1
|
Basta DW, Campbell IW, Sullivan EJ, Hotinger JA, Hullahalli K, Garg M, Waldor MK. Inducible transposon mutagenesis identifies bacterial fitness determinants during infection in mice. Nat Microbiol 2025; 10:1171-1183. [PMID: 40148565 PMCID: PMC12055562 DOI: 10.1038/s41564-025-01975-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 03/03/2025] [Indexed: 03/29/2025]
Abstract
Transposon insertion sequencing (Tn-seq) is a powerful method for genome-scale forward genetics in bacteria. However, inefficient transposon delivery or stochastic loss of mutants due to population bottlenecks can limit its effectiveness. Here we have developed 'InducTn-seq', where an arabinose-inducible Tn5 transposase enables temporal control of mini-Tn5 transposition. InducTn-seq generated up to 1.2 million transposon mutants from a single colony of enterotoxigenic Escherichia coli, Salmonella typhimurium, Shigella flexneri and Citrobacter rodentium. This mutant diversity enabled more sensitive detection of subtle fitness defects and measurement of quantitative fitness effects for essential and non-essential genes. Applying InducTn-seq to C. rodentium in a mouse model of infectious colitis bypassed a highly restrictive host bottleneck, generating a diverse population of >5 × 105 unique transposon mutants compared to 10-102 recovered by traditional Tn-seq. This in vivo screen revealed that the C. rodentium type I-E CRISPR system is required to suppress a toxin otherwise activated during gut colonization. Our findings highlight the potential of InducTn-seq for genome-scale forward genetic screens in bacteria.
Collapse
Affiliation(s)
- David W Basta
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Ian W Campbell
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Emily J Sullivan
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Julia A Hotinger
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Karthik Hullahalli
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Mehek Garg
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Matthew K Waldor
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, USA.
- Department of Microbiology, Harvard Medical School, Boston, MA, USA.
- Howard Hughes Medical Institute, Boston, MA, USA.
| |
Collapse
|
2
|
Fruet C, Müller EL, Loverdo C, Bitbol AF. Spatial structure facilitates evolutionary rescue by drug resistance. PLoS Comput Biol 2025; 21:e1012861. [PMID: 40179127 PMCID: PMC11967957 DOI: 10.1371/journal.pcbi.1012861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 02/09/2025] [Indexed: 04/05/2025] Open
Abstract
Bacterial populations often have complex spatial structures, which can impact their evolution. Here, we study how spatial structure affects the evolution of antibiotic resistance in a bacterial population. We consider a minimal model of spatially structured populations where all demes (i.e., subpopulations) are identical and connected to each other by identical migration rates. We show that spatial structure can facilitate the survival of a bacterial population to antibiotic treatment, starting from a sensitive inoculum. Specifically, the bacterial population can be rescued if antibiotic resistant mutants appear and are present when drug is added, and spatial structure can impact the fate of these mutants and the probability that they are present. Indeed, the probability of fixation of neutral or deleterious mutations providing drug resistance is increased in smaller populations. This promotes local fixation of resistant mutants in the structured population, which facilitates evolutionary rescue by drug resistance in the rare mutation regime. Once the population is rescued by resistance, migrations allow resistant mutants to spread in all demes. Our main result that spatial structure facilitates evolutionary rescue by antibiotic resistance extends to more complex spatial structures, and to the case where there are resistant mutants in the inoculum.
