1
|
Yang Y, Wang K, Li X, Ding S, Zhang M, Huang S. Topological defects induced intra-tissue heterogeneity of mesenchymal stem cell via regulatory self-organization and differentiation. BIOMATERIALS ADVANCES 2025; 174:214297. [PMID: 40188760 DOI: 10.1016/j.bioadv.2025.214297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/21/2025] [Accepted: 03/31/2025] [Indexed: 05/07/2025]
Abstract
Currently, in vitro fabrication of intra-tissue heterogeneity remains a critical challenge in development of adult stem cell based tissue engineering. Interestingly, as a typical structure in symmetry-breaking phase transitions, topological defects are extensively presented in biological substances. These topological defects are commonly observed within cell monolayer in vitro and demonstrated to be effective in induction of intra-tissue heterogeneity by regulating cell migration. Nevertheless, their impacts on the behavior of mesenchymal stem cells (MSCs) remain elusive. In this study, micro-grooved substrates were utilized to explore the role of topological defects in regulation of MSCs' self-organization and osteogenic differentiation. The results indicated that topological defects could induce the central aggregates of MSCs at central region of +1 and +1/2 topological defects by modulating centripetal migration. On the contrast, negatively charged topological were able to induce centrifugal migration and further inducing heterogeneous distribution of MSCs. Subsequently, these heterogeneously distributed MSCs were capable of inducing intra-tissue heterogeneity in terms of proliferation, stemness maintenance and osteogenic differentiation via regulatory morphogenesis.
Collapse
Affiliation(s)
- Yingjun Yang
- Materials Institute of Atomic and Molecular Science, School of Physics and Information Science, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, PR China; Medical School, Xianyang Vocational Technical College, Xianyang, Shaanxi 712000, PR China.
| | - Kai Wang
- Materials Institute of Atomic and Molecular Science, School of Physics and Information Science, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, PR China
| | - Xin Li
- Materials Institute of Atomic and Molecular Science, School of Physics and Information Science, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, PR China
| | - Shukai Ding
- Materials Institute of Atomic and Molecular Science, School of Physics and Information Science, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, PR China
| | - Miao Zhang
- Materials Institute of Atomic and Molecular Science, School of Physics and Information Science, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, PR China
| | - Siyuan Huang
- Medical School, Xianyang Vocational Technical College, Xianyang, Shaanxi 712000, PR China.
| |
Collapse
|
2
|
Jeon HH, Salas MCC, Park K, Fisher L, Ha S, Palmer C, Chan F, Graves DT. Comparison of the bone remodeling in the midpalatal suture during maxillary expansion between young and middle-aged mice. Bone 2025; 197:117512. [PMID: 40324615 DOI: 10.1016/j.bone.2025.117512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 04/17/2025] [Accepted: 05/02/2025] [Indexed: 05/07/2025]
Abstract
Maxillary expansion is a common orthodontic procedure for treating maxillary transverse deficiency. However, the cell responses to mechanical force may vary across different age groups, suggesting the need for age-specific treatment protocols. To compare the age-related responses to the mechanical force, we examined the 6-week- and 12-month-old mice undergoing maxillary expansion with 0.012-in. stainless steel orthodontic wire bonded to the maxillary first and second molars (25 g force). Mice were euthanized on days 0, 3, 7, and 14 for analysis. MicroCT analysis, tartrate-resistant acid phosphatase (TRAP) stain, and immunofluorescence/immunohistochemistry stain using antibodies to RUNX2, alkaline phosphatase (ALP), Gli1 and Ki67 along with the TUNEL assay, were conducted to evaluate suture width, osteoclast activity, new bone formation and mesenchymal stem cell (MSC) proliferation and apoptosis. Both 6-week- and 12-month-old mice exhibited successful midpalatal suture opening, but young mice demonstrated earlier and more intense osteoclast activity, along with higher expression of RUNX2 and ALP. Young mice also exhibited a higher percentage of Gli1+Ki67+ immunopositive cells, while middle-aged mice showed a higher percentage of Gli1+TUNEL+ positive cells on day 3 after maxillary expansion. Our findings suggest that aging negatively impacts mechanical force-induced bone remodeling by reducing osteoclastogenesis, osteogenesis, and MSC proliferation while increasing MSC apoptosis.
Collapse
Affiliation(s)
- Hyeran Helen Jeon
- Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Mary Cruz Contreras Salas
- Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kyungjoon Park
- School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lindsay Fisher
- School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sara Ha
- School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Caroline Palmer
- School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Fionna Chan
- School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Dana T Graves
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
3
|
Xu C, Long Y, Feng L, Liu L, Xu R, Hu W, Li H. Bionic Triboelectric Nanogenerator Activates the "mechano-electro-biochemical" Cascade Effect In Situ to Accelerate Critical-Sized Bone Defect Repair. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2504128. [PMID: 40394948 DOI: 10.1002/adma.202504128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Revised: 04/21/2025] [Indexed: 05/22/2025]
Abstract
The loss of the intrinsic "mechano-electro-biochemical" cascade effect in critical-sized bone defects (CSBDs) impedes the bone self-healing process. Traditional strategies cannot provide bionic electrical output, thereby failing to sufficiently activate the "mechano-electro-biochemical" cascade effect in situ and limiting the repair efficiency of CSBDs. Here, a bionic, self-adhesive, and biodegradable triboelectric nanogenerator (TENG) called PPCs-TENG using silk-fibroin-derived peptide (Cs)-grafted polydopamine-polyacrylamide (PPCs) as the electrode layer is fabricated. It provides bionic electrical stimulation (bio-ES) in response to the host's motion status. It reestablishes the resting potential during host rest and generates real-time biofeedback action potential during host movement. Further, it activates the "mechano-electro-biochemical" cascade effect for accelerating the repair of CSBDs. The bio-ES generated from PPCs-TENG enriches extracellular osteogenesis-related biochemical factors at the CSBD site. It also activates the intracellular mechanosensitive protein Piezo1, thereby promoting calcium signaling and intracellular mechano-transduction pathways. This activation enhances the proliferation and migration of bone marrow stem cells (BMSCs) and human umbilical vein endothelial cells (HUVECs), and promotes osteogenic differentiation in BMSCs and angiogenesis in HUVECs. In vivo tests demonstrate that PPCs-TENG significantly accelerates the repair of CSBDs in situ.
Collapse
Affiliation(s)
- Changzhen Xu
- Department of Stomatology, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Yong Long
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
| | - Lili Feng
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Lin Liu
- Department of Stomatology, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Rongchen Xu
- Department of Stomatology, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Weiguo Hu
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
| | - Hongbo Li
- Department of Stomatology, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| |
Collapse
|
4
|
Lu L, Wang L, Yang M, Wang H. Role of METTL16 in PPARγ methylation and osteogenic differentiation. Cell Death Dis 2025; 16:271. [PMID: 40210616 PMCID: PMC11986173 DOI: 10.1038/s41419-025-07527-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 02/11/2025] [Accepted: 03/12/2025] [Indexed: 04/12/2025]
Abstract
Osteoporosis, a prevalent bone disease, is characterized by the deterioration of bone tissue microstructure and imbalanced osteogenesis. The regulatory role of PPARγ m6A methylation mediated by METTL16 remains poorly elucidated. This study utilized advanced single-cell RNA sequencing (scRNA-seq) and Bulk RNA-seq techniques to explore how METTL16 influences the osteogenic differentiation of Bone Marrow-Derived Mesenchymal Stem Cells (BMSCs) and its implication in osteoporosis. The research revealed that METTL16 enhances the suppression of osteogenic differentiation in BMSCs, while PPARγ is associated with BMSC ferroptosis. Mechanistically, METTL16 facilitates the m6A modification of PPARγ transcription, thereby promoting ferroptosis in BMSCs and impeding their osteogenic differentiation. The in vivo animal experiments confirmed the pivotal role of the METTL16-PPARγ axis in osteoporosis development in mice. These findings suggest that the regulation of PPARγ m6A methylation by METTL16, leading to ferroptosis, is a critical mechanism impacting BMSC osteogenic differentiation and the pathogenesis of osteoporosis.
Collapse
Affiliation(s)
- Liangjie Lu
- Department of Orthopedics, Ningbo Medical Center Li Huili Hospital, Li Huili Hospital Affiliated to Ningbo University, Ningbo, China.
| | - Lijun Wang
- Department of Pediatrics, The First Hospital of Jilin University, Changchun, China
| | - Minjie Yang
- Department of Orthopaedics, Jiu jiang NO.1 People's Hospital, Jiu jiang, China
| | - Huihan Wang
- Department of Orthopaedics, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| |
Collapse
|
5
|
Gu H, Yu W, Feng P, Zeng C, Cao Q, Chen F, Wang Z, Shen H, Wu Y, Wang S. Circular RNA circSTX12 regulates osteo-adipogenic balance and proliferation of BMSCs in senile osteoporosis. Cell Mol Life Sci 2025; 82:149. [PMID: 40192802 PMCID: PMC11977094 DOI: 10.1007/s00018-025-05684-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 01/03/2025] [Accepted: 03/28/2025] [Indexed: 04/10/2025]
Abstract
Increased adipogenic differentiation and decreased osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) along with slow self-renewal are pivotal causes for decreased bone formation in senile osteoporosis. Circular RNAs (circRNAs) play important roles in cell proliferation and differentiation, and are closely related to osteoporosis. Whether circRNAs orchestrate the adipo-osteogenic balance and the proliferation of BMSCs in osteoporosis remains unclear. We found in this study that circSTX12 was abnormally upregulated in bone sections from osteoporosis patients and in BMSCs from aged mice, as well as in later-generation human BMSCs in culture. Knockdown of circSTX12 in BMSCs resulted in enhanced osteogenesis, decreased adipogenesis, and increased proliferation capacity; circSTX12 overexpression had the opposite effect. RNA pull-down and mass spectrometry revealed the interactions between circSTX12 with CBL and LMO7. At the molecular level, circSTX12 regulated cell fate in BMSCs by competitively binding to CBL, reducing the ubiquitination-mediated degradation of MST1 and thereby activating the Hippo pathway, a key regulator of adipo-osteogenic balance. Knockdown of circSTX12 promoted the nuclear localization of YAP. In addition, our findings suggest that LMO7 mediates circSTX12-induced BMSCs proliferation by regulating the transcription of CCNA2, CCNH, and CCND1. In vivo, injection of antisense oligonucleotides (ASOs) to knockdown circSTX12 promoted bone formation in aged mice. Our results provide evidence for circSTX12 as a regulator of adipo-osteogenic differentiation and proliferation of BMSCs through binding to CBL and LMO7, respectively. Targeting circSTX12 may be a novel approach for osteoporosis treatment.
Collapse
Affiliation(s)
- Huimin Gu
- Center for Biotherapy, Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518033, P. R. China
- Guangdong Provincial Clinical Research Center for Orthopedic Diseases, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518033, P. R. China
| | - Wenhui Yu
- Department of Orthopedics, Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518033, P. R. China
- Guangdong Provincial Clinical Research Center for Orthopedic Diseases, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518033, P. R. China
| | - Pei Feng
- Center for Biotherapy, Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518033, P. R. China
- Guangdong Provincial Clinical Research Center for Orthopedic Diseases, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518033, P. R. China
| | - Chenying Zeng
- Center for Biotherapy, Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518033, P. R. China
- Guangdong Provincial Clinical Research Center for Orthopedic Diseases, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518033, P. R. China
| | - Qian Cao
- Center for Biotherapy, Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518033, P. R. China
- Guangdong Provincial Clinical Research Center for Orthopedic Diseases, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518033, P. R. China
| | - Fenglei Chen
- Department of Orthopedics, Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518033, P. R. China
- Guangdong Provincial Clinical Research Center for Orthopedic Diseases, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518033, P. R. China
| | - Ziming Wang
- Department of Orthopedics, Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518033, P. R. China
- Guangdong Provincial Clinical Research Center for Orthopedic Diseases, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518033, P. R. China
| | - Huiyong Shen
- Department of Orthopedics, Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518033, P. R. China.
- Guangdong Provincial Clinical Research Center for Orthopedic Diseases, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518033, P. R. China.
| | - Yanfeng Wu
- Center for Biotherapy, Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518033, P. R. China.
- Guangdong Provincial Clinical Research Center for Orthopedic Diseases, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518033, P. R. China.
| | - Shan Wang
- Center for Biotherapy, Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518033, P. R. China.
- Guangdong Provincial Clinical Research Center for Orthopedic Diseases, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518033, P. R. China.
| |
Collapse
|
6
|
Goelzer M, Howard S, Zavala AG, Conway D, Rubin J, Uzer G. Depletion of SUN1/2 induces heterochromatin accrual in mesenchymal stem cells during adipogenesis. Commun Biol 2025; 8:428. [PMID: 40082539 PMCID: PMC11906923 DOI: 10.1038/s42003-025-07832-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 02/24/2025] [Indexed: 03/16/2025] Open
Abstract
Critical to the mechano-regulation of mesenchymal stem cells (MSC), Linker of the Nucleoskeleton and Cytoskeleton (LINC) complex transduces cytoskeletal forces to the nuclei. The LINC complex contains outer nuclear membrane Nesprin proteins that associate with the cytoskeleton and their inner nuclear membrane couplers, SUN proteins. Here we tested the hypothesis that severing of the LINC complex-mediated cytoskeletal connections may have different effects on chromatin organization and MSC differentiation than those due to ablation of SUN proteins. In cells cultured under adipogenic conditions, interrupting LINC complex function through dominant-negative KASH domain expression (dnKASH) increased adipogesis while heterochromatin H3K27 and H3K9 methylation was unaltered. In contrast, SUN1/2 depletion inhibited adipogenic gene expression and fat droplet formation; as well the anti-adipogenic effect of SUN1/2 depletion was accompanied by increased H3K9me3, which was enriched on Adipoq, silencing this fat locus. We conclude that releasing the nucleus from cytoskeletal constraints via dnKASH accelerates adipogenesis while depletion of SUN1/2 increases heterochromatin accrual on adipogenic genes in a fashion independent of LINC complex function. Therefore, while these two approaches both disable LINC complex functions, their divergent effects on the epigenetic landscape indicate they cannot be used interchangeably to study mechanical regulation of cell differentiation.
Collapse
Affiliation(s)
- Matthew Goelzer
- Boise State University, Boise, ID, USA
- Oral Roberts University, Tulsa, OK, USA
| | | | | | - Daniel Conway
- The Ohio State University University, Columbus, OH, USA
| | - Janet Rubin
- University of North Carolina at Chapel Hill, Chapel Hill, USA
| | | |
Collapse
|
7
|
Chen X, Ji X, Lao Z, Pan B, Qian Y, Yang W. Role of YAP/TAZ in bone diseases: A transductor from mechanics to biology. J Orthop Translat 2025; 51:13-23. [PMID: 39902099 PMCID: PMC11787699 DOI: 10.1016/j.jot.2024.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/24/2024] [Accepted: 12/09/2024] [Indexed: 02/05/2025] Open
Abstract
Wolff's Law and the Mechanostat Theory elucidate how bone tissues detect and convert mechanical stimuli into biological signals, crucial for maintaining bone equilibrium. Abnormal mechanics can lead to diseases such as osteoporosis, osteoarthritis, and nonunion fractures. However, the detailed molecular mechanisms by which mechanical cues are transformed into biological responses in bone remain underexplored. Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ), key regulators of bone homeostasis, are instrumental in this process. Emerging research highlights bone cells' ability to sense various mechanical stimuli and relay these signals intracellularly. YAP/TAZ are central in receiving these mechanical cues and converting them into signals that influence bone cell behavior. Abnormal YAP/TAZ activity is linked to several bone pathologies, positioning these proteins as promising targets for new treatments. Thus, this review aims to provide an in-depth examination of YAP/TAZ's critical role in the interpretation of mechanical stimuli to biological signals, with a special emphasis on their involvement in bone cell mechanosensing, mechanotransduction, and mechanoresponse. The translational potential of this article: Clinically, appropriate stress stimulation promotes fracture healing, while bed rest can lead to disuse osteoporosis and excessive stress can cause osteoarthritis or bone spurs. Recent advancements in the understanding of YAP/TAZ-mediated mechanobiological signal transduction in bone diseases have been significant, yet many aspects remain unknown. This systematic review summarizes current research progress, identifies unaddressed areas, and highlights potential future research directions. Advancements in this field facilitate a deeper understanding of the molecular mechanisms underlying bone mechanics regulation and underscore the potential of YAP/TAZ as therapeutic targets for bone diseases such as fractures, osteoporosis, and osteoarthritis.
