1
|
Zhou R, Wu H, You H, Wang X, Yuan X, Sun Z, Zhou D, Jiang Y, Shen Y. ESPN activates ZEB1-mediated EMT through the PI3K/AKT/mTOR axis to promote osteosarcoma metastasis. J Transl Med 2025; 23:527. [PMID: 40346630 DOI: 10.1186/s12967-025-06500-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 04/13/2025] [Indexed: 05/11/2025] Open
Abstract
BACKGROUND Osteosarcoma (OS) is a primary bone malignancy characterized by early metastasis and generally poor prognosis. ESPN is highly expressed and plays an important role in regulating the aggressive phenotypes of several cancer cell types. However, little is known about the molecular mechanisms underlying ESPN-mediated migration and invasion in OS cells. METHODS In this study, we first analyzed the survival of osteosarcoma patients using Kaplan-Meier analysis to assess the prognostic relevance of ESPN. To further evaluate its clinical significance, we performed immunohistochemical analysis on osteosarcoma tissue samples and benign osteochondroma (OC) tissues. The biological function of ESPN in osteosarcoma was confirmed by a series of experiments conducted both in vitro and in vivo. Additionally, we explored the underlying molecular mechanisms through Western blotting, co-immunoprecipitation, immunofluorescence, and PCR, revealing key downstream signaling pathways. RESULTS In this study, we demonstrate that ESPN, acting as an oncogene, is highly expressed in OS cell lines and tissues, promoting OS cell proliferation and metastasis. Mechanistically, ESPN promoted the phosphorylation of PI3K by direct interaction with it and active the AKT/mTOR pathway, which enhanced the expression of the transcription factor ZEB1 and initiating the epithelial-mesenchymal transition (EMT) cascade. Furthermore, we validated that mTOR-mediated activation of p70 ribosomal protein S6 kinase (p70S6K) promotes the translation of ZEB1, thereby enhancing the growth and motility of OS cells. CONCLUSIONS Our findings reveal a previously unrecognized function of ESPN in OS, closely linked with EMT and cancer metastasis progression. Targeting ESPN may represent a potential therapeutic approach for patients with OS.
Collapse
Affiliation(s)
- Ruikai Zhou
- Department of Orthopedics, Changzhou Medical Center, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Nanjing Medical University, Changzhou, China
| | - Hongyu Wu
- Department of Orthopedics, Changzhou Medical Center, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Nanjing Medical University, Changzhou, China
| | - Hao You
- Department of Orthopedics, Changzhou Medical Center, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Nanjing Medical University, Changzhou, China
| | - Xiaofei Wang
- Department of Orthopedics, Changzhou Medical Center, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Nanjing Medical University, Changzhou, China
| | - Xiuchen Yuan
- Department of Orthopedics, Changzhou Medical Center, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Nanjing Medical University, Changzhou, China
| | - Zhengyi Sun
- Department of Orthopedics, Changzhou Medical Center, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Nanjing Medical University, Changzhou, China
| | - Dong Zhou
- Department of Orthopedics, Changzhou Medical Center, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Nanjing Medical University, Changzhou, China.
- Affiliated with Changzhou Children's Hospital of Nantong University, Changzhou, China.
| | - Yuqing Jiang
- Department of Orthopedics, Changzhou Medical Center, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Nanjing Medical University, Changzhou, China.
| | - Yifei Shen
- Department of Orthopedics, Changzhou Medical Center, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Nanjing Medical University, Changzhou, China.
| |
Collapse
|
2
|
Zhang G, Zhang K, Li X, Wang X, Li G, Wang Y. Cinobufagin Enhances the Sensitivity of Cisplatin-Resistant Lung Cancer Cells to Chemotherapy by Inhibiting the PI3K/AKT and MAPK/ERK Pathways. J Cell Mol Med 2025; 29:e70501. [PMID: 40135405 PMCID: PMC11937849 DOI: 10.1111/jcmm.70501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 03/01/2025] [Accepted: 03/10/2025] [Indexed: 03/27/2025] Open
Abstract
Lung cancer patients always develop serious chemotherapy resistance after long-term use of cisplatin treatment. It has been demonstrated that the combination of cisplatin (DDP) with other chemotherapy drugs may significantly reduce drug resistance. Cinobufagin (CB) showed potent anti-tumour effect against lung cancer. However, the relevance of CB and DDP resistance in lung cancer remains unclear. This article will study the effects of CB on reversing lung cell resistance. The apoptosis was rescued by flow cytometry analysis and TUNEL staining. The invasiveness was rescued by invasion assay. The mRNA and apoptosis-related proteins were estimated by qRT-PCR analysis and Western blot analysis, respectively. In vivo antitumor activities were investigated by subcutaneous xenograft assay. The present study firstly demonstrated that the sensitivity of DDP in DDP-resistant A549 (A549/DDP) cells was enhanced when treated with CB. Moreover, CB combined with DDP weakened the proliferation and increased apoptosis of A549/DDP cells. In addition, the expression level of Bcl-2 was increased, whereas Bax and caspase-3 were activated when A549/DDP cells were treated with both drugs. After treatment with IGF1 or PMA and mixed drugs (CB + DDP), the expressions of P-AKT, P-PI3K, P-MEK1/2 and P-ERK1/2 were increased. Finally, the results of in vivo experiments showed that the combination of DDP and CB significantly reduced the growth of tumours derived from A549/DDP cells. The combination of CB and DDP can be considered an effective strategy to increase the sensitivity of DDP-resistant lung cancer cells to DDP by inhibiting the PI3K/AKT and MAPK/ERK pathways.
Collapse
Affiliation(s)
- Guangxin Zhang
- Department of Thoracic SurgerySecond Hospital of Jilin UniversityChang ChunPeople's Republic of China
| | - Kun Zhang
- Department of Medical Research CenterSecond Hospital of Jilin UniversityChang ChunPeople's Republic of China
| | - Xin Li
- Department of Medical Research CenterSecond Hospital of Jilin UniversityChang ChunPeople's Republic of China
| | - Xiuwen Wang
- College of Life ScienceJilin Normal UniversitySi PingPeople's Republic of China
| | - Guangquan Li
- Department of Medical Research CenterSecond Hospital of Jilin UniversityChang ChunPeople's Republic of China
| | - Yicun Wang
- Department of Medical Research CenterSecond Hospital of Jilin UniversityChang ChunPeople's Republic of China
| |
Collapse
|
3
|
McBrien C, O’Connell DJ. The Use of Biologics for Targeting GPCRs in Metastatic Cancers. BIOTECH 2025; 14:7. [PMID: 39982274 PMCID: PMC11843943 DOI: 10.3390/biotech14010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/18/2025] [Accepted: 01/27/2025] [Indexed: 02/22/2025] Open
Abstract
A comprehensive review of studies describing the role of G-protein coupled receptor (GPCR) behaviour contributing to metastasis in cancer, and the developments of biotherapeutic drugs towards targeting them, provides a valuable resource toward improving our understanding of the opportunities to effectively target this malignant tumour cell adaptation. Focusing on the five most common metastatic cancers of lung, breast, colorectal, melanoma, and prostate cancer, we highlight well-studied and characterised GPCRs and some less studied receptors that are also implicated in the development of metastatic cancers. Of the approximately 390 GPCRs relevant to therapeutic targeting, as many as 125 of these have been identified to play a role in promoting metastatic disease in these cancer types. GPCR signalling through the well-characterised pathways of chemokine receptors, to emerging data on signalling by orphan receptors, is integral to many aspects of the metastatic phenotype. Despite having detailed information on many receptors and their ligands, there are only thirteen approved therapeutics specifically for metastatic cancer, of which three are small molecules with the remainder including synthetic and non-synthetic peptides or monoclonal antibodies. This review will cover the existing and potential use of monoclonal antibodies, proteins and peptides, and nanobodies in targeting GPCRs for metastatic cancer therapy.
