1
|
Tan Z, Chen L, Ye Z, Lu Q. Xiaohuang Qudan decoction alleviates ANIT-induced cholestatic liver injury by inhibiting the JAK2/STAT3 pathway and regulating TH17/Treg. Chin J Nat Med 2025; 23:457-470. [PMID: 40274348 DOI: 10.1016/s1875-5364(25)60854-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/21/2024] [Accepted: 05/09/2024] [Indexed: 04/26/2025]
Abstract
Xiaohuang Qudan decoction (XHQDD) is a classical traditional Chinese medicine (TCM) formula widely used in the treatment of cholestatic liver injury. Despite its widespread use, the protective mechanism of XHQDD against cholestatic liver injury remains incompletely understood. The aim of this study was to investigate whether XHQDD mediates its beneficial effects by inhibiting the Janus kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) pathway and regulating TH17/Treg balance. To this end, the researchers used Sprague-Dawley (SD) rats and established a cholestatic liver injury model by oral administration of alpha-naphthylisothiocyanate (ANIT). The experimental group was divided into six groups: Control (CON), ANIT, ursodeoxycholic acid (UDCA), XHQDD-low dose (XHQDD-L) group, XHQDD-medium dose (XHQDD-M) group, and XHQDD-high dose (XHQDD-H) groups. Then, after 7 d of treatment, various tests were performed to verify the results. Firstly, XHQDD and its drug-containing serum were analyzed by ultra-high performance liquid chromatography-mass spectrometry/mass spectrometry (UPLC-MS/MS), and 14 blood-entry components were identified. Then, bile flow was monitored and found to be significantly reduced in the model group, which was significantly reversed in the UDCA and XHQDD groups. To further assess ANIT-induced liver injury, hematoxylin and eosin (H&E) and Sirius red staining, alongside transmission electron microscopy (TEM), were employed to observe liver tissues, revealing hepatocellular injury, cholestasis, and hepatic fibrotic changes. Serum inflammatory factors and liver injury indicators were assessed using enzyme-linked immunosorbent assay (ELISA), indicating an inflammatory state in ANIT-induced liver injury rats. The expression levels of JAK2/STAT3-related genes and proteins in liver and intestinal tissues were measured via quantitative reverse transcription polymerase chain reaction (qRT-PCR), immunohistochemistry, immunofluorescence (IF) staining, and Western blottting (WB) assays. These studies revealed that the inflammatory state of liver-injured rats was inextricably linked to the inflammatory cascade associated with the JAK2/STAT3 pathway and that XHQDD may exert anti-inflammatory efficacy by inhibiting the JAK2/STAT3 pathway. Flow cytometry was used to determine the percentage of T helper 17 (Th17)/regulatory T (Treg) cells in serum and hepatocytes, and it was further found that XHQDD was able to regulate Th17/Treg immune homeostasis in liver-injured rats. The findings suggest that XHQDD markedly alleviates inflammation in ANIT rats, potentially treating cholestasis and liver injury through JAK2/STAT3 inhibition and Th17/Treg balance regulation.
Collapse
Affiliation(s)
- Zhangkui Tan
- Department of Rheumatology and Immunology, General Hospital of Central Theater Command of the People's Liberation Army, Wuhan 430070, China
| | - Lifeng Chen
- Department of Rheumatology and Immunology, General Hospital of Central Theater Command of the People's Liberation Army, Wuhan 430070, China
| | - Zhiqin Ye
- Department of Rheumatology, Hubei Provincial Hospital of Traditional Chinese Medicine, affiliated with Hubei University of Chinese Medicine, Wuhan 430061, China
| | - Qiping Lu
- Department of General Surgery, General Hospital of Central Theater Command of the People's Liberation Army, Wuhan 430070, China.
| |
Collapse
|
2
|
Liu W, Liu S, Deng L, Liang X, Jiang Y. Heterogeneous interfaces in confined microdomains of glycyrrhizic acid for polymorphism selection: Mechanisms and applications. J Colloid Interface Sci 2025; 682:1017-1027. [PMID: 39662228 DOI: 10.1016/j.jcis.2024.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 12/01/2024] [Accepted: 12/03/2024] [Indexed: 12/13/2024]
Abstract
Understanding the mechanisms of heterogeneous nucleation to improve the precision and applicability of polymorphism selection remains challenging. In this study, the formation of confined microdomains with heterogeneous interfaces in the micelle and gel systems were reported based on the supramolecular self-assembly of glycyrrhizic acid. The polymorph with high-purity preparation of isonicotinamide and nicotinamide was achieved due to the high degree of supersaturation and diverse nucleation pathways. In situ spectroscopy and molecular simulations provided insights into the mechanism of polymorphism selection in molecular migration and cluster aggregation, revealing the influence of a heterogeneous templated effect and protonation effect during nucleation and growth. The selective induction of dominant polymorph with chain structure (Form II of isonicotinamide and Form ε of nicotinamide) validated the efficacy and applicability of this approach. Furthermore, the effective loading (up to 4-fold), enhanced stability (up to 2 months), and pH-responsive release of the dominant polymorphs exhibited the potential of glycyrrhizic acid systems for drug delivery. This study provides a promising approach for the selective induction and efficient delivery of dominant polymorphs, which contributes to a deeper understanding of heterogeneous nucleation.
Collapse
Affiliation(s)
- Weiqi Liu
- Guangdong Provincial Key Lab of Green Chemical Product Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Shiyuan Liu
- Center for Electron Microscopy, South China University of Technology, Guangzhou 511442, China
| | - Long Deng
- Guangdong Provincial Key Lab of Green Chemical Product Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China; School of Materials Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Xiaoxiao Liang
- Guangdong Provincial Key Lab of Green Chemical Product Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yanbin Jiang
- Guangdong Provincial Key Lab of Green Chemical Product Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
3
|
Bayoude A, Zhang J, Shen Y, Tilyek A, Chai C. Ribes diacanthum Pall modulates bile acid homeostasis and oxidative stress in cholestatic mice by activating the SIRT1/FXR and Keap1/Nrf2 signaling pathways. JOURNAL OF ETHNOPHARMACOLOGY 2025; 342:119400. [PMID: 39864603 DOI: 10.1016/j.jep.2025.119400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 01/20/2025] [Accepted: 01/23/2025] [Indexed: 01/28/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cholestatic liver injury (CLI) is a pathophysiological syndrome characterized by the accumulation of bile acids (BAs), which leads to significant hepatic dysfunction. This condition is frequently associated with disturbances in BAs homeostasis and the induction of oxidative stress. Ribes diacanthum Pall (RDP), a conventional folk medicinal plant, has been employed in Mongolia, the Inner Mongolia region of China, and other areas for the remediation of hepatic disorders. However, the specific mechanism and chemical composition by which RDP exerts its effects remain unknown. AIM OF THE STUDY The aim of this research was to assess the protective impact of RDP on CLI and probe into the underlying mechanism and pinpoint the active constituents of RDP. MATERIALS AND METHODS For this study, a CLI mouse model induced via bile duct ligation (BDL) was used to investigate the hepatoprotective effect of RDP. Mice were administered low, medium, or high doses of RDP for 6 consecutive days, beginning 3 days prior to BDL induction. Subsequently, serum biochemical parameters, hepatic histopathology, and cholestatic markers were analyzed. An HPLC-QTOF-MS/MS analysis was also conducted to identify the prototype constituents in RDP. Furthermore, component-directed network pharmacology was utilized to identify the active constituents, central targets, and signaling cascades of RDP. Eventually, quantitative real-time polymerase chain reaction (qRT-PCR) and Western blotting were adopted to confirm the associated antioxidant enzymes, BAs transporters, and metabolic enzymes. Molecular docking was applied to forecast the binding affinity between the components and core targets. RESULTS RDP effectively ameliorated the pathological liver damage and cholestasis in BDL-induced CLI mice. Moreover, 43 components within RDP were identified through HPLC-QTOF-MS/MS analysis. Altogether 106 potential targets were detected, and the high-affinity targets, namely Keap1 and SIRT1, were located through the PPI network. The results of GO and KEGG analysis indicated that the reaction to oxidative stress and BAs homeostasis are significantly associated with the RDP treatment of CLI. In the in vivo experimental study, the findings revealed that RDP alleviated the BDL-induced oxidative damage. Simultaneously, RDP augmented the expressions of BAs efflux transporters and the metabolic enzymes in liver tissues, thus promoting BAs excretion and metabolism in cholestatic rodents. Mechanically, RDP attenuated hepatic oxidative stress and the accumulation of BAs, protecting the liver from BDL-induced cholestasis via the Keap1/Nrf2 and SIRT1/FXR signaling axis. The molecular docking result indicated that bolusanthol C and 3,6,3',4'-tetrahydroxyflavone possess a superior binding affinity to the two core targets (Keap1, SIRT1). CONCLUSION These results suggest that RDP ameliorate CLI by regulating BAs homeostasis and alleviating oxidative stress through the SIRT1/FXR and Keap1/Nrf2 signaling pathways, presenting a novel therapeutic strategy for cholestasis. Additionally, bolusanthol C and 3,6,3',4'-tetrahydroxyflavone may function as key pharmacological agents in RDP, responsible for its protective effects against CLI.
Collapse
Affiliation(s)
- Alamusi Bayoude
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, China; Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing, 211198, China
| | - Jiaxin Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, China; Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing, 211198, China
| | - Yuanjiang Shen
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, China; Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing, 211198, China
| | - Akhtolkhyn Tilyek
- Department of Pharmaceutical Chemistry and Pharmacognosy, Mongolian University of Pharmaceutical Sciences, Ulaanbaatar, 18130, Mongolia
| | - Chengzhi Chai
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, China; Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
4
|
Song C, Wang W, Hua Y, Liu A. 18beta-glycyrrhetinic acid alleviates deoxynivalenol-induced hepatotoxicity by inhibiting GPX4-dependent ferroptosis. Toxicon 2025; 255:108228. [PMID: 39798898 DOI: 10.1016/j.toxicon.2025.108228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/25/2024] [Accepted: 01/06/2025] [Indexed: 01/15/2025]
Abstract
Deoxynivalenol (DON), a mycotoxin that severely contaminates agri-food products can cause hepatotoxicity. Ferroptosis is an iron-dependent form of cell death, and the liver is an important organ for iron accumulation. 18beta-glycyrrhetinic acid (GA) has anti-ferroptosis and hepatoprotective effects. This study aimed to investigate the role of ferroptosis in the protective effects of GA against DON-induced hepatotoxicity in HepG2 cells and mice. The in vitro results revealed that DON (0.4 μM) decreased GPX4, SLC7A11, GCLC, NQO1, and Nrf2 expression; promoted TFR-1 expression and MDA, 4-HNE, and total ROS production; accelerated GSH depletion; and enhanced lipid ROS accumulation and Fe(II) overload, leading to ferroptosis. Pre-treatment with GA (0.4 and 6 μM) reversed these changes and alleviated DON-induced ferroptosis, thereby increasing cell viability and proliferation. In vivo results also showed that GA (10 mg/kg bw) pre-administration attenuated DON (2 mg/kg bw)-induced mouse liver injury, in part by inhibiting ferroptosis through reducing mitochondrial damage and lipid peroxidation. In addition, GA prevented erastin- and RSL3-induced ferroptosis by promoting GPX4 and SLC7A11 expression. Altogether, GA attenuated DON-induced hepatotoxicity by preventing ferroptosis via activation of GPX4-dependent pathway. The findings of this study provide a theoretical basis for the prevention of food mycotoxin toxicity.
Collapse
Affiliation(s)
- Chenchen Song
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning Hubei 437100, China
| | - Wei Wang
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning Hubei 437100, China
| | - Yu Hua
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning Hubei 437100, China
| | - Aimei Liu
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, China; Hubei Key Laboratory of Diabetes and Angiopathy, Medicine Research Institute, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China.
| |
Collapse
|
5
|
Han D, Wang F, Jiang Q, Qiao Z, Zhuang Y, An Q, Li Y, Tang Y, Li C, Shen D. Enhancing Cardioprotection Through Neutrophil-Mediated Delivery of 18β-Glycyrrhetinic Acid in Myocardial Ischemia/Reperfusion Injury. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2406124. [PMID: 39264272 PMCID: PMC11558124 DOI: 10.1002/advs.202406124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/08/2024] [Indexed: 09/13/2024]
Abstract
Myocardial ischemia/reperfusion injury (MI/RI) generates reactive oxygen species (ROS) and initiates inflammatory responses. Traditional therapies targeting specific cytokines or ROS often prove inadequate. An innovative drug delivery system (DDS) is developed using neutrophil decoys (NDs) that encapsulate 18β-glycyrrhetinic acid (GA) within a hydrolyzable oxalate polymer (HOP) and neutrophil membrane vesicles (NMVs). These NDs are responsive to hydrogen peroxide (H2O2), enabling controlled GA release. Additionally, NDs adsorb inflammatory factors, thereby reducing inflammation. They exhibit enhanced adhesion to inflamed endothelial cells (ECs) and improved penetration. Once internalized by cardiomyocytes through clathrin-mediated endocytosis, NDs protect against ROS-induced damage and inhibit HMGB1 translocation. In vivo studies show that NDs preferentially accumulate in injured myocardium, reducing infarct size, mitigating adverse remodeling, and enhancing cardiac function, all while maintaining favorable biosafety profiles. This neutrophil-based system offers a promising targeted therapy for MI/RI by addressing both inflammation and ROS, holding potential for future clinical applications.
Collapse
Affiliation(s)
- Dongjian Han
- Department of CardiologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhou450052China
- Key Laboratory of Cardiac Injury and Repair of Henan ProvinceZhengzhou450018China
| | - Fuhang Wang
- Department of CardiologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhou450052China
- Key Laboratory of Cardiac Injury and Repair of Henan ProvinceZhengzhou450018China
| | - Qingjiao Jiang
- Department of CardiologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhou450052China
- Key Laboratory of Cardiac Injury and Repair of Henan ProvinceZhengzhou450018China
| | - Zhentao Qiao
- Department of Vascular and Endovascular SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhou450052China
| | - Yuansong Zhuang
- Department of CardiologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhou450052China
- Key Laboratory of Cardiac Injury and Repair of Henan ProvinceZhengzhou450018China
| | - Quanxu An
- Department of CardiologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhou450052China
- Key Laboratory of Cardiac Injury and Repair of Henan ProvinceZhengzhou450018China
| | - Yuhang Li
- Department of CardiologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhou450052China
- Key Laboratory of Cardiac Injury and Repair of Henan ProvinceZhengzhou450018China
| | - Yazhe Tang
- Department of CardiologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhou450052China
- Key Laboratory of Cardiac Injury and Repair of Henan ProvinceZhengzhou450018China
| | - Chenyao Li
- Department of CardiologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhou450052China
- Key Laboratory of Cardiac Injury and Repair of Henan ProvinceZhengzhou450018China
| | - Deliang Shen
- Department of CardiologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhou450052China
- Key Laboratory of Cardiac Injury and Repair of Henan ProvinceZhengzhou450018China
| |
Collapse
|
6
|
Luo Z, Zhou W, Xie T, Xu W, Shi C, Xiao Z, Si Y, Ma Y, Ren Q, Di L, Shan J. The role of botanical triterpenoids and steroids in bile acid metabolism, transport, and signaling: Pharmacological and toxicological implications. Acta Pharm Sin B 2024; 14:3385-3415. [PMID: 39220868 PMCID: PMC11365449 DOI: 10.1016/j.apsb.2024.04.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/28/2024] [Accepted: 04/22/2024] [Indexed: 09/04/2024] Open
Abstract
Bile acids (BAs) are synthesized by the host liver from cholesterol and are delivered to the intestine, where they undergo further metabolism by gut microbes and circulate between the liver and intestines through various transporters. They serve to emulsify dietary lipids and act as signaling molecules, regulating the host's metabolism and immune homeostasis through specific receptors. Therefore, disruptions in BA metabolism, transport, and signaling are closely associated with cholestasis, metabolic disorders, autoimmune diseases, and others. Botanical triterpenoids and steroids share structural similarities with BAs, and they have been found to modulate BA metabolism, transport, and signaling, potentially exerting pharmacological or toxicological effects. Here, we have updated the research progress on BA, with a particular emphasis on new-found microbial BAs. Additionally, the latest advancements in targeting BA metabolism and signaling for disease treatment are highlighted. Subsequently, the roles of botanical triterpenoids in BA metabolism, transport, and signaling are examined, analyzing their potential pharmacological, toxicological, or drug interaction effects through these mechanisms. Finally, a research paradigm is proposed that utilizes the gut microbiota as a link to interpret the role of these important natural products in BA signaling.
