Synthetic microbial communities (SMCs) were then constructed using these strains and optimized to enhance wheat growth under salt stress. The SMCs significantly improved seed germination, root length, and seedling vigor in both spring and winter wheat in hydroponic and pot experiments. Furthermore, the SMCs enhanced the activities of antioxidant enzymes, including superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and levels of malondialdehyde (MDA) and proline (PRO). They also reduced oxidative stress and improved chlorophyll content in wheat seedlings. These results demonstrate the potential of microbial consortia derived from extreme environments as eco-friendly biofertilizers for improving crop performance in saline soils, offering a sustainable alternative to chemical fertilizers and contributing to agricultural resilience and productivity.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Zhi-Dong Zhang
- Xinjiang Key Laboratory of Special Environmental Microbiology, Institute of Microbiology, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (J.Z.); (Q.J.); (Q.-Y.T.); (G.O.); (M.-Y.G.); (N.W.)
| |
Collapse
|
25
|
Fu M, Liu L, Fu B, Hou M, Xiao Y, Liu Y, Sa D, Lu Q. Effects of salt stress on plant and rhizosphere bacterial communities, interaction patterns, and functions. FRONTIERS IN PLANT SCIENCE 2025; 15:1516336. [PMID: 39850220 PMCID: PMC11753915 DOI: 10.3389/fpls.2024.1516336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 11/25/2024] [Indexed: 01/25/2025]
Abstract
Introduction Salt stress significantly affects plant growth, and Na+ has gained attention for its potential to enhance plant adaptability to saline conditions. However, the interactions between Na+, plants, and rhizosphere bacterial communities remain unclear, hindering a deeper understanding of how Na+ contributes to plant resilience under salt stress. Methods This study aimed to investigate the mechanisms through which Na+ promotes alfalfa's adaptation to salt stress by modifying rhizosphere bacterial communities. We examined the metabolic activity and community composition of both plant and rhizosphere bacteria under Na+ treatment. Results and discussion Our results revealed significant changes in the metabolism and community composition of both plant and rhizosphere bacteria following Na+ addition. Na+ not only promoted the growth of rhizosphere bacteria but also induced shifts in the plant-associated bacterial community, increasing the abundance of bacterial species linked to alfalfa's resistance to salt stress. Furthermore, the chemical characteristics of alfalfa were strongly correlated with the composition and network complexity of both plant and rhizosphere bacterial communities. These interactions suggest that Na+ plays a crucial role in enhancing alfalfa's adaptability to salt stress by fostering beneficial bacterial communities in the rhizosphere. This finding highlights the potential of leveraging Na+ interactions with plant-microbe systems to improve crop resilience and productivity in saline agricultural environments.
Collapse
Affiliation(s)
- Maoxing Fu
- Key Laboratory of Innovation of Forage Efficient Production Model, Ministry of Agriculture and Rural Affairs, Yinchuan, Ningxia Hui Autonomous Region, China
- College of Forestry and Prataculture, Ningxia University, Yinchuan, China
| | - Liying Liu
- Inner Mongolia Autonomous Region Forestry Scientific Research Institute, Hohhot, China
| | - Bingzhe Fu
- College of Forestry and Prataculture, Ningxia University, Yinchuan, China
| | - Meiling Hou
- College of Life Science, Baicheng Normal University, Baicheng, China
| | - Yanzi Xiao
- Agricultural College, Hulun Buir College, Hailar, China
| | - Yinghao Liu
- Key Laboratory of Innovation of Forage Efficient Production Model, Ministry of Agriculture and Rural Affairs, Yinchuan, Ningxia Hui Autonomous Region, China
- Grassland Research Institute, Chinese Academy of Agricultural Sciences, Hohhot, China
| | - Duowen Sa
- Key Laboratory of Innovation of Forage Efficient Production Model, Ministry of Agriculture and Rural Affairs, Yinchuan, Ningxia Hui Autonomous Region, China
- Grassland Research Institute, Chinese Academy of Agricultural Sciences, Hohhot, China
| | - Qiang Lu
- Key Laboratory of Innovation of Forage Efficient Production Model, Ministry of Agriculture and Rural Affairs, Yinchuan, Ningxia Hui Autonomous Region, China
- College of Forestry and Prataculture, Ningxia University, Yinchuan, China
| |
Collapse
|
26
|
Stagiopoulou R, Mellidou I, Krigas N, Papatheodorou EM. Altitude's Impact on the Rhizosphere Prokaryotic Communities of the Cretan Endemic Plant Petromarula pinnata (L.) A.DC. Microorganisms 2025; 13:74. [PMID: 39858843 PMCID: PMC11767782 DOI: 10.3390/microorganisms13010074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 12/24/2024] [Accepted: 12/26/2024] [Indexed: 01/27/2025] Open
Abstract
The present study examined the effect of the three different altitudes on the enzymatic activity and the prokaryotic communities of the rhizosphere of Petromarula pinnata (L.) A.DC. (Campanulaceae), a vulnerable local endemic species of Crete (Greece). It was observed that the pH and N-acetylglucosaminidase (NAG) activity increased with altitude while the β-1,4-glucosidase (BG) activity fluctuated with increasing altitude. The prokaryotic community in the rhizosphere of P. pinnata was dominated at the phylum level by Proteobacteria, Actinobacteriota, Bacteroidota, and Firmicutes, as well as by Bacillus members at the genus level. The alpha diversity did not vary with altitude while the b-diversity varied significantly, reflecting differences in community composition in relation to altitudinal gradient. The NAG activity was positively associated with most of the predominant phyla, except for Proteobacteria. The BG enzyme activity appeared to be negatively associated with Proteobacteria, Chloroflexi, and Acidobacteriota. Based on online databases, the predicted functions of the community showed a clear distinction in relation to altitude. At lower altitude, functions related to quorum sensing among microbes were overrepresented, while at the higher altitude, the functions were more related to energy production and transfer. The results of this research contribute to the ex situ and in situ protection of the vulnerable populations of P. pinnata and provide information for understanding the effect of altitude on processes in the rhizosphere of a threatened local endemic species of Crete studied in its original habitats.
Collapse
Affiliation(s)
- Rafaela Stagiopoulou
- Department of Ecology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Ifigeneia Mellidou
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization Demeter (ELGO-Dimitra), 57001 Thessaloniki, Greece; (I.M.); or (N.K.)
| | - Nikos Krigas
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization Demeter (ELGO-Dimitra), 57001 Thessaloniki, Greece; (I.M.); or (N.K.)
- Department of Viticulture, Floriculture & Plant Protection, Institute of Olive Tree, Subtropical Crops and Viticulture, Hellenic Agricultural Organization Demeter (ELGO-Dimitra), 57001 Thessaloniki, Greece
| | - Effimia M. Papatheodorou
- Department of Ecology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| |
Collapse
|
27
|
Yang X, Yuan R, Yang S, Dai Z, Di N, Yang H, He Z, Wei M. A salt-tolerant growth-promoting phyllosphere microbial combination from mangrove plants and its mechanism for promoting salt tolerance in rice. MICROBIOME 2024; 12:270. [PMID: 39707568 DOI: 10.1186/s40168-024-01969-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 11/05/2024] [Indexed: 12/23/2024]
Abstract
BACKGROUND Mangrove plants growing in the high salt environment of coastal intertidal zones colonize a variety of microorganisms in the phyllosphere, which have potential salt-tolerant and growth-promoting effects. However, the characteristics of microbial communities in the phyllosphere of mangrove species with and without salt glands and the differences between them remain unknown, and the exploration and the agricultural utilization of functional microbial resources from the leaves of mangrove plants are insufficient. RESULTS In this study, we examined six typical mangrove species to unravel the differences in the diversity and structure of phyllosphere microbial communities between mangrove species with or without salt glands. Our results showed that a combination of salt-tolerant growth-promoting strains of Pantoea stewartii A and Bacillus marisflavi Y25 (A + Y25) was constructed from the phyllosphere of mangrove plants, which demonstrated an ability to modulate osmotic substances in rice and regulate the expression of salt-resistance-associated genes. Further metagenomic analysis revealed that exogenous inoculation with A + Y25 increased the rice rhizosphere's specific microbial taxon Chloroflexi, thereby elevating microbial community quorum sensing and ultimately enhancing ionic balance and overall microbial community function to aid salt resistance in rice. CONCLUSIONS This study advances our understanding of the mutualistic and symbiotic relationships between mangrove species and their phyllosphere microbial communities. It offers a paradigm for exploring agricultural beneficial microbial resources from mangrove leaves and providing the potential for applying the salt-tolerant bacterial consortium to enhance crop adaptability in saline-alkaline land. Video Abstract.
