1
|
Grigore M, Gresita A, Hermann DM, Doeppner TR, Gheorman V, Glavan D, Popa-Wagner A. Regulation of circadian gene activity in fibroblasts from ADHD patients through Rosiglitazone: a pilot study. J Neural Transm (Vienna) 2025; 132:709-721. [PMID: 39884973 DOI: 10.1007/s00702-025-02883-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 01/09/2025] [Indexed: 02/01/2025]
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a frequently observed condition, with about 70% of individuals diagnosed with ADHD experiencing irregular sleep-wake patterns. Beyond the primary symptoms of ADHD, there is a significant overlap with sleep-related issues, indicating that disrupted sleep patterns may exacerbate ADHD symptoms. ADHD-related sleep problems can be traced to a delayed circadian rhythm and a later onset of melatonin production. Therefore, normalizing circadian rhythms has been proposed as a potential therapeutic target for psychiatric disorders. Recent animal studies have provided compelling evidence linking peroxisome proliferator-activated receptor gamma (PPARγ), a key regulator of energy metabolism, to the regulation of physiological and behavioral rhythms. In this study, we hypothesized that treating fibroblasts from ADHD patients, which exhibit disturbances in circadian rhythmicity that are replicated in peripheral fibroblasts, with rosiglitazone may restore their circadian rhythmicity to that of the controls. To this end, we used cultures of fibroblasts obtained from skin biopsy explants of ADHD patients and controls and investigated the temporal patterns of clock gene expression over a period of 24 h. We report that the administration of the PPARγ agonist, rosiglitazone significantly realigns the chronobiological patterns of ADHD patient samples and control groups by inducing phase shifts in the expression of the BMAL1, PER3, and CRY1 clock genes. Nevertheless, rosiglitazone showed limited impact on the amplitude and phase of CLOCK1, NPAS2, and PER1. No notable changes were observed in PER2 and PER3 gene expression. The data from cultured human dermal fibroblasts indicate that PPARγ-agonists may help regulate circadian molecular mechanisms. Given the shared genetic pathways between ADHD and obesity, future studies could investigate the potential of RSG as a treatment for circadian rhythm disorders, particularly in obese patients with ADHD.
Collapse
Affiliation(s)
- Monica Grigore
- Department of Psychiatry, University of Medicine and Pharmacy Craiova, 200349, Craiova, Romania
| | - Andrei Gresita
- Department of Psychiatry, University of Medicine and Pharmacy Craiova, 200349, Craiova, Romania
| | - D M Hermann
- Chair of Vascular Neurology, Dementia and Ageing, University Hospital Essen, Essen University Medical School, University of Duisburg-Essen, 45147, Essen, Germany
| | - Thorsten R Doeppner
- Department of Neurology, University Medical Center Göttingen, 37075, Göttingen, Germany
- Department of Neurology, University of Giessen Medical School, 35392, Giessen, Germany
| | - Victor Gheorman
- Department of Psychiatry, University of Medicine and Pharmacy Craiova, 200349, Craiova, Romania
| | - Daniela Glavan
- Department of Psychiatry, University of Medicine and Pharmacy Craiova, 200349, Craiova, Romania.
| | - Aurel Popa-Wagner
- Chair of Vascular Neurology, Dementia and Ageing, University Hospital Essen, Essen University Medical School, University of Duisburg-Essen, 45147, Essen, Germany.
| |
Collapse
|
2
|
Cajochen C, Schmidt C. The Circadian Brain and Cognition. Annu Rev Psychol 2025; 76:115-141. [PMID: 39441908 DOI: 10.1146/annurev-psych-022824-043825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Circadian rhythms are inherent to living organisms from single cells to humans and operate on a genetically determined cycle of approximately 24 hours. These endogenous rhythms are aligned with the external light/dark cycle of the Earth's rotation and offer the advantage of anticipating environmental changes. Circadian rhythms act directly on human cognition and indirectly through their fundamental influence on sleep/wake cycles. The strength of the circadian regulation of performance depends on the accumulated sleep debt and the cognitive domain, and it has been suggested to involve the activation of ascending arousal systems and their interaction with attention and other cognitive processes. In addition, attention-related cortical responses show extensive circadian rhythms, the phases of which vary across brain regions. This review discusses the impact of the circadian system on sleep/wake regulation and cognitive performance. It further addresses the health implications of circadian disruption, particularly in relation to mental and neurological disorders.
Collapse
Affiliation(s)
- Christian Cajochen
- Research Cluster Molecular and Cognitive Neurosciences, Department of Biomedicine, University of Basel, Basel, Switzerland
- Centre for Chronobiology, Department for Adult Psychiatry, Psychiatric Hospital of the University of Basel, Basel, Switzerland;
| | - Christina Schmidt
- Psychology and Neuroscience of Cognition Research Unit, Faculty of Psychology, Speech and Language, University of Liège, Liège, Belgium
- Sleep & Chronobiology Laboratory, GIGA-Research, CRC Human Imaging, University of Liège, Liège, Belgium
| |
Collapse
|
3
|
Flores CC, Pasetto NA, Wang H, Dimitrov AG, Davis JF, Jiang Z, Davis CJ, Gerstner JR. Sleep and diurnal alternative polyadenylation sites associated with human APA-linked brain disorders. NPJ BIOLOGICAL TIMING AND SLEEP 2024; 1:11. [PMID: 39493890 PMCID: PMC11530375 DOI: 10.1038/s44323-024-00012-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/23/2024] [Indexed: 11/05/2024]
Abstract
Disruption of sleep and circadian rhythms are a comorbid feature of many pathologies, and can negatively influence many health conditions, including neurodegenerative disease, metabolic illness, cancer, and various neurological disorders. Genetic association studies linking sleep and circadian disturbances with disease susceptibility have mainly focused on changes in gene expression due to mutations, such as single-nucleotide polymorphisms. The interaction between sleep and/or circadian rhythms with the use of Alternative Polyadenylation (APA) has been largely undescribed, particularly in the context of other disorders. APA generates transcript isoforms by utilizing various polyadenylation sites (PASs) from the same gene affecting its mRNA translation, stability, localization, and subsequent function. Here we identified unique APAs expressed in rat brain over time-of-day, immediately following sleep deprivation, and the subsequent recovery period. From these data, we performed a secondary analysis of these sleep- or time-of-day associated PASs with recently described APA-linked human brain disorder susceptibility genes.
Collapse
Affiliation(s)
- Carlos C. Flores
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA USA
| | - Nickolas A. Pasetto
- Elson S. Floyd College of Medicine, Washington State University, Spokane, WA USA
| | - Hongyang Wang
- Department of Animal Sciences, College of Agricultural, Human, and Natural Resource Sciences, Washington State University, Pullman, WA USA
- Institute of Animal Husbandry & Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Alexander G. Dimitrov
- Department of Mathematics and Statistics, College of Arts and Sciences, Washington State University, Vancouver, WA USA
| | - Jon F. Davis
- Department of Integrative Physiology and Neuroscience, Pullman, WA USA
- Integrated Physiology Research, Novo Nordisk, Lexington, MA USA
| | - Zhihua Jiang
- Department of Animal Sciences, College of Agricultural, Human, and Natural Resource Sciences, Washington State University, Pullman, WA USA
| | - Christopher J. Davis
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA USA
- Department of Integrative Physiology and Neuroscience, Pullman, WA USA
- Sleep and Performance Research Center, Washington State University, Spokane, WA USA
- Steve Gleason Institute for Neuroscience, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA USA
| | - Jason R. Gerstner
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA USA
- Department of Integrative Physiology and Neuroscience, Pullman, WA USA
- Sleep and Performance Research Center, Washington State University, Spokane, WA USA
- Steve Gleason Institute for Neuroscience, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA USA
| |
Collapse
|
4
|
Crinion S, Wyse CA, Donohoe G, Lopez LM, Morris DW. Mendelian randomization analysis using GWAS and eQTL data to investigate the relationship between chronotype and neuropsychiatric disorders and their molecular basis. Am J Med Genet B Neuropsychiatr Genet 2024; 195:e32980. [PMID: 38549512 DOI: 10.1002/ajmg.b.32980] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 02/07/2024] [Accepted: 03/08/2024] [Indexed: 11/15/2024]
Abstract
Chronotype is a proxy sleep measure that has been associated with neuropsychiatric disorders. By investigating how chronotype influences risk for neuropsychiatric disorders and vice versa, we may identify modifiable risk factors for each phenotype. Here we used Mendelian randomization (MR), to explore causal effects by (1) studying the causal relationships between neuropsychiatric disorders and chronotype and (2) characterizing the genetic components of these phenotypes. Firstly, we investigated if a causal role exists between five neuropsychiatric disorders and chronotype using the largest genome-wide association studies (GWAS) available. Secondly, we integrated data from expression quantitative trait loci (eQTLs) to investigate the role of gene expression alterations on these phenotypes. Evening chronotype was causal for increased risk of schizophrenia and autism spectrum disorder and schizophrenia was causal for a tendency toward evening chronotype. We identified 12 eQTLs where gene expression changes in brain or blood were causal for one of the phenotypes, including two eQTLs for SNX19 in hippocampus and hypothalamus that were causal for schizophrenia. These findings provide important evidence for the complex, bidirectional relationship that exists between a sleep-based phenotype and neuropsychiatric disorders, and use gene expression data to identify causal roles for genes at associated loci.