Collapse
Affiliation(s)
- Zichen Luo
- Medical Metabolomics Center, Institute of Pediatrics, Jiangsu Key Laboratory of Children’s Health and Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Wei Zhou
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Tong Xie
- Medical Metabolomics Center, Institute of Pediatrics, Jiangsu Key Laboratory of Children’s Health and Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Weichen Xu
- Medical Metabolomics Center, Institute of Pediatrics, Jiangsu Key Laboratory of Children’s Health and Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Chen Shi
- Medical Metabolomics Center, Institute of Pediatrics, Jiangsu Key Laboratory of Children’s Health and Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zihan Xiao
- Medical Metabolomics Center, Institute of Pediatrics, Jiangsu Key Laboratory of Children’s Health and Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yu Si
- Jiangsu CM Clinical Medicine Innovation Center for Obstetrics, Gynecology, and Reproduction, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210001, China
| | - Yan Ma
- National Institute of Biological Sciences, Beijing 102206, China
| | - Qingling Ren
- Jiangsu CM Clinical Medicine Innovation Center for Obstetrics, Gynecology, and Reproduction, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210001, China
| | - Liuqing Di
- Jiangsu Engineering Research Center for Efficient Delivery System of TCM, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jinjun Shan
- Medical Metabolomics Center, Institute of Pediatrics, Jiangsu Key Laboratory of Children’s Health and Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
7
|
Yahya MA, Alshammari GM, Osman MA, Al-Harbi LN, Yagoub AEA, AlSedairy SA. Liquorice root extract and isoliquiritigenin attenuate high-fat diet-induced hepatic steatosis and damage in rats by regulating AMPK. Arch Physiol Biochem 2024; 130:385-400. [PMID: 36121371 DOI: 10.1080/13813455.2022.2102654] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 07/05/2022] [Accepted: 07/08/2022] [Indexed: 11/11/2022]
Abstract
Objective: This study compared the ability of Liquorice roots aqueous extract (LRE) and its ingredient, isoliquiritigenin (ISL), in alleviating high-fat diet (HFD)-induced hepatic steatosis and examined if this effect involves activation of AMPK.Materials and methods: Control or HFD-fed rats were treated with the vehicle, LRE (200 mg/kg), or ISL (30 mg/kg) for 8 weeks orally.Results: ISL and LRE reduced HFD-induced hyperglycaemia, improved liver structure, lowered serum and hepatic lipids, and attenuated hepatic oxidative stress and inflammation. In the control and HFD-fed rats, ISL and LRE significantly stimulated the muscular and hepatic mRNA and protein levels of AMPK, improved oral glucose tolerance, reduced hepatic mRNA levels of SREBP1/2, and upregulated hepatic levels of PPARα and Bcl2. These effects were comparable for ISL and LRE and were prevented by co-administration of compound C, an AMPK inhibitor.Discussion and conclusion: ISL and LRE provide an effective theory to alleviate hepatic steatosis through activating AMPK.
Collapse
Affiliation(s)
- Mohammed Abdo Yahya
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Ghedeir M Alshammari
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Magdi A Osman
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Laila Naif Al-Harbi
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Abu ElGasim A Yagoub
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Sahar Abdulaziz AlSedairy
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
8
|
Liu Z, Chen L, Chen M, Linghu L, Liao Z, Chen M, Wang G. Sarmentol H derived from Sedum sarmentosum Bunge directly targets FXR to mitigate cholestasis by recruiting SRC-1. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 130:155759. [PMID: 38788394 DOI: 10.1016/j.phymed.2024.155759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/17/2024] [Accepted: 05/17/2024] [Indexed: 05/26/2024]
Abstract
BACKGROUND Farnesoid X receptor (FXR) is a vital receptor for bile acids and plays an important role in the treatment of cholestatic liver disease. In addition to traditional bile acid-based steroidal agonists, synthetic alkaloids are the most commonly reported non-steroidal FXR agonists. Sarmentol H is a nor-sesquiterpenoid obtained from Sedum sarmentosum Bunge, and in vitro screening experiments have shown that it might be related to the regulation of the FXR pathway in a previous study. PURPOSE To investigate the therapeutic effects of sarmentol H on cholestasis and to determine whether sarmentol H directly targets FXR to mitigate cholestasis. Furthermore, this study aimed to explore the key amino acid residues involved in the binding of sarmentol H to FXR through site-directed mutagenesis. METHODS An intrahepatic cholestasis mouse model was established to investigate the therapeutic effects of sarmentol H on cholestasis. In vitro experiments, including Co-Ip and FXR-EcRE-Luc assays, were performed to assess whether sarmentol H activates FXR by recruiting the receptor coactivator SRC1. CETSA, SIP, DARTS, and ITC were used to determine the binding of sarmentol H to FXR protein. The key amino acid residues for sarmentol H binding to FXR were analyzed by molecular docking and site-directed mutagenesis. Finally, we conducted in vivo experiments on wild-type and Fxr-/- mice to further validate the anticholestatic target of sarmentol H. RESULTS Sarmentol H had significant ameliorative effects on the pathological conditions of cholestatic mice induced with ANIT. In vitro experiments suggested that it is capable of activating FXR and regulating downstream signaling pathways by recruiting SRC1. The target validation experiments showed that sarmentol H had the ability to bind to FXR as a ligand (KD = 2.55 μmol/L) and enhance the stability of its spatial structure. Moreover, site-directed mutagenesis revealed that THR292 and TYR365 were key binding sites for sarmentol H and FXR. Furthermore, knockout of the Fxr gene resulted in a significantly higher degree of ANIT-induced cholestatic liver injury than that in wild-type cholestatic mice, and the amelioration of cholestasis or regulatory effects on FXR downstream genes by sarmentol H also disappeared in Fxr-/- cholestatic mice. CONCLUSION Sarmentol H is an FXR agonist. This is the first study to show that it exerts a significant therapeutic effect on cholestatic mice, and can directly bind to FXR and activate it by recruiting the coactivator SRC1.
Collapse
Affiliation(s)
- Zhenxiu Liu
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Lin Chen
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Mingyun Chen
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Lang Linghu
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Zhihua Liao
- School of Life Sciences, Southwest University, Chongqing, China
| | - Min Chen
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China.
| | - Guowei Wang
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China.
| |
Collapse
|
9
|
Hu Z, Cheng X, Cai J, Huang C, Hu J, Liu J. Emodin alleviates cholestatic liver injury by modulating Sirt1/Fxr signaling pathways. Sci Rep 2024; 14:16756. [PMID: 39033253 PMCID: PMC11271454 DOI: 10.1038/s41598-024-67882-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024] Open
Abstract
Emodin (EMO) has the effect of anti-cholestasis induced by alpha-naphthylisothiocyanate (ANIT). But its mechanism is still unclear. The farnesoid X receptor (Fxr) is the master bile acid nuclear receptor. Recent studies have reported that Sirtuin 1 (Sirt1) can regulate the activities of Fxr. The purpose of the current study was to investigate the mechanism of EMO against ANIT-induced liver injury based on Sirt1/Fxr signaling pathway. The ANIT-induced cholestatic rats were used with or without EMO treatment. Serum biochemical indicators, as well as liver histopathological changes were examined. The genes expressions of Sirt1, Fxr, Shp, Bsep and Mrp2 were detected. The expressions of Sirt1, Fxr and their downstream related genes were investigated in vitro. The results showed that EMO significantly alleviated ANIT-induced liver injury in rats, and increased Sirt1, Fxr, Shp, Bsep and Mrp2 gene expression in liver, while decreased the expression of Cyp7a1. EMO significantly activated Fxr, while Sirt1 inhibitor and Sirt1 gene silencing significantly reduced Fxr activity in vitro. Collectively, EMO in the right dose has a protective effect on liver injury induced by ANIT, and the mechanism may be through activation of Fxr by Sirt1, thus regulating bile acid metabolism, and reducing bile acid load in hepatocytes.
Collapse
Affiliation(s)
- Zhi Hu
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, People's Republic of China
| | - Xiaohua Cheng
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, People's Republic of China
| | - Jun Cai
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, People's Republic of China
| | - Chao Huang
- School of Pharmacy, Nanchang University, Nanchang, 330031, People's Republic of China
| | - Jinfang Hu
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, People's Republic of China.
| | - Jianming Liu
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, People's Republic of China.
| |
Collapse
|
10
|
Li X, Liang X, Gu X, Zou M, Cao W, Liu C, Wang X. Ursodeoxycholic acid and 18β-glycyrrhetinic acid alleviate ethinylestradiol-induced cholestasis via downregulating RORγt and CXCR3 signaling pathway in iNKT cells. Toxicol In Vitro 2024; 96:105782. [PMID: 38244730 DOI: 10.1016/j.tiv.2024.105782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 11/04/2023] [Accepted: 01/15/2024] [Indexed: 01/22/2024]
Abstract
Estrogen-induced intrahepatic cholestasis (IHC) is a mild but potentially serious risk and urges for new therapeutic targets and effective treatment. Our previous study demonstrated that RORγt and CXCR3 signaling pathway of invariant natural killer T (iNKT) 17 cells play pathogenic roles in 17α-ethinylestradiol (EE)-induced IHC. Ursodeoxycholic acid (UDCA) and 18β-glycyrrhetinic acid (GA) present a protective effect on IHC partially due to their immunomodulatory properties. Hence in present study, we aim to investigate the effectiveness of UDCA and 18β-GA in vitro and verify the accessibility of the above targets. Biochemical index measurement indicated that UDCA and 18β-GA presented efficacy to alleviate EE-induced cholestatic cytotoxicity. Both UDCA and 18β-GA exhibited suppression on the CXCL9/10-CXCR3 axis, and significantly restrained the expression of RORγt in vitro. In conclusion, our observations provide new therapeutic targets of UDCA and 18β-GA, and 18β-GA as an alternative treatment for EE-induced cholestasis.
Collapse
Affiliation(s)
- Xinyu Li
- State Key Laboratory of Natural Medicines, New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, 210009, China
| | - Xiaojing Liang
- State Key Laboratory of Natural Medicines, New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, 210009, China
| | - Xiaoxia Gu
- Department of Obstetrics and Gynecology, Zhongda Hospital, Southeast University, Nanjing 210009, China
| | - Mengzhi Zou
- State Key Laboratory of Natural Medicines, New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, 210009, China
| | - Weiping Cao
- Departments of Obstetrics, Maternity and Child Health Hospital of Zhenjiang, Zhenjiang 212001, China.
| | - Chunhui Liu
- Physics and Chemistry Test Center of Jiangsu Province, 210042 Nanjing, China.
| | - Xinzhi Wang
- State Key Laboratory of Natural Medicines, New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
11
|
Chen L, Gong J, Yong X, Li Y, Wang S. A review of typical biological activities of glycyrrhetinic acid and its derivatives. RSC Adv 2024; 14:6557-6597. [PMID: 38390501 PMCID: PMC10882267 DOI: 10.1039/d3ra08025k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 02/01/2024] [Indexed: 02/24/2024] Open
Abstract
Glycyrrhetinic acid, a triterpenoid compound primarily sourced from licorice root, exhibits noteworthy biological attributes, including anti-inflammatory, anti-tumor, antibacterial, antiviral, and antioxidant effects. Despite these commendable effects, its further advancement and application, especially in clinical use, have been hindered by its limited druggability, including challenges such as low solubility and bioavailability. To enhance its biological activity and pharmaceutical efficacy, numerous research studies focus on the structural modification, associated biological activity data, and underlying mechanisms of glycyrrhetinic acid and its derivatives. This review endeavors to systematically compile and organize glycyrrhetinic acid derivatives that have demonstrated outstanding biological activities over the preceding decade, delineating their molecular structures, biological effects, underlying mechanisms, and future prospects for assisting researchers in finding and designing novel glycyrrhetinic acid derivatives, foster the exploration of structure-activity relationships, and aid in the screening of potential candidate compounds.
Collapse
Affiliation(s)
- Liang Chen
- Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Pharmacy Hainan Medical University No. 3, XueYuan Road, LongHua District Haikou City Hainan Province 571199 China
| | - Jingwen Gong
- Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Pharmacy Hainan Medical University No. 3, XueYuan Road, LongHua District Haikou City Hainan Province 571199 China
| | - Xu Yong
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University Shanghai 200433 China
| | - Youbin Li
- Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Pharmacy Hainan Medical University No. 3, XueYuan Road, LongHua District Haikou City Hainan Province 571199 China
| | - Shuojin Wang
- Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Pharmacy Hainan Medical University No. 3, XueYuan Road, LongHua District Haikou City Hainan Province 571199 China
| |
Collapse
|
12
|
Lai X, Zhou H, Wan Y, Kuang J, Yang Y, Mai L, Chen Y, Liu B. Magnesium isoglycyrrhizinate attenuates nonalcoholic fatty liver disease by strengthening intestinal mucosal barrier. Int Immunopharmacol 2024; 128:111429. [PMID: 38171057 DOI: 10.1016/j.intimp.2023.111429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 12/11/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD)/nonalcoholic steatohepatitis (NASH) has recently risen to the top spot among chronic liver diseases in the world. However, there are no recognized treatments for it. Magnesium isoglycyrrhizate (MgIG) has potential as a NAFLD/NASH therapy. AIMS To investigate the efficacy of MgIG in improving NAFLD/NASH and the possible pathways and mechanisms. METHODS C57bl/6 mice were fed a high-fat diet (HFD) and 1 % dextran sulfate sodium (DSS) for 12 weeks to establish the NAFLD/NASH model. MgIG was administered by gavage during the last 7 weeks. First, the therapeutic effects of MgIG on hepatic steatosis and fibrosis, liver injury, and inflammation in the NAFLD/NASH mice were evaluated. Second, liver oxidative stress and hepatocyte apoptosis were detected. Finally, the effect of MgIG on intestinal permeability and short-chain fatty acid (SCFA) levels in mice's intestinal contents were examined. RESULTS MgIG administration attenuated HFD-induced hepatic steatosis and fibrosis, improved serum biochemical and NAFLD/NASH mice, reduced liver oxidative stress and hepatocyte apoptosis, improved intestinal permeability, and increased fecal SCFA levels in NAFLD/NASH mice. CONCLUSION MgIG protects against HFD-induced NAFLD/NASH through multiple pathways as well as mechanisms and holds promise as a potentially effective treatment for NAFLD/NASH.
