1
|
Lee JE, Kim S, Park S, Choi H, Park BY, Park H. Atypical maturation of the functional connectome hierarchy in autism. Mol Autism 2025; 16:21. [PMID: 40140890 PMCID: PMC11948645 DOI: 10.1186/s13229-025-00641-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 01/07/2025] [Indexed: 03/28/2025] Open
Abstract
BACKGROUND Autism spectrum disorder (ASD) is marked by disruptions in low-level sensory processing and higher-order sociocognitive functions, suggesting a complex interplay between different brain regions across the cortical hierarchy. However, the developmental trajectory of this hierarchical organization in ASD remains underexplored. Herein, we investigated the maturational abnormalities in the cortical hierarchy among individuals with ASD. METHODS Resting-state functional magnetic resonance imaging data from three large-scale datasets were analyzed: Autism Brain Imaging Data Exchange I and II and Lifespan Human Connectome Project Development (aged 5-22 years). The principal functional connectivity gradient representing cortical hierarchy was estimated using diffusion map embedding. By applying normative modeling with the generalized additive model for location, scale, and shape (GAMLSS), we captured the nonlinear trajectories of the developing functional gradient, as well as the individual-level deviations in ASD from typical development based on centile scores measured as deviations from the normative curves. A whole-brain summary metric, the functional hierarchy score, was derived to measure the extent of abnormal maturation in individuals with ASD. Finally, through a series of mediation analyses, we examined the potential role of network-level connectomic disruptions between the diagnoses and deviations in the cortical hierarchy. RESULTS The maturation of cortical hierarchy in individuals with ASD followed a non-linear trajectory, showing delayed maturation during childhood compared to that of typically developing individuals, followed by an accelerated "catch-up" phase during adolescence and a subsequent decline in young adulthood. The nature of these deviations varied across networks, with sensory and attention networks displaying the most pronounced abnormalities in childhood, while higher-order networks, particularly the default mode network (DMN), remaining impaired from childhood to adolescence. Mediation analyses revealed that the persistent reduction in DMN segregation throughout development was a key contributor to the atypical development of cortical hierarchy in ASD. LIMITATIONS The uneven distribution of samples across age groups, particularly in the later stages of development, limited our ability to fully capture developmental trajectories among older individuals. CONCLUSIONS These findings highlight the importance of understanding the developmental trajectories of cortical organization in ASD, collectively suggesting that early interventions aimed at promoting the normative development of higher-order networks may be critical for improving outcomes in individuals with ASD.
Collapse
Affiliation(s)
- Jong-Eun Lee
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon, Republic of Korea
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Republic of Korea
| | - Sunghun Kim
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon, Republic of Korea
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Republic of Korea
| | - Shinwon Park
- Autism Center, Child Mind Institute, New York, NY, USA
| | - Hyoungshin Choi
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon, Republic of Korea
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Republic of Korea
| | - Bo-Yong Park
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Republic of Korea.
- Department of Brain and Cognitive Engineering, Korea University, Seoul, Republic of Korea.
| | - Hyunjin Park
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon, Republic of Korea.
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Republic of Korea.
| |
Collapse
|
2
|
Jang SS, Takahashi F, Huguenard JR. Reticular Thalamic Hyperexcitability Drives Autism Spectrum Disorder Behaviors in the Cntnap2 Model of Autism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.21.644680. [PMID: 40166234 PMCID: PMC11957169 DOI: 10.1101/2025.03.21.644680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Autism spectrum disorders (ASDs) are a group of neurodevelopmental disorders characterized by social communication deficits, repetitive behaviors, and comorbidities such as sensory abnormalities, sleep disturbances, and seizures. Dysregulation of thalamocortical circuits has been implicated in these comorbid features, yet their precise roles in ASD pathophysiology remain elusive. This study focuses on the reticular thalamic nucleus (RT), a key regulator of thalamocortical interactions, to elucidate its contribution to ASD-related behavioral deficits using a Cntnap2 knockout (KO) mouse model. Our behavioral and EEG analyses comparing Cntnap2 +/+ and Cntnap2 -/- mice demonstrated that Cntnap2 knockout heightened seizure susceptibility, elevated locomotor activity, and produced hallmark ASD phenotypes, including social deficits, and repetitive behaviors. Electrophysiological recordings from thalamic brain slices revealed increased spontaneous and evoked network oscillations with increased RT excitability due to enhanced T-type calcium currents and burst firing. We observed behavior related heightened RT population activity in vivo with fiber photometry. Notably, suppressing RT activity via Z944, a T-type calcium channel blocker, and via C21 and the inhibitory DREADD hM4Di, improved ASD-related behavioral deficits. These findings identify RT hyperexcitability as a mechanistic driver of ASD behaviors and underscore RT as a potential therapeutic target for modulating thalamocortical circuit dysfunction in ASD. Teaser RT hyperexcitability drives ASD behaviors in Cntnap2-/- mice, highlighting RT as a therapeutic target for circuit dysfunction.
Collapse
|
3
|
Minnigulova A, Karpychev V, Davydova E, Pereverzeva D, Sorokin A, Tyushkevich S, Mamokhina U, Danilina K, Dragoy O, Arutiunian V. Altered thalamotemporal structural connectivity is associated with autistic traits in children with ASD. Behav Brain Res 2025; 481:115414. [PMID: 39755277 DOI: 10.1016/j.bbr.2024.115414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 12/24/2024] [Accepted: 12/30/2024] [Indexed: 01/06/2025]
Abstract
BACKGROUND Thalamocortical functional and structural connectivity alterations may contribute to clinical phenotype of Autism Spectrum Disorder (ASD). As previous studies focused mainly on thalamofrontal connections in ASD, we comprehensively investigated the thalamic functional networks and white matter pathways projecting also to temporal, parietal, occipital lobes and their associations with core and co-occurring conditions of this population. METHODS A total of 38 children (19 with ASD) underwent magnetic resonance imaging and behavioral assessment. Functional and structural scans were processed to analyze between-group thalamic connectivity differences and their relationships to measurements of autistic traits and language abilities. RESULTS No functional differences were found between groups across 20 networks in each hemisphere. However, we showed that the diffusion properties of thalamocortical pathways projecting to the right and left temporal lobes were disrupted in children with ASD. Additionally, there was a significant association between diffusion differences of thalamotemporal tracts and severity of autistic traits. CONCLUSIONS Our findings on altered thalamotemporal structural but not functional connectivity contribute to the understanding of white matter organization of thalamocortical pathways in children with ASD.
Collapse
Affiliation(s)
| | | | - Elizaveta Davydova
- Federal Resource Center for ASD, Moscow State University of Psychology and Education, Moscow, Russia; Chair of Differential Psychology and Psychophysiology, Moscow State University of Psychology and Education, Moscow, Russia
| | - Darya Pereverzeva
- Federal Resource Center for ASD, Moscow State University of Psychology and Education, Moscow, Russia
| | - Alexander Sorokin
- Federal Resource Center for ASD, Moscow State University of Psychology and Education, Moscow, Russia; Haskins Laboratories, New Haven, CT, United States
| | - Svetlana Tyushkevich
- Federal Resource Center for ASD, Moscow State University of Psychology and Education, Moscow, Russia
| | - Uliana Mamokhina
- Federal Resource Center for ASD, Moscow State University of Psychology and Education, Moscow, Russia
| | - Kamilla Danilina
- Federal Resource Center for ASD, Moscow State University of Psychology and Education, Moscow, Russia; Scientific Research and Practical Center for Pediatric Psychoneurology, Moscow, Russia
| | - Olga Dragoy
- Center for Language and Brain, HSE University, Moscow, Russia; Center for Language and Brain, HSE University, Saint Petersburg, Russia; Institute of Linguistics, Russian Academy of Sciences, Moscow, Russia
| | - Vardan Arutiunian
- Center for Child Health, Behavior and Development, Seattle Children's Research Institute, Seattle, WA, United States
| |
Collapse
|
4
|
James D, Lam VT, Jo B, Fung LK. Sex Differences in the Relationship Between Cortical Thickness and Sensory Motor Symptoms in Adults on the Autism Spectrum. Behav Neurol 2025; 2025:2951294. [PMID: 40041925 PMCID: PMC11879536 DOI: 10.1155/bn/2951294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 01/26/2025] [Accepted: 01/28/2025] [Indexed: 05/12/2025] Open
Abstract
Background: Autism spectrum disorder (ASD) involves alterations in both cortical morphology and sensory processing. These structural and perceptual changes may lie on a continuum with typically developing (TD) individuals. However, investigations on possible links between these two factors are lacking, and it remains to be seen if their relationship differs by sex. We hypothesized that cortical thickness in the postcentral gyrus (a somatosensory processing hub) would correlate with sensory processing symptoms in a combined cohort of autistic and TD individuals. We also hypothesized that these correlations would differ based on sex. Methods: We studied 23 autistic adults and 27 TD adults using magnetic resonance imaging to measure the cortical thickness of the postcentral gyrus and the Ritvo Autism Asperger Diagnostic Scale-Revised (RAADS-R) to measure autism characteristics, with a particular focus on the sensory motor subscale. Results: The left postcentral gyrus (PCG) was found to be thicker in the autism group than in the TD group (d = 0.946, p = 0.003), particularly in autistic males compared to TD males and TD females. The RAADS-R sensory motor subscale and bilateral PCG cortical thickness were positively correlated across both autistic and TD males (Spearman's rho = 0.481, p = 0.008) but not females. These correlations were specific to the sensory motor subscale, as no correlations were found for RAADS-R total score or any of the other subscales. Conclusions: These results demonstrate sex-specific differences in the relationship between cortical thickness at the PCG and sensory processing in autistic individuals and that these differences exist along a continuum that extends into the TD population. Our findings contribute to furthering our understanding of sex-specific neuroanatomical differences in people on the autism spectrum. The left PCG thickness could be a potential sex-specific biomarker for sensorimotor function that is generally applicable in both neurotypical and autism populations. With further validations, this biomarker could be used to track responses to interventions targeting sensorimotor challenges in people on the autism spectrum.