Collapse
Affiliation(s)
- Cecilia Fruet
- Institute of Bioengineering, School of Life Sciences, ÉcolePolytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- SIB SwissInstitute of Bioinformatics, Lausanne, Switzerland
| | - Ella Linxia Müller
- Institute of Bioengineering, School of Life Sciences, ÉcolePolytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- SIB SwissInstitute of Bioinformatics, Lausanne, Switzerland
| | - Claude Loverdo
- Sorbonne Université, CNRS,Institut de Biologie Paris-Seine (IBPS), Laboratoire Jean Perrin (LJP), Paris,France
| | - Anne-Florence Bitbol
- Institute of Bioengineering, School of Life Sciences, ÉcolePolytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- SIB SwissInstitute of Bioinformatics, Lausanne, Switzerland
| |
Collapse
|
3
|
Holmes CL, Albin OR, Mobley HLT, Bachman MA. Bloodstream infections: mechanisms of pathogenesis and opportunities for intervention. Nat Rev Microbiol 2025; 23:210-224. [PMID: 39420097 DOI: 10.1038/s41579-024-01105-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2024] [Indexed: 10/19/2024]
Abstract
Bloodstream infections (BSIs) are common in hospitals, often life-threatening and increasing in prevalence. Microorganisms in the blood are usually rapidly cleared by the immune system and filtering organs but, in some cases, they can cause an acute infection and trigger sepsis, a systemic response to infection that leads to circulatory collapse, multiorgan dysfunction and death. Most BSIs are caused by bacteria, although fungi also contribute to a substantial portion of cases. Escherichia coli, Staphylococcus aureus, coagulase-negative Staphylococcus, Klebsiella pneumoniae and Candida albicans are leading causes of BSIs, although their prevalence depends on patient demographics and geographical region. Each species is equipped with unique factors that aid in the colonization of initial sites and dissemination and survival in the blood, and these factors represent potential opportunities for interventions. As many pathogens become increasingly resistant to antimicrobials, new approaches to diagnose and treat BSIs at all stages of infection are urgently needed. In this Review, we explore the prevalence of major BSI pathogens, prominent mechanisms of BSI pathogenesis, opportunities for prevention and diagnosis, and treatment options.
Collapse
Affiliation(s)
- Caitlyn L Holmes
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Microbiology & Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Owen R Albin
- Department of Internal Medicine, Division of Infectious Diseases, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Harry L T Mobley
- Department of Microbiology & Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Michael A Bachman
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA.
- Department of Microbiology & Immunology, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
4
|
Campbell IW, Dehinwal R, Morano AA, Dailey KG, Zingl FG, Waldor MK. A connection between Vibrio cholerae motility and inter-animal transmission. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.12.637895. [PMID: 39990368 PMCID: PMC11844489 DOI: 10.1101/2025.02.12.637895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Outbreaks of cholera are caused by the highly transmissive pathogen Vibrio cholerae . Here, a transposon screen revealed that inactivation of the V. cholerae motility-linked gene motV increases infant mouse intestinal colonization. Compared to wild-type V. cholerae , a Δ motV mutant, which exhibits heightened motility in the form of constitutive straight swimming, localizes to the crypts earlier in infection and over a larger area of the small intestine. Aberrant localization of the mutant was associated with an increased number of V. cholerae initiating infection, and elevated pathogen burden, diarrhea, and lethality. Moreover, the deletion of motV causes V. cholerae to transmit from infected suckling mice to naïve littermates more efficiently. Even in the absence of cholera toxin, the Δ motV mutant continues to transmit between animals, although less than in the presence of toxin, indicating that phenotypes other than cholera toxin-driven diarrhea contribute to transmission. Collectively, this work provides experimental evidence linking intra-animal bottlenecks, colonization, and disease to inter-animal transmission.