Collapse
Affiliation(s)
- Shane Crinion
- Centre for Neuroimaging, Cognition and Genomics, School of Biological and Chemical Sciences and School of Psychology, University of Galway, Galway, Ireland
| | - Cathy A Wyse
- Department of Biology, Maynooth University, Maynooth, Ireland
| | - Gary Donohoe
- Centre for Neuroimaging, Cognition and Genomics, School of Biological and Chemical Sciences and School of Psychology, University of Galway, Galway, Ireland
| | - Lorna M Lopez
- Department of Biology, Maynooth University, Maynooth, Ireland
| | - Derek W Morris
- Centre for Neuroimaging, Cognition and Genomics, School of Biological and Chemical Sciences and School of Psychology, University of Galway, Galway, Ireland
| |
Collapse
|
5
|
Chen M, Tan DS, Wang X, Ye Z, Xie Z, Zhang D, Wu D, Zhao Y, Qu Y, Jiang Y. Exploring the Causal Association between Morning Diurnal Preference and Psychiatric Disorders: A Bidirectional Two-Sample Mendelian Randomization Analysis. Life (Basel) 2024; 14:1225. [PMID: 39459525 PMCID: PMC11508865 DOI: 10.3390/life14101225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/13/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND The causal connection between morning diurnal preference and psychiatric disorders remains enigmatic. Using bidirectional two-sample Mendelian randomization (MR), we aim to explore the potential causal associations between morning diurnal preference and seven prominent psychiatric disorders. METHODS MR is a genetic epidemiological method that leverages genetic variants as instrumental variables to infer causal associations between exposures and outcomes. We obtained morning diurnal preference data from genome-wide association study (GWAS) datasets and identified 252,287 individuals as morning people. Psychiatric disorder data were sourced from the FinnGen consortium R9 dataset. Our primary analysis used the inverse-variance weighted (IVW) approach to evaluate the overall causal effect by combining the estimates from each genetic variant. Addition analyses, including weighted median, MR-Egger regression, weighted mode, and simple mode techniques were conducted to ensure robustness. RESULTS Being a morning person is related to reduced odds of multiple psychiatric disorders, including depression or dysthymia (OR: 0.93, 95% CI: 0.88, 0.999), anxiety disorders (OR: 0.90, 95% CI: 0.84, 0.96), self-harming behaviors (OR: 0.87, 95% CI: 0.76, 0.99), substance-use disorders (OR: 0.81, 95% CI: 0.71, 0.93), alcohol dependence (OR: 0.82, 95% CI: 0.73, 0.92), alcohol use disorders (OR: 0.85, 95% CI: 0.76, 0.94), acute alcohol intoxication (OR: 0.86, 95% CI: 0.76, 0.96), schizophrenia (OR: 0.77, 95% CI: 0.65, 0.92), and schizophrenia or delusion (OR: 0.80, 95% CI: 0.70, 0.92). Alcohol dependence (OR: 0.97, 95% CI: 0.94, 0.999) and alcohol use disorders (OR: 0.96, 95% CI: 0.94, 0.99) were also related to a lower morning diurnal preference. CONCLUSIONS Our study provides evidence that being a morning person is a protective factor for various psychiatric disorders from a genetic perspective. The results provide insights for potential targeted interventions to improve mental wellbeing.
Collapse
Affiliation(s)
- Manman Chen
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; (M.C.); (Z.Y.); (Z.X.); (D.Z.); (D.W.); (Y.Z.); (Y.Q.)
| | - Din-Son Tan
- Vanke School of Public Health & Institute for Healthy China, Tsinghua University, Beijing 100084, China;
| | - Xijie Wang
- Vanke School of Public Health & Institute for Healthy China, Tsinghua University, Beijing 100084, China;
| | - Zichen Ye
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; (M.C.); (Z.Y.); (Z.X.); (D.Z.); (D.W.); (Y.Z.); (Y.Q.)
| | - Zhilan Xie
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; (M.C.); (Z.Y.); (Z.X.); (D.Z.); (D.W.); (Y.Z.); (Y.Q.)
| | - Daqian Zhang
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; (M.C.); (Z.Y.); (Z.X.); (D.Z.); (D.W.); (Y.Z.); (Y.Q.)
| | - Dandan Wu
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; (M.C.); (Z.Y.); (Z.X.); (D.Z.); (D.W.); (Y.Z.); (Y.Q.)
| | - Yuankai Zhao
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; (M.C.); (Z.Y.); (Z.X.); (D.Z.); (D.W.); (Y.Z.); (Y.Q.)
| | - Yimin Qu
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; (M.C.); (Z.Y.); (Z.X.); (D.Z.); (D.W.); (Y.Z.); (Y.Q.)
| | - Yu Jiang
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; (M.C.); (Z.Y.); (Z.X.); (D.Z.); (D.W.); (Y.Z.); (Y.Q.)
- School of Health Policy and Management, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
6
|
Fu Y, Xie GM, Liu RQ, Xie JL, Zhang J, Zhang J. From aberrant neurodevelopment to neurodegeneration: Insights into the hub gene associated with autism and alzheimer's disease. Brain Res 2024; 1838:148992. [PMID: 38729333 DOI: 10.1016/j.brainres.2024.148992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/31/2024] [Accepted: 05/07/2024] [Indexed: 05/12/2024]
Affiliation(s)
- Yu Fu
- Research Center for Translational Medicine at East Hospital, School of Medicine, Tongji University, Shanghai 200010, China
| | - Guang-Ming Xie
- Research Center for Translational Medicine at East Hospital, School of Medicine, Tongji University, Shanghai 200010, China
| | - Rong-Qi Liu
- Research Center for Translational Medicine at East Hospital, School of Life Science and Technology, Tongji University, Shanghai 200010, China
| | - Jun-Ling Xie
- Research Center for Translational Medicine at East Hospital, School of Medicine, Tongji University, Shanghai 200010, China
| | - Jing Zhang
- Research Center for Translational Medicine at East Hospital, School of Life Science and Technology, Tongji University, Shanghai 200010, China.
| | - Jun Zhang
- Research Center for Translational Medicine at East Hospital, School of Medicine, Tongji University, Shanghai 200010, China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200092, China.
| |
Collapse
|
7
|
Flores CC, Pasetto NA, Wang H, Dimitrov AG, Davis JF, Jiang Z, Davis CJ, Gerstner JR. Sleep and diurnal alternative polyadenylation sites associated with human APA-linked brain disorders. RESEARCH SQUARE 2024:rs.3.rs-4707772. [PMID: 39149473 PMCID: PMC11326403 DOI: 10.21203/rs.3.rs-4707772/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Disruption of sleep and circadian rhythms are a comorbid feature of many pathologies, and can negatively influence many health conditions, including neurodegenerative disease, metabolic illness, cancer, and various neurological disorders. Genetic association studies linking sleep and circadian disturbances with disease susceptibility have mainly focused on changes in gene expression due to mutations, such as single-nucleotide polymorphisms. The interaction between sleep and/or circadian rhythms with the use of Alternative Polyadenylation (APA) has been largely undescribed, particularly in the context of other disorders. APA is a process that generates various transcript isoforms of the same gene affecting its mRNA translation, stability, localization, and subsequent function. Here we identified unique APAs expressed in rat brain over time-of-day, immediately following sleep deprivation, and the subsequent recovery period. From these data, we performed a secondary analysis of these sleep- or time-of-day associated PASs with recently described APA-linked human brain disorder susceptibility genes.