Collapse
Affiliation(s)
- Xin Chen
- Department of Orthopedics Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, 310006, China
| | - Xing Ji
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, Department of Clinical Medicine, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Zhaobai Lao
- Department of Orthopedics Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, 310006, China
| | - Bin Pan
- Department of Orthopedics Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, 310006, China
| | - Yu Qian
- Department of Orthopedics Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, 310006, China
| | - Wanlei Yang
- Department of Orthopedics Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, 310006, China
| |
Collapse
|
8
|
Li N, Wang M, Luo H, Tse SD, Gao Y, Zhu Z, Guo H, He L, Zhu C, Yin K, Sun L, Guo J, Hong H. Processing and properties of graphene-reinforced polylactic acid nanocomposites for bioelectronic and tissue regenerative functions. BIOMATERIALS ADVANCES 2025; 167:214113. [PMID: 39549370 DOI: 10.1016/j.bioadv.2024.214113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 11/05/2024] [Accepted: 11/07/2024] [Indexed: 11/18/2024]
Abstract
An in-situ polymer-solution-processing approach enables the efficient production of uniform graphene-reinforced polylactic acid (G-PLA) nanocomposites with notable physical and biomedical properties. The approach effectively enhances the interfacial bonding between graphene and PLA by creating graphene dangling bonds and defects during exfoliation. As a result, an 182 % increase in Young's modulus and an 85 % increase in tensile strength can be achieved in G-PLA. Only 0.5 wt% graphene addition can reduce the contact angle of the composite from 75.3 to 70.4 and reduce its oxygen permeability by 23 %. The improved hydrophilicity, hermeticity, and mechanical properties make G-PLA an excellent encapsulation material for implantable bioelectronics. Moreover, the composite surface attributes and cell behaviors at the material-tissue interface are investigated histologically through the culture of stem cells on as-synthesized G-PLA. G-PLA composites can significantly boost cell proliferation and regulate cell differentiation towards vascular endothelium, offering tissue regeneration at the surface of implants to recover the injured tissues. The degradation rate of G-PLA nanocomposite can also be regulated since the graphene slows down the autocatalytic chain splitting induced by the terminal carboxylic acid groups of PLA. Therefore, such G-PLA nanocomposites with physical and biomedical properties regulated by graphene loading enable the development of next-generation implantable electronic systems providing both sensing and tissue engineering functions for complicated applications such as implanted sensors monitoring the healing of fractured bones or intracranial pressure.
Collapse
Affiliation(s)
- Nan Li
- SEU-FEI Nano-Pico Center, Key Lab of MEMS of Ministry of Education, Southeast University, Nanjing 210096, China
| | - Mengjia Wang
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Shandong Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration, Shandong Provincial Clinical Research Center for Oral Diseases, China
| | - Haoyu Luo
- SEU-FEI Nano-Pico Center, Key Lab of MEMS of Ministry of Education, Southeast University, Nanjing 210096, China
| | - Stephen D Tse
- Department of Mechanical and Aerospace Engineering, Rutgers University-New Brunswick, Piscataway, NJ 08854, USA
| | - Yun Gao
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiaotong University, China
| | - Zhen Zhu
- SEU-FEI Nano-Pico Center, Key Lab of MEMS of Ministry of Education, Southeast University, Nanjing 210096, China
| | - Hongxuan Guo
- SEU-FEI Nano-Pico Center, Key Lab of MEMS of Ministry of Education, Southeast University, Nanjing 210096, China
| | - Longbing He
- SEU-FEI Nano-Pico Center, Key Lab of MEMS of Ministry of Education, Southeast University, Nanjing 210096, China
| | - Chao Zhu
- SEU-FEI Nano-Pico Center, Key Lab of MEMS of Ministry of Education, Southeast University, Nanjing 210096, China
| | - Kuibo Yin
- SEU-FEI Nano-Pico Center, Key Lab of MEMS of Ministry of Education, Southeast University, Nanjing 210096, China
| | - Litao Sun
- SEU-FEI Nano-Pico Center, Key Lab of MEMS of Ministry of Education, Southeast University, Nanjing 210096, China
| | - Jie Guo
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Shandong Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration, Shandong Provincial Clinical Research Center for Oral Diseases, China
| | - Hua Hong
- SEU-FEI Nano-Pico Center, Key Lab of MEMS of Ministry of Education, Southeast University, Nanjing 210096, China.
| |
Collapse
|
9
|
Chen S, Lin Y, Yang H, Li Z, Li S, Chen D, Hao W, Zhang S, Chao H, Zhang J, Wang J, Li Z, Li X, Zhan Z, Liu H. A CD26 + tendon stem progenitor cell population contributes to tendon repair and heterotopic ossification. Nat Commun 2025; 16:749. [PMID: 39820504 PMCID: PMC11739514 DOI: 10.1038/s41467-025-56112-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 01/09/2025] [Indexed: 01/19/2025] Open
Abstract
Inadequate tendon healing and heterotopic bone formation result in substantial pain and disability, yet the specific cells responsible for tendon healing remain uncertain. Here we identify a CD26+ tendon stem/progenitor cells residing in peritendon, which constitutes a primitive stem cell population with self-renewal and multipotent differentiation potentials. CD26+ tendon stem/progenitor cells migrate into the tendon midsubstance and differentiation into tenocytes during tendon healing, while ablation of these cells led to insufficient tendon healing. Additionally, CD26+ tendon stem/progenitor cells contribute to heterotopic ossification and Tenascin-C-Hippo signaling is involved in this process. Targeting Tenascin-C significantly suppresses chondrogenesis of CD26+ tendon stem/progenitor cells and subsequent heterotopic ossification. Our findings provide insights into the identification of tendon stem/progenitor cells and illustrate the essential role of CD26+ tendon stem/progenitor cells in tendon healing and heterotopic bone formation.
Collapse
Affiliation(s)
- Siwen Chen
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangdong, PR China
- Guangdong Province Key Laboratory of Orthopaedics and Traumatology, Guangdong, PR China
| | - Yingxin Lin
- School of Mathematics and Statistics, The University of Sydney, Sydney, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
- Laboratory of Data Discovery for Health Limited (D24H), Science Park, Hong Kong SAR, PR China
| | - Hao Yang
- Pediatric Orthopaedics, Beijing Jishuitan Hospital, Peking University, Beijing, PR China
| | - Zihao Li
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangdong, PR China
- Guangdong Province Key Laboratory of Orthopaedics and Traumatology, Guangdong, PR China
| | - Sifang Li
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangdong, PR China
- Guangdong Province Key Laboratory of Orthopaedics and Traumatology, Guangdong, PR China
| | - Dongying Chen
- Department of Rheumatology and Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong, PR China
| | - Wenjun Hao
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangdong, PR China
- Guangdong Province Key Laboratory of Orthopaedics and Traumatology, Guangdong, PR China
| | - Shuai Zhang
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangdong, PR China
- Guangdong Province Key Laboratory of Orthopaedics and Traumatology, Guangdong, PR China
| | - Hua Chao
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangdong, PR China
- Guangdong Province Key Laboratory of Orthopaedics and Traumatology, Guangdong, PR China
| | - Jingyu Zhang
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangdong, PR China
- Guangdong Province Key Laboratory of Orthopaedics and Traumatology, Guangdong, PR China
| | - Jianru Wang
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangdong, PR China
- Guangdong Province Key Laboratory of Orthopaedics and Traumatology, Guangdong, PR China
| | - Zemin Li
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangdong, PR China
- Guangdong Province Key Laboratory of Orthopaedics and Traumatology, Guangdong, PR China
| | - Xiang Li
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangdong, PR China
- Guangdong Province Key Laboratory of Orthopaedics and Traumatology, Guangdong, PR China
| | - Zhongping Zhan
- Department of Rheumatology and Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong, PR China
| | - Hui Liu
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangdong, PR China.
- Guangdong Province Key Laboratory of Orthopaedics and Traumatology, Guangdong, PR China.
| |
Collapse
|
10
|
Zhang H, Yang M, Kim SH, Li IT. Integrin force loading rate in mechanobiology: From model to molecular measurement. QRB DISCOVERY 2025; 6:e9. [PMID: 40160979 PMCID: PMC11950791 DOI: 10.1017/qrd.2024.28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 12/11/2024] [Accepted: 12/12/2024] [Indexed: 04/02/2025] Open
Abstract
Integrins are critical transmembrane receptors that connect the extracellular matrix (ECM) to the intracellular cytoskeleton, playing a central role in mechanotransduction - the process by which cells convert mechanical stimuli into biochemical signals. The dynamic assembly and disassembly of integrin-mediated adhesions enable cells to adapt continuously to changing mechanical cues, regulating essential processes such as adhesion, migration, and proliferation. In this review, we explore the molecular clutch model as a framework for understanding the dynamics of integrin - ECM interactions, emphasizing the critical importance of force loading rate. We discuss how force loading rate bridges internal actomyosin-generated forces and ECM mechanical properties like stiffness and ligand density, determining whether sufficient force is transmitted to mechanosensitive proteins such as talin. This force transmission leads to talin unfolding and activation of downstream signalling pathways, ultimately influencing cellular responses. We also examine recent advances in single-molecule DNA tension sensors that have enabled direct measurements of integrin loading rates, refining the range to approximately 0.5-4 pN/s. These findings deepen our understanding of force-mediated mechanotransduction and underscore the need for improved sensor designs to overcome current limitations.
Collapse
Affiliation(s)
- Hongyuan Zhang
- Department of Chemistry, The University of British Columbia, Kelowna, BC, Canada
| | - Micah Yang
- Department of Chemistry, The University of British Columbia, Kelowna, BC, Canada
| | - Seong Ho Kim
- Department of Chemistry, The University of British Columbia, Kelowna, BC, Canada
| | - Isaac T.S. Li
- Department of Chemistry, The University of British Columbia, Kelowna, BC, Canada
| |
Collapse
|
11
|
Lipari S, Sacco P, Cok M, Scognamiglio F, Romano M, Brun F, Giulianini PG, Marsich E, Aachmann FL, Donati I. Hydrogel Elastic Energy: A Stressor Triggering an Adaptive Stress-Mediated Cell Response. Adv Healthc Mater 2025; 14:e2402400. [PMID: 39535422 PMCID: PMC11730662 DOI: 10.1002/adhm.202402400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Indexed: 11/16/2024]
Abstract
The crosstalk between the cells and the extracellular matrix (ECM) is bidirectional and consists of a pushing/pulling stretch exerted by the cells and a mechanical resistance counteracted by the surrounding microenvironment. It is widely recognized that the stiffness of the ECM, its viscoelasticity, and its overall deformation are the most important traits influencing the response of the cells. Here these three parameters are combined into a concept of elastic energy, which in biological terms represents the mechanical feedback that cells perceive when the ECM is deformed. It is shown that elastic energy is a stress factor that influences the response of cells in three-dimensional (3D) cultures. Strikingly, the higher the elastic energy of the matrix and thus the mechanical feedback, the higher the stress state of the cells, which correlates with the formation of G3BP-mediated stress granules. This condition is associated with an increase in alkaline phosphatase (ALP) activity but a decrease in gene expression and is mediated by the nuclear translocation of Yes-associated protein (YAP). This work supports the importance of considering the elastic energy as mechano-controller in regulating cellular stress state in 3D cultures.
Collapse
Affiliation(s)
- Sara Lipari
- Department of Life SciencesUniversity of TriesteVia L. Giorgieri 5Trieste34127Italy
| | - Pasquale Sacco
- Department of Life SciencesUniversity of TriesteVia L. Giorgieri 5Trieste34127Italy
| | - Michela Cok
- Department of Life SciencesUniversity of TriesteVia L. Giorgieri 5Trieste34127Italy
| | | | - Maurizio Romano
- Department of Life SciencesUniversity of TriesteVia L. Giorgieri 5Trieste34127Italy
| | - Francesco Brun
- Department of Engineering and ArchitectureUniversity of TriesteVia A. Valerio 6/1Trieste34127Italy
| | | | - Eleonora Marsich
- Department of MedicineSurgery and Health SciencesUniversity of TriestePiazza dell'Ospitale 1Trieste34129Italy
| | - Finn L. Aachmann
- Department of Biotechnology and Food ScienceNorwegian Biopolymer Laboratory (NOBIPOL)NTNU Norwegian University of Science and TechnologySem Sælands vei 6/8Trondheim7491Norway
| | - Ivan Donati
- Department of Life SciencesUniversity of TriesteVia L. Giorgieri 5Trieste34127Italy
| |
Collapse
|
12
|
Cui X, Zhang L, Lin L, Hu Y, Zhang M, Sun B, Zhang Z, Lu M, Guan X, Hao J, Li Y, Li C. Notoginsenoside R1-Protocatechuic aldehyde reduces vascular inflammation and calcification through increasing the release of nitric oxide to inhibit TGFβR1-YAP/TAZ pathway in vascular smooth muscle cells. Int Immunopharmacol 2024; 143:113574. [PMID: 39520961 DOI: 10.1016/j.intimp.2024.113574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/01/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024]
Abstract
Vascular calcification is a significant factor contributing to the rupture of vulnerable atherosclerotic plaques, ultimately leading to cardiovascular disease. However, no effective treatments are currently available to slow the progression of vascular calcification. Notoginsenoside R1 (R1) and protocatechuic aldehyde (PCAD), primary active components extracted from Panax notoginseng and Salvia miltiorrhiza Burge, have shown potential in mitigating endothelial injury and atherosclerosis. This study investigated the effects of R1-PCAD on nitric oxide (NO) production in endothelial cells (ECs) and its role in counteracting vascular calcification and inflammation. Additionally, it explored the mechanisms underlying these effects. To simulate atherosclerotic calcification, apolipoprotein E-deficient (ApoE-/-) mice were fed a high-fat diet and given intraperitoneal injections of vitamin D3. Treatment with the R1-PCAD combination improved endothelial function, reduced inflammation in the aorta, and lowered calcium deposition. Mechanistically, R1-PCAD enhanced eNOS-Ser1177 phosphorylation by activating the AMPKα/Akt pathway, which stimulated NO production and eNOS activation in ECs. In an in vitro co-culture model involving vascular smooth muscle cells (VSMCs) and ECs, R1-PCAD similarly reduced inflammation and calcification in VSMCs triggered by β-glycerophosphate, with these effects partially dependent on NO levels and EC functionality. Further investigation revealed that R1-PCAD facilitated NO release from ECs, which subsequently inhibited TGFβR1 activation in VSMCs. This inhibition reduced Smad2/3 activation and nuclear translocation of YAP/TAZ, thereby diminishing inflammation and calcification in VSMCs. These findings suggest that R1-PCAD alleviates vascular inflammation and calcification primarily via the NO-TGFβR1-YAP/TAZ signaling pathway. This study presents a promising new approach for treating vascular calcification by targeting intercellular signaling pathways.
Collapse
MESH Headings
- Animals
- Nitric Oxide/metabolism
- Ginsenosides/pharmacology
- Ginsenosides/therapeutic use
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/metabolism
- Mice
- Signal Transduction/drug effects
- Catechols/pharmacology
- Catechols/therapeutic use
- Benzaldehydes/pharmacology
- Benzaldehydes/therapeutic use
- Vascular Calcification/drug therapy
- Vascular Calcification/pathology
- Vascular Calcification/metabolism
- Mice, Inbred C57BL
- Male
- Receptor, Transforming Growth Factor-beta Type I/metabolism
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Adaptor Proteins, Signal Transducing/metabolism
- Humans
- Transcription Factors/metabolism
- Anti-Inflammatory Agents/pharmacology
- Anti-Inflammatory Agents/therapeutic use
- Atherosclerosis/drug therapy
- Atherosclerosis/pathology
- Atherosclerosis/metabolism
- Cells, Cultured
- YAP-Signaling Proteins
Collapse
Affiliation(s)
- Xinhai Cui
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Lei Zhang
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Lin Lin
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Yuanlong Hu
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Muxin Zhang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Bowen Sun
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Zhiyuan Zhang
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Mengkai Lu
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Xiuya Guan
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Jiaqi Hao
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Yunlun Li
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China; Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Chao Li
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| |
Collapse
|
13
|
Li S, Siengdee P, Hadlich F, Trakooljul N, Oster M, Reyer H, Wimmers K, Ponsuksili S. Dynamics of DNA methylation during osteogenic differentiation of porcine synovial membrane mesenchymal stem cells from two metabolically distinct breeds. Epigenetics 2024; 19:2375011. [PMID: 38956836 PMCID: PMC11225923 DOI: 10.1080/15592294.2024.2375011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 06/26/2024] [Indexed: 07/04/2024] Open
Abstract
Mesenchymal stem cells (MSCs), with the ability to differentiate into osteoblasts, adipocytes, or chondrocytes, show evidence that the donor cell's metabolic type influences the osteogenic process. Limited knowledge exists on DNA methylation changes during osteogenic differentiation and the impact of diverse donor genetic backgrounds on MSC differentiation. In this study, synovial membrane mesenchymal stem cells (SMSCs) from two pig breeds (Angeln Saddleback, AS; German Landrace, DL) with distinct metabolic phenotypes were isolated, and the methylation pattern of SMSCs during osteogenic induction was investigated. Results showed that most differentially methylated regions (DMRs) were hypomethylated in osteogenic-induced SMSC group. These DMRs were enriched with genes of different osteogenic signalling pathways at different time points including Wnt, ECM, TGFB and BMP signalling pathways. AS pigs consistently exhibited a higher number of hypermethylated DMRs than DL pigs, particularly during the peak of osteogenesis (day 21). Predicting transcription factor motifs in regions of DMRs linked to osteogenic processes and donor breeds revealed influential motifs, including KLF1, NFATC3, ZNF148, ASCL1, FOXI1, and KLF5. These findings contribute to understanding the pattern of methylation changes promoting osteogenic differentiation, emphasizing the substantial role of donor the metabolic type and epigenetic memory of different donors on SMSC differentiation.