Collapse
Affiliation(s)
- David James
- Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, California, USA
| | - Vicky T. Lam
- Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, California, USA
| | - Booil Jo
- Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, California, USA
| | - Lawrence K. Fung
- Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, California, USA
| |
Collapse
|
5
|
Videla R, Aros MB, Parada F, Kausel L, Sandoval-Obando E, Jorquera D, Ibacache D, Maluenda S, Rodríguez-Herrero P, Cerpa C, González MJ, Chávez M, Ramírez P. Neurodiversity: post-cognitivist foundations of the 3E approach for educational inclusion of autistic students with technology. Front Hum Neurosci 2025; 18:1493863. [PMID: 39963287 PMCID: PMC11830657 DOI: 10.3389/fnhum.2024.1493863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 12/30/2024] [Indexed: 02/20/2025] Open
Abstract
The concept of neurodiversity has gained strength in the last years to highlight the value of individual differences based on relevant variations in brain functioning. Inclusive education has embraced neurodiversity to promote a culture centered on valuing diversity, in response to clinical models based on deficits or disorders. This theoretical-critical article argues for the need to complement the current foundations of neurodiversity with post-cognitivist perspectives that reaffirm the brain-body-environment continuum, in order to enrich inclusive educational practices for autistic individuals. We begin by reviewing and discussing the concept of neurodiversity and neurocentric arguments in light of post-cognitivism. We then explore the potential of the 3E Cognition approach (embodied, enacted, and environmentally scaffolded) for addressing autism, aiming to provide a holistic understanding that contributes to the practical application of cognitive neuroscience findings in inclusive education. Finally, we present some guidelines and practical cases for creating inclusive educational environments based on digital technologies that enhance agency and sensory multimodality for autistic students.
Collapse
Affiliation(s)
- Ronnie Videla
- Escuela de Educación Diferencial, Universidad Santo Tomás, La Serena, Chile
- Innova STEAM Lab, La Serena, Chile
| | - May Britt Aros
- Escuela de Educación, Universidad Católica del Norte, Coquimbo, Chile
| | - Francisco Parada
- Centro de Estudios en Neurociencia Humana y Neuropsicología, Facultad de Psicología, Universidad Diego Portales, Santiago, Chile
| | - Leonie Kausel
- Centro de Estudios en Neurociencia Humana y Neuropsicología, Facultad de Psicología, Universidad Diego Portales, Santiago, Chile
| | - Eduardo Sandoval-Obando
- Escuela de Psicología, Instituto Iberoamericano de Desarrollo Sostenible, Universidad Autónoma de Chile, Temuco, Chile
| | - Daniela Jorquera
- Innova STEAM Lab, La Serena, Chile
- Escuela de Educación, Universidad Católica del Norte, Coquimbo, Chile
| | - David Ibacache
- Escuela de Educación Diferencial, Universidad Santo Tomás, La Serena, Chile
| | | | | | - Carola Cerpa
- Escuela de Educación, Universidad Católica del Norte, Coquimbo, Chile
| | | | | | - Paola Ramírez
- Facultad de Ciencias Básicas, Universidad Católica del Maule, Talca, Chile
| |
Collapse
|
6
|
Stroud J, Rice C, Orsini A, Schlosser M, Lee J, Mandy W, Kamboj SK. Perceived changes in mental health and social engagement attributed to a single psychedelic experience in autistic adults: results from an online survey. Psychopharmacology (Berl) 2025; 242:373-387. [PMID: 39367164 DOI: 10.1007/s00213-024-06685-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 09/05/2024] [Indexed: 10/06/2024]
Abstract
RATIONALE Anecdotal reports suggest that psychedelic drugs can improve psychological wellbeing and social engagement in autistic people. However, there are few contemporary studies on this topic. OBJECTIVES To examine autistic participants' experiences with psychedelic drugs and the extent to which they attributed changes in mental health and social engagement to their most 'impactful' psychedelic experience. We also explored associations between these changes and mechanistically important variables (e.g., aspects of the acute psychedelic experience and changes in 'psychological flexibility'). METHODS Self-selecting autistic participants (n = 233) with high autism quotient scores completed an online survey relating to their most impactful psychedelic experience. Questionnaires assessed the acute psychedelic experience and perceived psychedelic-induced changes in distress, social engagement and psychological flexibility, among other relevant variables. RESULTS The majority of participants attributed reductions in psychological distress (82%) and social anxiety (78%) and increases in social engagement (70%) to their most 'impactful' psychedelic experience. A substantial minority (20%) also reported undesirable effects such as increases in anxiety with some describing their psychedelic experience as among the most negatively impactful experiences of their lives. The only substantial predictor of reductions in psychological distress was increased psychological flexibility. CONCLUSION Autistic people attributed changes in mental health and social engagement to a single highly impactful psychedelic experience. The results and their implications are discussed with caution considering the use of a non-experimental design and biased sampling.
Collapse
Affiliation(s)
- Jack Stroud
- Research Department of Clinical, Educational and Health Psychology, University College London, London, UK.
| | - Charlotte Rice
- Research Department of Clinical, Educational and Health Psychology, University College London, London, UK
| | - Aaron Orsini
- Autistic Psychedelic Community (Co-production Organisation), Los Angeles, USA
| | - Marco Schlosser
- Division of Psychiatry, University College London, London, UK
| | - Justine Lee
- Autistic Psychedelic Community (Co-production Organisation), Los Angeles, USA
| | - Will Mandy
- Research Department of Clinical, Educational and Health Psychology, University College London, London, UK
| | - Sunjeev K Kamboj
- Clinical Psychopharmacology Unit, University College London, London, UK
| |
Collapse
|
7
|
Zhu JS, Gong Q, Zhao MT, Jiao Y. Atypical brain network topology of the triple network and cortico-subcortical network in autism spectrum disorder. Neuroscience 2025; 564:21-30. [PMID: 39550062 DOI: 10.1016/j.neuroscience.2024.11.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/11/2024] [Accepted: 11/13/2024] [Indexed: 11/18/2024]
Abstract
The default mode network (DMN), salience network (SN), and central executive control network (CEN) form the well-known triple network, providing a framework for understanding various neurodevelopmental and psychiatric disorders. However, the topology of this network remains unclear in autism spectrum disorder (ASD). To gain a more profound understanding of ASD, we explored the topology of the triple network in ASD. Additionally, the striatum and thalamus are pivotal centres of information transmission within the brain, and the realization of various brain functions requires the coordination of cortical and subcortical structures. Therefore, we also investigated the topology of the cortico-subcortical network in ASD, which consists of the DMN, SN, CEN, striatum, and thalamus. Resting-state functional magnetic resonance imaging data on 208 ASD patients and 278 typically developing (TD) controls (8-18 years old) were obtained from the Autism Brain Imaging Data Exchange database. We performed graph theory analysis on the triple network and the cortico-subcortical network. The results showed that the triple network's clustering coefficient, lambda, and network local efficiency values were significantly lower in ASD, and the nodal degree and efficiency of the medial prefrontal cortex also decreased. For the cortico-subcortical network, the sigma, clustering coefficient, gamma, and network local efficiency showed the same reduction, and the altered clustering coefficient negatively correlated with ASD manifestations. In addition, the interaction between the DMN and CEN was more robust in ASD patients. These findings enhance our understanding of ASD and suggest that subcortical structures should be more considered in future ASD related studies.
Collapse
Affiliation(s)
- Jun-Sa Zhu
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology (Southeast University), Department of Radiology, Zhongda Hospital, Medical School, Southeast University, 87 Dingjiaqiao Road, Nanjing 210009, China; Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Qi Gong
- Suzhou Joint Graduate School, Southeast University, Suzhou 215123, China
| | - Mei-Ting Zhao
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology (Southeast University), Department of Radiology, Zhongda Hospital, Medical School, Southeast University, 87 Dingjiaqiao Road, Nanjing 210009, China
| | - Yun Jiao
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology (Southeast University), Department of Radiology, Zhongda Hospital, Medical School, Southeast University, 87 Dingjiaqiao Road, Nanjing 210009, China; National Innovation Platform for Integration of Medical Engineering Education (NMEE) (Southeast University), Nanjing 210009, China; Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University, Nanjing 210009, China; State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing 210009, China.
| |
Collapse
|
8
|
Marcassa G, Dascenco D, Lorente-Echeverría B, Daaboul D, Vandensteen J, Leysen E, Baltussen L, Howden AJM, de Wit J. Synaptic signatures and disease vulnerabilities of layer 5 pyramidal neurons. Nat Commun 2025; 16:228. [PMID: 39747884 PMCID: PMC11697078 DOI: 10.1038/s41467-024-55470-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 12/12/2024] [Indexed: 01/04/2025] Open
Abstract
Cortical layer 5 (L5) intratelencephalic (IT) and pyramidal tract (PT) neurons are embedded in distinct information processing pathways. Their morphology, connectivity, electrophysiological properties, and role in behavior have been extensively analyzed. However, the molecular composition of their synapses remains largely uncharacterized. Here, we dissect the protein composition of the excitatory postsynaptic compartment of mouse L5 neurons in intact somatosensory circuits, using an optimized proximity biotinylation workflow with high spatial accuracy. We find distinct synaptic signatures of L5 IT and PT neurons that are defined by proteins regulating synaptic organization and transmission, including cell-surface proteins (CSPs), neurotransmitter receptors and ion channels. In addition, we find a differential vulnerability to disease, with a marked enrichment of autism risk genes in the synaptic signature of L5 IT neurons compared to PT neurons. These results align with human studies and suggest that the excitatory postsynaptic compartment of L5 IT neurons is susceptible in autism. Our approach is versatile and can be broadly applied to other neuron types to create a protein-based, synaptic atlas of cortical circuits.
Collapse
Affiliation(s)
- Gabriele Marcassa
- VIB Center for Brain & Disease Research, Leuven, Belgium
- KU Leuven, Department of Neurosciences, Leuven Brain Institute, Leuven, Belgium
| | - Dan Dascenco
- VIB Center for Brain & Disease Research, Leuven, Belgium
- KU Leuven, Department of Neurosciences, Leuven Brain Institute, Leuven, Belgium
| | - Blanca Lorente-Echeverría
- VIB Center for Brain & Disease Research, Leuven, Belgium
- KU Leuven, Department of Neurosciences, Leuven Brain Institute, Leuven, Belgium
| | - Danie Daaboul
- VIB Center for Brain & Disease Research, Leuven, Belgium
- KU Leuven, Department of Neurosciences, Leuven Brain Institute, Leuven, Belgium
| | - Jeroen Vandensteen
- VIB Center for Brain & Disease Research, Leuven, Belgium
- KU Leuven, Department of Neurosciences, Leuven Brain Institute, Leuven, Belgium
| | - Elke Leysen
- VIB Center for Brain & Disease Research, Leuven, Belgium
- KU Leuven, Department of Neurosciences, Leuven Brain Institute, Leuven, Belgium
| | - Lucas Baltussen
- VIB Center for Brain & Disease Research, Leuven, Belgium
- KU Leuven, Department of Neurosciences, Leuven Brain Institute, Leuven, Belgium
| | | | - Joris de Wit
- VIB Center for Brain & Disease Research, Leuven, Belgium.
