1
|
Li Z, Zhang Z, Yu B. Correction to "Unlocking the Therapeutic Potential of Natural Products for Alzheimer's Disease". J Med Chem 2025; 68:9018-9024. [PMID: 40214661 DOI: 10.1021/acs.jmedchem.5c00926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
|
2
|
Tortolani D, Decandia D, Giacovazzo G, Scipioni L, Panuccio A, Ciaramellano F, Eugelio F, Fanti F, Latagliata EC, La Barbera L, Cutuli D, Compagnone D, D’Amelio M, Coccurello R, Oddi S, Petrosini L, Maccarrone M. Chronic palmitoylethanolamide administration via slow-release subcutaneous pellets promotes neuroprotection and mitigates neuroinflammation in the Tg2576 mouse model of Alzheimer's disease. Front Cell Neurosci 2025; 19:1571428. [PMID: 40313591 PMCID: PMC12043567 DOI: 10.3389/fncel.2025.1571428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Accepted: 04/07/2025] [Indexed: 05/03/2025] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by cognitive and non-cognitive decline associated with neuropathological hallmarks, including neuroinflammation. Palmitoylethanolamide (PEA), an endogenous lipid with anti-inflammatory and neuroprotective properties, has emerged as a promising therapeutic agent in managing AD. This study investigated the therapeutic effects of chronic (6-months) PEA administration via subcutaneous pellet in Tg2576 mice, a validated model of AD. The impact of PEA on amyloid precursor protein (APP) processing, astrocytic activation, microglial reactivity and neuroinflammation, nitrosative stress, dendritic spine density in hippocampal CA1 pyramidal neurons, and cognitive performance was assessed. Chronic PEA treatment of Tg2576 mice increased the expression of the α-secretase ADAM9 and reduced astrogliosis. Furthermore, PEA attenuated microglia reactivity, downregulated pro-inflammatory (CXCL13, MCP-1, GCSF) and upregulated anti-inflammatory (CXC3CL1 and IL-9) cytokine expression. Chronic PEA administration also decreased protein nitrosylation, downregulated calcineurin expression, restored dendritic spine density, and improved cognitive functions. Chronic PEA administration offers a promising therapeutic approach for AD by mitigating neuroinflammation, oxidative stress, and synaptic dysfunction, ultimately leading to cognitive function restoration.
Collapse
Affiliation(s)
- Daniel Tortolani
- European Center for Brain Research, Fondazione Santa Lucia IRCCS, Rome, Italy
- Department of Veterinary Medicine, University of Teramo, Teramo, Italy
| | - Davide Decandia
- European Center for Brain Research, Fondazione Santa Lucia IRCCS, Rome, Italy
- Department of Psychology, University Sapienza of Rome, Rome, Italy
| | - Giacomo Giacovazzo
- European Center for Brain Research, Fondazione Santa Lucia IRCCS, Rome, Italy
- Department of Veterinary Medicine, University of Teramo, Teramo, Italy
| | - Lucia Scipioni
- European Center for Brain Research, Fondazione Santa Lucia IRCCS, Rome, Italy
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
| | - Anna Panuccio
- European Center for Brain Research, Fondazione Santa Lucia IRCCS, Rome, Italy
- Department of Psychology, University Sapienza of Rome, Rome, Italy
| | | | - Fabiola Eugelio
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Federico Fanti
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | | | - Livia La Barbera
- European Center for Brain Research, Fondazione Santa Lucia IRCCS, Rome, Italy
- Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Debora Cutuli
- European Center for Brain Research, Fondazione Santa Lucia IRCCS, Rome, Italy
- Department of Psychology, University Sapienza of Rome, Rome, Italy
| | - Dario Compagnone
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Marcello D’Amelio
- European Center for Brain Research, Fondazione Santa Lucia IRCCS, Rome, Italy
- Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Roberto Coccurello
- European Center for Brain Research, Fondazione Santa Lucia IRCCS, Rome, Italy
- Institute for Complex Systems (ISC), National Council of Research (CNR), Rome, Italy
| | - Sergio Oddi
- European Center for Brain Research, Fondazione Santa Lucia IRCCS, Rome, Italy
- Department of Veterinary Medicine, University of Teramo, Teramo, Italy
| | - Laura Petrosini
- European Center for Brain Research, Fondazione Santa Lucia IRCCS, Rome, Italy
| | - Mauro Maccarrone
- European Center for Brain Research, Fondazione Santa Lucia IRCCS, Rome, Italy
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
| |
Collapse
|
3
|
Dalle S, Poffé C, Lauriks W, Robberechts R, Stalmans M, Terrasi R, Muccioli GG, Koppo K. Circulating Endocannabinoids Are Associated with Mental Alertness During Ultra-Endurance Exercise. Cannabis Cannabinoid Res 2025; 10:200-206. [PMID: 39729203 DOI: 10.1089/can.2024.0169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024] Open
Abstract
Introduction: Ultra-endurance exercise events result in central fatigue, impacting on mental alertness and decision making. Endocannabinoids are typically elevated during endurance exercise and have been implicated in central processes such as learning and memory, but their role in central fatigue has never been studied. Materials and Methods: Twenty-four recreational male ultrarunners participated in a 100-km trail run, and 18 of them completed at least 60 km and were included in the analyses. A cognitive test battery to assess median reaction time (MRT) and median movement time during a reaction time task and median response latency during a rapid visual information processing task was completed prior to and immediately after the trail. Blood serum samples pre- and postexercise were analyzed for endocannabinoids and related lipids (anadamide: AEA; 2-arachidonoylglycerol: 2-AG; palmitoylethanolamide: PEA; oleoylethanolamide: OEA; stearoylethanolamine: SEA) via liquid chromatography-mass spectrometry. Results: Ultra-endurance exercise worsened all cognitive parameters and increased abundance of AEA, PEA, OEA, and SEA but not 2-AG. Interestingly, the exercise-induced change in MRT showed moderate, positive correlations with the change in different endocannabinoids, that is, AEA (r = 0.5164, p = 0.0338), PEA (r = 0.5466, p = 0.0251), and OEA (r = 0.5442, p = 0.0239). Conclusion: These results indicate a potential role of endocannabinoids on mental alertness following ultra-endurance exercise.
Collapse
Affiliation(s)
- Sebastiaan Dalle
- Exercise Physiology Research Group, Department of Movement Sciences, KU Leuven, Leuven, Belgium
- MOVANT Research Group, Faculty of Medicine & Health Sciences, University of Antwerp, Wilrijk, Belgium
| | - Chiel Poffé
- Exercise Physiology Research Group, Department of Movement Sciences, KU Leuven, Leuven, Belgium
- Faculty of Rehabilitation Sciences, Rehabilitation Research Center (REVAL), Hasselt University, Diepenbeek, Belgium
| | - Wout Lauriks
- Exercise Physiology Research Group, Department of Movement Sciences, KU Leuven, Leuven, Belgium
| | - Ruben Robberechts
- Exercise Physiology Research Group, Department of Movement Sciences, KU Leuven, Leuven, Belgium
| | - Myrthe Stalmans
- Exercise Physiology Research Group, Department of Movement Sciences, KU Leuven, Leuven, Belgium
| | - Romano Terrasi
- Louvain Drug Research Institute, Bioanalysis and Pharmacology of Bioactive Lipids Research Group, UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Giulio G Muccioli
- Louvain Drug Research Institute, Bioanalysis and Pharmacology of Bioactive Lipids Research Group, UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Katrien Koppo
- Exercise Physiology Research Group, Department of Movement Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
4
|
Younis IY, Sedeek MS, Essa AF, Elgamal AM, Eltanany BM, Goda ZM, Pont L, Benavente F, Mohsen E. Exploring geographic variations in quinoa grains: Unveiling anti-Alzheimer activity via GC-MS, LC-QTOF-MS/MS, molecular networking, and chemometric analysis. Food Chem 2025; 465:141918. [PMID: 39541691 DOI: 10.1016/j.foodchem.2024.141918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/28/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
Quinoa is an ancient Andean crop with a significant interest due to its nutritional and health benefits. This work provides a comprehensive metabolite profiling of five commercially available quinoa grains from diverse geographical origins. GC-MS analysis of primary metabolites identified sugars, sugar derivatives, and lipids as the predominant classes. LC-QTOF-MS/MS metabolomics and molecular networking facilitated the identification of 151 secondary metabolites, including 20 flavonoids, 14 saponins, and 20 lipids, which were reported for the first time in quinoa. In the AChE inhibition assay, USA white quinoa exhibited the highest activity. Chemometric analyses indicated that flavonoids and saponins were crucial for distinguishing quinoa grains. Notably, flavonoid glycosides and saponins were positively correlated with AChE inhibition. This study represents the first MS-based metabolomics investigation using molecular networking and chemometrics to explore the metabolome heterogeneity of commercial quinoa grains, underscoring their potential as a promising natural source for combating Alzheimer's disease.
Collapse
Affiliation(s)
- Inas Y Younis
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - Mohamed S Sedeek
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt; Pharmacognosy Department, Faculty of Pharmacy, King Salman International University, Ras-Sedr, South Sinai, Egypt
| | - Ahmed F Essa
- Chemistry of Natural Compounds Department, National Research Center, 33 El Bohouth St., Dokki, Giza 12622, Egypt; Pharmacognosy Department, Faculty of Pharmacy, Merit University, Sohag, Egypt
| | - Abdelbaset M Elgamal
- Department of Chemistry of Microbial and Natural Products, National Research Centre, 33 ElBohouth St., Dokki, Cairo 12622, Egypt
| | - Basma M Eltanany
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Zeinab M Goda
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Laura Pont
- Department of Chemical Engineering and Analytical Chemistry, Institute for Research on Nutrition and Food Safety (INSA·UB), University of Barcelona, Barcelona 08028, Spain; Serra Húnter Program, Generalitat de Catalunya, Barcelona 08007, Spain
| | - Fernando Benavente
- Department of Chemical Engineering and Analytical Chemistry, Institute for Research on Nutrition and Food Safety (INSA·UB), University of Barcelona, Barcelona 08028, Spain.
| | - Engy Mohsen
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
5
|
Li Z, Zhang Z, Yu B. Unlocking the Therapeutic Potential of Natural Products for Alzheimer's Disease. J Med Chem 2025; 68:2377-2402. [PMID: 39865664 DOI: 10.1021/acs.jmedchem.4c03049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative condition marked by memory loss and cognitive decline. With current treatments offering limited effectiveness, researchers are turning to natural products that can target various aspects of AD pathology. Clinically approved natural products, such as galantamine and huperzine A, have shown success in AD treatments. Furthermore, compounds such as epigallocatechin gallate, quercetin, and resveratrol are in clinical trials. This Perspective examines nearly 100 natural compounds with promising neuroprotective effects in preclinical and clinical studies. These compounds exhibit diverse pharmacological actions that help to prevent neurodegeneration while improving cognitive functions. Their unique structures further enhance their biological activities, making them promising candidates for drug discovery. This Perspective stresses the importance of further clinical research to maximize the medical benefits of these compounds and highlights their potential as innovative remedies for AD. Continued exploration of these compounds is crucial to fully leverage their capabilities in combating AD.
Collapse
Affiliation(s)
- Zhonghua Li
- Academy of Chinese Medical Sciences, Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Zhenqiang Zhang
- Academy of Chinese Medical Sciences, Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Bin Yu
- Tianjian Laboratory of Advanced Biomedical Sciences, Institute of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou 450000, China
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
6
|
Deng Q, Wu C, Parker E, Liu TCY, Duan R, Yang L. Microglia and Astrocytes in Alzheimer's Disease: Significance and Summary of Recent Advances. Aging Dis 2024; 15:1537-1564. [PMID: 37815901 PMCID: PMC11272214 DOI: 10.14336/ad.2023.0907] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/07/2023] [Indexed: 10/12/2023] Open
Abstract
Alzheimer's disease, one of the most common forms of dementia, is characterized by a slow progression of cognitive impairment and neuronal loss. Currently, approved treatments for AD are hindered by various side effects and limited efficacy. Despite considerable research, practical treatments for AD have not been developed. Increasing evidence shows that glial cells, especially microglia and astrocytes, are essential in the initiation and progression of AD. During AD progression, activated resident microglia increases the ability of resting astrocytes to transform into reactive astrocytes, promoting neurodegeneration. Extensive clinical and molecular studies show the involvement of microglia and astrocyte-mediated neuroinflammation in AD pathology, indicating that microglia and astrocytes may be potential therapeutic targets for AD. This review will summarize the significant and recent advances of microglia and astrocytes in the pathogenesis of AD in three parts. First, we will review the typical pathological changes of AD and discuss microglia and astrocytes in terms of function and phenotypic changes. Second, we will describe microglia and astrocytes' physiological and pathological role in AD. These roles include the inflammatory response, "eat me" and "don't eat me" signals, Aβ seeding, propagation, clearance, synapse loss, synaptic pruning, remyelination, and demyelination. Last, we will review the pharmacological and non-pharmacological therapies targeting microglia and astrocytes in AD. We conclude that microglia and astrocytes are essential in the initiation and development of AD. Therefore, understanding the new role of microglia and astrocytes in AD progression is critical for future AD studies and clinical trials. Moreover, pharmacological, and non-pharmacological therapies targeting microglia and astrocytes, with specific studies investigating microglia and astrocyte-mediated neuronal damage and repair, may be a promising research direction for future studies regarding AD treatment and prevention.
Collapse
Affiliation(s)
- Qianting Deng
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou 510006, China.
| | - Chongyun Wu
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou 510006, China.
- Laboratory of Regenerative Medicine in Sports Science, School of Physical Education and Sports Science, South China Normal University, Guangzhou 510006, China.
| | - Emily Parker
- Medical College of Georgia at Augusta University, Augusta, GA 30912, USA.
| | - Timon Cheng-Yi Liu
- Laboratory of Laser Sports Medicine, School of Physical Education and Sports Science, South China Normal University, Guangzhou 510006, China.
| | - Rui Duan
- Laboratory of Regenerative Medicine in Sports Science, School of Physical Education and Sports Science, South China Normal University, Guangzhou 510006, China.
| | - Luodan Yang
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou 510006, China.
| |
Collapse
|
7
|
Bonzanino M, Riolo M, Battaglini I, Perna M, De Mattei M. PEALut in the Dietary Management of Patients with Acute Ischemic Stroke: A Prospective Randomized Controlled Clinical Trial. J Clin Med 2024; 13:509. [PMID: 38256644 PMCID: PMC10816980 DOI: 10.3390/jcm13020509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/03/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
Acute ischemic stroke (AIS), which represents 87% of all strokes, is caused by reduced blood supply to the brain associated with a prolonged inflammatory process that exacerbates brain damage. The composite containing co-ultramicronized Palmitoylethanolamide and luteolin (PEALut) is known to promote the resolution of neuroinflammation, being a promising nutritional approach to contrast inflammatory processes occurring in AIS. This study included 60 patients affected by acute ischemic stroke and undergoing thrombolysis. PEALut 770 mg was administered to 30 patients, twice daily for 90 days, in addition to the standard therapy. Neurological deficit, independence in activities of daily living, disability and cognitive impairment were investigated. In all patients, the severity of AIS defined by the NIHSS score evolved from moderate to minor (p < 0.0001). Patients' independence in daily living activities and disability evaluated using BI and mRS showed a significant improvement over time, with a statistically significant difference in favor of PEALut-treated patients (p < 0.002 for BI, p < 0.0001 for mRS), who achieved also a marked improvement of cognitive function evaluated using MMSE and MoCA tests. PEALut proved to be a safe and effective treatment in addition to thrombolysis in the management of patients with acute ischemic stroke.