Collapse
Affiliation(s)
- Xiangxia Yang
- School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, China
| | - Rongwei Yuan
- School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, China
| | - Shuangyu Yang
- School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, China
| | - Zhian Dai
- School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, China
| | - Na Di
- School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, China
| | - Haijun Yang
- Center for Basic Experiment and Practice Training, South China Agricultural University, Guangzhou, 510462, China
| | - Zhili He
- The Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519080, China
| | - Mi Wei
- School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, China.
- Key Laboratory for Quality Control of Characteristic Fruits and Vegetables of Hubei Province, College of Life Science and Technology, Hubei Engineering University, Xiaogan, 432000, China.
| |
Collapse
|
28
|
Sun C, Sun B, Chen L, Zhang M, Lu P, Wu M, Xue Q, Guo Q, Tang D, Lai H. Harnessing biosynthesized selenium nanoparticles for recruitment of beneficial soil microbes to plant roots. Cell Host Microbe 2024; 32:2148-2160.e7. [PMID: 39561780 DOI: 10.1016/j.chom.2024.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 09/13/2024] [Accepted: 10/24/2024] [Indexed: 11/21/2024]
Abstract
Root exudates can benefit plant growth and health by reshaping the rhizosphere microbiome. Whether nanoparticles biosynthesized by rhizosphere microbes play a similar role in plant microbiome manipulation remains enigmatic. Herein, we collect elemental selenium nanoparticles (SeNPs) from selenobacteria associated with maize roots. In vitro and soil assays show that the SeNPs enhanced plant performance by recruiting plant growth-promoting bacteria (e.g., Bacillus) in a dose-dependent manner. Multiomic profilings unravel a cross-kingdom-signaling cascade that mediates efficient biosynthesis of SeNPs by selenobacteria. Specifically, maize roots perceive histamine signaling from Bacillus spp., which stimulates the plant to produce p-coumarate via root exudation. The rpoS gene in selenobacteria (e.g., Pseudomonas sp. ZY71) responds to p-coumarate signaling and positively regulates the biosynthesis of SeNPs. This study demonstrates a novel mechanism for recruiting host-beneficial soil microbes by microbially synthesized nanoparticles and unlocks promising possibilities for plant microbiome manipulation.
Collapse
Affiliation(s)
- Chenyu Sun
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Bin Sun
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Lin Chen
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, Xi'an 710069, Shaanxi, China
| | - Meilin Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Pingping Lu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Mengfan Wu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Quanhong Xue
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Qiao Guo
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Dejian Tang
- Key Laboratory of Selenium-enriched Products Development and Quality Control, Ministry of Agriculture and Rural Affairs, Ankang Research and Development Center for Selenium-enriched Products, Ankang 725000, Shaanxi, China
| | - Hangxian Lai
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
29
|
Zhou Y, Jin Z, Ren X, Hong C, Hua Z, Zhu Y, Dong Y, Li X. Symbiotic conserved arbuscular mycorrhiza fungi supports plant health. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176974. [PMID: 39419224 DOI: 10.1016/j.scitotenv.2024.176974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 10/14/2024] [Accepted: 10/14/2024] [Indexed: 10/19/2024]
Abstract
Arbuscular mycorrhiza fungi (AMF) forms a multi-beneficial symbiotic relationship with the host plant, therefore it is considered to be an effective helper to promote plant health. However, failure to consider the source or universality of AMF is often unstable during application. Therefore, it is necessary to screen potential AMF inoculants based on the source and the relationship with host. In search of more effective and broad-spectrum AMF inoculants, we studied AMF community structure properties of healthy and diseased plants in 24 fields from four sampling sites. The results indicated that the environmental filtering effect of roots was obvious, which was manifested as a decrease of α-diversity from rhizosphere to root. Differences in α-diversity between healthy and diseased roots further indicate the importance of AMF communities within roots for maintaining plant health. Glomus is significantly enriched and dominant in healthy roots, independent of environment and phylogenically conserved. Spores were further isolated and evaluated for their disease-preventing and pro-growth properties. Based on whether they were symbiotic with plant and root-enrichment characteristics, isolated AMF spores were classified as symbiotic conserved, symbiotic non-conserved, and non-symbiotic AMF. After spores were propagated and inoculated to plant roots, only symbiotic conserved AMF significantly promoted plant growth and maintained health, highlighting the potential of symbiotic conserved AMF in sustainable plant production.
Collapse
Affiliation(s)
- Yanyan Zhou
- College of Ecology and Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Zhili Jin
- Yongzhou Company of Hunan Tobacco Company, Yongzhou 425000, China
| | - Xiaohong Ren
- Enshi Company of Hubei Tobacco Company, Enshi 445000, China
| | - Chengjian Hong
- College of Ecology and Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Zhe Hua
- College of Ecology and Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Yi Zhu
- College of Ecology and Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Yuanhua Dong
- Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Xiaogang Li
- College of Ecology and Environment, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
30
|
Li C, Han Y, Zou X, Zhang X, Ran Q, Dong C. A systematic discussion and comparison of the construction methods of synthetic microbial community. Synth Syst Biotechnol 2024; 9:775-783. [PMID: 39021362 PMCID: PMC11253132 DOI: 10.1016/j.synbio.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/15/2024] [Accepted: 06/18/2024] [Indexed: 07/20/2024] Open
Abstract
Synthetic microbial community has widely concerned in the fields of agriculture, food and environment over the past few years. However, there is little consensus on the method to synthetic microbial community from construction to functional verification. Here, we review the concept, characteristics, history and applications of synthetic microbial community, summarizing several methods for synthetic microbial community construction, such as isolation culture, core microbiome mining, automated design, and gene editing. In addition, we also systematically summarized the design concepts, technological thresholds, and applicable scenarios of various construction methods, and highlighted their advantages and limitations. Ultimately, this review provides four efficient, detailed, easy-to-understand and -follow steps for synthetic microbial community construction, with major implications for agricultural practices, food production, and environmental governance.
Collapse
Affiliation(s)
- Chenglong Li
- Institute of Fungus Resources, Department of Ecology/Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Yanfeng Han
- Institute of Fungus Resources, Department of Ecology/Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Xiao Zou
- Institute of Fungus Resources, Department of Ecology/Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Xueqian Zhang
- Institute of Fungus Resources, Department of Ecology/Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Qingsong Ran
- Institute of Fungus Resources, Department of Ecology/Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Chunbo Dong
- Institute of Fungus Resources, Department of Ecology/Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Guizhou University, Guiyang, 550025, Guizhou, China
| |
Collapse
|
31
|
Marasco R, Mosqueira MJ, Seferji KA, Al Romaih SM, Michoud G, Xu J, Bez C, Castillo Hernandez T, Venturi V, Blilou I, Daffonchio D. Desert-adapted plant growth-promoting pseudomonads modulate plant auxin homeostasis and mitigate salinity stress. Microb Biotechnol 2024; 17:e70043. [PMID: 39692704 PMCID: PMC11653947 DOI: 10.1111/1751-7915.70043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 10/17/2024] [Indexed: 12/19/2024] Open
Abstract
By providing adaptive advantages to plants, desert microorganisms are emerging as promising solutions to mitigate the negative and abrupt effects of climate change in agriculture. Among these, pseudomonads, commonly found in soil and in association with plants' root system, have been shown to enhance plant tolerance to salinity and drought, primarily affecting root system architecture in various hosts. However, a comprehensive understanding of how these bacteria affect plant responses at the cellular, physiological and molecular levels is still lacking. In this study, we investigated the effects of two Pseudomonas spp. strains, E102 and E141, which were previously isolated from date palm roots and have demonstrated efficacy in promoting drought tolerance in their hosts. These strains colonize plant roots, influencing root architecture by inhibiting primary root growth while promoting root hair elongation and lateral root formation. Strains E102 and E141 increased auxin levels in Arabidopsis, whereas this effect was diminished in IAA-defective mutant strains, which exhibited reduced IAA production. In all cases, the effectiveness of the bacteria relies on the functioning of the plant auxin response and transport machinery. Notably, such physiological and morphological changes provide an adaptive advantage to the plant, specifically under stress conditions such as salinity. Collectively, this study demonstrates that by leveraging the host's auxin signalling machinery, strains E102 and E141 significantly improve plant resilience to abiotic stresses, positioning them as potential biopromoters/bioprotectors for crop production and ecosystem restoration in alignment with Nature-based Solution approaches.