Collapse
|
8
|
Gomes TM, Sousa P, Campos C, Perestrelo R, Câmara JS. Secondary Bioactive Metabolites from Foods of Plant Origin as Theravention Agents against Neurodegenerative Disorders. Foods 2024; 13:2289. [PMID: 39063373 PMCID: PMC11275480 DOI: 10.3390/foods13142289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/14/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
Neurodegenerative disorders (NDDs) such as Alzheimer's (AD) and Parkinson's (PD) are on the rise, robbing people of their memories and independence. While risk factors such as age and genetics play an important role, exciting studies suggest that a diet rich in foods from plant origin may offer a line of defense. These kinds of foods, namely fruits and vegetables, are packed with a plethora of powerful bioactive secondary metabolites (SBMs), including terpenoids, polyphenols, glucosinolates, phytosterols and capsaicinoids, which exhibit a wide range of biological activities including antioxidant, antidiabetic, antihypertensive, anti-Alzheimer's, antiproliferative, and antimicrobial properties, associated with preventive effects in the development of chronic diseases mediated by oxidative stress such as type 2 diabetes mellitus, respiratory diseases, cancer, cardiovascular diseases, and NDDs. This review explores the potential of SBMs as theravention agents (metabolites with therapeutic and preventive action) against NDDs. By understanding the science behind plant-based prevention, we may be able to develop new strategies to promote brain health and prevent the rise in NDDs. The proposed review stands out by emphasizing the integration of multiple SBMs in plant-based foods and their potential in preventing NDDs. Previous research has often focused on individual compounds or specific foods, but this review aims to present a comprehensive fingerprint of how a diet rich in various SBMs can synergistically contribute to brain health. The risk factors related to NDD development and the diagnostic process, in addition to some examples of food-related products and medicinal plants that significantly reduce the inhibition of acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and β-site amyloid precursor protein (APP) cleaving enzyme 1 (BACE1), are highlighted.
Collapse
Affiliation(s)
- Telma Marisa Gomes
- CQM—Centro de Química da Madeira, NPRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal; (T.M.G.); (P.S.); (C.C.); (R.P.)
| | - Patrícia Sousa
- CQM—Centro de Química da Madeira, NPRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal; (T.M.G.); (P.S.); (C.C.); (R.P.)
| | - Catarina Campos
- CQM—Centro de Química da Madeira, NPRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal; (T.M.G.); (P.S.); (C.C.); (R.P.)
| | - Rosa Perestrelo
- CQM—Centro de Química da Madeira, NPRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal; (T.M.G.); (P.S.); (C.C.); (R.P.)
| | - José S. Câmara
- CQM—Centro de Química da Madeira, NPRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal; (T.M.G.); (P.S.); (C.C.); (R.P.)
- Departamento de Química, Faculdade de Ciências Exatas e Engenharia, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| |
Collapse
|
9
|
White AM, Eglovitch M, Parlier-Ahmad AB, Dzierzewski JM, James M, Bjork JM, Moeller FG, Martin CE. Insomnia symptoms and neurofunctional correlates among adults receiving buprenorphine for opioid use disorder. PLoS One 2024; 19:e0304461. [PMID: 38870144 PMCID: PMC11175529 DOI: 10.1371/journal.pone.0304461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 05/14/2024] [Indexed: 06/15/2024] Open
Abstract
OBJECTIVES Insomnia symptoms are negatively related to opioid use disorder (OUD) treatment outcomes, possibly reflecting the influence of sleep on neurofunctional domains implicated in addiction. Moreover, the intersection between OUD recovery and sleep represents an area well-suited for the development of novel, personalized treatment strategies. This study assessed the prevalence of clinically significant insomnia symptoms and characterized its neurofunctional correlates among a clinical sample of adults with OUD receiving buprenorphine. METHODS Adults (N = 129) receiving buprenorphine for OUD from an outpatient clinic participated in a cross-sectional survey. Participants completed an abbreviated version of NIDA's Phenotyping Assessment Battery, which assessed 6 neurofunctional domains: sleep, negative emotionality, metacognition, interoception, cognition, and reward. Bivariate descriptive statistics compared those with evidence of clinically significant insomnia symptoms (Insomnia Severity Index [ISI] score of ≥11) to those with minimal evidence of clinically significant insomnia symptoms (ISI score of ≤10) across each of the neurofunctional domains. RESULTS Roughly 60% of participants reported clinically significant insomnia symptoms (ISI score of ≥11). Experiencing clinically significant insomnia symptoms was associated with reporting greater levels of depression, anxiety, post-traumatic stress, stress intolerance, unhelpful metacognition, and interoceptive awareness (ps<0.05). Participants with evidence of clinically significant insomnia were more likely to report that poor sleep was interfering with their OUD treatment and that improved sleep would assist with their treatment (ps<0.05). CONCLUSIONS Insomnia was prevalent among adults receiving buprenorphine for OUD. Insomnia was associated with neurofunctional performance, which may impact OUD treatment trajectories. Our findings indicate potential targets in the development of personalized treatment plans for patients with co-morbid insomnia and OUD. To inform the development of novel treatment strategies, more research is needed to understand the potential mechanistic links between sleep disturbances and substance use.
Collapse
Affiliation(s)
- Augustus M. White
- School of Medicine, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Michelle Eglovitch
- School of Medicine, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Anna Beth Parlier-Ahmad
- School of Medicine, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | | | - Morgan James
- Department of Psychiatry, Rutgers University, Newark, New Jersey, United States of America
| | - James M. Bjork
- School of Medicine, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - F. Gerard Moeller
- School of Medicine, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Caitlin E. Martin
- School of Medicine, Virginia Commonwealth University, Richmond, Virginia, United States of America
| |
Collapse
|
10
|
Song YM, Jeong J, de Los Reyes AA, Lim D, Cho CH, Yeom JW, Lee T, Lee JB, Lee HJ, Kim JK. Causal dynamics of sleep, circadian rhythm, and mood symptoms in patients with major depression and bipolar disorder: insights from longitudinal wearable device data. EBioMedicine 2024; 103:105094. [PMID: 38579366 PMCID: PMC11002811 DOI: 10.1016/j.ebiom.2024.105094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 03/14/2024] [Accepted: 03/17/2024] [Indexed: 04/07/2024] Open
Abstract
BACKGROUND Sleep and circadian rhythm disruptions are common in patients with mood disorders. The intricate relationship between these disruptions and mood has been investigated, but their causal dynamics remain unknown. METHODS We analysed data from 139 patients (76 female, mean age = 23.5 ± 3.64 years) with mood disorders who participated in a prospective observational study in South Korea. The patients wore wearable devices to monitor sleep and engaged in smartphone-delivered ecological momentary assessment of mood symptoms. Using a mathematical model, we estimated their daily circadian phase based on sleep data. Subsequently, we obtained daily time series for sleep/circadian phase estimates and mood symptoms spanning >40,000 days. We analysed the causal relationship between the time series using transfer entropy, a non-linear causal inference method. FINDINGS The transfer entropy analysis suggested causality from circadian phase disturbance to mood symptoms in both patients with MDD (n = 45) and BD type I (n = 35), as 66.7% and 85.7% of the patients with a large dataset (>600 days) showed causality, but not in patients with BD type II (n = 59). Surprisingly, no causal relationship was suggested between sleep phase disturbances and mood symptoms. INTERPRETATION Our findings suggest that in patients with mood disorders, circadian phase disturbances directly precede mood symptoms. This underscores the potential of targeting circadian rhythms in digital medicine, such as sleep or light exposure interventions, to restore circadian phase and thereby manage mood disorders effectively. FUNDING Institute for Basic Science, the Human Frontiers Science Program Organization, the National Research Foundation of Korea, and the Ministry of Health & Welfare of South Korea.