- KU Leuven, Department of Neurosciences, Leuven Brain Institute, Leuven, Belgium.
| |
Collapse
|
9
|
Chuah JSM, Manahan AMA, Chan SY, Ngoh ZM, Huang P, Tan AP. Subregion-specific thalamocortical functional connectivity, executive function, and social behavior in children with autism spectrum disorders. Autism Res 2025; 18:70-82. [PMID: 39635773 DOI: 10.1002/aur.3280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 11/18/2024] [Indexed: 12/07/2024]
Abstract
The thalamus has extensive cortical connections and is an integrative hub for cognitive functions governing social behavior. This study examined (1) associations between thalamocortical resting-state functional connectivity (RSFC) and social behavior in children and (2) how various executive function (EF) subdomains mediate the association between thalamocortical RSFC and social behavior. Children from the autism brain imaging data exchange (ABIDE) initiative with neuroimaging, behavioral, and demographic data were included in our study (age < 14, ASD; n = 207, typically developing; n = 259). Thalamocortical RSFC was examined for associations with social communication and interaction (SCI) scores (SRS; social responsiveness scale) using Spearman's rank-order correlation, first in ASD children and then in typically developing children. This was followed by a more granular analysis at the thalamic subregion level. We then examined the mediating roles of eight EF subdomains in ASD children (n = 139). Right thalamus-default mode network (DMN) RSFC was significantly associated with SCI scores in ASD children (ρ = 0.23, pFDR = 0.012), primarily driven by the medial (ρ = 0.22, pFDR = 0.013), ventral (ρ = 0.17, pFDR = 0.036), and intralaminar (ρ = 0.17, pFDR = 0.036) thalamic subregions. Cognitive flexibility (ACME = 0.13, punc = 0.016) and emotional control (ACME = 0.08, punc = 0.020) significantly mediated the association between right thalamus-DMN RSFC and SCI scores. This study provided novel insights into the association between thalamocortical RSFC and social behavior in ASD children at the thalamic subregion level, providing higher levels of precision in brain-behavior mapping. Cognitive flexibility and emotion regulation were highlighted as potential targets to ameliorate the downstream effects of altered thalamocortical connectivity to improve social outcomes in ASD children.
Collapse
Affiliation(s)
- Jasmine Si Min Chuah
- Agency for Science, Technology and Research, Institute for Human Development and Potential (IHDP), Singapore, Singapore
| | - Aisleen M A Manahan
- Agency for Science, Technology and Research, Institute for Human Development and Potential (IHDP), Singapore, Singapore
| | - Shi Yu Chan
- Agency for Science, Technology and Research, Institute for Human Development and Potential (IHDP), Singapore, Singapore
| | - Zhen Ming Ngoh
- Agency for Science, Technology and Research, Institute for Human Development and Potential (IHDP), Singapore, Singapore
| | - Pei Huang
- Agency for Science, Technology and Research, Institute for Human Development and Potential (IHDP), Singapore, Singapore
| | - Ai Peng Tan
- Agency for Science, Technology and Research, Institute for Human Development and Potential (IHDP), Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore
- Brain-Body Initiative Program, A*STAR Research Entities (ARES), Singapore, Singapore
- Department of Diagnostic Imaging, National University Health System, Singapore, Singapore
| |
Collapse
|
10
|
Kim JI, Miura Y, Li MY, Revah O, Selvaraj S, Birey F, Meng X, Thete MV, Pavlov SD, Andersen J, Pașca AM, Porteus MH, Huguenard JR, Pașca SP. Human assembloids reveal the consequences of CACNA1G gene variants in the thalamocortical pathway. Neuron 2024; 112:4048-4059.e7. [PMID: 39419023 DOI: 10.1016/j.neuron.2024.09.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 08/15/2024] [Accepted: 09/19/2024] [Indexed: 10/19/2024]
Abstract
Abnormalities in thalamocortical crosstalk can lead to neuropsychiatric disorders. Variants in CACNA1G, which encodes the α1G subunit of the thalamus-enriched T-type calcium channel, are associated with absence seizures, intellectual disability, and schizophrenia, but the cellular and circuit consequences of these genetic variants in humans remain unknown. Here, we developed a human assembloid model of the thalamocortical pathway to dissect the contribution of genetic variants in T-type calcium channels. We discovered that the M1531V CACNA1G variant associated with seizures led to changes in T-type currents in thalamic neurons, as well as correlated hyperactivity of thalamic and cortical neurons in assembloids. By contrast, CACNA1G loss, which has been associated with risk of schizophrenia, resulted in abnormal thalamocortical connectivity that was related to both increased spontaneous thalamic activity and aberrant axonal projections. These results illustrate the utility of multi-cellular systems for interrogating human genetic disease risk variants at both cellular and circuit level.
Collapse
Affiliation(s)
- Ji-Il Kim
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA; Stanford Brain Organogenesis, Wu Tsai Neuroscience Institute, Stanford, CA 94305, USA
| | - Yuki Miura
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA; Stanford Brain Organogenesis, Wu Tsai Neuroscience Institute, Stanford, CA 94305, USA
| | - Min-Yin Li
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA; Stanford Brain Organogenesis, Wu Tsai Neuroscience Institute, Stanford, CA 94305, USA
| | - Omer Revah
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA; Stanford Brain Organogenesis, Wu Tsai Neuroscience Institute, Stanford, CA 94305, USA; Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305, USA
| | - Sridhar Selvaraj
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
| | - Fikri Birey
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA; Stanford Brain Organogenesis, Wu Tsai Neuroscience Institute, Stanford, CA 94305, USA
| | - Xiangling Meng
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA; Stanford Brain Organogenesis, Wu Tsai Neuroscience Institute, Stanford, CA 94305, USA
| | - Mayuri Vijay Thete
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA; Stanford Brain Organogenesis, Wu Tsai Neuroscience Institute, Stanford, CA 94305, USA
| | - Sergey D Pavlov
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA; Stanford Brain Organogenesis, Wu Tsai Neuroscience Institute, Stanford, CA 94305, USA
| | - Jimena Andersen
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA; Stanford Brain Organogenesis, Wu Tsai Neuroscience Institute, Stanford, CA 94305, USA
| | - Anca M Pașca
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
| | - Matthew H Porteus
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
| | - John R Huguenard
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305, USA
| | - Sergiu P Pașca
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA; Stanford Brain Organogenesis, Wu Tsai Neuroscience Institute, Stanford, CA 94305, USA.
| |
Collapse
|
11
|
Horata E, Ay H, Aslan D. Autistic-like behaviour and changes in thalamic cell numbers a rat model of valproic acid-induced autism; A behavioural and stereological study. Brain Res 2024; 1840:149047. [PMID: 38823508 DOI: 10.1016/j.brainres.2024.149047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/03/2024]
Abstract
The contribution of the thalamus to the development and behavioural changes in autism spectrum disorders (ASD), a neurodevelopmental syndrome, remains unclear. The aim of this study was to determine the changes in thalamic volume and cell number in the valproic acid (VPA)-induced ASD model using stereological methods and to clarify the relationship between thalamus and ASD-like behaviour. Ten pregnant rats were administered a single dose (600 mg/kg) of VPA intraperitoneally on G12.5 (VPA group), while five pregnant rats were injected with 5 ml saline (control group). Behavioural tests were performed to determine appropriate subjects and ASD-like behaviours. At P55, the brains of the subjects were removed. The sagittal sections were stained with cresyl violet and toluidine blue. The thalamic and hemispheric volumes with their ratios, the total number of thalamic cells, neurons and non-neuronal cells were calculated using stereological methods. Data were compared using a t-test and a Pearson correlation analysis was performed to examine the relationship between behaviour and stereological outcomes. VPA-treated rats had lower sociability and sociability indexes. There was no difference in social novelty preference and anxiety. The VPA group had larger hemispheric volume, lower thalamic volume, and fewer neurons. The highest percentage decrease was in non-neuronal cells. There was a moderate positive correlation between the number of non-neuronal cells and sociability, thalamic volume and the number of neurons as well as the time spent in the light box. The correlation between behaviour and stereological data suggests that the thalamus is associated with ASD-like behaviour.
Collapse
Affiliation(s)
- Erdal Horata
- Orthopedic Prosthesis Orthotics, Atatürk Health Services Vocational School, Afyonkarahisar Health Sciences University, Afyonkarahisar, Turkey.
| | - Hakan Ay
- Department of Anatomy, Faculty of Medicine, Eskişehir Osmangazi University, Eskişehir, Turkey
| | - Duygu Aslan
- Department of Anatomy, Faculty of Medicine, Kafkas University, Kars, Turkey
| |
Collapse
|
12
|
Kornisch M, Gonzalez C, Ikuta T. Functional connectivity of the posterior cingulate cortex in autism spectrum disorder. Psychiatry Res Neuroimaging 2024; 342:111848. [PMID: 38896910 DOI: 10.1016/j.pscychresns.2024.111848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 04/11/2024] [Accepted: 06/11/2024] [Indexed: 06/21/2024]
Abstract
The purpose of this study was to assess the functional connectivity of the posterior cingulate cortex in autism spectrum disorder (ASD). We used resting-state functional magnetic resonance imaging (rsfMRI) brain scans of adolescents diagnosed with ASD and a neurotypical control group. The Autism Brain Imaging Data Exchange (ABIDE) consortium was utilized to acquire data from the University of Michigan (145 subjects) and data from the New York University (183 subjects). The posterior cingulate cortex showed reduced connectivity with the anterior cingulate cortex for the ASD group compared to the control group. These two brain regions have previously both been linked to ASD symptomology. Specifically, the posterior cingulate cortex has been associated with behavioral control and executive functions, which appear to be responsible for the repetitive and restricted behaviors (RRB) in ASD. Our findings support previous data indicating a neurobiological basis of the disorder, and the specific functional connectivity changes involving the posterior cingulate cortex and anterior cingulate cortex may be a potential neurobiological biomarker for the observed RRBs in ASD.
Collapse
Affiliation(s)
- Myriam Kornisch
- Department of Communication Sciences & Disorders, University of Mississippi, Oxford, MS, USA; Department of Communication Sciences & Disorders, University of Maine, Orono, ME, USA.
| | - Claudia Gonzalez
- Department of Communication Sciences & Disorders, University of Mississippi, Oxford, MS, USA
| | - Toshikazu Ikuta
- Department of Communication Sciences & Disorders, University of Mississippi, Oxford, MS, USA
| |
Collapse
|
13
|
Guo B, Liu T, Choi S, Mao H, Wang W, Xi K, Jones C, Hartley ND, Feng D, Chen Q, Liu Y, Wimmer RD, Xie Y, Zhao N, Ou J, Arias-Garcia MA, Malhotra D, Liu Y, Lee S, Pasqualoni S, Kast RJ, Fleishman M, Halassa MM, Wu S, Fu Z. Restoring thalamocortical circuit dysfunction by correcting HCN channelopathy in Shank3 mutant mice. Cell Rep Med 2024; 5:101534. [PMID: 38670100 PMCID: PMC11149412 DOI: 10.1016/j.xcrm.2024.101534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 12/11/2023] [Accepted: 04/04/2024] [Indexed: 04/28/2024]
Abstract
Thalamocortical (TC) circuits are essential for sensory information processing. Clinical and preclinical studies of autism spectrum disorders (ASDs) have highlighted abnormal thalamic development and TC circuit dysfunction. However, mechanistic understanding of how TC dysfunction contributes to behavioral abnormalities in ASDs is limited. Here, our study on a Shank3 mouse model of ASD reveals TC neuron hyperexcitability with excessive burst firing and a temporal mismatch relationship with slow cortical rhythms during sleep. These TC electrophysiological alterations and the consequent sensory hypersensitivity and sleep fragmentation in Shank3 mutant mice are causally linked to HCN2 channelopathy. Restoring HCN2 function early in postnatal development via a viral approach or lamotrigine (LTG) ameliorates sensory and sleep problems. A retrospective case series also supports beneficial effects of LTG treatment on sensory behavior in ASD patients. Our study identifies a clinically relevant circuit mechanism and proposes a targeted molecular intervention for ASD-related behavioral impairments.