Collapse
|
5
|
Bray AS, Broberg CA, Hudson AW, Wu W, Nagpal RK, Islam M, Valencia-Bacca JD, Shahid F, Hernandez GE, Nutter NA, Walker KA, Bennett EF, Young TM, Barnes AJ, Ornelles DA, Miller VL, Zafar MA. Klebsiella pneumoniae employs a type VI secretion system to overcome microbiota-mediated colonization resistance. Nat Commun 2025; 16:940. [PMID: 39843522 PMCID: PMC11754592 DOI: 10.1038/s41467-025-56309-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 01/15/2025] [Indexed: 01/24/2025] Open
Abstract
Microbial species must compete for space and nutrients to persist in the gastrointestinal (GI) tract, and our understanding of the complex pathobiont-microbiota interactions is far from complete. Klebsiella pneumoniae, a problematic, often drug-resistant nosocomial pathogen, can colonize the GI tract asymptomatically, serving as an infection reservoir. To provide insight on how K. pneumoniae interacts with the resident gut microbiome, we conduct a transposon mutagenesis screen using a murine model of GI colonization with an intact microbiota. Among the genes identified were those encoding a type VI secretion system (T6SS), which mediates contact-dependent killing of gram-negative bacteria. From several approaches, we demonstrate that the T6SS is critical for K. pneumoniae gut colonization. Metagenomics and in vitro killing assays reveal that K. pneumoniae reduces Betaproteobacteria species in a T6SS-dependent manner, thus identifying specific species targeted by K. pneumoniae. We further show that T6SS gene expression is controlled by several transcriptional regulators and that expression only occurs in vitro under conditions that mimic the gut environment. By enabling K. pneumoniae to thrive in the gut, the T6SS indirectly contributes to the pathogenic potential of this organism. These observations advance our molecular understanding of how K. pneumoniae successfully colonizes the GI tract.
Collapse
Affiliation(s)
- Andrew S Bray
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston Salem, NC, USA
| | - Christopher A Broberg
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Andrew W Hudson
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston Salem, NC, USA
| | - Weisheng Wu
- BRCF Bioinformatics Core, University of Michigan, Ann Arbor, MI, USA
| | - Ravinder K Nagpal
- Department of Nutrition & Integrative Physiology, Florida State University College of Health and Human Sciences, Tallahassee, FL, USA
| | - Maidul Islam
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston Salem, NC, USA
| | - Juan D Valencia-Bacca
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston Salem, NC, USA
| | - Fawaz Shahid
- Wake Forest University, Winston Salem, Winston Salem, NC, USA
| | - Giovanna E Hernandez
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston Salem, NC, USA
| | - Noah A Nutter
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston Salem, NC, USA
| | - Kimberly A Walker
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Emma F Bennett
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston Salem, NC, USA
| | - Taylor M Young
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston Salem, NC, USA
| | - Andrew J Barnes
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston Salem, NC, USA
| | - David A Ornelles
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston Salem, NC, USA
| | - Virginia L Miller
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
- Department of Genetics, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - M Ammar Zafar
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston Salem, NC, USA.
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
6
|
Holmes CL, Dailey KG, Hullahalli K, Wilcox AE, Mason S, Moricz BS, Unverdorben LV, Balazs GI, Waldor MK, Bachman MA. Patterns of Klebsiella pneumoniae bacteremic dissemination from the lung. Nat Commun 2025; 16:785. [PMID: 39824859 PMCID: PMC11742683 DOI: 10.1038/s41467-025-56095-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 01/06/2025] [Indexed: 01/20/2025] Open
Abstract
Bacteremia, a leading cause of death, generally arises after bacteria establish infection in a particular tissue and transit to secondary sites. Studying dissemination from primary sites by solely measuring bacterial burdens does not capture the movement of individual clones. By barcoding Klebsiella pneumoniae, a leading cause of bacteremia, we track pathogen dissemination following pneumonia. Variability in organ bacterial burdens is attributable to two distinct dissemination patterns distinguished by the degree of similarity between the lung and systemic sites. In metastatic dissemination, lung bacterial clones undergo heterogeneous expansion and the dominant clones spread to secondary organs, leading to greater similarity between sites. In direct dissemination, bacterial clones exit the lungs without clonal expansion, leading to lower burdens in systemic sites and more dissimilarity from the lung. We uncover bacterial and host factors that influence the dynamics of clonal sharing and expansion. Here, our data reveal unexpected heterogeneity in Klebsiella bacteremia dynamics and define a framework for understanding within-host bacterial dissemination.