Collapse
Affiliation(s)
- Shuaichen Li
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Puntita Siengdee
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
- Program in Applied Biological Sciences: Environmental Health, Chulabhorn Graduate Institute, 906 Kamphaeng Phet 6 Road, Lak-Si, Bangkok, Thailand
| | - Frieder Hadlich
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Nares Trakooljul
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Michael Oster
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Henry Reyer
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Klaus Wimmers
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
- Faculty of Agricultural and Environmental Sciences, University of Rostock, Rostock, Germany
| | - Siriluck Ponsuksili
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| |
Collapse
|
14
|
Tyrina E, Yakubets D, Markina E, Buravkova L. Hippo Signaling Pathway Involvement in Osteopotential Regulation of Murine Bone Marrow Cells Under Simulated Microgravity. Cells 2024; 13:1921. [PMID: 39594669 PMCID: PMC11592674 DOI: 10.3390/cells13221921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/02/2024] [Accepted: 11/16/2024] [Indexed: 11/28/2024] Open
Abstract
The development of osteopenia is one of the most noticeable manifestations of the adverse effects of space factors on crew members. The Hippo signaling pathway has been shown to play a central role in regulating the functional activity of cells through their response to mechanical stimuli. In the present study, the components of the Hippo pathway and the protective properties of osteodifferentiation inducers were investigated under simulated microgravity (smg) using a heterotypic bone marrow cell culture model, which allows for the maintenance of the close interaction between the stromal and hematopoietic compartments, present in vivo and of great importance for both the fate of osteoprogenitors and hematopoiesis. After 14 days of smg, the osteopotential and osteodifferentiation of bone marrow stromal progenitor cells, the expression of Hippo cascade genes and the immunocytochemical status of the adherent fraction of bone marrow cells, as well as the paracrine profile in the conditioned medium and the localization of Yap1 and Runx2 in mechanosensitive cells of the bone marrow were obtained. Simulated microgravity negatively affects stromal and hematopoietic cells when interacting in a heterotypic murine bone marrow cell culture. This is evidenced by the decrease in cell proliferation and osteopotential. Changes in the production of pleiotropic cytokines IL-6, GROβ and MCP-1 were revealed. Fourteen days of simulated microgravity induced a decrease in the nuclear translocation of Yap1 and the transcription factor Runx2 in the stromal cells of the intact group. Exposure to osteogenic induction conditions partially compensated for the negative effect of simulated microgravity. The data obtained will be crucial for understanding the effects of spaceflight on osteoprogenitor cell growth and differentiation via Hippo-Yap signaling.
Collapse
Affiliation(s)
- Ekaterina Tyrina
- Cell Physiology Laboratory, Institute of Biomedical Problems, Russian Academy of Sciences, 123007 Moscow, Russia; (D.Y.); (L.B.)
| | | | - Elena Markina
- Cell Physiology Laboratory, Institute of Biomedical Problems, Russian Academy of Sciences, 123007 Moscow, Russia; (D.Y.); (L.B.)
| | | |
Collapse
|
15
|
Dong DL, Jin GZ. YAP and ECM Stiffness: Key Drivers of Adipocyte Differentiation and Lipid Accumulation. Cells 2024; 13:1905. [PMID: 39594653 PMCID: PMC11593301 DOI: 10.3390/cells13221905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/08/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
ECM stiffness significantly influences the differentiation of adipose-derived stem cells (ADSCs), with YAP-a key transcription factor in the Hippo signaling pathway-playing a pivotal role. This study investigates the effects of ECM stiffness on ADSC differentiation and its relationship with YAP signaling. Various hydrogel concentrations were employed to simulate different levels of ECM stiffness, and their impact on ADSC differentiation was assessed through material properties, adipocyte-specific gene expression, lipid droplet staining, YAP localization, and protein levels. Our results demonstrated that increasing hydrogel stiffness enhanced adipocyte differentiation in a gradient manner. Notably, inhibiting YAP signaling further increased lipid droplet accumulation, suggesting that ECM stiffness influences adipogenesis by modulating YAP signaling and its cytoplasmic phosphorylation. This study elucidates the molecular mechanisms underlying ECM stiffness-dependent lipid deposition, highlighting YAP's regulatory role in adipogenesis. These findings provide valuable insights into the regulation of cell differentiation and have important implications for tissue engineering and obesity treatment strategies.
Collapse
Affiliation(s)
- Da-Long Dong
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Republic of Korea;
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Republic of Korea
| | - Guang-Zhen Jin
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Republic of Korea;
- Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan 31116, Republic of Korea
| |
Collapse
|
16
|
Li P, Que Y, Wong C, Lin Y, Qiu J, Gao B, Zhou H, Hu W, Shi H, Peng Y, Huang D, Gao W, Qiu X, Liang A. IL-32 aggravates metabolic disturbance in human nucleus pulposus cells by activating FAT4-mediated Hippo/YAP signaling. Int Immunopharmacol 2024; 141:112966. [PMID: 39178518 DOI: 10.1016/j.intimp.2024.112966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 07/21/2024] [Accepted: 08/15/2024] [Indexed: 08/26/2024]
Abstract
Extracellular matrix (ECM) metabolism disorders in the inflammatory microenvironment play a key role in the pathogenesis of intervertebral disc degeneration (IDD). Interleukin-32 (IL-32) has been reported to be involved in the progression of various inflammatory diseases; however, it remains unclear whether it participates in the matrix metabolism of nucleus pulposus (NP) cells. Therefore, this study aimed to investigate the mechanism of IL-32 on regulating the ECM metabolism in the inflammatory microenvironment. RNA-seq was used to identify aberrantly expressed genes in NP cells in the inflammatory microenvironment. Western blotting, real-time quantitative PCR, immunohistochemistry and immunofluorescence analysis were performed to measure the expression of IL-32 and metabolic markers in human NP tissues or NP cells treated with or without tumor necrosis factor-α (TNF-α). In vivo, an adeno-associated virus overexpressing IL-32 was injected into the caudal intervertebral discs of rats to assess its effect on IDD. Proteins interacting with IL-32 were identified via immunoprecipitation and mass spectrometry. Lentivirus overexpressing IL-32 or knocking down Fat atypical cadherin 4 (FAT4), yes-associated protein (YAP) inhibitor-Verteporfin (VP) were used to treat human NP cells, to explore the pathogenesis of IL-32. Hippo/YAP signaling activity was verified in human NP tissues. IL-32 expression was significantly upregulated in degenerative NP tissues, as indicated in the clinical samples. Furthermore, IL-32 was remarkably overexpressed in TNF-α-induced degenerative NP cells. IL-32 overexpression induced IDD progression in the rat model. Mechanistically, the elevation of IL-32 in the inflammatory microenvironment enhanced its interactions with FAT4 and mammalian sterile 20-like kinase1/2 (MST1/2) proteins, prompting MST1/2 phosphorylation, and activating the Hippo/YAP signaling pathway, causing matrix metabolism disorder in NP cells. Our results suggest that IL-32 mediates matrix metabolism disorders in NP cells in the inflammatory micro-environment via the FAT4/MST/YAP axis, providing a theoretical basis for the precise treatment of IDD.
Collapse
Affiliation(s)
- Pengfei Li
- Department of Orthopedic Surgery, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China; Department of Orthopedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yichen Que
- Department of Orthopedic Surgery, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China; Department of Orthopedic Surgery, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical Universit, Qingyuan, Guangdong, China
| | - Chipiu Wong
- Department of Orthopedic Surgery, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Youxi Lin
- Department of Orthopedic Surgery, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jincheng Qiu
- Department of Minimally Invasive Spine Surgery, Panyu Hospital of Traditional Chinese Medicine, Guangzhou, Guangdong, China
| | - Bo Gao
- Department of Orthopedic Surgery, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Hang Zhou
- Department of Orthopedic Surgery, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Wenjun Hu
- Department of Orthopedic Surgery, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Huihong Shi
- Department of Orthopedic Surgery, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yan Peng
- Department of Orthopedic Surgery, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Dongsheng Huang
- Department of Orthopedic Surgery, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Wenjie Gao
- Department of Orthopedic Surgery, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Xianjian Qiu
- Department of Orthopedic Surgery, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Anjing Liang
- Department of Orthopedic Surgery, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
17
|
Lorthongpanich C, Charoenwongpaiboon T, Septham P, Laowtammathron C, Srisook P, Kheolamai P, Manochantr S, Issaragrisil S. Effect of the polyphenol flavonoids fisetin and quercetin on the adipogenic differentiation of human mesenchymal stromal cells. Biosci Rep 2024; 44:BSR20240623. [PMID: 39364538 PMCID: PMC11499385 DOI: 10.1042/bsr20240623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/18/2024] [Accepted: 10/03/2024] [Indexed: 10/05/2024] Open
Abstract
Fisetin and quercetin, polyphenol flavonoids, have been shown to have a wide range of beneficial pharmacological effects including anti-inflammatory, antioxidative, and anti-cancer. Our previous work shows that fisetin also affects the specification of the adipogenic-osteogenic lineage of human mesenchymal stem cells (hMSCs) by modulating the Hippo-YAP signaling pathway. Although quercetin has a structure similar to that of fisetin, its effects on the functional properties of hMSCs have not yet been investigated. The objective of the present study is to determine the effects of quercetin on the various properties of hMSCs, including proliferation, migration, and differentiation capacity toward adipogenic and osteogenic lineages. The results show that while fisetin increases hMSC adipogenic differentiation, quercetin inhibited adipogenic differentiation of hMSCs. The inhibition is mediated, at least in part, by the activation of hippo signaling and up-regulation of miR-27b, which inhibits the expression of genes involved in all critical steps of lipid droplet biogenesis, resulting in a decrease in the number of lipid droplets in hMSCs. It is possible that the lack of hydroxylation of the 5 position on the A ring of quercetin could be responsible for its different effect on the adipogenic-osteogenic lineage specification of hMSCs compared with fisetin. Molecular docking and molecular dynamics simulation suggested that fisetin and quercetin possibly bind to serine / threonine protein kinases 4 (STK4/MST1), which is an upstream kinase responsible for LATS phosphorylation. Taken together, our results demonstrate more insight into the mechanism underlying the role of flavonoid fisetin and quercetin in the regulation of adipogenesis.
Collapse
Affiliation(s)
- Chanchao Lorthongpanich
- Department of Medicine, Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | | | - Praphasri Septham
- Department of Medicine, Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Chuti Laowtammathron
- Department of Medicine, Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Pimonwan Srisook
- Department of Medicine, Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Pakpoom Kheolamai
- Center of Excellence in Stem Cell Research and Innovation, Faculty of Medicine, Thammasat University, Pathumthani 12120, Thailand
| | - Sirikul Manochantr
- Center of Excellence in Stem Cell Research and Innovation, Faculty of Medicine, Thammasat University, Pathumthani 12120, Thailand
| | - Surapol Issaragrisil
- Department of Medicine, Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Division of Hematology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Bangkok Hematology Center, Wattanosoth Hospital, BDMS Center of Excellence for Cancer, Bangkok, Thailand
| |
Collapse
|
18
|
Han J, Zhang J, Zhang X, Luo W, Liu L, Zhu Y, Liu Q, Zhang XA. Emerging role and function of Hippo-YAP/TAZ signaling pathway in musculoskeletal disorders. Stem Cell Res Ther 2024; 15:386. [PMID: 39468616 PMCID: PMC11520482 DOI: 10.1186/s13287-024-04011-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 10/22/2024] [Indexed: 10/30/2024] Open
Abstract
Hippo pathway is an evolutionarily conservative key pathway that regulates organ size and tissue regeneration by regulating cell proliferation, differentiation and apoptosis. Yes-associated protein 1 (YAP)/ WW domain-containing transcription regulator 1 (TAZ) serves as a pivotal transcription factor within the Hippo signaling pathway, which undergoes negative regulation by the Hippo pathway. The expression of YAP/TAZ affects various biological processes, including differentiation of osteoblasts (OB) and osteoclasts (OC), cartilage homeostasis, skeletal muscle development, regeneration and quality maintenance. At the same time, the dysregulation of the Hippo pathway can concurrently contribute to the development of various musculoskeletal disorders, including bone tumors, osteoporosis (OP), osteoarthritis (OA), intervertebral disc degeneration (IDD), muscular dystrophy, and rhabdomyosarcoma (RMS). Therefore, targeting the Hippo pathway has emerged as a promising therapeutic strategy for the treatment of musculoskeletal disorders. The focus of this review is to elucidate the mechanisms by which the Hippo pathway maintains homeostasis in bone, cartilage, and skeletal muscle, while also providing a comprehensive summary of the pivotal role played by core components of this pathway in musculoskeletal diseases. The efficacy and feasibility of Hippo pathway-related drugs for targeted therapy of musculoskeletal diseases are also discussed in our study. These endeavors offer novel insights into the application of Hippo signaling in musculoskeletal disorders, providing effective therapeutic targets and potential drug candidates for treating such conditions.
Collapse
Affiliation(s)
- Juanjuan Han
- College of Exercise and Health, Shenyang Sport University, Shenyang, 110100, China
| | - Jiale Zhang
- College of Exercise and Health, Shenyang Sport University, Shenyang, 110100, China
| | - Xiaoyi Zhang
- College of Second Clinical Medical, China Medical University, Shenyang, 110122, China
| | - Wenxin Luo
- College of Exercise and Health, Shenyang Sport University, Shenyang, 110100, China
| | - Lifei Liu
- Department of Rehabilitation, The People's Hospital of Liaoning Province, Shenyang, 110016, China
| | - Yuqing Zhu
- College of Exercise and Health, Shenyang Sport University, Shenyang, 110100, China
| | - Qingfeng Liu
- Department of General Surgery, Jinqiu Hospital of Liaoning Province, Shenyang, 110016, China
| | - Xin-An Zhang
- College of Exercise and Health, Shenyang Sport University, Shenyang, 110100, China.
| |
Collapse
|
19
|
Lu C, Zeng T, Wang M, Yoshitomi T, Kawazoe N, Yang Y, Chen G. Influence of viscosity on adipogenic and osteogenic differentiation of mesenchymal stem cells during 2D culture. Biomater Sci 2024; 12:5598-5609. [PMID: 39327896 DOI: 10.1039/d4bm00710g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Accumulatively, cellular behaviours triggered by biochemical cues have been widely explored and the focus of research is gradually shifting to biophysical cues. Compared to physical parameters such as stiffness, substrate morphology and viscoelasticity, the influence of viscosity on cellular behaviours is relatively unexplored and overlooked. Thus, in this study, the influence of viscosity on the adipogenic and osteogenic differentiation of human mesenchymal stem cells (hMSCs) was investigated by adjusting the viscosity of the culture medium. Viscosity exhibited different effects on adipogenic and osteogenic differentiation of hMSCs during two-dimensional (2D) culture. High viscosity facilitated osteogenic while inhibiting adipogenic differentiation. During adipogenic differentiation, the effect of viscosity on cell proliferation was negligible. However, during osteogenic differentiation, high viscosity decreased cell proliferation. The different influence of viscosity could be explained by the activation of mechanotransduction regulators of Yes-associated protein (YAP) and β-catenin. High viscosity could promote YAP and β-catenin nuclear translocation during osteogenic differentiation, which was responsible for the increased osteogenesis. High viscosity inhibited adipogenesis through promoting YAP nuclear translocation. This study could broaden the understanding of how viscosity can affect stem cell differentiation during 2D culture, which is valuable for tissue engineering.
Collapse
Affiliation(s)
- Chengyu Lu
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, Ibaraki 305-0044, Japan.
- Graduate School of Science and Technology, University of Tsukuba, Ibaraki 305-8577, Japan
| | - Tianjiao Zeng
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, Ibaraki 305-0044, Japan.
- Graduate School of Science and Technology, University of Tsukuba, Ibaraki 305-8577, Japan
| | - Man Wang
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, Ibaraki 305-0044, Japan.
- Graduate School of Science and Technology, University of Tsukuba, Ibaraki 305-8577, Japan
| | - Toru Yoshitomi
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, Ibaraki 305-0044, Japan.
| | - Naoki Kawazoe
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, Ibaraki 305-0044, Japan.
| | - Yingnan Yang
- Graduate School of Life and Environment Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Guoping Chen
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, Ibaraki 305-0044, Japan.
- Graduate School of Science and Technology, University of Tsukuba, Ibaraki 305-8577, Japan
| |
Collapse
|
20
|
Liu S, Chu X, Reiter JL, Yu X, Fang F, McGuire P, Gao H, Liu Y, Wan J, Wang Y. Dynamic chromatin accessibility and transcriptome changes following PDGF-BB treatment of bone-marrow derived mesenchymal stem cells. BMC Genomics 2024; 25:962. [PMID: 39407135 PMCID: PMC11476831 DOI: 10.1186/s12864-024-10861-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 10/03/2024] [Indexed: 10/20/2024] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) are multipotent stem cells that are under investigation for use in clinical trials because they are capable of self-renewal and differentiating into different cell types under defined conditions. Nonetheless, the therapeutic effects of MSCs have been constrained by low engraftment rates, cell fusion, and cell survival. Various strategies have been explored to improve the therapeutic efficacy of MSCs, with platelet-derived growth factor (PDGF)-BB emerging as a promising candidate. To enhance our comprehension of the impact of PDGF-BB on the gene expression profile and chromosomal accessibility of MSCs, RNA-sequencing and analysis of chromatin accessibility profiles were conducted on three human primary MSCs in culture, both with and without stimulation by PDGF-BB. RESULTS Integrative analysis of gene expression and chromatin accessibility demonstrated that PDGF-BB treatment modified the chromatin accessibility landscape, marking regions for activation or repression through the AP-1 family transcription factors TEAD, CEBP, and RUNX2. These changes in AP-1 transcription factor expression, in turn, led to cell proliferation and differentiation potential towards osteoblasts, adipocytes, or chondrocytes. The degree of MSC differentiation varies among cells isolated from different donors. The presence of an enrichment of exosome-related genes is also noted among all the differentially expressed genes. CONCLUSIONS In conclusion, the observed changes in AP-1 transcription factor expression not only induced cellular proliferation and differentiation, but also revealed variations in the degree of MSC differentiation based on donor-specific differences. Moreover, the enrichment of exosome-related genes among differentially expressed genes suggests a potential significant role for PDGF-BB in facilitating intercellular communication.