Collapse
Affiliation(s)
- Baolin Guo
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Tiaotiao Liu
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin 300070, China
| | - Soonwook Choi
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA
| | - Honghui Mao
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Wenting Wang
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Kaiwen Xi
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Carter Jones
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Nolan D Hartley
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA
| | - Dayun Feng
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Qian Chen
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA
| | - Yingying Liu
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Ralf D Wimmer
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA
| | - Yuqiao Xie
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Ningxia Zhao
- Xi'an TCM Hospital of Encephalopathy, Shaanxi University of Chinese Medicine, Xi'an 710032, China
| | - Jianjun Ou
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, National Clinical Research Center for Mental Disorders, Changsha 410011, China
| | - Mario A Arias-Garcia
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Diya Malhotra
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Yang Liu
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Sihak Lee
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Sammuel Pasqualoni
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Ryan J Kast
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA
| | - Morgan Fleishman
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Michael M Halassa
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA
| | - Shengxi Wu
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China.
| | - Zhanyan Fu
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA.
| |
Collapse
|
14
|
Yoon N, Kim S, Oh MR, Kim M, Lee JM, Kim BN. Intrinsic network abnormalities in children with autism spectrum disorder: an independent component analysis. Brain Imaging Behav 2024; 18:430-443. [PMID: 38324235 DOI: 10.1007/s11682-024-00858-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/16/2024] [Indexed: 02/08/2024]
Abstract
Aberrant intrinsic brain networks are consistently observed in individuals with autism spectrum disorder. However, studies examining the strength of functional connectivity across brain regions have yielded conflicting results. Therefore, this study aimed to investigate the functional connectivity of the resting brain in children with low-functioning autism, including during the early developmental stages. We explored the functional connectivity of 43 children with autism spectrum disorder and 54 children with typical development aged 2 to 12 years using resting-state functional magnetic resonance imaging data. We used independent component analysis to classify the brain regions into six intrinsic networks and analyzed the functional connectivity within each network. Moreover, we analyzed the relationship between functional connectivity and clinical scores. In children with autism, the under-connectivities were observed within several brain networks, including the cognitive control, default mode, visual, and somatomotor networks. In contrast, we found over-connectivities between the subcortical, visual, and somatomotor networks in children with autism compared with children with typical development. Moderate effect sizes were observed in entire networks (Cohen's d = 0.43-0.77). These network alterations were significantly correlated with clinical scores such as the communication sub-score (r = - 0.442, p = 0.045) and the calibrated severity score (r = - 0.435, p = 0.049) of the Autism Diagnostic Observation Schedule. These opposing results observed based on the brain areas suggest that aberrant neurodevelopment proceeds in various ways depending on the functional brain regions in individuals with autism spectrum disorder.
Collapse
Affiliation(s)
- Narae Yoon
- Division of Children and Adolescent Psychiatry, Department of Psychiatry, Seoul National University College of Medicine, 101 Daehakno, Jongno-gu, Seoul, Korea
| | - Sohui Kim
- Department of Electronic Engineering, Hanyang University, Seoul, South Korea
| | - Mee Rim Oh
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Minji Kim
- Department of Electronic Engineering, Hanyang University, Seoul, South Korea
| | - Jong-Min Lee
- Department of Biomedical Engineering, Hanyang University, Sanhak-kisulkwan Bldg., #319, 222 Wangsipri-ro, Sungdong-gu, Seoul, 133-791, Republic of Korea.
| | - Bung-Nyun Kim
- Division of Children and Adolescent Psychiatry, Department of Psychiatry, Seoul National University College of Medicine, 101 Daehakno, Jongno-gu, Seoul, Korea.
| |
Collapse
|
15
|
Cakar ME, Okada NJ, Cummings KK, Jung J, Bookheimer SY, Dapretto M, Green SA. Functional connectivity of the sensorimotor cerebellum in autism: associations with sensory over-responsivity. Front Psychiatry 2024; 15:1337921. [PMID: 38590791 PMCID: PMC10999625 DOI: 10.3389/fpsyt.2024.1337921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 02/27/2024] [Indexed: 04/10/2024] Open
Abstract
The cerebellum has been consistently shown to be atypical in autism spectrum disorder (ASD). However, despite its known role in sensorimotor function, there is limited research on its association with sensory over-responsivity (SOR), a common and impairing feature of ASD. Thus, this study sought to examine functional connectivity of the sensorimotor cerebellum in ASD compared to typically developing (TD) youth and investigate whether cerebellar connectivity is associated with SOR. Resting-state functional connectivity of the sensorimotor cerebellum was examined in 54 ASD and 43 TD youth aged 8-18 years. Using a seed-based approach, connectivity of each sensorimotor cerebellar region (defined as lobules I-IV, V-VI and VIIIA&B) with the whole brain was examined in ASD compared to TD youth, and correlated with parent-reported SOR severity. Across all participants, the sensorimotor cerebellum was functionally connected with sensorimotor and visual regions, though the three seed regions showed distinct connectivity with limbic and higher-order sensory regions. ASD youth showed differences in connectivity including atypical connectivity within the cerebellum and increased connectivity with hippocampus and thalamus compared to TD youth. More severe SOR was associated with stronger connectivity with cortical regions involved in sensory and motor processes and weaker connectivity with cognitive and socio-emotional regions, particularly prefrontal cortex. These results suggest that atypical cerebellum function in ASD may play a role in sensory challenges in autism.
Collapse
Affiliation(s)
- Melis E. Cakar
- Neuroscience Interdepartmental Program, University of California Los Angeles, Los Angeles, CA, United States
| | - Nana J. Okada
- Department of Psychology, Harvard Medical School, Boston, MA, United States
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, United States
- Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA, United States
| | - Kaitlin K. Cummings
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, United States
- Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA, United States
- Department of Psychology and Neuroscience, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Jiwon Jung
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, United States
- Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA, United States
| | - Susan Y. Bookheimer
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, United States
- Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA, United States
| | - Mirella Dapretto
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, United States
- Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA, United States
| | - Shulamite A. Green
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, United States
- Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
16
|
Herrera CG, Tarokh L. A Thalamocortical Perspective on Sleep Spindle Alterations in Neurodevelopmental Disorders. CURRENT SLEEP MEDICINE REPORTS 2024; 10:103-118. [PMID: 38764858 PMCID: PMC11096120 DOI: 10.1007/s40675-024-00284-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2024] [Indexed: 05/21/2024]
Abstract
Purpose of Review Neurodevelopmental disorders are a group of conditions that affect the development and function of the nervous system, typically arising early in life. These disorders can have various genetic, environmental, and/or neural underpinnings, which can impact the thalamocortical system. Sleep spindles, brief bursts of oscillatory activity that occur during NREM sleep, provide a unique in vivo measure of the thalamocortical system. In this manuscript, we review the development of the thalamocortical system and sleep spindles in rodent models and humans. We then utilize this as a foundation to discuss alterations in sleep spindle activity in four of the most pervasive neurodevelopmental disorders-intellectual disability, attention deficit hyperactivity disorder, autism, and schizophrenia. Recent Findings Recent work in humans has shown alterations in sleep spindles across several neurodevelopmental disorders. Simultaneously, rodent models have elucidated the mechanisms which may underlie these deficits in spindle activity. This review merges recent findings from these two separate lines of research to draw conclusions about the pathogenesis of neurodevelopmental disorders. Summary We speculate that deficits in the thalamocortical system associated with neurodevelopmental disorders are exquisitely reflected in sleep spindle activity. We propose that sleep spindles may represent a promising biomarker for drug discovery, risk stratification, and treatment monitoring.
Collapse
Affiliation(s)
- Carolina Gutierrez Herrera
- Department of Neurology, Inselspital, Bern University Hospital and University of Bern, Rosenbühlgasse 25, Bern, Switzerland
- Center for Experimental Neurology, Department of Neurology, Inselspital University Hospital Bern, University of Bern, Rosenbühlgasse 17, Bern, Switzerland
- Department of Biomedical Research (DBMR), Inselspital University Hospital Bern, University of Bern, Murtenstrasse 24 CH-3008 Bern, Bern, Switzerland
| | - Leila Tarokh
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bolligenstrasse 111, Haus A, 3000, Bern, Switzerland
- University Hospital of Child and Adolescent Psychiatry and Psychotherapy, University of Bern, Bolligenstrasse 111, Haus A, 3000, Bern, Switzerland
| |
Collapse
|
17
|
Shin D, Kim CN, Ross J, Hennick KM, Wu SR, Paranjape N, Leonard R, Wang JC, Keefe MG, Pavlovic BJ, Donohue KC, Moreau C, Wigdor EM, Larson HH, Allen DE, Cadwell CR, Bhaduri A, Popova G, Bearden CE, Pollen AA, Jacquemont S, Sanders SJ, Haussler D, Wiita AP, Frost NA, Sohal VS, Nowakowski TJ. Thalamocortical organoids enable in vitro modeling of 22q11.2 microdeletion associated with neuropsychiatric disorders. Cell Stem Cell 2024; 31:421-432.e8. [PMID: 38382530 PMCID: PMC10939828 DOI: 10.1016/j.stem.2024.01.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 12/14/2023] [Accepted: 01/25/2024] [Indexed: 02/23/2024]
Abstract
Thalamic dysfunction has been implicated in multiple psychiatric disorders. We sought to study the mechanisms by which abnormalities emerge in the context of the 22q11.2 microdeletion, which confers significant genetic risk for psychiatric disorders. We investigated early stages of human thalamus development using human pluripotent stem cell-derived organoids and show that the 22q11.2 microdeletion underlies widespread transcriptional dysregulation associated with psychiatric disorders in thalamic neurons and glia, including elevated expression of FOXP2. Using an organoid co-culture model, we demonstrate that the 22q11.2 microdeletion mediates an overgrowth of thalamic axons in a FOXP2-dependent manner. Finally, we identify ROBO2 as a candidate molecular mediator of the effects of FOXP2 overexpression on thalamic axon overgrowth. Together, our study suggests that early steps in thalamic development are dysregulated in a model of genetic risk for schizophrenia and contribute to neural phenotypes in 22q11.2 deletion syndrome.