Collapse
Affiliation(s)
- Massimo Bonzanino
- S. S. Stoke Unit, Dipartimento Area Medica, Ospedale Santa Croce di Moncalieri, ASLTo5, 10024 Moncalieri, Turin, Italy
| | - Marianna Riolo
- S. C. Neurologia, Dipartimento Area Medica, Ospedale Santa Croce di Moncalieri, ASLTo5, 10024 Moncalieri, Turin, Italy
| | - Iacopo Battaglini
- S. C. Neurologia, Dipartimento Area Medica, Ospedale Santa Croce di Moncalieri, ASLTo5, 10024 Moncalieri, Turin, Italy
| | - Marilisa Perna
- S. S. Stoke Unit, Dipartimento Area Medica, Ospedale Santa Croce di Moncalieri, ASLTo5, 10024 Moncalieri, Turin, Italy
| | - Marco De Mattei
- S. C. Neurologia, Dipartimento Area Medica, Ospedale Santa Croce di Moncalieri, ASLTo5, 10024 Moncalieri, Turin, Italy
| |
Collapse
|
8
|
Pinna G. Role of PPAR-Allopregnanolone Signaling in Behavioral and Inflammatory Gut-Brain Axis Communications. Biol Psychiatry 2023; 94:609-618. [PMID: 37156350 DOI: 10.1016/j.biopsych.2023.04.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/10/2023]
Abstract
The gut microbiome regulates emotional behavior, stress responses, and inflammatory processes by communicating with the brain. How and which neurobiological mediators underlie this communication remain poorly understood. PPAR-α (peroxisome proliferator-activated receptor α), a transcription factor susceptible to epigenetic modifications, regulates pathophysiological functions, including metabolic syndrome, inflammation, and behavior. Mood disorders, inflammatory processes, and obesity are intertwined phenomena that are associated with low blood concentrations of the anti-inflammatory and "endogenous tranquilizer" neurosteroid allopregnanolone and poor PPAR-α function. Stress and consumption of obesogenic diets repress PPAR function in brain, enterocytes, lipocytes, and immune modulatory cells favoring inflammation, lipogenesis, and mood instability. Conversely, micronutrients and modulators of PPAR-α function improve microbiome composition, dampen systemic inflammation and lipogenesis, and improve anxiety and depression. In rodent stress models of anxiety and depression, PPAR activation normalizes both PPAR-α expression downregulation and decreased allopregnanolone content and ameliorates depressive-like behavior and fear responses. PPAR-α is known to regulate metabolic and inflammatory processes activated by short-chain fatty acids; endocannabinoids and congeners, such as N-palmitoylethanolamide, drugs that treat dyslipidemias; and micronutrients, including polyunsaturated fatty acids. Both PPAR-α and allopregnanolone are abundantly expressed in the colon, and they exert potent anti-inflammatory actions by blocking the toll-like receptor-4-nuclear factor-κB pathway in peripheral immune cells, neurons, and glia. The perspective that PPAR-α regulation in the colon by gut microbiota or metabolites influences central allopregnanolone content after trafficking to the brain, thereby serving as a mediator of gut-brain axis communications, is examined in this review.
Collapse
Affiliation(s)
- Graziano Pinna
- Psychiatric Institute, University of Illinois Center on Depression and Resilience, and Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois.
| |
Collapse
|
9
|
Sangineto M, Ciarnelli M, Cassano T, Radesco A, Moola A, Bukke VN, Romano A, Villani R, Kanwal H, Capitanio N, Duda L, Avolio C, Serviddio G. Metabolic reprogramming in inflammatory microglia indicates a potential way of targeting inflammation in Alzheimer's disease. Redox Biol 2023; 66:102846. [PMID: 37586250 PMCID: PMC10457454 DOI: 10.1016/j.redox.2023.102846] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 08/08/2023] [Indexed: 08/18/2023] Open
Abstract
Microglia activation drives the pro-inflammatory activity in the early stages of Alzheimer's disease (AD). However, the mechanistic basis is elusive, and the hypothesis of targeting microglia to prevent AD onset is little explored. Here, we demonstrated that upon LPS exposure, microglia shift towards an energetic phenotype characterised by high glycolysis and high mitochondrial respiration with dysfunction. Although the activity of electron transport chain (ETC) complexes is boosted by LPS, this is mostly devoted to the generation of reactive oxygen species. We showed that by inhibiting succinate dehydrogenase (SDH) with dimethyl malonate (DMM), it is possible to modulate the LPS-induced metabolic rewiring, facilitating an anti-inflammatory phenotype. DMM improves mitochondrial function in a direct way and by reducing LPS-induced mitochondrial biogenesis. Moreover, the block of SDH with DMM inhibits the recruitment of hypoxia inducible-factor 1 α (HIF-1α), which mediates the induction of glycolysis and cytokine expression. Similar bioenergetic alterations were observed in the microglia isolated from AD mice (3xTg-AD), which present high levels of circulating LPS and brain toll-like receptor4 (TLR4). Moreover, this well-established model of AD was used to show a potential effect of SDH inhibition in vivo as DMM administration abrogated brain inflammation and modulated the microglia metabolic alterations of 3xTg-AD mice. The RNA-sequencing analysis from a public dataset confirmed the consistent transcription of genes encoding for ETC subunits in the microglia of AD mice (5xFAD). In conclusion, TLR4 activation promotes metabolic changes and the pro-inflammatory activity in microglia, and SDH might represent a promising therapeutic target to prevent AD development.
Collapse
Affiliation(s)
- Moris Sangineto
- C.U.R.E. (University Center for Liver Disease Research and Treatment), Liver Unit, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy.
| | - Martina Ciarnelli
- C.U.R.E. (University Center for Liver Disease Research and Treatment), Liver Unit, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Tommaso Cassano
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Antonio Radesco
- Istituto Oncologico "Giovanni Paolo II", I.R.C.S.S. of Bari, Laboratory of Haematological Diagnostics and Cellular Therapy, Bari, Italy
| | - Archana Moola
- C.U.R.E. (University Center for Liver Disease Research and Treatment), Liver Unit, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Vidyasagar Naik Bukke
- C.U.R.E. (University Center for Liver Disease Research and Treatment), Liver Unit, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Antonino Romano
- C.U.R.E. (University Center for Liver Disease Research and Treatment), Liver Unit, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Rosanna Villani
- C.U.R.E. (University Center for Liver Disease Research and Treatment), Liver Unit, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Hina Kanwal
- C.U.R.E. (University Center for Liver Disease Research and Treatment), Liver Unit, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Nazzareno Capitanio
- Biochemistry Unit, Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Loren Duda
- Pathology Unit, Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Carlo Avolio
- Neurology Unit, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Gaetano Serviddio
- C.U.R.E. (University Center for Liver Disease Research and Treatment), Liver Unit, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| |
Collapse
|
10
|
Han Y, Yang KH, He DX, Yu CF, Tao L, Liao CY, Cai BX, Liu ZG, Qiu Y, Wu YL. Effect of palmitoylethanolamide on degeneration of a human-derived retinal pigment epithelial cell induced by all-trans retinal. Int J Ophthalmol 2023; 16:191-200. [PMID: 36816211 PMCID: PMC9922624 DOI: 10.18240/ijo.2023.02.04] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 12/07/2022] [Indexed: 02/05/2023] Open
Abstract
AIM To study the effect of palmitoylethanolamide (PEA) on apoptosis of retinal pigment epithelial (RPE) cells induced by all-trans retinal (atRAL) and to explore the possible molecular mechanism. METHODS CellTiter 96® Aqueous One Solution Cell Proliferation Assay (MTS) was used to detect the effect of PEA on human-derived retinal epithelial cells (ARPE-19) viability induced by atRAL. A Leica DMi8 inverted microscope was used to observe cell morphology. Reactive oxygen species (ROS) production was evaluated with 2',7'-dichlorodihydrof-luorescein diacetate (H2DCFDA) staining and fluorescence microscopy. Expression of c-Jun N-terminal kinase (JNK), phosphorylated JNK (p-JNK), c-Jun, phosphorylated c-Jun (p-c-Jun), Bak, cleaved caspase-3, C/EBP homologous protein (CHOP), and binding (Bip) protein levels were tested by Western blot. Abca4 -/- Rdh8 -/- mice, mouse models of atRAL clearance defects which displays some symbolic characteristics of dry age-related macular degeneration (AMD) and Stargardt disease (STGD1). In the animal models, PEA was injected intraperitoneally. The full-field electroretinogram was used to detect visual function under scotopic conditions traced from mice. Optical coherence tomography showed reconstitution or thickening of the retinal pigment epithelium layer. Effect of PEA on fundus injury induced by light in Abca4-/-Rdh8-/- mice was observed by fundus photography. RESULTS PEA ameliorated ARPE-19 cells apoptosis and inhibited ROS (including mitochondrial ROS) production induced by atRAL. PEA improved the retinal functional, prohibited both RPE and photoreceptor from death, ameliorates light-induced fundus impairment in Abca4 -/- Rdh8 -/- mice. In vitro and in vivo, PEA inhibited JNK, p-JNK, c-Jun, p-c-Jun, Bak, cleaved caspase-3, CHOP, and Bip protein levels induced by all-trans retinal in ARPE-19 cells. CONCLUSION PEA has effect on treating RPE cells apoptosis in retinopathy caused by atRAL accumulation. PEA is a potential treatment strategy for dry AMD and STGD1. The molecular mechanism is affecting the ROS-JNK-CHOP signaling pathway partly.
Collapse
Affiliation(s)
- Yun Han
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Engineering and Research Center of Eye Regenerative Medicine, School of Medicine, Xiamen University, Xiamen 361102, Fujian Province, China,Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Xiamen 361102, Fujian Province, China,Xiamen University Affiliated Xiamen Eye Center, Xiamen 361102, Fujian Province, China
| | - Kun-Huan Yang
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Engineering and Research Center of Eye Regenerative Medicine, School of Medicine, Xiamen University, Xiamen 361102, Fujian Province, China
| | - Dan-Xue He
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Engineering and Research Center of Eye Regenerative Medicine, School of Medicine, Xiamen University, Xiamen 361102, Fujian Province, China
| | - Chao-Feng Yu
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Engineering and Research Center of Eye Regenerative Medicine, School of Medicine, Xiamen University, Xiamen 361102, Fujian Province, China
| | - Lei Tao
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Engineering and Research Center of Eye Regenerative Medicine, School of Medicine, Xiamen University, Xiamen 361102, Fujian Province, China
| | - Chun-Yan Liao
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Engineering and Research Center of Eye Regenerative Medicine, School of Medicine, Xiamen University, Xiamen 361102, Fujian Province, China
| | - Bin-Xiang Cai
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Engineering and Research Center of Eye Regenerative Medicine, School of Medicine, Xiamen University, Xiamen 361102, Fujian Province, China
| | - Zu-Guo Liu
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Engineering and Research Center of Eye Regenerative Medicine, School of Medicine, Xiamen University, Xiamen 361102, Fujian Province, China,Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Xiamen 361102, Fujian Province, China,Xiamen University Affiliated Xiamen Eye Center, Xiamen 361102, Fujian Province, China
| | - Yan Qiu
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Engineering and Research Center of Eye Regenerative Medicine, School of Medicine, Xiamen University, Xiamen 361102, Fujian Province, China,Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Xiamen 361102, Fujian Province, China,Xiamen University Affiliated Xiamen Eye Center, Xiamen 361102, Fujian Province, China
| | - Ya-Lin Wu
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Engineering and Research Center of Eye Regenerative Medicine, School of Medicine, Xiamen University, Xiamen 361102, Fujian Province, China,Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Xiamen 361102, Fujian Province, China,Xiamen University Affiliated Xiamen Eye Center, Xiamen 361102, Fujian Province, China,Shenzhen Research Institute of Xiamen University, Shenzhen 518000, Guangdong Province, China
| | | | | | | | | | | | - Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Engineering and Research Center of Eye Regenerative Medicine, School of Medicine, Xiamen University, Xiamen 361102, Fujian Province, China; Department of Ophthalmology, Xiang’an Hospital of Xiamen University, Xiamen 361102, Fujian Province, China; Xiamen University Affiliated Xiamen Eye Center, Xiamen 361102, Fujian Province, China
| | - Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Engineering and Research Center of Eye Regenerative Medicine, School of Medicine, Xiamen University, Xiamen 361102, Fujian Province, China; Department of Ophthalmology, Xiang’an Hospital of Xiamen University, Xiamen 361102, Fujian Province, China; Xiamen University Affiliated Xiamen Eye Center, Xiamen 361102, Fujian Province, China
| | - Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Engineering and Research Center of Eye Regenerative Medicine, School of Medicine, Xiamen University, Xiamen 361102, Fujian Province, China; Department of Ophthalmology, Xiang’an Hospital of Xiamen University, Xiamen 361102, Fujian Province, China; Xiamen University Affiliated Xiamen Eye Center, Xiamen 361102, Fujian Province, China
| |
Collapse
|
11
|
PPARs and Their Neuroprotective Effects in Parkinson's Disease: A Novel Therapeutic Approach in α-Synucleinopathy? Int J Mol Sci 2023; 24:ijms24043264. [PMID: 36834679 PMCID: PMC9963164 DOI: 10.3390/ijms24043264] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023] Open
Abstract
Parkinson's disease (PD) is the most common α-synucleinopathy worldwide. The pathognomonic hallmark of PD is the misfolding and propagation of the α-synuclein (α-syn) protein, observed in post-mortem histopathology. It has been hypothesized that α-synucleinopathy triggers oxidative stress, mitochondrial dysfunction, neuroinflammation, and synaptic dysfunction, leading to neurodegeneration. To this date, there are no disease-modifying drugs that generate neuroprotection against these neuropathological events and especially against α-synucleinopathy. Growing evidence suggests that peroxisome proliferator-activated receptor (PPAR) agonists confer neuroprotective effects in PD, however, whether they also confer an anti-α-synucleinopathy effect is unknown. Here we analyze the reported therapeutic effects of PPARs, specifically the gamma isoform (PPARγ), in preclinical PD animal models and clinical trials for PD, and we suggest possible anti-α-synucleinopathy mechanisms acting downstream from these receptors. Elucidating the neuroprotective mechanisms of PPARs through preclinical models that mimic PD as closely as possible will facilitate the execution of better clinical trials for disease-modifying drugs in PD.
Collapse
|
12
|
Cassano T, Giamogante F, Calcagnini S, Romano A, Lavecchia AM, Inglese F, Paglia G, Bukke VN, Romano AD, Friuli M, Altieri F, Gaetani S. PDIA3 Expression Is Altered in the Limbic Brain Regions of Triple-Transgenic Mouse Model of Alzheimer's Disease. Int J Mol Sci 2023; 24:ijms24033005. [PMID: 36769334 PMCID: PMC9918299 DOI: 10.3390/ijms24033005] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/27/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
In the present study, we used a mouse model of Alzheimer's disease (AD) (3×Tg-AD mice) to longitudinally analyse the expression level of PDIA3, a protein disulfide isomerase and endoplasmic reticulum (ER) chaperone, in selected brain limbic areas strongly affected by AD-pathology (amygdala, entorhinal cortex, dorsal and ventral hippocampus). Our results suggest that, while in Non-Tg mice PDIA3 levels gradually reduce with aging in all brain regions analyzed, 3×Tg-AD mice showed an age-dependent increase in PDIA3 levels in the amygdala, entorhinal cortex, and ventral hippocampus. A significant reduction of PDIA3 was observed in 3×Tg-AD mice already at 6 months of age, as compared to age-matched Non-Tg mice. A comparative immunohistochemistry analysis performed on 3×Tg-AD mice at 6 (mild AD-like pathology) and 18 (severe AD-like pathology) months of age showed a direct correlation between the cellular level of Aβ and PDIA3 proteins in all the brain regions analysed, even if with different magnitudes. Additionally, an immunohistochemistry analysis showed the presence of PDIA3 in all post-mitotic neurons and astrocytes. Overall, altered PDIA3 levels appear to be age- and/or pathology-dependent, corroborating the ER chaperone's involvement in AD pathology, and supporting the PDIA3 protein as a potential novel therapeutic target for the treatment of AD.