Collapse
Affiliation(s)
- Yun Min Song
- Department of Mathematical Sciences, KAIST, Daejeon, 34141, Republic of Korea; Biomedical Mathematics Group, Pioneer Research Center for Mathematical and Computational Sciences, Institute for Basic Science, Daejeon, 34126, Republic of Korea
| | - Jaegwon Jeong
- Department of Psychiatry, Korea University College of Medicine, Seoul, 02841, Republic of Korea; Chronobiology Institute, Korea University, Seoul, 02841, Republic of Korea
| | - Aurelio A de Los Reyes
- Biomedical Mathematics Group, Pioneer Research Center for Mathematical and Computational Sciences, Institute for Basic Science, Daejeon, 34126, Republic of Korea; Institute of Mathematics, University of the Philippines Diliman, Quezon City, 1101, Philippines
| | - Dongju Lim
- Department of Mathematical Sciences, KAIST, Daejeon, 34141, Republic of Korea; Biomedical Mathematics Group, Pioneer Research Center for Mathematical and Computational Sciences, Institute for Basic Science, Daejeon, 34126, Republic of Korea
| | - Chul-Hyun Cho
- Department of Psychiatry, Korea University College of Medicine, Seoul, 02841, Republic of Korea; Chronobiology Institute, Korea University, Seoul, 02841, Republic of Korea
| | - Ji Won Yeom
- Department of Psychiatry, Korea University College of Medicine, Seoul, 02841, Republic of Korea; Chronobiology Institute, Korea University, Seoul, 02841, Republic of Korea
| | - Taek Lee
- Division of Computer Science and Engineering, Sun Moon University, Asan, 31460, Republic of Korea
| | - Jung-Been Lee
- Division of Computer Science and Engineering, Sun Moon University, Asan, 31460, Republic of Korea
| | - Heon-Jeong Lee
- Department of Psychiatry, Korea University College of Medicine, Seoul, 02841, Republic of Korea; Chronobiology Institute, Korea University, Seoul, 02841, Republic of Korea.
| | - Jae Kyoung Kim
- Department of Mathematical Sciences, KAIST, Daejeon, 34141, Republic of Korea; Biomedical Mathematics Group, Pioneer Research Center for Mathematical and Computational Sciences, Institute for Basic Science, Daejeon, 34126, Republic of Korea.
| |
Collapse
|
11
|
Gheorghe CE, Leigh SJ, Tofani GSS, Bastiaanssen TFS, Lyte JM, Gardellin E, Govindan A, Strain C, Martinez-Herrero S, Goodson MS, Kelley-Loughnane N, Cryan JF, Clarke G. The microbiota drives diurnal rhythms in tryptophan metabolism in the stressed gut. Cell Rep 2024; 43:114079. [PMID: 38613781 DOI: 10.1016/j.celrep.2024.114079] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/09/2024] [Accepted: 03/22/2024] [Indexed: 04/15/2024] Open
Abstract
Chronic stress disrupts microbiota-gut-brain axis function and is associated with altered tryptophan metabolism, impaired gut barrier function, and disrupted diurnal rhythms. However, little is known about the effects of acute stress on the gut and how it is influenced by diurnal physiology. Here, we used germ-free and antibiotic-depleted mice to understand how microbiota-dependent oscillations in tryptophan metabolism would alter gut barrier function at baseline and in response to an acute stressor. Cecal metabolomics identified tryptophan metabolism as most responsive to a 15-min acute stressor, while shotgun metagenomics revealed that most bacterial species exhibiting rhythmicity metabolize tryptophan. Our findings highlight that the gastrointestinal response to acute stress is dependent on the time of day and the microbiome, with a signature of stress-induced functional alterations in the ileum and altered tryptophan metabolism in the colon.
Collapse
Affiliation(s)
- Cassandra E Gheorghe
- APC Microbiome Ireland, University College Cork, T12 CY82 Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, T12 CY82 Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, T12 CY82 Cork, Ireland
| | - Sarah-Jane Leigh
- APC Microbiome Ireland, University College Cork, T12 CY82 Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, T12 CY82 Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, T12 CY82 Cork, Ireland
| | - Gabriel S S Tofani
- APC Microbiome Ireland, University College Cork, T12 CY82 Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, T12 CY82 Cork, Ireland
| | - Thomaz F S Bastiaanssen
- APC Microbiome Ireland, University College Cork, T12 CY82 Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, T12 CY82 Cork, Ireland
| | - Joshua M Lyte
- APC Microbiome Ireland, University College Cork, T12 CY82 Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, T12 CY82 Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, T12 CY82 Cork, Ireland
| | - Elisa Gardellin
- APC Microbiome Ireland, University College Cork, T12 CY82 Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, T12 CY82 Cork, Ireland
| | - Ashokkumar Govindan
- APC Microbiome Ireland, University College Cork, T12 CY82 Cork, Ireland; Teagasc Moorepark Food Research Centre, Fermoy Co, P61 C996 Cork, Ireland
| | - Conall Strain
- APC Microbiome Ireland, University College Cork, T12 CY82 Cork, Ireland; Teagasc Moorepark Food Research Centre, Fermoy Co, P61 C996 Cork, Ireland
| | - Sonia Martinez-Herrero
- APC Microbiome Ireland, University College Cork, T12 CY82 Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, T12 CY82 Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, T12 CY82 Cork, Ireland
| | - Michael S Goodson
- 711th Human Performance Wing, Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, OH 45324, USA
| | - Nancy Kelley-Loughnane
- 711th Human Performance Wing, Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, OH 45324, USA
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, T12 CY82 Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, T12 CY82 Cork, Ireland
| | - Gerard Clarke
- APC Microbiome Ireland, University College Cork, T12 CY82 Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, T12 CY82 Cork, Ireland.
| |
Collapse
|
12
|
Tao Y, Zhao R, Yang B, Han J, Li Y. Dissecting the shared genetic landscape of anxiety, depression, and schizophrenia. J Transl Med 2024; 22:373. [PMID: 38637810 PMCID: PMC11025255 DOI: 10.1186/s12967-024-05153-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/01/2024] [Indexed: 04/20/2024] Open
Abstract
BACKGROUND Numerous studies highlight the genetic underpinnings of mental disorders comorbidity, particularly in anxiety, depression, and schizophrenia. However, their shared genetic loci are not well understood. Our study employs Mendelian randomization (MR) and colocalization analyses, alongside multi-omics data, to uncover potential genetic targets for these conditions, thereby informing therapeutic and drug development strategies. METHODS We utilized the Consortium for Linkage Disequilibrium Score Regression (LDSC) and Mendelian Randomization (MR) analysis to investigate genetic correlations among anxiety, depression, and schizophrenia. Utilizing GTEx V8 eQTL and deCODE Genetics pQTL data, we performed a three-step summary-data-based Mendelian randomization (SMR) and protein-protein interaction analysis. This helped assess causal and comorbid loci for these disorders and determine if identified loci share coincidental variations with psychiatric diseases. Additionally, phenome-wide association studies, drug prediction, and molecular docking validated potential drug targets. RESULTS We found genetic correlations between anxiety, depression, and schizophrenia, and under a meta-analysis of MR from multiple databases, the causal relationships among these disorders are supported. Based on this, three-step SMR and colocalization analyses identified ITIH3 and CCS as being related to the risk of developing depression, while CTSS and DNPH1 are related to the onset of schizophrenia. BTN3A1, PSMB4, and TIMP4 were identified as comorbidity loci for both disorders. Molecules that could not be determined through colocalization analysis were also presented. Drug prediction and molecular docking showed that some drugs and proteins have good binding affinity and available structural data. CONCLUSIONS Our study indicates genetic correlations and shared risk loci between anxiety, depression, and schizophrenia. These findings offer insights into the underlying mechanisms of their comorbidities and aid in drug development.