Collapse
Affiliation(s)
- Sheng Liu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Xiaona Chu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Jill L Reiter
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Xuhong Yu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Fang Fang
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Patrick McGuire
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Hongyu Gao
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Yunlong Liu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Jun Wan
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| | - Yue Wang
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| |
Collapse
|
21
|
Li Z, Lin J, Wu J, Suo J, Wang Z. The Hippo signalling pathway in bone homeostasis: Under the regulation of mechanics and aging. Cell Prolif 2024; 57:e13652. [PMID: 38700015 PMCID: PMC11471399 DOI: 10.1111/cpr.13652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/04/2024] [Accepted: 04/18/2024] [Indexed: 05/05/2024] Open
Abstract
The Hippo signalling pathway is a conserved kinase cascade that orchestrates diverse cellular processes, such as proliferation, apoptosis, lineage commitment and stemness. With the onset of society ages, research on skeletal aging-mechanics-bone homeostasis has exploded. In recent years, aging and mechanical force in the skeletal system have gained groundbreaking research progress. Under the regulation of mechanics and aging, the Hippo signalling pathway has a crucial role in the development and homeostasis of bone. We synthesize the current knowledge on the role of the Hippo signalling pathway, particularly its downstream effectors yes-associated protein (YAP) and transcriptional co-activator with PDZ-binding motif (TAZ), in bone homeostasis. We discuss the regulation of the lineage specification and function of different skeletal cell types by the Hippo signalling pathway. The interactions of the Hippo signalling pathway with other pathways, such as Wnt, transforming growth factor beta and nuclear factor kappa-B, are also mentioned because of their importance for modulating bone homeostasis. Furthermore, YAP/TAZ have been extensively studied as mechanotransducers. Due to space limitations, we focus on reviewing how mechanical forces and aging influence cell fate, communications and homeostasis through a dysregulated Hippo signalling pathway.
Collapse
Affiliation(s)
- Zhengda Li
- Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences and Shanghai Jing'an District Central HospitalFudan UniversityShanghaiChina
| | - Junqing Lin
- Institute of Microsurgery on Extremities, and Department of Orthopedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine ShanghaiShanghaiChina
| | - Jing Wu
- Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences and Shanghai Jing'an District Central HospitalFudan UniversityShanghaiChina
| | - Jinlong Suo
- Institute of Microsurgery on Extremities, and Department of Orthopedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine ShanghaiShanghaiChina
| | - Zuoyun Wang
- Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences and Shanghai Jing'an District Central HospitalFudan UniversityShanghaiChina
| |
Collapse
|
22
|
Fan Z, Zhao X, Ma J, Zhan H, Ma X. Suppression of YAP Ameliorates Cartilage Degeneration in Ankle Osteoarthritis via Modulation of the Wnt/β-Catenin Signaling Pathway. Calcif Tissue Int 2024; 115:283-297. [PMID: 38953964 DOI: 10.1007/s00223-024-01242-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 05/28/2024] [Indexed: 07/04/2024]
Abstract
Ankle osteoarthritis is a relatively understudied condition and the molecular mechanisms involved in its development are not well understood. This investigation aimed to explore the role and underlying molecular mechanisms of Yes-associated protein (YAP) in rat ankle osteoarthritis. The results demonstrated that YAP expression levels were abnormally increased in the ankle osteoarthritis cartilage model. In addition, knockdown of YAP expression was shown to hinder the imbalance in ECM metabolism induced by IL-1β in chondrocytes, as demonstrated by the regulation of matrix metalloproteinase (MMP)-3, MMP-9, and MMP-13, a disintegrin, metalloprotease with thrombospondin motifs, aggrecan, and collagen II expression. Additional studies revealed that downregulation of YAP expression markedly inhibited the overexpression of β-catenin stimulated by IL-1β. Furthermore, inhibition of the Wnt/β-catenin signaling pathway reversed the ECM metabolism imbalance caused by YAP overexpression in chondrocytes. It is important to note that the YAP-specific inhibitor verteporfin (VP) significantly delayed the progression of ankle osteoarthritis. In conclusion, the findings highlighted the crucial role of YAP as a regulator in modulating the progression of ankle osteoarthritis via the Wnt/β-catenin signaling pathway. These findings suggest that pharmacological inhibition of YAP can be an effective and critical therapeutic target for alleviating ankle osteoarthritis.
Collapse
Affiliation(s)
- Zhengrui Fan
- The department of Orthopedics, Tianjin Hospital, Tianjin, 300070, People's Republic of China
- Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Tianjin Hospital, Tianjin, 300050, China
| | - Xingwen Zhao
- The department of Orthopedics, Tianjin Hospital, Tianjin, 300070, People's Republic of China
- Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Tianjin Hospital, Tianjin, 300050, China
| | - Jianxiong Ma
- The department of Orthopedics, Tianjin Hospital, Tianjin, 300070, People's Republic of China.
- Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Tianjin Hospital, Tianjin, 300050, China.
| | - Hongqi Zhan
- The department of Orthopedics, Tianjin Hospital, Tianjin, 300070, People's Republic of China
- Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Tianjin Hospital, Tianjin, 300050, China
| | - Xinlong Ma
- The department of Orthopedics, Tianjin Hospital, Tianjin, 300070, People's Republic of China.
- Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Tianjin Hospital, Tianjin, 300050, China.
| |
Collapse
|
23
|
Zhao Y, Liu F, Pei Y, Lian F, Lin H. Involvement of the Wnt/β-catenin signalling pathway in heterotopic ossification and ossification-related diseases. J Cell Mol Med 2024; 28:e70113. [PMID: 39320014 PMCID: PMC11423343 DOI: 10.1111/jcmm.70113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 09/05/2024] [Accepted: 09/13/2024] [Indexed: 09/26/2024] Open
Abstract
Heterotopic ossification (HO) is a pathological condition characterized by the formation of bone within soft tissues. The development of HO is a result of abnormal activation of the bone formation programs, where multiple signalling pathways, including Wnt/β-catenin, BMP and hedgehog signalling, are involved. The Wnt/β-catenin signalling pathway, a conserved pathway essential for various fundamental activities, has been found to play a significant role in pathological bone formation processes. It regulates angiogenesis, chondrocyte hypertrophy and osteoblast differentiation during the development of HO. More importantly, the crosstalk between Wnt signalling and other factors including BMP, Hedgehog signalling, YAP may contribute in a HO-favourable manner. Moreover, several miRNAs may also be involved in HO formation via the regulation of Wnt signalling. This review aims to summarize the role of Wnt/β-catenin signalling in the pathogenesis of HO, its interactions with related molecules, and potential preventive and therapeutic measures targeting Wnt/β-catenin signalling.
Collapse
Affiliation(s)
- Yike Zhao
- Department of Pathophysiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Queen Mary school, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Fangzhou Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Queen Mary school, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Yiran Pei
- Department of Pathophysiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Queen Mary school, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Fengyu Lian
- Department of Pathophysiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Queen Mary school, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Hui Lin
- Department of Pathophysiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
24
|
Chen Y, Zhang Q, Yang S, Li G, Shi C, Hu X, Asahina S, Asano N, Zhang Y. Formulate Adaptive Biphasic Scaffold via Sequential Protein-Instructed Peptide Co-Assembly. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401478. [PMID: 38785178 PMCID: PMC11304238 DOI: 10.1002/advs.202401478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 05/11/2024] [Indexed: 05/25/2024]
Abstract
To ensure compositional consistency while mitigating potential immunogenicity for stem cell therapy, synthetic scaffolds have emerged as compelling alternatives to native extracellular matrix (ECM). Substantial progress has been made in emulating specific natural traits featuring consistent chemical compositions and physical structures. However, recapitulating the dynamic responsiveness of the native ECM involving chemical transitions and physical remodeling during differentiation, remains a challenging endeavor. Here, the creation of adaptive scaffolds is demonstrated through sequential protein-instructed molecular assembly, utilizing stage-specific proteins, and incorporating in situ assembly technique. The procedure is commenced by introducing a dual-targeting peptide at the onset of stem cell differentiation. In response to highly expressed integrins and heparan sulfate proteoglycans (HSPGs) on human mesenchymal stem cell (hMSC), the peptides assembled in situ, creating customized extracellular scaffolds that adhered to hMSCs promoting osteoblast differentiation. As the expression of alkaline phosphatase (ALP) and collagen (COL-1) increased in osteoblasts, an additional peptide is introduced that interacts with ALP, initiating peptide assembly and facilitating calcium phosphate (CaP) deposition. The growth and entanglement of peptide assemblies with collagen fibers efficiently incorporated CaP into the network resulting in an adaptive biphasic scaffold that enhanced healing of bone injuries.
Collapse
Affiliation(s)
- Yazhou Chen
- Henan Institute of Advanced TechnologyZhengzhou UniversityZhengzhouHenan450003China
| | - Qizheng Zhang
- Active Soft Matter GroupSongshan Lake Materials LaboratoryDongguanGuangdong523808China
| | - Shenyu Yang
- Medical 3D Printing CenterThe First Affiliated Hospital of Zhengzhou UniversityZhengzhou UniversityZhengzhouHenan450052China
| | - Guanying Li
- Department of BiophysicsSchool of Basic Medical SciencesHealth Science CenterXi'an Jiaotong UniversityXi'anShaanxi71006China
| | - Chaochen Shi
- Henan Institute of Advanced TechnologyZhengzhou UniversityZhengzhouHenan450003China
| | - Xunwu Hu
- Active Soft Matter GroupSongshan Lake Materials LaboratoryDongguanGuangdong523808China
| | - Shunsuke Asahina
- SM Application Planning GroupJEOL Ltd.AkishimaTokyo196‐8588Japan
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM)Tohoku UniversitySendai980‐8572Japan
| | - Natsuko Asano
- SM Application Planning GroupJEOL Ltd.AkishimaTokyo196‐8588Japan
| | - Ye Zhang
- Active Soft Matter GroupSongshan Lake Materials LaboratoryDongguanGuangdong523808China
| |
Collapse
|
25
|
Choi S, Kim JH, Kang TH, An YH, Lee SJ, Hwang NS, Kim SH. Biomimetic Marine-Sponge-Derived Spicule-Microparticle-Mediated Biomineralization and YAP/TAZ Pathway for Bone Regeneration In Vivo. Biomater Res 2024; 28:0056. [PMID: 39055902 PMCID: PMC11268990 DOI: 10.34133/bmr.0056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 06/20/2024] [Indexed: 07/28/2024] Open
Abstract
Marine-sponge-derived spicule microparticles (SPMs) possess unique structural and compositional features suitable for bone tissue engineering. However, significant challenges remain in establishing their osteogenic mechanism and practical application in animal models. This study explores the biomimetic potential of SPM in orchestrating biomineralization behavior and modulating the Yes-associated protein 1/transcriptional coactivator with PDZ-binding motif (YAP/TAZ) pathway both in vitro and in vivo. Characterization of SPM revealed a structure comprising amorphous silica oxide mixed with collagen and trace amounts of calcium and phosphate ions, which have the potential to facilitate biomineralization. Structural analysis indicated dynamic biomineralization from SPM to hydroxyapatite, contributing to both in vitro and in vivo osteoconductions. In vitro assessment demonstrated dose-dependent increases in osteogenic gene expression and bone morphogenetic protein-2 protein in response to SPM. In addition, focal adhesion mediated by silica diatoms induced cell spreading on the surface of SPM, leading to cell alignment in the direction of SPM. Mechanical signals from SPM subsequently increased the expression of YAP/TAZ, thereby inducing osteogenic mechanotransduction. The osteogenic activity of SPM-reinforced injectable hydrogel was evaluated in a mouse calvaria defect model, demonstrating rapid vascularized bone regeneration. These findings suggest that biomimetic SPM holds significant promise for regenerating bone tissue.
Collapse
Affiliation(s)
- Sumi Choi
- Department of Chemical Engineering (BK21 FOUR),
Dong-A University, Busan 49315, Republic of Korea
| | - Jung Hun Kim
- School of Chemical and Biological Engineering,
Seoul National University, Seoul 08826, Republic of Korea
| | - Tae Hoon Kang
- Interdisciplinary Program in Bioengineering,
Seoul National University, Seoul 08826, Republic of Korea
| | - Young-Hyeon An
- School of Chemical and Biological Engineering,
Seoul National University, Seoul 08826, Republic of Korea
- Bio-MAX/N-Bio,
Seoul National University, Seoul 08826, Republic of Korea
| | - Sang Jin Lee
- Biofunctional Materials, Division of Applied Oral Sciences and Community Dental Care, Faculty of Dentistry,
The University of Hong Kong, Sai Ying Pun, Hong Kong Special Administrative Region
| | - Nathaniel S. Hwang
- School of Chemical and Biological Engineering,
Seoul National University, Seoul 08826, Republic of Korea
- Interdisciplinary Program in Bioengineering,
Seoul National University, Seoul 08826, Republic of Korea
- Bio-MAX/N-Bio,
Seoul National University, Seoul 08826, Republic of Korea
| | - Su-Hwan Kim
- Department of Chemical Engineering (BK21 FOUR),
Dong-A University, Busan 49315, Republic of Korea
| |
Collapse
|
26
|
Wang X, Yang Y, Wang Y, Lu C, Hu X, Kawazoe N, Yang Y, Chen G. Focal adhesion and actin orientation regulated by cellular geometry determine stem cell differentiation via mechanotransduction. Acta Biomater 2024; 182:81-92. [PMID: 38734287 DOI: 10.1016/j.actbio.2024.05.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 04/23/2024] [Accepted: 05/06/2024] [Indexed: 05/13/2024]
Abstract
Tuning cell adhesion geometry can affect cytoskeleton organization and the distribution of cytoskeleton forces, which play critical roles in controlling cell functions. To elucidate the geometrical relationship with cytoskeleton force distribution, it is necessary to control cell morphology. In this study, a series of dextral vortex micropatterns were prepared to precisely control cell morphology for investigating the influence of the curvature degree of adhesion curves on intracellular force distribution and stem cell differentiation at a sub-cellular level. Peripherial actin filaments of micropatterned cells were assembled along the adhesion curves and showed different orientations, filament thicknesses and densities. Focal adhesion and cytoskeleton force distribution were dependent on the curvature degree. Intracellular force distribution was also regulated by adhesion curves. The cytoskeleton and force distribution affected the osteogenic differentiation of mesenchymal stem cells through a YAP/TAZ-mediated mechanotransduction process. Thus, regulation of cell adhesion curvature, especially at cytoskeletal filament level, is critical for cell function manipulation. STATEMENT OF SIGNIFICANCE: In this study, a series of dextral micro-vortexes were prepared and used for the culture of human mesenchymal stem cells (hMSCs) to precisely control adhesive curvatures (0°, 30°, 60°, and 90°). The single MSCs on the micropatterns had the same size and shape but showed distinct focal adhesion (FA) and cytoskeleton orientations. Cellular nanomechanics were observed to be correlated with the curvature degrees, subsequently influencing nuclear morphological features. As a consequence, the localization of the mechanotransduction sensor and activator-YAP/TAZ was affected, influencing osteogenic differentiation. The results revealed the pivotal role of adhesive curvatures in the manipulation of stem cell differentiation via the machanotransduction process, which has rarely been investigated.
Collapse
Affiliation(s)
- Xinlong Wang
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan; Graduate School of Science and Technology, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan
| | - Yingjun Yang
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan; Graduate School of Science and Technology, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan
| | - Yongtao Wang
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan; Graduate School of Science and Technology, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan
| | - Chengyu Lu
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan; Graduate School of Science and Technology, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan
| | - Xiaohong Hu
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan; Graduate School of Life and Environmental Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan
| | - Naoki Kawazoe
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Yingnan Yang
- Graduate School of Life and Environmental Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan
| | - Guoping Chen
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan; Graduate School of Science and Technology, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan.
| |
Collapse
|
27
|
Deng F, Han X, Ji Y, Jin Y, Shao Y, Zhang J, Ning C. Distinct mechanisms of iron and zinc metal ions on osteo-immunomodulation of silicocarnotite bioceramics. Mater Today Bio 2024; 26:101086. [PMID: 38765245 PMCID: PMC11098954 DOI: 10.1016/j.mtbio.2024.101086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/14/2024] [Accepted: 05/04/2024] [Indexed: 05/21/2024] Open
Abstract
The immunomodulatory of implants have drawn more and more attention these years. However, the immunomodulatory of different elements on the same biomaterials have been rarely investigated. In this work, two widely used biosafety elements, iron and zinc added silicocarnotite (Ca5(PO4)2SiO4, CPS) were applied to explore the routine of elements on immune response. The immune reactions over time of Fe-CPS and Zn-CPS were explored at genetic level and protein level, and the effects of their immune microenvironment with different time points on osteogenesis were also investigated in depth. The results confirmed that both Fe-CPS and Zn-CPS had favorable ability to secret anti-inflammatory cytokines. The immune microenvironment of Fe-CPS and Zn-CPS also could accelerate osteogenesis and osteogenic differentiation in vitro and in vivo. In terms of mechanism, RNA-seq analysis and Western-blot experiment revealed that PI3K-Akt signaling pathway and JAK-STAT signaling pathways were activated of Fe-CPS to promote macrophage polarization from M1 to M2, and its immune microenvironment induced osteogenic differentiation through the activation of Hippo signaling pathway. In comparison, Zn-CPS inhibited polarization of M1 macrophage via the up-regulation of Rap1 signaling pathway and complement and coagulation cascade pathway, while its osteogenic differentiation related pathway of immune environment was NF-κB signaling pathway.