Collapse
Affiliation(s)
- David Shin
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94158, USA; Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA; Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Chang N Kim
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94158, USA; Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA; Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jayden Ross
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94158, USA; Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA; Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Kelsey M Hennick
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94158, USA; Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA; Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Sih-Rong Wu
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94158, USA; Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA; Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Neha Paranjape
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94107, USA
| | - Rachel Leonard
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94158, USA; Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA; Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jerrick C Wang
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94158, USA; Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA; Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Matthew G Keefe
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94158, USA; Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA; Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Bryan J Pavlovic
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Kevin C Donohue
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Clara Moreau
- Sainte Justine Research Center, University of Montréal, 3175 Chemin de la Côte-Sainte-Catherine, Montréal, QC H3T 1C5, Canada; Imaging Genetics Center, Stevens Institute for Neuroimaging and Informatics, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Emilie M Wigdor
- Institute of Developmental and Regenerative Medicine, University of Oxford, Headington, Oxford OX3 7TY, UK
| | - H Hanh Larson
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Denise E Allen
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94158, USA; Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA; Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Cathryn R Cadwell
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Aparna Bhaduri
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Galina Popova
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94158, USA; Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA; Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Carrie E Bearden
- Integrative Center for Neurogenetics, Semel Institute for Neuroscience and Human Behavior, Departments of Psychiatry and Biobehavioral Sciences and Psychology, University of California, Los Angeles, 760 Westwood Plaza, Los Angeles, CA 90095, USA
| | - Alex A Pollen
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Sebastien Jacquemont
- Sainte Justine Research Center, University of Montréal, 3175 Chemin de la Côte-Sainte-Catherine, Montréal, QC H3T 1C5, Canada
| | - Stephan J Sanders
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA 94158, USA; Institute of Developmental and Regenerative Medicine, University of Oxford, Headington, Oxford OX3 7TY, UK
| | - David Haussler
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA 95060, USA; Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA 95064, USA; Howard Hughes Medical Institute, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Arun P Wiita
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94107, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158
| | - Nicholas A Frost
- Department of Neurology, University of Utah, Salt Lake City, UT 84108, USA
| | - Vikaas S Sohal
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Tomasz J Nowakowski
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94158, USA; Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA; Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
18
|
Dionísio A, Espírito A, Pereira AC, Mouga S, d'Almeida OC, Oliveira G, Castelo-Branco M. Neurochemical differences in core regions of the autistic brain: a multivoxel 1H-MRS study in children. Sci Rep 2024; 14:2374. [PMID: 38287121 PMCID: PMC10824733 DOI: 10.1038/s41598-024-52279-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 01/16/2024] [Indexed: 01/31/2024] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental condition which compromises various cognitive and behavioural domains. The understanding of the pathophysiology and molecular neurobiology of ASD is still an open critical research question. Here, we aimed to address ASD neurochemistry in the same time point at key regions that have been associated with its pathophysiology: the insula, hippocampus, putamen and thalamus. We conducted a multivoxel proton magnetic resonance spectroscopy (1H-MRS) study to non-invasively estimate the concentrations of total choline (GPC + PCh, tCho), total N-acetyl-aspartate (NAA + NAAG, tNAA) and Glx (Glu + Gln), presenting the results as ratios to total creatine while investigating replication for ratios to total choline as a secondary analysis. Twenty-two male children aged between 10 and 18 years diagnosed with ASD (none with intellectual disability, in spite of the expected lower IQ) and 22 age- and gender-matched typically developing (TD) controls were included. Aspartate ratios were significantly lower in the insula (tNAA/tCr: p = 0.010; tNAA/tCho: p = 0.012) and putamen (tNAA/tCr: p = 0.015) of ASD individuals in comparison with TD controls. The Glx ratios were significantly higher in the hippocampus of the ASD group (Glx/tCr: p = 0.027; Glx/tCho: p = 0.011). Differences in tNAA and Glx indices suggest that these metabolites might be neurochemical markers of region-specific atypical metabolism in ASD children, with a potential contribution for future advances in clinical monitoring and treatment.
Collapse
Affiliation(s)
- Ana Dionísio
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
- Institute of Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
| | - Ana Espírito
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
- Institute of Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
| | - Andreia C Pereira
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
- Institute of Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
| | - Susana Mouga
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
- Institute of Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
- Centro de Desenvolvimento da Criança, Unidade de Neurodesenvolvimento e Autismo, Hospital Pediátrico, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Otília C d'Almeida
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
- Institute of Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
| | - Guiomar Oliveira
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
- Centro de Desenvolvimento da Criança, Unidade de Neurodesenvolvimento e Autismo, Hospital Pediátrico, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
- Faculty of Medicine, University Clinic of Pediatrics, University of Coimbra, Coimbra, Portugal
| | - Miguel Castelo-Branco
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal.
- Institute of Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal.
- Faculty of Medicine, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal.
| |
Collapse
|
19
|
Shang J, Shen E, Yu Y, Jin A, Wang X, Xiang D. Relationship between abnormal intrinsic functional connectivity of subcortices and autism symptoms in high-functioning adults with autism spectrum disorder. Psychiatry Res Neuroimaging 2024; 337:111762. [PMID: 38043369 DOI: 10.1016/j.pscychresns.2023.111762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 10/02/2023] [Accepted: 11/03/2023] [Indexed: 12/05/2023]
Abstract
PURPOSE This study explores subcortices and their intrinsic functional connectivity (iFC) in autism spectrum disorder (ASD) adults and investigates their relationship with clinical severity. METHODS Resting-state functional magnetic resonance imaging (rs-fMRI) data were acquired from 74 ASD patients, and 63 gender and age-matched typically developing (TD) adults. Independent component analysis (ICA) was conducted to evaluate subcortical patterns of basal ganglia (BG) and thalamus. These two brain areas were treated as regions of interest to further calculate whole-brain FC. In addition, we employed multivariate machine learning to identify subcortices-based FC brain patterns and clinical scores to classify ASD adults from those TD subjects. RESULTS In ASD individuals, autism diagnostic observation schedule (ADOS) was negatively correlated with the BG network. Similarly, social responsiveness scale (SRS) was negatively correlated with the thalamus network. The BG-based iFC analysis revealed adults with ASD versus TD had lower FC, and its FC with the right medial temporal lobe (MTL), was positively correlated with SRS and ADOS separately. ASD could be predicted with a balanced accuracy of around 60.0 % using brain patterns and 84.7 % using clinical variables. CONCLUSION Our results revealed the abnormal subcortical iFC may be related to autism symptoms.
Collapse
Affiliation(s)
- Jing Shang
- Department of Psychiatry, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Erwei Shen
- School of Electronic and Information Engineering, Soochow University, Suzhou, Jiangsu Province, China
| | - Yang Yu
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Aiying Jin
- Department of Nursing, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Xuemei Wang
- Department of Psychiatry, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China.
| | - Dehui Xiang
- School of Electronic and Information Engineering, Soochow University, Suzhou, Jiangsu Province, China.
| |
Collapse
|
20
|
Karavallil Achuthan S, Stavrinos D, Argueta P, Vanderburgh C, Holm HB, Kana RK. Thalamic functional connectivity and sensorimotor processing in neurodevelopmental disorders. Front Neurosci 2023; 17:1279909. [PMID: 38161799 PMCID: PMC10755010 DOI: 10.3389/fnins.2023.1279909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 11/08/2023] [Indexed: 01/03/2024] Open
Abstract
One of the earliest neurobiological findings in autism has been the differences in the thalamocortical pathway connectivity, suggesting the vital role thalamus plays in human experience. The present functional MRI study investigated resting-state functional connectivity of the thalamus in 49 (autistic, ADHD, and neurotypical) young adults. All participants underwent structural MRI and eyes-open resting state functional MRI scans. After preprocessing the imaging data using Conn's connectivity toolbox, a seed-based functional connectivity analysis was conducted using bilateral thalamus as primary seeds. Autistic participants showed stronger thalamic connectivity, relative to ADHD and neurotypical participants, between the right thalamus and right precentral gyrus, right pars opercularis-BA44, right postcentral gyrus, and the right superior parietal lobule (RSPL). Autistic participants also showed significantly increased connectivity between the left thalamus and the right precentral gyrus. Furthermore, regression analyses revealed a significant relationship between autistic traits and left thalamic-precentral connectivity (R2 = 0.1113), as well as between autistic traits and right postcentral gyrus and RSPL connectivity (R2 = 0.1204) in autistic participants compared to ADHD. These findings provide significant insights into the role of thalamus in coordinating neural information processing and its alterations in neurodevelopmental disorders.
Collapse
Affiliation(s)
- Smitha Karavallil Achuthan
- Department of Psychology and the Center for Innovative Research in Autism, The University of Alabama, Tuscaloosa, AL, United States
| | - Despina Stavrinos
- Department of Psychology and the Institute of Social Science Research, The University of Alabama, Tuscaloosa, AL, United States
| | - Paula Argueta
- Department of Psychology and the Center for Innovative Research in Autism, The University of Alabama, Tuscaloosa, AL, United States
| | - Caroline Vanderburgh
- Department of Psychology and the Center for Innovative Research in Autism, The University of Alabama, Tuscaloosa, AL, United States
| | - Haley B. Holm
- Children’s Hospital of Atlanta, Atlanta, GA, United States
| | - Rajesh K. Kana
- Department of Psychology and the Center for Innovative Research in Autism, The University of Alabama, Tuscaloosa, AL, United States
| |
Collapse
|
21
|
Zhu J, Jiao Y, Chen R, Wang XH, Han Y. Aberrant dynamic and static functional connectivity of the striatum across specific low-frequency bands in patients with autism spectrum disorder. Psychiatry Res Neuroimaging 2023; 336:111749. [PMID: 37977097 DOI: 10.1016/j.pscychresns.2023.111749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 10/06/2023] [Accepted: 11/03/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND Dysfunctions of the striatum have been repeatedly observed in autism spectrum disorder (ASD). However, previous studies have explored the static functional connectivity (sFC) of the striatum in a single frequency band, ignoring the dynamics and frequency specificity of brain FC. Therefore, we investigated the dynamic FC (dFC) and sFC of the striatum in the slow-4 (0.027-0.073 Hz) and slow-5 (0.01-0.027 Hz) frequency bands. METHODS Data of 47 ASD patients and 47 typically developing (TD) controls were obtained from the Autism Brain Imaging Data Exchange (ABIDE) database. A seed-based approach was used to compute the dFC and sFC. Then, a two-sample t-test was performed. For regions showing abnormal sFC and dFC, we performed clinical correlation analysis and constructed support vector machine (SVM) models. RESULTS The middle frontal gyrus (MFG), precuneus, and medial superior frontal gyrus (mPFC) showed both dynamic and static alterations. The reduced striatal dFC in the right MFG was associated with autism symptoms. The dynamic‒static FC model had a great performance in ASD classification, with 95.83 % accuracy. CONCLUSIONS The striatal dFC and sFC were altered in ASD, which were frequency specific. Examining brain activity using dynamic and static FC provides a comprehensive view of brain activity.