Collapse
Affiliation(s)
- Yiming Tao
- Department of Intensive Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hankou, Wuhan, 430030, China
- Department of Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250101, Shandong, China
| | - Rui Zhao
- Department of Laboratory Medicine, The First Afliated Hospital of Chongqing Medical University, Chongqing, 400042, China
| | - Bin Yang
- Department of Intensive Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hankou, Wuhan, 430030, China
| | - Jie Han
- Department of Emergency, School of Medicine, Qingdao Municipal Hospital, Qingdao University, Qingdao, 266071, China.
| | - Yongsheng Li
- Department of Intensive Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hankou, Wuhan, 430030, China.
| |
Collapse
|
13
|
López-Otín C, Kroemer G. The missing hallmark of health: psychosocial adaptation. Cell Stress 2024; 8:21-50. [PMID: 38476764 PMCID: PMC10928495 DOI: 10.15698/cst2024.03.294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/09/2024] [Accepted: 02/12/2024] [Indexed: 03/14/2024] Open
Abstract
The eight biological hallmarks of health that we initially postulated (Cell. 2021 Jan 7;184(1):33-63) include features of spatial compartmentalization (integrity of barriers, containment of local perturbations), maintenance of homeostasis over time (recycling & turnover, integration of circuitries, rhythmic oscillations) and an array of adequate responses to stress (homeostatic resilience, hormetic regulation, repair & regeneration). These hallmarks affect all eight somatic strata of the human body (molecules, organelles, cells, supracellular units, organs, organ systems, systemic circuitries and meta-organism). Here we postulate that mental and socioeconomic factors must be added to this 8×8 matrix as an additional hallmark of health ("psychosocial adaptation") and as an additional stratum ("psychosocial interactions"), hence building a 9×9 matrix. Potentially, perturbation of each of the somatic hallmarks and strata affects psychosocial factors and vice versa. Finally, we discuss the (patho)physiological bases of these interactions and their implications for mental health improvement.
Collapse
Affiliation(s)
- Carlos López-Otín
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Facultad de Ciencias de la Vida y la Naturaleza, Universidad Nebrija, Madrid, Spain
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
- Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
| |
Collapse
|
14
|
Uleman JF, Quax R, Melis RJF, Hoekstra AG, Olde Rikkert MGM. The need for systems thinking to advance Alzheimer's disease research. Psychiatry Res 2024; 333:115741. [PMID: 38277813 DOI: 10.1016/j.psychres.2024.115741] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 12/08/2023] [Accepted: 01/12/2024] [Indexed: 01/28/2024]
Abstract
Despite extensive research efforts to mechanistically understand late-onset Alzheimer's disease (LOAD) and other complex mental health disorders, curative treatments remain elusive. We emphasize the multiscale multicausality inherent to LOAD, highlighting the interplay between interconnected pathophysiological processes and risk factors. Systems thinking methods, such as causal loop diagrams and systems dynamic models, offer powerful means to capture and study this complexity. Recent studies developed and validated a causal loop diagram and system dynamics model using multiple longitudinal data sets, enabling the simulation of personalized interventions on various modifiable risk factors in LOAD. The results indicate that targeting factors like sleep disturbance and depressive symptoms could be promising and yield synergistic benefits. Furthermore, personalized interventions showed significant potential, with top-ranked intervention strategies differing significantly across individuals. We argue that systems thinking approaches can open new prospects for multifactorial precision medicine. In future research, systems thinking may also guide structured, model-driven data collection on the multiple interactions in LOAD's complex multicausality, facilitating theory development and possibly resulting in effective prevention and treatment options.
Collapse
Affiliation(s)
- Jeroen F Uleman
- Section of Epidemiology, Department of Public Health, University of Copenhagen, Copenhagen, Denmark; Department of Geriatric Medicine, Radboudumc Alzheimer Center, Donders Institute for Medical Neuroscience, Radboud University Medical Center, Nijmegen, the Netherlands.
| | - Rick Quax
- Computational Science Lab, Informatics Institute, Faculty of Science, University of Amsterdam, Amsterdam, the Netherlands
| | - René J F Melis
- Department of Geriatric Medicine, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Alfons G Hoekstra
- Computational Science Lab, Informatics Institute, Faculty of Science, University of Amsterdam, Amsterdam, the Netherlands
| | - Marcel G M Olde Rikkert
- Department of Geriatric Medicine, Radboudumc Alzheimer Center, Donders Institute for Medical Neuroscience, Radboud University Medical Center, Nijmegen, the Netherlands
| |
Collapse
|
15
|
Montanari A, Wang L, Birenboim A, Chaix B. Urban environment influences on stress, autonomic reactivity and circadian rhythm: protocol for an ambulatory study of mental health and sleep. Front Public Health 2024; 12:1175109. [PMID: 38375340 PMCID: PMC10875008 DOI: 10.3389/fpubh.2024.1175109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 01/02/2024] [Indexed: 02/21/2024] Open
Abstract
Introduction Converging evidence suggests that urban living is associated with an increased likelihood of developing mental health and sleep problems. Although these aspects have been investigated in separate streams of research, stress, autonomic reactivity and circadian misalignment can be hypothesized to play a prominent role in the causal pathways underlining the complex relationship between the urban environment and these two health dimensions. This study aims at quantifying the momentary impact of environmental stressors on increased autonomic reactivity and circadian rhythm, and thereby on mood and anxiety symptoms and sleep quality in the context of everyday urban living. Method The present article reports the protocol for a feasibility study that aims at assessing the daily environmental and mobility exposures of 40 participants from the urban area of Jerusalem over 7 days. Every participant will carry a set of wearable sensors while being tracked through space and time with GPS receivers. Skin conductance and heart rate variability will be tracked to monitor participants' stress responses and autonomic reactivity, whereas electroencephalographic signal will be used for sleep quality tracking. Light exposure, actigraphy and skin temperature will be used for ambulatory circadian monitoring. Geographically explicit ecological momentary assessment (GEMA) will be used to assess participants' perception of the environment, mood and anxiety symptoms, sleep quality and vitality. For each outcome variable (sleep quality and mental health), hierarchical mixed models including random effects at the individual level will be used. In a separate analysis, to control for potential unobserved individual-level confounders, a fixed effect at the individual level will be specified for case-crossover analyses (comparing each participant to oneself). Conclusion Recent developments in wearable sensing methods, as employed in our study or with even more advanced methods reviewed in the Discussion, make it possible to gather information on the functioning of neuro-endocrine and circadian systems in a real-world context as a way to investigate the complex interactions between environmental exposures, behavior and health. Our work aims to provide evidence on the health effects of urban stressors and circadian disruptors to inspire potential interventions, municipal policies and urban planning schemes aimed at addressing those factors.
Collapse
Affiliation(s)
- Andrea Montanari
- Institut Pierre Louis d'Epidémiologie et de Santé Publique (IPLESP), Sorbonne Universités, Paris, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France
| | - Limin Wang
- Department of Geography, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Amit Birenboim
- Department of Geography, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Basile Chaix
- Institut Pierre Louis d'Epidémiologie et de Santé Publique (IPLESP), Sorbonne Universités, Paris, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France
| |
Collapse
|
16
|
Naveed M, Chao OY, Hill JW, Yang YM, Huston JP, Cao R. Circadian neurogenetics and its implications in neurophysiology, behavior, and chronomedicine. Neurosci Biobehav Rev 2024; 157:105523. [PMID: 38142983 PMCID: PMC10872425 DOI: 10.1016/j.neubiorev.2023.105523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/13/2023] [Accepted: 12/20/2023] [Indexed: 12/26/2023]
Abstract
The circadian rhythm affects multiple physiological processes, and disruption of the circadian system can be involved in a range of disease-related pathways. The genetic underpinnings of the circadian rhythm have been well-studied in model organisms. Significant progress has been made in understanding how clock genes affect the physiological functions of the nervous system. In addition, circadian timing is becoming a key factor in improving drug efficacy and reducing drug toxicity. The circadian biology of the target cell determines how the organ responds to the drug at a specific time of day, thus regulating pharmacodynamics. The current review brings together recent advances that have begun to unravel the molecular mechanisms of how the circadian clock affects neurophysiological and behavioral processes associated with human brain diseases. We start with a brief description of how the ubiquitous circadian rhythms are regulated at the genetic, cellular, and neural circuit levels, based on knowledge derived from extensive research on model organisms. We then summarize the latest findings from genetic studies of human brain disorders, focusing on the role of human clock gene variants in these diseases. Lastly, we discuss the impact of common dietary factors and medications on human circadian rhythms and advocate for a broader application of the concept of chronomedicine.