Collapse
Affiliation(s)
- Xueying Lai
- Department of Gastroenterology, Panyu Central Hospital, Guangzhou, 511400, China
| | - Hong Zhou
- National Clinical Research Center for Kidney Disease, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yu Wan
- Department of Gastroenterology, Panyu Central Hospital, Guangzhou, 511400, China
| | - Jiesi Kuang
- Department of Gastroenterology, Panyu Central Hospital, Guangzhou, 511400, China
| | - Yuhui Yang
- Department of Gastroenterology, Panyu Central Hospital, Guangzhou, 511400, China
| | - Limei Mai
- Department of Gastroenterology, Panyu Central Hospital, Guangzhou, 511400, China
| | - Yumei Chen
- Department of Infectious Diseases, Panyu Central Hospital, Guangzhou, 511400, China
| | - Bin Liu
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
13
|
Zou B, Zhang S, Zhao J, Song G, Weng F, Xu X, Li F, Jin J, Yan D, Huang K, Liu C, Li Y, Qiu F. Glycyrrhetinic acid attenuates endoplasmic reticulum stress-induced hepatocyte apoptosis via CHOP/DR5/Caspase 8 pathway in cholestasis. Eur J Pharmacol 2023; 961:176193. [PMID: 37981257 DOI: 10.1016/j.ejphar.2023.176193] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/19/2023] [Accepted: 11/07/2023] [Indexed: 11/21/2023]
Abstract
Bile acid (BA)-induced apoptosis is a common pathologic feature of cholestatic liver injury. Glycyrrhetinic acid (GA) is the hepatoprotective constituent of licorice. In the present study, the anti-apoptotic potential of GA was investigated in wild type and macrophage-depleted C57BL/6 mice challenged with alpha-naphthyl isothiocyanate (ANIT), and hepatocytes stimulated with Taurocholic acid (TCA) or Tumor necrosis factor-alpha (TNF-α). Apoptosis was determined by TUNEL positive cells and expression of executioner caspases. Firstly, we found that GA markedly alleviated liver injury, accompanied with reduced positive TUNEL-staining cells, and expression of caspases 3, 8 and 9 in mice modeled with ANIT. Secondly, GA mitigated apoptosis in macrophage-depleted mice with exacerbated liver injury and augmented cell apoptosis. In vitro study, pre-treatment with GA reduced the expression of activated caspases 3 and 8 in hepatocytes stimulated with TCA, but not TNF-α. The ability of GA to ameliorate apoptosis was abolished in the presence of Tauroursodeoxycholic Acid (TUDCA), a chemical chaperon against Endoplasmic reticulum stress (ER stress). Furthermore, GA attenuated the over-expression of Glucose regulated protein 78 (GRP78), and blocked all three branches of Unfolded protein reaction (UPR) in cholestatic livers of mice induced by ANIT. GA also downregulated C/EBP homologous protein (CHOP) expression, accompanied with reduced expression of Death receptor 5 (DR5) and activation of caspase 8 in both ANIT-modeled mice and TCA-stimulated hepatocytes. The results indicate that GA inhibits ER stress-induced hepatocyte apoptosis in cholestasis, which correlates with blocking CHOP/DR5/Caspase 8 pathway.
Collapse
Affiliation(s)
- Bin Zou
- Laboratory of Clinical Pharmacokinetics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201213, China
| | - Shuang Zhang
- Laboratory of Clinical Pharmacokinetics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201213, China
| | - Jing Zhao
- Laboratory of Clinical Pharmacokinetics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201213, China
| | - Guochao Song
- Laboratory of Clinical Pharmacokinetics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201213, China
| | - Fengyi Weng
- Laboratory of Clinical Pharmacokinetics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201213, China
| | - Xiaoqing Xu
- Laboratory of Clinical Pharmacokinetics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201213, China
| | - Fengling Li
- Laboratory of Clinical Pharmacokinetics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201213, China
| | - Jingyi Jin
- Laboratory of Clinical Pharmacokinetics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201213, China
| | - Dongming Yan
- Laboratory of Clinical Pharmacokinetics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201213, China
| | - Kai Huang
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201213, China
| | - Chenghai Liu
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201213, China.
| | - Yue Li
- Laboratory of Clinical Pharmacokinetics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201213, China.
| | - Furong Qiu
- Laboratory of Clinical Pharmacokinetics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201213, China.
| |
Collapse
|
14
|
Cui Y, Zhang C, Zhang X, Yu X, Ma Y, Qin X, Ma Z. Integrated serum pharmacochemistry and metabolomics reveal potential effective components and mechanisms of Shengjiang Xiexin decoction in the treatment of Clostridium difficile infection. Heliyon 2023; 9:e15602. [PMID: 37206044 PMCID: PMC10189181 DOI: 10.1016/j.heliyon.2023.e15602] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/13/2023] [Accepted: 04/18/2023] [Indexed: 05/21/2023] Open
Abstract
Shengjiang Xiexin Decoction (SXD) is a widely recognized formula in Traditional Chinese Medicine (TCM) for treating diarrhea and is commonly used in clinical practice. Clostridium difficile infection (CDI) is a type of antibiotic-associated diarrhea with a rising incidence rate that has severe consequences for humans. Recent clinical applications have found significant efficacy in using SXD as an adjunct to CDI treatment. However, the pharmacodynamic substance basis and therapeutic mechanism of SXD remain unclear. This study aimed to systematically analyze the metabolic mechanisms and key pharmacodynamic components of SXD in CDI mice by combining non-targeted metabolomics of Chinese medicine and serum medicinal chemistry. We established a CDI mouse model to observe the therapeutic effect of SXD on CDI. We investigated the mechanism of action and active substance composition of SXD against CDI by analyzing 16S rDNA gut microbiota, untargeted serum metabolomics, and serum pharmacochemistry. We also constructed a multi-scale, multifactorial network for overall visualization and analysis. Our results showed that SXD significantly reduced fecal toxin levels and attenuated colonic injury in CDI model mice. Additionally, SXD partially restored CDI-induced gut microbiota composition. Non-targeted serum metabolomics studies showed that SXD not only regulated Taurine and hypotaurine metabolism but also metabolic energy and amino acid pathways such as Ascorbate and aldarate metabolism, Glycerolipid metabolism, Pentose and glucuronate interconversions, as well as body and other metabolite production in the host. Through the implementation of network analysis methodologies, we have discerned that Panaxadiol, Methoxylutcolin, Ginsenoside-Rf, Suffruticoside A, and 10 other components serve as critical potential pharmacodynamic substance bases of SXD for CDI. This study reveals the metabolic mechanism and active substance components of SXD for the treatment of CDI mice using phenotypic information, gut microbiome, herbal metabolomics, and serum pharmacochemistry. It provides a theoretical basis for SXD quality control studies.
Collapse
Affiliation(s)
- Yutao Cui
- Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
- Bayannur City Hospital, Bayannaoer, China
| | - Congen Zhang
- Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xueqiang Zhang
- Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xiaohong Yu
- Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yuqin Ma
- Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xuemei Qin
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
- Corresponding author.
| | - Zhijie Ma
- Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Corresponding author. Beijing Friendship Hospital, Capital Medical University, No. 95, Yongan Road, 100050, Beijing, China.
| |
Collapse
|
15
|
Luchnikova NA, Tarasova EV, Grishko VV, Ivshina IB. Rhodococcus rhodochrous IEGM 1360, an Effective Biocatalyst of C3 Oxidative Transformation of Oleanane Triterpenoids. Microbiology (Reading) 2023; 92:204-214. [PMID: 37122534 PMCID: PMC10120485 DOI: 10.1134/s0026261722603360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/27/2022] [Accepted: 11/29/2022] [Indexed: 05/02/2023] Open
Abstract
The optimal conditions for C3 oxidative biotransformation of 1.0 g/L pentacyclic triterpenoids oleanolic (OA) and glycyrrhetinic (GA) acids were determined using the resting cells of Rhodococcus rhodochrous IEGM 1360 from the Regional Specialised Collection of Alkanotrophic Microorganisms. Resting cell suspensions (OD600 2.6, pH 8.0, and OD600 2.2, pH 6.0) showed the highest catalytic activity against OA and GA, resulting in the formation of 61 and 100% of their 3-oxo derivatives, respectively. Using phase contrast, atomic force, and confocal laser scanning microscopy, an adaptive response of rhodococci to the effects of OA and GA was revealed. In silico, the apoptotic activity of 3-oxo-OA and antioxidant activity of 3-oxo-GA have been assumed. In vitro, a pronounced antibacterial activity of 3-oxo-OA against Micrococcus luteus, Escherichia coli, Staphylococcus aureus, and Bacillus subtilis was shown. The absence of toxic effects of the above triterpenoids and their 3-oxo derivatives on aquatic objects and plants was demonstrated in silico and in vitro, respectively. Supplementary Information The online version contains supplementary material available at 10.1134/S0026261722603360.
Collapse
Affiliation(s)
- N. A. Luchnikova
- Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center, 614081 Ural Branch, Russian Academy of Sciences, Perm, Russia
- Perm State University, 614990 Perm, Russia
| | - E. V. Tarasova
- Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center, 614081 Ural Branch, Russian Academy of Sciences, Perm, Russia
- Perm State University, 614990 Perm, Russia
| | - V. V. Grishko
- Institute of Technical Chemistry, Perm Federal Research Center, 614013 Ural Branch, Russian Academy of Sciences, Perm, Russia
| | - I. B. Ivshina
- Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center, 614081 Ural Branch, Russian Academy of Sciences, Perm, Russia
- Perm State University, 614990 Perm, Russia
| |
Collapse
|
16
|
Yan M, Guo L, Ma J, Yang Y, Tang T, Zhang B, Zhou W, Zou W, Hou Z, Gu H, Gong H. Liquiritin alleviates alpha-naphthylisothiocyanate-induced intrahepatic cholestasis through the Sirt1/FXR/Nrf2 pathway. J Appl Toxicol 2023; 43:350-359. [PMID: 36008890 DOI: 10.1002/jat.4385] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/09/2022] [Accepted: 08/21/2022] [Indexed: 11/11/2022]
Abstract
Liquiritin (LQ) is an important monomer active component in flavonoids of licorice. The objective of this study was to evaluate the hepatoprotective effects of LQ in cholestatic mice. LQ (40 or 80 mg/kg) was intragastrically administered to mice once daily for 6 days, and mice were treated intragastrically with a single dosage of ANIT (75 mg/kg) on the 5th day. On the 7th day, mice were sacrificed to collect blood and livers. The mRNA and protein levels were determined by qRT-PCR and western blot assay. We also conducted systematical assessments of miRNAs expression profiles in the liver. LQ ameliorated ANIT-induced cholestatic liver injury, as evidenced by reduced serum biochemical markers and attenuated pathological changes in liver. Pretreatment of LQ reduced the increase of malondialdehyde, TNF-α, and IL-1β induced by ANIT. Moreover, ANIT suppressed the expression of Sirt1 and FXR in liver tissue, which was weakened in the LQ pre-treatment group. LQ enhanced the nuclear expression of Nrf2, which was increased in the ANIT group. LQ also increased the mRNA expressions of bile acid transporters Bsep, Ntcp, Mrp3, and Mrp4. Furthermore, a miRNA deep sequencing analysis revealed that LQ had a global regulatory effect on the hepatic miRNA expression. Kyoto Encyclopedia of Genes and Genomes functional enrichment analysis showed that the differentially expressed miRNAs were mainly related to metabolic pathways, endocytosis, and MAPK signaling pathway. Collectively, LQ attenuated hepatotoxicity and cholestasis by regulating the expression of Sirt1/FXR/Nrf2 and the bile acid transporters, indicating that LQ might be an effective approach for cholestatic liver diseases.
Collapse
Affiliation(s)
- Miao Yan
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lin Guo
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jiating Ma
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yan Yang
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Tingli Tang
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Bikui Zhang
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wei Zhou
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Wei Zou
- NHC Key Laboratory of Birth Defects Research, Prevention and Treatment, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China
| | - Zhenyan Hou
- Department of Pharmacy, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Hongmei Gu
- Chia Tai Tianqing Pharmaceutical Group Co. Ltd, Lianyungang, Jiangsu, China
| | - Hui Gong
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
17
|
Shinu P, Gupta GL, Sharma M, Khan S, Goyal M, Nair AB, Kumar M, Soliman WE, Rahman A, Attimarad M, Venugopala KN, Altaweel AAA. Pharmacological Features of 18β-Glycyrrhetinic Acid: A Pentacyclic Triterpenoid of Therapeutic Potential. PLANTS (BASEL, SWITZERLAND) 2023; 12:1086. [PMID: 36903944 PMCID: PMC10005454 DOI: 10.3390/plants12051086] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/16/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Glycyrrhiza glabra L. (belonging to the family Leguminosae), commonly known as Licorice, is a popular medicinal plant that has been used in traditional medicine worldwide for its ethnopharmacological efficacy in treating several ailments. Natural herbal substances with strong biological activity have recently received much attention. The main metabolite of glycyrrhizic acid is 18β-glycyrrhetinic acid (18βGA), a pentacyclic triterpene. A major active plant component derived from licorice root, 18βGA has sparked a lot of attention due to its pharmacological properties. The current review thoroughly examines the literature on 18βGA, a major active plant component obtained from Glycyrrhiza glabra L. The current work provides insight into the pharmacological activities of 18βGA and the potential mechanisms of action involved. The plant contains a variety of phytoconstituents such as 18βGA, which has a variety of biological effects including antiasthmatic, hepatoprotective, anticancer, nephroprotective, antidiabetic, antileishmanial, antiviral, antibacterial, antipsoriasis, antiosteoporosis, antiepileptic, antiarrhythmic, and anti-inflammatory, and is also useful in the management of pulmonary arterial hypertension, antipsychotic-induced hyperprolactinemia, and cerebral ischemia. This review examines research on the pharmacological characteristics of 18βGA throughout recent decades to demonstrate its therapeutic potential and any gaps that may exist, presenting possibilities for future drug research and development.
Collapse
Affiliation(s)
- Pottathil Shinu
- Department of Biomedical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Girdhari Lal Gupta
- Department of Pharmacology, School of Pharmacy and Technology Management, SVKM’s NMIMS University, Shirpur 425405, India
| | - Manu Sharma
- Department of Chemistry, National Forensic Sciences University Delhi Campus, New Delhi 110085, India
| | - Shahzad Khan
- Department of Biomedical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Manoj Goyal
- Department of Anesthesia Technology, College of Applied Medical Sciences in Jubail, Imam Abdul Rahman Bin Faisal University, Jubail 35816, Saudi Arabia
| | - Anroop B. Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Manish Kumar
- Department of Pharmaceutics, M. M. College of Pharmacy, Maharishi Markandeshwar (Deemed to Be University), Ambala 133201, India
| | - Wafaa E. Soliman
- Department of Biomedical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Department of Microbiology and Immunology, Faculty of Pharmacy, Delta University for Science and Technology, Mansoura 11152, Egypt
| | - Aminur Rahman
- Department of Biomedical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Mahesh Attimarad
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Katharigatta N. Venugopala
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, Durban 4000, South Africa
| | | |
Collapse
|
18
|
Liu W, Li Z, Wang Z, Huang Z, Sun C, Liu S, Jiang Y, Yang H. Functional System Based on Glycyrrhizic Acid Supramolecular Hydrogel: Toward Polymorph Control, Stabilization, and Controlled Release. ACS APPLIED MATERIALS & INTERFACES 2023; 15:7767-7776. [PMID: 36732699 DOI: 10.1021/acsami.2c19903] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Developments of a drug delivery system (DDS) based on a natural supramolecular hydrogel have been of wide interest due to its biocompatibility, efficacy, and adjustable performance. However, a simple and efficient design of functional hydrogel DDS based on the templated interplay of gelator and model drug is still a challenge. In this work, natural glycyrrhetinic acid (GA) gel was selected as a carrier to encapsulate the model drug pyrazinamide (PZA). It was found that the carboxyl-amide interaction at the interface of gel-drug achieved polymorph control, stabilization, and pH-responsive release. Powder X-ray diffraction confirmed that the metastable γ form of PZA was obtained from the GA gel. Spectral analysis and molecular dynamics simulation showed that the protonation at the amide-O promoted the discretization of PZA molecules in solution, resulting in the polymorphism. Furthermore, the gel-drug interplay increased the stability of the γ form significantly from 2 days to 3 months by in situ encapsulation in the GA gel. In vitro release study indicated that the GA gel achieved targeted control release of PZA due to the pH-responsiveness property of GA. This work provides a promising option for hydrogel-based DDS design combined with polymorph control and stabilization.