Collapse
Affiliation(s)
- Ramona Marasco
- Biological and Environmental Sciences and Engineering Division (BESE)King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
| | - Maria J. Mosqueira
- Biological and Environmental Sciences and Engineering Division (BESE)King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
| | - Kholoud A. Seferji
- Biological and Environmental Sciences and Engineering Division (BESE)King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
| | - Sarah M. Al Romaih
- Biological and Environmental Sciences and Engineering Division (BESE)King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
| | - Grégoire Michoud
- Biological and Environmental Sciences and Engineering Division (BESE)King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
| | - Jian Xu
- Plant Systems PhysiologyRadboud UniversityNijmegenThe Netherlands
| | - Cristina Bez
- International Centre for Genetic Engineering and BiotechnologyTriesteItaly
| | - Tatiana Castillo Hernandez
- Laboratory of Plant Cell and Developmental Biology, Biological and Environmental Sciences and Engineering Division (BESE)King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
| | - Vittorio Venturi
- International Centre for Genetic Engineering and BiotechnologyTriesteItaly
- African Genome CenterUniversity Mohammed VI PolytechnicBen GuerirMorocco
| | - Ikram Blilou
- Laboratory of Plant Cell and Developmental Biology, Biological and Environmental Sciences and Engineering Division (BESE)King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
| | - Daniele Daffonchio
- Biological and Environmental Sciences and Engineering Division (BESE)King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
| |
Collapse
|
32
|
Zhang W, Li S, Zhang P, Han X, Xing Y, Yu C. The Colonization of Synthetic Microbial Communities Carried by Bio-Organic Fertilizers in Continuous Cropping Soil for Potato Plants. Microorganisms 2024; 12:2371. [PMID: 39597759 PMCID: PMC11596223 DOI: 10.3390/microorganisms12112371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/13/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024] Open
Abstract
Synthetic microbial communities (SynComs) play significant roles in soil health and sustainable agriculture. In this study, bacterial SynComs (SCBs) and fungal SynComs (SCFs) were constructed by selecting microbial species that could degrade the potato root exudates associated with continuous cropping obstacles. SCBs, SCFs, and SCB + SCF combinations were then inoculated into organic fertilizers (OFs, made from sheep manure) to produce three bio-organic fertilizers (BOFs), denoted by SBFs (BOFs of inoculated SCBs), SFFs (BOFs of inoculated SCFs), and SBFFs (BOFs of inoculated SCB + SCF combinations), respectively. The OF and three BOFs, with a chemical fertilizer (CK) as the control, were then used in pot experiments involving potato growth with soil from a 4-year continuous cropping field. Microbial diversity sequencing was used to investigate the colonization of SCBs and SCFs into the rhizosphere soil and the bulk soil, and their effects on soil microbial diversity were evaluated. Source Tracker analysis showed that SCBs increased bacterial colonization from the SBFs into the rhizosphere soil, but at a relatively low level of 1% of the total soil bacteria, while SCFs increased fungi colonization from the SFF into the bulk soil at a much higher level of 5-18% of the total soil fungi. In combination, SCB + SCF significantly increased fungi colonization from the SBFF into both the bulk soil and the rhizosphere soil. Overall, the soil fungi were more susceptible to the influence of the BOFs than the bacteria. In general, the application of BOFs did not significantly change the soil microbial alpha diversity. Correlation network analysis showed that key species of bacteria were stable in the soils of the different groups, especially in the rhizosphere soil, while the key species of fungi significantly changed among the different groups. LEfSe analysis showed that the application of BOFs activated some rare species, which were correlated with improvements in the function categories of the tolerance of stress, nitrogen fixation, and saprotroph functions. Mantel test analysis showed that the BOFs significantly affected soil physicochemical properties, influencing bacterial key species, and core bacteria, promoting potato growth. It was also noted that the presence of SynCom-inoculated BOFs may lead to a slight increase in plant pathogens, which needs to be considered in the optimization of SynCom applications to overcome continuous cropping obstacles in potato production.
Collapse
Affiliation(s)
- Wenming Zhang
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou 730070, China; (S.L.); (X.H.); (Y.X.)
| | - Shiqing Li
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou 730070, China; (S.L.); (X.H.); (Y.X.)
| | - Pingliang Zhang
- Dry land Agriculture Institute, Gansu Academy of Agricultural Sciences, Lanzhou 730070, China;
| | - Xuyan Han
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou 730070, China; (S.L.); (X.H.); (Y.X.)
| | - Yanhong Xing
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou 730070, China; (S.L.); (X.H.); (Y.X.)
| | - Chenxu Yu
- Department of Agriculture and Biosystem Engineering, Iowa State University, Ames, IW 50010, USA
| |
Collapse
|
33
|
Wang Z, Li Z, Zhang Y, Liao J, Guan K, Zhai J, Meng P, Tang X, Dong T, Song Y. Root hair developmental regulators orchestrate drought triggered microbiome changes and the interaction with beneficial Rhizobiaceae. Nat Commun 2024; 15:10068. [PMID: 39567534 PMCID: PMC11579020 DOI: 10.1038/s41467-024-54417-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 11/07/2024] [Indexed: 11/22/2024] Open
Abstract
Drought is one of the most serious abiotic stresses, and emerging evidence suggest plant microbiome affects plant drought tolerance. However, there is a lack of genetic evidence regarding whether and how plants orchestrate the dynamic assembly of the microbiome upon drought. By utilizing mutants with enhanced or decreased root hair densities, we find that root hair regulators also affect drought induced root microbiome changes. Rhizobiaceae is a key biomarker taxa affected by root hair related mutants. We isolated and sequenced 1479 root associated microbes, and confirmed that several Rhizobium strains presented stress-alleviating activities. Metagenome, root transcriptome and root metabolome studies further reveal the multi-omic changes upon drought stress. We knocked out an ornithine cyclodeaminase (ocd) gene in Rhizobium sp. 4F10, which significantly dampens its stress alleviating ability. Our genetic and integrated multi-omics studies confirm the involvement of host genetic effects in reshaping a stress-alleviating root microbiome during drought, and provide mechanistic insights into Rhizobiaceae mediated abiotic stress protection.
Collapse
Affiliation(s)
- Zhenghong Wang
- Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, China
| | - Zewen Li
- Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, China
| | - Yujie Zhang
- Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, China
| | - Jingye Liao
- Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, China
| | - Kaixiang Guan
- Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, China
| | - Jingxuan Zhai
- Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, China
| | - Pengfei Meng
- Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, China
| | - Xianli Tang
- Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, China
| | - Tao Dong
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, China
| | - Yi Song
- Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, China.
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, China.
| |
Collapse
|
34
|
Hao JR, Li Y, Ge Y. Harnessing the plant microbiome for environmental sustainability: From ecological foundations to novel applications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175766. [PMID: 39187075 DOI: 10.1016/j.scitotenv.2024.175766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 08/28/2024]
Abstract
In plant environments, there exist heterogeneous microbial communities, referred to as the plant microbiota, which are recruited by plants and play crucial roles in promoting plant growth, aiding in resistance against pathogens and environmental stresses, thereby maintaining plant health. These microorganisms, along with their genomes, collectively form the plant microbiome. Research on the plant microbiome can help unravel the intricate interactions between plants and microbes, providing a theoretical foundation to reduce pesticide use, enhance agricultural productivity, and promote environmental sustainability. Despite significant progress in the field of research, unresolved challenges persist due to ongoing technological limitations and the complexities inherent in studying microorganisms at small scales. Recently, synthetic community (SynCom) has emerged as a novel technique for microbiome research, showing promising prospects for applications in the plant microbiome field. This article systematically introduces the origin and distribution of plant microbiota, the processes of their recruitment and colonization, and the mechanisms underlying their beneficial functions for plants, from the aspects of composition, assembly, and function. Furthermore, we discuss the principles, applications, challenges, and prospects of SynCom for promoting plant health.