Collapse
Affiliation(s)
| | - David J. O’Connell
- School of Biomolecular & Biomedical Science, University College Dublin, D04 V1W8 Dublin, Ireland;
| |
Collapse
|
4
|
Shao W, Liu F, Zhu L, Qian W, Meng Q, Zhang A, Jin S, Lu J, Yan SG. Ferroportin inhibits the proliferation and migration of fibroblast-like synoviocytes in rheumatoid arthritis via regulating ROS/PI3K/AKT signaling pathway. Eur J Pharmacol 2025; 987:177205. [PMID: 39672225 DOI: 10.1016/j.ejphar.2024.177205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 12/11/2024] [Accepted: 12/11/2024] [Indexed: 12/15/2024]
Abstract
The aberrant proliferation of fibroblast-like synoviocytes (FLS) significantly contributes to excessive synovial hyperplasia and joint deformity in rheumatoid arthritis (RA). It has been observed that the membrane iron transporter protein, ferroportin (FPN), is commonly downregulated in tumor cells, while its overexpression can inhibit tumor cell proliferation. However, limited studies have investigated the role of iron in the pathogenesis of RA. In this study, we examined the functional relevance of FPN in RA. The expression of FPN in RA tissue specimens and primary cells was assessed using western blotting and RT-PCR. An adjuvant-induced arthritis (AIA) rat model was established to further validate the expression level of FPN. Phenotypic analysis of FLS cell proliferation was performed via CCK-8, clonogenic formation, and cell scratch assays. The involvement of membrane iron transporter proteins was analyzed through RNAseq and reactive oxygen species (ROS) detection. The results demonstrated decreased expression of FPN in the synovial tissue of RA patients compared to the normal group. Overexpression of FPN can inhibit RA-FLS proliferation and migration by suppressing the PI3K/AKT pathway, and this effect is associated with the elevation of ROS levels. Our findings suggest that the downregulation of FPN may contribute to the pathogenesis of RA, indicating a potential role of iron dysregulation in this disease, and FPN regulates the proliferation and migration of FLS by promoting the levels of ROS in FLS as well as suppressing the PI3K/AKT signaling pathway. These results suggest that FPN could be a potential target for alleviating joint damage in RA.
Collapse
Affiliation(s)
- Weiting Shao
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China; School of Life and Science, Anhui Medical University, Ministry of Education, Hefei, China
| | - Fanxiao Liu
- Department of Orthopaedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Lin Zhu
- School of Life and Science, Anhui Medical University, Ministry of Education, Hefei, China
| | - Weiyi Qian
- School of Life and Science, Anhui Medical University, Ministry of Education, Hefei, China
| | - Qianqian Meng
- School of Life and Science, Anhui Medical University, Ministry of Education, Hefei, China
| | - Afei Zhang
- School of Life and Science, Anhui Medical University, Ministry of Education, Hefei, China
| | - Shuai Jin
- School of Life and Science, Anhui Medical University, Ministry of Education, Hefei, China
| | - Jingtao Lu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China; School of Life and Science, Anhui Medical University, Ministry of Education, Hefei, China.
| | - Shuang G Yan
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China.
| |
Collapse
|
5
|
Zhang J, Li L, Luo W, Ma S, Zhao Y. ITGB4 is a prognostic biomarker and correlated with lung adenocarcinoma brain metastasis. Clin Transl Oncol 2024; 26:2979-2992. [PMID: 38776034 DOI: 10.1007/s12094-024-03527-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 05/13/2024] [Indexed: 11/15/2024]
Abstract
BACKGROUND The aim of this study is to explore the prognostic value and immune signature of ITGB4 expression in lung adenocarcinoma (LUAD) brain metastasis. METHODS We comprehensively screened genes associated with LUAD brain metastasis by integrating datasets from the GEO database and TMT-based quantitative proteomics profiles. Univariable survival and Multivariate Cox analysis was used to compare several clinical characteristics with survival, and a risk model was constructed. The biological functions were explored via GO and KEGG analysis. Gene set enrichment analysis (GSEA) was performed using the TCGA dataset. In addition, we use TIMER to explore the collection of ITGB4 Expression and Immune Infiltration Level in LUAD. The ability of ITGB4 to regulate tumor metastasis was further assessed by migration, invasion assay and Western-blot in H1975-BrM4 cells. RESULTS We found that ITGB4 was the only gene with high clinical diagnostic and prognostic value in LUAD. Enrichment analysis indicated that ITGB4 is associated with brain metastasis, infiltration of immune cells, and the response to immunotherapy. ITGB4 expression can effectively predict the outcomes of patients with LUAD who are receiving anti-PD-1 therapy. ITGB4 knockdown inhibited the invasion, migration of H1975-BrM4 brain metastasis cells, as well as epithelial-mesenchymal transition (EMT) abilities. The heightened expression of ITGB4 protein was shown to promote EMT and enhance the metastatic potential. ITGB4 promotes the progression in H1975-BrM4 cells via MEK/ERK signaling pathway. CONCLUSIONS Our findings indicate that the expression of ITGB4 is linked to the occurrence of brain metastasis and infiltration of immune cells, suggesting that ITGB4 might be a clinical treatment target for LUAD.
Collapse
Affiliation(s)
- Jingjing Zhang
- Department of Translational Medicine Research Center, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Zhejiang Chinese Medical University, Hangzhou, China
- Department of Translational Medicine Research Center, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China
| | - Lingjie Li
- Department of Translational Medicine Research Center, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Weiwei Luo
- Schools of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, China
| | - Shenglin Ma
- Department of Translational Medicine Research Center, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Zhejiang Chinese Medical University, Hangzhou, China.
- Department of Translational Medicine Research Center, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China.
- Department of Oncology, Affiliated Hangzhou Cancer Hospital, Hangzhou, China.
| | - Yanyan Zhao
- Department of Translational Medicine Research Center, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Zhejiang Chinese Medical University, Hangzhou, China.
- Department of Translational Medicine Research Center, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China.
| |
Collapse
|
6
|
Wen Y, Zheng Y, Hua S, Li T, Bi X, Lu Q, Li M, Sun S. Mechanisms of Bone Morphogenetic Protein 2 in Respiratory Diseases. Curr Allergy Asthma Rep 2024; 25:1. [PMID: 39466470 DOI: 10.1007/s11882-024-01181-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2024] [Indexed: 10/30/2024]
Abstract
PURPOSE OF REVIEW Bone morphogenetic protein 2 (BMP2) belongs to the transforming growth factor-β (TGF-β) superfamily and plays an important role in regulating embryonic development, angiogenesis, osteogenic differentiation, tissue homeostasis, and cancer invasion. Increasing studies suggest BMP2 is involved in several respiratory diseases. This study aimed to review the role and mechanisms of BMP2 in respiratory diseases. RECENT FINDINGS BMP2 signaling pathway includes the canonical and non-canonical signaling pathway. The canonical signaling pathway is the BMP2-SMAD pathway, and the non-canonical signaling pathway includes mitogen-activated protein kinase (MAPK) pathway and phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) pathway. The BMP2 is related to pulmonary hypertension (PH), lung cancer, pulmonary fibrosis (PF), asthma, and chronic obstructive pulmonary disease (COPD). BMP2 inhibits the proliferation of pulmonary artery smooth muscle cells (PASMCs), promotes the apoptosis of PASMCs to reduce pulmonary vascular remodeling in PH, which is closely related to the canonical and non-canonical pathway. In addition, BMP2 stimulates the proliferation and migration of cells to promote the occurrence, colonization, and metastasis of lung cancer through the canonical and the non-canonical pathway. Meanwhile, BMP2 exert anti-fibrotic function in PF through canonical signaling pathway. Moreover, BMP2 inhibits airway inflammation to maintain airway homeostasis in asthma. However, the signaling pathways involved in asthma are poorly understood. BMP2 inhibits the expression of ciliary protein and promotes squamous metaplasia of airway epithelial cells to accelerate the development of COPD. In conclusion, BMP2 may be a therapeutic target for several respiratory diseases.
Collapse
Affiliation(s)
- Yiqiong Wen
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, No. 295, Xichang Road, Wuhua District, Kunming, China
| | - Yuanyuan Zheng
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, No. 295, Xichang Road, Wuhua District, Kunming, China
| | - Shu Hua
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, No. 295, Xichang Road, Wuhua District, Kunming, China
| | - Tongfen Li
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, No. 295, Xichang Road, Wuhua District, Kunming, China
| | - Xiaoqing Bi
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, No. 295, Xichang Road, Wuhua District, Kunming, China
| | - Qiongfen Lu
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, No. 295, Xichang Road, Wuhua District, Kunming, China
| | - Min Li
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, No. 295, Xichang Road, Wuhua District, Kunming, China
| | - Shibo Sun
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, No. 295, Xichang Road, Wuhua District, Kunming, China.
| |
Collapse
|
7
|
Yadav P, Vengoji R, Jain M, Batra SK, Shonka N. Pathophysiological role of histamine signaling and its implications in glioblastoma. Biochim Biophys Acta Rev Cancer 2024; 1879:189146. [PMID: 38955315 PMCID: PMC11770814 DOI: 10.1016/j.bbcan.2024.189146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 06/21/2024] [Accepted: 06/27/2024] [Indexed: 07/04/2024]
Abstract
Glioblastoma (GBM), an extremely aggressive and prevalent malignant brain tumor, remains a challenge to treat. Despite a multimodality treatment approach, GBM recurrence remains inevitable, particularly with the emergence of temozolomide (TMZ) resistance and limited treatment options. Surprisingly, previous studies show that a history of allergies, atopy, or asthma is inversely associated with GBM risk. Further, the electronic medical record at the University Hospital of Lausanne showed that the GBM patients taking antihistamine during treatment had better survival. Histamine is an essential neurotransmitter in the brain and plays a significant role in regulating sleep, hormonal balance, and cognitive functions. Elevated levels of histamine and increased histamine receptor expression have been found in different tumors and their microenvironments, including GBM. High histamine 1 receptor (HRH1) expression is inversely related to overall and progression-free survival in GBM patients, further emphasizing the role of histamine in disease progression. This review aims to provide insights into the challenges of GBM treatment, the role of histamine in GBM progression, and the rationale for considering antihistamines as targeted therapy. The review concludes by encouraging further investigation into antihistamine mechanisms and their impact on the tumor microenvironment.