Collapse
Affiliation(s)
- Caitlyn L Holmes
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Katherine G Dailey
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, USA
| | - Karthik Hullahalli
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, USA
| | - Alexis E Wilcox
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Sophia Mason
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Bridget S Moricz
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Lavinia V Unverdorben
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - George I Balazs
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, USA
| | - Matthew K Waldor
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, USA
- Howard Hughes Medical Institute, Boston, MA, USA
| | - Michael A Bachman
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA.
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
7
|
Basta DW, Campbell IW, Sullivan EJ, Hotinger JA, Hullahalli K, Waldor MK. Inducible transposon mutagenesis for genome-scale forward genetics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.21.595064. [PMID: 38826325 PMCID: PMC11142078 DOI: 10.1101/2024.05.21.595064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Transposon insertion sequencing (Tn-seq) is a powerful method for genome-scale functional genetics in bacteria. However, its effectiveness is often limited by a lack of mutant diversity, caused by either inefficient transposon delivery or stochastic loss of mutants due to population bottlenecks. Here, we introduce "InducTn-seq", which leverages inducible mutagenesis for temporal control of transposition. InducTn-seq generates millions of transposon mutants from a single colony, enabling the sensitive detection of subtle fitness defects and transforming binary classifications of gene essentiality into a quantitative fitness measurement across both essential and non-essential genes. Using a mouse model of infectious colitis, we show that InducTn-seq bypasses a highly restrictive host bottleneck to generate a diverse transposon mutant population from the few cells that initiate infection, revealing the role of oxygen-related metabolic plasticity in pathogenesis. Overall, InducTn-seq overcomes the limitations of traditional Tn-seq, unlocking new possibilities for genome-scale forward genetic screens in bacteria.
Collapse
Affiliation(s)
- David W. Basta
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Ian W. Campbell
- Division of Infectious Diseases, Brigham and Women’s Hospital, Boston, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Emily J. Sullivan
- Division of Infectious Diseases, Brigham and Women’s Hospital, Boston, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Julia A Hotinger
- Division of Infectious Diseases, Brigham and Women’s Hospital, Boston, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Karthik Hullahalli
- Division of Infectious Diseases, Brigham and Women’s Hospital, Boston, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Matthew K. Waldor
- Division of Infectious Diseases, Brigham and Women’s Hospital, Boston, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Boston, MA, USA
| |
Collapse
|
8
|
Chevée V, Hullahalli K, Dailey KG, Güereca L, Zhang C, Waldor MK, Portnoy DA. Temporal and spatial dynamics of Listeria monocytogenes central nervous system infection in mice. Proc Natl Acad Sci U S A 2024; 121:e2320311121. [PMID: 38635627 PMCID: PMC11046682 DOI: 10.1073/pnas.2320311121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 02/22/2024] [Indexed: 04/20/2024] Open
Abstract
Listeria monocytogenes is a bacterial pathogen that can cause life-threatening central nervous system (CNS) infections. While mechanisms by which L. monocytogenes and other pathogens traffic to the brain have been studied, a quantitative understanding of the underlying dynamics of colonization and replication within the brain is still lacking. In this study, we used barcoded L. monocytogenes to quantify the bottlenecks and dissemination patterns that lead to cerebral infection. Following intravenous (IV) inoculation, multiple independent invasion events seeded all parts of the CNS from the blood, however, only one clone usually became dominant in the brain. Sequential IV inoculations and intracranial inoculations suggested that clones that had a temporal advantage (i.e., seeded the CNS first), rather than a spatial advantage (i.e., invaded a particular brain region), were the main drivers of clonal dominance. In a foodborne model of cerebral infection with immunocompromised mice, rare invasion events instead led to a highly infected yet monoclonal CNS. This restrictive bottleneck likely arose from pathogen transit into the blood, rather than directly from the blood to the brain. Collectively, our findings provide a detailed quantitative understanding of the L. monocytogenes population dynamics that lead to CNS infection and a framework for studying the dynamics of other cerebral infections.