Collapse
Affiliation(s)
- Jing-Ru Hao
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yan Li
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yuan Ge
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
35
|
Huang L, Fan Z, Hu Z, Li Z, Fu Y, Wang Q, Lin X, Feng Y. Synthetic communities derived from the core endophytic microbiome of hyperaccumulators and their role in cadmium phytoremediation. MICROBIOME 2024; 12:236. [PMID: 39543675 PMCID: PMC11566637 DOI: 10.1186/s40168-024-01959-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 10/25/2024] [Indexed: 11/17/2024]
Abstract
BACKGROUND Although numerous endophytic bacteria have been isolated and characterized from cadmium (Cd) hyperaccumulators, the contribution and potential application of the core endophytic microbiomes on facilitating phytoremediation were still lack of intensive recognition. Therefore, a 2-year field sampling in different location were firstly conducted to identify the unique core microbiome in Cd hyperaccumulators, among which the representative cultivable bacteria of different genera were then selected to construct synthetic communities (SynComs). Finally, the effects and mechanisms of the optimized SynCom in regulating Cd accumulation in different ecotypes of Sedum alfredii were studied to declare the potential application of the bacterial agents based on core microbiome. RESULTS Through an innovative network analysis workflow, 97 core bacterial taxa unique to hyperaccumulator Sedum was identified based on a 2-year field 16S rRNA sequencing data. A SynCom comprising 13 selected strains belonging to 6 different genera was then constructed. Under the combined selection pressure of the plant and Cd contamination, Alcaligenes sp. exhibited antagonistic relationships with other genera and plant Cd concentration. Five representative strains of the other five genera were further conducted genome resequencing and developed six SynComs, whose effects on Cd phytoremediation were compared with single strains by hydroponic experiments. The results showed that SynCom-NS comprising four strains (including Leifsonia shinshuensis, Novosphingobium lindaniclasticum, Ochrobactrum anthropi, and Pseudomonas izuensis) had the greatest potential to enhance Cd phytoremediation. After inoculation with SynCom-NS, genes related to Cd transport, antioxidative defense, and phytohormone signaling pathways were significantly upregulated in both ecotypes of S. alfredii, so as to promote plant growth, Cd uptake, and translocation. CONCLUSION In this study, we designed an innovative network analysis workflow to identify the core endophytic microbiome in hyperaccumulator. Based on the cultivable core bacteria, an optimized SynCom-NS was constructed and verified to have great potential in enhancing phytoremediation. This work not only provided a framework for identifying core microbiomes associated with specific features but also paved the way for the construction of functional synthetic communities derived from core microbiomes to develop high efficient agricultural agents. Video Abstract.
Collapse
Affiliation(s)
- Lukuan Huang
- Key Laboratory of Environment Remediation and Ecological Health of Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Ziyan Fan
- Key Laboratory of Environment Remediation and Ecological Health of Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Zhipeng Hu
- Key Laboratory of Environment Remediation and Ecological Health of Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Zhesi Li
- Key Laboratory of Environment Remediation and Ecological Health of Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yingyi Fu
- Key Laboratory of Environment Remediation and Ecological Health of Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Qiong Wang
- College of Ecology, Taiyuan University of Technology, Taiyuan, 030024, People's Republic of China
| | - Xianyong Lin
- Key Laboratory of Environment Remediation and Ecological Health of Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Ying Feng
- Key Laboratory of Environment Remediation and Ecological Health of Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
36
|
Ali S, Tyagi A, Park S, Varshney RK, Bae H. A molecular perspective on the role of FERONIA in root growth, nutrient uptake, stress sensing and microbiome assembly. J Adv Res 2024:S2090-1232(24)00494-6. [PMID: 39505145 DOI: 10.1016/j.jare.2024.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 10/25/2024] [Accepted: 11/02/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND Roots perform multifaceted functions in plants such as movement of nutrients and water, sensing stressors, shaping microbiome, and providing structural support. How roots perceive and respond above traits at the molecular level remains largely unknown. Despite the enormous advancements in crop improvement, the majority of recent efforts have concentrated on above-ground traits leaving significant knowledge gaps in root biology. Also, studying root system architecture (RSA) is more difficult due to its intricacy and the difficulties of observing them during plant life cycle which has made it difficult to identify desired root traits for the crop improvement. However, with the aid of high-throughput phenotyping and genotyping tools many developmental and stress-mediated regulation of RSA has emerged in both model and crop plants leading to new insights in root biology. Our current understanding of upstream signaling events (cell wall, apoplast) in roots and how they are interconnected with downstream signaling cascades has largely been constrained by the fact that most research in plant systems concentrate on cytosolic signal transduction pathways while ignoring the early perception by cells' exterior parts. In this regard, we discussed the role of FERONIA (FER) a cell wall receptor-like kinase (RLK) which acts as a sensor and a bridge between apoplast and cytosolic signaling pathways in root biology. AIM OF THE REVIEW The goal of this review is to provide valuable insights into present understanding and future research perspectives on how FER regulates distinct root responses related to growth and stress adaptation. KEY SCIENTIFIC CONCEPTS OF REVIEW In plants, FER is a unique RLK because it can act as a multitasking sensor and regulates diverse growth, and adaptive traits. In this review, we mainly highlighted its role in root biology like how it modulates distinct root responses such as root development, sensing abiotic stressors, mechanical stimuli, nutrient transport, and shaping microbiome. Further, we provided an update on how FER controls root traits by involving Rapid Alkalinization Factor (RALF) peptides, calcium, reactive oxygen species (ROS) and hormonal signaling pathways.. We also highlight number of outstanding questions in FER mediated root responses that warrants future investigation. To sum up, this review provides a comprehsive information on the role of FER in root biology which can be utilized for the development of future climate resilient and high yielding crops based on the modified root system.
Collapse
Affiliation(s)
- Sajad Ali
- Department of Biotechnology, Yeungnam University, Gyeongsan Gyeongbuk 38541, Republic of Korea; Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Anshika Tyagi
- Department of Biotechnology, Yeungnam University, Gyeongsan Gyeongbuk 38541, Republic of Korea
| | - Suvin Park
- Department of Biotechnology, Yeungnam University, Gyeongsan Gyeongbuk 38541, Republic of Korea
| | - Rajeev K Varshney
- Center of Excellence in Genomics &, Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India; Murdoch's Centre for Crop and Food Innovation, WA State Agricultural Biotechnology Centre, Food Futures Institute, Murdoch University, Murdoch, Western Australia, Australia.
| | - Hanhong Bae
- Department of Biotechnology, Yeungnam University, Gyeongsan Gyeongbuk 38541, Republic of Korea.
| |
Collapse
|
37
|
Zhaoyu K, Ye J, Pei K, He Y, Wang B, Huang S, Cai Q, Liu Y, Ge G, Wu L. A synthetic bacterial community engineered from Miscanthus floridulus roots enhances ammonia nitrogen removal in ionic rare earth mine tailings. CHEMOSPHERE 2024; 367:143650. [PMID: 39481489 DOI: 10.1016/j.chemosphere.2024.143650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 10/18/2024] [Accepted: 10/28/2024] [Indexed: 11/02/2024]
Abstract
Ammonium sulfate, as the primary leaching agent, has caused significant nitrogen pollution in rare earth elements (REEs) mining areas. Phytoremediation is a promising remediation method, relying on the synergistic relationships between plants and their root-associated microbiome. Nevertheless, harnessing the microbiome to accelerate nitrogen transformation and absorption by plants is challenging. Here, we investigated the composition, activities and culturable fraction of the root bacterial microbiome of the pioneer plant Miscanthus floridulus grown in a REEs tailing soil containing a high ammonia nitrogen (AN) concentration at 344.35 mg kg-1. Based on this, we constructed a simplified synthetic microbial community (SynCom) derived from the roots of M. floridulus, possessing nitrification and denitrification capabilities, to help REEs mine plants efficiently convert pollutant AN into nutrients, thereby enhancing plant growth and AN removal. This SynCom, consisting of 10 bacterial strains, included species of the genera Burkholderia (5) Paraburkholderia (1), Curtobacterium (1), Leifsonia (1) and Sinomonas (2). As a result, this SynCom alone achieved a significant reduction of 24.8% in AN content in tailing soil. When the SynCom inoculated with plants, the reduction in AN was even more significant (32.6%), surpassing the reduction achieved solely by plants (25.5%). Moreover, live SynCom inoculation significantly increased shoot and root biomass by 39.8% and 49.7%, respectively, compared to dead SynCom inoculation. These results indicate that the reduction in AN can be attributed to the SynCom's nitrification and denitrification capabilities, as well as its ability to enhance plant nitrogen absorption by stimulating their growth. Notably, seven nitrifying and denitrifying strains of the SynCom are particularly enriched, suggesting that plant roots selectively recruit nitrogen cycle-related bacteria to accelerate nitrogen transformation and absorption. These results provide a practical solution for harnessing the synergistic relationships between plants and their root microbiome in environmental remediation efforts.