Collapse
Affiliation(s)
- Poonam Yadav
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Raghupathy Vengoji
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Maneesh Jain
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198-5950, USA; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198-5950, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198-5950, USA; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198-5950, USA.
| | - Nicole Shonka
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198-5950, USA; Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198-6840, USA.
| |
Collapse
|
8
|
Stasiak A, Honkisz-Orzechowska E, Gajda Z, Wagner W, Popiołek-Barczyk K, Kuder KJ, Latacz G, Juszczak M, Woźniak K, Karcz T, Szczepańska K, Jóźwiak-Bębenista M, Kieć-Kononowicz K, Łażewska D. AR71, Histamine H 3 Receptor Ligand-In Vitro and In Vivo Evaluation (Anti-Inflammatory Activity, Metabolic Stability, Toxicity, and Analgesic Action). Int J Mol Sci 2024; 25:8035. [PMID: 39125607 PMCID: PMC11311998 DOI: 10.3390/ijms25158035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 08/12/2024] Open
Abstract
The future of therapy for neurodegenerative diseases (NDs) relies on new strategies targeting multiple pharmacological pathways. Our research led to obtaining the compound AR71 [(E)-3-(3,4,5-trimethoxyphenyl)-1-(4-(3-(piperidin-1-yl)propoxy)phenyl)prop-2-en-1-one], which has high affinity for human H3R (Ki = 24 nM) and selectivity towards histamine H1 and H4 receptors (Ki > 2500 nM), and showed anti-inflammatory activity in a model of lipopolysaccharide-induced inflammation in BV-2 cells. The presented tests confirmed its antagonist/inverse agonist activity profile and good metabolic stability while docking studies showed the binding mode to histamine H1, H3, and H4 receptors. In in vitro tests, cytotoxicity was evaluated at three cell lines (neuroblastoma, astrocytes, and human peripheral blood mononuclear cells), and a neuroprotective effect was observed in rotenone-induced toxicity. In vivo experiments in a mouse neuropathic pain model demonstrated the highest analgesic effects of AR71 at the dose of 20 mg/kg body weight. Additionally, AR71 showed antiproliferative activity in higher concentrations. These findings suggest the need for further evaluation of AR71's therapeutic potential in treating ND and CNS cancer using animal experimental models.
Collapse
Affiliation(s)
- Anna Stasiak
- Department of Hormone Biochemistry, Faculty of Medicine, Medical University of Lodz, Żeligowskiego 7/9 Str., 90-752 Łódź, Poland
| | - Ewelina Honkisz-Orzechowska
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College in Kraków, Medyczna 9 Str., 30-688 Kraków, Poland
| | - Zbigniew Gajda
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College in Kraków, Medyczna 9 Str., 30-688 Kraków, Poland
| | - Waldemar Wagner
- Department of Hormone Biochemistry, Faculty of Medicine, Medical University of Lodz, Żeligowskiego 7/9 Str., 90-752 Łódź, Poland
- Laboratory of Cellular Immunology, Institute of Medical Biology of Polish Academy of Sciences, 106 Lodowa Str., 93-232 Łódź, Poland
| | - Katarzyna Popiołek-Barczyk
- Department of Neurochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12 Str., 31-343 Kraków, Poland
| | - Kamil J. Kuder
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College in Kraków, Medyczna 9 Str., 30-688 Kraków, Poland
| | - Gniewomir Latacz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College in Kraków, Medyczna 9 Str., 30-688 Kraków, Poland
| | - Michał Juszczak
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143 Str., 90-236 Łódź, Poland
| | - Katarzyna Woźniak
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143 Str., 90-236 Łódź, Poland
| | - Tadeusz Karcz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College in Kraków, Medyczna 9 Str., 30-688 Kraków, Poland
| | - Katarzyna Szczepańska
- Department of Medicinal Chemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12 Str., 31-343 Kraków, Poland
| | - Marta Jóźwiak-Bębenista
- Department of Pharmacology and Toxicology, Medical University of Lodz, Żeligowskiego 7/9 Str., 90-752 Łódź, Poland
| | - Katarzyna Kieć-Kononowicz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College in Kraków, Medyczna 9 Str., 30-688 Kraków, Poland
| | - Dorota Łażewska
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College in Kraków, Medyczna 9 Str., 30-688 Kraków, Poland
| |
Collapse
|
9
|
Tu Y, Xu B. Esketamine induces tripartite motif-containing protein 24 to improve cognitive dysfunction in Alzheimer's disease. Neurosci Lett 2024; 834:137836. [PMID: 38802052 DOI: 10.1016/j.neulet.2024.137836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 05/29/2024]
Abstract
Esketamine has been revealed to improve cognitive impairments under different conditions, while its function in Alzheimer's disease (AD) has not been well characterized. We expounded the effects and detailed mechanism of esketamine in triple transgenic AD (3xTg-AD) mice in the present study. The impaired spatial learning and memory retention of 3xTg-AD mice were ameliorated by esketamine, whereas tripartite motif-containing protein 24 (TRIM24) depletion reversed the ameliorative effects of esketamine in 3xTg-AD mice. Esketamine elevated the extent of PI3K and AKT phosphorylation in the hippocampus by promoting TRIM24 expression, and knockdown of TRIM24 impaired the PI3K/AKT pathway. AD-like mice had increased expression of pro-inflammatory molecules and elevated expression of GFAP and p-Tau. Esketamine reduced inflammation, but its therapeutic effect was reversed by TRIM24 knockdown. The PI3K/AKT pathway blockage exacerbated cognitive deficits and neuroinflammatory responses in mice. Thus, esketamine has the potential to improve the cognitive and memory functions of 3xTg-AD mice by repressing neuroinflammation by activating TRIM24 and the downstream PI3K/AKT pathway.
Collapse
Affiliation(s)
- Yingbing Tu
- Department of Anesthesia, Suzhou Hospital of Integrated Traditional Chinese and Western Medicine, Suzhou 215101, Jiangsu, PR China
| | - Bin Xu
- Department of Anesthesia, Suzhou Hospital of Integrated Traditional Chinese and Western Medicine, Suzhou 215101, Jiangsu, PR China.
| |
Collapse
|
10
|
Moghbeli M. PI3K/AKT pathway as a pivotal regulator of epithelial-mesenchymal transition in lung tumor cells. Cancer Cell Int 2024; 24:165. [PMID: 38730433 PMCID: PMC11084110 DOI: 10.1186/s12935-024-03357-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 05/06/2024] [Indexed: 05/12/2024] Open
Abstract
Lung cancer, as the leading cause of cancer related deaths, is one of the main global health challenges. Despite various progresses in diagnostic and therapeutic methods, there is still a high rate of mortality among lung cancer patients, which can be related to the lack of clinical symptoms to differentiate lung cancer from the other chronic respiratory disorders in the early tumor stages. Most lung cancer patients are identified in advanced and metastatic tumor stages, which is associated with a poor prognosis. Therefore, it is necessary to investigate the molecular mechanisms involved in lung tumor progression and metastasis in order to introduce early diagnostic markers as well as therapeutic targets. Epithelial-mesenchymal transition (EMT) is considered as one of the main cellular mechanisms involved in lung tumor metastasis, during which tumor cells gain the metastatic ability by acquiring mesenchymal characteristics. Since, majority of the oncogenic signaling pathways exert their role in tumor cell invasion by inducing the EMT process, in the present review we discussed the role of PI3K/AKT signaling pathway in regulation of EMT process during lung tumor metastasis. It has been reported that the PI3K/AKT acts as an inducer of EMT process through the activation of EMT-specific transcription factors in lung tumor cells. MicroRNAs also exerted their inhibitory effects during EMT process by inhibition of PI3K/AKT pathway. This review can be an effective step towards introducing the PI3K/AKT pathway as a suitable therapeutic target to inhibit the EMT process and tumor metastasis in lung cancer patients.