Collapse
Affiliation(s)
- Victoria Chevée
- Department of Molecular and Cell Biology, University of California, Berkeley, CA94720
| | - Karthik Hullahalli
- Division of Infectious Diseases, Brigham and Women’s Hospital, Boston, MA02115
- Department of Microbiology, Harvard Medical School, Boston, MA02115
- HHMI, Bethesda, MD20815
| | - Katherine G. Dailey
- Division of Infectious Diseases, Brigham and Women’s Hospital, Boston, MA02115
- Department of Microbiology, Harvard Medical School, Boston, MA02115
- HHMI, Bethesda, MD20815
| | - Leslie Güereca
- Department of Molecular and Cell Biology, University of California, Berkeley, CA94720
| | - Chenyu Zhang
- Department of Molecular and Cell Biology, University of California, Berkeley, CA94720
| | - Matthew K. Waldor
- Division of Infectious Diseases, Brigham and Women’s Hospital, Boston, MA02115
- Department of Microbiology, Harvard Medical School, Boston, MA02115
- HHMI, Bethesda, MD20815
| | - Daniel A. Portnoy
- Department of Molecular and Cell Biology, University of California, Berkeley, CA94720
- Department of Plant and Microbial Biology, University of California, Berkeley, CA94720
| |
Collapse
|
9
|
Peña-Díaz J, Woodward SE, Creus-Cuadros A, Serapio-Palacios A, Ortiz-Jiménez S, Deng W, Finlay BB. Quorum sensing modulates bacterial virulence and colonization dynamics of the gastrointestinal pathogen Citrobacter rodentium. Gut Microbes 2023; 15:2267189. [PMID: 37842938 PMCID: PMC10580866 DOI: 10.1080/19490976.2023.2267189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 10/02/2023] [Indexed: 10/17/2023] Open
Abstract
Quorum Sensing (QS) is a form of cell-to-cell communication that enables bacteria to modify behavior according to their population density. While QS has been proposed as a potential intervention against pathogen infection, QS-mediated communication within the mammalian digestive tract remains understudied. Using an LC-MS/MS approach, we discovered that Citrobacter rodentium, a natural murine pathogen used to model human infection by pathogenic Escherichia coli, utilizes the CroIR system to produce three QS-molecules. We then profiled their accumulation both in vitro and across different gastrointestinal sites over the course of infection. Importantly, we found that in the absence of QS capabilities the virulence of C. rodentium is enhanced. This highlights the role of QS as an effective mechanism to regulate virulence according to the pathogen's spatio-temporal context to optimize colonization and transmission success. These results also demonstrate that inhibiting QS may not always be an effective strategy for the control of virulence.
Collapse
Affiliation(s)
- Jorge Peña-Díaz
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Sarah E. Woodward
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Anna Creus-Cuadros
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Antonio Serapio-Palacios
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Stephanie Ortiz-Jiménez
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Wanyin Deng
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - B. Brett Finlay
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
10
|
Chan J, van Best N, Ward M, Arcilla MS, van Hattem JM, Melles DC, de Jong MD, Schultsz C, van Genderen PJJ, Penders J. Post-infectious irritable bowel syndrome after intercontinental travel: a prospective multicentre study. J Travel Med 2023; 30:taad101. [PMID: 37522760 PMCID: PMC10628768 DOI: 10.1093/jtm/taad101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/17/2023] [Accepted: 07/19/2023] [Indexed: 08/01/2023]
Abstract
By longitudinally following a large cohort of intercontinental travellers, this study highlights the importance of considering multiple risk factors to comprehend post-infectious irritable bowel syndrome (PI-IBS). Stomach cramps, antibiotic use and nausea during travel were amongst the variables that predicted PI-IBS development following an episode of traveller’s diarrhoea.