Collapse
Affiliation(s)
- Weiqi Liu
- Guangdong Provincial Key Lab of Green Chemical Product Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou510640, China
| | - Zhiqiang Li
- Guangdong Provincial Key Lab of Green Chemical Product Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou510640, China
| | - Zixuan Wang
- Guangdong Provincial Key Lab of Green Chemical Product Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou510640, China
| | - Ziyin Huang
- Guangdong Provincial Key Lab of Green Chemical Product Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou510640, China
| | - Chenbo Sun
- Guangdong Provincial Key Lab of Green Chemical Product Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou510640, China
| | - Shiyuan Liu
- Guangdong Provincial Key Lab of Green Chemical Product Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou510640, China
| | - Yanbin Jiang
- Guangdong Provincial Key Lab of Green Chemical Product Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou510640, China
- School of Chemical Engineering, Guangdong University of Petrochemical Technology, Maoming525000, China
| | - Huaiyu Yang
- Department of Chemical Engineering, Loughborough University, LoughboroughLE11 3TU, Leicestershire, U.K
| |
Collapse
|
19
|
18β-Glycyrrhetinic Acid Ameliorates Neuroinflammation Linked Depressive Behavior Instigated by Chronic Unpredictable Mild Stress via Triggering BDNF/TrkB Signaling Pathway in Rats. Neurochem Res 2023; 48:551-569. [PMID: 36307572 PMCID: PMC9616426 DOI: 10.1007/s11064-022-03779-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/06/2022] [Accepted: 09/30/2022] [Indexed: 02/04/2023]
Abstract
Evidence shows that inflammatory responses may encompass the onset of severe depressive illness. Traditionally used licorice contains 18β-glycyrrhetinic acid (18βGA), which has been demonstrated to reduce inflammation and oxidative stress. This study investigates the antidepressant effects of 18βGA and the underlying mechanism in rats exposed to chronic unpredictable mild stress (CUMS). Wistar rats were exposed to CUMS for 36 consecutive days to establish depression. 18βGA (10, 20, and 50 mg/kg) or fluoxetine was given once daily (from day 30 to day 36). Thereafter, behavior parameters (sucrose preference test, forced-swimming test, open-field test, body weight), pro-inflammatory cytokines, neurotransmitters, adrenocorticotropic hormone (ACTH), corticosterone (CORT), and liver biomarkers were studied. Immunohistochemistry and western blot analyses were conducted to investigate the protein's expression. 18βGA (20 and 50 mg/kg) treatment increased sucrose intake, locomotion in the open-field test, decreased immobility time in the forced swim test, and improved body weight in CUMS-exposed rats. The therapy of 18βGA dramatically declined cytokines, ACTH and CORT and improved 5HT and norepinephrine in CUMS rats. Furthermore, BDNF and TrkB proteins were down-regulated in CUMS group, which was increased to varying degrees by 18βGA at doses of 20 and 50 mg/kg. Therefore, 18βGA ameliorates depressive-like behavior persuaded by chronic unpredictable mild stress, decreases neuroinflammation, liver biomarkers, stress hormones, and improves body weight, brain neurotransmitter concentration via activating on BDNF/TrkB signaling pathway in both PFC and hippocampus in rats.
Collapse
|
20
|
Cheng Y, Wu X, Nie X, Wu Y, Zhang C, Lee SMY, Lv K, Leung GPH, Fu C, Zhang J, Li J. Natural compound glycyrrhetinic acid protects against doxorubicin-induced cardiotoxicity by activating the Nrf2/HO-1 signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 106:154407. [PMID: 36070662 DOI: 10.1016/j.phymed.2022.154407] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/04/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND As one of the most classic antineoplastic agents, doxorubicin (Dox) is extensively used to treat a wide range of cancers. Nevertheless, the clinical outcomes of Dox-based therapies are severely hampered due to the significant cardiotoxicity. Glycyrrhetinic acid (GA) is the major biologically active compound of licorice, one of the most well-known food additives and medicinal plants in the world. We previously demonstrated that GA has the potential capability to protect mice from Dox-induced cardiac injuries. However, the underlying cardioprotective mechanism remains unexplored. PURPOSE To investigate the cardioprotective benefits of GA against Dox-induced cardiotoxicity and to elucidate its mechanisms of action. STUDY DESIGN/METHODS H9c2 cardiomyoblasts and AC16 cardiomyocytes were used as the cell models in vitro. A transgenic zebrafish model and a 4T1 mouse breast cancer model were applied to explore the cardioprotective effects of GA in vivo. RESULTS In vitro, GA inhibited Dox-induced cell death and LDH release in H9c2 and AC16 cells without affecting the anti-cancer effects of Dox. GA significantly alleviated Dox-induced ROS generation, mitochondrial dysfunction, and apoptosis in H9c2 cells. Moreover, GA abolished the expression of pro-apoptotic proteins and restored Nrf2/HO-1 signaling pathway in Dox-treated H9c2 cells. On the contrary, Nrf2 knockdown strongly abrogated the cardioprotective effects of GA on Dox-treated H9c2 cells. In vivo, GA attenuated Dox-induced cardiac dysfunction by restoring stroke volume, cardiac output, and fractional shortening in the transgenic zebrafish embryos. In a 4T1 mouse breast cancer model, GA dramatically prevented body weight loss, attenuated cardiac dysfunction, and prolonged survival rate in Dox-treated mice, without compromising Dox's anti-tumor efficacy. Consistently, GA attenuated oxidative injury, reduced cardiomyocytes apoptosis, and restored the expressions of Nrf2 and HO-1 in Dox-treated mouse hearts. CONCLUSION GA protects against Dox-induced cardiotoxicity by suppressing oxidative stress, mitochondrial dysfunction, and apoptosis via upregulating Nrf2/HO-1 signaling pathway. These findings could provide solid evidence to support the further development of GA as a feasible and safe adjuvant to Dox chemotherapy for overcoming Dox-induced cardiotoxicity.
Collapse
Affiliation(s)
- Yanfen Cheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaoping Wu
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Xin Nie
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yihan Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chen Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Simon Ming-Yuen Lee
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
| | - Kongpeng Lv
- Department of Interventional Radiology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - George Pak-Heng Leung
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Chaomei Fu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinming Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Jingjing Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China; Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region.
| |
Collapse
|
21
|
Wu S, Cao Y, Lu H, Qi X, Sun J, Ye Y, Gong L. Aberrant peribiliary gland niche exacerbates fibrosis in primary sclerosing cholangitis and a potential therapeutic strategy. Biomed Pharmacother 2022; 153:113512. [DOI: 10.1016/j.biopha.2022.113512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/29/2022] [Accepted: 08/01/2022] [Indexed: 11/02/2022] Open
|
22
|
Recent Advances Regarding the Molecular Mechanisms of Triterpenic Acids: A Review (Part II). Int J Mol Sci 2022; 23:ijms23168896. [PMID: 36012159 PMCID: PMC9408012 DOI: 10.3390/ijms23168896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/04/2022] [Accepted: 08/08/2022] [Indexed: 12/18/2022] Open
Abstract
Triterpenic acids are a widespread class of phytocompounds which have been found to possess valuable therapeutic properties such as anticancer, anti-inflammatory, hepatoprotective, cardioprotective, antidiabetic, neuroprotective, lipolytic, antiviral, and antiparasitic effects. They are a subclass of triterpenes bearing a characteristic lipophilic structure that imprints unfavorable in vivo properties which subsequently limit their applications. The early investigation of the mechanism of action (MOA) of a drug candidate can provide valuable information regarding the possible side effects and drug interactions that may occur after administration. The current paper aimed to summarize the most recent (last 5 years) studies regarding the MOA of betulinic acid, boswellic acid, glycyrrhetinic acid, madecassic acid, moronic acid, and pomolic acid in order to provide scientists with updated and accessible material on the topic that could contribute to the development of future studies; the paper stands as the sequel of our previously published paper regarding the MOA of triterpenic acids with therapeutic value. The recent literature published on the topic has highlighted the role of triterpenic acids in several signaling pathways including PI3/AKT/mTOR, TNF-alpha/NF-kappa B, JNK-p38, HIF-α/AMPK, and Grb2/Sos/Ras/MAPK, which trigger their various biological activities.
Collapse
|
23
|
Wang Q, Song GC, Weng FY, Zou B, Jin JY, Yan DM, Tan B, Zhao J, Li Y, Qiu FR. Hepatoprotective Effects of Glycyrrhetinic Acid on Lithocholic Acid-Induced Cholestatic Liver Injury Through Choleretic and Anti-Inflammatory Mechanisms. Front Pharmacol 2022; 13:881231. [PMID: 35712714 PMCID: PMC9194553 DOI: 10.3389/fphar.2022.881231] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/26/2022] [Indexed: 11/17/2022] Open
Abstract
Cholestasis is a clinical syndrome triggered by the accumulation and aggregation of bile acids by subsequent inflammatory responses. The present study investigated the protective effect of glycyrrhetinic acid (GA) on the cholestatic liver injury induced by lithocholic acid (LCA) from both anti-inflammatory and choleretic mechanistic standpoints. Male C57BL/6 mice were treated with LCA twice daily for 4 days to induce intrahepatic cholestasis. GA (50 mg/kg) and pregnenolone 16α-carbonitrile (PCN, 45 mg/kg) were intraperitoneally injected 3 days before and throughout the administration of LCA, respectively. Plasma biochemical indexes were determined by assay kits, and hepatic bile acids were quantified by LC-MS/MS. Hematoxylin and eosin staining of liver sections was performed for pathological examination. Protein expression of the TLRs/NF-κB pathway and the mRNA levels of inflammatory cytokines and chemokines were examined by Western blotting and PCR, respectively. Finally, the hepatic expression of pregnane X receptor (PXR) and farnesoid X receptor (FXR) and their target genes encoding metabolic enzymes and transporters was evaluated. GA significantly reversed liver necrosis and decreased plasma ALT and ALP activity. Plasma total bile acids, total bilirubin, and hepatic bile acids were also remarkably preserved. More importantly, the recruitment of inflammatory cells to hepatic sinusoids was alleviated. Additionally, the protein expression of TLR2, TLR4, and p-NF-κBp65 and the mRNA expression of CCL2, CXCL2, IL-1β, IL-6, and TNF-α were significantly decreased. Moreover, GA significantly increased the expression of hepatic FXR and its target genes, including BSEP, MRP3, and MRP4. In conclusion, GA protects against LCA-induced cholestatic liver injury by inhibiting the TLR2/NF-κB pathway and upregulating hepatic FXR expression.
Collapse
Affiliation(s)
- Qian Wang
- Laboratory of Clinical Pharmacokinetics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guo-Chao Song
- Laboratory of Clinical Pharmacokinetics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Feng-Yi Weng
- Laboratory of Clinical Pharmacokinetics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Bin Zou
- Laboratory of Clinical Pharmacokinetics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jing-Yi Jin
- Laboratory of Clinical Pharmacokinetics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Dong-Ming Yan
- Laboratory of Clinical Pharmacokinetics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Bo Tan
- Laboratory of Clinical Pharmacokinetics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jing Zhao
- Laboratory of Clinical Pharmacokinetics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yue Li
- Laboratory of Clinical Pharmacokinetics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Fu-Rong Qiu
- Laboratory of Clinical Pharmacokinetics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
24
|
Pan PH, Wang YY, Lin SY, Liao SL, Chen YF, Huang WC, Chen CJ, Chen WY. 18β-Glycyrrhetinic Acid Protects against Cholestatic Liver Injury in Bile Duct-Ligated Rats. Antioxidants (Basel) 2022; 11:961. [PMID: 35624826 PMCID: PMC9138139 DOI: 10.3390/antiox11050961] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 02/07/2023] Open
Abstract
18β-Glycyrrhetinic acid is a nutraceutical agent with promising hepatoprotective effects. Its protective mechanisms against cholestatic liver injury were further investigated in a rodent model of extrahepatic cholestasis caused by Bile Duct Ligation (BDL) in rats. The daily oral administration of 18β-Glycyrrhetinic acid improved liver histology, serum biochemicals, ductular reaction, oxidative stress, inflammation, apoptosis, impaired autophagy, and fibrosis. 18β-Glycyrrhetinic acid alleviated the BDL-induced hepatic and systemic retention of bile acids, matrix-producing cell activation, hepatic collagen deposition, Transforming Growth Factor beta-1/Smad activation, malondialdehyde elevation, glutathione reduction, High Mobility Group Box-1/Toll-Like Receptor-4 activation, NF-κB activation, inflammatory cell infiltration/accumulation, Interleukin-1β expression, Signal Transducer and Activator of Transcription-1 activation, Endoplasmic Reticulum stress, impairment autophagy, and caspase 3 activation. Conversely, the protein expression of Sirt1, Farnesoid X Receptor, nuclear NF-E2-Related Factor-2, Transcription Factor EB, bile acid efflux transporters, and LC3-II, as well as the protein phosphorylation of AMP-Activated Protein Kinase, was promoted in 18β-Glycyrrhetinic acid-treated BDL rats. The hepatoprotective effects of 18β-Glycyrrhetinic acid in the present investigation correlated well with co-activation and possible interactions among Sirt, FXR, and Nrf2. The concurrent or concomitant activation of Sirt1, FXR, and Nrf2 not only restored the homeostatic regulation of bile acid metabolism, but also alleviated oxidative stress, inflammation, apoptosis, impaired autophagy, and fibrosis.
Collapse
Affiliation(s)
- Pin-Ho Pan
- Department of Veterinary Medicine, National Chung Hsing University, Taichung City 402, Taiwan; (P.-H.P.); (W.-C.H.)
- Department of Pediatrics, Tungs’ Taichung MetroHarbor Hospital, Taichung City 435, Taiwan
| | - Ya-Yu Wang
- Department of Family Medicine, Taichung Veterans General Hospital, Taichung City 407, Taiwan;
| | - Shih-Yi Lin
- Center for Geriatrics and Gerontology, Taichung Veterans General Hospital, Taichung City 407, Taiwan;
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei City 112, Taiwan
| | - Su-Lan Liao
- Department of Medical Research, Taichung Veterans General Hospital, Taichung City 407, Taiwan;
| | - Yu-Fang Chen
- Department of Medical Laboratory Science, I-Shou University, Kaohsiung City 840, Taiwan;
| | - Wei-Chi Huang
- Department of Veterinary Medicine, National Chung Hsing University, Taichung City 402, Taiwan; (P.-H.P.); (W.-C.H.)
| | - Chun-Jung Chen
- Department of Medical Research, Taichung Veterans General Hospital, Taichung City 407, Taiwan;
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung City 404, Taiwan
| | - Wen-Ying Chen
- Department of Veterinary Medicine, National Chung Hsing University, Taichung City 402, Taiwan; (P.-H.P.); (W.-C.H.)
| |
Collapse
|
25
|
Wei WF, Sun H, Liu SB, Lu SW, Zhang AH, Wang WY, Chai WJ, Wu FF, Yan GL, Guan Y, Wang XJ. Targets and Effective Constituents of ZhiziBaipi Decoction for Treating Damp-Heat Jaundice Syndrome Based on Chinmedomics Coupled with UPLC-MS/MS. Front Pharmacol 2022; 13:857361. [PMID: 35450037 PMCID: PMC9016223 DOI: 10.3389/fphar.2022.857361] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/15/2022] [Indexed: 12/04/2022] Open
Abstract
Background: Damp-heat jaundice syndrome (DHJS) is a diagnostic model of traditional Chinese medicine (TCM) that refers to jaundice caused by damp-heat pathogen invasion. DHJS is the most common clinical manifestation of TCM, with yellow skin, yellow eyes and anorexia. ZhiziBaipi Decoction (ZBD) is a classic TCM formula that is effective at treating DHJS and various liver diseases. However, the effective components of ZBD in the context of DHJS and the underlying mechanism are unclear. Purpose: This study of ZBD using the DHJS rat model aimed to elucidate the pathobiology of DHJS and the metabolic targets of therapeutic ZBD, construct the network relationship between the components of ZBD and endogenous biomarkers, and clarify the underlying mechanism of ZBD in preventing and treating DHJS. Methods: Using chinmedomics as the core strategy, an animal model was generated, and the therapeutic effect of ZBD was evaluated based on behavioral, histopathological and biochemical indicators. Metabonomics tools were used to identify biomarkers of DHJS, TCM-based serum pharmacochemistry was used to analyze the effective constituents of ZBD, and chinmedomics technology was used to identify ZBD components highly related to DHJS biomarkers. Results: A total of 42 biomarkers were preliminarily identified, and ZBD significantly affected the levels of 29 of these biomarkers. A total of 59 compounds in ZBD were characterized in vivo. According to chinmedomics analysis, the highly correlated components found in blood were isoformononetin, 3-O-feruloylquinic acid, glycyrrhizic acid, oxyberberine, obaculactone and five metabolites. Conclusions: Chinmedomics combined with UPLC-MS/MS was used to study the targets and effective constituents of ZBD for the treatment of DHJS.