Collapse
Affiliation(s)
- Tommaso Cassano
- Department of Medical and Surgical Sciences, University of Foggia, Via L. Pinto 1, 71122 Foggia, Italy
| | - Flavia Giamogante
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Silvio Calcagnini
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Adele Romano
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Angelo Michele Lavecchia
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Francesca Inglese
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Giuliano Paglia
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Vidyasagar Naik Bukke
- Department of Medical and Surgical Sciences, University of Foggia, Via L. Pinto 1, 71122 Foggia, Italy
| | - Antonino Davide Romano
- Department of Medical and Surgical Sciences, University of Foggia, Via L. Pinto 1, 71122 Foggia, Italy
| | - Marzia Friuli
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Fabio Altieri
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
- Correspondence:
| | - Silvana Gaetani
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
13
|
Rodriguez-Almaraz JE, Butowski N. Therapeutic and Supportive Effects of Cannabinoids in Patients with Brain Tumors (CBD Oil and Cannabis). Curr Treat Options Oncol 2023; 24:30-44. [PMID: 36633803 PMCID: PMC9867687 DOI: 10.1007/s11864-022-01047-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
OPINION STATEMENT The potential medicinal properties of Cannabis continue to garner attention, especially in the brain tumor domain. This attention is centered on quality of life and symptom management; however, it is amplified by a significant lack of therapeutic choices for this specific patient population. While the literature on this matter is young, published and anecdotal evidence imply that cannabis could be useful in treating chemotherapy-induced nausea and vomiting, stimulating appetite, reducing pain, and managing seizures. It may also decrease inflammation and cancer cell proliferation and survival, resulting in a benefit in overall patient survival. Current literature poses the challenge that it does not provide standardized guidance on dosing for the above potential indications and cannabis use is dominated by recreational purposes. Furthermore, integrated and longitudinal studies are needed but these are a challenge due to arcane laws surrounding the legality of such substances. The increasing need for evidence-based arguments about potential harms and benefits of cannabis, not only in cancer patients but for other medical use and recreational purposes, is desperately needed.
Collapse
Affiliation(s)
- J. Eduardo Rodriguez-Almaraz
- Neuro Surgery Department Division of Neuro-Oncology, University of California San Francisco, 400 Parnassus Avenue, 8th floor, RM A808, San Francisco, California USA
- Deparment of Epidemiology and Biostatistics, University of California San Francisco, 400 Parnassus Avenue, 8th floor, RM A808, San Francisco, California USA
| | - Nicholas Butowski
- Neuro Surgery Department Division of Neuro-Oncology, University of California San Francisco, 400 Parnassus Avenue, 8th floor, RM A808, San Francisco, California USA
- Deparment of Molecular Science, University of California San Francisco, 400 Parnassus Avenue, 8th floor, RM A808, San Francisco, California USA
| |
Collapse
|
14
|
Kamaruzzaman MA, Romli MH, Abas R, Vidyadaran S, Hidayat Baharuldin MT, Nasaruddin ML, Thirupathirao V, Sura S, Warsito K, Mohd Nor NH, Azwaruddin MA, Alshawsh MA, Mohd Moklas MA. Regulatory role of the endocannabinoid system on glial cells toward cognitive function in Alzheimer's disease: A systematic review and meta-analysis of animal studies. Front Pharmacol 2023; 14:1053680. [PMID: 36959856 PMCID: PMC10028478 DOI: 10.3389/fphar.2023.1053680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 02/08/2023] [Indexed: 03/06/2023] Open
Abstract
Objective: Over the last decade, researchers have sought to develop novel medications against dementia. One potential agent under investigation is cannabinoids. This review systematically appraised and meta-analyzed published pre-clinical research on the mechanism of endocannabinoid system modulation in glial cells and their effects on cognitive function in animal models of Alzheimer's disease (AD). Methods: A systematic review complying with PRISMA guidelines was conducted. Six databases were searched: EBSCOHost, Scopus, PubMed, CINAHL, Cochrane, and Web of Science, using the keywords AD, cannabinoid, glial cells, and cognition. The methodological quality of each selected pre-clinical study was evaluated using the SYRCLE risk of bias tool. A random-effects model was applied to analyze the data and calculate the effect size, while I2 and p-values were used to assess heterogeneity. Results: The analysis included 26 original articles describing (1050 rodents) with AD-like symptoms. Rodents treated with cannabinoid agonists showed significant reductions in escape latency (standard mean difference [SMD] = -1.26; 95% confidence interval [CI]: -1.77 to -0.76, p < 0.00001) and ability to discriminate novel objects (SMD = 1.40; 95% CI: 1.04 to 1.76, p < 0.00001) compared to the control group. Furthermore, a significant decrease in Aβ plaques (SMD = -0.91; 95% CI: -1.55 to -0.27, p = 0.006) was observed in the endocannabinoid-treated group compared to the control group. Trends were observed toward neuroprotection, as represented by decreased levels of glial cell markers including glial fibrillary acid protein (SMD = -1.47; 95% CI: -2.56 to -0.38, p = 0.008) and Iba1 (SMD = -1.67; 95% CI: -2.56 to -0.79, p = 0.0002). Studies on the wild-type mice demonstrated significantly decreased levels of pro-inflammatory markers TNF-α, IL-1, and IL-6 (SMD = -2.28; 95% CI: -3.15 to -1.41, p = 0.00001). Despite the non-significant decrease in pro-inflammatory marker levels in transgenic mice (SMD = -0.47; 95% CI: -1.03 to 0.08, p = 0.09), the result favored the endocannabinoid-treated group over the control group. Conclusion: The revised data suggested that endocannabinoid stimulation promotes cognitive function via modulation of glial cells by decreasing pro-inflammatory markers in AD-like rodent models. Thus, cannabinoid agents may be required to modulate the downstream chain of effect to enhance cognitive stability against concurrent neuroinflammation in AD. Population-based studies and well-designed clinical trials are required to characterize the acceptability and real-world effectiveness of cannabinoid agents. Systematic Review Registration: [https://inplasy.com/inplasy-2022-8-0094/], identifier [Inplasy Protocol 3770].
Collapse
Affiliation(s)
- Mohd Amir Kamaruzzaman
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
- Department of Human Anatomy, Faculty of Medicine and Health Science, Universiti Putra Malaysia, Kuala Lumpur, Malaysia
| | - Muhammad Hibatullah Romli
- Department of Nursing and Rehabilitation, Faculty of Medicine and Health Science, Universiti Putra Malaysia, Kuala Lumpur, Malaysia
| | - Razif Abas
- Department of Human Anatomy, Faculty of Medicine and Health Science, Universiti Putra Malaysia, Kuala Lumpur, Malaysia
| | - Sharmili Vidyadaran
- Department of Pathology, Faculty of Medicine and Health Science, Universiti Putra Malaysia, Kuala Lumpur, Malaysia
| | | | | | | | - Sreenivasulu Sura
- Department of Human Anatomy, Faculty of Medicine and Health Science, Universiti Putra Malaysia, Kuala Lumpur, Malaysia
- Department of Preclinical Sciences, Faculty of Medicine and Health Sciences, University Tunku Abdul Rahman, Kampar, Malaysia
| | - Kabul Warsito
- Department of Agrotechnology, Faculty of Science and Technology, University of Pembangunan Panca Budi, Medan, Indonesia
| | - Nurul Huda Mohd Nor
- Department of Human Anatomy, Faculty of Medicine and Health Science, Universiti Putra Malaysia, Kuala Lumpur, Malaysia
| | - Muhammad Amsyar Azwaruddin
- Department of Human Anatomy, Faculty of Medicine and Health Science, Universiti Putra Malaysia, Kuala Lumpur, Malaysia
| | - Mohammed Abdullah Alshawsh
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
- Department of Paediatrics, School of Clinical Sciences, Faculty of Medicine, Nursing and Health Science, Monash University, Clayton, VIC, Australia
- *Correspondence: Mohamad Aris Mohd Moklas, ; Mohammed Abdullah Alshawsh,
| | - Mohamad Aris Mohd Moklas
- Department of Human Anatomy, Faculty of Medicine and Health Science, Universiti Putra Malaysia, Kuala Lumpur, Malaysia
- *Correspondence: Mohamad Aris Mohd Moklas, ; Mohammed Abdullah Alshawsh,
| |
Collapse
|
15
|
Mock ED, Gagestein B, van der Stelt M. Anandamide and other N-acylethanolamines: A class of signaling lipids with therapeutic opportunities. Prog Lipid Res 2023; 89:101194. [PMID: 36150527 DOI: 10.1016/j.plipres.2022.101194] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 01/18/2023]
Abstract
N-acylethanolamines (NAEs), including N-palmitoylethanolamine (PEA), N-oleoylethanolamine (OEA), N-arachidonoylethanolamine (AEA, anandamide), N-docosahexaenoylethanolamine (DHEA, synaptamide) and their oxygenated metabolites are a lipid messenger family with numerous functions in health and disease, including inflammation, anxiety and energy metabolism. The NAEs exert their signaling role through activation of various G protein-coupled receptors (cannabinoid CB1 and CB2 receptors, GPR55, GPR110, GPR119), ion channels (TRPV1) and nuclear receptors (PPAR-α and PPAR-γ) in the brain and periphery. The biological role of the oxygenated NAEs, such as prostamides, hydroxylated anandamide and DHEA derivatives, are less studied. Evidence is accumulating that NAEs and their oxidative metabolites may be aberrantly regulated or are associated with disease severity in obesity, metabolic syndrome, cancer, neuroinflammation and liver cirrhosis. Here, we comprehensively review NAE biosynthesis and degradation, their metabolism by lipoxygenases, cyclooxygenases and cytochrome P450s and the biological functions of these signaling lipids. We discuss the latest findings and therapeutic potential of modulating endogenous NAE levels by inhibition of their degradation, which is currently under clinical evaluation for neuropsychiatric disorders. We also highlight NAE biosynthesis inhibition as an emerging topic with therapeutic opportunities in endocannabinoid and NAE signaling.
Collapse
Affiliation(s)
- Elliot D Mock
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University and Oncode Institute, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| | - Berend Gagestein
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University and Oncode Institute, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| | - Mario van der Stelt
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University and Oncode Institute, Einsteinweg 55, Leiden 2333 CC, The Netherlands.
| |
Collapse
|
16
|
Valenza M, Facchinetti R, Steardo L, Scuderi C. Palmitoylethanolamide and White Matter Lesions: Evidence for Therapeutic Implications. Biomolecules 2022; 12:biom12091191. [PMID: 36139030 PMCID: PMC9496237 DOI: 10.3390/biom12091191] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/23/2022] [Accepted: 08/23/2022] [Indexed: 12/03/2022] Open
Abstract
Palmitoylethanolamide (PEA), the naturally occurring amide of ethanolamine and palmitic acid, is an endogenous lipid compound endowed with a plethora of pharmacological functions, including analgesic, neuroprotective, immune-modulating, and anti-inflammatory effects. Although the properties of PEA were first characterized nearly 65 years ago, the identity of the receptor mediating these actions has long remained elusive, causing a period of research stasis. In the last two decades, a renewal of interest in PEA occurred, and a series of interesting studies have demonstrated the pharmacological properties of PEA and clarified its mechanisms of action. Recent findings showed the ability of formulations containing PEA in promoting oligodendrocyte differentiation, which represents the first step for the proper formation of myelin. This evidence opens new and promising research opportunities. White matter defects have been detected in a vast and heterogeneous group of diseases, including age-related neurodegenerative disorders. Here, we summarize the history and pharmacology of PEA and discuss its therapeutic potential in restoring white matter defects.
Collapse
Affiliation(s)
- Marta Valenza
- Department of Physiology and Pharmacology “Vittorio Erspamer”, SAPIENZA University of Rome—P.le A. Moro, 5, 00185 Rome, Italy
| | - Roberta Facchinetti
- Department of Physiology and Pharmacology “Vittorio Erspamer”, SAPIENZA University of Rome—P.le A. Moro, 5, 00185 Rome, Italy
| | - Luca Steardo
- Department of Physiology and Pharmacology “Vittorio Erspamer”, SAPIENZA University of Rome—P.le A. Moro, 5, 00185 Rome, Italy
- Università Giustino Fortunato, 82100 Benevento, Italy
- Correspondence: (L.S.); (C.S.)
| | - Caterina Scuderi
- Department of Physiology and Pharmacology “Vittorio Erspamer”, SAPIENZA University of Rome—P.le A. Moro, 5, 00185 Rome, Italy
- Correspondence: (L.S.); (C.S.)
| |
Collapse
|
17
|
Facchinetti R, Valenza M, Gomiero C, Mancini GF, Steardo L, Campolongo P, Scuderi C. Co-Ultramicronized Palmitoylethanolamide/Luteolin Restores Oligodendrocyte Homeostasis via Peroxisome Proliferator-Activated Receptor-α in an In Vitro Model of Alzheimer's Disease. Biomedicines 2022; 10:1236. [PMID: 35740258 PMCID: PMC9219769 DOI: 10.3390/biomedicines10061236] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 12/22/2022] Open
Abstract
Oligodendrocytes are cells fundamental for brain functions as they form the myelin sheath and feed axons. They perform these critical functions thanks to the cooperation with other glial cells, mainly astrocytes. The astrocyte/oligodendrocyte crosstalk needs numerous mediators and receptors, such as peroxisome proliferator-activated receptors (PPARs). PPAR agonists promote oligodendrocyte precursor cells (OPCs) maturation in myelinating oligodendrocytes. In the Alzheimer's disease brain, deposition of beta-amyloid (Aβ) has been linked to several alterations, including astrogliosis and changes in OPCs maturation. However, very little is known about the molecular mechanisms. Here, we investigated for the first time the maturation of OPCs co-cultured with astrocytes in an in vitro model of Aβ1-42 toxicity. We also tested the potential beneficial effect of the anti-inflammatory and neuroprotective composite palmitoylethanolamide and luteolin (co-ultra PEALut), which is known to engage the isoform alfa of the PPARs. Our results show that Aβ1-42 triggers astrocyte reactivity and inflammation and reduces the levels of growth factors important for OPCs maturation. Oligodendrocytes indeed show low cell surface area and few arborizations. Co-ultra PEALut counteracts the Aβ1-42-induced inflammation and astrocyte reactivity preserving the morphology of co-cultured oligodendrocytes through a mechanism that in some cases involves PPAR-α. This is the first evidence of the negative effects exerted by Aβ1-42 on astrocyte/oligodendrocyte crosstalk and discloses a never-explored co-ultra PEALut ability in restoring oligodendrocyte homeostasis.