Collapse
Affiliation(s)
- Jiyang Chan
- School of Nutrition and Translational Research in Metabolism (NUTRIM), Department of Medical Microbiology, Infectious Diseases and Infection Prevention, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Niels van Best
- School of Nutrition and Translational Research in Metabolism (NUTRIM), Department of Medical Microbiology, Infectious Diseases and Infection Prevention, Maastricht University Medical Centre, Maastricht, The Netherlands
- Institute of Medical Microbiology, RWTH Aachen University Hospital, Aachen, Germany
| | - Markia Ward
- School of Nutrition and Translational Research in Metabolism (NUTRIM), Department of Medical Microbiology, Infectious Diseases and Infection Prevention, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Maris S Arcilla
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Jarne M van Hattem
- Department of Medical Microbiology, Amsterdam University Medical Centres, Location AMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Damian C Melles
- Department of Medical Microbiology and Medical Immunology, Meander Medical Centre, Amersfoort, The Netherlands
| | - Menno D de Jong
- Department of Medical Microbiology, Amsterdam University Medical Centres, Location AMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Constance Schultsz
- Department of Medical Microbiology, Amsterdam University Medical Centres, Location AMC, University of Amsterdam, Amsterdam, The Netherlands
- Department of Global Health, Amsterdam Institute for Global Health and Development (AIGHD), University of Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Perry J J van Genderen
- The Institute for Tropical Diseases, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - John Penders
- School of Nutrition and Translational Research in Metabolism (NUTRIM), Department of Medical Microbiology, Infectious Diseases and Infection Prevention, Maastricht University Medical Centre, Maastricht, The Netherlands
- School for Public Health and Primary Care (Caphri), Maastricht University Medical Centre, Maastricht, The Netherlands
| |
Collapse
|
11
|
Willems RPJ, Schut MC, Kaiser AM, Groot TH, Abu-Hanna A, Twisk JWR, van Dijk K, Vandenbroucke-Grauls CMJE. Association of Proton Pump Inhibitor Use With Risk of Acquiring Drug-Resistant Enterobacterales. JAMA Netw Open 2023; 6:e230470. [PMID: 36821114 PMCID: PMC9951039 DOI: 10.1001/jamanetworkopen.2023.0470] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Abstract
IMPORTANCE Proton-pump inhibitors (PPIs) have been associated with the risk of colonization with drug-resistant bacteria; however, possible confounding by lifestyle-associated factors and disease severity casts doubt on this association, and whether the risk is dose dependent is not known. OBJECTIVES To assess the association between PPI use and the risk of acquiring drug-resistant Enterobacterales and to examine interactions with possible microbiome-altering agents. DESIGN, SETTING, AND PARTICIPANTS This nested case-control study involved 2239 hospitalized adult (aged ≥18 years) patients identified from the microbiology laboratory database of Amsterdam University Medical Centers between December 31, 2018, and January 6, 2021. Patients in the case group had newly detected extended-spectrum β-lactamase (ESBL)- or carbapenemase-producing Enterobacterales (identified by clinical specimens). Risk-set sampling was used to assign patients with negative results for ESBL- and carbapenemase-producing Enterobacterales to the control group, who were then matched on a 5:1 ratio with patients in the case group by age and culture date. A second validation case-control study included matched pairs (1:1 ratio; 94 in each group) of patients who were prospectively enrolled. EXPOSURES Proton pump inhibitor use and clinical data at 30 days (primary exposure) and 90 days (secondary exposure) before the date of culture. MAIN OUTCOMES AND MEASURES Adjusted incidence rate ratios (aIRRs) of ESBL- or carbapenemase-producing Enterobacterales acquisition by PPI dose and time risk windows (30 days for the primary outcome and 90 days for the secondary outcome) were estimated using conditional logistic regression models. RESULTS Among 2239 hospitalized patients (51.1% male; mean [SD] age, 60.9 [16.7] years), 374 were in the case group (51.6% male; mean [SD] age, 61.1 [16.5] years) and 1865 were in the matched control group (51.0% male; mean [SD] age, 60.9 [16.7] years). The aIRR for PPI use overall was 1.48 (95% CI, 1.15-1.91) at 30 days. Sensitivity analyses and the analysis of the pair-matched study with prospectively enrolled patients (aIRR, 2.96, 95% CI, 1.14-7.74) yielded similar results; findings were consistent in subgroups and corroborated by a negative-control exposure analysis. No association with microbiome-disturbing agents was found; laxatives and antibiotics were independently associated with a more than 2-fold increase in the risk of acquisition (antibiotics: aIRR, 2.78 [95% CI, 2.14-3.59]; laxatives: aIRR, 2.26 [95% CI. 1.73-2.94]). CONCLUSIONS AND RELEVANCE In this study, after careful control for confounding and sensitivity analyses, PPI use was associated with increases in the risk of acquiring ESBL- or carbapenemase-producing Enterobacterales among adult hospitalized patients. These findings emphasize the need for judicious use of PPIs.