Collapse
Affiliation(s)
- Wen-Feng Wei
- National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, National Chinmedomics Research Center, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Hui Sun
- National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, National Chinmedomics Research Center, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Shao-Bo Liu
- National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, National Chinmedomics Research Center, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Sheng-Wen Lu
- National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, National Chinmedomics Research Center, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Ai-Hua Zhang
- National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, National Chinmedomics Research Center, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Wan-Ying Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau SAR, China
| | - Wen-Jun Chai
- National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, National Chinmedomics Research Center, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Fang-Fang Wu
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plant, Nanning, China
| | - Guang-Li Yan
- National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, National Chinmedomics Research Center, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yu Guan
- National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, National Chinmedomics Research Center, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xi-Jun Wang
- National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, National Chinmedomics Research Center, Heilongjiang University of Chinese Medicine, Harbin, China.,State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau SAR, China.,National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plant, Nanning, China
| |
Collapse
|
26
|
Wu YL, Xue YR, Guo ZT, Chen ZD, Ge XY, Zhong DF, Diao XX. Furmonertinib (Alflutinib, AST2818) is a potential positive control drug comparable to rifampin for evaluation of CYP3A4 induction in sandwich-cultured primary human hepatocytes. Acta Pharmacol Sin 2022; 43:747-756. [PMID: 34035488 PMCID: PMC8888569 DOI: 10.1038/s41401-021-00692-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 04/28/2021] [Indexed: 12/11/2022]
Abstract
Furmonertinib (Alflutinib, AST2818), as a third-generation epidermal growth factor receptor inhibitor with an advanced efficacy and a relatively wide safety window, has been commercially launched in China recently. However, previous clinical studies demonstrated its time- and dose-dependent clearance in a multiple-dose regimen. In vitro drug metabolism and pharmacokinetic studies have suggested that furmonertinib is mainly metabolized by cytochrome P450 3A4 (CYP3A4) and can induce these enzymes via an increased mRNA expression. This study investigated two important evaluation criteria of CYP3A4 induction by furmonertinib through quantitative proteomics and probe metabolite formation: simultaneous (1) protein expression and (2) enzyme activity with sandwich-cultured primary human hepatocytes in the same well of cell culture plates. Results confirmed that furmonertinib was a potent CYP3A4 inducer comparable with rifampin and could be used as a positive model drug in in vitro studies to evaluate the induction potential of other drug candidates in preclinical studies. In addition, inconsistencies were observed between the protein expression and enzyme activities of CYP3A4 in cells induced by rifampin but not in groups treated with furmonertinib. As such, furmonertinib could be an ideal positive control in the evaluation of CYP3A4 induction. The cells treated with 10 µM rifampin expressed 20.16 ± 5.78 pmol/mg total protein, whereas the cells induced with 0.5 µM furmonertinib expressed 4.8 ± 0.66 pmol/mg protein compared with the vehicle (0.1% dimethyl sulfoxide), which contained 0.65 ± 0.45 pmol/mg protein. The fold change in the CYP3A4 enzyme activity in the cells treated with rifampin was 5.22 ± 1.13, which was similar to that of 0.5 µM furmonertinib (3.79 ± 0.52).
Collapse
Affiliation(s)
- Ya-li Wu
- grid.419093.60000 0004 0619 8396State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201210 China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Ya-ru Xue
- grid.419093.60000 0004 0619 8396State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201210 China
| | - Zi-tao Guo
- grid.419093.60000 0004 0619 8396State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201210 China
| | - Zhen-dong Chen
- grid.419093.60000 0004 0619 8396State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201210 China
| | - Xin-yu Ge
- grid.419093.60000 0004 0619 8396State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201210 China
| | - Da-fang Zhong
- grid.419093.60000 0004 0619 8396State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201210 China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Xing-xing Diao
- grid.419093.60000 0004 0619 8396State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201210 China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 China
| |
Collapse
|
27
|
Jie M, Zhang ZQ, Deng N, Liu QM, Wang C, Ge QY, Du PC, Song SS, Zhang XW, Long-Xin, Liang HF, Chu L, Zhang L, Chen XP, Chen J, Dong HH, Zhang BX. 18[Formula: see text]-Glycyrrhetinic Acid Inhibits TGF-[Formula: see text]-Induced Epithelial-to-Mesenchymal Transition and Metastasis of Hepatocellular Carcinoma by Targeting STAT3. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2022; 50:313-332. [PMID: 34963428 DOI: 10.1142/s0192415x22500124] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
18[Formula: see text]-glycyrrhetinic acid (GA) is the active ingredient of the traditional Chinese medicinal herb Glycyrrhizae radix et rhizoma. We previously demonstrated that GA inhibited tumor growth in hepatocellular carcinoma (HCC). However, the effect of GA on transforming growth factor-[Formula: see text] (TGF-[Formula: see text]-induced epithelial-mesenchymal transition (EMT) and metastasis were still unclear. In this study, in vitro transwell assays and immunofluorescence (IF) demonstrated that GA inhibited TGF-[Formula: see text]-induced migration, invasion and EMT of HCC cells. However, it had little effect on the inhibition of proliferation by TGF-[Formula: see text]. Moreover, we confirmed that GA suppressed the metastasis of HCC cells in vivousing an ectopic lung metastasis model. Furthermore, we found that GA inhibited TGF-[Formula: see text]-induced EMT mainly by reducing the phosphorylation of signal transducer and activator of transcription 3 (STAT3), which played an essential role in TGF-[Formula: see text]-induced EMT and cell mobility. Mechanistically, GA inhibited the phosphorylation of STAT3 by increasing the expression of Src homology 2 domain-containing protein tyrosine phosphatases 1 and 2 (SHP1 and SHP2). Therefore, we concluded that GA inhibited TGF-[Formula: see text]-induced EMT and metastasis via the SHP1&SHP2/STAT3/Snail pathway. Our data provide an attractive therapeutic target for future multimodal management of HCC.
Collapse
Affiliation(s)
- Mo Jie
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, Hubei, P. R. China
| | - Zhao-Qi Zhang
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, Hubei, P. R. China.,Department of General Surgery, First People's Hospital Affiliated with Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Ning Deng
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, Hubei, P. R. China
| | - Qiu-Meng Liu
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, Hubei, P. R. China
| | - Chao Wang
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, Hubei, P. R. China
| | - Qian-Yun Ge
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, Hubei, P. R. China
| | - Peng-Chen Du
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, Hubei, P. R. China
| | - Sha-Sha Song
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, Hubei, P. R. China
| | - Xue-Wu Zhang
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, Hubei, P. R. China
| | - Long-Xin
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, Hubei, P. R. China
| | - Hui-Fang Liang
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, Hubei, P. R. China
| | - Liang Chu
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, Hubei, P. R. China
| | - Lei Zhang
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, Hubei, P. R. China
| | - Xiao-Ping Chen
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, Hubei, P. R. China
| | - Jin Chen
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, Hubei, P. R. China
| | - Han-Hua Dong
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, Hubei, P. R. China
| | - Bi-Xiang Zhang
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, Hubei, P. R. China
| |
Collapse
|
28
|
Liu Y, Sheng R, Fan J, Guo R. A Mini-Review on Structure-Activity Relationships of Glycyrrhetinic Acid Derivatives with Diverse Bioactivities. Mini Rev Med Chem 2022; 22:2024-2066. [PMID: 35081889 DOI: 10.2174/1389557522666220126093033] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/09/2021] [Accepted: 11/16/2021] [Indexed: 11/22/2022]
Abstract
Pentacyclic triterpenoids, consisting of six isoprene units, are a kind of natural active substance. At present, numerous pentacyclic triterpene have been observed and classified into four subgroups of oleanane, ursane, lupane, and xylene on the basis of the carbon skeleton. Among them, oleanane is the most popular due to its rich backbone and diverse bioactivities. 18β-Glycyrrhetinic acid (GA), an oleanane-type pentacyclic triterpene isolated from licorice roots, possesses diverse bioactivities including antitumor, anti-inflammatory, antiviral, antimicrobial, enzyme inhibitor, hepatoprotective and so on. It has received more attention in medicinal chemistry due to the advantages of easy-to-access and rich bioactivity. Thus, numerous novel lead compounds were synthesized using GA as a scaffold. Herein, we summarize the structure-activity relationship and synthetic methodologies of GA derivatives from 2010 to 2020 as well as the most active GA derivatives. Finally, we anticipate that this review can benefit future research on structural modifications of GA to enhance bioactivity and provide an example for developing pentacyclic triterpene-based novel drugs.
Collapse
Affiliation(s)
- Yuebin Liu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Ruilong Sheng
- CQM - Centro de Química da Madeira, Campus da Penteada, Universidade da Madeira, 9000-390 Funchal, Portugal
| | - Junting Fan
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Ruihua Guo
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, China
- Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai 201306, China
| |
Collapse
|
29
|
miR122-controlled all-in-one nanoplatform for in situ theranostic of drug-induced liver injury by visualization imaging guided on-demand drug release. Mater Today Bio 2021; 12:100157. [PMID: 34825161 PMCID: PMC8604687 DOI: 10.1016/j.mtbio.2021.100157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/07/2021] [Accepted: 11/09/2021] [Indexed: 01/10/2023] Open
Abstract
Drug-induced liver injury (DILI) is a challenging clinical problem with respect to both diagnosis and management. As a newly emerging biomarker of liver injury, miR122 shows great potential in early and sensitive in situ detection of DILI. Glycyrrhetinic acid (GA) possesses desirable therapeutic effect on DILI, but its certain dose-dependent side effects after long-term and/or high-dose administration limit its clinical application. In this study, in order to improve the precise diagnosis and effective treatment of DILI, GA loaded all-in-one theranostic nanoplatform was designed by assembling of upconversion nanoparticles and gold nanocages. As a proof of concept, we demonstrated the applicability of this single-wavelength laser-triggered theranostic nanoplatform for the spatiotemporally controllable in situ imaging of DILI and miR122-controlled on-demand drug release in vitro and in vivo. This novel nanoplatform opens a promising avenue for the clinical diagnosis and treatment of DILI.
Collapse
|
30
|
Glycyrrhizic Acid and Its Hydrolyzed Metabolite 18β-Glycyrrhetinic Acid as Specific Ligands for Targeting Nanosystems in the Treatment of Liver Cancer. Pharmaceutics 2021; 13:pharmaceutics13111792. [PMID: 34834206 PMCID: PMC8621092 DOI: 10.3390/pharmaceutics13111792] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 09/28/2021] [Accepted: 10/19/2021] [Indexed: 01/10/2023] Open
Abstract
Glycyrrhizic acid and its hydrolyzed metabolite 18β-glycyrrhetinic acid, obtained from the plant Glycyrrhiza glabra, have numerous pharmacological activities, such as anti-inflammatory, anti-ulcerative, antiallergic, immunomodulatory, antiviral, antitumor, hepatoprotective, and antioxidant effects, and others. In addition to the pharmacological activities, in the 1980s, an interaction and uptake of these molecules by the liver was verified, which was later confirmed by other studies through the discovery of specific receptors in the hepatocytes. The presence of these specific receptors in the liver led to vectorization and delivery of drugs, by the introduction of glycyrrhizic acid or glycyrrhetinic acid on the surface of nanosystems, for the treatment of liver diseases. This review describes experimental evidence of vectorization by conjugating glycyrrhizic acid or glycyrrhetinic acid to nanosystems and delivery of antitumor drugs for the treatment of liver cancer and also describes the techniques used to perform this conjugation. We have shown that due to the existence of specific receptors for these molecules, in addition to the targeting of nanosystems to hepatocytes, nanosystems having glycyrrhizic acid or glycyrrhetinic acid on their surface had the same therapeutic effect in a significantly lower dose compared to the free drug and unconjugated nanosystems, with consequent reduction of side effects and toxicity.
Collapse
|
31
|
Zhang K, Yao Y, Wang M, Liu F, Wang Q, Ma H, Xie Y, Ma Y, Dai P, Zhu C, Lin C. A UPLC-MS/MS-based metabolomics analysis of the pharmacological mechanisms of rabdosia serra against cholestasis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 91:153683. [PMID: 34364160 DOI: 10.1016/j.phymed.2021.153683] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 07/14/2021] [Accepted: 07/16/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Rabdosia Serra, the dried aerial parts of Rabdosia serra (Maxim.) Hara (RS) from the Labiatae family, is a traditional Chinese herbal medicine called Xihuangcao. Although RS has been found to exert a therapeutic effect on cholestasis, the underlying molecular mechanism remains unclear. PURPOSE This study was designed to investigate the pharmacological effect and mechanism of RS on cholestatic rats using metabolomics platform. METHODS Histopathology and biochemical evaluations were performed to determine the therapeutic effect of RS and developed a rapid metabolite detection technology method based on UPLC-MS/MS to perform metabolomics research. Further, quantitative real-time polymerase chain reaction (RT-qPCR) was used to study the effect of RS on the bile acid metabolism pathway at the transcriptional level. RESULTS RS significantly reduced the bile flow rates in cholestatic rats and decreased the levels of ALT, AST, TBA, T-BIL, and LDH, which were increased in the model group. Histological analysis showed that RS alleviated the liver injury induced by ANIT. Serum metabolomics results revealed 33 of the 37 biomarkers were found to be significantly altered by ANIT, and 26 were considerably changed following treatment with RS. Metabolic pathway analysis revealed four pathways such as primary bile acid biosynthesis, biosynthesis of unsaturated fatty acids, and arachidonic acid and tryptophan metabolism. The bile acid secretion process and the inflammation and oxidative stress processes are the major biochemical reactions following treatment with ANIT and RS. Bile acid-targeted metabolomics study showed that TCA, GCA, GCDCA, and GDCA might be sensitive biomarkers that induced liver injury. we found that treatment with RS regulated the levels of bile acid in the serum and liver and restored the proportion of bile acids, especially CA and conjugated bile acids, such as TCA and GCA, in the bile duct. RS increased the mRNA expression levels of FXR, SHP, BSEP, and MRP2 in livers, and IBABP, OST-α, and OST-β in the ileum. CONCLUSION In this study, RS was found to protect the liver by regulating multiple metabolic pathways and promoting the excretion of bile acids. Simultaneously, RS played an essential role in reversing the imbalance of bile acids and protected against cholestasis by regulating the expression of transporters associated with bile acids. We demonstrated the correlation between molecular mechanisms and metabolites, provide a reference for the fabrication of extracts that can be used to treat cholestasis.