Collapse
Affiliation(s)
- Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
11
|
Mohamad NA, Galarza TE, Martín GA. H2 antihistamines: May be useful for combination therapies in cancer? Biochem Pharmacol 2024; 223:116164. [PMID: 38531422 DOI: 10.1016/j.bcp.2024.116164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 03/13/2024] [Accepted: 03/22/2024] [Indexed: 03/28/2024]
Abstract
Cancer morbimortality is still a great concern despite advances in research and therapies. Histamine and its receptors' ligands can modulate different biological responses according to the cell type and the receptor subtype involved. Besides the wide variety of histamine functions in normal tissues, diverse roles in the acquisition of hallmarks of cancer such as sustained proliferative signaling, resistance to cell death, angiogenesis, metastasis, altered immunity and modified microenvironment have been described. This review summarizes the present knowledge of the various roles of histamine H2 receptor (H2R) ligands in neoplasias. A bioinformatic analysis of human tumors showed dissimilar results in the expression of the H2R gene according to tumor type when comparing malignant versus normal tissues. As well, the relationship between patients' survival parameters and H2R gene expression levels also varied, signaling important divergences in the role of H2R in neoplastic progression in different cancer types. Revised experimental evidence showed multiple effects of H2R antihistamines on several of the cited hallmarks of cancer. Interventional and retrospective clinical studies evaluated different H2R antihistamines in cancer patients with two main adjuvant uses: improving antitumor efficacy (which includes regulation of immune response) and preventing toxic adverse effects produced by chemo or radiotherapy. While there is a long path to go, research on H2R antihistamines may provide new opportunities for developing more refined combination therapeutic strategies for certain cancer types to improve patients' survival and health-related quality of life.
Collapse
Affiliation(s)
- Nora A Mohamad
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Laboratorio de Radioisótopos, Buenos Aires, Argentina
| | - Tamara E Galarza
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Laboratorio de Radioisótopos, Buenos Aires, Argentina
| | - Gabriela A Martín
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Laboratorio de Radioisótopos, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina.
| |
Collapse
|
12
|
Ospital IA, Táquez Delgado MA, Nicoud MB, Corrêa MF, Borges Fernandes GA, Andrade IW, Lauretta P, Martínez Vivot R, Comba MB, Zanardi MM, Speisky D, Uriburu JL, Fernandes JPS, Medina VA. Therapeutic potential of LINS01 histamine H 3 receptor antagonists as antineoplastic agents for triple negative breast cancer. Biomed Pharmacother 2024; 174:116527. [PMID: 38579399 DOI: 10.1016/j.biopha.2024.116527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/23/2024] [Accepted: 03/28/2024] [Indexed: 04/07/2024] Open
Abstract
The aims of this work were to evaluate the expression of histamine H3 receptor (H3R) in triple negative breast cancer (TNBC) samples and to investigate the antitumoral efficacy and safety of the LINS01 series of H3R antagonists, through in silico, in vitro, and in vivo approaches. Antitumor activity of LINS01009, LINS01010, LINS01022, LINS01023 was assayed in vitro in 4T1 and MDA-MB-231 TNBC cells (0.01-100 μM), and in vivo in 4T1 tumors orthotopically established in BALB/c mice (1 or 20 mg/kg). Additionally, H3R expression was assessed in 50 human TNBC samples. We have described a higher H3R mRNA expression in basal-like/TNBC tumors vs. matched normal tissue using TCGA Pan-Cancer Atlas data, and a higher H3R expression in human tumor samples vs. peritumoral tissue evidenced by immunohistochemistry associated with poorer survival. Furthermore, while all the essayed compounds showed antitumoral properties, LINS01022 and LINS01023 exhibited the most potent antiproliferative effects by: i) inducing cell apoptosis and suppressing cell migration in 4T1 and MDA-MB-231 TNBC cells, and ii) inhibiting cell growth in paclitaxel-resistant 4T1 cells (potentiating the paclitaxel antiproliferative effect). Moreover, 20 mg/kg LINS01022 reduced tumor size in 4T1 tumor-bearing mice, exhibiting a safe toxicological profile and potential for druggability estimated by ADME calculations. We conclude that the H3R is involved in the regulation of TNBC progression, offering promising therapeutic potential for the novel LINS01 series of H3R antagonists.
Collapse
Affiliation(s)
- Ignacio A Ospital
- Laboratorio de Biología Tumoral e Inflamación, Instituto de Investigaciones Biomédicas (BIOMED), Facultad de Ciencias Médicas, Pontificia Universidad Católica Argentina (UCA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires 1107, Argentina
| | - Mónica A Táquez Delgado
- Laboratorio de Biología Tumoral e Inflamación, Instituto de Investigaciones Biomédicas (BIOMED), Facultad de Ciencias Médicas, Pontificia Universidad Católica Argentina (UCA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires 1107, Argentina
| | - Melisa B Nicoud
- Laboratorio de Biología Tumoral e Inflamación, Instituto de Investigaciones Biomédicas (BIOMED), Facultad de Ciencias Médicas, Pontificia Universidad Católica Argentina (UCA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires 1107, Argentina
| | - Michelle F Corrêa
- Departamento de Ciências Farmacêuticas, Universidade Federal de São Paulo, Diadema, SP, Brazil
| | | | - Isabela W Andrade
- Departamento de Ciências Farmacêuticas, Universidade Federal de São Paulo, Diadema, SP, Brazil
| | - Paolo Lauretta
- Laboratorio de Biología Tumoral e Inflamación, Instituto de Investigaciones Biomédicas (BIOMED), Facultad de Ciencias Médicas, Pontificia Universidad Católica Argentina (UCA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires 1107, Argentina
| | - Rocío Martínez Vivot
- Laboratorio de Biología Tumoral e Inflamación, Instituto de Investigaciones Biomédicas (BIOMED), Facultad de Ciencias Médicas, Pontificia Universidad Católica Argentina (UCA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires 1107, Argentina
| | - María Betina Comba
- Instituto de Investigaciones en Ingeniería Ambiental, Química y Biotecnología Aplicada (INGEBIO), Facultad de Química e Ingeniería del Rosario, Pontificia Universidad Católica Argentina (UCA), Rosario 2000, Argentina
| | - María Marta Zanardi
- Instituto de Investigaciones en Ingeniería Ambiental, Química y Biotecnología Aplicada (INGEBIO), Facultad de Química e Ingeniería del Rosario, Pontificia Universidad Católica Argentina (UCA), Rosario 2000, Argentina
| | | | | | - João P S Fernandes
- Departamento de Ciências Farmacêuticas, Universidade Federal de São Paulo, Diadema, SP, Brazil
| | - Vanina A Medina
- Laboratorio de Biología Tumoral e Inflamación, Instituto de Investigaciones Biomédicas (BIOMED), Facultad de Ciencias Médicas, Pontificia Universidad Católica Argentina (UCA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires 1107, Argentina.
| |
Collapse
|
13
|
Chen Y, Chen S, Chen K, Ji L, Cui S. Magnolol and 5-fluorouracil synergy inhibition of metastasis of cervical cancer cells by targeting PI3K/AKT/mTOR and EMT pathways. CHINESE HERBAL MEDICINES 2024; 16:94-105. [PMID: 38375055 PMCID: PMC10874772 DOI: 10.1016/j.chmed.2023.01.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/29/2022] [Accepted: 01/16/2023] [Indexed: 02/21/2024] Open
Abstract
Objective This study is designed to investigate the mode of action of the synergistic effect of 5-fluorouracil (5-FU) and magnolol against cervical cancer. Methods Network pharmacological approach was applied to predict the molecular mechanism of 5-FU combined with magnolol against cervical cancer. CCK-8 assay, colony formation assay, immunofluorescence staining, adhesion assay, wound healing mobility assay, cell migration and invasion assay and Western blot analysis were conducted to validate the results of in silico study. Results Phosphatidylinositol 3 kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) signaling pathway was identified as the key pathway in silico study. The experimental results showed that 5-FU combined with magnolol strongly inhibited cervical cancer cell proliferation, induced the morphological change of HeLa cells by down-regulating the expression of α-actinin, tensin-2 and vinculin. Moreover, magnolol enhanced inhibitory effect of 5-FU on the cell adhesion, migration and invasion. The phosphorylation of AKT and PI3K and the expression of mTOR were strongly inhibited by the combination of 5-FU and magnolol. Moreover, the expression of E-cadherin and β-catenin was upregulated and the expression of Snail, Slug and vimentin was down-regulated by the 5-FU together with magnolol. Conclusion Taken together, this study suggests that 5-FU combined with magnolol exerts a synergistic anti-cervical cancer effect by regulating the PI3K/AKT/mTOR and epithelial-mesenchymal transition (EMT) signaling pathways.