Collapse
Affiliation(s)
- Roberta Facchinetti
- Department of Physiology and Pharmacology “Vittorio Erspamer”, SAPIENZA University of Rome—P. le Aldo Moro, 5, 00185 Rome, Italy; (R.F.); (M.V.); (G.F.M.); (L.S.); (P.C.)
| | - Marta Valenza
- Department of Physiology and Pharmacology “Vittorio Erspamer”, SAPIENZA University of Rome—P. le Aldo Moro, 5, 00185 Rome, Italy; (R.F.); (M.V.); (G.F.M.); (L.S.); (P.C.)
| | | | - Giulia Federica Mancini
- Department of Physiology and Pharmacology “Vittorio Erspamer”, SAPIENZA University of Rome—P. le Aldo Moro, 5, 00185 Rome, Italy; (R.F.); (M.V.); (G.F.M.); (L.S.); (P.C.)
- Centro Europeo di Ricerca sul Cervello (CERC), IRCCS Santa Lucia Foundation Rome, 00143 Rome, Italy
| | - Luca Steardo
- Department of Physiology and Pharmacology “Vittorio Erspamer”, SAPIENZA University of Rome—P. le Aldo Moro, 5, 00185 Rome, Italy; (R.F.); (M.V.); (G.F.M.); (L.S.); (P.C.)
- Università Telematica Giustino Fortunato, 82100 Benevento, Italy
| | - Patrizia Campolongo
- Department of Physiology and Pharmacology “Vittorio Erspamer”, SAPIENZA University of Rome—P. le Aldo Moro, 5, 00185 Rome, Italy; (R.F.); (M.V.); (G.F.M.); (L.S.); (P.C.)
- Centro Europeo di Ricerca sul Cervello (CERC), IRCCS Santa Lucia Foundation Rome, 00143 Rome, Italy
| | - Caterina Scuderi
- Department of Physiology and Pharmacology “Vittorio Erspamer”, SAPIENZA University of Rome—P. le Aldo Moro, 5, 00185 Rome, Italy; (R.F.); (M.V.); (G.F.M.); (L.S.); (P.C.)
| |
Collapse
|
18
|
Bellanti F, Bukke VN, Moola A, Villani R, Scuderi C, Steardo L, Palombelli G, Canese R, Beggiato S, Altamura M, Vendemiale G, Serviddio G, Cassano T. Effects of Ultramicronized Palmitoylethanolamide on Mitochondrial Bioenergetics, Cerebral Metabolism, and Glutamatergic Transmission: An Integrated Approach in a Triple Transgenic Mouse Model of Alzheimer's Disease. Front Aging Neurosci 2022; 14:890855. [PMID: 35686025 PMCID: PMC9170916 DOI: 10.3389/fnagi.2022.890855] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 04/19/2022] [Indexed: 01/26/2023] Open
Abstract
The therapeutic potential of ultramicronized palmitoylethanolamide (um-PEA) was investigated in young (6-month-old) and adult (12-month-old) 3 × Tg-AD mice, which received um-PEA for 3 months via a subcutaneous delivery system. Mitochondrial bioenergetics, ATP homeostasis, and magnetic resonance imaging/magnetic resonance spectroscopy were evaluated in the frontal cortex (FC) and hippocampus (HIPP) at the end of um-PEA treatment. Glutamate release was investigated by in vivo microdialysis in the ventral HIPP (vHIPP). We demonstrated that chronic um-PEA treatment ameliorates the decrease in the complex-I respiration rate and the FoF1-ATPase (complex V) activity, as well as ATP content depletion in the cortical mitochondria. Otherwise, the impairment in mitochondrial bioenergetics and the release of glutamate after depolarization was not ameliorated by um-PEA treatment in the HIPP of both young and adult 3 × Tg-AD mice. Moreover, progressive age- and pathology-related changes were observed in the cortical and hippocampal metabolism that closely mimic the alterations observed in the human AD brain; these metabolic alterations were not affected by chronic um-PEA treatment. These findings confirm that the HIPP is the most affected area by AD-like pathology and demonstrate that um-PEA counteracts mitochondrial dysfunctions and helps rescue brain energy metabolism in the FC, but not in the HIPP.
Collapse
Affiliation(s)
- Francesco Bellanti
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | | | - Archana Moola
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Rosanna Villani
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Caterina Scuderi
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, Rome, Italy
| | - Luca Steardo
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, Rome, Italy
| | | | - Rossella Canese
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Sarah Beggiato
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Mario Altamura
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Gianluigi Vendemiale
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Gaetano Serviddio
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Tommaso Cassano
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| |
Collapse
|
19
|
Effects of Palmitoylethanolamide on Neurodegenerative Diseases: A Review from Rodents to Humans. Biomolecules 2022; 12:biom12050667. [PMID: 35625595 PMCID: PMC9138306 DOI: 10.3390/biom12050667] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 04/27/2022] [Accepted: 05/02/2022] [Indexed: 02/06/2023] Open
Abstract
Palmitoylethanolamide (PEA) stands out among endogenous lipid mediators for its neuroprotective, anti-inflammatory, and analgesic functions. PEA belonging to the N-acetylanolamine class of phospholipids was first isolated from soy lecithin, egg yolk, and peanut flour. It is currently used for the treatment of different types of neuropathic pain, such as fibromyalgia, osteoarthritis, carpal tunnel syndrome, and many other conditions. The properties of PEA, especially of its micronized or ultra-micronized forms maximizing bioavailability and efficacy, have sparked a series of innovative research to evaluate its possible application as therapeutic agent for neurodegenerative diseases. Neurodegenerative diseases are widespread throughout the world, and although they are numerous and different, they share common patterns of conditions that result from progressive damage to the brain areas involved in mobility, muscle coordination and strength, mood, and cognition. The present review is aimed at illustrating in vitro and in vivo research, as well as human studies, using PEA treatment, alone or in combination with other compounds, in the presence of neurodegeneration. Namely, attention has been paid to the effects of PEA in counteracting neuroinflammatory conditions and in slowing down the progression of diseases, such as Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, Frontotemporal dementia, Amyotrophic Lateral Sclerosis, and Multiple Sclerosis. Literature research demonstrated the efficacy of PEA in addressing the damage typical of major neurodegenerative diseases.
Collapse
|
20
|
Bagues A, López-Tofiño Y, Llorente-Berzal Á, Abalo R. Cannabinoid drugs against chemotherapy-induced adverse effects: focus on nausea/vomiting, peripheral neuropathy and chemofog in animal models. Behav Pharmacol 2022; 33:105-129. [PMID: 35045012 DOI: 10.1097/fbp.0000000000000667] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Although new drugs are being developed for cancer treatment, classical chemotherapeutic agents are still front-line therapies, despite their frequent association with severe side effects that can hamper their use. Cannabinoids may prevent or palliate some of these side effects. The aim of the present study is to review the basic research which has been conducted evaluating the effects of cannabinoid drugs in the treatment of three important side effects induced by classical chemotherapeutic agents: nausea and vomiting, neuropathic pain and cognitive impairment. Several published studies have demonstrated that cannabinoids are useful in preventing and reducing the nausea, vomits and neuropathy induced by different chemotherapy regimens, though other side effects can occur, such as a reduction of gastrointestinal motility, along with psychotropic effects when using centrally-acting cannabinoids. Thus, peripherally-acting cannabinoids and new pharmacological options are being investigated, such as allosteric or biased agonists. Additionally, due to the increase in the survival of cancer patients, there are emerging data that demonstrate an important cognitive deterioration due to chemotherapy, and because the cannabinoid drugs have a neuroprotective effect, they could be useful in preventing chemotherapy-induced cognitive impairment (as demonstrated through studies in other neurological disorders), but this has not yet been tested. Thus, although cannabinoids seem a promising therapeutic approach in the treatment of different side effects induced by chemotherapeutic agents, future research will be necessary to find pharmacological options with a safer profile. Moreover, a new line of research awaits to be opened to elucidate their possible usefulness in preventing cognitive impairment.
Collapse
Affiliation(s)
- Ana Bagues
- Área de Farmacología y Nutrición, Departamento de Ciencias Básicas de la Salud, Universidad Rey Juan Carlos (URJC), Alcorcón
- High Performance Research Group in Experimental Pharmacology (PHARMAKOM-URJC)
- Unidad Asociada I+D+i del Instituto de Química Médica (IQM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Yolanda López-Tofiño
- Área de Farmacología y Nutrición, Departamento de Ciencias Básicas de la Salud, Universidad Rey Juan Carlos (URJC), Alcorcón
- High Performance Research Group in Physiopathology and Pharmacology of the Digestive System NeuGut-URJC
| | - Álvaro Llorente-Berzal
- Pharmacology and Therapeutics, School of Medicine, National University of Ireland
- Centre for Pain Research and Galway Neuroscience Centre, NCBES, National University of Ireland, Galway, Ireland
| | - Raquel Abalo
- Área de Farmacología y Nutrición, Departamento de Ciencias Básicas de la Salud, Universidad Rey Juan Carlos (URJC), Alcorcón
- Unidad Asociada I+D+i del Instituto de Química Médica (IQM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- High Performance Research Group in Physiopathology and Pharmacology of the Digestive System NeuGut-URJC
- Grupo de Trabajo de Ciencias Básicas en Dolor y Analgesia de la Sociedad Española del Dolor, Madrid, Spain
| |
Collapse
|
21
|
Tan HL, Smith JG, Hoffmann J, Renton T. A systematic review of treatment for patients with burning mouth syndrome. Cephalalgia 2022; 42:128-161. [PMID: 34404247 PMCID: PMC8793318 DOI: 10.1177/03331024211036152] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/29/2021] [Accepted: 07/13/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND Burning mouth syndrome is a chronic idiopathic intractable intraoral dysaesthesia that remains a challenge to clinicians due to its poorly understood pathogenesis and inconsistent response to various treatments. AIM This review aimed to study the short- (≤3 months) and long-term (>3 months) effectiveness and sustainable benefit of different burning mouth syndrome treatment strategies and the associated side effects. MATERIALS AND METHODS Randomised controlled trials of burning mouth syndrome treatment compared with placebo or other interventions with a minimum follow up of 2 months were searched from the PubMed, Embase and Cochrane database (published to July 2020). RESULTS Twenty-two studies were selected based on the inclusion and exclusion criteria and analysed. Nine categories of burning mouth syndrome treatment were identified: Anticonvulsant and antidepressant agents, phytomedicine and alpha lipoic acid supplements, low-level laser therapy, saliva substitute, transcranial magnetic stimulation, and cognitive behaviour therapy. Cognitive behaviour therapy, topical capsaicin and clonazepam, and laser therapy demonstrated favourable outcome in both short- and long-term assessment. Phytomedicines reported a short-term benefit in pain score reduction. The pooled effect of alpha lipoic acid (ALA) pain score improvement was low, but its positive effects increased in long term assessment. CONCLUSION A more significant volume in terms of sample size, multi-centres, and multi-arm comparison of therapeutic agents with placebo and longitudinal follow-up studies is recommended to establish a standardised burning mouth syndrome treatment protocol. Further studies are required to assess the analgesic benefits of topical clonazepam and capsaicin, alternative medicines with neurodegenerative prevention capability and psychology support in treating burning mouth syndrome and reducing systemic adverse drug reactions.Registration International Prospective Register of Systematic Reviews (PROSPERO):Protocol ID - CRD42020160892.
Collapse
Affiliation(s)
- Huann Lan Tan
- Faculty of Dentistry, Oral & Craniofacial Science, King’s College London, London, UK
- Faculty of Dentistry, The National University of Malaysia, Kuala Lumpur, Malaysia
| | - Jared G Smith
- Population Health Research Institute, St George’s, University of London, London, UK
| | - Jan Hoffmann
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
- NIHR-Wellcome Trust King’s Clinical Research Facility/SLaM Biomedical Research Centre, King’s College Hospital, London, UK
| | - Tara Renton
- Faculty of Dentistry, Oral & Craniofacial Science, King’s College London, London, UK
| |
Collapse
|
22
|
Colizzi M, Bortoletto R, Colli C, Bonomo E, Pagliaro D, Maso E, Di Gennaro G, Balestrieri M. Therapeutic effect of palmitoylethanolamide in cognitive decline: A systematic review and preliminary meta-analysis of preclinical and clinical evidence. Front Psychiatry 2022; 13:1038122. [PMID: 36387000 PMCID: PMC9650099 DOI: 10.3389/fpsyt.2022.1038122] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 09/30/2022] [Indexed: 11/29/2022] Open
Abstract
Cognitive decline is believed to be associated with neurodegenerative processes involving excitotoxicity, oxidative damage, inflammation, and microvascular and blood-brain barrier dysfunction. Interestingly, research evidence suggests upregulated synthesis of lipid signaling molecules as an endogenous attempt to contrast such neurodegeneration-related pathophysiological mechanisms, restore homeostatic balance, and prevent further damage. Among these naturally occurring molecules, palmitoylethanolamide (PEA) has been independently associated with neuroprotective and anti-inflammatory properties, raising interest into the possibility that its supplementation might represent a novel therapeutic approach in supporting the body-own regulation of many pathophysiological processes potentially contributing to neurocognitive disorders. Here, we systematically reviewed all human and animal studies examining PEA and its biobehavioral correlates in neurocognitive disorders, finding 33 eligible outputs. Studies conducted in animal models of neurodegeneration indicate that PEA improves neurobehavioral functions, including memory and learning, by reducing oxidative stress and pro-inflammatory and astrocyte marker expression as well as rebalancing glutamatergic transmission. PEA was found to promote neurogenesis, especially in the hippocampus, neuronal viability and survival, and microtubule-associated protein 2 and brain-derived neurotrophic factor expression, while inhibiting mast cell infiltration/degranulation and astrocyte activation. It also demonstrated to mitigate β-amyloid-induced astrogliosis, by modulating lipid peroxidation, protein nytrosylation, inducible nitric oxide synthase induction, reactive oxygen species production, caspase3 activation, amyloidogenesis, and tau protein hyperphosphorylation. Such effects were related to PEA ability to indirectly activate cannabinoid receptors and modulate proliferator-activated receptor-α (PPAR-α) activity. Importantly, preclinical evidence suggests that PEA may act as a disease-modifying-drug in the early stage of a neurocognitive disorder, while its protective effect in the frank disorder may be less relevant. Limited human research suggests that PEA supplementation reduces fatigue and cognitive impairment, the latter being also meta-analytically confirmed in 3 eligible studies. PEA improved global executive function, working memory, language deficits, daily living activities, possibly by modulating cortical oscillatory activity and GABAergic transmission. There is currently no established cure for neurocognitive disorders but only treatments to temporarily reduce symptom severity. In the search for compounds able to protect against the pathophysiological mechanisms leading to neurocognitive disorders, PEA may represent a valid therapeutic option to prevent neurodegeneration and support endogenous repair processes against disease progression.