Collapse
Affiliation(s)
- Kaihui Zhang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, No.232 Waihuandong Rd, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China
| | - Yufeng Yao
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, No.232 Waihuandong Rd, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China
| | - Meiqi Wang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, No.232 Waihuandong Rd, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China
| | - Fangle Liu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, No.232 Waihuandong Rd, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China
| | - Qian Wang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, No.232 Waihuandong Rd, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China
| | - Huanhuan Ma
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, No.232 Waihuandong Rd, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China
| | - Yuanyuan Xie
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, No.232 Waihuandong Rd, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China
| | - Yunxia Ma
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, No.232 Waihuandong Rd, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China
| | - Pengyu Dai
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, No.232 Waihuandong Rd, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China
| | - Chenchen Zhu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, No.232 Waihuandong Rd, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China.
| | - Chaozhan Lin
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, No.232 Waihuandong Rd, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China.
| |
Collapse
|
32
|
Yan M, Guo L, Yang Y, Zhang B, Hou Z, Gao Y, Gu H, Gong H. Glycyrrhetinic Acid Protects α-Naphthylisothiocyanate- Induced Cholestasis Through Regulating Transporters, Inflammation and Apoptosis. Front Pharmacol 2021; 12:701240. [PMID: 34630081 PMCID: PMC8497752 DOI: 10.3389/fphar.2021.701240] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 08/31/2021] [Indexed: 11/13/2022] Open
Abstract
Glycyrrhetinic acid (GA), the active metabolic product of Glycyrrhizin (GL) that is the main ingredient of licorice, was reported to protect against α-naphthylisothiocyanate (ANIT)- induced cholestasis. However, its protective mechanism remains unclear. In our work, the cholestatic liver injury in mice was caused by ANIT and GA was used for the treatment. We assessed cholestatic liver injury specific indexes, histopathological changes, bile acid transporters, inflammation and apoptosis. The results of liver biochemical index and histopathological examination showed that GA markedly attenuated ANIT-induced liver injury. Mechanism research suggested that GA could activate the expression of farnesoid x receptor (FXR) and its downstream bile acids transporters Na+/taurocholate co-transporting polypeptide (NTCP), bile salt export pump (BSEP) and multidrug resistance-associated protein 2 (MRP2), as well as the nuclear factor erythroid 2-related factor 2 (Nrf2) and its downstream proteins MRP3, MRP4. These transporters play a vital role in mediating bile acid homeostasis in hepatocytes. Moreover, GA could significantly inhibit the ANIT-induced activation of the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) inflammatory pathway and the increase of tumor necrosis factor-α (TNF-α) concentration in serum. Also, GA protected against ANIT-induced mitochondrial apoptosis by regulating the expression of Bcl-2, Bax, cleaved caspase 3 and cleaved caspase 9. In conclusion, GA alleviates the hepatotoxicity caused by ANIT by regulating bile acids transporters, inflammation and apoptosis, which suggests that GA may be a potential therapeutic agent for cholestasis.
Collapse
Affiliation(s)
- Miao Yan
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Lin Guo
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yan Yang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Bikui Zhang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zhenyan Hou
- Department of Pharmacy, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Yue Gao
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Hongmei Gu
- Chia Tai Tianqing Pharmaceutical Group Co. Ltd., Lianyungang, China
| | - Hui Gong
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
33
|
Chen B, Zhu D, Xie C, Shi Y, Ni L, Zhang H, Li S, Lu J, Xiao J, Xia W, Huang C, Wang X. 18β-Glycyrrhetinic acid inhibits IL-1β-induced inflammatory response in mouse chondrocytes and prevents osteoarthritic progression by activating Nrf2. Food Funct 2021; 12:8399-8410. [PMID: 34369548 DOI: 10.1039/d1fo01379c] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Osteoarthritis (OA) is presently the most prevalent form of chronic degenerative joint disease, which is characterized by erosion of articular cartilage, subchondral bone sclerosis and synovitis. Accumulating evidence has revealed that 18β-glycyrrhetinic acid (18β-GA), a major bioactive component derived from Glycyrrhiza glabra, exerts anti-inflammatory effects on several diseases. However, the anti-inflammatory effects of 18β-GA on OA remain undetermined. The present study aimed to investigate the anti-inflammatory effects of 18β-GA on chondrocytes and the therapeutic effects on destabilization of the medial meniscus destabilization (DMM) mouse models of OA. For the in vivo study, we randomly divided the mice into three groups: vehicle control (n = 15), sham (n = 15) and 18β-GA (n = 15) groups, and treated them with similar doses (50 mg kg-1 day-1) of 18β-GA or saline. Cartilage tissues were harvested from the mice for histological analyses eight weeks after operation. For the in vitro studies, mouse chondrocytes were administered with 10 ng mL-1 interleukin-1β (IL-1β) after being treated with 18β-GA at various concentrations. In vitro assays revealed that treatment with 18β-GA considerably suppressed the expression of pro-inflammatory mediators and cytokines, including prostaglandin E2 (PGE2), tumor necrosis factor-α (TNF-α), nitric oxide (NO), cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), and interleukin-6 (IL-6), which were induced by IL-1β. Furthermore, 18β-GA decreased the expression of matrix-degrading proteases, including matrix metalloproteinase 13 (MMP13) and A disintegrin and metalloproteinase with thrombospondin motifs 5 (ADAMTS-5), in a concentration-dependent manner, which mediated extracellular matrix (ECM) degradation. 18β-GA reversed aggrecan and type II collagen degradation. Furthermore, we observed that 18β-GA significantly suppressed IL-1β-induced nuclear factor kappa B (NF-κB) activation by activating the nuclear factor erythroid-derived 2-like 2 (Nrf2)/heme oxygenase 1 (HO-1) pathway in vitro and in vivo. Experiments demonstrated that 18β-GA might alleviate the progression of OA in the DMM mouse model in vivo. The findings demonstrate that 18β-GA reduces inflammation induced by IL-1β in chondrocytes. Therefore, 18β-GA could be a potential therapeutic agent for OA.
Collapse
Affiliation(s)
- Boda Chen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China. .,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China.,Department of Orthopaedics, Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
| | - Dingchao Zhu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China. .,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China.,Department of Orthopaedics, Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
| | - Chenglong Xie
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China. .,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China.,Department of Orthopaedics, Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
| | - Yifeng Shi
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China. .,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China.,Department of Orthopaedics, Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
| | - Libin Ni
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China. .,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China.,Department of Orthopaedics, Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
| | - Huawei Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China. .,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China.,Department of Orthopaedics, Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
| | - Sunlong Li
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China. .,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China.,Department of Orthopaedics, Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
| | - Jiajie Lu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China. .,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China.,Department of Orthopaedics, Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
| | - Jian Xiao
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China. .,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China.,Department of Orthopaedics, Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
| | - Weiyi Xia
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China. .,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China.,Department of Orthopaedics, Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
| | - Chongan Huang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China. .,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China.,Department of Orthopaedics, Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
| | - Xiangyang Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China. .,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China.,Department of Orthopaedics, Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
| |
Collapse
|
34
|
Chen L, Wei S, Liu H, Li J, Jing M, Tong Y, Li R, Wen J, Zhan H, Zhao Y. Paeoniflorin Protects against ANIT-Induced Cholestatic Liver Injury in Rats via the Activation of SIRT1-FXR Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:8479868. [PMID: 34512782 PMCID: PMC8429014 DOI: 10.1155/2021/8479868] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/04/2021] [Accepted: 08/18/2021] [Indexed: 01/05/2023]
Abstract
Paeoniflorin (PF), a water-soluble monoterpene glycoside, is initially isolated from the dried roots of Paeonia lactiflora Pall., which has effects on ameliorating cholestasis in our previous study. However, comprehensive approaches for understanding the protective effects and mechanisms underlying cholestatic liver injury from the regulating of bile acid metabolism have not been sufficiently elucidated. This study was aimed to explore the effectiveness as well as potential mechanism of PF on alpha-naphthylisothiocyanate (ANIT)-induced cholestatic liver injury. Rats with cholestasis induced by ANIT was used to evaluate the protective effects and mechanism of PF by regulating SIRT1/FXR and NF-κB/NLRP3 signaling pathway. Rats were intragastrically administrated with ANIT to establish cholestatic liver injury model. Serum levels of ALT, AST, TBA, TBIL, ALP, γ-GT and ALB in rats were detected. The histopathology of the liver of rats was analyzed in vivo. The relative mRNA expression and protein expression levels of IL-18, IL-1β, TNF-α, HO-1, Nrf2, TLR4, NLRP3, Caspase-1, ASC, NF-κB, FXR, and SIRT1 in liver of rats were investigated. The results showed that the serum indexes and the liver histopathology were significantly improved by PF. The overexpression of IL-18, IL-1β, TNF-α, NLRP3, ASC, and Caspase-1 in liver was markedly reduced by PF. Furthermore, PF dramatically increased the mRNA and protein expressions of SIRT1, FXR, HO-1, and Nrf2, but decreased NF-κB p65 and TLR4 levels in liver of rats. Taken together, the protective effects of PF on cholestatic liver injury were possibly related to the activation of the SIRT1/FXR and inhibition of NF-κB/NLRP3 inflammasome signaling pathway. These findings might provide a potential protection for cholestatic liver injury.
Collapse
Affiliation(s)
- Lisheng Chen
- Department of Pharmacy, Hebei North University, Zhangjiakou 075000, China
- Department of Pharmacy, The Fifth Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| | - Shizhang Wei
- Department of Pharmacy, The Fifth Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| | - Honghong Liu
- Integrated TCM & Western Medicine Department, The Fifth Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| | - Jianyu Li
- Integrated TCM & Western Medicine Department, The Fifth Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| | - Manyi Jing
- Department of Pharmacy, The Fifth Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| | - Yuling Tong
- Department of Pharmacy, The Fifth Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| | - Ruisheng Li
- Research Center for Clinical and Translational Medicine, The Fifth Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| | - Jianxia Wen
- Department of Pharmacy, The Fifth Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| | - Hanqiu Zhan
- Department of Pharmacy, Beijing Ditanhospital, Capital Medical University, Beijing 100039, China
| | - Yanling Zhao
- Department of Pharmacy, Hebei North University, Zhangjiakou 075000, China
- Department of Pharmacy, The Fifth Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| |
Collapse
|
35
|
Wu S, Lu H, Wang W, Song L, Liu M, Cao Y, Qi X, Sun J, Gong L. Prevention of D-GalN/LPS-induced ALI by 18β-glycyrrhetinic acid through PXR-mediated inhibition of autophagy degradation. Cell Death Dis 2021; 12:480. [PMID: 33986260 PMCID: PMC8119493 DOI: 10.1038/s41419-021-03768-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 04/20/2021] [Accepted: 04/22/2021] [Indexed: 12/26/2022]
Abstract
Acute liver injury (ALI) has multiple causes and results in liver dysfunction. Severe or persistent liver injury eventually leads to liver failure and even death. Pregnane X receptor (PXR)-null mice present more severe liver damage and lower rates of autophagy. 18β-glycyrrhetinic acid (GA) has been proposed as a promising hepatoprotective agent. We hypothesized that GA significantly alleivates D-GalN/LPS-induced ALI, which involved in PXR-mediated autophagy and lysosome biogenesis. We found that GA can significantly decrease hepatocyte apoptosis and increase the hepatic autophagy marker LC3-B. Ad-mCherry-GFP-LC3 tandem fluorescence, RNA-seq and real-time PCR indicated that GA may stabilize autophagosomes and lysosomes and inhibit autophagosome-lysosome fusion. Simultaneously, GA markedly activates PXR, even reversing the D-GalN/LPS-induced reduction of PXR and its downstream genes. In contrast, GA has a weak protective effect in pharmacological inhibition of PXR and PXR-null mice, which significantly affected apoptosis- and autophagy-related genes. PXR knockout interferes with the stability of autophagosomes and lysosomes, preventing GA reducing the expression of lysosomal genes such as Cst B and TPP1, and suppressing autophagy flow. Therefore, we believe that GA increases autophagy by inhibiting autophagosome-lysosome fusion and blocked autophagy flux via activation of PXR. In conclusion, our results show that GA activates PXR to regulate autophagy and lysosome biogenesis, represented by inhibiting autophagosome-lysosome fusion and stabilization of lysosome. These results identify a new mechanism by which GA-dependent PXR activation reduces D-GalN/LPS-induced acute liver injury.
Collapse
Affiliation(s)
- Shouyan Wu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Henglei Lu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Wenjie Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Department of Pharmacology, Fudan University, Shanghai, 201203, China
| | - Luyao Song
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Meng Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuhan Cao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xinming Qi
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jianhua Sun
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Likun Gong
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Zhongshan Branch, the Institute of Drug Discovery and Development, Chinese Academy of Sciences, Zhongshan, China.
| |
Collapse
|
36
|
Zou M, Wang A, Wei J, Cai H, Yu Z, Zhang L, Wang X. An insight into the mechanism and molecular basis of dysfunctional immune response involved in cholestasis. Int Immunopharmacol 2021; 92:107328. [PMID: 33412394 DOI: 10.1016/j.intimp.2020.107328] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/12/2020] [Accepted: 12/19/2020] [Indexed: 02/07/2023]
Abstract
Cholestasis is one of the most common clinical symptom of liver diseases. If patients do not receive effective treatment, cholestasis can evolve into liver fibrosis, cirrhosis and ultimately liver failure requiring liver transplantation. Currently, only ursodeoxycholic acid, obeticholic acid and bezafibrate are FDA-approved drugs, thereby requiring a breakthrough in new mechanisms and therapeutic development. Inflammation is one of the common complications of cholestasis. Hepatic accumulation of toxic hydrophobic bile acids is a highly immunogenic process involving both resident and immigrating immune cells. And the resulting inflammation may further aggravate hepatocyte injury. Though, great investigations have been made in the immune responses during cholestasis, the relationship between immune responses and cholestasis remains unclear. Moreover, scarce reviews summarize the immune responses during cholestasis and the efficacy of therapies on immune response. The main purpose of this paper is to review the existing literature on dysfunctional immune response during cholestasis and the effect of treatment on immune response which may provide an insight for researchers and drug development.
Collapse
Affiliation(s)
- Mengzhi Zou
- New drug screening center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, PR China
| | - Aizhen Wang
- The Affiliated Huai'an Hospital of Xuzhou Medical University and The Second People's Hospital of Huai'an, Huaian 223002, PR China
| | - Jiajie Wei
- Department of Nursing, School of Medicine, Jiangsu University, Zhenjiang 212013, PR China
| | - Heng Cai
- New drug screening center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, PR China
| | - Zixun Yu
- New drug screening center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, PR China
| | - Luyong Zhang
- New drug screening center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, PR China; Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, PR China.
| | - Xinzhi Wang
- New drug screening center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, PR China.
| |
Collapse
|
37
|
|
38
|
Wu SY, Wang WJ, Dou JH, Gong LK. Research progress on the protective effects of licorice-derived 18β-glycyrrhetinic acid against liver injury. Acta Pharmacol Sin 2021; 42:18-26. [PMID: 32144337 PMCID: PMC7921636 DOI: 10.1038/s41401-020-0383-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 02/19/2020] [Indexed: 12/15/2022]
Abstract
The first description of the medical use of licorice appeared in "Shennong Bencao Jing", one of the well-known Chinese herbal medicine classic books dated back to 220-280 AD. As one of the most commonly prescribed Chinese herbal medicine, licorice is known as "Guo Lao", meaning "a national treasure" in China. Modern pharmacological investigations have confirmed that licorice possesses a number of biological activities, such as antioxidation, anti-inflammatory, antiviral, immune regulation, and liver protection. 18β-glycyrrhetinic acid is one of the most extensively studied active integrants of licorice. Here, we provide an overview of the protective effects of 18β-glycyrrhetinic acid against various acute and chronic liver diseases observed in experimental models, and summarize its pharmacological effects and potential toxic/side effects at higher doses. We also make additional comments on the important areas that may warrant further research to support appropriate clinical applications of 18β-glycyrrhetinic acid and avoid potential risks.