Collapse
Affiliation(s)
- Muhammad Naveed
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812, USA; Department of Physiology and Pharmacology, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH 43614, USA
| | - Owen Y Chao
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812, USA
| | - Jennifer W Hill
- Department of Physiology and Pharmacology, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH 43614, USA
| | - Yi-Mei Yang
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812, USA; Department of Neuroscience, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Joseph P Huston
- Center for Behavioral Neuroscience, Institute of Experimental Psychology, Heinrich-Heine University, 40225 Düsseldorf, Germany
| | - Ruifeng Cao
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA; Department of Neurology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA.
| |
Collapse
|
17
|
Flores CC, Pasetto NA, Wang H, Dimitrov A, Davis JF, Jiang Z, Davis CJ, Gerstner JR. Identification of sleep and circadian alternative polyadenylation sites associated with APA-linked human brain disorders. RESEARCH SQUARE 2024:rs.3.rs-3867797. [PMID: 38313253 PMCID: PMC10836116 DOI: 10.21203/rs.3.rs-3867797/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
Sleep and circadian rhythm disruptions are comorbid features of many pathologies and can negatively influence numerous health conditions, including degenerative diseases, metabolic illnesses, cancer, and various neurological disorders. Genetic association studies linking sleep and circadian disturbances with disease susceptibility have mainly focused on changes in gene expression due to mutations, such as single-nucleotide polymorphisms. Thus, associations between sleep and/or circadian rhythm and alternative polyadenylation (APA), particularly in the context of other health challenges, are largely undescribed. APA is a process that generates various transcript isoforms from the same gene, resulting in effects on mRNA translation, stability, localization, and subsequent function. Here, we have identified unique APAs in rat brain that exhibit time-of-day-dependent oscillations in expression as well as APAs that are altered by sleep deprivation and the subsequent recovery period. Genes affected by APA usage include Mapt/Tau, Ntrk2, Homer1A, Sin3band Sorl. Sorl1 has two APAs which cycle with a 24 h period, one additional APA cycles with a 12 h period and one more that is reduced during recovery sleep. Finally, we compared sleep- or circadian-associated APAs with recently described APA-linked brain disorder susceptibility genes and found 46 genes in common.
Collapse
|
18
|
Tabuchi M. Dynamic neuronal instability generates synaptic plasticity and behavior: Insights from Drosophila sleep. Neurosci Res 2024; 198:1-7. [PMID: 37385545 PMCID: PMC11033711 DOI: 10.1016/j.neures.2023.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/05/2023] [Accepted: 06/21/2023] [Indexed: 07/01/2023]
Abstract
How do neurons encode the information that underlies cognition, internal states, and behavior? This review focuses on the neural circuit mechanisms underlying sleep in Drosophila and, to illustrate the power of addressing neural coding in this system, highlights a specific circuit mediating the circadian regulation of sleep quality. This circuit exhibits circadian cycling of sleep quality, which depends solely on the pattern (not the rate) of spiking. During the night, the stability of spike waveforms enhances the reliability of spike timing in these neurons to promote sleep quality. During the day, instability of the spike waveforms leads to uncertainty of spike timing, which remarkably produces synaptic plasticity to induce arousal. Investigation of the molecular and biophysical basis of these changes was greatly facilitated by its study in Drosophila, revealing direct connections between genes, molecules, spike biophysical properties, neural codes, synaptic plasticity, and behavior. Furthermore, because these patterns of neural activity change with aging, this model system holds promise for understanding the interplay between the circadian clock, aging, and sleep quality. It is proposed here that neurophysiological investigations of the Drosophila brain present an exceptional opportunity to tackle some of the most challenging questions related to neural coding.
Collapse
Affiliation(s)
- Masashi Tabuchi
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH, United States.
| |
Collapse
|
19
|
Zeng X, Soreze TSC, Ballegaard M, Petersen PM. Integrative Lighting Aimed at Patients with Psychiatric and Neurological Disorders. Clocks Sleep 2023; 5:806-830. [PMID: 38131751 PMCID: PMC10742818 DOI: 10.3390/clockssleep5040052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/07/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023] Open
Abstract
The purpose of this paper is to investigate the impact of circadian lighting-induced melatonin suppression on patients with psychiatric and neurological disorders in hospital wards by using an ad-hoc metrology framework and the subsequent metrics formalized by the CIE in 2018. A measurement scheme was conducted in hospital ward rooms in the Department of Neurology, Zealand University Hospital, at Roskilde in Denmark, to evaluate the photometric and colorimetric characteristics of the lighting system, as well as its influence on the circadian rhythm of the occupants. The measurement scheme included point measurements and data logging, using a spectrophotometer mounted on a tripod with adjustable height to assess the newly installed circadian lighting system. The measured spectra were uploaded to the Luox platform to calculate illuminance, CCT, MEDI, etc., in accordance with the CIE S026 standard. Furthermore, the MLIT based on MEDI data logging results was calculated. In addition to CIE S026, we have investigated the usefulness of melatonin suppression models for the assessment of circadian performance regarding measured light. From the results, the lighting conditions in the patient room for both minimal and abundant daylight access were evaluated and compared; we found that access to daylight is essential for both illumination and circadian entrainment. It can be concluded that the measurement scheme, together with the use of the Luox platform and Canva template, is suitable for the accurate and satisfactory measurement of integrative lighting that aligns with CIE requirements and recommendations.
Collapse
Affiliation(s)
- Xinxi Zeng
- Department of Electrical and Photonics Engineering, Technical University of Denmark, 2800 Kongens Lyngby, Denmark; (X.Z.); (P.M.P.)
| | - Thierry Silvio Claude Soreze
- Department of Electrical and Photonics Engineering, Technical University of Denmark, 2800 Kongens Lyngby, Denmark; (X.Z.); (P.M.P.)
| | - Martin Ballegaard
- Department of Neurology, Copenhagen University Hospital—Zealand University Hospital Roskilde, 4000 Roskilde, Denmark;
- Department of Clinical Medicine, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Paul Michael Petersen
- Department of Electrical and Photonics Engineering, Technical University of Denmark, 2800 Kongens Lyngby, Denmark; (X.Z.); (P.M.P.)
| |
Collapse
|
20
|
Thimma Ravindranath P, Smith JG, Niloofar RN, Ebelthite C, Renton T. Sleep disturbances are associated with pain intensity and pain-related functional interference in patients experiencing orofacial pain. J Oral Rehabil 2023; 50:980-990. [PMID: 37243957 DOI: 10.1111/joor.13521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 02/08/2023] [Accepted: 05/23/2023] [Indexed: 05/29/2023]
Abstract
BACKGROUND Sleep and pain have a reciprocal relationship, interacting with psychosocial aspects including depression, anxiety, somatization and significant stressful events. OBJECTIVE The aim of this study was to assess patients with oro-facial pain (OFP) and related sleep disturbances and determine the strongest psychosocial correlates. METHODS A cross-sectional study of anonymized data of consecutive patients with OFP {January 2019 and February 2020} were analysed. Diagnostic and Axis-II data were integrated to assess the relationship between sleep disturbances, measured using Chronic Pain Sleep Inventory, and demographic factors, clinical comorbidities, recent stressful events, pain severity and pain- and psychological-related function. RESULTS Five out of six patients with OFP were presented with pain-related sleep disturbances. Sleep problems were enhanced in patients with primary oro-facial headache compared with other OFP conditions. However, once the level of pain intensity and interference was accounted for, primary headache, was not a significant correlate of pain-related sleep disturbances. Multivariate analysis revealed (average) pain severity and pain interference were both significantly associated with sleep problems. There were also significant independent associations of sleep problems with somatization levels and reported experience of recent stressful events. CONCLUSION Identifying sleep problems as a part of OFP management may be beneficial and could result in better management outcomes.