Collapse
Affiliation(s)
- Yuanyuan Chen
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College of Yangzhou University, Yangzhou 225009, China
| | - Shanshan Chen
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College of Yangzhou University, Yangzhou 225009, China
| | - Kaiting Chen
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College of Yangzhou University, Yangzhou 225009, China
| | - Lanfang Ji
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College of Yangzhou University, Yangzhou 225009, China
| | - Shuna Cui
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College of Yangzhou University, Yangzhou 225009, China
- Department of Gynecology and Obstetrics, Affiliated Hospital of Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
14
|
Withdrawal Notice. Cancer Med 2023; 12:19353. [PMID: 36372952 PMCID: PMC10557851 DOI: 10.1002/cam4.5306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
Withdrawal Notice: Zhu, Y, Pu, Q, Zhang, Q, et al. Selenium-binding protein 1 inhibits malignant progression and induces apoptosis via distinct mechanisms in non-small-cell lung cancer. Cancer Med. 2022; 00: 1-22. doi: 10.1002/cam4.5306. The above article, published online on 13th November 2022 in Wiley Online Library (https://onlinelibrary.wiley.com/doi/10.1002/cam4.5306), has been withdrawn by agreement between the journal Editor in Chief, Dr Stephen Tait, the Authors, and John Wiley & Sons, Ltd. The withdrawal has been agreed due to an editorial office error that led to the publication of the article without peer review. The revised article, which has undergone peer review may be read here: https://onlinelibrary.wiley.com/doi/10.1002/cam4.6309.
Collapse
|
15
|
Zhu Y, Pu Q, Zhang Q, Liu Y, Ma Y, Yuan Y, Liu L, Zhu W. Selenium-binding protein 1 inhibits malignant progression and induces apoptosis via distinct mechanisms in non-small cell lung cancer. Cancer Med 2023; 12:17149-17170. [PMID: 37606338 PMCID: PMC10501285 DOI: 10.1002/cam4.6309] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 05/30/2023] [Accepted: 06/23/2023] [Indexed: 08/23/2023] Open
Abstract
BACKGROUND Selenium is an essential trace element in the human body. In epidemiological and clinical studies, Se supplementation significantly reduced the incidence of lung cancer in individuals with low baseline Se levels. The significant action of selenium is based on the selenium-containing protein as a mediator. Of note, the previous studies reported that the expression of selenium-binding protein 1 (SELENBP1) was obviously decreased in many human cancer tissues including non-small cell lung cancer (NSCLC). However, its roles in the origin and development of NSCLC are still unclear. METHODS The expression of SELENBP1 was measured by qRT-PCR, Western blotting and IHC in our collected clinical NSCLC tissues and cell lines. Next, the CCK-8, colony formation, wound-haeling, Millicell, Transwell, FCM assay, and in vivo xenograft model were performed to explore the function of SELENBP1 in NSCLC. The molecular mechanisms of SELENBP1 were investigated by Western blotting or IF assay. RESULTS We further identified that the expression of SELENBP1 was significantly decreased in NSCLC tissues in TCGA database and 45 out of 59 collected clinical NSCLC tissues compared with adjacent nontumor tissues, as well as in four NSCLC cell lines compared with normal lung cells. Particularly, we unexpectedly discovered that SELENBP1 was obviously expressed in alveolar type 2 (AT-II) cells for the first time. Then, a series of in vitro experiments uncovered that overexpression of SELENBP1 inhibited the proliferation, migration, and invasion of NSCLC cells, and induced cell apoptosis. Moreover, overexpression of SELENBP1 also inhibited growth and induced apoptosis of NSCLC cells in vivo. Mechanistically, we demonstrated that overexpression of SELENBP1 inhibited the malignant characteristics of NSCLC cells in part via inactivating the PI3K/AKT/mTOR signal pathway. Meanwhile, we found that overexpression of SELENBP1 inducing the apoptosis of NSCLC cells was associated with the activation of caspase-3 signaling pathway under nonhigh level of oxidative stress, but overexpression of SELENBP1 facilitating the cell apoptosis might be related to its combining with GPX1 and colocalizing in the nucleus under high level of oxidative stress. CONCLUSIONS Our findings highlighted that SELENBP1 was an important tumor suppressor during the origin and development of NSCLC. It may help to discover novel biomarkers or drug therapy targets for NSCLC.
Collapse
Affiliation(s)
- Ying Zhu
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital, Sichuan UniversityChengduSichuanChina
| | - Qiang Pu
- Department of Thoracic SurgeryInstitute of Thoracic Oncology, West China Hospital, Sichuan UniversityChengduSichuanChina
| | - Qiongyin Zhang
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital, Sichuan UniversityChengduSichuanChina
| | - Yang Liu
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital, Sichuan UniversityChengduSichuanChina
| | - Yongfang Ma
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital, Sichuan UniversityChengduSichuanChina
| | - Yue Yuan
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital, Sichuan UniversityChengduSichuanChina
| | - Lunxu Liu
- Department of Thoracic SurgeryInstitute of Thoracic Oncology, West China Hospital, Sichuan UniversityChengduSichuanChina
| | - Wen Zhu
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital, Sichuan UniversityChengduSichuanChina
| |
Collapse
|
16
|
Wu S, Sun Z, Guo Z, Li P, Mao Q, Tang Y, Chen H, Peng H, Wang S, Cao Y. The effectiveness of blood-activating and stasis-transforming traditional Chinese medicines (BAST) in lung cancer progression-a comprehensive review. JOURNAL OF ETHNOPHARMACOLOGY 2023; 314:116565. [PMID: 37172918 DOI: 10.1016/j.jep.2023.116565] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 04/20/2023] [Accepted: 04/29/2023] [Indexed: 05/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Blood-activating and stasis-transforming traditional Chinese medicines (BAST) are a class of herbs that have the effect of dilating blood vessels and dispersing stagnation. Modern pharmaceutical research has demonstrated that they are capable of improving hemodynamics and micro-flow, resist thrombosis and promote blood flow. BAST contain numerous active ingredients, which can theoretically regulate multiple targets at the same time and have a wide range of pharmacological effects in the treatment of diseases including human cancers. Clinically, BAST have minimal side effects and can be used in combination with Western medicine to improve patients' quality of life, lessen adverse effects and minimize the risk of recurrence and metastasis of cancers. AIM OF THE REVIEW We aimed to summarize the research progression of BAST on lung cancer in the past five years and present a prospect for the future. Particularly, this review further analyzes the effects and molecular mechanisms that BAST inhibit the invasion and metastasis of lung cancer. MATERIALS AND METHODS Relevant studies about BSAT were collected from PubMed and Web of science. RESULTS Lung cancer is one of the malignant tumors with the highest mortality rate. Most patients with lung cancer are diagnosed at an advanced stage and are highly susceptible to metastasis. Recent studies have shown that BAST, a class of traditional Chinese medicine (TCM) with the function of opening veins and dispersing blood stasis, significantly improve hemodynamics and microcirculation, prevent thrombosis and promote blood flow, and thereby inhibiting the invasion and metastasis of lung cancer. In the current review, we analyzed 51 active ingredients extracted from BAST. It was found that BAST and their active ingredients contribute to the prevention of invasion and metastasis of lung cancer through multiple mechanisms, such as regulation of EMT process, specific signaling pathway and metastasis-related genes, tumor blood vessel formation, immune microenvironment and inflammatory response of tumors. CONCLUSIONS BSAT and its active ingredients have showed promising anticancer activity and significantly inhibit the invasion and metastasis of lung cancer. A growing number of studies have realized their potential clinical significance in the therapy of lung cancer, which will provide substantial evidences for the development of new TCM for lung cancer therapy.