Collapse
Affiliation(s)
- Kong Zhaoyu
- School of Life Science, Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang, 330022, China
| | - Jun Ye
- School of Life Science, Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang, 330022, China
| | - Ke Pei
- School of Life Science, Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang, 330022, China
| | - Yong He
- School of Life Science, Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang, 330022, China
| | - Binhua Wang
- School of Life Science, Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang, 330022, China
| | - Shaoyi Huang
- School of Life Science, Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang, 330022, China
| | - Qiying Cai
- School of Life Science, Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang, 330022, China
| | - Yizhen Liu
- School of Life Science, Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang, 330022, China
| | - Gang Ge
- School of Life Science, Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang, 330022, China.
| | - Lan Wu
- School of Life Science, Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang, 330022, China.
| |
Collapse
|
38
|
Zhang J, Song K, Jin F, Jia F, Liang J, Wang F, Zhang J. A novel strategy of artificially regulating plant rhizosphere microbial community to promote plant tolerance to cold stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:175184. [PMID: 39089386 DOI: 10.1016/j.scitotenv.2024.175184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/14/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
Artificial regulation of plant rhizosphere microbial communities through the synthesis of microbial communities is one of the effective ways to improve plant stress resistance. However, the process of synthesizing stress resistant microbial communities with excellent performance is complex, time-consuming, and costly. To address this issue, we proposed a novel strategy for preparing functional microbial communities. We isolated a cultivable cold tolerant bacterial community (PRCBC) from the rhizosphere of peas, and studied its effectiveness in assisting rice to resist stress. The results indicate that PRCBC can not only improve the ability of rice to resist cold stress, but also promote the increase of rice yield after cold stress relieved. This is partly because PRCBC increases the nitrogen content in the rhizosphere soil, and promotes rice's absorption of nitrogen elements, thereby promoting rice growth and enhancing its ability to resist osmotic stress. More importantly, the application of PRCBC drives the succession of rice rhizosphere microbial communities, and promotes the succession of rice rhizosphere microbial communities towards stress resistance. Surprisingly, PRCBC drives the succession of rice rhizosphere microbial communities towards a composition similar to PRCBC. This provides a feasible novel method for artificially and directionally driving microbial succession. In summary, we not only proposed a novel and efficient strategy for preparing stress resistant microbial communities to promote plant stress resistance, but also unexpectedly discovered a possible directionally driving method for soil microbial community succession.
Collapse
Affiliation(s)
- Jianfeng Zhang
- College of Life Science, Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Keji Song
- College of Life Science, Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Fengyuan Jin
- College of Life Science, Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Fang Jia
- College of Life Science, Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Jing Liang
- College of Life Science, Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Fudong Wang
- College of Life Science, Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Jiejing Zhang
- College of Life Science, Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Jilin Agricultural University, Changchun 130118, China.
| |
Collapse
|
39
|
Zhu X, Ju W, Beiyuan J, Chao H, Zhang Z, Chen L, Cui Q, Qiu T, Zhang W, Huang M, Shen Y, Fang L. Bacterial consortium amendment effectively reduces Pb/Cd bioavailability in soil and their accumulation in wheat. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122789. [PMID: 39369534 DOI: 10.1016/j.jenvman.2024.122789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 06/26/2024] [Accepted: 09/29/2024] [Indexed: 10/08/2024]
Abstract
Microbial remediation can maintain the sustainability of farmlands contaminated with heavy metals (HMs). However, the effects of bacterial consortium on crop growth and potential risks under HM stress, as well as its mechanisms, are still unclear compared with a single microorganism. Here, we investigated the effect of a bacterial consortium consisting of some HMs-resistant bacteria, including Bacillus cereus, Bacillus thuringiensis, and Herbaspirillum huttiense, on plant growth promotion and inhibition of Pb/Cd accumulation within different contaminated soil-wheat systems through pot experiments. The results showed that microbial inoculation alleviated HMs-induced growth inhibition by activating antioxidant enzymes and inhibiting lipid peroxidation, and enhanced plant growth in the bacterial consortium. Compared to a single strain (Bacillus cereus, Bacillus thuringiensis, or Herbaspirillum huttiense), the bacterial consortium was more conducive to improving root development and reducing the content of available HMs in soil (4.5-10.3%) and its transfer to shoot (4.3-8.4%). Moreover, bacterial consortium significantly increased soil enzyme activities and available nutrients, resulting in nearly twice that of a single strain on the effect of soil quality and plant growth. Correlation analysis and least square path analysis showed that the bacterial consortium could significantly reduce the HMs-enrichment/transport from soil to shoot than a single strain by regulating soil available HMs and biochemical properties, as well as the parameters for plant growth. This study emphasizes that bacterial consortium promotes the growth of the crop wheat and reduces the risk of HMs entering human food chain, further providing an effective strategy for the safe production of food crops in contaminated soils.
Collapse
Affiliation(s)
- Xiaozhen Zhu
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China; College of Xingzhi, Zhejiang Normal University, Jinhua, 321000, China
| | - Wenliang Ju
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Jingzi Beiyuan
- School of Environmental and Chemical Engineering, Foshan University, Foshan, 528000, China
| | - Herong Chao
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Zhiqin Zhang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China; School of Materials Engineering, Shanxi College of Technology, Shuozhou, 036000, China
| | - Li Chen
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Qingliang Cui
- Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, 712100, China
| | - Tianyi Qiu
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Wenju Zhang
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Min Huang
- College of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Yufang Shen
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Linchuan Fang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China; College of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China; CAS Center for Excellence in Quaternary Science and Global Change, Xi'an, 710061, China.
| |
Collapse
|
40
|
Malla MA, Ansari FA, Bux F, Kumari S. Re-vitalizing wastewater: Nutrient recovery and carbon capture through microbe-algae synergy using omics-biology. ENVIRONMENTAL RESEARCH 2024; 259:119439. [PMID: 38901811 DOI: 10.1016/j.envres.2024.119439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/23/2024] [Accepted: 06/17/2024] [Indexed: 06/22/2024]
Abstract
Increasing amounts of wastewater is the most pervasive and challenging environmental problem globally. Conventional treatment methods are costly and entail huge energy, carbon consumption and greenhouse gas emissions. Owing to their unique ability of carbon capturing and resource recovery, microalgae-microbiome based treatment is a potential approach and is widely used for carbon-neutral wastewater treatment. Microalgae-bacteria synergy (i.e., the functionally beneficial microbial synthetic communities) performs better and enhances carbon-sequestration and nutrient recovery from wastewater treatment plants. This review presents a comprehensive information regarding the potential of microalgae-microbiome as a sustainable agent for wastewater and discusses synergistic approaches for effective nutrient removal. Moreover, this review discusses, the role of omics-biology and Insilco approaches in unravelling and understanding the algae-microbe synergism and their response toward wastewater treatment. Finally, it discusses various microbiome engineering approaches for developing the effective microalgae-bacteria partners for carbon sequestration and nutrient recovery from wastewater, and summarizes future research perspectives on microalgae-microbiome based bioremediation.