Collapse
Affiliation(s)
- Fanyan Deng
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Frontiers Science Center of Biomimetic Catalysis and Shanghai Engineering Research Center of Green Energy Chemical Engineering, Shanghai Normal University, Shanghai, China
| | - Xianzhuo Han
- Department of Stomatology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No.100 Haining Road, Shanghai 200080, PR China
| | - Yingqi Ji
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Ying Jin
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Frontiers Science Center of Biomimetic Catalysis and Shanghai Engineering Research Center of Green Energy Chemical Engineering, Shanghai Normal University, Shanghai, China
| | - Yiran Shao
- SHNU-YAPENG Joint Lab of Tissue Repair Materials, Shanghai Yapeng Biological Technology Co., Ltd, Shanghai, China
| | - Jingju Zhang
- Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Department of Orthodontics, School & Hospital of Stomatology, Shanghai, China
| | - Congqin Ning
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Frontiers Science Center of Biomimetic Catalysis and Shanghai Engineering Research Center of Green Energy Chemical Engineering, Shanghai Normal University, Shanghai, China
| |
Collapse
|
28
|
Su D, Swearson S, Eliason S, Rice K, Amendt B. RNA Technology to Regenerate and Repair Alveolar Bone Defects. J Dent Res 2024; 103:622-630. [PMID: 38715225 PMCID: PMC11122091 DOI: 10.1177/00220345241242047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2024] Open
Abstract
microRNA-200a (miR-200a) targets multiple signaling pathways that are involved in osteogenic differentiation and bone development. However, its therapeutic function in osteogenesis and bone regeneration remains unknown. In this study, we use in vitro and in vivo models to investigate the molecular function of miR-200a overexpression and miR-200a inhibition using a plasmid-based miR inhibitor system (PMIS) on osteogenic differentiation and bone regeneration. Inhibition of miR-200a using PMIS-miR-200a significantly increased osteogenic biomarkers of human embryonic palatal mesenchyme cells and promoted bone regeneration in rat tooth socket defects. In rat maxillary M1 molar extractions, the supporting tooth structures were removed with an implant drill to yield a 3-mm defect in the alveolar bone. A collagen sponge was inserted into the open alveolar defect and PMIS-miR-200a plasmid DNA was added to the sponge and the wound sutured to protect the sponge and close the defect. It was important to remove the existing tooth supporting structure, which can influence alveolar bone regeneration. The alveolar bone was regenerated in 4 wk. The collagen sponge acts to stabilize and deliver the PMIS-miR-200a DNA to cells entering the sponge in the bone defect. We show that mesenchymal stem cells expressing CD90 and Stro-1 enter the sponges, take up the DNA, and express PMIS-miR-200a. PMIS-miR-200a initiates a bone regeneration program in transformed cells in vivo. In vitro inhibition of miR-200a was found to upregulate Wnt and BMP signaling activity as well as Runx2, OCN, Lef-1, Msx2, and Dlx5 associated with osteogenesis. Liver and blood toxicity testing of PMIS-miR-200a-treated rats showed no increase in several biomarkers of liver disease. These results demonstrate the therapeutic function of PMIS-miR-200a for rapid bone regeneration. Furthermore, the studies were designed to demonstrate the ease of use of PMIS-miR-200a in solution and applied using a syringe in the clinic through a simple one-time application.
Collapse
Affiliation(s)
- D. Su
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Center for Craniofacial Anomalies Research, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - S. Swearson
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Center for Craniofacial Anomalies Research, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - S. Eliason
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Center for Craniofacial Anomalies Research, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - K.G. Rice
- Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, USA
| | - B.A. Amendt
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Center for Craniofacial Anomalies Research, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Iowa Institute for Oral Health Research, College of Dentistry, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
29
|
Chen YQ, Wu MC, Wei MT, Kuo JC, Yu HW, Chiou A. High-viscosity driven modulation of biomechanical properties of human mesenchymal stem cells promotes osteogenic lineage. Mater Today Bio 2024; 26:101058. [PMID: 38681057 PMCID: PMC11046220 DOI: 10.1016/j.mtbio.2024.101058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/10/2024] [Accepted: 04/13/2024] [Indexed: 05/01/2024] Open
Abstract
Biomechanical cues could effectively govern cell gene expression to direct the differentiation of specific stem cell lineage. Recently, the medium viscosity has emerged as a significant mechanical stimulator that regulates the cellular mechanical properties and various physiological functions. However, whether the medium viscosity can regulate the mechanical properties of human mesenchymal stem cells (hMSCs) to effectively trigger osteogenic differentiation remains uncertain. The mechanism by which cells sense and respond to changes in medium viscosity, and regulate cell mechanical properties to promote osteogenic lineage, remains elusive. In this study, we demonstrated that hMSCs, cultured in a high-viscosity medium, exhibited larger cell spreading area and higher intracellular tension, correlated with elevated formation of actin stress fibers and focal adhesion maturation. Furthermore, these changes observed in hMSCs were associated with activation of TRPV4 (transient receptor potential vanilloid sub-type 4) channels on the cell membrane. This feedback loop among TRPV4 activation, cell spreading and intracellular tension results in calcium influx, which subsequently promotes the nuclear localization of NFATc1 (nuclear factor of activated T cells 1). Concomitantly, the elevated intracellular tension induced nuclear deformation and promoted the nuclear localization of YAP (YES-associated protein). The concurrent activation of NFATc1 and YAP significantly enhanced alkaline phosphatase (ALP) for pre-osteogenic activity. Taken together, these findings provide a more comprehensive view of how viscosity-induced alterations in biomechanical properties of MSCs impact the expression of osteogenesis-related genes, and ultimately promote osteogenic lineage.
Collapse
Affiliation(s)
- Yin-Quan Chen
- Cancer Progression Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ming-Chung Wu
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ming-Tzo Wei
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
| | - Jean-Cheng Kuo
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Helen Wenshin Yu
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Arthur Chiou
- Institute of Biophotonics, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
30
|
Lu M, Zhu M, Wu Z, Liu W, Cao C, Shi J. The role of YAP/TAZ on joint and arthritis. FASEB J 2024; 38:e23636. [PMID: 38752683 DOI: 10.1096/fj.202302273rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 04/05/2024] [Accepted: 04/16/2024] [Indexed: 05/21/2024]
Abstract
Osteoarthritis (OA) and rheumatoid arthritis (RA) are two common forms of arthritis with undefined etiology and pathogenesis. Yes-associated protein (YAP) and its homolog transcriptional coactivator with PDZ-binding motif (TAZ), which act as sensors for cellular mechanical and inflammatory cues, have been identified as crucial players in the regulation of joint homeostasis. Current studies also reveal a significant association between YAP/TAZ and the pathogenesis of OA and RA. The objective of this review is to elucidate the impact of YAP/TAZ on different joint tissues and to provide inspiration for further studying the potential therapeutic implications of YAP/TAZ on arthritis. Databases, such as PubMed, Cochran Library, and Embase, were searched for all available studies during the past two decades, with keywords "YAP," "TAZ," "OA," and "RA."
Collapse
Affiliation(s)
- Mingcheng Lu
- Zhejiang University School of Medicine, Zhejiang, Hangzhou, China
| | - Mengqi Zhu
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China
| | - Zuping Wu
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China
| | - Wei Liu
- Zhejiang University School of Medicine, Zhejiang, Hangzhou, China
| | - Chuwen Cao
- Zhejiang University School of Medicine, Zhejiang, Hangzhou, China
| | - Jiejun Shi
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine and Key Laboratory of Oral Biomedical Research of Zhejiang Province, Zhejiang, Hangzhou, China
| |
Collapse
|
31
|
Xiong L, Guo HH, Pan JX, Ren X, Lee D, Chen L, Mei L, Xiong WC. ATP6AP2, a regulator of LRP6/β-catenin protein trafficking, promotes Wnt/β-catenin signaling and bone formation in a cell type dependent manner. Bone Res 2024; 12:33. [PMID: 38811544 PMCID: PMC11137048 DOI: 10.1038/s41413-024-00335-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 03/06/2024] [Accepted: 04/08/2024] [Indexed: 05/31/2024] Open
Abstract
Wnt/β-catenin signaling is critical for various cellular processes in multiple cell types, including osteoblast (OB) differentiation and function. Exactly how Wnt/β-catenin signaling is regulated in OBs remain elusive. ATP6AP2, an accessory subunit of V-ATPase, plays important roles in multiple cell types/organs and multiple signaling pathways. However, little is known whether and how ATP6AP2 in OBs regulates Wnt/β-catenin signaling and bone formation. Here we provide evidence for ATP6AP2 in the OB-lineage cells to promote OB-mediated bone formation and bone homeostasis selectively in the trabecular bone regions. Conditionally knocking out (CKO) ATP6AP2 in the OB-lineage cells (Atp6ap2Ocn-Cre) reduced trabecular, but not cortical, bone formation and bone mass. Proteomic and cellular biochemical studies revealed that LRP6 and N-cadherin were reduced in ATP6AP2-KO BMSCs and OBs, but not osteocytes. Additional in vitro and in vivo studies revealed impaired β-catenin signaling in ATP6AP2-KO BMSCs and OBs, but not osteocytes, under both basal and Wnt stimulated conditions, although LRP5 was decreased in ATP6AP2-KO osteocytes, but not BMSCs. Further cell biological studies uncovered that osteoblastic ATP6AP2 is not required for Wnt3a suppression of β-catenin phosphorylation, but necessary for LRP6/β-catenin and N-cadherin/β-catenin protein complex distribution at the cell membrane, thus preventing their degradation. Expression of active β-catenin diminished the OB differentiation deficit in ATP6AP2-KO BMSCs. Taken together, these results support the view for ATP6AP2 as a critical regulator of both LRP6 and N-cadherin protein trafficking and stability, and thus regulating β-catenin levels, demonstrating an un-recognized function of osteoblastic ATP6AP2 in promoting Wnt/LRP6/β-catenin signaling and trabecular bone formation.
Collapse
Affiliation(s)
- Lei Xiong
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
- Louis Stoke VA Medical Center, Cleveland, OH, 44106, USA
| | - Hao-Han Guo
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
- Louis Stoke VA Medical Center, Cleveland, OH, 44106, USA
| | - Jin-Xiu Pan
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
- Louis Stoke VA Medical Center, Cleveland, OH, 44106, USA
| | - Xiao Ren
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Daehoon Lee
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
- Louis Stoke VA Medical Center, Cleveland, OH, 44106, USA
| | - Li Chen
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Lin Mei
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Wen-Cheng Xiong
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA.
- Louis Stoke VA Medical Center, Cleveland, OH, 44106, USA.
| |
Collapse
|
32
|
Cai H, Meng Z, Yu F. The involvement of ROS-regulated programmed cell death in hepatocellular carcinoma. Crit Rev Oncol Hematol 2024; 197:104361. [PMID: 38626849 DOI: 10.1016/j.critrevonc.2024.104361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 03/11/2024] [Accepted: 04/10/2024] [Indexed: 04/21/2024] Open
Abstract
Reactive oxidative species (ROS) is a crucial factor in the regulation of cellular biological activity and function, and aberrant levels of ROS can contribute to the development of a variety of diseases, particularly cancer. Numerous discoveries have affirmed that this process is strongly associated with "programmed cell death (PCD)," which refers to the suicide protection mechanism initiated by cells in response to external stimuli, such as apoptosis, autophagy, ferroptosis, etc. Research has demonstrated that ROS-induced PCD is crucial for the development of hepatocellular carcinoma (HCC). These activities serve a dual function in both facilitating and inhibiting cancer, suggesting the existence of a delicate balance within healthy cells that can be disrupted by the abnormal generation of reactive oxygen species (ROS), thereby influencing the eventual advancement or regression of a tumor. In this review, we summarize how ROS regulates PCD to influence the tumorigenesis and progression of HCC. Studying how ROS-induced PCD affects the progression of HCC at a molecular level can help develop better prevention and treatment methods and facilitate the design of more effective preventative and therapeutic strategies.
Collapse
Affiliation(s)
- Hanchen Cai
- The First Afliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
| | - Ziqi Meng
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China; The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
| | - Fujun Yu
- Department of Gastroenterology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China.
| |
Collapse
|
33
|
Li K, Liu L, Liu H, Liu Y, Xing J, Song J, Luo E. Hippo/YAP1 promotes osteoporotic mice bone defect repair via the activating of Wnt signaling pathway. Cell Signal 2024; 116:111037. [PMID: 38184268 DOI: 10.1016/j.cellsig.2024.111037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 01/08/2024]
Abstract
BACKGROUND This study is to investigate the role and mechanism of Hippo/YAP1 in the repair of osteoporotic bone defects in aged mice, both in vivo and in vitro. METHODS We investigated the expression differences of the Hippo signaling in young and aged individuals both in vivo and in vitro. By manipulating the expression of Lats1/2 and Yap1, we investigated the role of Hippo/YAP1 in regulating osteogenic differentiation in aged BMSCs. In vivo, by intervening in the local and systemic expression of Lats1/2 and Yap1 respectively, we sought to demonstrate whether Hippo/YAP1 promotes the repair of bone defects in aged osteoporotic conditions. Finally, we delved into the underlying mechanisms of Hippo/YAP1 in regulating osteogenic differentiation. RESULTS We observed differences in the expression of the Hippo signaling between young and aged individuals. After knocking out Lats1/2 in aged BMSCs, we observed that the upregulation of endogenous YAP1 promotes cellular osteogenic differentiation and proliferation capacity. Through interference with Yap1 expression, we provided strong evidence for the role of Hippo/YAP1 in promoting osteogenic differentiation in aged BMSCs. In vivo, we confirmed that Hippo/YAP1 promotes the repair of bone defects in aging osteoporosis. Moreover, we discovered an interaction relationship among YAP1, β-catenin, and TEAD1. CONCLUSION This study elucidates the role of Hippo/YAP1 in promoting the repair of osteoporotic bone defects in aged mice. Mechanistically, YAP1 functions by activating the Wnt/β-catenin pathway, and this process is not independent of TEAD1.
Collapse
Affiliation(s)
- Kehan Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China; Center of Craniofacial Orthodontics, Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Disease; Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai 200011, China
| | - Linan Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Hanghang Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yao Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Jiawei Xing
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Jian Song
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| | - En Luo
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| |
Collapse
|
34
|
Alasaadi DN, Alvizi L, Hartmann J, Stillman N, Moghe P, Hiiragi T, Mayor R. Competence for neural crest induction is controlled by hydrostatic pressure through Yap. Nat Cell Biol 2024; 26:530-541. [PMID: 38499770 PMCID: PMC11021196 DOI: 10.1038/s41556-024-01378-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 02/15/2024] [Indexed: 03/20/2024]
Abstract
Embryonic induction is a key mechanism in development that corresponds to an interaction between a signalling and a responding tissue, causing a change in the direction of differentiation by the responding tissue. Considerable progress has been achieved in identifying inductive signals, yet how tissues control their responsiveness to these signals, known as competence, remains poorly understood. While the role of molecular signals in competence has been studied, how tissue mechanics influence competence remains unexplored. Here we investigate the role of hydrostatic pressure in controlling competence in neural crest cells, an embryonic cell population. We show that neural crest competence decreases concomitantly with an increase in the hydrostatic pressure of the blastocoel, an embryonic cavity in contact with the prospective neural crest. By manipulating hydrostatic pressure in vivo, we show that this increase leads to the inhibition of Yap signalling and impairs Wnt activation in the responding tissue, which would be required for neural crest induction. We further show that hydrostatic pressure controls neural crest induction in amphibian and mouse embryos and in human cells, suggesting a conserved mechanism across vertebrates. Our work sets out how tissue mechanics can interplay with signalling pathways to regulate embryonic competence.
Collapse
Affiliation(s)
- Delan N Alasaadi
- Department of Cell and Developmental Biology, University College London, London, UK
| | - Lucas Alvizi
- Department of Cell and Developmental Biology, University College London, London, UK
| | - Jonas Hartmann
- Department of Cell and Developmental Biology, University College London, London, UK
| | - Namid Stillman
- Department of Cell and Developmental Biology, University College London, London, UK
| | - Prachiti Moghe
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, Utrecht, The Netherlands
- Collaboration for joint PhD degree between the European Molecular Biology Laboratory (EMBL) and Heidelberg University, Faculty of Biosciences, Heidelberg, Germany
| | - Takashi Hiiragi
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, Utrecht, The Netherlands
- Institute for the Advanced Study of Human Biology, Kyoto University, Kyoto, Japan
| | - Roberto Mayor
- Department of Cell and Developmental Biology, University College London, London, UK.