Collapse
Affiliation(s)
- Junsa Zhu
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing 210009, China
| | - Yun Jiao
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing 210009, China; Network Information Center, Zhongda Hospital, Medical School of Southeast University, Nanjing 210009, China.
| | - Ran Chen
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing 210009, China
| | - Xun-Heng Wang
- Institute of Biomedical Engineering and Instrumentation, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Yunyan Han
- Public Health School of Dalian Medical University, Dalian 116000, China
| |
Collapse
|
22
|
Wang Q, Wu M, Fang Y, Wang W, Qiao L, Liu M. Modularity-Constrained Dynamic Representation Learning for Interpretable Brain Disorder Analysis with Functional MRI. MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION : MICCAI ... INTERNATIONAL CONFERENCE ON MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION 2023; 14220:46-56. [PMID: 38390374 PMCID: PMC10883232 DOI: 10.1007/978-3-031-43907-0_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Resting-state functional MRI (rs-fMRI) is increasingly used to detect altered functional connectivity patterns caused by brain disorders, thereby facilitating objective quantification of brain pathology. Existing studies typically extract fMRI features using various machine/deep learning methods, but the generated imaging biomarkers are often challenging to interpret. Besides, the brain operates as a modular system with many cognitive/topological modules, where each module contains subsets of densely inter-connected regions-of-interest (ROIs) that are sparsely connected to ROIs in other modules. However, current methods cannot effectively characterize brain modularity. This paper proposes a modularity-constrained dynamic representation learning (MDRL) framework for interpretable brain disorder analysis with rs-fMRI. The MDRL consists of 3 parts: (1) dynamic graph construction, (2) modularity-constrained spatiotemporal graph neural network (MSGNN) for dynamic feature learning, and (3) prediction and biomarker detection. In particular, the MSGNN is designed to learn spatiotemporal dynamic representations of fMRI, constrained by 3 functional modules (i.e., central executive network, salience network, and default mode network). To enhance discriminative ability of learned features, we encourage the MSGNN to reconstruct network topology of input graphs. Experimental results on two public and one private datasets with a total of 1,155 subjects validate that our MDRL outperforms several state-of-the-art methods in fMRI-based brain disorder analysis. The detected fMRI biomarkers have good explainability and can be potentially used to improve clinical diagnosis.
Collapse
Affiliation(s)
- Qianqian Wang
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Mengqi Wu
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Yuqi Fang
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Wei Wang
- Department of Radiology, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Lishan Qiao
- School of Mathematics Science, Liaocheng University, Shandong 252000, China
| | - Mingxia Liu
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
23
|
Yuan B, Wang M, Wu X, Cheng P, Zhang R, Zhang R, Yu S, Zhang J, Du Y, Wang X, Qiu Z. Identification of de novo Mutations in the Chinese Autism Spectrum Disorder Cohort via Whole-Exome Sequencing Unveils Brain Regions Implicated in Autism. Neurosci Bull 2023; 39:1469-1480. [PMID: 36881370 PMCID: PMC10533446 DOI: 10.1007/s12264-023-01037-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 10/30/2022] [Indexed: 03/08/2023] Open
Abstract
Autism spectrum disorder (ASD) is a highly heritable neurodevelopmental disorder characterized by deficits in social interactions and repetitive behaviors. Although hundreds of ASD risk genes, implicated in synaptic formation and transcriptional regulation, have been identified through human genetic studies, the East Asian ASD cohorts are still under-represented in genome-wide genetic studies. Here, we applied whole-exome sequencing to 369 ASD trios including probands and unaffected parents of Chinese origin. Using a joint-calling analytical pipeline based on GATK toolkits, we identified numerous de novo mutations including 55 high-impact variants and 165 moderate-impact variants, as well as de novo copy number variations containing known ASD-related genes. Importantly, combined with single-cell sequencing data from the developing human brain, we found that the expression of genes with de novo mutations was specifically enriched in the pre-, post-central gyrus (PRC, PC) and banks of the superior temporal (BST) regions in the human brain. By further analyzing the brain imaging data with ASD and healthy controls, we found that the gray volume of the right BST in ASD patients was significantly decreased compared to healthy controls, suggesting the potential structural deficits associated with ASD. Finally, we found a decrease in the seed-based functional connectivity between BST/PC/PRC and sensory areas, the insula, as well as the frontal lobes in ASD patients. This work indicated that combinatorial analysis with genome-wide screening, single-cell sequencing, and brain imaging data reveal the brain regions contributing to the etiology of ASD.
Collapse
Affiliation(s)
- Bo Yuan
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200032 China
| | - Mengdi Wang
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China
| | - Xinran Wu
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, 200433 China
| | - Peipei Cheng
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032 China
| | - Ran Zhang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200032 China
| | - Ran Zhang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032 China
| | - Shunying Yu
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032 China
| | - Jie Zhang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, 200433 China
| | - Yasong Du
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032 China
| | - Xiaoqun Wang
- Beijing Normal University, Beijing, 100875 China
| | - Zilong Qiu
- Songjiang Research Institute, Songjiang Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201600 China
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200032 China
| |
Collapse
|
24
|
Brunert D, Quintela RM, Rothermel M. The anterior olfactory nucleus revisited - an emerging role for neuropathological conditions? Prog Neurobiol 2023:102486. [PMID: 37343762 DOI: 10.1016/j.pneurobio.2023.102486] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 06/14/2023] [Accepted: 06/16/2023] [Indexed: 06/23/2023]
Abstract
Olfaction is an important sensory modality for many species and greatly influences animal and human behavior. Still, much about olfactory perception remains unknown. The anterior olfactory nucleus is one of the brain's central early olfactory processing areas. Located directly posterior to the olfactory bulb in the olfactory peduncle with extensive in- and output connections and unique cellular composition, it connects olfactory processing centers of the left and right hemispheres. Almost 20 years have passed since the last comprehensive review on the anterior olfactory nucleus has been published and significant advances regarding its anatomy, function, and pathophysiology have been made in the meantime. Here we briefly summarize previous knowledge on the anterior olfactory nucleus, give detailed insights into the progress that has been made in recent years, and map out its emerging importance in translational research of neurological diseases.
Collapse
Affiliation(s)
- Daniela Brunert
- Institute of Physiology, Medical Faculty, Otto-von-Guericke-University, 39120 Magdeburg, Germany
| | | | - Markus Rothermel
- Institute of Physiology, Medical Faculty, Otto-von-Guericke-University, 39120 Magdeburg, Germany.
| |
Collapse
|
25
|
van Oort J, Llera A, Kohn N, Mei T, Collard RM, Duyser FA, Vrijsen JN, Beckmann CF, Schene AH, Fernández G, Tendolkar I, van Eijndhoven PFP. Brain structure and function link to variation in biobehavioral dimensions across the psychopathological continuum. eLife 2023; 12:e85006. [PMID: 37334965 PMCID: PMC10519708 DOI: 10.7554/elife.85006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 06/16/2023] [Indexed: 06/21/2023] Open
Abstract
In line with the Research Domain Criteria (RDoC) , we set out to investigate the brain basis of psychopathology within a transdiagnostic, dimensional framework. We performed an integrative structural-functional linked independent component analysis to study the relationship between brain measures and a broad set of biobehavioral measures in a sample (n = 295) with both mentally healthy participants and patients with diverse non-psychotic psychiatric disorders (i.e. mood, anxiety, addiction, and neurodevelopmental disorders). To get a more complete understanding of the underlying brain mechanisms, we used gray and white matter measures for brain structure and both resting-state and stress scans for brain function. The results emphasize the importance of the executive control network (ECN) during the functional scans for the understanding of transdiagnostic symptom dimensions. The connectivity between the ECN and the frontoparietal network in the aftermath of stress was correlated with symptom dimensions across both the cognitive and negative valence domains, and also with various other health-related biological and behavioral measures. Finally, we identified a multimodal component that was specifically associated with the diagnosis of autism spectrum disorder (ASD). The involvement of the default mode network, precentral gyrus, and thalamus across the different modalities of this component may reflect the broad functional domains that may be affected in ASD, like theory of mind, motor problems, and sensitivity to sensory stimuli, respectively. Taken together, the findings from our extensive, exploratory analyses emphasize the importance of a dimensional and more integrative approach for getting a better understanding of the brain basis of psychopathology.
Collapse
Affiliation(s)
- Jasper van Oort
- Department of Psychiatry, Radboud University Nijmegen Medical CentreNijmegenNetherlands
- Department of Cognitive Neuroscience, Radboud University Nijmegen Medical CentreNijmegenNetherlands
| | - Alberto Llera
- Department of Cognitive Neuroscience, Radboud University Nijmegen Medical CentreNijmegenNetherlands
- Donders Institute for Brain, Cognition and Behavior, Radboud University NijmegenNijmegenNetherlands
| | - Nils Kohn
- Department of Cognitive Neuroscience, Radboud University Nijmegen Medical CentreNijmegenNetherlands
- Donders Institute for Brain, Cognition and Behavior, Radboud University NijmegenNijmegenNetherlands
| | - Ting Mei
- Department of Cognitive Neuroscience, Radboud University Nijmegen Medical CentreNijmegenNetherlands
- Donders Institute for Brain, Cognition and Behavior, Radboud University NijmegenNijmegenNetherlands
| | - Rose M Collard
- Department of Psychiatry, Radboud University Nijmegen Medical CentreNijmegenNetherlands
| | - Fleur A Duyser
- Department of Psychiatry, Radboud University Nijmegen Medical CentreNijmegenNetherlands
| | - Janna N Vrijsen
- Department of Cognitive Neuroscience, Radboud University Nijmegen Medical CentreNijmegenNetherlands
- Pro Persona Mental Health Care, Depression Expertise CenterNijmegenNetherlands
| | - Christian F Beckmann
- Department of Cognitive Neuroscience, Radboud University Nijmegen Medical CentreNijmegenNetherlands
- Donders Institute for Brain, Cognition and Behavior, Radboud University NijmegenNijmegenNetherlands
- Oxford Centre for Functional Magnetic Resonance Imaging of the Brain (FMRIB), University of OxfordOxfordUnited Kingdom
| | - Aart H Schene
- Department of Psychiatry, Radboud University Nijmegen Medical CentreNijmegenNetherlands
- Department of Cognitive Neuroscience, Radboud University Nijmegen Medical CentreNijmegenNetherlands
| | - Guillén Fernández
- Department of Cognitive Neuroscience, Radboud University Nijmegen Medical CentreNijmegenNetherlands
- Donders Institute for Brain, Cognition and Behavior, Radboud University NijmegenNijmegenNetherlands
| | - Indira Tendolkar
- Department of Psychiatry, Radboud University Nijmegen Medical CentreNijmegenNetherlands
- Department of Cognitive Neuroscience, Radboud University Nijmegen Medical CentreNijmegenNetherlands
| | - Philip FP van Eijndhoven
- Department of Psychiatry, Radboud University Nijmegen Medical CentreNijmegenNetherlands
- Department of Cognitive Neuroscience, Radboud University Nijmegen Medical CentreNijmegenNetherlands
| |
Collapse
|
26
|
Baran B, Trang Huong Nguyen Q, Mylonas D, Santangelo SL, Manoach DS. Increased resting-state thalamocortical functional connectivity in children and young adults with autism spectrum disorder. Autism Res 2023; 16:271-279. [PMID: 36546577 PMCID: PMC10619334 DOI: 10.1002/aur.2875] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 11/28/2022] [Indexed: 12/24/2022]
Abstract
There is converging evidence that abnormal thalamocortical interactions contribute to attention deficits and sensory sensitivities in autism spectrum disorder (ASD). However, previous functional MRI studies of thalamocortical connectivity in ASD have produced inconsistent findings in terms of both the direction (hyper vs. hypoconnectivity) and location of group differences. This may reflect, in part, the confounding effects of head motion during scans. In the present study, we investigated resting-state thalamocortical functional connectivity in 8-25 year-olds with ASD and their typically developing (TD) peers. We used pre-scan training, on-line motion correction, and rigorous data quality assurance protocols to minimize motion confounds. ASD participants showed increased thalamic connectivity with temporal cortex relative to TD. Both groups showed similar age-related decreases in thalamic connectivity with occipital cortex, consistent with a process of circuit refinement. Findings of thalamocortical hyperconnectivity in ASD are consistent with other evidence that decreased thalamic inhibition leads to increase and less filtered sensory information reaching the cortex where it disrupts attention and contributes to sensory sensitivity. This literature motivates studies of mechanisms, functional consequences, and treatment of thalamocortical circuit dysfunction in ASD.