Collapse
Affiliation(s)
- Shou-Yan Wu
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wen-Jie Wang
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jin-Hui Dou
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, Oxford, MS, 38677, USA
| | - Li-Kun Gong
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
39
|
Chen H, Liu H, Tang B, Chen Y, Han L, Yu J, Yan Y, Lu C. The Protective Effects of 18 β-Glycyrrhetinic Acid on Imiquimod-Induced Psoriasis in Mice via Suppression of mTOR/STAT3 Signaling. J Immunol Res 2020; 2020:1980456. [PMID: 32908937 PMCID: PMC7474397 DOI: 10.1155/2020/1980456] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 06/09/2020] [Indexed: 02/08/2023] Open
Abstract
Psoriasis is recognized as an autoimmune and inflammatory dermatosis, which is estimated to affect 2-3% of the population worldwide. 18β-Glycyrrhetinic acid (GA), one of the main ingredients of Licorice (Glycyrrhiza glabra L.), has been shown to have numerous pharmacological effects such as antioxidative, antitumor, and anti-inflammatory activities. However, it remains to be explored whether GA has antipsoriatic effect on psoriasis. In this study, we evaluated the protective effect of GA on psoriasis and its mechanisms of action in imiquimod-induced psoriasis-like mouse model. Results indicated that GA dramatically improved psoriatic lesions and reduced psoriasis area and severity index scores. GA also suppressed the mRNA levels of IL-6, TNF-α, IL-17, IL-23, and IL-1β in the skin and increased the proportion of CD4+ Foxp3+ regulatory T cells (Tregs) in both lymph nodes and spleens. Its anti-inflammatory and immunomodulatory activities may be related to its suppression of the STAT3 and mTOR signaling. In conclusion, GA ameliorated the symptoms of psoriasis, at least in part, through inhibition of inflammatory cytokines and STAT3/mTOR signaling and activation of Tregs in both lymph nodes and spleens. These effects are expected to be beneficial in the treatment and prevention of psoriasis.
Collapse
Affiliation(s)
- Haiming Chen
- State Key laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510115, China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou 510115, China
| | - Huazhen Liu
- State Key laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510115, China
| | - Bin Tang
- State Key laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510115, China
| | - Yuchao Chen
- State Key laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510115, China
| | - Ling Han
- State Key laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510115, China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou 510115, China
| | - Jingjie Yu
- State Key laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510115, China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou 510115, China
| | - Yuhong Yan
- State Key laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510115, China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou 510115, China
| | - Chuanjian Lu
- State Key laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510115, China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou 510115, China
| |
Collapse
|
40
|
Yang T, Wang X, Yuan Z, Miao Y, Wu Z, Chai Y, Yu Q, Wang H, Sun L, Huang X, Zhang L, Jiang Z. Sphingosine 1-phosphate receptor-1 specific agonist SEW2871 ameliorates ANIT-induced dysregulation of bile acid homeostasis in mice plasma and liver. Toxicol Lett 2020; 331:242-253. [PMID: 32579994 DOI: 10.1016/j.toxlet.2020.06.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 06/15/2020] [Accepted: 06/18/2020] [Indexed: 12/12/2022]
Abstract
Dysregulated bile acid (BA) homeostasis is an extremely significant pathological phenomenon of intrahepatic cholestasis, and the accumulated BA could further trigger hepatocyte injury. Here, we showed that the expression of sphingosine-1-phosphate receptor 1 (S1PR1) was down-regulated by α-naphthylisothiocyanate (ANIT) in vivo and in vitro. The up-regulated S1PR1 induced by SEW2871 (a specific agonist of S1PR1) could improve ANIT-induced deficiency of hepatocyte tight junctions (TJs), cholestatic liver injury and the disrupted BA homeostasis in mice. BA metabolic profiles showed that SEW2871 not only reversed the disruption of plasma BA homeostasis, but also alleviated BA accumulation in the liver of ANIT-treated mice. Further quantitative analysis of 19 BAs showed that ANIT increased almost all BAs in mice plasma and liver, all of which were restored by SEW2871. Our data demonstrated that the top performing BAs were taurine conjugated bile acids (T-), especially taurocholic acid (TCA). Molecular mechanism studies indicated that BA transporters, synthetase, and BAs nuclear receptors (NRs) might be the important factors that maintained BA homeostasis by SEW2871 in ANIT-induced cholestasis. In conclusion, these results demonstrated that S1PR1 selective agonists might be the novel and potential effective agents for the treatment of intrahepatic cholestasis by recovering dysregulated BA homeostasis.
Collapse
Affiliation(s)
- Tingting Yang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Xue Wang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| | - Zihang Yuan
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| | - Yingying Miao
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| | - Ziteng Wu
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| | - Yuanyuan Chai
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| | - Qiongna Yu
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| | - Haiyan Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Lixin Sun
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China; Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, China
| | - Xin Huang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| | - Luyong Zhang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China; Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Zhenzhou Jiang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
41
|
Zhang C, Gan Y, Lv JW, Qin MQ, Hu WR, Liu ZB, Ma L, Song BD, Li J, Jiang WY, Wang JQ, Wang H, Xu DX. The protective effect of obeticholic acid on lipopolysaccharide-induced disorder of maternal bile acid metabolism in pregnant mice. Int Immunopharmacol 2020; 83:106442. [PMID: 32248018 DOI: 10.1016/j.intimp.2020.106442] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/13/2020] [Accepted: 03/23/2020] [Indexed: 12/16/2022]
Abstract
The disorder of bile acid metabolism is a common feature during pregnancy, which leads to adverse birth outcomes and maternal damage effects. However, the cause and therapy about the disorder of bile acid metabolism are still poor. Microbial infection often occurs in pregnant women, which can induce the disorder of bile acid metabolism in adult mice. Here, this study observed the acute effect of lipopolysaccharide (LPS) on maternal bile acid of pregnant mice at gestational day 17 and the protective effect of obeticholic acid (OCA) pretreatment, a potent agonist of bile acid receptor farnesoid X receptor (FXR). The results showed LPS significantly increased the level of maternal serum and disordered bile acids components of maternal serum and liver, which were ameliorated by OCA pretreatment with obviously reducing the contents of CA, TCA, DCA, TCDCA, CDCA, GCA and TDCA in maternal serum and DCA, TCA, TDCA, TUDCA, CDCA and TCDCA in maternal liver. Furthermore, we investigated the effects of OCA on LPS-disrupted bile acid metabolism in maternal liver. LPS disrupted maternal bile acid profile by decreasing transport and metabolism with hepatic tight junctions of bile acid in pregnant mice. OCA obviously increased the protein level of nuclear FXR and regulated its target genes involving in the metabolism of bile acid, which was characterized by the lower expression of bile acid synthase CYP7A1, the higher expression of CYP3A and the higher mRNA level of transporter Mdr1a/b. This study provided the evidences that LPS disrupted bile acid metabolism in the late stage of pregnant mice and OCA pretreatment played the protective role on it by activating FXR.
Collapse
Affiliation(s)
- Cheng Zhang
- Department of Toxicology, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China; MOE Key Laboratory of Population Health Across Life Cycle, Hefei 230032, Anhui, China
| | - Yu Gan
- Department of Toxicology, Anhui Medical University, Hefei 230032, China
| | - Jin-Wei Lv
- Department of Toxicology, Anhui Medical University, Hefei 230032, China
| | - Ming-Qiang Qin
- The Fourth Affiliated Hospital, Anhui Medical University, Hefei 230022, China
| | - Wei-Rong Hu
- Department of Toxicology, Anhui Medical University, Hefei 230032, China
| | - Zhi-Bing Liu
- Department of Toxicology, Anhui Medical University, Hefei 230032, China
| | - Li Ma
- Department of Toxicology, Anhui Medical University, Hefei 230032, China
| | - Bing-Dong Song
- Department of Toxicology, Anhui Medical University, Hefei 230032, China
| | - Jian Li
- Department of Toxicology, Anhui Medical University, Hefei 230032, China
| | - Wei-Ying Jiang
- The Fourth Affiliated Hospital, Anhui Medical University, Hefei 230022, China
| | - Jian-Qing Wang
- MOE Key Laboratory of Population Health Across Life Cycle, Hefei 230032, Anhui, China; The Fourth Affiliated Hospital, Anhui Medical University, Hefei 230022, China
| | - Hua Wang
- Department of Toxicology, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China; MOE Key Laboratory of Population Health Across Life Cycle, Hefei 230032, Anhui, China
| | - De-Xiang Xu
- Department of Toxicology, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China; MOE Key Laboratory of Population Health Across Life Cycle, Hefei 230032, Anhui, China.
| |
Collapse
|
42
|
Li Y, Xi Y, Tao G, Xu G, Yang Z, Fu X, Liang Y, Qian J, Cui Y, Jiang T. Sirtuin 1 activation alleviates primary biliary cholangitis via the blocking of the NF-κB signaling pathway. Int Immunopharmacol 2020; 83:106386. [PMID: 32193100 DOI: 10.1016/j.intimp.2020.106386] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 03/05/2020] [Accepted: 03/05/2020] [Indexed: 12/12/2022]
Abstract
This report sought to establish the mechanistic role of sirtuin-1 (Sirt1), a NAD+-dependent deacetylase in the modulation of primary biliary cholangitis (PBC) pathogenesis. 64 PBC patients (diagnosed based on practice guidelines for American Association for the Study of Liver Diseases) and 60 healthy controls were included in this study. Clinically, the mRNA expression level of Sirt1 in macrophages differentiated from peripheral blood mononuclear cells (PBMCs) of PBC subjects substantially decreased when compared with the healthy controls but not in other Sirt family genes (Sirt2-7). Consistent with clinical results, a PBC murine model showed that levels of Sirt1 significantly decreased in the liver and Kupffer cells of mice treated with polyinosinic/polycytidylic acid (poly I:C) for 16 weeks. A TAK1 inhibitor (NG25) prevented the poly I:C-induced Sirt1 protein level decreasing in Kupffer cells but not MAPK inhibitor. Sirt1 activators resveratrol (RSV) and SRT1720 (SRT) ameliorated poly I:C-induced hepatic injury observed via histopathologic analysis and decreased aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels in the PBC murine model. Furthermore, Sirt1 activators significantly reduced pro-inflammatory cytokines levels such as interleukin-1 beta (IL-1β), IL-6, interferon-gamma (IFN-γ) and tumor necrosis factor alpha (TNF-α) in serum in poly I:C-induced mice. In addition, Sirt1 activators significantly inhibited the phosphorylated and acetylated levels of the RelA/p65 subunit of the nuclear transcription factor (NF-κB) but not the interferon regulatory factor (IRF) 3 in poly I:C-injured mice livers. Significantly, RSV improved the interaction between Sirt1 and p65, which may contribute to the decreased activity of NF-κB. In summary, the Sirt1 signaling pathway plays an essential role in the development of PBC and this may represent a novel approach and target for the treatment of PBC.
Collapse
Affiliation(s)
- Yong Li
- Department of Laboratory Medicine, First People's Hospital of Taicang, Taicang Hospital Affiliated to Suzhou University, Taicang 215400, Jiangsu, China
| | - Yanhai Xi
- Department of Spine Surgery, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Guohua Tao
- Department of Laboratory Medicine, First People's Hospital of Nantong, 226001 Jiangsu, China
| | - Guohua Xu
- Department of Immunology and Microbiology, Institution of Laboratory Medicine of Changshu, Changshu 215500, Jiangsu, China
| | - Zaixing Yang
- Department of Laboratory Medicine, Huangyan Hospital of Wenzhou Medical University, Taizhou First People's Hospital, Zhejiang, China
| | - Xingli Fu
- Jiangsu University Health Science Center, Zhenjiang, Jiangsu, China
| | - Yan Liang
- Department of Laboratory Diagnostics, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Jianping Qian
- Department of Immunology and Microbiology, Institution of Laboratory Medicine of Changshu, Changshu 215500, Jiangsu, China
| | - Yanhong Cui
- Department of Immunology and Microbiology, Institution of Laboratory Medicine of Changshu, Changshu 215500, Jiangsu, China
| | - Tingwang Jiang
- Department of Immunology and Microbiology, Institution of Laboratory Medicine of Changshu, Changshu 215500, Jiangsu, China.
| |
Collapse
|
43
|
Ma X, Jiang Y, Zhang W, Wang J, Wang R, Wang L, Wei S, Wen J, Li H, Zhao Y. Natural products for the prevention and treatment of cholestasis: A review. Phytother Res 2020; 34:1291-1309. [PMID: 32026542 DOI: 10.1002/ptr.6621] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 12/26/2019] [Accepted: 01/13/2020] [Indexed: 12/16/2022]
Abstract
Cholestasis is a common manifestation of decreased bile flow in various liver diseases. It results in fibrosis and even cirrhosis without proper treatment. It is believed that a wide range of factors, including transporter dysfunction, oxidative stress, inflammatory damage, and immune disruption, can cause cholestasis. In recent years, natural products have drawn much attention for specific multiple-target activities in diseases. Many attempts have been made to investigate the anticholestatic effects of natural products with advanced technology. This review summarizes recent studies on the biological activities and mechanisms of recognized compounds for cholestasis treatment. Natural products, including various flavonoids, phenols, acids, quinones, saponins, alkaloids, glycosides, and so on, function as comprehensive regulators via ameliorating oxidative stress, inflammation, and apoptosis, restoring bile acid balance with hepatic transporters, and adjusting immune disruption. Moreover, in this progress, nuclear factor erythroid 2-related factor 2, reactive oxygen species production, heme oxygenase-1, NF-κB, cholesterol 7 alpha-hydroxylase, and farnesoid X receptors are thought as main targets for the activity of natural products. Therefore, this review presents the detailed mechanisms that include multiple targets and diverse signalling pathways. Natural products are the valuable when seeking novel therapeutic agents to treat cholestatic liver diseases.
Collapse
Affiliation(s)
- Xiao Ma
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yinxiao Jiang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wenwen Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiabo Wang
- China Military Institute of Chinese Medicine, Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Ruilin Wang
- China Military Institute of Chinese Medicine, Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Lifu Wang
- China Military Institute of Chinese Medicine, Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Shizhang Wei
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Department of Pharmacy, Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Jianxia Wen
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Department of Pharmacy, Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Haotian Li
- Department of Pharmacy, Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Yanling Zhao
- Department of Pharmacy, Fifth Medical Center of PLA General Hospital, Beijing, China
| |
Collapse
|
44
|
Tsai MS, Lee HM, Huang SC, Sun CK, Chiu TC, Chen PH, Lin YC, Hung TM, Lee PH, Kao YH. Nerve growth factor induced farnesoid X receptor upregulation modulates autophagy flux and protects hepatocytes in cholestatic livers. Arch Biochem Biophys 2020; 682:108281. [PMID: 32001246 DOI: 10.1016/j.abb.2020.108281] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 01/20/2020] [Accepted: 01/24/2020] [Indexed: 02/08/2023]
Abstract
Upregulation of nerve growth factor (NGF) in parenchymal hepatocytes has been shown to exert hepatoprotective function during cholestatic liver injury. However, the modulatory role of NGF in regulation of liver autophagy remains unclear. This study aimed to scrutinize the regulatory role of NGF in hepatic expression of farnesoid X receptor (FXR), a bile acid (BA)-activated nuclear receptor, and to determine its cytoprotective effect on BA-induced autophagy and cytotoxicity. Livers of human hepatolithiasis and bile duct ligation (BDL)-induced mouse cholestasis were used for histopathological and molecular detection. The regulatory roles of NGF in autophagy flux and FXR expression, as well as its hepatoprotection against BA cytotoxicity were examined in cultured hepatocytes. FXR downregulation in human hepatolithiasis livers showed positive correlation with hepatic NGF levels. NGF administration upregulated hepatic FXR levels, while neutralization of NGF decreased FXR expression in BDL-induced cholestatic mouse livers. In vitro studies demonstrated that NGF upregulated FXR expression, increased cellular LC3 levels, and exerted hepatoprotective effect in cultured primary rat hepatocytes. Conversely, autophagy inhibition abrogated NGF-driven cytoprotection under BA exposure, suggesting involvement of NGF-modulated auophagy flux. Although FXR agonistic GW4064 stimulation did not affect auophagic LC3 levels, FXR activity inhibition significantly potentiated BA-induced cytotoxicity and increased cellular p62/SQSTM1 and Rab7 protein in SK-Hep1 hepatocytes. Moreover, FXR gene silencing abolished the protective effect of NGF under BA exposure. These findings support that NGF modulates autophagy flux via FXR upregulation and protects hepatocytes against BA-induced cytotoxicity. NGF/FXR axis is a novel therapeutic target for treatment of cholestatic liver diseases.