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile.
| |
Collapse
|
35
|
Qi L, Pan C, Yan J, Ge W, Wang J, Liu L, Zhang L, Lin D, Shen SGF. Mesoporous bioactive glass scaffolds for the delivery of bone marrow stem cell-derived osteoinductive extracellular vesicles lncRNA promote senescent bone defect repair by targeting the miR-1843a-5p/Mob3a/YAP axis. Acta Biomater 2024; 177:486-505. [PMID: 38311197 DOI: 10.1016/j.actbio.2024.01.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/24/2024] [Accepted: 01/29/2024] [Indexed: 02/10/2024]
Abstract
Bone repair in elderly patients poses a huge challenge due to the age-related progressive decline in regenerative abilities attributed to the senescence of bone marrow stem cells (BMSCs). Bioactive scaffolds have been applied in bone regeneration due to their various biological functions. In this study, we aimed to fabricate functionalized bioactive scaffolds through loading osteoinductive extracellular vesicles (OI-EVs) based on mesoporous bioactive glass (MBG) scaffolds (1010 particles/scaffold) and to investigate its effects on osteogenesis and senescence of BMSCs. The results suggested that OI-EVs upregulate the proliferative and osteogenic capacities of senescent BMSCs. More importantly, The results showed that loading OI-EVs into MBG scaffolds achieved better bone regeneration. Furthermore, OI-EVs and BMSCs RNAs bioinformatics analysis indicated that OI-EVs play roles through transporting pivotal lncRNA acting as a "sponge" to compete with Mob3a for miR-1843a-5p to promote YAP dephosphorylation and nuclear translocation, ultimately resulting in elevated proliferation and osteogenic differentiation and reduced senescence-related phenotypes. Collectively, these results suggested that the OI-EVs lncRNA ceRNA regulatory networks might be the key point for senescent osteogenesis. More importantly, the study indicated the feasibility of loading OI-EVs into scaffolds and provided novel insights into biomaterial design for facilitating bone regeneration in the treatment of senescent bone defects. STATEMENT OF SIGNIFICANCE: Constructing OI-EVs/MBG delivering system and verification of its bone regeneration enhancement in senescent defect repair. Aging bone repair poses a huge challenge due to the age-related progressive degenerative decline in regenerative abilities attributed to the senescence of BMSCs. OI-EVs/MBG delivering system were expected as promising treatment for senescent bone repair, which could provide an effective strategy for bone regeneration in elderly patients. Clarification of potential OI-EVs lncRNA ceRNA regulatory mechanism in senescent bone regeneration OI-EVs play important roles through transferring lncRNA-ENSRNOG00000056625 sponging miR-1843a-5p that targeted Mob3a to activate YAP translocation into nucleus, ultimately alleviate senescence, promote proliferation and osteogenic differentiation in O-BMSCs, which provides theoretical basis for EVs-mediated therapy in future clinical works.
Collapse
Affiliation(s)
- Lei Qi
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai 200011, PR China
| | - Cancan Pan
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai 200011, PR China
| | - Jinge Yan
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai 200011, PR China
| | - Weiwen Ge
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai 200011, PR China
| | - Jing Wang
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai 200011, PR China
| | - Lu Liu
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai 200011, PR China
| | - Lei Zhang
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai 200011, PR China.
| | - Dan Lin
- Shanghai University of Medicine and Health Sciences, Shanghai 201318, PR China.
| | - Steve G F Shen
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai 200011, PR China.
| |
Collapse
|
36
|
Kwon Y. YAP/TAZ as Molecular Targets in Skeletal Muscle Atrophy and Osteoporosis. Aging Dis 2024; 16:AD.2024.0306. [PMID: 38502585 PMCID: PMC11745433 DOI: 10.14336/ad.2024.0306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/06/2024] [Indexed: 03/21/2024] Open
Abstract
Skeletal muscles and bones are closely connected anatomically and functionally. Age-related degeneration in these tissues is associated with physical disability in the elderly and significantly impacts their quality of life. Understanding the mechanisms of age-related musculoskeletal tissue degeneration is crucial for identifying molecular targets for therapeutic interventions for skeletal muscle atrophy and osteoporosis. The Hippo pathway is a recently identified signaling pathway that plays critical roles in development, tissue homeostasis, and regeneration. The Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) are key downstream effectors of the mammalian Hippo signaling pathway. This review highlights the fundamental roles of YAP and TAZ in the homeostatic maintenance and regeneration of skeletal muscles and bones. YAP/TAZ play a significant role in stem cell function by relaying various environmental signals to stem cells. Skeletal muscle atrophy and osteoporosis are related to stem cell dysfunction or senescence triggered by YAP/TAZ dysregulation resulting from reduced mechanosensing and mitochondrial function in stem cells. In contrast, the maintenance of YAP/TAZ activation can suppress stem cell senescence and tissue dysfunction and may be used as a basis for the development of potential therapeutic strategies. Thus, targeting YAP/TAZ holds significant therapeutic potential for alleviating age-related muscle and bone dysfunction and improving the quality of life in the elderly.
Collapse
Affiliation(s)
- Youngjoo Kwon
- Department of Food Science and Biotechnology, Ewha Womans University, Seoul, Republic of Korea
| |
Collapse
|
37
|
Wang F, Li S, Kong L, Feng K, Zuo R, Zhang H, Yu Y, Zhang K, Cao Y, Chai Y, Kang Q, Xu J. Tensile Stress-Activated and Exosome-Transferred YAP/TAZ-Notch Circuit Specifies Type H Endothelial Cell for Segmental Bone Regeneration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309133. [PMID: 38225729 PMCID: PMC10966515 DOI: 10.1002/advs.202309133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/03/2024] [Indexed: 01/17/2024]
Abstract
The Ilizarov technique has been continuously innovated to utilize tensile stress (TS) for inducing a bone development-like regenerative process, aiming to achieve skeletal elongation and reconstruction. However, it remains uncertain whether this distraction osteogenesis (DO) process induced by TS involves the pivotal coupling of angiogenesis and osteogenesis mediated by type H endothelial cells (THECs). In this study, it is demonstrated that the Ilizarov technique induces the formation of a metaphysis-like architecture composed of THECs, leading to segmental bone regeneration during the DO process. Mechanistically, cell-matrix interactions-mediated activation of yes-associated protein (YAP)/transcriptional co-activator with PDZ-binding motif (TAZ) transcriptionally upregulates the expression of Notch1 and Delta-like ligand 4, which act as direct positive regulators of THECs phenotype, in bone marrow endothelial cells (BMECs) upon TS stimulation. Simultaneously, the Notch intracellular domain enhances YAP/TAZ activity by transcriptionally upregulating YAP expression and stabilizing TAZ protein, thus establishing the YAP/TAZ-Notch circuit. Additionally, TS-stimulated BMECs secrete exosomes enriched with vital molecules in this positive feedback pathway, which can be utilized to promote segmental bone defect healing, mimicking the therapeutic effects of Ilizarov technique. The findings advance the understanding of TS-induced segmental bone regeneration and establish the foundation for innovative biological therapeutic strategies aimed at activating THECs.
Collapse
Affiliation(s)
- Feng Wang
- Department of OrthopedicsShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200233China
| | - Shanyu Li
- Department of OrthopedicsShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200233China
| | - Lingchi Kong
- Department of OrthopedicsShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200233China
| | - Kai Feng
- Department of OrthopedicsShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200233China
| | - Rongtai Zuo
- Department of OrthopedicsShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200233China
| | - Hanzhe Zhang
- Department of OrthopedicsShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200233China
| | - Yifan Yu
- Department of OrthopedicsShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200233China
| | - Kunqi Zhang
- Department of OrthopedicsShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200233China
| | - Yuting Cao
- Department of OrthopedicsShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200233China
| | - Yimin Chai
- Department of OrthopedicsShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200233China
| | - Qinglin Kang
- Department of OrthopedicsShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200233China
| | - Jia Xu
- Department of OrthopedicsShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200233China
| |
Collapse
|
38
|
Cheng X, Xu B, Lei B, Wang S. Opposite Mechanical Preference of Bone/Nerve Regeneration in 3D-Printed Bioelastomeric Scaffolds/Conduits Consistently Correlated with YAP-Mediated Stem Cell Osteo/Neuro-Genesis. Adv Healthc Mater 2024; 13:e2301158. [PMID: 38211963 DOI: 10.1002/adhm.202301158] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 12/31/2023] [Indexed: 01/13/2024]
Abstract
To systematically unveil how substrate stiffness, a critical factor in directing cell fate through mechanotransduction, correlates with tissue regeneration, novel biodegradable and photo-curable poly(trimethylene carbonate) fumarates (PTMCFs) for fabricating elastomeric 2D substrates and 3D bone scaffolds/nerve conduits, are presented. These substrates and structures with adjustable stiffness serve as a unique platform to evaluate how this mechanical cue affects the fate of human umbilical cord mesenchymal stem cells (hMSCs) and hard/soft tissue regeneration in rat femur bone defect and sciatic nerve transection models; whilst, decoupling from topographical and chemical cues. In addition to a positive relationship between substrate stiffness (tensile modulus: 90-990 kPa) and hMSC adhesion, spreading, and proliferation mediated through Yes-associated protein (YAP), opposite mechanical preference is revealed in the osteogenesis and neurogenesis of hMSCs as they are significantly enhanced on the stiff and compliant substrates, respectively. In vivo tissue regeneration demonstrates the same trend: bone regeneration prefers the stiffer scaffolds; while, nerve regeneration prefers the more compliant conduits. Whole-transcriptome analysis further shows that upregulation of Rho GTPase activity and the downstream genes in the compliant group promote nerve repair, providing critical insight into the design strategies of biomaterials for stem cell regulation and hard/soft tissue regeneration through mechanotransduction.
Collapse
Affiliation(s)
- Xiaopeng Cheng
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, China
| | - Bowen Xu
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, China
| | - Bingxi Lei
- Department of Neurosurgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510006, China
| | - Shanfeng Wang
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, China
| |
Collapse
|
39
|
McNeill MC, Li Mow Chee F, Ebrahimighaei R, Sala-Newby GB, Newby AC, Hathway T, Annaiah AS, Joseph S, Carrabba M, Bond M. Substrate stiffness promotes vascular smooth muscle cell calcification by reducing the levels of nuclear actin monomers. J Mol Cell Cardiol 2024; 187:65-79. [PMID: 38181546 DOI: 10.1016/j.yjmcc.2023.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 01/07/2024]
Abstract
BACKGROUND Vascular calcification (VC) is a prevalent independent risk factor for adverse cardiovascular events and is associated with diabetes, hypertension, chronic kidney disease, and atherosclerosis. However, the mechanisms regulating the osteogenic differentiation of vascular smooth muscle cells (VSMC) are not fully understood. METHODS Using hydrogels of tuneable stiffness and lysyl oxidase-mediated stiffening of human saphenous vein ex vivo, we investigated the role of substrate stiffness in the regulation of VSMC calcification. RESULTS We demonstrate that increased substrate stiffness enhances VSMC osteogenic differentiation and VSMC calcification. We show that the effects of substrate stiffness are mediated via a reduction in the level of actin monomer within the nucleus. We show that in cells interacting with soft substrate, elevated levels of nuclear actin monomer repress osteogenic differentiation and calcification by repressing YAP-mediated activation of both TEA Domain transcription factor (TEAD) and RUNX Family Transcription factor 2 (RUNX2). CONCLUSION This work highlights for the first time the role of nuclear actin in mediating substrate stiffness-dependent VSMC calcification and the dual role of YAP-TEAD and YAP-RUNX2 transcriptional complexes.
Collapse
Affiliation(s)
- M C McNeill
- Department of Translational Health Sciences, Bristol Medical School, Bristol BS2 8HW, United Kingdom
| | - F Li Mow Chee
- Department of Translational Health Sciences, Bristol Medical School, Bristol BS2 8HW, United Kingdom
| | - R Ebrahimighaei
- Department of Translational Health Sciences, Bristol Medical School, Bristol BS2 8HW, United Kingdom
| | - G B Sala-Newby
- Department of Translational Health Sciences, Bristol Medical School, Bristol BS2 8HW, United Kingdom
| | - A C Newby
- Department of Translational Health Sciences, Bristol Medical School, Bristol BS2 8HW, United Kingdom
| | - T Hathway
- Department of Translational Health Sciences, Bristol Medical School, Bristol BS2 8HW, United Kingdom
| | - A S Annaiah
- Bristol Heart Institute, University Hospital, Bristol NHS Foundation Trust, Bristol BS2 8HW, United Kingdom
| | - S Joseph
- Bristol Heart Institute, University Hospital, Bristol NHS Foundation Trust, Bristol BS2 8HW, United Kingdom
| | - M Carrabba
- Department of Translational Health Sciences, Bristol Medical School, Bristol BS2 8HW, United Kingdom
| | - M Bond
- Department of Translational Health Sciences, Bristol Medical School, Bristol BS2 8HW, United Kingdom.
| |
Collapse
|
40
|
Zhang L, Zhang C, Zheng J, Wang Y, Wei X, Yang Y, Zhao Q. miR-155-5p/Bmal1 Modulates the Senescence and Osteogenic Differentiation of Mouse BMSCs through the Hippo Signaling Pathway. Stem Cell Rev Rep 2024; 20:554-567. [PMID: 38150082 PMCID: PMC10837250 DOI: 10.1007/s12015-023-10666-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2023] [Indexed: 12/28/2023]
Abstract
BACKGROUND The core clock gene brain and muscle ARNT like-1 (Bmal1) is involved in the regulation of bone tissue aging. However, current studies are mostly limited to the establishment of the association between Bmal1 and bone senescence, without in-depth exploration of its main upstream and downstream regulatory mechanisms. METHODS The luciferase reporter assay, RT-qPCR and Western blotting were performed to detect the interaction between miR-155-5p and Bmal1. The effects of miR-155-5p and Bmal1 on the aging and osteogenic differentiation ability of mouse bone marrow mesenchymal stem cells (BMSCs) were investigated by cell counting kit-8 (CCK-8) assay, flow cytometry, β-gal staining, alkaline phosphatase quantitative assay and alizarin red staining in vitro. The potential molecular mechanism was identified by ChIP-Seq, RNA-seq database analysis and immunofluorescence staining. RESULTS The expression of Bmal1 declined with age, while the miR-155-5p was increased. miR-155-5p and Bmal1 repressed each other's expression, and miR-155-5p targeted the Bmal1. Besides, miR-155-5p inhibited the proliferation and osteogenic differentiation of BMSCs, promoted cell apoptosis and senescence, inhibited the expression and nuclear translocation of YAP and TAZ. However, Bmal1 facilitated the osteogenic differentiation and suppressed the aging of BMSCs, meanwhile inactivated the Hippo pathway. Moreover, YAP inhibitors abrogated the positive regulation of aging and osteogenic differentiation in BMSCs by miR-155-5p and Bmal1. CONCLUSION In mouse BMSCs, miR-155-5p and Bmal1 regulated the aging and osteogenic differentiation ability of BMSCs mainly through the Hippo signaling pathway. Our findings provide new insights for the interventions in bone aging.
Collapse
Affiliation(s)
- Lanxin Zhang
- Department of Orthodontics, State Key Laboratory of Oral Disease & National Clinical Research Center for Oral Diseases, West China School & Hospital of Stomatology, Sichuan University, 14, 3Rd Section of Ren Min Nan Rd, Chengdu, 610041, China
| | - Chengxiaoxue Zhang
- Department of Orthodontics, State Key Laboratory of Oral Disease & National Clinical Research Center for Oral Diseases, West China School & Hospital of Stomatology, Sichuan University, 14, 3Rd Section of Ren Min Nan Rd, Chengdu, 610041, China
| | - Jiawen Zheng
- Department of Orthodontics, State Key Laboratory of Oral Disease & National Clinical Research Center for Oral Diseases, West China School & Hospital of Stomatology, Sichuan University, 14, 3Rd Section of Ren Min Nan Rd, Chengdu, 610041, China
| | - Yuhong Wang
- Department of Stomatology, West China Fourth Hospital, Sichuan University, 18, 3Rd Section of Ren Min Nan Rd, Chengdu, 610041, China
| | - Xiaoyu Wei
- Department of Orthodontics, State Key Laboratory of Oral Disease & National Clinical Research Center for Oral Diseases, West China School & Hospital of Stomatology, Sichuan University, 14, 3Rd Section of Ren Min Nan Rd, Chengdu, 610041, China
| | - Yuqing Yang
- Department of Orthodontics, State Key Laboratory of Oral Disease & National Clinical Research Center for Oral Diseases, West China School & Hospital of Stomatology, Sichuan University, 14, 3Rd Section of Ren Min Nan Rd, Chengdu, 610041, China
| | - Qing Zhao
- Department of Orthodontics, State Key Laboratory of Oral Disease & National Clinical Research Center for Oral Diseases, West China School & Hospital of Stomatology, Sichuan University, 14, 3Rd Section of Ren Min Nan Rd, Chengdu, 610041, China.
| |
Collapse
|
41
|
Huang F, Wei G, Wang H, Zhang Y, Lan W, Xie Y, Wu G. Fibroblasts inhibit osteogenesis by regulating nuclear-cytoplasmic shuttling of YAP in mesenchymal stem cells and secreting DKK1. Biol Res 2024; 57:4. [PMID: 38245803 PMCID: PMC10799393 DOI: 10.1186/s40659-023-00481-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 12/04/2023] [Indexed: 01/22/2024] Open
Abstract
BACKGROUND Fibrous scars frequently form at the sites of bone nonunion when attempts to repair bone fractures have failed. However, the detailed mechanism by which fibroblasts, which are the main components of fibrous scars, impede osteogenesis remains largely unknown. RESULTS In this study, we found that fibroblasts compete with osteogenesis in both human bone nonunion tissues and BMP2-induced ectopic osteogenesis in a mouse model. Fibroblasts could inhibit the osteoblastic differentiation of mesenchymal stem cells (MSCs) via direct and indirect cell competition. During this process, fibroblasts modulated the nuclear-cytoplasmic shuttling of YAP in MSCs. Knocking down YAP could inhibit osteoblast differentiation of MSCs, while overexpression of nuclear-localized YAP-5SA could reverse the inhibition of osteoblast differentiation of MSCs caused by fibroblasts. Furthermore, fibroblasts secreted DKK1, which further inhibited the formation of calcium nodules during the late stage of osteogenesis but did not affect the early stage of osteogenesis. Thus, fibroblasts could inhibit osteogenesis by regulating YAP localization in MSCs and secreting DKK1. CONCLUSIONS Our research revealed that fibroblasts could modulate the nuclear-cytoplasmic shuttling of YAP in MSCs, thereby inhibiting their osteoblast differentiation. Fibroblasts could also secrete DKK1, which inhibited calcium nodule formation at the late stage of osteogenesis.