Collapse
Affiliation(s)
- Siqi Wu
- The First Clinical School of Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Zhe Sun
- The First Clinical School of Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Zehuai Guo
- The First Clinical School of Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Peiqin Li
- The First Clinical School of Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Qianqian Mao
- The First Clinical School of Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Yang Tang
- The First Clinical School of Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Hongyu Chen
- The First Clinical School of Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Huiting Peng
- The First Clinical School of Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Sisi Wang
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Yang Cao
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
17
|
Entezari M, Taheriazam A, Paskeh MDA, Sabouni E, Zandieh MA, Aboutalebi M, Kakavand A, Rezaei S, Hejazi ES, Saebfar H, Salimimoghadam S, Mirzaei S, Hashemi M, Samarghandian S. The pharmacological and biological importance of EZH2 signaling in lung cancer. Biomed Pharmacother 2023; 160:114313. [PMID: 36738498 DOI: 10.1016/j.biopha.2023.114313] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/20/2023] [Accepted: 01/26/2023] [Indexed: 02/05/2023] Open
Abstract
Up to 18% of cancer-related deaths worldwide are attributed to lung tumor and global burden of this type of cancer is ascending. Different factors are responsible for development of lung cancer such as smoking, environmental factors and genetic mutations. EZH2 is a vital protein with catalytic activity and belongs to PCR2 family. EZH2 has been implicated in regulating gene expression by binding to promoter of targets. The importance of EZH2 in lung cancer is discussed in current manuscript. Activation of EZH2 significantly elevates the proliferation rate of lung cancer. Furthermore, metastasis and associated molecular mechanisms including EMT undergo activation by EZH2 in enhancing the lung cancer progression. The response of lung cancer to therapy can be significantly diminished due to EZH2 upregulation. Since EZH2 increases tumor progression, anti-cancer agents suppressing its expression reduce malignancy. In spite of significant effort in understanding modulatory function of EZH2 on other pathways, it appears that EZH2 can be also regulated and controlled by other factors that are described in current review. Therefore, translating current findings to clinic can improve treatment and management of lung cancer patients.
Collapse
Affiliation(s)
- Maliheh Entezari
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mahshid Deldar Abad Paskeh
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Eisa Sabouni
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Mohammad Arad Zandieh
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Maryam Aboutalebi
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Amirabbas Kakavand
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Shamin Rezaei
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Elahe Sadat Hejazi
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Hamidreza Saebfar
- European University Association, League of European Research Universities, university of milan, Italy
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Saeed Samarghandian
- Healthy Ageing Research Centre, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
18
|
Neuroprotective effect of histamine H3 receptor blockade on methamphetamine-induced cognitive impairment in mice. Pharmacol Biochem Behav 2023; 222:173512. [PMID: 36572112 DOI: 10.1016/j.pbb.2022.173512] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 11/30/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Methamphetamine (METH) exposure is commonly believed to result in cognitive impairment. Histamine H3 receptor (H3R) antagonists reportedly have potential applications for treating cognitive impairment accompanied by various neuropsychiatric disorders. The present study aimed to investigate the effect of H3R blockade by Thioperamide (THIO) on METH-induced cognitive impairment and the underlying mechanism. METHODS In Experiment 1, C57BL/6 mice received daily injections of saline or 5 mg/kg METH for 5 consecutive days. The Novel Object Recognition (NOR) and Morris water maze (MWM) tasks were used to assess cognitive functions of mice. H3R protein expression and apoptosis were subsequently measured in the hippocampus. In Experiment 2, HT22 cells were first treated with ddH2O or 3 mM METH. The cell survival rate and H3R protein level were subsequently assessed. In Experiment 3, the animals were first treated with saline or 20 mg/kg THIO for 7 days, followed by co-administration of either saline or 5 mg/kg METH for an additional 5 days. The remaining experiments were carried out in the same manner as Experiment 1. In Experiment 4, HT22 cells were pretreated with either ddH2O or 5 mM THIO for 2 h, followed by ddH2O or 3 mM METH treatment for an additional 12 h. The remaining experiments were carried out in the same manner as Experiment 2. In Experiment 5, the changes in MEK1/2, p-MEK1/2, ERK1/2 and p-ERK1/2 protein levels were examined in the hippocampus of all mice from Experiment 3 and HT22 cells from Experiment 4. RESULTS METH-treated mice showed significantly worsened NOR and MWM performance, along with markably hippocampal apoptosis. A significantly lower cell survival rate was observed in METH-treated HT22 cells. Increased levels of H3R protein were found in both METH-treated mice and HT22 cells. THIO significantly improved METH-induced cognitive impairment in mice and toxicity in HT22 cells. METH significantly increased the level of p-MEK1/2 and p-ERK1/2 proteins in the hippocampus of mice and HT22 cells, which was reversed by THIO pretreatment. CONCLUSION Our findings reveal that H3R blockade by THIO yields a neuroprotective effect against METH-induced cognitive impairment in mice and toxicity in HT22 cells via the raf-MEK-ERK signaling pathway.
Collapse
|
19
|
Lorentz A, Bilotta S, Civelek M. Molecular links between allergy and cancer. Trends Mol Med 2022; 28:1070-1081. [PMID: 35794030 DOI: 10.1016/j.molmed.2022.06.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/03/2022] [Accepted: 06/03/2022] [Indexed: 01/21/2023]
Abstract
Epidemiologic studies show both positive and negative associations between allergies and cancer. Allergic diseases may protect against tumorigenesis by promoting the immune surveillance, while carcinogenesis may be promoted through inflammatory responses from allergies. Histamine receptor antagonists are the focus of recent cancer studies because of their promising beneficial effect on tumor development. Also, cytokines, particularly IL-4 or IL-33, IgE as well as allergy-related immune cells such as eosinophils can contribute to tumor growth suppression. Depending on cancer types, cancer therapy may be more beneficial when considering combinatorial immunotherapy. In this review, we give an overview on molecular links between allergies and cancer.
Collapse
Affiliation(s)
- Axel Lorentz
- Institute of Nutritional Medicine, University of Hohenheim, 70599 Stuttgart, Germany.
| | - Sabrina Bilotta
- Institute of Nutritional Medicine, University of Hohenheim, 70599 Stuttgart, Germany
| | - Mehtap Civelek
- Institute of Nutritional Medicine, University of Hohenheim, 70599 Stuttgart, Germany
| |
Collapse
|
20
|
Longo V, Catino A, Montrone MI, Galetta D, Ribatti D. Controversial role of mast cells in NSCLC tumor progression and angiogenesis. Thorac Cancer 2022; 13:2929-2934. [PMID: 36196487 PMCID: PMC9626321 DOI: 10.1111/1759-7714.14654] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 01/07/2023] Open
Abstract
Mast cells (MCs) are multifunctional immune cells implicated in both physiological and pathological processes. Among the latter, MCs play a crucial role in cancer. Many studies have shown a correlation between MCs and tumor progression in several solid and hematological malignancies. In particular, MCs can directly promote tumor growth via c-kit/stem cell factor-dependent signaling and via the release of histamine, which modulate tumor growth through H1 and H2 receptors. At the same time, MCs can increase tumor progression by stimulating angiogenesis via both proangiogenic cytokines stored in their cytoplasm, and by acting on the tumor microenvironment and extracellular matrix. With regard to NSCLC, the role of MCs has not yet been established, with studies showing a correlation with a poor prognosis on the one hand and suggesting a protective effect of MCs on the other hand. These controversial evidences are at least, in part, due to the heterogeneity of the studies exploring the role of MCs in NSCLC, with some studies describing only the MC count without specification of the activation and degranulation state, and without reporting the intratumoral localization and the proximity to other immune and cancer cells. A better knowledge of the role of MCs in NSCLC is mandatory, not only to define their prognostic and predictive proprieties but also because targeting them could be a possible therapeutic strategy.
Collapse
Affiliation(s)
- Vito Longo
- Medical Thoracic Oncology UnitIRCCS Istituto Tumori, “Giovanni Paolo II”BariItaly
| | - Annamaria Catino
- Medical Thoracic Oncology UnitIRCCS Istituto Tumori, “Giovanni Paolo II”BariItaly
| | - MIchele Montrone
- Medical Thoracic Oncology UnitIRCCS Istituto Tumori, “Giovanni Paolo II”BariItaly
| | - Domenico Galetta
- Medical Thoracic Oncology UnitIRCCS Istituto Tumori, “Giovanni Paolo II”BariItaly
| | - Domenico Ribatti
- Department of Basic Medical Sciences, Neurosciences, and Sensory OrgansUniversity of Bari Medical SchoolBariItaly
| |
Collapse
|
21
|
An W, Yu F. Silencing of CPSF7 inhibits the proliferation, migration, and invasion of lung adenocarcinoma cells by blocking the AKT/mTOR signaling pathway. Open Med (Wars) 2022; 17:1655-1663. [PMID: 36349192 PMCID: PMC9587529 DOI: 10.1515/med-2022-0570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 08/26/2022] [Accepted: 08/28/2022] [Indexed: 11/25/2022] Open
Abstract
Cleavage and polyadenylation specific factor 7 (CPSF7) is an important participator in the cleavage and polyadenylation of pre-mRNAs. This study aims to uncover the function and underlying mechanism of CPSF7 in lung adenocarcinoma (LUAD). CPSF7 expression in LUAD cells was measured using real time-quantitative polymerase chain reaction and Western blotting. Our results showed that CPSF7 expression was upregulated in LUAD cell lines (A549, H1299, and HCC827). To explore the function of CPSF7 on LUAD, CPSF7 was silenced by the si-CPSF7 transfection and overexpressed by the oe-CPSF7 transfection in A549 cells. Cell proliferation was measured using cell counting kit-8 and colony formation assays. Cell migration and invasion were measured by wound healing and Transwell assays, respectively. Our data revealed that CPSF7 silencing inhibited the viability, colony formation, migration, and invasion of LUAD cells. On the contrary, CPSF7 overexpression enhanced the malignant characteristics of LUAD cells. Additionally, expression of AKT/mTOR pathway-related proteins was detected using Western blotting. CPSF7 silencing blocked the AKT/mTOR signaling pathway. The intervention of SC79 (an activator of the AKT/mTOR pathway) weakened the antitumor effects of CPSF7 silencing in LUAD cells. Silencing of CPSF7 inhibits the malignant characteristics of LUAD cells by blocking the AKT/mTOR signaling pathway.