Collapse
Affiliation(s)
- Ming-Shian Tsai
- Department of Surgery, E-Da Hospital, Kaohsiung, Taiwan; Body Health and Beauty Center, Jiann-Ren Hospital, Kaohsiung, Taiwan
| | - Hui-Ming Lee
- Department of Surgery, E-Da Hospital, Kaohsiung, Taiwan
| | - Shih-Che Huang
- Department of Medical Research, E-Da Hospital, Kaohsiung, Taiwan
| | - Cheuk-Kwan Sun
- Department of Medical Research, E-Da Hospital, Kaohsiung, Taiwan; Department of Emergency Medicine, E-Da Hospital, Kaohsiung, Taiwan; School of Medicine, College of Medicine, I-Shou University, Kaohsiung, Taiwan
| | | | - Po-Han Chen
- Department of Medical Research, E-Da Hospital, Kaohsiung, Taiwan
| | - Yu-Chun Lin
- Department of Surgery, E-Da Hospital, Kaohsiung, Taiwan
| | - Tzu-Min Hung
- Department of Medical Research, E-Da Hospital, Kaohsiung, Taiwan; Committee for Integration and Promotion of Advanced Medicine and Biotechnology, E-Da Healthcare Group, Kaohsiung, Taiwan
| | - Po-Huang Lee
- Department of Surgery, E-Da Hospital, Kaohsiung, Taiwan; Committee for Integration and Promotion of Advanced Medicine and Biotechnology, E-Da Healthcare Group, Kaohsiung, Taiwan.
| | - Ying-Hsien Kao
- Department of Medical Research, E-Da Hospital, Kaohsiung, Taiwan.
| |
Collapse
|
45
|
Salas-Silva S, Simoni-Nieves A, Razori MV, López-Ramirez J, Barrera-Chimal J, Lazzarini R, Bello O, Souza V, Miranda-Labra RU, Gutiérrez-Ruiz MC, Gomez-Quiroz LE, Roma MG, Bucio-Ortiz L. HGF induces protective effects in α-naphthylisothiocyanate-induced intrahepatic cholestasis by counteracting oxidative stress. Biochem Pharmacol 2020; 174:113812. [PMID: 31954718 DOI: 10.1016/j.bcp.2020.113812] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 01/13/2020] [Indexed: 12/19/2022]
Abstract
Cholestasis is a clinical syndrome common to a large number of hepatopathies, in which either bile production or its transit through the biliary tract is impaired due to functional or obstructive causes; the consequent intracellular retention of toxic biliary constituents generates parenchyma damage, largely via oxidative stress-mediated mechanisms. Hepatocyte growth factor (HGF) and its receptor c-Met represent one of the main systems for liver repair damage and defense against hepatotoxic factors, leading to an antioxidant and repair response. In this study, we evaluated the capability of HGF to counteract the damage caused by the model cholestatic agent, α-naphthyl isothiocyanate (ANIT). HGF had clear anti-cholestatic effects, as apparent from the improvement in both bile flow and liver function test. Histology examination revealed a significant reduction of injured areas. HGF also preserved the tight-junctional structure. These anticholestatic effects were associated with the induction of basolateral efflux ABC transporters, which facilitates extrusion of toxic biliary compounds and its further alternative depuration via urine. The biliary epithelium seems to have been also preserved, as suggested by normalization in serum GGT levels, CFTR expression and cholangyocyte primary cilium structure our results clearly show for the first time that HGF protects the liver from a cholestatic injury.
Collapse
Affiliation(s)
- Soraya Salas-Silva
- Posgrado en Biología Experimental, DCBS, Universidad Autónoma Metrolitana-Iztapalapa, Ciudad de México, Mexico; Departmento de Ciencias de la Salud, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Ciudad de México, Mexico
| | - Arturo Simoni-Nieves
- Posgrado en Biología Experimental, DCBS, Universidad Autónoma Metrolitana-Iztapalapa, Ciudad de México, Mexico; Departmento de Ciencias de la Salud, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Ciudad de México, Mexico
| | - María Valeria Razori
- Instituto de Fisiología Experimental, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad de Rosario, Argentina
| | - Jocelyn López-Ramirez
- Posgrado en Biología Experimental, DCBS, Universidad Autónoma Metrolitana-Iztapalapa, Ciudad de México, Mexico; Departmento de Ciencias de la Salud, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Ciudad de México, Mexico
| | - Jonatan Barrera-Chimal
- Departmento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico; Unidad de Medicina Traslacional, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, Mexico
| | - Roberto Lazzarini
- Departamento de Biología de la Reproducción, Universidad Autónoma Metropolitana, Ciudad de México, Mexico
| | - Oscar Bello
- Posgrado en Biología Experimental, DCBS, Universidad Autónoma Metrolitana-Iztapalapa, Ciudad de México, Mexico
| | - Verónica Souza
- Departmento de Ciencias de la Salud, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Ciudad de México, Mexico; Unidad de Medicina Traslacional, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, Mexico
| | - Roxana U Miranda-Labra
- Departmento de Ciencias de la Salud, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Ciudad de México, Mexico; Unidad de Medicina Traslacional, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, Mexico
| | - María Concepción Gutiérrez-Ruiz
- Departmento de Ciencias de la Salud, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Ciudad de México, Mexico; Unidad de Medicina Traslacional, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, Mexico
| | - Luis Enrique Gomez-Quiroz
- Departmento de Ciencias de la Salud, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Ciudad de México, Mexico; Unidad de Medicina Traslacional, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, Mexico
| | - Marcelo G Roma
- Instituto de Fisiología Experimental, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad de Rosario, Argentina.
| | - Leticia Bucio-Ortiz
- Departmento de Ciencias de la Salud, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Ciudad de México, Mexico; Unidad de Medicina Traslacional, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, Mexico.
| |
Collapse
|
46
|
Cao D, Zhao D, Jia Z, Su T, Zhang Y, Wu Y, Wu M, Tsukamoto T, Oshima M, Jiang J, Cao X. Reactivation of Atp4a concomitant with intragenic DNA demethylation for cancer inhibition in a gastric cancer model. Life Sci 2019; 242:117214. [PMID: 31884095 DOI: 10.1016/j.lfs.2019.117214] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 12/15/2019] [Accepted: 12/20/2019] [Indexed: 12/15/2022]
Abstract
Accumulating evidence suggests that aberrant DNA methylation and gene silencing of tumor suppressors are pervasive in gastric malignancies, supporting reactivation of tumor suppressors through DNA demethylation as a potential therapeutic opportunity. Atp4a is an important tumor suppressor gene, encoding H+, K+-ATPase, and mediating gastric acid secretion in the stomach. Using transgenic gastric cancer model K19-Wnt1/C2mE (Gan) mice, by combining the transcriptome and MeDIP (methylated DNA immunoprecipitation) sequencing, together with qRT-PCR, we showed that Atp4a was expressed at low levels in tumor tissues and multiple GC cells, while both 5-aza-CdR and 18β-glycyrrhetinic acid (GRA) pharmacological treatment triggered Atp4a activation with downregulation of DNMT1. In addition, CpG island (CGI) search showed that the CpG rich region is absent in the promoter region but present in exons 9-14 of Atp4a. Methylation specific PCR (MSP) indicated that Atp4a was fully or partly methylated in multiple GC cells. Further MassArray suggested that the demethylation in the CpG site 75, 183, 196, 262-268 might be responsible for the reactivation of Atp4a. Our research identified that GRA, a bioactive component found in abundance in Radix Glycyrrhiza, reactivated Atp4a expression and inhibited gastric tumorigenesis as a potential demethylation agent.
Collapse
Affiliation(s)
- Donghui Cao
- Division of Clinical Research, First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Dan Zhao
- Division of Clinical Research, First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Zhifang Jia
- Division of Clinical Research, First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Tongrong Su
- Department of Gastric and Colorectal Surgery, First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Yangyu Zhang
- Division of Clinical Research, First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Yanhua Wu
- Division of Clinical Research, First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Menghui Wu
- Department of Gastric and Colorectal Surgery, First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Tetsuya Tsukamoto
- Department of Diagnostic Pathology I, School of Medicine, Fujita Health University, Toyoake 470-1192, Japan
| | - Masanobu Oshima
- Division of Genetics, Cancer Research Institute, Kanazawa University, Kanazawa 920-1192, Japan
| | - Jing Jiang
- Division of Clinical Research, First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Xueyuan Cao
- Department of Gastric and Colorectal Surgery, First Hospital of Jilin University, Changchun, Jilin 130021, China.
| |
Collapse
|
47
|
Xiang M, Zhou X, Luo TR, Wang PY, Liu LW, Li Z, Wu ZB, Yang S. Design, Synthesis, Antibacterial Evaluation, and Induced Apoptotic Behaviors of Epimeric and Chiral 18β-Glycyrrhetinic Acid Ester Derivatives with an Isopropanolamine Bridge against Phytopathogens. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:13212-13220. [PMID: 31702905 DOI: 10.1021/acs.jafc.9b06147] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Because only a handful of agrochemicals can manage bacterial infections, the discovery and development of innovative, inexpensive, and high-efficiency antibacterial agents targeting these infections are challenging. Herein, a series of novel epimeric and chiral 18β-glycyrrhetinic acid (GA) ester derivatives with various tertiary amine pendants were designed, synthesized, and screened for pharmacological activity. Results showed that some of the title compounds were conferred with significantly enhanced antibacterial activity toward phytopathogens Xanthomonas oryzae pv oryzae (A2, B1-B3, and C1, EC50 values within 3.81-4.82 μg/mL) and Xanthomonas axonopodis pv citri (B1, EC50 = 3.18 μg/mL; B2, EC50 = 2.76 μg/mL). These activities are superior to those of GA (EC50 > 400 μg/mL), thiodiazole copper, and bismerthiazol. Pharmacophore studies revealed that the synergistic combination of GA skeleton and tertiary amine scaffolds contributed to the biological actions. In vivo experiments displayed their promising applications in controlling bacterial infections. Antibacterial mechanism studies revealed that the title compounds could trigger apoptosis in the tested pathogens, evident by bacteria morphological changes observed in scanning electron microscopy images. This outcome should motivate the development of various apoptosis inducers against plant bacterial diseases by a novel mode of action compared to that of existing agricultural chemicals.
Collapse
Affiliation(s)
- Meng Xiang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education , Center for R&D of Fine Chemicals of Guizhou University , Guiyang 550025 , China
| | - Xiang Zhou
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education , Center for R&D of Fine Chemicals of Guizhou University , Guiyang 550025 , China
| | - Ting-Rong Luo
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education , Center for R&D of Fine Chemicals of Guizhou University , Guiyang 550025 , China
| | - Pei-Yi Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education , Center for R&D of Fine Chemicals of Guizhou University , Guiyang 550025 , China
| | - Li-Wei Liu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education , Center for R&D of Fine Chemicals of Guizhou University , Guiyang 550025 , China
| | - Zhong Li
- College of Pharmacy , East China University of Science & Technology , Shanghai 200237 , China
| | - Zhi-Bing Wu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education , Center for R&D of Fine Chemicals of Guizhou University , Guiyang 550025 , China
| | - Song Yang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education , Center for R&D of Fine Chemicals of Guizhou University , Guiyang 550025 , China
- College of Pharmacy , East China University of Science & Technology , Shanghai 200237 , China
| |
Collapse
|
48
|
Wu H, Liu G, He Y, Da J, Xie B. Obeticholic acid protects against diabetic cardiomyopathy by activation of FXR/Nrf2 signaling in db/db mice. Eur J Pharmacol 2019; 858:172393. [PMID: 31085240 DOI: 10.1016/j.ejphar.2019.05.022] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/06/2019] [Accepted: 05/10/2019] [Indexed: 02/06/2023]
Abstract
Diabetic cardiomyopathy (DCM) is one of the major cardiac complications in diabetic patients and a major reason for the death of diabetic patients. Obeticholic acid (OCA) is a semi-synthetic bile acid analogue. The objective of the present study was to investigate the possible cardio-protective effect of OCA against DCM. db/db diabetic mice were given OCA with or without injection of LV-short hairpin farnesoid X receptor (shFXR), and general glucose and lipid metabolism, myocardial morphology and function, myocardial fibrosis, inflammation and oxidative stress were evaluated. We found that OCA significantly ameliorated metabolic dysfunctions. Moreover, OCA attenuated morphological injury of cardiac tissue, restored the abnormal changes of hemodynamic variables and echocardiographic parameters. The Sirius-Red staining of cardiac tissue and mRNA expression of fibrotic biomarkers, including connective tissue growth factor, osteopontin, Transforming growth factor-β1, atrial natriuretic peptide, Collagen Ⅰ, and Collagen Ⅲ were decreased by OCA. Systemic levels of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6 were reduced by OCA. Moreover, OCA decreased oxidant products and increased nuclear factor (erythroid-derived 2)-like 2 (Nrf2) expression and the expression and activities of antioxidant enzymes. Injection of LV-shFXR downregulated FXR expression and inhibited all these beneficial effects of OCA. FXR is major target that mediated that beneficial effect of OCA. In summary, FXR/Nrf2 signaling was involved in OCA-induced amelioration of metabolic disorder, oxidative stress, inflammation, fibrosis and myocardial dysfunction. Our findings provide new evidence for the interaction of FXR and Nrf2 signaling and novel option for the intervention of DCM.
Collapse
Affiliation(s)
- Hongkui Wu
- Department of Oldor Cardiovascular and Cerebrovascular Diseases, Baoji Central Hospital, Baoji, Shaanxi, 721008, China.
| | - Gang Liu
- Department of Oldor Cardiovascular and Cerebrovascular Diseases, Baoji Central Hospital, Baoji, Shaanxi, 721008, China
| | - Yaoli He
- Department of Oldor Cardiovascular and Cerebrovascular Diseases, Baoji Central Hospital, Baoji, Shaanxi, 721008, China
| | - Jing Da
- Department of Oldor Cardiovascular and Cerebrovascular Diseases, Baoji Central Hospital, Baoji, Shaanxi, 721008, China
| | - Bingqing Xie
- Department of Oldor Cardiovascular and Cerebrovascular Diseases, Baoji Central Hospital, Baoji, Shaanxi, 721008, China
| |
Collapse
|
49
|
Natural products in licorice for the therapy of liver diseases: Progress and future opportunities. Pharmacol Res 2019; 144:210-226. [PMID: 31022523 DOI: 10.1016/j.phrs.2019.04.025] [Citation(s) in RCA: 184] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 04/18/2019] [Accepted: 04/21/2019] [Indexed: 12/16/2022]
Abstract
Liver diseases related complications represent a significant source of morbidity and mortality worldwide, creating a substantial economic burden. Oxidative stress, excessive inflammation, and dysregulated energy metabolism significantly contributed to liver diseases. Therefore, discovery of novel therapeutic drugs for the treatment of liver diseases are urgently required. Licorice is one of the most commonly used herbal drugs in Traditional Chinese Medicine for the treatment of liver diseases and drug-induced liver injury (DILI). Various bioactive components have been isolated and identified from the licorice, including glycyrrhizin, glycyrrhetinic acid, liquiritigenin, Isoliquiritigenin, licochalcone A, and glycycoumarin. Emerging evidence suggested that these natural products relieved liver diseases and prevented DILI through multi-targeting therapeutic mechanisms, including anti-steatosis, anti-oxidative stress, anti-inflammation, immunoregulation, anti-fibrosis, anti-cancer, and drug-drug interactions. In the current review, we summarized the recent progress in the research of hepatoprotective and toxic effects of different licorice-derived bioactive ingredients and also highlighted the potency of these compounds as promising therapeutic options for the treatment of liver diseases and DILI. We also outlined the networks of underlying molecular signaling pathways. Further pharmacology and toxicology research will contribute to the development of natural products in licorice and their derivatives as medicines with alluring prospect in the clinical application.
Collapse
|