Collapse
Affiliation(s)
- Muneer Ahmad Malla
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban, South Africa
| | - Faiz Ahmad Ansari
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban, South Africa
| | - Faizal Bux
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban, South Africa
| | - Sheena Kumari
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban, South Africa.
| |
Collapse
|
41
|
Cheng X, Jiang L, Zhao X, Wang S, Li J, Luo C, Zhang G. Synergism of endophytic microbiota and plants promotes the removal of polycyclic aromatic hydrocarbons from the Alfalfa rhizosphere. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135513. [PMID: 39178770 DOI: 10.1016/j.jhazmat.2024.135513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/12/2024] [Accepted: 08/12/2024] [Indexed: 08/26/2024]
Abstract
Endophytic bacteria can promote plant growth and accelerate pollutant degradation. However, it is unclear whether endophytic consortia (Consortium_E) can stabilize colonisation and degradation. We inoculated Consortium_E into the rhizosphere to enhance endophytic bacteria survival and promote pollutant degradation. Rhizosphere-inoculated Consortium_E enhanced polycyclic aromatic hydrocarbon (PAH) degradation rates by 11.5-13.1 % compared with sole bioaugmentation and plant treatments. Stable-isotope-probing (SIP) showed that the rhizosphere-inoculated Consortium_E had the largest number of degraders (8 amplicon sequence variants). Furthermore, only microbes from Consortium_E were identified among the degraders in bioaugmentation treatments, indicating that directly participated in phenanthrene metabolism. Interestingly, Consortium_E reshaped the community structure of degraders without significantly altering the rhizosphere community structure, and strengthened the core position of degraders in the network, facilitating close interactions between degraders and non-degraders in the rhizosphere, which were crucial for ensuring stable functionality. The synergistic effect between plants and Consortium_E significantly enhanced the upregulation of aromatic hydrocarbon degradation and auxiliary degradation pathways in the rhizosphere. These pathways showed a non-significant increasing trend in the uninoculated rhizosphere compared with the control, indicating that Consortium_E primarily promotes rhizosphere effects. Our results explore the Consortium_E bioaugmentation mechanism, providing a theoretical basis for the ecological restoration of contaminated soils.
Collapse
Affiliation(s)
- Xianghui Cheng
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Longfei Jiang
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100039, China.
| | - Xuan Zhao
- College of Architecture and Civil Engineering, Kunming University, Kunming 650214, China
| | - Shuang Wang
- School of Materials and Environmental Engineering, Chengdu Technological University, Chengdu 610000, China
| | - Jibing Li
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Chunling Luo
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100039, China.
| | - Gan Zhang
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100039, China
| |
Collapse
|
42
|
Janse van Rensburg H, Stengele K, Schlaeppi K. Understanding plant responsiveness to microbiome feedbacks. CURRENT OPINION IN PLANT BIOLOGY 2024; 81:102603. [PMID: 39024858 DOI: 10.1016/j.pbi.2024.102603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/28/2024] [Accepted: 06/30/2024] [Indexed: 07/20/2024]
Abstract
Plant microbiome interactions are bidirectional with processes leading to microbiome assembly and processes leading to effects on plants, so called microbiome feedbacks. With belowground focus we systematically decomposed both of these directions into plant and (root and rhizosphere) microbiome components to identify methodological challenges and research priorities. We found that the bidirectionality of plant microbiome interactions presents a challenge for genetic studies. Establishing causality is particularly difficult when a plant mutant has both, an altered phenotype and an altered microbiome. Is the mutation directly affecting the microbiome (e.g., through root exudates), which then causes an altered phenotype of the plant and/or is the altered microbiome the consequence of the mutation altering the plant's phenotype (e.g., root architecture)? Here, we put forward that feedback experiments allow to separate cause and effect and furthermore, they are useful for investigating plant interactions with complex microbiomes in natural soils. They especially allow to investigate the plant genetic basis how plants respond to soil microbiomes and we stress that such microbiome feedbacks are understudied compared to the mechanisms contributing to microbiome assembly. Thinking towards application, this may allow to develop crops with both abilities to assemble a beneficial microbiome and to actively exploit its feedbacks.
Collapse
Affiliation(s)
| | - Katja Stengele
- Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Klaus Schlaeppi
- Department of Environmental Sciences, University of Basel, Basel, Switzerland.
| |
Collapse
|
43
|
Wang L, Wang X, Wu H, Wang H, Lu Z. Interspecies synergistic interactions mediated by cofactor exchange enhance stress tolerance by inducing biofilm formation. mSystems 2024; 9:e0088424. [PMID: 39189769 PMCID: PMC11406921 DOI: 10.1128/msystems.00884-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 07/26/2024] [Indexed: 08/28/2024] Open
Abstract
Metabolic exchange plays a crucial role in shaping microbial community interactions and functions, including the exchange of small molecules such as cofactors. Cofactors are fundamental to enzyme catalytic activities; however, the role of cofactors in microbial stress tolerance is unclear. Here, we constructed a synergistic consortium containing two strains that could efficiently mineralize di-(2-ethylhexyl) phthalate under hyperosmotic stress. Integration of transcriptomic analysis, metabolic profiling, and a genome-scale metabolic model (GEM) facilitated the discovery of the potential mechanism of microbial interactions. Multi-omics analysis revealed that the vitamin B12-dependent methionine-folate cycle could be a key pathway for enhancing the hyperosmotic stress tolerance of synergistic consortium. Further GEM simulations revealed interspecies exchange of S-adenosyl-L-methionine and riboflavin, cofactors needed for vitamin B12 biosynthesis, which was confirmed by in vitro experiments. Overall, we proposed a new mechanism of bacterial hyperosmotic stress tolerance: bacteria might promote the production of vitamin B12 to enhance biofilm formation, and the species collaborate with each other by exchanging cofactors to improve consortium hyperosmotic stress tolerance. These findings offer new insights into the role of cofactors in microbial interactions and stress tolerance and are potentially exploitable for environmental remediation. IMPORTANCE Metabolic interactions (also known as cross-feeding) are thought to be ubiquitous in microbial communities. Cross-feeding is the basis for many positive interactions (e.g., mutualism) and is a primary driver of microbial community assembly. In this study, a combination of multi-omics analysis and metabolic modeling simulation was used to reveal the metabolic interactions of a synthetic consortium under hyperosmotic stress. Interspecies cofactor exchange was found to promote biofilm formation under hyperosmotic stress. This provides a new perspective for understanding the role of metabolic interactions in microbial communities to enhance environmental adaptation, which is significant for improving the efficiency of production activities and environmental bioremediation.
Collapse
Affiliation(s)
- Lvjing Wang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Xiaoyu Wang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Hao Wu
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Haixia Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Zhenmei Lu
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| |
Collapse
|
44
|
Imran M, Sun Z, Abo-Elyousr KAM, Ali H, Aldayel MF, Li C. One stone two birds: Endophytes alleviating trace elements accumulation and suppressing soilborne pathogen by stimulating plant growth, photosynthetic potential and defense related gene expression. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135084. [PMID: 38991649 DOI: 10.1016/j.jhazmat.2024.135084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/24/2024] [Accepted: 06/30/2024] [Indexed: 07/13/2024]
Abstract
In the present investigation, we utilized zinc nanoparticles (Zn-NPs) and bacterial endophytes to address the dual challenge of heavy metal (HM) toxicity in soil and Rhizoctonia solani causing root rot disease of tomato. The biocontrol potential of Bacillus subtilis and Bacillus amyloliquefaciens was harnessed, resulting in profound inhibition of R. solani mycelial growth and efficient detoxification of HM through strong production of various hydrolytic enzymes and metabolites. Surprisingly, Zn-NPs exhibited notable efficacy in suppressing mycelial growth and enhancing the seed germination (%) while Gas chromatography-mass spectrometry (GC-MS) analysis unveiled key volatile compounds (VOCs) crucial for the inhibition of pathogen. Greenhouse trials underscored significant reduction in the disease severity (%) and augmented biomass in biocontrol-mediated plants by improving photosynthesis-related attributes. Interestingly, Zn-NPs and biocontrol treatments enhanced the antioxidant enzymes and mitigate oxidative stress indicator by increasing H2O2 concentration. Field experiments corroborated these findings, with biocontrol-treated plants, particularly those receiving consortia-mediated treatments, displayed significant reduction in disease severity (%) and enhanced the fruit yield under field conditions. Root analysis confirmed the effective detoxification of HM, highlighting the eco-friendly potential of these endophytes and Zn-NPs as fungicide alternative for sustainable production that foster soil structure, biodiversity and promote plant health.