Collapse
Affiliation(s)
- Weishao An
- Department of Respiratory, Xiaoshan First People’s Hospital, Hangzhou, 311200, China
| | - Fang Yu
- Department of Respiratory, Xiaoshan First People’s Hospital, No. 199 Shixin South Road, Hangzhou, 311200, China
| |
Collapse
|
22
|
Kraus FBT, Topalov NE, Deuster E, Hysenaj I, Mayr D, Chelariu-Raicu A, Beyer S, Kolben T, Burges A, Mahner S, Trillsch F, Jeschke U, Czogalla B. Expression pattern and prognostic potential of histamine receptors in epithelial ovarian cancer. J Cancer Res Clin Oncol 2022; 149:2501-2511. [PMID: 35751684 PMCID: PMC10129941 DOI: 10.1007/s00432-022-04114-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 06/06/2022] [Indexed: 10/17/2022]
Abstract
PURPOSE Despite recent advances in the treatment of ovarian cancer (OC), long-term remissions remain scarce. For a targeted approach, prognostic markers are indispensable for predicting survival and treatment response. Given their association with multiple hallmarks of cancer, histamine receptors (HR) are emerging as promising candidates. Here, we investigate their expression pattern and prognostic value in OC. METHODS Specimens of 156 epithelial OC patients were collected during cytoreductive surgery at the Department of Obstetrics and Gynecology, LMU, between 1990 and 2002 and combined in a tissue microarray. Immunohistochemical staining of the HR H1, H2, H3 and H4 was quantified by an immunoreactive score and linked with clinico-pathological data by Spearman's correlation. Via ROC curve analysis, optimal cut-off values for potential prognostic markers were defined. Overall survival (OS) was visualized in Kaplan-Maier curves and significances determined by log-rank testing. A Cox regression model was applied for multivariate analysis. RESULTS HR H3 and H4 expression was restricted to the cytosol of OC cells, while H1 was also present in the nucleus. A significant association between HR H1, H3 and H4 expression with several clinico-pathological parameters was revealed. In addition, HR H1 and H3 expression correlated positively, HR H4 expression negatively with OS. In addition, HR H3 was identified as independent prognostic marker for OS. HR H2 expression had no prognostic value. CONCLUSIONS HR H1, H3 and H4 could serve as potential predictors for OS of OC patients. Further research is warranted to elucidate their pathophysiologic role and their predictive and therapeutic potential in OC.
Collapse
Affiliation(s)
- Fabian B T Kraus
- Department of Gynecology and Obstetrics, University Hospital, LMU Munich, Munich, Germany.
| | - Nicole E Topalov
- Department of Gynecology and Obstetrics, University Hospital, LMU Munich, Munich, Germany
| | - E Deuster
- Department of Gynecology and Obstetrics, University Hospital, LMU Munich, Munich, Germany
| | - I Hysenaj
- Department of Gynecology and Obstetrics, University Hospital, LMU Munich, Munich, Germany
| | - D Mayr
- Institute of Pathology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - A Chelariu-Raicu
- Department of Gynecology and Obstetrics, University Hospital, LMU Munich, Munich, Germany
| | - S Beyer
- Department of Gynecology and Obstetrics, University Hospital, LMU Munich, Munich, Germany
| | - T Kolben
- Department of Gynecology and Obstetrics, University Hospital, LMU Munich, Munich, Germany
| | - A Burges
- Department of Gynecology and Obstetrics, University Hospital, LMU Munich, Munich, Germany
| | - S Mahner
- Department of Gynecology and Obstetrics, University Hospital, LMU Munich, Munich, Germany
| | - F Trillsch
- Department of Gynecology and Obstetrics, University Hospital, LMU Munich, Munich, Germany
| | - U Jeschke
- Department of Gynecology and Obstetrics, University Hospital, LMU Munich, Munich, Germany.,Department of Obstetrics and Gynecology, University Hospital Augsburg, Augsburg, Germany
| | - B Czogalla
- Department of Gynecology and Obstetrics, University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
23
|
Hou R, Liu X, Yang H, Deng S, Cheng C, Liu J, Li Y, Zhang Y, Jiang J, Zhu Z, Su Y, Wu L, Xie Y, Li X, Li W, Liu Z, Fang W. Chemically synthesized cinobufagin suppresses nasopharyngeal carcinoma metastasis by inducing ENKUR to stabilize p53 expression. Cancer Lett 2022; 531:57-70. [PMID: 35114328 DOI: 10.1016/j.canlet.2022.01.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 01/01/2022] [Accepted: 01/19/2022] [Indexed: 02/09/2023]
Abstract
Clinically, the metastasis of tumor cells is the key factor of death in patients with cancer. In this study, we used a model of metastatic nasopharyngeal carcinoma (NPC) to explore the effects of a new chemical, cinobufagin (CB), combined with cisplatin (DDP). We observed that chemically synthesized CB strongly decreased the metastasis of NPC. Furthermore, a better therapeutic effect was shown when CB was combined with DDP. Molecular analysis revealed that CB induced ENKUR expression by deregulating the PI3K/AKT pathway and suppressing c-Jun, an oncogenic transcriptional factor that binds to the ENKUR promoter and negatively modulated its expression in NPC. ENKUR as a tumor suppressor binds to MYH9 and decreases its expression by recruiting β-catenin via its enkurin domain to prevent its nuclear accumulation, which therefore suppresses c-Jun-induced MYH9 expression. Subsequently, downregulated MYH9 reduces the enlistment of E3 ligase UBE3A and thus decreases the UBE3A-mediated ubiquitination degradation of p53, a key tumor suppressor that decreases epithelial-mesenchymal transition (EMT). Clinical sample analysis demonstrated that the ENKUR expression level was significantly reduced in NPC tissues. Its decreased expression substantially promoted clinical progression and reflected poor prognosis for patients with NPC. This study demonstrated that CB induced ENKUR to repress the β-catenin/c-Jun/MYH9 signal and thus decreased UBE3A-mediated p53 ubiquitination degradation. As a result, the EMT signal was inactivated to suppress NPC metastasis.
Collapse
Affiliation(s)
- Rentao Hou
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Xiong Liu
- Department of Otolaryngology-Head and Neck Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Huiling Yang
- School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Shuting Deng
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Chao Cheng
- Otolaryngology Department, Shenzhen Hospital, Southern Medical University, Guangzhou, China
| | - Jiahao Liu
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Yonghao Li
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Yewei Zhang
- Hepatobiliary Surgery, Guizhou Medical University, Guiyang, Guizhou, China
| | - Jingwen Jiang
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China; Oncology Department, Traditional Chinese Medicine Hospital of Hainan Provincial, Haikou, China
| | - Zhibo Zhu
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Yun Su
- Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Liyang Wu
- Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Yingying Xie
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Xiaoning Li
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Wenmin Li
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Zhen Liu
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China; Affiliated Cancer Hospital & Institute of Guangzhou Medical University, China; Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China.
| | - Weiyi Fang
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.