Collapse
Affiliation(s)
- Marco Colizzi
- Unit of Psychiatry, Department of Medicine (DAME), University of Udine, Udine, Italy.,Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Riccardo Bortoletto
- Unit of Psychiatry, Department of Medicine (DAME), University of Udine, Udine, Italy.,Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Chiara Colli
- Unit of Psychiatry, Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Enrico Bonomo
- Unit of Psychiatry, Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Daniele Pagliaro
- Unit of Psychiatry, Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Elisa Maso
- Unit of Psychiatry, Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Gianfranco Di Gennaro
- Department of Health Sciences, School of Medicine, University of Catanzaro Magna Graecia, Catanzaro, Italy
| | - Matteo Balestrieri
- Unit of Psychiatry, Department of Medicine (DAME), University of Udine, Udine, Italy
| |
Collapse
|
23
|
Boullon L, Abalo R, Llorente-Berzal Á. Cannabinoid Drugs-Related Neuroprotection as a Potential Therapeutic Tool Against Chemotherapy-Induced Cognitive Impairment. Front Pharmacol 2021; 12:734613. [PMID: 34867342 PMCID: PMC8632779 DOI: 10.3389/fphar.2021.734613] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 10/05/2021] [Indexed: 01/17/2023] Open
Abstract
In recent years, and particularly associated with the increase of cancer patients’ life expectancy, the occurrence of cancer treatment sequelae, including cognitive impairments, has received considerable attention. Chemotherapy-induced cognitive impairments (CICI) can be observed not only during pharmacological treatment of the disease but also long after cessation of this therapy. The lack of effective tools for its diagnosis together with the limited treatments currently available for alleviation of the side-effects induced by chemotherapeutic agents, demonstrates the need of a better understanding of the mechanisms underlying the pathology. This review focuses on the comprehensive appraisal of two main processes associated with the development of CICI: neuroinflammation and oxidative stress, and proposes the endogenous cannabinoid system (ECS) as a new therapeutic target against CICI. The neuroprotective role of the ECS, well described in other cognitive-related neuropathologies, seems to be able to reduce the activation of pro-inflammatory cytokines involved in the neuroinflammatory supraspinal processes underlying CICI. This review also provides evidence supporting the role of cannabinoid-based drugs in the modulation of oxidative stress processes that underpin cognitive impairments, and warrant the investigation of endocannabinoid components, still unknown, that may mediate the molecular mechanism behind this neuroprotective activity. Finally, this review points forward the urgent need of research focused on the understanding of CICI and the investigation of new therapeutic targets.
Collapse
Affiliation(s)
- Laura Boullon
- Pharmacology and Therapeutics, School of Medicine, National University of Ireland, Galway, Ireland
- Centre for Pain Research, National University of Ireland, Galway, Ireland
- Galway Neuroscience Centre, National University of Ireland, Galway, Ireland
| | - Raquel Abalo
- Área de Farmacología y Nutrición, Departamento de Ciencias Básicas de La Salud, Universidad Rey Juan Carlos (URJC), Alcorcón, Spain
- Unidad Asociada I+D+i Del Instituto de Química Médica (IQM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- High Performance Research Group in Physiopathology and Pharmacology of the Digestive System NeuGut-URJC, Madrid, Spain
- Working Group of Basic Sciences in Pain and Analgesia of the Spanish Pain Society (Grupo de Trabajo de Ciencias Básicas en Dolor y Analgesia de La Sociedad Española Del Dolor), Madrid, Spain
| | - Álvaro Llorente-Berzal
- Pharmacology and Therapeutics, School of Medicine, National University of Ireland, Galway, Ireland
- Centre for Pain Research, National University of Ireland, Galway, Ireland
- Galway Neuroscience Centre, National University of Ireland, Galway, Ireland
- *Correspondence: Álvaro Llorente-Berzal,
| |
Collapse
|
24
|
de Melo Reis RA, Isaac AR, Freitas HR, de Almeida MM, Schuck PF, Ferreira GC, Andrade-da-Costa BLDS, Trevenzoli IH. Quality of Life and a Surveillant Endocannabinoid System. Front Neurosci 2021; 15:747229. [PMID: 34776851 PMCID: PMC8581450 DOI: 10.3389/fnins.2021.747229] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/01/2021] [Indexed: 12/11/2022] Open
Abstract
The endocannabinoid system (ECS) is an important brain modulatory network. ECS regulates brain homeostasis throughout development, from progenitor fate decision to neuro- and gliogenesis, synaptogenesis, brain plasticity and circuit repair, up to learning, memory, fear, protection, and death. It is a major player in the hypothalamic-peripheral system-adipose tissue in the regulation of food intake, energy storage, nutritional status, and adipose tissue mass, consequently affecting obesity. Loss of ECS control might affect mood disorders (anxiety, hyperactivity, psychosis, and depression), lead to drug abuse, and impact neurodegenerative (Alzheimer's, Parkinson, Huntington, Multiple, and Amyotrophic Lateral Sclerosis) and neurodevelopmental (autism spectrum) disorders. Practice of regular physical and/or mind-body mindfulness and meditative activities have been shown to modulate endocannabinoid (eCB) levels, in addition to other players as brain-derived neurotrophic factor (BDNF). ECS is involved in pain, inflammation, metabolic and cardiovascular dysfunctions, general immune responses (asthma, allergy, and arthritis) and tumor expansion, both/either in the brain and/or in the periphery. The reason for such a vast impact is the fact that arachidonic acid, a precursor of eCBs, is present in every membrane cell of the body and on demand eCBs synthesis is regulated by electrical activity and calcium shifts. Novel lipid (lipoxins and resolvins) or peptide (hemopressin) players of the ECS also operate as regulators of physiological allostasis. Indeed, the presence of cannabinoid receptors in intracellular organelles as mitochondria or lysosomes, or in nuclear targets as PPARγ might impact energy consumption, metabolism and cell death. To live a better life implies in a vigilant ECS, through healthy diet selection (based on a balanced omega-3 and -6 polyunsaturated fatty acids), weekly exercises and meditation therapy, all of which regulating eCBs levels, surrounded by a constructive social network. Cannabidiol, a diet supplement has been a major player with anti-inflammatory, anxiolytic, antidepressant, and antioxidant activities. Cognitive challenges and emotional intelligence might strengthen the ECS, which is built on a variety of synapses that modify human behavior. As therapeutically concerned, the ECS is essential for maintaining homeostasis and cannabinoids are promising tools to control innumerous targets.
Collapse
Affiliation(s)
- Ricardo Augusto de Melo Reis
- Laboratory of Neurochemistry, Institute of Biophysics Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alinny Rosendo Isaac
- Laboratory of Neurochemistry, Institute of Biophysics Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Hércules Rezende Freitas
- Laboratory of Neuroenergetics and Inborn Errors of Metabolism, Institute of Medical Biochemistry Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mariana Macedo de Almeida
- Laboratory of Molecular Endocrinology, Institute of Biophysics Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Patricia Fernanda Schuck
- Laboratory of Neuroenergetics and Inborn Errors of Metabolism, Institute of Medical Biochemistry Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gustavo Costa Ferreira
- Laboratory of Neuroenergetics and Inborn Errors of Metabolism, Institute of Medical Biochemistry Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Isis Hara Trevenzoli
- Laboratory of Molecular Endocrinology, Institute of Biophysics Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
25
|
Repurposing Peroxisome Proliferator-Activated Receptor Agonists in Neurological and Psychiatric Disorders. Pharmaceuticals (Basel) 2021; 14:ph14101025. [PMID: 34681249 PMCID: PMC8538250 DOI: 10.3390/ph14101025] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 12/15/2022] Open
Abstract
Common pathophysiological mechanisms have emerged for different neurological and neuropsychiatric conditions. In particular, mechanisms of oxidative stress, immuno-inflammation, and altered metabolic pathways converge and cause neuronal and non-neuronal maladaptative phenomena, which underlie multifaceted brain disorders. The peroxisome proliferator-activated receptors (PPARs) are nuclear receptors modulating, among others, anti-inflammatory and neuroprotective genes in diverse tissues. Both endogenous and synthetic PPAR agonists are approved treatments for metabolic and systemic disorders, such as diabetes, fatty liver disease, and dyslipidemia(s), showing high tolerability and safety profiles. Considering that some PPAR-acting drugs permeate through the blood-brain barrier, the possibility to extend their scope from the periphery to central nervous system has gained interest in recent years. Here, we review preclinical and clinical evidence that PPARs possibly exert a neuroprotective role, thereby providing a rationale for repurposing PPAR-targeting drugs to counteract several diseases affecting the central nervous system.
Collapse
|
26
|
Zhou S, Huang G. Synthesis and activities of acetylcholinesterase inhibitors. Chem Biol Drug Des 2021; 98:997-1006. [PMID: 34570966 DOI: 10.1111/cbdd.13958] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 09/11/2021] [Indexed: 11/30/2022]
Abstract
Cholinesterase (ChE) inhibitors can be divided into two categories: acetylcholinesterase (AChE) inhibitors and butylcholinesterase (BuChE) inhibitors. Therefore, the development of selective inhibition of AChE and BuChE activities is the central content of ChE pharmacochemistry research. In order to clarify the progress of AChE inhibitor-based design, synthesis, and activity studies, we reviewed the pharmacochemical and pharmacological properties of selective AChE inhibitors over the past decade. We hope that this review will make it easier for readers to understand the development of new drug chemistry methods for AChE inhibitors in order to develop more effective and selective AChE inhibitors.
Collapse
Affiliation(s)
- Shiyang Zhou
- Chongqing Chemical Industry Vocational College, Chongqing, China.,Active Carbohydrate Research Institute, Chongqing Key Laboratory of Inorganic Functional Materials, Chongqing Normal University, Chongqing, China
| | - Gangliang Huang
- Active Carbohydrate Research Institute, Chongqing Key Laboratory of Inorganic Functional Materials, Chongqing Normal University, Chongqing, China
| |
Collapse
|
27
|
Successful and Unsuccessful Brain Aging in Pets: Pathophysiological Mechanisms behind Clinical Signs and Potential Benefits from Palmitoylethanolamide Nutritional Intervention. Animals (Basel) 2021; 11:ani11092584. [PMID: 34573549 PMCID: PMC8470385 DOI: 10.3390/ani11092584] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Cognitive dysfunction syndrome is a common yet underreported neurodegenerative disorder of elderly dogs and cats and a natural model of human Alzheimer’s disease. The increasingly expanding life expectancy means a larger proportion of affected animals in the coming decades. Although far from being curative, available treatments are more effective the sooner they are started. Educating veterinary practitioners and owners in the early recognition of age-related cognitive dysfunction is thus mandatory. By shedding light on the mechanism underlying the disease, novel and more effective approaches might be developed. Emerging evidence shows that successful and unsuccessful brain aging share a common underlying mechanism that is neuroinflammation. This process involves astrocytes, microglia, and mast cells and has a restorative homeostatic intent. However, for reasons not fully elucidated yet, neuroinflammation can also exert detrimental consequences substantially contributing to neurodegeneration. Here we summarize the evidence accumulated so far on the pathogenic role of neuroinflammation in the onset and progression of age-related neurodegenerative disorders, such as Alzheimer’s disease. The potential benefit of palmitoylethanolamide dietary intervention in rebalancing neuroinflammation and exerting neuroprotection is also discussed. Abstract Canine and feline cognitive dysfunction syndrome is a common neurodegenerative disorder of old age and a natural model of human Alzheimer’s disease. With the unavoidable expanding life expectancy, an increasing number of small animals will be affected. Although there is no cure, early detection and intervention are vitally important to delay cognitive decline. Knowledge of cellular and molecular mechanisms underlying disease onset and progression is an equally decisive factor for developing effective approaches. Uncontrolled neuroinflammation, orchestrated in the central nervous system mainly by astrocytes, microglia, and resident mast cells, is currently acknowledged as a hallmark of neurodegeneration. This has prompted scientists to find a way to rebalance the altered crosstalk between these cells. In this context, great emphasis has been given to the role played by the expanded endocannabinoid system, i.e., endocannabinoidome, because of its prominent role in physiological and pathological neuroinflammation. Within the endocannabinoidome, great attention has been paid to palmitoylethanolamide due to its safe and pro-homeostatic effects. The availability of new ultramicronized formulations highly improved the oral bioavailability of palmitoylethanolamide, paving the way to its dietary use. Ultramicronized palmitoylethanolamide has been repeatedly tested in animal models of age-related neurodegeneration with promising results. Data accumulated so far suggest that supplementation with ultramicronized palmitoylethanolamide helps to accomplish successful brain aging.
Collapse
|
28
|
Ilieva K, Atanasova M, Atanasova D, Kortenska L, Tchekalarova J. Chronic agomelatine treatment alleviates icvAβ-induced anxiety and depressive-like behavior through affecting Aβ metabolism in the hippocampus in a rat model of Alzheimer's disease. Physiol Behav 2021; 239:113525. [PMID: 34242671 DOI: 10.1016/j.physbeh.2021.113525] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/21/2021] [Accepted: 07/02/2021] [Indexed: 12/17/2022]
Abstract
Recently, we reported that the atypical antidepressant agomelatine (Ago) exerted a beneficial impact on behavioral changes and concomitant neuropathological events in icvSTZ rat model of sporadic Alzheimer diseases (AD). In the present study, we aimed to explore the effect of Ago (40 mg/kg, i.p. for 30 days) on beta-amyloid (Aβ) metabolism in icvAβ1-42 rat model of AD. The melatonin analogue was administered either simultaneously with Aβ1-42 (AβAgo1) or 30 days later during the late stage of the progression of AD (AβAgo2). Treatment with Ago in the early stage of AD attenuated anxiety and depressive-like responses but was inefficient against Aβ-induced impairment of hippocampus-dependent spatial memory. The melatonin analogue, administered both during the early and the late stage of AD, corrected to control level the elevated Aβ1-42 in the frontal cortex (FC) and the hippocampus. The concentration of α-secretase was enhanced by AβAgo1 compared to the sham- and Aβ-veh groups in the hippocampus. No changes in the concentration of β-secretase in the FC and the hippocampus as well as of γ-secretase in the FC were observed among groups. Both the AβAgo1 and AβAgo2 attenuated to control level the Aβ-induced increased concentration of γ-secretase in the hippocampus. AβAgo1 exerted also structure-specific neuroprotection observed mainly in the CA1, septal CA3b subfield of the dorsal hippocampus and septo-temporal piriform cortex (Pir) and partially in the temporal CA3c, septal and temporal Pir. These findings suggest that Ago treatment in the early stage of AD can exert beneficial effects on concomitant behavioral impairments and neuroprotection in associated brain structures. The antidepressant administration both in the early stage and after the progression of AD affected Aβ metabolism via decreasing of γ-secretase concentration in the hippocampus.
Collapse
Affiliation(s)
- Kalina Ilieva
- Department of Biology, Medical University of Pleven, 1 Kliment Ohridski Str., Pleven 5800, Bulgaria
| | - Milena Atanasova
- Department of Biology, Medical University of Pleven, 1 Kliment Ohridski Str., Pleven 5800, Bulgaria.
| | - Dimitrinka Atanasova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 23, Sofia 1113, Bulgaria; Department of Anatomy, Faculty of Medicine, Trakia University, 11 Armeiska Str, Stara Zagora 6000, Bulgaria
| | - Lidia Kortenska
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 23, Sofia 1113, Bulgaria
| | - Jana Tchekalarova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 23, Sofia 1113, Bulgaria.
| |
Collapse
|
29
|
Pharmacological Blockade of PPARα Exacerbates Inflammatory Pain-Related Impairment of Spatial Memory in Rats. Biomedicines 2021; 9:biomedicines9060610. [PMID: 34072060 PMCID: PMC8227714 DOI: 10.3390/biomedicines9060610] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 12/17/2022] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) are ligand-dependent transcription factors that exist in three isoforms: PPARα, PPARβ/δ and PPARγ. Studies suggest that the PPAR signalling system may modulate pain, anxiety and cognition. The aim of the present study was to investigate whether endogenous signalling via PPARs differentially modulates innate anxiety responses and mnemonic function in the presence and absence of inflammatory pain. We examined the effects of intraperitoneal administration of GW6471 (PPARα antagonist), GSK0660 (PPARβ/δ antagonist), GW9662 (PPARγ antagonist), and N-palmitoylethanolamide (PEA) on rat behaviour in the elevated plus maze (EPM), open field (OF), light-dark box (LDB), and novel object recognition (NOR) tests in the presence or absence of chronic inflammatory pain. Complete Freund’s Adjuvant (CFA)-injected rats exhibited impaired recognition and spatial mnemonic performance in the NOR test and pharmacological blockade of PPARα further impaired spatial memory in CFA-treated rats. N-oleoylethanolamide (OEA) levels were higher in the dorsal hippocampus in CFA-injected animals compared to their counterparts. The results suggest a modulatory effect of CFA-induced chronic inflammatory pain on cognitive processing, but not on innate anxiety-related responses. Increased OEA-PPARα signalling may act as a compensatory mechanism to preserve spatial memory function following CFA injection.