Collapse
Affiliation(s)
- Muhammad Imran
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China.
| | - Zhongke Sun
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China.
| | - Kamal A M Abo-Elyousr
- Department of Plant Pathology, Faculty of Agriculture, University of Assiut, Assiut 71526, Egypt; Department of Agriculture, Faculty of Environmental Sciences, King Abdulaziz University, 80208 Jeddah, Saudi Arabia.
| | - Haider Ali
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom.
| | - Munirah F Aldayel
- Department of Biological Sciences, College of Science, King Faisal University, 31982 Al-Ahsa, Saudi Arabia.
| | - Chengwei Li
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China; College of Life Science, Henan Agriculture University, Zhengzhou, 450046, China.
| |
Collapse
|
45
|
La S, Li J, Ma S, Liu X, Gao L, Tian Y. Protective role of native root-associated bacterial consortium against root-knot nematode infection in susceptible plants. Nat Commun 2024; 15:6723. [PMID: 39112511 PMCID: PMC11306399 DOI: 10.1038/s41467-024-51073-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 07/26/2024] [Indexed: 08/10/2024] Open
Abstract
Root-knot nematodes (RKNs) are a global menace to agricultural crop production. The role of root-associated microbes (RAMs) in plant protection against RKN infection remains unclear. Here we observe that cucumber (highly susceptible to Meloidogyne incognita) exhibits a consistently lower susceptibility to M. incognita in the presence of native RAMs in three distinct soils. Nematode infection alters the assembly of bacterial RAMs along the life cycle of M. incognita. Particularly, the loss of bacterial diversity of RAMs exacerbates plant susceptibility to M. incognita. A diverse range of native bacterial strains isolated from M. incognita-infected roots has nematode-antagonistic activity. Increasing the number of native bacterial strains causes decreasing nematode infection, which is lowest when six or more bacterial strains are present. Multiple simplified synthetic communities consisting of six bacterial strains show pronounced inhibitory effects on M. incognita infection in plants. These inhibitory effects are underpinned via multiple mechanisms including direct inhibition of infection, secretion of anti-nematode substances, and regulation of plant defense responses. This study highlights the role of native bacterial RAMs in plant resistance against RKNs and provides a useful insight into the development of a sustainable way to protect susceptible plants.
Collapse
Affiliation(s)
- Shikai La
- College of Horticulture, China Agricultural University, Yuanmingyuan West Road No. 2, Haidian District, Beijing, 100193, China
- Institute of Economic Crops, Hebei Academy of Agricultural and Forestry Sciences, Heping West Road No. 598, Shijiazhuang, 050051, China
| | - Jiafan Li
- College of Horticulture, China Agricultural University, Yuanmingyuan West Road No. 2, Haidian District, Beijing, 100193, China
| | - Si Ma
- College of Horticulture, China Agricultural University, Yuanmingyuan West Road No. 2, Haidian District, Beijing, 100193, China
| | - Xingqun Liu
- College of Horticulture, China Agricultural University, Yuanmingyuan West Road No. 2, Haidian District, Beijing, 100193, China
| | - Lihong Gao
- College of Horticulture, China Agricultural University, Yuanmingyuan West Road No. 2, Haidian District, Beijing, 100193, China.
| | - Yongqiang Tian
- College of Horticulture, China Agricultural University, Yuanmingyuan West Road No. 2, Haidian District, Beijing, 100193, China.
| |
Collapse
|
46
|
Zhou Y, Liu D, Li F, Dong Y, Jin Z, Liao Y, Li X, Peng S, Delgado-Baquerizo M, Li X. Superiority of native soil core microbiomes in supporting plant growth. Nat Commun 2024; 15:6599. [PMID: 39097606 PMCID: PMC11297980 DOI: 10.1038/s41467-024-50685-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 07/18/2024] [Indexed: 08/05/2024] Open
Abstract
Native core microbiomes represent a unique opportunity to support food provision and plant-based industries. Yet, these microbiomes are often neglected when developing synthetic communities (SynComs) to support plant health and growth. Here, we study the contribution of native core, native non-core and non-native microorganisms to support plant production. We construct four alternative SynComs based on the excellent growth promoting ability of individual stain and paired non-antagonistic action. One of microbiome based SynCom (SC2) shows a high niche breadth and low average variation degree in-vitro interaction. The promoting-growth effect of SC2 can be transferred to non-sterile environment, attributing to the colonization of native core microorganisms and the improvement of rhizosphere promoting-growth function including nitrogen fixation, IAA production, and dissolved phosphorus. Further, microbial fertilizer based on SC2 and composite carrier (rapeseed cake fertilizer + rice husk carbon) increase the net biomass of plant by 129%. Our results highlight the fundamental importance of native core microorganisms to boost plant production.
Collapse
Affiliation(s)
- Yanyan Zhou
- State Key Laboratory of Tree Genetics and Breeding, Nanjing Forestry University, Nanjing, 210037, China
| | - Donghui Liu
- State Key Laboratory of Tree Genetics and Breeding, Nanjing Forestry University, Nanjing, 210037, China
| | - Fengqiao Li
- State Key Laboratory of Tree Genetics and Breeding, Nanjing Forestry University, Nanjing, 210037, China
| | - Yuanhua Dong
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Zhili Jin
- Yongzhou Company of Hunan Tobacco Company, Yongzhou, 425000, China
| | - Yangwenke Liao
- State Key Laboratory of Tree Genetics and Breeding, Nanjing Forestry University, Nanjing, 210037, China
| | - Xiaohui Li
- Yongzhou Company of Hunan Tobacco Company, Yongzhou, 425000, China
| | - Shuguang Peng
- Hunan Province Company of China Tobacco Corporation, Changsha, 410004, China.
| | - Manuel Delgado-Baquerizo
- Laboratorio de Biodiversidad y Funcionamiento Ecosistémico, Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Sevilla, Spain
| | - Xiaogang Li
- State Key Laboratory of Tree Genetics and Breeding, Nanjing Forestry University, Nanjing, 210037, China.
| |
Collapse
|
47
|
Kozaeva E, Eida AA, Gunady EF, Dangl JL, Conway JM, Brophy JA. Roots of synthetic ecology: microbes that foster plant resilience in the changing climate. Curr Opin Biotechnol 2024; 88:103172. [PMID: 39029405 DOI: 10.1016/j.copbio.2024.103172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/11/2024] [Accepted: 06/26/2024] [Indexed: 07/21/2024]
Abstract
Microbes orchestrate nearly all major biogeochemical processes. The ability to program their influence on plant growth and development is attractive for sustainable agriculture. However, the complexity of microbial ecosystems and our limited understanding of the mechanisms by which plants and microbes interact with each other and the environment make it challenging to use microbiomes to influence plant growth. Novel technologies at the intersection of microbial ecology, systems biology, and bioengineering provide new tools to probe the role of plant microbiomes across environments. Here, we summarize recent studies on plant and microbe responses to abiotic stresses, showcasing key molecules and micro-organisms that are important for plant health. We highlight opportunities to use synthetic microbial communities to understand the complexity of plant-microbial interactions and discuss future avenues of programming ecology to improve plant and ecosystem health.
Collapse
Affiliation(s)
- Ekaterina Kozaeva
- Department of Bioengineering, Stanford University, Stanford, CA, USA; Section of Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Abdul Aziz Eida
- Howard Hughes Medical Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ella F Gunady
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
| | - Jeffery L Dangl
- Howard Hughes Medical Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Jonathan M Conway
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA.
| | | |
Collapse
|
48
|
Wang D, Wan Y, Liu D, Wang N, Wu J, Gu Q, Wu H, Gao X, Wang Y. Immune-enriched phyllosphere microbiome in rice panicle exhibits protective effects against rice blast and rice false smut diseases. IMETA 2024; 3:e223. [PMID: 39135691 PMCID: PMC11316918 DOI: 10.1002/imt2.223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 08/15/2024]
Abstract
Activation of immune responses leads to an enrichment of beneficial microbes in rice panicle. We therefore selected the enriched operational taxonomy units (OTUs) exhibiting direct suppression effects on fungal pathogens, and established a simplified synthetic community (SynCom) which consists of three beneficial microbes. Application of this SynCom exhibits protective effect against fungal pathogen infection in rice.