| |
Collapse
|
24
|
Variances in the Expression of mRNAs and miRNAs Related to the Histaminergic System in Endometrioid Endometrial Cancer. Biomedicines 2021; 9:biomedicines9111535. [PMID: 34829764 PMCID: PMC8615447 DOI: 10.3390/biomedicines9111535] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/21/2021] [Accepted: 10/25/2021] [Indexed: 12/14/2022] Open
Abstract
Research has indicated higher concentrations of histamine and polyamine in endometrioid tissue in comparison with healthy tissue. The aim of this study was to evaluate changes in the expression patterns of messenger RNA (mRNAs) and microRNA (miRNAs) related to the histaminergic system in endometrial samples and whole blood in women with endometrioid endometrial cancer. The study group consisted of 30 women with endometrioid endometrial cancer qualified for hysterectomy (G1 well-differentiated, 15 cases; G2 moderately differentiated, 8 cases; and G3 poorly differentiated, 7 cases). The control group included 30 women with no neoplastic changes during routine gynecological examinations. The molecular analysis consisted of the microarray analysis of mRNAs and miRNAs related to the histaminergic system, reverse-transcription quantitative polymerase chain reaction (RTqPCR), and enzyme-linked immunosorbent assay (ELISA). Out of 65 mRNAs connected with the histaminergic system, 10 differentiate the samples of tissue and blood obtained from patients with endometrioid endometrial cancer in comparison with the control group (p < 0.05). mRNA histamine receptor 1,3 (HRH1, HRH3), and solute carrier family 22 member 3 (SLC23A2) differentiating samples of endometrioid endometrial cancer independent of either G or control. The highest probability of interaction, based on the target score miRDB, between the selected miRNAs and mRNAs was found for the hybrids hsa-miR-1-3p and endothelin 1 (END1), hsa-miR-27a-5β and SLC23A2. The selected mRNA and miRNA transcripts seem to be promising for molecularly targeted therapies in the context of endometrioid endometrial cancer.
Collapse
|
25
|
Pathophysiological Roles of Histamine Receptors in Cancer Progression: Implications and Perspectives as Potential Molecular Targets. Biomolecules 2021; 11:biom11081232. [PMID: 34439898 PMCID: PMC8392479 DOI: 10.3390/biom11081232] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 02/07/2023] Open
Abstract
High levels of histamine and histamine receptors (HRs), including H1R~H4R, are found in many different types of tumor cells and cells in the tumor microenvironment, suggesting their involvement in tumor progression. This review summarizes the latest evidence demonstrating the pathophysiological roles of histamine and its cognate receptors in cancer biology. We also discuss the novel therapeutic approaches of selective HR ligands and their potential prognostic values in cancer treatment. Briefly, histamine is highly implicated in cancer development, growth, and metastasis through interactions with distinct HRs. It also regulates the infiltration of immune cells into the tumor sites, exerting an immunomodulatory function. Moreover, the effects of various HR ligands, including H1R antagonists, H2R antagonists, and H4R agonists, on tumor progression in many different cancer types are described. Interestingly, the expression levels of HR subtypes may serve as prognostic biomarkers in several cancers. Taken together, HRs are promising targets for cancer treatment, and HR ligands may offer novel therapeutic potential, alone or in combination with conventional therapy. However, due to the complexity of the pathophysiological roles of histamine and HRs in cancer biology, further studies are warranted before HR ligands can be introduced into clinical settings.
Collapse
|
26
|
Chen Y, Ma Y, Feng JJ, Wang YH, Li TF, Nurmi K, Eklund KK, Wen JG. Histamine H 3 Receptor Signaling Regulates the NLRP3 Inflammasome Activation in C2C12 Myocyte During Myogenic Differentiation. Front Pharmacol 2021; 12:599393. [PMID: 34135750 PMCID: PMC8202077 DOI: 10.3389/fphar.2021.599393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 05/05/2021] [Indexed: 11/13/2022] Open
Abstract
NLRP3 inflammasome has been implicated in impaired post-injury muscle healing and in muscle atrophy. Histamine receptors play an important role in inflammation, but the role of histamine H3 receptor (H3R) in myocyte regeneration and in the regulation of NLRP3 inflammasome is not known. We studied the effects of H3R signaling on C2C12 myocyte viability, apoptosis, and tumor necrosis factor alpha (TNFα)-induced NLRP3 inflammasome activation during striated myogenic differentiation at three time points (days 0, 3, and 6). Expression of Nlrp3, interleukin-1β (IL-1β), and myogenesis markers were determined. TNFα reduced overall viability of C2C12 cells, and exposure to TNFα induced apoptosis of cells at D6. Activation of H3R had no effect on viability or apoptosis, whereas inhibition of H3R increased TNFα-induced apoptosis. Stimulation of C2C12 cells with TNFα increased Nlrp3 mRNA expression at D3 and D6. Moreover, TNFα reduced the expression of myogenesis markers MyoD1, Myogenin, and Myosin-2 at D3 and D6. H3R attenuated TNFα-induced expression of Nlrp3 and further inhibited the myogenesis marker expression; while H3R -blockage enhanced the proinflammatory effects of TNFα and increased the myogenesis marker expression. TNFα-induced secretion of mature IL-1β was dependent on the activation of the NLRP3 inflammasome, as shown by the reduced secretion of mature IL-1β upon treatment of the cells with the small molecule inhibitor of the NLRP3 inflammasome (MCC950). The activation of H3R reduced TNFα-induced IL-1β secretion, while the H3R blockage had an opposite effect. In conclusion, the modulation of H3R activity regulates the effects of TNFα on C2C12 myocyte differentiation and TNFα-induced activation of NLRP3 inflammasome. Thus, H3R signaling may represent a novel target for limiting postinjury muscle inflammation and muscle atrophy.
Collapse
Affiliation(s)
- Yan Chen
- Urodynamic Center and Department of Urology, Institute of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Helsinki Rheumatic Diseases and Inflammation Research Group, Clinicum Helsinki University, Helsinki, Finland.,Translational Immunology Research Program, University of Helsinki, Helsinki University Clinicum, Helsinki, Finland
| | - Yuan Ma
- Urodynamic Center and Department of Urology, Institute of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jin Jin Feng
- Urodynamic Center and Department of Urology, Institute of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yi He Wang
- Urodynamic Center and Department of Urology, Institute of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Tian Fang Li
- Department of Rheumatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Katariina Nurmi
- Helsinki Rheumatic Diseases and Inflammation Research Group, Clinicum Helsinki University, Helsinki, Finland.,Translational Immunology Research Program, University of Helsinki, Helsinki University Clinicum, Helsinki, Finland
| | - Kari K Eklund
- Helsinki Rheumatic Diseases and Inflammation Research Group, Clinicum Helsinki University, Helsinki, Finland.,Translational Immunology Research Program, University of Helsinki, Helsinki University Clinicum, Helsinki, Finland.,Department of Medicine, Division of Rheumatology, Helsinki University Central Hospital, and Orton Orthopedic Hospital, Helsinki, Finland
| | - Jian Guo Wen
- Urodynamic Center and Department of Urology, Institute of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
27
|
Inhibition of interferon-signalling halts cancer-associated fibroblast-dependent protection of breast cancer cells from chemotherapy. Br J Cancer 2021; 124:1110-1120. [PMID: 33398063 PMCID: PMC7960738 DOI: 10.1038/s41416-020-01226-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 11/23/2020] [Accepted: 12/02/2020] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Triple negative breast cancers (TNBC) have poor prognoses despite aggressive treatment with cytotoxic chemotherapy. Cancer-associated fibroblasts (CAFs) are prominent in tumour stroma. Our hypothesis was that CAFs modulate chemotherapy sensitivity. METHODS TNBC cells and breast fibroblasts were cultured; survival after chemotherapeutics was assessed using luciferase or clonogenic assays. Signalling was investigated using transcriptomics, reporters, recombinant proteins and blocking antibodies. Clinical relevance was investigated using immunohistochemistry. RESULTS Breast CAFs dose-dependently protected TNBC cell lines MDA-MB-231 and MDA-MB-157, but not MDA-MB-468s, from chemotherapy. CAF-induced protection was associated with interferon (IFN) activation. CAFs were induced to express IFNβ1 by chemotherapy and TNBC co-culture, leading to paracrine activation in cancer cells. Recombinant IFNs were sufficient to protect MDA-MB-231 and MDA-MB-157 but not MDA-MB-468 cells. In TNBC patients, IFNβ1 expression in CAFs correlated with cancer cell expression of MX1, a marker of activated IFN signalling. High expression of IFNβ1 (CAFs) or MX1 (tumour cells) correlated with reduced survival after chemotherapy, especially in claudin-low tumours (which MDA-MB-231 and MDA-MB-157 cells represent). Antibodies that block IFN receptors reduced CAF-dependent chemoprotection. CONCLUSIONS CAF-induced activation of IFN signalling in claudin-low TNBCs results in chemoresistance. Inhibition of this pathway represents a novel method to improve breast cancer outcomes.
Collapse
|