Collapse
|
30
|
Nakai T, Yamada K, Mizoguchi H. Alzheimer's Disease Animal Models: Elucidation of Biomarkers and Therapeutic Approaches for Cognitive Impairment. Int J Mol Sci 2021; 22:5549. [PMID: 34074018 PMCID: PMC8197360 DOI: 10.3390/ijms22115549] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 05/21/2021] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD) is an age-related and progressive neurodegenerative disorder. It is widely accepted that AD is mainly caused by the accumulation of extracellular amyloid β (Aβ) and intracellular neurofibrillary tau tangles. Aβ begins to accumulate years before the onset of cognitive impairment, suggesting that the benefit of currently available interventions would be greater if they were initiated in the early phases of AD. To understand the mechanisms of AD pathogenesis, various transgenic mouse models with an accelerated accumulation of Aβ and tau tangles have been developed. However, none of these models exhibit all pathologies present in human AD. To overcome these undesirable phenotypes, APP knock-in mice, which were presented with touchscreen-based tasks, were developed to better evaluate the efficacy of candidate therapeutics in mouse models of early-stage AD. This review assesses several AD mouse models from the aspect of biomarkers and cognitive impairment and discusses their potential as tools to provide novel AD therapeutic approaches.
Collapse
Affiliation(s)
- Tsuyoshi Nakai
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan; (T.N.); (K.Y.)
| | - Kiyofumi Yamada
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan; (T.N.); (K.Y.)
| | - Hiroyuki Mizoguchi
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan; (T.N.); (K.Y.)
- Medical Interactive Research and Academia Industry Collaboration Center, Research Institute of Environmental Medicine, Nagoya University, Nagoya 464-8601, Japan
| |
Collapse
|
31
|
Kasatkina LA, Rittchen S, Sturm EM. Neuroprotective and Immunomodulatory Action of the Endocannabinoid System under Neuroinflammation. Int J Mol Sci 2021; 22:ijms22115431. [PMID: 34063947 PMCID: PMC8196612 DOI: 10.3390/ijms22115431] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 12/17/2022] Open
Abstract
Endocannabinoids (eCBs) are lipid-based retrograde messengers with a relatively short half-life that are produced endogenously and, upon binding to the primary cannabinoid receptors CB1/2, mediate multiple mechanisms of intercellular communication within the body. Endocannabinoid signaling is implicated in brain development, memory formation, learning, mood, anxiety, depression, feeding behavior, analgesia, and drug addiction. It is now recognized that the endocannabinoid system mediates not only neuronal communications but also governs the crosstalk between neurons, glia, and immune cells, and thus represents an important player within the neuroimmune interface. Generation of primary endocannabinoids is accompanied by the production of their congeners, the N-acylethanolamines (NAEs), which together with N-acylneurotransmitters, lipoamino acids and primary fatty acid amides comprise expanded endocannabinoid/endovanilloid signaling systems. Most of these compounds do not bind CB1/2, but signal via several other pathways involving the transient receptor potential cation channel subfamily V member 1 (TRPV1), peroxisome proliferator-activated receptor (PPAR)-α and non-cannabinoid G-protein coupled receptors (GPRs) to mediate anti-inflammatory, immunomodulatory and neuroprotective activities. In vivo generation of the cannabinoid compounds is triggered by physiological and pathological stimuli and, specifically in the brain, mediates fine regulation of synaptic strength, neuroprotection, and resolution of neuroinflammation. Here, we review the role of the endocannabinoid system in intrinsic neuroprotective mechanisms and its therapeutic potential for the treatment of neuroinflammation and associated synaptopathy.
Collapse
Affiliation(s)
- Ludmila A. Kasatkina
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, 8010 Graz, Austria; (L.A.K.); (S.R.)
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Sonja Rittchen
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, 8010 Graz, Austria; (L.A.K.); (S.R.)
| | - Eva M. Sturm
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, 8010 Graz, Austria; (L.A.K.); (S.R.)
- Correspondence:
| |
Collapse
|
32
|
Alternative Targets to Fight Alzheimer's Disease: Focus on Astrocytes. Biomolecules 2021; 11:biom11040600. [PMID: 33921556 PMCID: PMC8073475 DOI: 10.3390/biom11040600] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/14/2021] [Accepted: 04/15/2021] [Indexed: 12/18/2022] Open
Abstract
The available treatments for patients affected by Alzheimer’s disease (AD) are not curative. Numerous clinical trials have failed during the past decades. Therefore, scientists need to explore new avenues to tackle this disease. In the present review, we briefly summarize the pathological mechanisms of AD known so far, based on which different therapeutic tools have been designed. Then, we focus on a specific approach that is targeting astrocytes. Indeed, these non-neuronal brain cells respond to any insult, injury, or disease of the brain, including AD. The study of astrocytes is complicated by the fact that they exert a plethora of homeostatic functions, and their disease-induced changes could be context-, time-, and disease specific. However, this complex but fervent area of research has produced a large amount of data targeting different astrocytic functions using pharmacological approaches. Here, we review the most recent literature findings that have been published in the last five years to stimulate new hypotheses and ideas to work on, highlighting the peculiar ability of palmitoylethanolamide to modulate astrocytes according to their morpho-functional state, which ultimately suggests a possible potential disease-modifying therapeutic approach for AD.
Collapse
|
33
|
Ultramicronized Palmitoylethanolamide (um-PEA): A New Possible Adjuvant Treatment in COVID-19 patients. Pharmaceuticals (Basel) 2021; 14:ph14040336. [PMID: 33917573 PMCID: PMC8067485 DOI: 10.3390/ph14040336] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/29/2021] [Accepted: 03/30/2021] [Indexed: 02/07/2023] Open
Abstract
The Coronavirus Disease-19 (COVID-19) pandemic has caused more than 100,000,000 cases of coronavirus infection in the world in just a year, of which there were 2 million deaths. Its clinical picture is characterized by pulmonary involvement that culminates, in the most severe cases, in acute respiratory distress syndrome (ARDS). However, COVID-19 affects other organs and systems, including cardiovascular, urinary, gastrointestinal, and nervous systems. Currently, unique-drug therapy is not supported by international guidelines. In this context, it is important to resort to adjuvant therapies in combination with traditional pharmacological treatments. Among natural bioactive compounds, palmitoylethanolamide (PEA) seems to have potentially beneficial effects. In fact, the Food and Drug Administration (FDA) authorized an ongoing clinical trial with ultramicronized (um)-PEA as an add-on therapy in the treatment of Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) infection. In support of this hypothesis, in vitro and in vivo studies have highlighted the immunomodulatory, anti-inflammatory, neuroprotective and pain-relieving effects of PEA, especially in its um form. The purpose of this review is to highlight the potential use of um-PEA as an adjuvant treatment in SARS-CoV-2 infection.
Collapse
|
34
|
Varinthra P, Ganesan K, Huang SP, Chompoopong S, Eurtivong C, Suresh P, Wen ZH, Liu IY. The 4-(Phenylsulfanyl) butan-2-one Improves Impaired Fear Memory Retrieval and Reduces Excessive Inflammatory Response in Triple Transgenic Alzheimer's Disease Mice. Front Aging Neurosci 2021; 13:615079. [PMID: 33613267 PMCID: PMC7888344 DOI: 10.3389/fnagi.2021.615079] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 01/06/2021] [Indexed: 12/14/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease characterized by an excessive inflammatory response and impaired memory retrieval, including spatial memory, recognition memory, and emotional memory. Acquisition and retrieval of fear memory help one avoid dangers and natural threats. Thus, it is crucial for survival. AD patients with impaired retrieval of fear memory are vulnerable to dangerous conditions. Excessive expression of inflammatory markers is known to impede synaptic transmission and reduce the efficiency of memory retrieval. In wild-type mice, reducing inflammation response can improve fear memory retrieval; however, this effect of this approach is not yet investigated in 3xTg-AD model mice. To date, no satisfactory drug or treatment can attenuate the symptoms of AD despite numerous efforts. In the past few years, the direction of therapeutic drug development for AD has been shifted to natural compounds with anti-inflammatory effect. In the present study, we demonstrate that the compound 4-(phenylsulfanyl) butan-2-one (4-PSB-2) is effective in enhancing fear memory retrieval of wild-type and 3xTg-AD mice by reducing the expression of TNF-α, COX-2, and iNOS. We also found that 4-PSB-2 helps increase dendritic spine density, postsynaptic density protein-95 (PSD-95) expression, and long-term potentiation (LTP) in the hippocampus of 3xTg-AD mice. Our study indicates that 4-PSB-2 may be developed as a promising therapeutic compound for treating fear memory impairment of AD patients.
Collapse
Affiliation(s)
| | - Kiruthika Ganesan
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien, Taiwan
| | - Shun-Ping Huang
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien, Taiwan
| | - Supin Chompoopong
- Department of Anatomy, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Chatchakorn Eurtivong
- Program in Chemical Sciences, Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok, Thailand.,Center of Excellence on Environmental Health and Toxicology (EHT), Commission on Higher Education (CHE), Ministry of Education, Bangkok, Thailand
| | - Pavithra Suresh
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan
| | - Zhi-Hong Wen
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Ingrid Y Liu
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan
| |
Collapse
|
35
|
Abstract
In the twentieth century, neuropsychiatric disorders have been perceived solely from a neurone-centric point of view, which considers neurones as the key cellular elements of pathological processes. This dogma has been challenged thanks to the better comprehension of the brain functioning, which, even if far from being complete, has revealed the complexity of interactions that exist between neurones and neuroglia. Glial cells represent a highly heterogeneous population of cells of neural (astroglia and oligodendroglia) and non-neural (microglia) origin populating the central nervous system. The variety of glia reflects the innumerable functions that glial cells perform to support functions of the nervous system. Aberrant execution of glial functions contributes to the development of neuropsychiatric pathologies. Arguably, all types of glial cells are implicated in the neuropathology; however, astrocytes have received particular attention in recent years because of their pleiotropic functions that make them decisive in maintaining cerebral homeostasis. This chapter describes the multiple roles of astrocytes in the healthy central nervous system and discusses the diversity of astroglial responses in neuropsychiatric disorders suggesting that targeting astrocytes may represent an effective therapeutic strategy.
Collapse
Affiliation(s)
- Caterina Scuderi
- Department of Physiology and Pharmacology "Vittorio Erspamer", SAPIENZA University of Rome, Rome, Italy.
| | - Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- Achucarro Center for Neuroscience, IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Vladimir Parpura
- Department of Neurobiology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Baoman Li
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
| |
Collapse
|
36
|
Petrosino S, Schiano Moriello A. Palmitoylethanolamide: A Nutritional Approach to Keep Neuroinflammation within Physiological Boundaries-A Systematic Review. Int J Mol Sci 2020; 21:E9526. [PMID: 33333772 PMCID: PMC7765232 DOI: 10.3390/ijms21249526] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/30/2020] [Accepted: 12/09/2020] [Indexed: 12/14/2022] Open
Abstract
Neuroinflammation is a physiological response aimed at maintaining the homodynamic balance and providing the body with the fundamental resource of adaptation to endogenous and exogenous stimuli. Although the response is initiated with protective purposes, the effect may be detrimental when not regulated. The physiological control of neuroinflammation is mainly achieved via regulatory mechanisms performed by particular cells of the immune system intimately associated with or within the nervous system and named "non-neuronal cells." In particular, mast cells (within the central nervous system and in the periphery) and microglia (at spinal and supraspinal level) are involved in this control, through a close functional relationship between them and neurons (either centrally, spinal, or peripherally located). Accordingly, neuroinflammation becomes a worsening factor in many disorders whenever the non-neuronal cell supervision is inadequate. It has been shown that the regulation of non-neuronal cells-and therefore the control of neuroinflammation-depends on the local "on demand" synthesis of the endogenous lipid amide Palmitoylethanolamide and related endocannabinoids. When the balance between synthesis and degradation of this bioactive lipid mediator is disrupted in favor of reduced synthesis and/or increased degradation, the behavior of non-neuronal cells may not be appropriately regulated and neuroinflammation exceeds the physiological boundaries. In these conditions, it has been demonstrated that the increase of endogenous Palmitoylethanolamide-either by decreasing its degradation or exogenous administration-is able to keep neuroinflammation within its physiological limits. In this review the large number of studies on the benefits derived from oral administration of micronized and highly bioavailable forms of Palmitoylethanolamide is discussed, with special reference to neuroinflammatory disorders.
Collapse
Affiliation(s)
- Stefania Petrosino
- Endocannabinoid Research Group, Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, 80078 Napoli, Italy;
- Epitech Group SpA, Via Einaudi 13, 35030 Padova, Italy
| | - Aniello Schiano Moriello
- Endocannabinoid Research Group, Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, 80078 Napoli, Italy;
- Epitech Group SpA, Via Einaudi 13, 35030 Padova, Italy
| |
Collapse
|
37
|
Kiani AK, Miggiano GAD, Aquilanti B, Velluti V, Matera G, Gagliardi L, Bertelli M. Food supplements based on palmitoylethanolamide plus hydroxytyrosol from olive tree or Bacopa monnieri extracts for neurological diseases. ACTA BIO-MEDICA : ATENEI PARMENSIS 2020; 91:e2020007. [PMID: 33170159 PMCID: PMC8023129 DOI: 10.23750/abm.v91i13-s.10582] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 09/17/2020] [Indexed: 12/19/2022]
Abstract
Neurological disorders like Parkinson disease and Alzheimer disease, spinal cord injury and stroke have some recurrent characteristics such as abnormal protein aggregation, oxidative stress induction, apoptosis, excitotoxicity, perturbation of intracellular Ca2+ homeostasis and inflammation. To date, there are few effective treatments available and the drugs currently used to manage the symptoms have important side effects. Therefore, research studies are focusing on natural phytochemicals present in diet as bioactive molecules potentially useful against neurodegenerative diseases. In this review, we will discuss the neuroprotective role of palmitoylethanolamide, hydroxytyrosol, and Bacopa monnieri extracts against neuroinflammation and neurodegeneration, thereby revealing their remarkable potential as novel therapeutic options for the treatment of neurodegenerative disorders.