Collapse
Affiliation(s)
| | - Jared G Smith
- Population Health Research Institute, St George's, University of London, London, UK
| | - Rasooli Nia Niloofar
- Faculty of Dentistry, Oral and Craniofacial Science, King's College London, London, UK
| | - Candice Ebelthite
- IMPARTS, Mind and Body Programme, King's Health Partners, London, UK
| | - Tara Renton
- Faculty of Dentistry, Oral and Craniofacial Science, King's College London, London, UK
| |
Collapse
|
21
|
Wang L, Ma Q, Fang B, Su Y, Lu W, Liu M, Li X, Liu J, He L. Shift work is associated with an increased risk of type 2 diabetes and elevated RBP4 level: cross sectional analysis from the OHSPIW cohort study. BMC Public Health 2023; 23:1139. [PMID: 37312059 DOI: 10.1186/s12889-023-16091-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 06/09/2023] [Indexed: 06/15/2023] Open
Abstract
BACKGROUND Shift work, with its growing prevalence globally, disrupts the body's inherent circadian rhythm. This disruption may escalate the risk of chronic diseasesxacerbate chronic disease risk by dysregulating physiological, behavioral, and psychosocial pathways. This study aimed to evaluate the effect of shift work on type 2 diabetes (T2DM) and Retinol binding protein 4 (RBP4) level. METHODS The current study employed a multi-stage stratified cluster sampling technique, examining 1499 oilfield workers from the OHSPIW cohort who participated in occupational health assessments between March 2017 and June 2018.The evaluation involved shift work, sleep quality, T2DM status with questionnaires and plasma RBP4 levels in blood samples. Statistical analysis includes, Chi-square tests, t-tests, multivariate logistic regression analyses, and multivariate linear mixed models. RESULTS The prevalence rate of T2DM in shift workers (6.56%) was significantly higher than in day workers (4.21%) (OR = 1.60, 95% CI: 1.01-2.53), with no significant difference found in the family history of diabetes, hypertension, or other chronic heart diseases (P = 0.378). The shift worker (6.89 ± 3.35) also exhibited distinctly higher PSQI scores than day workers (5.99 ± 2.87) (P < 0.001). Adjusting the age, gender, BMI, family income, tobacco smoking, alcohol drinking and PSQI, hailed shift work as a risk factor for T2DM (OR = 1.91, 95% CI: 1.17-3.14). The pairwise comparison revealed significant differences in RBP4 levels across different groups: shift and non-shift workers both with and without T2DM (P < 0.001). The RBP4 level of the shift group without T2DM was higher than the non-shift group without T2DM (P < 0.05). The levels of RBP4 level in shift and non-shift groups with T2DM was higher than those without T2DM (P < 0.05). The multivariate linear mixed model showed that when age, gender, BMI, diabetes, PSQI, family income, smoking and drinking remained unchanged, the RBP4 level of the shift workers increased by an average of 9.51 μg/mL compared with the day workers. CONCLUSIONS Shift work is associated with an increased risk of T2DM and high levels of RBP4. Follow-up of RBP4 could facilitateearly detection of T2DM among shift workers.
Collapse
Grants
- 82060589 the National Natural Science Foundation of China
- 82060589 the National Natural Science Foundation of China
- 82060589 the National Natural Science Foundation of China
- 82060589 the National Natural Science Foundation of China
- 82060589 the National Natural Science Foundation of China
- 82060589 the National Natural Science Foundation of China
- 82060589 the National Natural Science Foundation of China
- 82060589 the National Natural Science Foundation of China
- 82060589 the National Natural Science Foundation of China
- SKL-HIDCA-2021-17 the State Key Laboratory Pathogenesis, Prevention and Treatment of High Incidence Diseases in Asia Fund
- SKL-HIDCA-2021-17 the State Key Laboratory Pathogenesis, Prevention and Treatment of High Incidence Diseases in Asia Fund
- SKL-HIDCA-2021-17 the State Key Laboratory Pathogenesis, Prevention and Treatment of High Incidence Diseases in Asia Fund
- SKL-HIDCA-2021-17 the State Key Laboratory Pathogenesis, Prevention and Treatment of High Incidence Diseases in Asia Fund
- SKL-HIDCA-2021-17 the State Key Laboratory Pathogenesis, Prevention and Treatment of High Incidence Diseases in Asia Fund
- SKL-HIDCA-2021-17 the State Key Laboratory Pathogenesis, Prevention and Treatment of High Incidence Diseases in Asia Fund
- SKL-HIDCA-2021-17 the State Key Laboratory Pathogenesis, Prevention and Treatment of High Incidence Diseases in Asia Fund
- SKL-HIDCA-2021-17 the State Key Laboratory Pathogenesis, Prevention and Treatment of High Incidence Diseases in Asia Fund
- SKL-HIDCA-2021-17 the State Key Laboratory Pathogenesis, Prevention and Treatment of High Incidence Diseases in Asia Fund
- SKL-SEHR-2021-05 the open project of Key Laboratory of Special Environment and Health Research, Department of Science and Technology, Xinjiang Uygur Autonomous Region
- SKL-SEHR-2021-05 the open project of Key Laboratory of Special Environment and Health Research, Department of Science and Technology, Xinjiang Uygur Autonomous Region
- SKL-SEHR-2021-05 the open project of Key Laboratory of Special Environment and Health Research, Department of Science and Technology, Xinjiang Uygur Autonomous Region
- SKL-SEHR-2021-05 the open project of Key Laboratory of Special Environment and Health Research, Department of Science and Technology, Xinjiang Uygur Autonomous Region
- SKL-SEHR-2021-05 the open project of Key Laboratory of Special Environment and Health Research, Department of Science and Technology, Xinjiang Uygur Autonomous Region
- SKL-SEHR-2021-05 the open project of Key Laboratory of Special Environment and Health Research, Department of Science and Technology, Xinjiang Uygur Autonomous Region
- SKL-SEHR-2021-05 the open project of Key Laboratory of Special Environment and Health Research, Department of Science and Technology, Xinjiang Uygur Autonomous Region
- SKL-SEHR-2021-05 the open project of Key Laboratory of Special Environment and Health Research, Department of Science and Technology, Xinjiang Uygur Autonomous Region
Collapse
Affiliation(s)
- Li Wang
- Departments of Public Health, Xinjiang Medical University, Urumqi, 830011, China
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011, China
| | - Qi Ma
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011, China
| | - BinBin Fang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011, China
| | - YinXia Su
- College of Medical Engineering and Technology, Xinjiang Medical University, Urumqi, 830011, China
| | - Wanxian Lu
- Departments of Public Health, Xinjiang Medical University, Urumqi, 830011, China
| | - Mengdi Liu
- Departments of Public Health, Xinjiang Medical University, Urumqi, 830011, China
| | - Xue Li
- Departments of Public Health, Xinjiang Medical University, Urumqi, 830011, China
| | - Jiwen Liu
- Departments of Public Health, Xinjiang Medical University, Urumqi, 830011, China.
| | - LiJuan He
- Departments of Public Health, Xinjiang Medical University, Urumqi, 830011, China.
| |
Collapse
|
22
|
Thompson J. NASA resilience and leadership: examining the phenomenon of awe. Front Psychol 2023; 14:1158437. [PMID: 37359869 PMCID: PMC10288108 DOI: 10.3389/fpsyg.2023.1158437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/16/2023] [Indexed: 06/28/2023] Open
Abstract
This study examines how a phenomenon, awe, along with related resilience practices, is perceived by a NASA medical and mental health professional, who also serves in a leadership role, and how awe has impacted their work and personal life. Considering both their leadership role and how their work involves supporting the wellbeing of astronauts pre-mission, during missions, and post-mission, the potential impact of awe on the NASA expert has individual implications along with many others, especially in stressful environments. The results indicate that reflecting on awe experiences can support a person finding meaning and purpose in their life, evoke gratitude, increase social connectedness, promote optimism and other resilience skills in the moment, and generally have a sustainable positive effect.
Collapse
Affiliation(s)
- Jeff Thompson
- Columbia University Irving Medical Center, Columbia University, New York, NY, United States
- Lipscomb University, Nashville, TN, United States
| |
Collapse
|
23
|
Freund N, Haussleiter I. Bipolar Chronobiology in Men and Mice: A Narrative Review. Brain Sci 2023; 13:738. [PMID: 37239210 PMCID: PMC10216184 DOI: 10.3390/brainsci13050738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/24/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
In patients with bipolar disorder, we do not only see a cycling of mood episodes, but also a shift in circadian rhythm. In the present overview, the circadian rhythm, the "internal clock", and their disruptions are briefly described. In addition, influences on circadian rhythms such as sleep, genetics, and environment are discussed. This description is conducted with a translational focus covering human patients as well as animal models. Concluding the current knowledge on chronobiology and bipolar disorder, implications for specificity and the course of bipolar disorder and treatment options are given at the end of this article. Taken together, circadian rhythm disruption and bipolar disorder are strongly correlated; the exact causation, however, is still unclear.