Collapse
Affiliation(s)
- Bengi Baran
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA
| | | | - Dimitrios Mylonas
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Susan L. Santangelo
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- Maine Medical Center Research Institute, Scarborough, ME
- Tufts University School of Medicine, Department of Psychiatry, Boston, MA
| | - Dara S. Manoach
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
27
|
Investigation of Phospholipid Differences in Valproic Acid-Induced Autistic Mouse Model Brain Using Mass Spectrometry Imaging. Metabolites 2023; 13:metabo13020178. [PMID: 36837796 PMCID: PMC9966147 DOI: 10.3390/metabo13020178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 01/27/2023] Open
Abstract
Autism is a neurodevelopmental disorder for which the cause and treatment have yet not been determined. The polyunsaturated fatty acid (PUFA) levels change rapidly in the blood or cerebrospinal fluid of autistic children and PUFAs are closely related to autism spectrum disorder (ASD). This finding suggests that changes in lipid metabolism are associated with ASD and result in an altered distribution of phospholipids in cell membranes. To further understand ASD, it is necessary to analyze phospholipids in organs consisting of nerve cells, such as the brain. In this study, we investigated the phospholipid distribution in the brain tissue of valproic acid-induced autistic mice using matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI). Phospholipids including phosphatidylcholine, phosphatidylethanolamine, and phosphatidylserine were identified in each brain region and exhibited differences between the ASD and control groups. These phospholipids contain docosahexaenoic acid and arachidonic acid, which are important PUFAs for cell signaling and brain growth. We expect that the differences in phospholipids identified in the brain tissue of the ASD model with MALDI-MSI, in conjunction with conventional biological fluid analysis, will help to better understand changes in lipid metabolism in ASD.
Collapse
|
28
|
Janz P, Bainier M, Marashli S, Schoenenberger P, Valencia M, Redondo RL. Neurexin1α knockout rats display oscillatory abnormalities and sensory processing deficits back-translating key endophenotypes of psychiatric disorders. Transl Psychiatry 2022; 12:455. [PMID: 36307390 PMCID: PMC9616904 DOI: 10.1038/s41398-022-02224-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 10/14/2022] [Accepted: 10/18/2022] [Indexed: 11/09/2022] Open
Abstract
Neurexins are presynaptic transmembrane proteins crucial for synapse development and organization. Deletion and missense mutations in all three Neurexin genes have been identified in psychiatric disorders, with mutations in the NRXN1 gene most strongly linked to schizophrenia (SZ) and autism spectrum disorder (ASD). While the consequences of NRXN1 deletion have been extensively studied on the synaptic and behavioral levels, circuit endophenotypes that translate to the human condition have not been characterized yet. Therefore, we investigated the electrophysiology of cortico-striatal-thalamic circuits in Nrxn1α-/- rats and wildtype littermates focusing on a set of translational readouts, including spontaneous oscillatory activity, auditory-evoked oscillations and potentials, as well as mismatch negativity-like (MMN) responses and responses to social stimuli. On the behavioral level Nrxn1α-/- rats showed locomotor hyperactivity. In vivo freely moving electrophysiology revealed pronounced increases of spontaneous oscillatory power within the gamma band in all studied brain areas and elevation of gamma coherence in cortico-striatal and thalamocortical circuits of Nrxn1α-/- rats. In contrast, auditory-evoked oscillations driven by chirp-modulated tones showed reduced power in cortical areas confined to slower oscillations. Finally, Nrxn1α-/- rats exhibited altered auditory evoked-potentials and profound deficits in MMN-like responses, explained by reduced prediction error. Despite deficits for auditory stimuli, responses to social stimuli appeared intact. A central hypothesis for psychiatric and neurodevelopmental disorders is that a disbalance of excitation-to-inhibition is underlying oscillatory and sensory deficits. In a first attempt to explore the impact of inhibitory circuit modulation, we assessed the effects of enhancing tonic inhibition via δ-containing GABAA receptors (using Gaboxadol) on endophenotypes possibly associated with network hyperexcitability. Pharmacological experiments applying Gaboxadol showed genotype-specific differences, but failed to normalize oscillatory or sensory processing abnormalities. In conclusion, our study revealed endophenotypes in Nrxn1α-/- rats that could be used as translational biomarkers for drug development in psychiatric disorders.
Collapse
Affiliation(s)
- Philipp Janz
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases Discovery & Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070, Basel, Switzerland.
| | - Marie Bainier
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases Discovery & Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Samuel Marashli
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases Discovery & Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Philipp Schoenenberger
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases Discovery & Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Miguel Valencia
- Universidad de Navarra, CIMA, Program of Neuroscience, 31080, Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, 31080, Pamplona, Spain
- Institute of Data Science and Artificial Intelligence, Universidad de Navarra, 31080, Pamplona, Spain
| | - Roger L Redondo
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases Discovery & Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070, Basel, Switzerland
| |
Collapse
|
29
|
Zhang M, Sun Y, Saggar M. Cross-attractor repertoire provides new perspective on structure-function relationship in the brain. Neuroimage 2022; 259:119401. [PMID: 35732244 PMCID: PMC9503321 DOI: 10.1016/j.neuroimage.2022.119401] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 05/16/2022] [Accepted: 06/17/2022] [Indexed: 11/24/2022] Open
Abstract
The brain exhibits complex intrinsic dynamics, i.e., spontaneously arising activity patterns without any external inputs or tasks. Such intrinsic dynamics and their alteration are thought to play crucial roles in typical as well as atypical cognitive functioning. Linking the ever-changing intrinsic dynamics to the rather static anatomy is a challenging endeavor. Dynamical systems models are important tools for understanding how structure and function are linked in the brain. Here, we provide a novel modeling framework to examine how functional connectivity depends on structural connectivity in the brain. Existing modeling frameworks typically focus on noise-driven (or stochastic) dynamics near a single attractor. Complementing existing approaches, we examine deterministic features of the distribution of attractors, in particular, how regional states are correlated across all attractors - cross-attractor coordination. We found that cross-attractor coordination between brain regions better predicts human functional connectivity than noise-driven single-attractor dynamics. Importantly, cross-attractor coordination better accounts for the nonlinear dependency of functional connectivity on structural connectivity. Our findings suggest that functional connectivity patterns in the brain may reflect transitions between attractors, which impose an energy cost. The framework may be used to predict transitions and energy costs associated with experimental or clinical interventions.
Collapse
Affiliation(s)
- Mengsen Zhang
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94304, USA; Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA.
| | - Yinming Sun
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94304, USA
| | - Manish Saggar
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94304, USA.
| |
Collapse
|
30
|
Cheng L, Zhan L, Huang L, Zhang H, Sun J, Huang G, Wang Y, Li M, Li H, Gao Y, Jia X. The atypical functional connectivity of Broca's area at multiple frequency bands in autism spectrum disorder. Brain Imaging Behav 2022; 16:2627-2636. [PMID: 36163448 DOI: 10.1007/s11682-022-00718-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2022] [Indexed: 11/30/2022]
Abstract
As a developmental disorder, autism spectrum disorder (ASD) has drawn much attention due to its severe impacts on one's language capacity. Broca's area, an important brain region of the language network, is largely involved in language-related functions. Using the Autism Brain Image Data Exchange (ABIDE) dataset, a mega-analysis was performed involving a total of 1454 participants (including 618 individuals with ASD and 836 healthy controls (HCs). To detect the neural pathophysiological mechanism of ASD from the perspective of language, we conducted a functional connectivity (FC) analysis with Broca's area as the seed in multiple frequency bands (conventional: 0.01-0.08 Hz; slow-4: 0.027-0.073 Hz; slow-5: 0.01-0.027 Hz). We found that compared with HC, ASD patients demonstrated increased FC in the left thalamus, left precuneus, left anterior cingulate and paracingulate gyri, and left medial orbital of the superior frontal gyrus in the conventional frequency band (0.01-0.08 Hz). The results of the slow-5 frequency band (0.01-0.027 Hz) presented increased FC values of the left precuneus, left medial orbital of the superior frontal gyrus, right medial orbital of the superior frontal gyrus and right thalamus. No significant cluster was detected in the slow-4 frequency band (0.027-0.073 Hz). In conclusion, the abnormal functional connectivity in patients with ASD has frequency-specific properties. Furthermore, the slow-5 frequency band (0.01-0.027 Hz) mainly contributed to the findings of the conventional frequency band (0.01-0.08 Hz). The current study might shed new light on the neural pathophysiological mechanism of language impairments in people with ASD.