Collapse
Affiliation(s)
| | | | - Barbara Aquilanti
- UOC Nutrizione Clinica, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.
| | - Valeria Velluti
- UOC Nutrizione Clinica, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.
| | - Giuseppina Matera
- UOC Nutrizione Clinica, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.
| | - Lucilla Gagliardi
- UOC Nutrizione Clinica, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.
| | - Matteo Bertelli
- MAGI EUREGIO, Bolzano, Italy; MAGI'S LAB, Rovereto (TN), Italy; EBTNA-LAB, Rovereto (TN), Italy.
| |
Collapse
|
38
|
Bukke VN, Villani R, Archana M, Wawrzyniak A, Balawender K, Orkisz S, Ferraro L, Serviddio G, Cassano T. The Glucose Metabolic Pathway as A Potential Target for Therapeutics: Crucial Role of Glycosylation in Alzheimer's Disease. Int J Mol Sci 2020; 21:ijms21207739. [PMID: 33086751 PMCID: PMC7589651 DOI: 10.3390/ijms21207739] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/12/2020] [Accepted: 10/15/2020] [Indexed: 01/17/2023] Open
Abstract
Glucose uptake in the brain decreases because of normal aging but this decline is accelerated in Alzheimer’s disease (AD) patients. In fact, positron emission tomography (PET) studies have shown that metabolic reductions in AD patients occur decades before the onset of symptoms, suggesting that metabolic deficits may be an upstream event in at least some late-onset cases. A decrease in availability of glucose content induces a considerable impairment/downregulation of glycosylation, which is an important post-translational modification. Glycosylation is an important and highly regulated mechanism of secondary protein processing within cells and it plays a crucial role in modulating stability of proteins, as carbohydrates are important in achieving the proper three-dimensional conformation of glycoproteins. Moreover, glycosylation acts as a metabolic sensor that links glucose metabolism to normal neuronal functioning. All the proteins involved in β-amyloid (Aβ) precursor protein metabolism have been identified as candidates of glycosylation highlighting the possibility that Aβ metabolism could be regulated by their glycosylation. Within this framework, the present review aims to summarize the current understanding on the role of glycosylation in the etiopathology of AD, emphasizing the idea that glucose metabolic pathway may represent an alternative therapeutic option for targeting AD. From this perspective, the pharmacological modulation of glycosylation levels may represent a ‘sweet approach’ to treat AD targeting new mechanisms independent of the amyloid cascade and with comparable impacts in familial and sporadic AD.
Collapse
Affiliation(s)
- Vidyasagar Naik Bukke
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy;
| | - Rosanna Villani
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (R.V.); (M.A.); (G.S.)
| | - Moola Archana
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (R.V.); (M.A.); (G.S.)
| | - Agata Wawrzyniak
- Morphological Science Department of Human Anatomy, Medical Faculty University of Rzeszów, 35-036 Rzeszów, Poland; (A.W.); (K.B.); (S.O.)
| | - Krzysztof Balawender
- Morphological Science Department of Human Anatomy, Medical Faculty University of Rzeszów, 35-036 Rzeszów, Poland; (A.W.); (K.B.); (S.O.)
| | - Stanislaw Orkisz
- Morphological Science Department of Human Anatomy, Medical Faculty University of Rzeszów, 35-036 Rzeszów, Poland; (A.W.); (K.B.); (S.O.)
| | - Luca Ferraro
- Department of Life Sciences and Biotechnology, University of Ferrara, 44100 Ferrara, Italy;
| | - Gaetano Serviddio
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (R.V.); (M.A.); (G.S.)
| | - Tommaso Cassano
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy;
- Correspondence:
| |
Collapse
|
39
|
Casili G, Lanza M, Campolo M, Siracusa R, Paterniti I, Ardizzone A, Scuderi SA, Cuzzocrea S, Esposito E. Synergic Therapeutic Potential of PEA-Um Treatment and NAAA Enzyme Silencing In the Management of Neuroinflammation. Int J Mol Sci 2020; 21:ijms21207486. [PMID: 33050589 PMCID: PMC7589809 DOI: 10.3390/ijms21207486] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/09/2020] [Accepted: 10/09/2020] [Indexed: 12/11/2022] Open
Abstract
Inflammation is a key element in the pathobiology of neurodegenerative diseases and sees the involvement of different neuronal and non-neuronal cells as players able to respond to inflammatory signals of immune origin. Palmitoylethanolamide (PEA) is an endogenous potent anti-inflammatory agent, in which activity is regulated by N-acylethanolamine acid amidase (NAAA), that hydrolyzes saturated or monounsaturated fatty acid ethanolamides, such as PEA. In this research, an in vitro study was performed on different neuronal (SH-SY5Y) and non-neuronal cell lines (C6, BV-2, and Mo3.13) subjected to NAAA enzyme silencing and treated with PEA ultra-micronized (PEA-um) (1, 3, and 10 μM) to increase the amount of endogenous PEA available for counteract neuroinflammation provoked by stimulation with lipopolysaccharide (LPS) (1 μg/mL) and interferon gamma (INF-γ )(100 U/mL). Cell viability was performed by MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide) staining, suggesting a protective effect of PEA-um (3 and 10 μM) on all cell lines studied. Western Blot analysis for inflammatory markers (Inducible nitric oxide synthase (iNOS) and cyclooxygenase 2 (COX-2)) was carried out in control and NAAA-silenced cells, highlighting how the concomitant treatment of the neuronal and non-neuronal cells with PEA-um after NAAA genic downregulation is satisfactory to counteract neuroinflammation. These in vitro findings support the protective role of endogenous PEA availability in the neuronal field, bringing interesting information for a translational point of view.
Collapse
Affiliation(s)
- Giovanna Casili
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98165 Messina, Italy; (G.C.); (M.L.); (M.C.); (R.S.); (I.P.); (A.A.); (S.A.S.); (E.E.)
| | - Marika Lanza
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98165 Messina, Italy; (G.C.); (M.L.); (M.C.); (R.S.); (I.P.); (A.A.); (S.A.S.); (E.E.)
| | - Michela Campolo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98165 Messina, Italy; (G.C.); (M.L.); (M.C.); (R.S.); (I.P.); (A.A.); (S.A.S.); (E.E.)
| | - Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98165 Messina, Italy; (G.C.); (M.L.); (M.C.); (R.S.); (I.P.); (A.A.); (S.A.S.); (E.E.)
| | - Irene Paterniti
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98165 Messina, Italy; (G.C.); (M.L.); (M.C.); (R.S.); (I.P.); (A.A.); (S.A.S.); (E.E.)
| | - Alessio Ardizzone
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98165 Messina, Italy; (G.C.); (M.L.); (M.C.); (R.S.); (I.P.); (A.A.); (S.A.S.); (E.E.)
| | - Sarah Adriana Scuderi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98165 Messina, Italy; (G.C.); (M.L.); (M.C.); (R.S.); (I.P.); (A.A.); (S.A.S.); (E.E.)
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98165 Messina, Italy; (G.C.); (M.L.); (M.C.); (R.S.); (I.P.); (A.A.); (S.A.S.); (E.E.)
- Department of Pharmacological and Physiological Science, Saint Louis University, Saint Louis, MO 63103, USA
- Correspondence: ; Tel.: +39-090-6765208
| | - Emanuela Esposito
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98165 Messina, Italy; (G.C.); (M.L.); (M.C.); (R.S.); (I.P.); (A.A.); (S.A.S.); (E.E.)
| |
Collapse
|
40
|
Bukke VN, Archana M, Villani R, Romano AD, Wawrzyniak A, Balawender K, Orkisz S, Beggiato S, Serviddio G, Cassano T. The Dual Role of Glutamatergic Neurotransmission in Alzheimer's Disease: From Pathophysiology to Pharmacotherapy. Int J Mol Sci 2020; 21:ijms21207452. [PMID: 33050345 PMCID: PMC7589203 DOI: 10.3390/ijms21207452] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/28/2020] [Accepted: 10/05/2020] [Indexed: 12/19/2022] Open
Abstract
Alzheimer's disease (AD) is an age-related dementia and neurodegenerative disorder, characterized by Aβ and tau protein deposition impairing learning, memory and suppressing synaptic plasticity of neurons. Increasing evidence suggests that there is a link between the glucose and glutamate alterations with age that down-regulates glucose utilization reducing glutamate levels in AD patients. Deviations in brain energy metabolism reinforce the development of AD by hampering glutamate levels in the brain. Glutamate is a nonessential amino acid and the major excitatory neurotransmitter synthesized from glucose. Alterations in cerebral glucose and glutamate levels precede the deposition of Aβ plaques. In the brain, over 40% of neuronal synapses are glutamatergic and disturbances in glutamatergic function have been implicated in pathophysiology of AD. Nevertheless, targeting the glutamatergic system seems to be a promising strategy to develop novel, improved therapeutics for AD. Here, we review data supporting the involvement of the glutamatergic system in AD pathophysiology as well as the efficacy of glutamatergic agents in this neurodegenerative disorder. We also discuss exciting new prospects for the development of improved therapeutics for this devastating disorder.
Collapse
Affiliation(s)
- Vidyasagar Naik Bukke
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy;
| | - Moola Archana
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (M.A.); (R.V.); (A.D.R.); (G.S.)
| | - Rosanna Villani
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (M.A.); (R.V.); (A.D.R.); (G.S.)
| | - Antonino Davide Romano
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (M.A.); (R.V.); (A.D.R.); (G.S.)
| | - Agata Wawrzyniak
- Morphological Science Department of Human Anatomy, Medical Faculty University of Rzeszów, 35-310 Rzeszów, Poland; (A.W.); (K.B.); (S.O.)
| | - Krzysztof Balawender
- Morphological Science Department of Human Anatomy, Medical Faculty University of Rzeszów, 35-310 Rzeszów, Poland; (A.W.); (K.B.); (S.O.)
| | - Stanislaw Orkisz
- Morphological Science Department of Human Anatomy, Medical Faculty University of Rzeszów, 35-310 Rzeszów, Poland; (A.W.); (K.B.); (S.O.)
| | - Sarah Beggiato
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, 66100 Chieti, Italy;
| | - Gaetano Serviddio
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (M.A.); (R.V.); (A.D.R.); (G.S.)
| | - Tommaso Cassano
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy;
- Correspondence:
| |
Collapse
|
41
|
Morsanuto V, Galla R, Molinari C, Uberti F. A New Palmitoylethanolamide Form Combined with Antioxidant Molecules to Improve Its Effectivess on Neuronal Aging. Brain Sci 2020; 10:brainsci10070457. [PMID: 32708932 PMCID: PMC7408069 DOI: 10.3390/brainsci10070457] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/06/2020] [Accepted: 07/09/2020] [Indexed: 11/17/2022] Open
Abstract
Palmitoylethanolamide is a nutraceutical compound naturally produced in many plants and animal source foods, but the natural form is poorly water-soluble. It has demonstrated an anti-inflammatory role as a neuroprotective mediator, acting on several molecular targets of the central nervous system involved on brain aging process. In healthy adults, palmitoylethanolamide is an endogenous PPAR-α (peroxisome proliferator-activated receptor α) agonist through which it performs anti-inflammatory activity and provides its effects by activating the cannabinoid receptor. The different formulations of palmitoylethanolamide (micronized palmitoylethanolamide, FM-LipoMatrix® palmitoylethanolamide and FM-LipoMatrix® palmitoylethanolamide plus lipoic acid and vitamin D3) were analyzed starting from intestinal barrier, to verify their bioavailability, to in primary astrocytes in which cell viability, reactive oxygen species (ROS) and nitric oxide (NO) production, NFKB activity, MAPK, p53 and PPARα activities were investigated. Additionally, cannabinoid and estrogen receptors were analyzed using the western blot technique. The combination of palmitoylethanolamide in FM-LipoMatrix®, lipoic acid and vitamin D3 shows better absorption predicting an improvement on plasma concentration; this formulation also shows a reduction in ROS and NO production and the data show the interaction of palmitoylethanolamide with cannabinoids and estrogen receptors inhibiting neuroinflammatory markers. All these data support the hypothesis of a new potential strategy to restore brain function and slow down brain aging in humans.
Collapse
|
42
|
Looking for a Treatment for the Early Stage of Alzheimer's Disease: Preclinical Evidence with Co-Ultramicronized Palmitoylethanolamide and Luteolin. Int J Mol Sci 2020; 21:ijms21113802. [PMID: 32471239 PMCID: PMC7312730 DOI: 10.3390/ijms21113802] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/25/2020] [Accepted: 05/26/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND At the earliest stage of Alzheimer's disease (AD), although patients are still asymptomatic, cerebral alterations have already been triggered. In addition to beta amyloid (Aβ) accumulation, both glial alterations and neuroinflammation have been documented at this stage. Starting treatment at this prodromal AD stage could be a valuable therapeutic strategy. AD requires long-term care; therefore, only compounds with a high safety profile can be used, such as the new formulation containing palmitoylethanolamide and luteolin (co-ultra PEALut) already approved for human use. Therefore, we investigated it in an in vivo pharmacological study that focused on the prodromal stage of AD. METHODS We tested the anti-inflammatory and neuroprotective effects of co-ultra PEALut (5 mg/Kg) administered for 14 days in rats that received once, 5 µg Aβ(1-42) into the hippocampus. RESULTS Glial activation and elevated levels of proinflammatory mediators were observed in Aβ-infused rats. Early administration of co-ultra PEALut prevented the Aβ-induced astrogliosis and microgliosis, the upregulation in gene expression of pro-inflammatory cytokines and enzymes, as well as the reduction of mRNA levels BDNF and GDNF. Our findings also highlight an important neuroprotective effect of co-ultra PEALut treatment, which promoted neuronal survival. CONCLUSIONS Our results reveal the presence of cellular and molecular modifications in the prodromal stage of AD. Moreover, the data presented here demonstrate the ability of co-ultra PEALut to normalize such Aβ-induced alterations, suggesting it as a valuable therapeutic strategy.
Collapse
|
43
|
Güell-Bosch J, Lope-Piedrafita S, Esquerda-Canals G, Montoliu-Gaya L, Villegas S. Progression of Alzheimer's disease and effect of scFv-h3D6 immunotherapy in the 3xTg-AD mouse model: An in vivo longitudinal study using Magnetic Resonance Imaging and Spectroscopy. NMR IN BIOMEDICINE 2020; 33:e4263. [PMID: 32067292 DOI: 10.1002/nbm.4263] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 12/19/2019] [Accepted: 01/11/2020] [Indexed: 06/10/2023]
Abstract
Alzheimer's disease (AD) is an incurable disease that affects most of the 47 million people estimated as living with dementia worldwide. The main histopathological hallmarks of AD are extracellular β-amyloid (Aβ) plaques and intracellular neurofibrillary tangles (NFTs) composed of hyperphosphorylated tau protein. In recent years, Aβ-immunotherapy has been revealed as a potential tool in AD treatment. One strategy consists of using single-chain variable fragments (scFvs), which avoids the fragment crystallizable (Fc) effects that are supposed to trigger a microglial response, leading to microhemorrhages and vasogenic edemas, as evidenced in clinical trials with bapineuzumab. The scFv-h3D6 generated by our research group derives from this monoclonal antibody, which targets the N-terminal of the Aβ peptide and recognizes monomers, oligomers and fibrils. In this study, 3xTg-AD mice were intraperitoneally and monthly treated with 100 μg of scFv-h3D6 (a dose of ~3.3 mg/kg) or PBS, from 5 to 12 months of age (-mo), the age at which the mice were sacrificed and samples collected for histological and biochemical analyses. During treatments, four monitoring sessions using magnetic resonance imaging and spectroscopy (MRI/MRS) were performed at 5, 7, 9, and 12 months of age. MRI/MRS techniques are widely used in both human and mouse research, allowing to draw an in vivo picture of concrete aspects of the pathology in a non-invasive manner and allowing to monitor its development across time. Compared with the genetic background, 3xTg-AD mice presented a smaller volume in almost all cerebral regions and ages examined, an increase in both the intra and extracellular Aβ1-42 at 12-mo, and an inflammation process at this age, in both the hippocampus (IL-6 and mIns) and cortex (IL-6). In addition, treatment with scFv-h3D6 partially recovered the values in brain volume, and Aβ, IL-6, and mIns concentrations, among others, encouraging further studies with this antibody fragment.