Collapse
Affiliation(s)
- Nadja Freund
- Division of Experimental and Molecular Psychiatry, Department of Psychiatry, Psychotherapy and Preventive Medicine, LWL University Hospital, Ruhr-University, 44791 Bochum, Germany;
| | - Ida Haussleiter
- Department of Psychiatry, Psychotherapy and Preventive Medicine, LWL University Hospital, Ruhr-University, 44791 Bochum, Germany
| |
Collapse
|
24
|
Codoñer-Franch P, Gombert M, Martínez-Raga J, Cenit MC. Circadian Disruption and Mental Health: The Chronotherapeutic Potential of Microbiome-Based and Dietary Strategies. Int J Mol Sci 2023; 24:7579. [PMID: 37108739 PMCID: PMC10146651 DOI: 10.3390/ijms24087579] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/13/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
Mental illness is alarmingly on the rise, and circadian disruptions linked to a modern lifestyle may largely explain this trend. Impaired circadian rhythms are associated with mental disorders. The evening chronotype, which is linked to circadian misalignment, is a risk factor for severe psychiatric symptoms and psychiatric metabolic comorbidities. Resynchronization of circadian rhythms commonly improves psychiatric symptoms. Furthermore, evidence indicates that preventing circadian misalignment may help reduce the risk of psychiatric disorders and the impact of neuro-immuno-metabolic disturbances in psychiatry. The gut microbiota exhibits diurnal rhythmicity, as largely governed by meal timing, which regulates the host's circadian rhythms. Temporal circadian regulation of feeding has emerged as a promising chronotherapeutic strategy to prevent and/or help with the treatment of mental illnesses, largely through the modulation of gut microbiota. Here, we provide an overview of the link between circadian disruption and mental illness. We summarize the connection between gut microbiota and circadian rhythms, supporting the idea that gut microbiota modulation may aid in preventing circadian misalignment and in the resynchronization of disrupted circadian rhythms. We describe diurnal microbiome rhythmicity and its related factors, highlighting the role of meal timing. Lastly, we emphasize the necessity and rationale for further research to develop effective and safe microbiome and dietary strategies based on chrononutrition to combat mental illness.
Collapse
Affiliation(s)
- Pilar Codoñer-Franch
- Department of Pediatrics, Obstetrics and Gynecology, University of Valencia, 46010 Valencia, Spain
- Department of Pediatrics, University Hospital Doctor Peset, Foundation for the Promotion of Health and Bio-Medical Research in the Valencian Region (FISABIO), 46017 Valencia, Spain
| | - Marie Gombert
- Biosciences Division, Center for Health Sciences, SRI International, Menlo Park, CA 94025, USA;
| | - José Martínez-Raga
- Department of Psychiatry and Clinical Psychology, Hospital Universitario Doctor Peset, University of Valencia, 46017 Valencia, Spain;
| | - María Carmen Cenit
- Microbial Ecology, Nutrition & Health Research Unit, Institute of Agrochemistry and Food Technology, National Research Council (IATA-CSIC), 46980 Valencia, Spain
| |
Collapse
|
25
|
Milosavljevic S, Smith AK, Wright CJ, Valafar H, Pocivavsek A. Kynurenine aminotransferase II inhibition promotes sleep and rescues impairments induced by neurodevelopmental insult. Transl Psychiatry 2023; 13:106. [PMID: 37002202 PMCID: PMC10066394 DOI: 10.1038/s41398-023-02399-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 03/14/2023] [Accepted: 03/16/2023] [Indexed: 04/03/2023] Open
Abstract
Dysregulated sleep is commonly reported in individuals with neuropsychiatric disorders, including schizophrenia (SCZ) and bipolar disorder (BPD). Physiology and pathogenesis of these disorders points to aberrant metabolism, during neurodevelopment and adulthood, of tryptophan via the kynurenine pathway (KP). Kynurenic acid (KYNA), a neuroactive KP metabolite derived from its precursor kynurenine by kynurenine aminotransferase II (KAT II), is increased in the brains of individuals with SCZ and BPD. We hypothesize that elevated KYNA, an inhibitor of glutamatergic and cholinergic neurotransmission, contributes to sleep dysfunction. Employing the embryonic kynurenine (EKyn) paradigm to elevate fetal brain KYNA, we presently examined pharmacological inhibition of KAT II to reduce KYNA in adulthood to improve sleep quality. Pregnant Wistar rats were fed either kynurenine (100 mg/day)(EKyn) or control (ECon) diet from embryonic day (ED) 15 to ED 22. Adult male (N = 24) and female (N = 23) offspring were implanted with devices to record electroencephalogram (EEG) and electromyogram (EMG) telemetrically for sleep-wake data acquisition. Each subject was treated with either vehicle or PF-04859989 (30 mg/kg, s.c.), an irreversible KAT II inhibitor, at zeitgeber time (ZT) 0 or ZT 12. KAT II inhibitor improved sleep architecture maintaining entrainment of the light-dark cycle; ZT 0 treatment with PF-04859989 induced transient improvements in rapid eye movement (REM) and non-REM (NREM) sleep during the immediate light phase, while the impact of ZT 12 treatment was delayed until the subsequent light phase. PF-04859989 administration at ZT 0 enhanced NREM delta spectral power and reduced activity and body temperature. In conclusion, reducing de novo KYNA production alleviated sleep disturbances and increased sleep quality in EKyn, while also improving sleep outcomes in ECon offspring. Our findings place attention on KAT II inhibition as a novel mechanistic approach to treating disrupted sleep behavior with potential translational implications for patients with neurodevelopmental and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Snezana Milosavljevic
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Andrew K Smith
- Department of Computer Science and Engineering, University of South Carolina, Columbia, SC, USA
| | - Courtney J Wright
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Homayoun Valafar
- Department of Computer Science and Engineering, University of South Carolina, Columbia, SC, USA
| | - Ana Pocivavsek
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA.
| |
Collapse
|
26
|
Lozano-Tovar S, Rodríguez-Agudelo Y, Dávila-Ortiz de Montellano DJ, Pérez-Aldana BE, Ortega-Vázquez A, Monroy-Jaramillo N. Relationship between APOE, PER2, PER3 and OX2R Genetic Variants and Neuropsychiatric Symptoms in Patients with Alzheimer's Disease. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:4412. [PMID: 36901420 PMCID: PMC10001852 DOI: 10.3390/ijerph20054412] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/20/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
Alzheimer's disease (AD) is characterized by the presence of neuropsychiatric or behavioral and psychological symptoms of dementia (BPSD). BPSD have been associated with the APOE_ε4 allele, which is also the major genetic AD risk factor. Although the involvement of some circadian genes and orexin receptors in sleep and behavioral disorders has been studied in some psychiatric pathologies, including AD, there are no studies considering gene-gene interactions. The associations of one variant in PER2, two in PER3, two in OX2R and two in APOE were evaluated in 31 AD patients and 31 cognitively healthy subjects. Genotyping was performed using real-time PCR and capillary electrophoresis from blood samples. The allelic-genotypic frequencies of variants were calculated for the sample study. We explored associations between allelic variants with BPSD in AD patients based on the NPI, PHQ-9 and sleeping disorders questionnaires. Our results showed that the APOE_ε4 allele is an AD risk variant (p = 0.03). The remaining genetic variants did not reveal significant differences between patients and controls. The PER3_rs228697 variant showed a nine-fold increased risk for circadian rhythm sleep-wake disorders in Mexican AD patients, and our gene-gene interaction analysis identified a novel interaction between PERIOD and APOE gene variants. These findings need to be further confirmed in larger samples.
Collapse
Affiliation(s)
- Susana Lozano-Tovar
- Facultad de Psicología, Universidad Nacional Autónoma de México (UNAM), Circuito Ciudad Universitaria Avenida, C.U., Mexico City 04510, Mexico
| | - Yaneth Rodríguez-Agudelo
- Laboratorio de Neuropsicología Clínica, Instituto Nacional de Neurología y Neurocirugía, “Manuel Velasco Suárez”, Mexico City 14269, Mexico
| | | | - Blanca Estela Pérez-Aldana
- Doctorado en Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Mexico City 04960, Mexico
| | - Alberto Ortega-Vázquez
- Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana, Unidad Xochimilco, Mexico City 04960, Mexico
| | - Nancy Monroy-Jaramillo
- Departamento de Genética, Instituto Nacional de Neurología y Neurocirugía, “Manuel Velasco Suárez”, Mexico City 14269, Mexico
| |
Collapse
|