Collapse
Affiliation(s)
- Lulu Cheng
- School of Foreign Studies, China University of Petroleum (East China), Qingdao, 266580, China.,Shanghai Center for Research in English Language Education, Shanghai International Studies University, Shanghai, China
| | - Linlin Zhan
- Faculty of Western Languages, Heilongjiang University, Harbin, China
| | - Lina Huang
- Department of Radiology, Changshu No. 2 People's Hospital, The Affiliated Changshu Hospital of Xuzhou Medical University, Changshu, Jiangsu, China
| | - Hongqiang Zhang
- Department of Radiology, Changshu No. 2 People's Hospital, The Affiliated Changshu Hospital of Xuzhou Medical University, Changshu, Jiangsu, China
| | - Jiawei Sun
- School of Information and Electronics Technology, Jiamusi University, Jiamusi, China
| | - Guofeng Huang
- School of Information and Electronics Technology, Jiamusi University, Jiamusi, China
| | - Yadan Wang
- School of Information and Electronics Technology, Jiamusi University, Jiamusi, China
| | - Mengting Li
- School of Teacher Education, Zhejiang Normal University, Jinhua, China.,Key Laboratory of Intelligent Education Technology and Application of Zhejiang Province, Zhejiang Normal University, Jinhua, 321004, China
| | - Huayun Li
- School of Teacher Education, Zhejiang Normal University, Jinhua, China.,Key Laboratory of Intelligent Education Technology and Application of Zhejiang Province, Zhejiang Normal University, Jinhua, 321004, China
| | - Yanyan Gao
- School of Teacher Education, Zhejiang Normal University, Jinhua, China. .,Key Laboratory of Intelligent Education Technology and Application of Zhejiang Province, Zhejiang Normal University, Jinhua, 321004, China.
| | - Xize Jia
- School of Teacher Education, Zhejiang Normal University, Jinhua, China. .,Key Laboratory of Intelligent Education Technology and Application of Zhejiang Province, Zhejiang Normal University, Jinhua, 321004, China.
| |
Collapse
|
31
|
Luo L, Li L. Online two-way estimation and inference via linear mixed-effects models. Stat Med 2022; 41:5113-5133. [PMID: 35983945 DOI: 10.1002/sim.9557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 11/10/2022]
Abstract
In this article, we tackle the estimation and inference problem of analyzing distributed streaming data that is collected continuously over multiple data sites. We propose an online two-way approach via linear mixed-effects models. We explicitly model the site-specific effects as random-effect terms, and tackle both between-site heterogeneity and within-site correlation. We develop an online updating procedure that does not need to re-access the previous data and can efficiently update the parameter estimate, when either new data sites, or new streams of sample observations of the existing data sites, become available. We derive the non-asymptotic error bound for our proposed online estimator, and show that it is asymptotically equivalent to the offline counterpart based on all the raw data. We compare with some key alternative solutions both analytically and numerically, and demonstrate the advantages of our proposal. We further illustrate our method with two data applications.
Collapse
Affiliation(s)
- Lan Luo
- Department of Statistics and Actuarial Science, University of Iowa, Iowa City, Iowa, USA
| | - Lexin Li
- Department of Biostatistics and Epidemiology, University of California, Berkeley, Berkeley, California, USA
| |
Collapse
|
32
|
James D, Lam VT, Jo B, Fung LK. Region-specific associations between gamma-aminobutyric acid A receptor binding and cortical thickness in high-functioning autistic adults. Autism Res 2022; 15:1068-1082. [PMID: 35261207 DOI: 10.1002/aur.2703] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/08/2022] [Accepted: 02/26/2022] [Indexed: 11/10/2022]
Abstract
The neurobiology of autism has been shown to involve alterations in cortical morphology and gamma-aminobutyric acid A (GABAA ) receptor density. We hypothesized that GABAA receptor binding potential (GABAA R BPND ) would correlate with cortical thickness, but their correlations would differ between autistic adults and typically developing (TD) controls. We studied 50 adults (23 autism, 27 TD, mean age of 27 years) using magnetic resonance imaging to measure cortical thickness, and [18 F]flumazenil positron emission tomography imaging to measure GABAA R BPND . We determined the correlations between cortical thickness and GABAA R BPND by cortical lobe, region-of-interest, and diagnosis of autism spectrum disorder (ASD). We also explored potential sex differences in the relationship between cortical thickness and autism characteristics, as measured by autism spectrum quotient (AQ) scores. Comparing autism and TD groups, no significant differences were found in cortical thickness or GABAA R BPND . In both autism and TD groups, a negative relationship between cortical thickness and GABAA R BPND was observed in the frontal and occipital cortices, but no relationship was found in the temporal or limbic cortices. A positive correlation was seen in the parietal cortex that was only significant for the autism group. Interestingly, in an exploratory analysis, we found sex differences in the relationships between cortical thickness and GABAA R BPND , and cortical thickness and AQ scores in the left postcentral gyrus. LAY SUMMARY: The thickness of the brain cortex and the density of the receptors associated with inhibitory neurotransmitter GABA have been hypothesized to underlie the neurobiology of autism. In this study, we found that these biomarkers correlate positively in the parietal cortex, but negatively in the frontal and occipital cortical regions of the brain. Furthermore, we collected preliminary evidence that the correlations between cortical thickness and GABA receptor density are sexdependent in a brain region where sensory inputs are registered.
Collapse
Affiliation(s)
- David James
- Department of Psychiatry & Behavioral Sciences, Stanford University, Stanford, California, USA
| | - Vicky T Lam
- Department of Psychiatry & Behavioral Sciences, Stanford University, Stanford, California, USA
| | - Booil Jo
- Department of Psychiatry & Behavioral Sciences, Stanford University, Stanford, California, USA
| | - Lawrence K Fung
- Department of Psychiatry & Behavioral Sciences, Stanford University, Stanford, California, USA
| |
Collapse
|
33
|
Markopoulos A, Inserra A, De Gregorio D, Gobbi G. Evaluating the Potential Use of Serotonergic Psychedelics in Autism Spectrum Disorder. Front Pharmacol 2022; 12:749068. [PMID: 35177979 PMCID: PMC8846292 DOI: 10.3389/fphar.2021.749068] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 11/04/2021] [Indexed: 01/29/2023] Open
Abstract
Recent clinical and preclinical evidence points towards empathogenic and prosocial effects elicited by psychedelic compounds, notably the serotonin 5-HT2A agonists lysergic acid diethylamide (LSD), psilocybin, N,N-Dimethyltryptamine (DMT), and their derivatives. These findings suggest a therapeutic potential of psychedelic compounds for some of the behavioural traits associated with autism spectrum disorder (ASD), a neurodevelopmental condition characterized by atypical social behaviour. In this review, we highlight evidence suggesting that psychedelics may potentially ameliorate some of the behavioural atypicalities of ASD, including reduced social behaviour and highly co-occurring anxiety and depression. Next, we discuss dysregulated neurobiological systems in ASD and how they may underlie or potentially limit the therapeutic effects of psychedelics. These phenomena include: 1) synaptic function, 2) serotonergic signaling, 3) prefrontal cortex activity, and 4) thalamocortical signaling. Lastly, we discuss clinical studies from the 1960s and 70s that assessed the use of psychedelics in the treatment of children with ASD. We highlight the positive behavioural outcomes of these studies, including enhanced mood and social behaviour, as well as the adverse effects of these trials, including increases in aggressive behaviour and dissociative and psychotic states. Despite preliminary evidence, further studies are needed to determine whether the benefits of psychedelic treatment in ASD outweigh the risks associated with the use of these compounds in this population, and if the 5-HT2A receptor may represent a target for social-behavioural disorders.
Collapse
Affiliation(s)
- Athanasios Markopoulos
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Antonio Inserra
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Danilo De Gregorio
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Gabriella Gobbi
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, Montreal, QC, Canada.,McGill University Health Centre, McGill University, Montreal, QC, Canada
| |
Collapse
|
34
|
Lorenzini L, van Wingen G, Cerliani L. Atypically high influence of subcortical activity on primary sensory regions in autism. Neuroimage Clin 2022; 32:102839. [PMID: 34624634 PMCID: PMC8503568 DOI: 10.1016/j.nicl.2021.102839] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/20/2021] [Accepted: 09/21/2021] [Indexed: 12/20/2022]
Abstract
The age-dependent decrease of subcortico-cortical connectivity is attenuated in ASD. Primary sensory regions remain less segregated from subcortical activity in ASD. This could underlie an excessive amount of sensory input relayed to the cortex.
Background Hypersensitivity, stereotyped behaviors and attentional problems in autism spectrum disorder (ASD) are compatible with inefficient filtering of undesired or irrelevant sensory information at early stages of neural processing. This could stem from the persistent overconnectivity between primary sensory regions and deep brain nuclei in both children and adults with ASD – as reported by several previous studies – which could reflect a decreased or arrested maturation of brain connectivity. However, it has not yet been investigated whether this overconnectivity can be modelled as an excessive directional influence of subcortical brain activity on primary sensory cortical regions in ASD, with respect to age-matched typically developing (TD) individuals. Methods To this aim, we used dynamic causal modelling to estimate (1) the directional influence of subcortical activity on cortical processing and (2) the functional segregation of primary sensory cortical regions from subcortical activity in 166 participants with ASD and 193 TD participants from the Autism Brain Imaging Data Exchange (ABIDE). We then specifically tested the hypothesis that the age-related changes of these indicators of brain connectivity would differ between the two groups. Results We found that in TD participants age was significantly associated with decreased influence of subcortical activity on cortical processing, paralleled by an increased functional segregation of cortical sensory processing from subcortical activity. Instead these effects were highly reduced and mostly absent in ASD participants, suggesting a delayed or arrested development of the segregation between subcortical and cortical sensory processing in ASD. Conclusion This atypical configuration of subcortico-cortical connectivity in ASD can result in an excessive amount of unprocessed sensory input relayed to the cortex, which is likely to impact cognitive functioning in everyday situations where it is beneficial to limit the influence of basic sensory information on cognitive processing, such as activities requiring focused attention or social interactions.
Collapse
Affiliation(s)
- Luigi Lorenzini
- Dept. of Psychiatry, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Meibergdreef 5, 1105AZ Amsterdam, The Netherlands; Dept. Radiology and Nuclear Medicine, Amsterdam UMC, VU University, Amsterdam Neuroscience, De Boelelaan 1117, 1081HV Amsterdam, The Netherlands.
| | - Guido van Wingen
- Dept. of Psychiatry, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Meibergdreef 5, 1105AZ Amsterdam, The Netherlands; Amsterdam Brain and Cognition, University of Amsterdam, Nieuwe Achtergracht 129-B, 1018WT, University of Amsterdam, The Netherlands
| | - Leonardo Cerliani
- Dept. of Psychiatry, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Meibergdreef 5, 1105AZ Amsterdam, The Netherlands; Amsterdam Brain and Cognition, University of Amsterdam, Nieuwe Achtergracht 129-B, 1018WT, University of Amsterdam, The Netherlands; Netherlands Institute for Neuroscience, Social Brain Lab, Meibergdreef 47, 1105BA Amsterdam, The Netherlands
| |
Collapse
|