Collapse
Affiliation(s)
- Fei Huang
- Central Laboratory, First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, Fujian, China
| | - Guozhen Wei
- Department of Orthopaedics, The First Affiliated Hospital, Fujian Medical University, No. 20, Chazhong Road, Taijiang District, Fuzhou, 350005, Fujian, China
- Department of Orthopaedics, Binhai Campus of the First Affiliated Hospital, National Regional Medical Center, Fujian Medical University, Fuzhou, 350212, Fujian, China
| | - Hai Wang
- Department of Orthopaedics, The First Affiliated Hospital, Fujian Medical University, No. 20, Chazhong Road, Taijiang District, Fuzhou, 350005, Fujian, China
- Department of Orthopaedics, Binhai Campus of the First Affiliated Hospital, National Regional Medical Center, Fujian Medical University, Fuzhou, 350212, Fujian, China
| | - Ying Zhang
- Central Laboratory, First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, Fujian, China
| | - Wenbin Lan
- Department of Orthopaedics, The First Affiliated Hospital, Fujian Medical University, No. 20, Chazhong Road, Taijiang District, Fuzhou, 350005, Fujian, China
- Department of Orthopaedics, Binhai Campus of the First Affiliated Hospital, National Regional Medical Center, Fujian Medical University, Fuzhou, 350212, Fujian, China
| | - Yun Xie
- Department of Orthopaedics, The First Affiliated Hospital, Fujian Medical University, No. 20, Chazhong Road, Taijiang District, Fuzhou, 350005, Fujian, China.
- Department of Orthopaedics, Binhai Campus of the First Affiliated Hospital, National Regional Medical Center, Fujian Medical University, Fuzhou, 350212, Fujian, China.
| | - Gui Wu
- Department of Orthopaedics, The First Affiliated Hospital, Fujian Medical University, No. 20, Chazhong Road, Taijiang District, Fuzhou, 350005, Fujian, China.
- Department of Orthopaedics, Binhai Campus of the First Affiliated Hospital, National Regional Medical Center, Fujian Medical University, Fuzhou, 350212, Fujian, China.
| |
Collapse
|
42
|
Castro Nava A, Doolaar IC, Labude-Weber N, Malyaran H, Babu S, Chandorkar Y, Di Russo J, Neuss S, De Laporte L. Actuation of Soft Thermoresponsive Hydrogels Mechanically Stimulates Osteogenesis in Human Mesenchymal Stem Cells without Biochemical Factors. ACS APPLIED MATERIALS & INTERFACES 2024; 16:30-43. [PMID: 38150508 PMCID: PMC10789260 DOI: 10.1021/acsami.3c11808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 12/29/2023]
Abstract
Mesenchymal stem cells (MSCs) have the potential to differentiate into multiple lineages and can be harvested relatively easily from adults, making them a promising cell source for regenerative therapies. While it is well-known how to consistently differentiate MSCs into adipose, chondrogenic, and osteogenic lineages by treatment with biochemical factors, the number of studies exploring how to achieve this with mechanical signals is limited. A relatively unexplored area is the effect of cyclic forces on the MSC differentiation. Recently, our group developed a thermoresponsive N-ethyl acrylamide/N-isopropylacrylamide (NIPAM/NEAM) hydrogel supplemented with gold nanorods that are able to convert near-infrared light into heat. Using light pulses allows for local hydrogel collapse and swelling with physiologically relevant force and frequency. In this study, MSCs are cultured on this hydrogel system with a patterned surface and exposed to intermittent or continuous actuation of the hydrogel for 3 days to study the effect of actuation on MSC differentiation. First, cells are harvested from the bone marrow of three donors and tested for their MSC phenotype, meeting the following criteria: the harvested cells are adherent and demonstrate a fibroblast-like bipolar morphology. They lack the expression of CD34 and CD45 but do express CD73, CD90, and CD105. Additionally, their differentiation potential into adipogenic, chondrogenic, and osteogenic lineages is validated by the addition of standardized differentiation media. Next, MSCs are exposed to intermittent or continuous actuation, which leads to a significantly enhanced cell spreading compared to nonactuated cells. Moreover, actuation results in nuclear translocation of Runt-related transcription factor 2 and the Yes-associated protein. Together, these results indicate that cyclic mechanical stimulation on a soft, ridged substrate modulates the MSC fate commitment in the direction of osteogenesis.
Collapse
Affiliation(s)
- Arturo Castro Nava
- DWI—Leibniz
Institute for Interactive Materials, Forckenbeckstrasse 50, Aachen D-52074, Germany
- Institute
for Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 1-2, Aachen D-52074, Germany
| | - Iris C. Doolaar
- DWI—Leibniz
Institute for Interactive Materials, Forckenbeckstrasse 50, Aachen D-52074, Germany
- Institute
for Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 1-2, Aachen D-52074, Germany
| | - Norina Labude-Weber
- Helmholtz
Institute for Biomedical Engineering, BioInterface Group, RWTH Aachen University, Pauwelsstrasse 20, Aachen D-52074, Germany
| | - Hanna Malyaran
- Helmholtz
Institute for Biomedical Engineering, BioInterface Group, RWTH Aachen University, Pauwelsstrasse 20, Aachen D-52074, Germany
- Interdisciplinary
Centre for Clinical Research, RWTH Aachen
University, Pauwelsstrasse
30, Aachen D-52074, Germany
| | - Susan Babu
- DWI—Leibniz
Institute for Interactive Materials, Forckenbeckstrasse 50, Aachen D-52074, Germany
- Institute
for Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 1-2, Aachen D-52074, Germany
| | - Yashoda Chandorkar
- DWI—Leibniz
Institute for Interactive Materials, Forckenbeckstrasse 50, Aachen D-52074, Germany
| | - Jacopo Di Russo
- DWI—Leibniz
Institute for Interactive Materials, Forckenbeckstrasse 50, Aachen D-52074, Germany
- Interdisciplinary
Centre for Clinical Research, RWTH Aachen
University, Pauwelsstrasse
30, Aachen D-52074, Germany
- Institute
of Molecular and Cellular Anatomy, RWTH
Aachen University, Pauwelsstrasse
30, Aachen D-52074, Germany
| | - Sabine Neuss
- Helmholtz
Institute for Biomedical Engineering, BioInterface Group, RWTH Aachen University, Pauwelsstrasse 20, Aachen D-52074, Germany
- Institute
of Pathology, RWTH Aachen University Hospital, Pauwelsstrasse 30, Aachen D-52074, Germany
| | - Laura De Laporte
- DWI—Leibniz
Institute for Interactive Materials, Forckenbeckstrasse 50, Aachen D-52074, Germany
- Institute
for Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 1-2, Aachen D-52074, Germany
- Institute
of Applied Medical Engineering, Department of Advanced Materials for
Biomedicine, RWTH Aachen University, Forckenbeckstraße 55, Aachen D-52074, Germany
| |
Collapse
|
43
|
Ma J, Fan H, Geng H. Distinct and overlapping functions of YAP and TAZ in tooth development and periodontal homeostasis. Front Cell Dev Biol 2024; 11:1281250. [PMID: 38259513 PMCID: PMC10800899 DOI: 10.3389/fcell.2023.1281250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 12/21/2023] [Indexed: 01/24/2024] Open
Abstract
Orthodontic tooth movement (OTM) involves mechanical-biochemical signal transduction, which results in tissue remodeling of the tooth-periodontium complex and the movement of orthodontic teeth. The dynamic regulation of osteogenesis and osteoclastogenesis serves as the biological basis for remodeling of the periodontium, and more importantly, the prerequisite for establishing periodontal homeostasis. Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) are key effectors of the Hippo signaling pathway, which actively respond to mechanical stimuli during tooth movement. Specifically, they participate in translating mechanical into biochemical signals, thereby regulating periodontal homeostasis, periodontal remodeling, and tooth development. YAP and TAZ have widely been considered as key factors to prevent dental dysplasia, accelerate orthodontic tooth movement, and shorten treatment time. In this review, we summarize the functions of YAP and TAZ in regulating tooth development and periodontal remodeling, with the aim to gain a better understanding of their mechanisms of action and provide insights into maintaining proper tooth development and establishing a healthy periodontal and alveolar bone environment. Our findings offer novel perspectives and directions for targeted clinical treatments. Moreover, considering the similarities and differences in the development, structure, and physiology between YAP and TAZ, these molecules may exhibit functional variations in specific regulatory processes. Hence, we pay special attention to their distinct roles in specific regulatory functions to gain a comprehensive and profound understanding of their contributions.
Collapse
Affiliation(s)
- Jing Ma
- Department of Oral Medicine, Weifang Medical University, Weifang, Shandong, China
| | - Haixia Fan
- Department of Oral Medicine, Jining Medical University, Jining, Shandong, China
| | - Haixia Geng
- Department of Orthodontics, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| |
Collapse
|
44
|
Anderson H, Hersh DS, Khan Y. The potential role of mechanotransduction in the management of pediatric calvarial bone flap repair. Biotechnol Bioeng 2024; 121:39-52. [PMID: 37668193 PMCID: PMC10841298 DOI: 10.1002/bit.28534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/30/2023] [Accepted: 08/05/2023] [Indexed: 09/06/2023]
Abstract
Pediatric patients suffering traumatic brain injuries may require a decompressive craniectomy to accommodate brain swelling by removing a portion of the skull. Once the brain swelling subsides, the preserved calvarial bone flap is ideally replaced as an autograft during a cranioplasty to restore protection of the brain, as it can reintegrate and grow with the patient during immature skeletal development. However, pediatric patients exhibit a high prevalence of calvarial bone flap resorption post-cranioplasty, causing functional and cosmetic morbidity. This review examines possible solutions for mitigating pediatric calvarial bone flap resorption by delineating methods of stimulating mechanosensitive cell populations with mechanical forces. Mechanotransduction plays a critical role in three main cell types involved with calvarial bone repair, including mesenchymal stem cells, osteoblasts, and dural cells, through mechanisms that could be exploited to promote osteogenesis. In particular, physiologically relevant mechanical forces, including substrate deformation, external forces, and ultrasound, can be used as tools to stimulate bone repair in both in vitro and in vivo systems. Ultimately, combating pediatric calvarial flap resorption may require a combinatorial approach using both cell therapy and bioengineering strategies.
Collapse
Affiliation(s)
- Hanna Anderson
- Biomedical Engineering, University of Connecticut, Storrs, Connecticut, USA
- The Cato T. Laurencin Institute for Regenerative Engineering, UConn Health, Farmington, Connecticut, USA
| | - David S Hersh
- Department of Surgery, UConn School of Medicine, Farmington, Connecticut, USA
- Division of Neurosurgery, Connecticut Children's Medical Center, Hartford, Connecticut, USA
| | - Yusuf Khan
- Biomedical Engineering, University of Connecticut, Storrs, Connecticut, USA
- The Cato T. Laurencin Institute for Regenerative Engineering, UConn Health, Farmington, Connecticut, USA
- Orthopaedic Surgery, UConn Health, Farmington, Connecticut, USA
| |
Collapse
|
45
|
Guan H, Wang W, Jiang Z, Zhang B, Ye Z, Zheng J, Chen W, Liao Y, Zhang Y. Magnetic Aggregation-Induced Bone-Targeting Nanocarrier with Effects of Piezo1 Activation and Osteogenic-Angiogenic Coupling for Osteoporotic Bone Repair. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2312081. [PMID: 38102981 DOI: 10.1002/adma.202312081] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/07/2023] [Indexed: 12/17/2023]
Abstract
Osteoporosis, characterized by an imbalance in bone homeostasis, is a global health concern. Bone defects are difficult to heal in patients with osteoporosis. Classical drug treatments for osteoporotic bone defects have unsatisfactory efficacy owing to side effects and imprecise delivery problems. In this study, a magnetic aggregation-induced bone-targeting poly(lactic-co-glycolic acid, PLGA)-based nanocarrier (ZOL-PLGA@Yoda1/SPIO) is synthesized to realize dual-targeted delivery and precise Piezo1-activated therapy for osteoporotic bone defects. Piezo1 is an important mechanotransducer that plays a key role in regulating bone homeostasis. To achieve dual-targeting properties, ZOL-PLGA@Yoda1/SPIO is fabricated using zoledronate (ZOL)-decorated PLGA, superparamagnetic iron oxide (SPIO), and Piezo1-activated molecule Yoda1 via the emulsion solvent diffusion method. Bone-targeting molecular mediation and magnetic aggregation-induced properties can jointly and effectively achieve precise delivery to localized bone defects. Moreover, Yoda1 loading enables targeted and efficient mimicking of mechanical signals and activation of Piezo1. Experiments in vivo and in vitro demonstrate that ZOL-PLGA@Yoda1/SPIO can activate Piezo1 in bone defect areas of osteoporotic mice, improve osteogenesis through YAP/β-catenin signaling axis, promote a well-coordinated osteogenesis-angiogenesis coupling, and significantly accelerate bone reconstruction within the defects without noticeable side effects. Overall, this novel dual-targeting nanocarrier provides a potentially effective strategy for the clinical treatment of osteoporotic bone defects.
Collapse
Affiliation(s)
- Haitao Guan
- The School of Medicine, Nankai University, Tianjin, 300071, China
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050051, China
| | - Wei Wang
- Molecular Diagnosis and Treatment Center for Infectious Diseases, Dermatology Hospital, Southern Medical University, Guangzhou, 510091, China
| | - Zichao Jiang
- Department of Orthopedics, Xiangya Hospital of Central South University, Changsha, Hunan, 410008, China
| | - Boyu Zhang
- The School of Medicine, Nankai University, Tianjin, 300071, China
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050051, China
| | - Zhipeng Ye
- The School of Medicine, Nankai University, Tianjin, 300071, China
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050051, China
| | - Judun Zheng
- Molecular Diagnosis and Treatment Center for Infectious Diseases, Dermatology Hospital, Southern Medical University, Guangzhou, 510091, China
| | - Wei Chen
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050051, China
- Orthopaedic Research Institute of Hebei Province, Shijiazhuang, 050051, China
| | - Yuhui Liao
- Molecular Diagnosis and Treatment Center for Infectious Diseases, Dermatology Hospital, Southern Medical University, Guangzhou, 510091, China
| | - Yingze Zhang
- The School of Medicine, Nankai University, Tianjin, 300071, China
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050051, China
- Orthopaedic Research Institute of Hebei Province, Shijiazhuang, 050051, China
| |
Collapse
|
46
|
Wang H, Yu H, Huang T, Wang B, Xiang L. Hippo-YAP/TAZ signaling in osteogenesis and macrophage polarization: Therapeutic implications in bone defect repair. Genes Dis 2023; 10:2528-2539. [PMID: 37554194 PMCID: PMC10404961 DOI: 10.1016/j.gendis.2022.12.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 11/16/2022] [Accepted: 12/08/2022] [Indexed: 01/18/2023] Open
Abstract
Bone defects caused by diseases or surgery are a common clinical problem. Researchers are devoted to finding biological mechanisms that accelerate bone defect repair, which is a complex and continuous process controlled by many factors. As members of transcriptional costimulatory molecules, Yes-associated protein (YAP) and transcriptional co-activator with PDZ-binding motif (TAZ) play an important regulatory role in osteogenesis, and they affect cell function by regulating the expression of osteogenic genes in osteogenesis-related cells. Macrophages are an important group of cells whose function is regulated by YAP/TAZ. Currently, the relationship between YAP/TAZ and macrophage polarization has attracted increasing attention. In bone tissue, YAP/TAZ can realize diverse osteogenic regulation by mediating macrophage polarization. Macrophages polarize into M1 and M2 phenotypes under different stimuli. M1 macrophages dominate the inflammatory response by releasing a number of inflammatory mediators in the early phase of bone defect repair, while massive aggregation of M2 macrophages is beneficial for inflammation resolution and tissue repair, as they secrete many anti-inflammatory and osteogenesis-related cytokines. The mechanism of YAP/TAZ-mediated macrophage polarization during osteogenesis warrants further study and it is likely to be a promising strategy for bone defect repair. In this article, we review the effect of Hippo-YAP/TAZ signaling and macrophage polarization on bone defect repair, and highlight the regulation of macrophage polarization by YAP/TAZ.
Collapse
Affiliation(s)
- Haochen Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Hui Yu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Tianyu Huang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Bin Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Lin Xiang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
47
|
Tan K, Yang Q, Han Y, Zhuang Z, Zhao Y, Guo K, Tan A, Zheng Y, Li W. Elastic modulus of hydrogel regulates osteogenic differentiation via liquid-liquid phase separation of YAP. J Biomed Mater Res A 2023; 111:1781-1797. [PMID: 37494632 DOI: 10.1002/jbm.a.37590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 06/26/2023] [Accepted: 07/08/2023] [Indexed: 07/28/2023]
Abstract
Craniofacial bone defects induced by congenital malformations, trauma, or diseases frequently challenge the orthodontic or restorative treatment. Stem cell-based bone regenerative approaches emerged as a promising method to resolve bone defects. Microenvironment physical cues, such as the matrix elastic modulus or matrix topography, regulate stem cell differentiation via multiple genes. We constructed gelatin methacryloyl (GelMA), a well-known scaffold, to investigate the impact of elastic modulus on osteogenic differentiation in a three-dimensional environment. Confocal microscope was used to observe and assess the condensates fission and fusion. New bone formation was evaluated by micro-computed tomography at 6 weeks in calvarial defect rat. We found that the light curing increased elastic modulus of GelMA, and the pore size of GelMA decreased. The expression of osteogenic markers was inhibited in hBMSCs cultured in the low-elastic-modulus GelMA. In contrast, the expression of YAP, TAZ and TEAD was increased in the hBMSCs in the low-elastic-modulus GelMA. Furthermore, YAP assembled via liquid-liquid phase separation (LLPS) into condensates that were sensitive to 1'6-hexanediol. YAP recruit TAZ and TEAD4, but not RUNX2 into the condensates. In vivo, we also found that hBMSCs in high-elastic-modulus GelMA was more apt to form new bone. This study provides new insight into the mechanism of osteogenic differentiation. Reagents that can regulate the elastic modulus of substrate or LLPS may be applied to promote bone regeneration.