Collapse
Affiliation(s)
- J Güell-Bosch
- Protein Design and Immunotherapy Group, Departament de Bioquímica i Biologia Molecular, Facultat de Biociències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| | - S Lope-Piedrafita
- Servei de Ressonància Magnètica Nuclear, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- Centro de Investigación Biomédica en Red-Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - G Esquerda-Canals
- Protein Design and Immunotherapy Group, Departament de Bioquímica i Biologia Molecular, Facultat de Biociències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| | - L Montoliu-Gaya
- Protein Design and Immunotherapy Group, Departament de Bioquímica i Biologia Molecular, Facultat de Biociències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| | - S Villegas
- Protein Design and Immunotherapy Group, Departament de Bioquímica i Biologia Molecular, Facultat de Biociències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| |
Collapse
|
44
|
Crupi R, Cordaro M, Cuzzocrea S, Impellizzeri D. Management of Traumatic Brain Injury: From Present to Future. Antioxidants (Basel) 2020; 9:antiox9040297. [PMID: 32252390 PMCID: PMC7222188 DOI: 10.3390/antiox9040297] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/29/2020] [Accepted: 03/31/2020] [Indexed: 12/12/2022] Open
Abstract
TBI (traumatic brain injury) is a major cause of death among youth in industrialized societies. Brain damage following traumatic injury is a result of direct and indirect mechanisms; indirect or secondary injury involves the initiation of an acute inflammatory response, including the breakdown of the blood–brain barrier (BBB), brain edema, infiltration of peripheral blood cells, and activation of resident immunocompetent cells, as well as the release of numerous immune mediators such as interleukins and chemotactic factors. TBI can cause changes in molecular signaling and cellular functions and structures, in addition to tissue damage, such as hemorrhage, diffuse axonal damages, and contusions. TBI typically disturbs brain functions such as executive actions, cognitive grade, attention, memory data processing, and language abilities. Animal models have been developed to reproduce the different features of human TBI, better understand its pathophysiology, and discover potential new treatments. For many years, the first approach to manage TBI has been treatment of the injured tissue with interventions designed to reduce the complex secondary-injury cascade. Several studies in the literature have stressed the importance of more closely examining injuries, including endothelial, microglia, astroglia, oligodendroglia, and precursor cells. Significant effort has been invested in developing neuroprotective agents. The aim of this work is to review TBI pathophysiology and existing and potential new therapeutic strategies in the management of inflammatory events and behavioral deficits associated with TBI.
Collapse
Affiliation(s)
- Rosalia Crupi
- Department of Veterinary Science, University of Messina, 98168 Messina, Italy;
| | - Marika Cordaro
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Via Consolare Valeria 1, 98100 Messina, Italy;
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmacological and Environmental Sciences, Messina University, Viale F. Stagno D’Alcontres 31, 98166 Messina, Italy;
- Department of Pharmacological and Physiological Science, Saint Louis University, Saint Louis, MO 63104, USA
- Correspondence: ; Tel.: +390-906-765-208
| | - Daniela Impellizzeri
- Department of Chemical, Biological, Pharmacological and Environmental Sciences, Messina University, Viale F. Stagno D’Alcontres 31, 98166 Messina, Italy;
| |
Collapse
|
45
|
Cassano T, Villani R, Pace L, Carbone A, Bukke VN, Orkisz S, Avolio C, Serviddio G. From Cannabis sativa to Cannabidiol: Promising Therapeutic Candidate for the Treatment of Neurodegenerative Diseases. Front Pharmacol 2020; 11:124. [PMID: 32210795 PMCID: PMC7069528 DOI: 10.3389/fphar.2020.00124] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 01/29/2020] [Indexed: 12/12/2022] Open
Abstract
Cannabis sativa, commonly known as marijuana, contains a pool of secondary plant metabolites with therapeutic effects. Besides Δ9-tetrahydrocannabinol that is the principal psychoactive constituent of Cannabis, cannabidiol (CBD) is the most abundant nonpsychoactive phytocannabinoid and may represent a prototype for anti-inflammatory drug development for human pathologies where both the inflammation and oxidative stress (OS) play an important role to their etiology and progression. To this regard, Alzheimer's disease (AD), Parkinson's disease (PD), the most common neurodegenerative disorders, are characterized by extensive oxidative damage to different biological substrates that can cause cell death by different pathways. Most cases of neurodegenerative diseases have a complex etiology with a variety of factors contributing to the progression of the neurodegenerative processes; therefore, promising treatment strategies should simultaneously target multiple substrates in order to stop and/or slow down the neurodegeneration. In this context, CBD, which interacts with the eCB system, but has also cannabinoid receptor-independent mechanism, might be a good candidate as a prototype for anti-oxidant drug development for the major neurodegenerative disorders, such as PD and AD. This review summarizes the multiple molecular pathways that underlie the positive effects of CBD, which may have a considerable impact on the progression of the major neurodegenerative disorders.
Collapse
Affiliation(s)
- Tommaso Cassano
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Rosanna Villani
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Lorenzo Pace
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Antonio Carbone
- Department of Physiology and Pharmacology "V. Erspamer," Sapienza University of Rome, Rome, Italy
| | - Vidyasagar Naik Bukke
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Stanislaw Orkisz
- Morphological Science Department of Human Anatomy, Medical Faculty University of Rzeszów, Rzeszów, Poland
| | - Carlo Avolio
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Gaetano Serviddio
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| |
Collapse
|
46
|
Cordaro M, Cuzzocrea S, Crupi R. An Update of Palmitoylethanolamide and Luteolin Effects in Preclinical and Clinical Studies of Neuroinflammatory Events. Antioxidants (Basel) 2020; 9:antiox9030216. [PMID: 32150935 PMCID: PMC7139331 DOI: 10.3390/antiox9030216] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 02/06/2023] Open
Abstract
The inflammation process represents of a dynamic series of phenomena that manifest themselves with an intense vascular reaction. Neuroinflammation is a reply from the central nervous system (CNS) and the peripheral nervous system (PNS) to a changed homeostasis. There are two cell systems that mediate this process: the glia of the CNS and the lymphocites, monocytes, and macrophages of the hematopoietic system. In both the peripheral and central nervous systems, neuroinflammation plays an important role in the pathogenesis of neurodegenerative diseases, such as Parkinson’s and Alzheimer’s diseases, and in neuropsychiatric illnesses, such as depression and autism spectrum disorders. The resolution of neuroinflammation is a process that allows for inflamed tissues to return to homeostasis. In this process the important players are represented by lipid mediators. Among the naturally occurring lipid signaling molecules, a prominent role is played by the N-acylethanolamines, namely N-arachidonoylethanolamine and its congener N-palmitoylethanolamine, which is also named palmitoylethanolamide or PEA. PEA possesses a powerful neuroprotective and anti-inflammatory power but has no antioxidant effects per se. For this reason, its co-ultramicronization with the flavonoid luteolin is more efficacious than either molecule alone. Inhibiting or modulating the enzymatic breakdown of PEA represents a complementary therapeutic approach to treating neuroinflammation. The aim of this review is to discuss the role of ultramicronized PEA and co-ultramicronized PEA with luteolin in several neurological diseases using preclinical and clinical approaches.
Collapse
Affiliation(s)
- Marika Cordaro
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Via Consolare Valeria 1, 98100 Messina, Italy;
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Via F. Stagno D’Alcontres 31, 98166 Messina, Italy;
- Department of Pharmacology and Physiology, Saint Louis University, St. Louis, MO 63103, USA
- Correspondence: ; Tel.: +390-906-765-208
| | - Rosalia Crupi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Via F. Stagno D’Alcontres 31, 98166 Messina, Italy;
| |
Collapse
|
47
|
Beggiato S, Tomasini MC, Cassano T, Ferraro L. Chronic Oral Palmitoylethanolamide Administration Rescues Cognitive Deficit and Reduces Neuroinflammation, Oxidative Stress, and Glutamate Levels in A Transgenic Murine Model of Alzheimer's Disease. J Clin Med 2020; 9:jcm9020428. [PMID: 32033363 PMCID: PMC7074257 DOI: 10.3390/jcm9020428] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 01/28/2020] [Accepted: 02/02/2020] [Indexed: 01/15/2023] Open
Abstract
N-palmitoylethanolamide (PEA) is a lipid mediator belonging to the class of the N-acylethanolamine. Products containing PEA, also in ultramicronized formulation (um-PEA), are already licensed for use in humans for its analgesic and anti-inflammatory properties, and demonstrated high safety and tolerability. Preclinical studies indicate that PEA, especially in the ultramicronized form, could be a potential therapeutic agent for Alzheimer's disease (AD). In this study, we evaluated the neuroprotective and antioxidant effects of chronic (three months) um-PEA administration in an animal model of AD (3×Tg-AD mice). For translation purposes, the compound has been orally administered. Cognitive performance as well as biochemical markers [(interleukin-16 (IL-16) and tumor necrosis factor- (TNF-)] levels, reactive oxygen species (ROS) production, synaptophysin and glutamate levels) have been evaluated at the end of um-PEA treatment. The results indicate that orally administered um-PEA was adsorbed and distributed in the mice brain. The chronic treatment with um-PEA (100 mg/kg/day for three months) rescued cognitive deficit, restrained neuroinflammation and oxidative stress, and reduced the increase in hippocampal glutamate levels observed in 3×Tg-AD mice. Overall, these data reinforce the concept that um-PEA exerts beneficial effects in 3×Tg-AD mice. The fact that PEA is already licensed for the use in humans strongly supports its rapid translation in clinical practice.
Collapse
Affiliation(s)
- Sarah Beggiato
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy; (S.B.); (M.C.T.)
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, 66100 Chieti, Italy
- IRET Foundation, Ozzano Emilia, 40064 Bologna, Italy
| | - Maria Cristina Tomasini
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy; (S.B.); (M.C.T.)
| | - Tommaso Cassano
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy;
| | - Luca Ferraro
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy; (S.B.); (M.C.T.)
- IRET Foundation, Ozzano Emilia, 40064 Bologna, Italy
- Technopole of Ferrara, LTTA Laboratory for the Technologies for Advanced Therapies, 44121 Ferrara, Italy
- Correspondence: ; Tel.: +39-0532-455276
| |
Collapse
|
48
|
Valenza M, Facchinetti R, Steardo L, Scuderi C. Altered Waste Disposal System in Aging and Alzheimer's Disease: Focus on Astrocytic Aquaporin-4. Front Pharmacol 2020; 10:1656. [PMID: 32063858 PMCID: PMC7000422 DOI: 10.3389/fphar.2019.01656] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 12/17/2019] [Indexed: 12/15/2022] Open
Abstract
Among the diverse cell types included in the general population named glia, astrocytes emerge as being the focus of a growing body of research aimed at characterizing their heterogeneous and complex functions. Alterations of both their morphology and activities have been linked to a variety of neurological diseases. One crucial physiological need satisfied by astrocytes is the cleansing of the cerebral tissue from waste molecules. Several data demonstrate that aquaporin-4 (AQP-4), a protein expressed by astrocytes, is crucially important for facilitating the removal of waste products from the brain. Aquaporins are water channels found in all district of the human organism and the most abundant isoform in the brain is AQP-4. This protein is involved in a myriad of astrocytic activities, including calcium signal transduction, potassium buffering, synaptic plasticity, astrocyte migration, glial scar formation and neuroinflammation. The highest density of AQP-4 is found at the astrocytic domains closest to blood vessels, the endfeet that envelop brain vessels, with low to zero expression in other astrocytic membrane regions. Increased AQP-4 expression and loss of polarization have recently been documented in altered physiological conditions. Here we review the latest findings related to aging and Alzheimer’s disease (AD) on this topic, as well as the available knowledge on pharmacological tools to target AQP-4.
Collapse
Affiliation(s)
- Marta Valenza
- Department Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Rome, Italy.,Epitech Group SpA, Saccolongo, Italy
| | - Roberta Facchinetti
- Department Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Rome, Italy
| | - Luca Steardo
- Università Telematica Giustino Fortunato, Benevento, Italy
| | - Caterina Scuderi
- Department Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Rome, Italy
| |
Collapse
|
49
|
Cazzola R, Rondanelli M. N-Oleoyl-Phosphatidyl-Ethanolamine and Epigallo Catechin-3-Gallate Mitigate Oxidative Stress in Overweight and Class I Obese People on a Low-Calorie Diet. J Med Food 2020; 23:319-325. [PMID: 31928490 DOI: 10.1089/jmf.2019.0145] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Oxidative stress and lipid peroxidation are considered key factors linking obesity with its associated complications. Epigallo catechin-3-gallate (EGCG) and oleoylethanolamide, together with its phospholipid precursor N-oleoyl-phosphatidylethanolamine (NOPE), are nutritional compounds that might improve the oxidative stress status of obese people. Unfortunately, the bioavailability of these compounds is low; however, the coadministration of NOPE with EGCG has been shown to ameliorate both the plasma availability of EGCG and the intestinal levels of NOPE in rats. This double-blind placebo-controlled study investigated the effects of 2 months' supplementation with EGCG complexed with NOPE, combined with moderate energy restriction, on plasma oxidative status of overweight and class I obese subjects. A total of 138 subjects (body mass index: 25-35 kg/m2) were recruited and randomized into two groups: the first (n = 67) received caps of placebo and the second (n = 71) caps of an oily dispersion of EGCG complexed with NOPE for 2 months. Subjects' supplementation was combined with moderate energy restriction (-800 kcal/day). Plasma oxidative status was determined by measuring the levels of oxidized low-density lipoprotein (Ox-LDL), malondialdehyde and reactive oxygen metabolites, and by calculating the lag time and the slope of Cu-induced lipid peroxidation kinetics. In total 116 subjects (27 M/89 F) completed the supplementation period, 49 in the placebo group and 67 in the treated group. Treatment induced a similar significant weight reduction in the two groups. Moreover, we found the mean changes of Ox-LDL significantly lower and the mean changes of antioxidant capacity (lag time) significantly higher in NOPE-EGCG group than in placebo group (treatment effect mean difference: -3.15 UL, P < .044 and +5.37 min, P < .0347, respectively). EGCG plasma levels were detectable only after 2 months of NOPE-EGCG diet. The NOPE-EGCG integration to a low-energy diet seems, therefore, useful for ameliorating oxidative stress-related markers, which are concomitant causes of obesity-induced disorders.
Collapse
Affiliation(s)
- Roberta Cazzola
- Department of Clinical and Biomedical Sciences "L. Sacco," University of Milan, Milan, Italy
| | - Mariangela Rondanelli
- IRCCS Mondino Foundation, Pavia, Italy.,Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy
| |
Collapse
|
50
|
Maftei D, Ratano P, Fusco I, Marconi V, Squillace S, Negri L, Severini C, Balboni G, Steardo L, Bronzuoli MR, Scuderi C, Campolongo P, Lattanzi R. The prokineticin receptor antagonist PC1 rescues memory impairment induced by β amyloid administration through the modulation of prokineticin system. Neuropharmacology 2019; 158:107739. [DOI: 10.1016/j.neuropharm.2019.107739] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 07/26/2019] [Accepted: 08/09/2019] [Indexed: 12/18/2022]
|