Collapse
Affiliation(s)
- Dacheng Wang
- Department of Plant Pathology, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of EducationNanjing Agricultural UniversityNanjingChina
| | - Yingqiao Wan
- Department of Plant Pathology, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of EducationNanjing Agricultural UniversityNanjingChina
| | - Dekun Liu
- Department of Plant Pathology, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of EducationNanjing Agricultural UniversityNanjingChina
| | - Ning Wang
- Research Center for Functional MicrobiologyOrganic Recycling Research Institute (Suzhou) of China Agricultural UniversitySuzhouChina
| | - Jingni Wu
- Department of Plant Pathology, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of EducationNanjing Agricultural UniversityNanjingChina
| | - Qin Gu
- Department of Plant Pathology, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of EducationNanjing Agricultural UniversityNanjingChina
| | - Huijun Wu
- Department of Plant Pathology, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of EducationNanjing Agricultural UniversityNanjingChina
| | - Xuewen Gao
- Department of Plant Pathology, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of EducationNanjing Agricultural UniversityNanjingChina
| | - Yiming Wang
- Department of Plant Pathology, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of EducationNanjing Agricultural UniversityNanjingChina
| |
Collapse
|
49
|
Abdelfadil MR, Patz S, Kolb S, Ruppel S. Unveiling the influence of salinity on bacterial microbiome assembly of halophytes and crops. ENVIRONMENTAL MICROBIOME 2024; 19:49. [PMID: 39026296 PMCID: PMC11256479 DOI: 10.1186/s40793-024-00592-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 07/07/2024] [Indexed: 07/20/2024]
Abstract
BACKGROUND Climate change and anthropogenic activities intensify salinity stress impacting significantly on plant productivity and biodiversity in agroecosystems. There are naturally salt-tolerant plants (halophytes) that can grow and withstand such harsh conditions. Halophytes have evolved along with their associated microbiota to adapt to hypersaline environments. Identifying shared microbial taxa between halophyte species has rarely been investigated. We performed a comprehensive meta-analysis using the published bacterial 16S rRNA gene sequence datasets to untangle the rhizosphere microbiota structure of two halophyte groups and non-halophytes. We aimed for the identification of marker taxa of plants being adapted to a high salinity using three independent approaches. RESULTS Fifteen studies met the selection criteria for downstream analysis, consisting of 40 plants representing diverse halophyte and non-halophyte species. Microbiome structural analysis revealed distinct compositions for halophytes that face high salt concentrations in their rhizosphere compared to halophytes grown at low salt concentrations or from non-halophytes. For halophytes grown at high salt concentrations, we discovered three bacterial genera that were independently detected through the analysis of the core microbiome, key hub taxa by network analysis and random forest analysis. These genera were Thalassospira, Erythrobacter, and Marinobacter. CONCLUSIONS Our meta-analysis revealed that salinity level is a critical factor in affecting the rhizosphere microbiome assembly of plants. Detecting marker taxa across high-halophytes may help to select Bacteria that might improve the salt tolerance of non-halophytic plants.
Collapse
Affiliation(s)
- Mohamed R Abdelfadil
- Thaer-Institute, Faculty of Life Sciences, Humboldt University of Berlin, 10115, Berlin, Germany.
- Department of Plant-Microbe Systems, Leibniz Institute of Vegetable and Ornamental Crops (IGZ), 14979, Großbeeren, Germany.
- Microbial Biogeochemistry, RA Landscape Functioning, Leibniz Center for Agricultural Landscape Research (ZALF), Eberswalder Str. 84, D-15374, Müncheberg, Germany.
| | - Sascha Patz
- Computomics GmbH, Eisenbahnstraße 1, 72072, Tübingen, Baden-Württemberg, Germany
| | - Steffen Kolb
- Thaer-Institute, Faculty of Life Sciences, Humboldt University of Berlin, 10115, Berlin, Germany
- Microbial Biogeochemistry, RA Landscape Functioning, Leibniz Center for Agricultural Landscape Research (ZALF), Eberswalder Str. 84, D-15374, Müncheberg, Germany
| | - Silke Ruppel
- Department of Plant-Microbe Systems, Leibniz Institute of Vegetable and Ornamental Crops (IGZ), 14979, Großbeeren, Germany
| |
Collapse
|
50
|
Huang H, Li M, Guo Q, Zhang R, Zhang Y, Luo K, Chen Y. Influence of Drought Stress on the Rhizosphere Bacterial Community Structure of Cassava ( Manihot esculenta Crantz). Int J Mol Sci 2024; 25:7326. [PMID: 39000433 PMCID: PMC11242396 DOI: 10.3390/ijms25137326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/26/2024] [Accepted: 07/01/2024] [Indexed: 07/16/2024] Open
Abstract
Drought presents a significant abiotic stress that threatens crop productivity worldwide. Rhizosphere bacteria play pivotal roles in modulating plant growth and resilience to environmental stresses. Despite this, the extent to which rhizosphere bacteria are instrumental in plant responses to drought, and whether distinct cassava (Manihot esculenta Crantz) varieties harbor specific rhizosphere bacterial assemblages, remains unclear. In this study, we measured the growth and physiological characteristics, as well as the physical and chemical properties of the rhizosphere soil of drought-tolerant (SC124) and drought-sensitive (SC8) cassava varieties under conditions of both well-watered and drought stress. Employing 16S rDNA high-throughput sequencing, we analyzed the composition and dynamics of the rhizosphere bacterial community. Under drought stress, biomass, plant height, stem diameter, quantum efficiency of photosystem II (Fv/Fm), and soluble sugar of cassava decreased for both SC8 and SC124. The two varieties' rhizosphere bacterial communities' overall taxonomic structure was highly similar, but there were slight differences in relative abundance. SC124 mainly relied on Gamma-proteobacteria and Acidobacteriae in response to drought stress, and the abundance of this class was positively correlated with soil acid phosphatase. SC8 mainly relied on Actinobacteria in response to drought stress, and the abundance of this class was positively correlated with soil urease and soil saccharase. Overall, this study confirmed the key role of drought-induced rhizosphere bacteria in improving the adaptation of cassava to drought stress and clarified that this process is significantly related to variety.
Collapse
Affiliation(s)
- Huling Huang
- School of Breeding and Multiplication, Sanya Institute of Breeding and Multiplication, Hainan University, Sanya 572025, China; (H.H.); (M.L.); (Q.G.); (R.Z.)
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Mingchao Li
- School of Breeding and Multiplication, Sanya Institute of Breeding and Multiplication, Hainan University, Sanya 572025, China; (H.H.); (M.L.); (Q.G.); (R.Z.)
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Qiying Guo
- School of Breeding and Multiplication, Sanya Institute of Breeding and Multiplication, Hainan University, Sanya 572025, China; (H.H.); (M.L.); (Q.G.); (R.Z.)
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Rui Zhang
- School of Breeding and Multiplication, Sanya Institute of Breeding and Multiplication, Hainan University, Sanya 572025, China; (H.H.); (M.L.); (Q.G.); (R.Z.)
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Yindong Zhang
- Key Laboratory of Plant Disease and Pest Control of Hainan Province, Institute of Plant Protection, Hainan Academy of Agricultural Sciences, Haikou 571100, China;
| | - Kai Luo
- School of Breeding and Multiplication, Sanya Institute of Breeding and Multiplication, Hainan University, Sanya 572025, China; (H.H.); (M.L.); (Q.G.); (R.Z.)
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Yinhua Chen
- School of Breeding and Multiplication, Sanya Institute of Breeding and Multiplication, Hainan University, Sanya 572025, China; (H.H.); (M.L.); (Q.G.); (R.Z.)
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| |
Collapse
|