Collapse
Affiliation(s)
- Roel P. J. Willems
- Department of Medical Microbiology and Infection Prevention, Amsterdam Infection and Immunity Institute, Amsterdam University Medical Centers, Academic Medical Center, Amsterdam, the Netherlands
| | - Martijn C. Schut
- Department of Medical Informatics, Amsterdam Public Health, Amsterdam University Medical Centers, Academic Medical Center, Amsterdam, the Netherlands
| | - Anna M. Kaiser
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Centers, Vrije University Amsterdam, Amsterdam, the Netherlands
| | - Thomas H. Groot
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Centers, Vrije University Amsterdam, Amsterdam, the Netherlands
| | - Ameen Abu-Hanna
- Department of Medical Informatics, Amsterdam Public Health, Amsterdam University Medical Centers, Academic Medical Center, Amsterdam, the Netherlands
| | - Jos W. R. Twisk
- Department of Clinical Epidemiology and Data Science, Amsterdam Public Health, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Karin van Dijk
- Department of Medical Microbiology and Infection Prevention, Amsterdam Infection and Immunity Institute, Amsterdam University Medical Centers, Academic Medical Center, Amsterdam, the Netherlands
| | - Christina M. J. E. Vandenbroucke-Grauls
- Department of Medical Microbiology and Infection Prevention, Amsterdam Infection and Immunity Institute, Amsterdam University Medical Centers, Academic Medical Center, Amsterdam, the Netherlands
- Department of Clinical Medicine and Department of Clinical Epidemiology, Aarhus University, Aarhus, Denmark
| |
Collapse
|
12
|
Quantitative dose-response analysis untangles host bottlenecks to enteric infection. Nat Commun 2023; 14:456. [PMID: 36709326 PMCID: PMC9884216 DOI: 10.1038/s41467-023-36162-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/17/2023] [Indexed: 01/30/2023] Open
Abstract
Host bottlenecks prevent many infections before the onset of disease by eliminating invading pathogens. By monitoring the diversity of a barcoded population of the diarrhea causing bacterium Citrobacter rodentium during colonization of its natural host, mice, we determine the number of cells that found the infection by establishing a replicative niche. In female mice the size of the pathogen's founding population scales with dose and is controlled by a severe yet slow-acting bottleneck. Reducing stomach acid or changing host genotype modestly relaxes the bottleneck without breaking the fractional relationship between dose and founders. In contrast, disrupting the microbiota causes the founding population to no longer scale with the size of the inoculum and allows the pathogen to infect at almost any dose, indicating that the microbiota creates the dominant bottleneck. Further, in the absence of competition with the microbiota, the diversity of the pathogen population slowly contracts as the population is overtaken by bacteria having lost the critical virulence island, the locus of enterocyte effacement (LEE). Collectively, our findings reveal that the mechanisms of protection by colonization bottlenecks are reflected in and can be generally defined by the impact of dose on the pathogen's founding population.
Collapse
|