Collapse
Affiliation(s)
- Kuang Tan
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
- National Center for Stomatology; National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, China
| | - Qiaolin Yang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
- National Center for Stomatology; National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, China
| | - Yineng Han
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
- National Center for Stomatology; National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, China
| | - Ziyao Zhuang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
- National Center for Stomatology; National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, China
| | - Yi Zhao
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
- National Center for Stomatology; National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, China
| | - KunYao Guo
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
- National Center for Stomatology; National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, China
| | - Anqi Tan
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
- National Center for Stomatology; National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, China
| | - Yunfei Zheng
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
- National Center for Stomatology; National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, China
| | - Weiran Li
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
- National Center for Stomatology; National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, China
| |
Collapse
|
48
|
Peng Y, Qu R, Yang Y, Fan T, Sun B, Khan AU, Wu S, Liu W, Zhu J, Chen J, Li X, Dai J, Ouyang J. Regulation of the integrin αVβ3- actin filaments axis in early osteogenic differentiation of human mesenchymal stem cells under cyclic tensile stress. Cell Commun Signal 2023; 21:308. [PMID: 37904190 PMCID: PMC10614380 DOI: 10.1186/s12964-022-01027-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 12/24/2022] [Indexed: 11/01/2023] Open
Abstract
BACKGROUND Integrins are closely related to mechanical conduction and play a crucial role in the osteogenesis of human mesenchymal stem cells. Here we wondered whether tensile stress could influence cell differentiation through integrin αVβ3. METHODS We inhibited the function of integrin αVβ3 of human mesenchymal stem cells by treating with c(RGDyk). Using cytochalasin D and verteporfin to inhibit polymerization of microfilament and function of nuclear Yes-associated protein (YAP), respectively. For each application, mesenchymal stem cells were loaded by cyclic tensile stress of 10% at 0.5 Hz for 2 h daily. Mesenchymal stem cells were harvested on day 7 post-treatment. Western blotting and quantitative RT-PCR were used to detect the expression of alkaline phosphatase (ALP), RUNX2, β-actin, integrin αVβ3, talin-1, vinculin, FAK, and nuclear YAP. Immunofluorescence staining detected vinculin, actin filaments, and YAP nuclear localization. RESULTS Cyclic tensile stress could increase the expression of ALP and RUNX2. Inhibition of integrin αVβ3 activation led to rearrangement of actin filaments and downregulated the expression of ALP, RUNX2 and promoted YAP nuclear localization. When microfilament polymerization was inhibited, ALP, RUNX2, and nuclear YAP nuclear localization decreased. Inhibition of YAP nuclear localization could reduce the expression of ALP and RUNX2. CONCLUSIONS Cyclic tensile stress promotes early osteogenesis of human mesenchymal stem cells via the integrin αVβ3-actin filaments axis. YAP nuclear localization participates in this process of human mesenchymal stem cells. Video Abstract.
Collapse
Affiliation(s)
- Yan Peng
- Guangdong Provincial Key Laboratory of Medical Biomechanics and Guangdong Engineering Research Center for Translation of Medical 3D Printing Application and National Virtual and Reality Experimental Education Center for Medical Morphology and National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Rongmei Qu
- Guangdong Provincial Key Laboratory of Medical Biomechanics and Guangdong Engineering Research Center for Translation of Medical 3D Printing Application and National Virtual and Reality Experimental Education Center for Medical Morphology and National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Yuchao Yang
- Guangdong Provincial Key Laboratory of Medical Biomechanics and Guangdong Engineering Research Center for Translation of Medical 3D Printing Application and National Virtual and Reality Experimental Education Center for Medical Morphology and National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Tingyu Fan
- Guangdong Provincial Key Laboratory of Medical Biomechanics and Guangdong Engineering Research Center for Translation of Medical 3D Printing Application and National Virtual and Reality Experimental Education Center for Medical Morphology and National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Bing Sun
- Guangdong Provincial Key Laboratory of Medical Biomechanics and Guangdong Engineering Research Center for Translation of Medical 3D Printing Application and National Virtual and Reality Experimental Education Center for Medical Morphology and National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Asmat Ullah Khan
- Guangdong Provincial Key Laboratory of Medical Biomechanics and Guangdong Engineering Research Center for Translation of Medical 3D Printing Application and National Virtual and Reality Experimental Education Center for Medical Morphology and National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Shutong Wu
- Guangdong Provincial Key Laboratory of Medical Biomechanics and Guangdong Engineering Research Center for Translation of Medical 3D Printing Application and National Virtual and Reality Experimental Education Center for Medical Morphology and National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Wenqing Liu
- Guangdong Provincial Key Laboratory of Medical Biomechanics and Guangdong Engineering Research Center for Translation of Medical 3D Printing Application and National Virtual and Reality Experimental Education Center for Medical Morphology and National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jinhui Zhu
- Guangdong Provincial Key Laboratory of Medical Biomechanics and Guangdong Engineering Research Center for Translation of Medical 3D Printing Application and National Virtual and Reality Experimental Education Center for Medical Morphology and National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Junxin Chen
- Shenzhen Andy New Material Technology Co., LTD, Shenzhen, 518106, China
| | - Xiaoqing Li
- Shenzhen Andy New Material Technology Co., LTD, Shenzhen, 518106, China
| | - Jingxing Dai
- Guangdong Provincial Key Laboratory of Medical Biomechanics and Guangdong Engineering Research Center for Translation of Medical 3D Printing Application and National Virtual and Reality Experimental Education Center for Medical Morphology and National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Jun Ouyang
- Guangdong Provincial Key Laboratory of Medical Biomechanics and Guangdong Engineering Research Center for Translation of Medical 3D Printing Application and National Virtual and Reality Experimental Education Center for Medical Morphology and National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
49
|
Liu RX, Gu RH, Li ZP, Hao ZQ, Hu QX, Li ZY, Wang XG, Tang W, Wang XH, Zeng YK, Li ZW, Dong Q, Zhu XF, Chen D, Zhao KW, Zhang RH, Zha ZG, Zhang HT. Trim21 depletion alleviates bone loss in osteoporosis via activation of YAP1/β-catenin signaling. Bone Res 2023; 11:56. [PMID: 37884520 PMCID: PMC10603047 DOI: 10.1038/s41413-023-00296-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 08/26/2023] [Accepted: 09/22/2023] [Indexed: 10/28/2023] Open
Abstract
Despite the diverse roles of tripartite motif (Trim)-containing proteins in the regulation of autophagy, the innate immune response, and cell differentiation, their roles in skeletal diseases are largely unknown. We recently demonstrated that Trim21 plays a crucial role in regulating osteoblast (OB) differentiation in osteosarcoma. However, how Trim21 contributes to skeletal degenerative disorders, including osteoporosis, remains unknown. First, human and mouse bone specimens were evaluated, and the results showed that Trim21 expression was significantly elevated in bone tissues obtained from osteoporosis patients. Next, we found that global knockout of the Trim21 gene (KO, Trim21-/-) resulted in higher bone mass compared to that of the control littermates. We further demonstrated that loss of Trim21 promoted bone formation by enhancing the osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) and elevating the activity of OBs; moreover, Trim21 depletion suppressed osteoclast (OC) formation of RAW264.7 cells. In addition, the differentiation of OCs from bone marrow-derived macrophages (BMMs) isolated from Trim21-/- and Ctsk-cre; Trim21f/f mice was largely compromised compared to that of the littermate control mice. Mechanistically, YAP1/β-catenin signaling was identified and demonstrated to be required for the Trim21-mediated osteogenic differentiation of BMSCs. More importantly, the loss of Trim21 prevented ovariectomy (OVX)- and lipopolysaccharide (LPS)-induced bone loss in vivo by orchestrating the coupling of OBs and OCs through YAP1 signaling. Our current study demonstrated that Trim21 is crucial for regulating OB-mediated bone formation and OC-mediated bone resorption, thereby providing a basis for exploring Trim21 as a novel dual-targeting approach for treating osteoporosis and pathological bone loss.
Collapse
Affiliation(s)
- Ri-Xu Liu
- Department of Bone and Joint Surgery, the First Affiliated Hospital of Jinan University; Key Laboratory of Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, 510630, Guangdong, China
- Department of Orthopedic and Spine Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
| | - Rong-He Gu
- School of Basic Medical Sciences of Guangxi Medical University, the Fifth Affiliated Hospital of Guangxi Medical University, Nanning, 530022, Guangxi, China
| | - Zhi-Peng Li
- Department of Bone and Joint Surgery, the First Affiliated Hospital of Jinan University; Key Laboratory of Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, 510630, Guangdong, China
| | - Zhi-Quan Hao
- Department of Bone and Joint Surgery, the First Affiliated Hospital of Jinan University; Key Laboratory of Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, 510630, Guangdong, China
| | - Qin-Xiao Hu
- Department of Bone and Joint Surgery, the First Affiliated Hospital of Jinan University; Key Laboratory of Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, 510630, Guangdong, China
| | - Zhen-Yan Li
- Department of Bone and Joint Surgery, the First Affiliated Hospital of Jinan University; Key Laboratory of Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, 510630, Guangdong, China
| | - Xiao-Gang Wang
- Key Laboratory of Big Data-Based Precision Medicine, School of Engineering Medicine, Beihang University, 100191, Beijing, China
| | - Wang Tang
- Department of Bone and Joint Surgery, the First Affiliated Hospital of Jinan University; Key Laboratory of Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, 510630, Guangdong, China
| | - Xiao-He Wang
- Department of Bone and Joint Surgery, the First Affiliated Hospital of Jinan University; Key Laboratory of Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, 510630, Guangdong, China
| | - Yu-Kai Zeng
- Department of Bone and Joint Surgery, the First Affiliated Hospital of Jinan University; Key Laboratory of Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, 510630, Guangdong, China
| | - Zhen-Wei Li
- Department of Bone and Joint Surgery, the First Affiliated Hospital of Jinan University; Key Laboratory of Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, 510630, Guangdong, China
| | - Qiu Dong
- Department of Bone and Joint Surgery, the First Affiliated Hospital of Jinan University; Key Laboratory of Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, 510630, Guangdong, China
| | - Xiao-Feng Zhu
- Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Informatization, College of Pharmacy, Jinan University, Guangzhou, 510630, Guangdong, China
| | - Di Chen
- Research Center for Computer-aided Drug Discovery, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518005, Shenzhen, China
| | - Ke-Wei Zhao
- Guangzhou Key Laboratory of Chinese Medicine Research on Prevention and Treatment of Osteoporosis, the Third Affiliated Hospital of Guangzhou University of Chinese Medicine, 510375, Guangzhou, China
| | - Rong-Hua Zhang
- Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Informatization, College of Pharmacy, Jinan University, Guangzhou, 510630, Guangdong, China.
| | - Zhen-Gang Zha
- Department of Bone and Joint Surgery, the First Affiliated Hospital of Jinan University; Key Laboratory of Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, 510630, Guangdong, China.
| | - Huan-Tian Zhang
- Department of Bone and Joint Surgery, the First Affiliated Hospital of Jinan University; Key Laboratory of Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, 510630, Guangdong, China.
| |
Collapse
|
50
|
Sawada D, Kato H, Kaneko H, Kinoshita D, Funayama S, Minamizuka T, Takasaki A, Igarashi K, Koshizaka M, Takada-Watanabe A, Nakamura R, Aono K, Yamaguchi A, Teramoto N, Maeda Y, Ohno T, Hayashi A, Ide K, Ide S, Shoji M, Kitamoto T, Endo Y, Ogata H, Kubota Y, Mitsukawa N, Iwama A, Ouchi Y, Takayama N, Eto K, Fujii K, Takatani T, Shiohama T, Hamada H, Maezawa Y, Yokote K. Senescence-associated inflammation and inhibition of adipogenesis in subcutaneous fat in Werner syndrome. Aging (Albany NY) 2023; 15:9948-9964. [PMID: 37793000 PMCID: PMC10599740 DOI: 10.18632/aging.205078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 09/06/2023] [Indexed: 10/06/2023]
Abstract
Werner syndrome (WS) is a hereditary premature aging disorder characterized by visceral fat accumulation and subcutaneous lipoatrophy, resulting in severe insulin resistance. However, its underlying mechanism remains unclear. In this study, we show that senescence-associated inflammation and suppressed adipogenesis play a role in subcutaneous adipose tissue reduction and dysfunction in WS. Clinical data from four Japanese patients with WS revealed significant associations between the decrease of areas of subcutaneous fat and increased insulin resistance measured by the glucose clamp. Adipose-derived stem cells from the stromal vascular fraction derived from WS subcutaneous adipose tissues (WSVF) showed early replicative senescence and a significant increase in the expression of senescence-associated secretory phenotype (SASP) markers. Additionally, adipogenesis and insulin signaling were suppressed in WSVF, and the expression of adipogenesis suppressor genes and SASP-related genes was increased. Rapamycin, an inhibitor of the mammalian target of rapamycin (mTOR), alleviated premature cellular senescence, rescued the decrease in insulin signaling, and extended the lifespan of WS model of C. elegans. To the best of our knowledge, this study is the first to reveal the critical role of cellular senescence in subcutaneous lipoatrophy and severe insulin resistance in WS, highlighting the therapeutic potential of rapamycin for this disease.
Collapse
Affiliation(s)
- Daisuke Sawada
- Department of Endocrinology, Hematology and Gerontology, Chiba University Graduate School of Medicine, Chiba, Japan
- Department of Pediatrics, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Hisaya Kato
- Department of Endocrinology, Hematology and Gerontology, Chiba University Graduate School of Medicine, Chiba, Japan
- Division of Diabetes, Metabolism and Endocrinology, Chiba University Hospital, Chiba, Japan
| | - Hiyori Kaneko
- Department of Endocrinology, Hematology and Gerontology, Chiba University Graduate School of Medicine, Chiba, Japan
- Division of Diabetes, Metabolism and Endocrinology, Chiba University Hospital, Chiba, Japan
| | - Daisuke Kinoshita
- Department of Endocrinology, Hematology and Gerontology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Shinichiro Funayama
- Department of Endocrinology, Hematology and Gerontology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Takuya Minamizuka
- Department of Endocrinology, Hematology and Gerontology, Chiba University Graduate School of Medicine, Chiba, Japan
- Division of Diabetes, Metabolism and Endocrinology, Chiba University Hospital, Chiba, Japan
| | - Atsushi Takasaki
- Department of Endocrinology, Hematology and Gerontology, Chiba University Graduate School of Medicine, Chiba, Japan
- Division of Diabetes, Metabolism and Endocrinology, Chiba University Hospital, Chiba, Japan
| | - Katsushi Igarashi
- Department of Endocrinology, Hematology and Gerontology, Chiba University Graduate School of Medicine, Chiba, Japan
- Division of Diabetes, Metabolism and Endocrinology, Chiba University Hospital, Chiba, Japan
| | - Masaya Koshizaka
- Department of Endocrinology, Hematology and Gerontology, Chiba University Graduate School of Medicine, Chiba, Japan
- Division of Diabetes, Metabolism and Endocrinology, Chiba University Hospital, Chiba, Japan
| | - Aki Takada-Watanabe
- Department of Endocrinology, Hematology and Gerontology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Rito Nakamura
- Department of Endocrinology, Hematology and Gerontology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Kazuto Aono
- Department of Endocrinology, Hematology and Gerontology, Chiba University Graduate School of Medicine, Chiba, Japan
- Division of Diabetes, Metabolism and Endocrinology, Chiba University Hospital, Chiba, Japan
| | - Ayano Yamaguchi
- Department of Endocrinology, Hematology and Gerontology, Chiba University Graduate School of Medicine, Chiba, Japan
- Division of Diabetes, Metabolism and Endocrinology, Chiba University Hospital, Chiba, Japan
| | - Naoya Teramoto
- Department of Endocrinology, Hematology and Gerontology, Chiba University Graduate School of Medicine, Chiba, Japan
- Division of Diabetes, Metabolism and Endocrinology, Chiba University Hospital, Chiba, Japan
| | - Yukari Maeda
- Department of Endocrinology, Hematology and Gerontology, Chiba University Graduate School of Medicine, Chiba, Japan
- Division of Diabetes, Metabolism and Endocrinology, Chiba University Hospital, Chiba, Japan
| | - Tomohiro Ohno
- Department of Endocrinology, Hematology and Gerontology, Chiba University Graduate School of Medicine, Chiba, Japan
- Division of Diabetes, Metabolism and Endocrinology, Chiba University Hospital, Chiba, Japan
| | - Aiko Hayashi
- Department of Endocrinology, Hematology and Gerontology, Chiba University Graduate School of Medicine, Chiba, Japan
- Division of Diabetes, Metabolism and Endocrinology, Chiba University Hospital, Chiba, Japan
| | - Kana Ide
- Department of Endocrinology, Hematology and Gerontology, Chiba University Graduate School of Medicine, Chiba, Japan
- Division of Diabetes, Metabolism and Endocrinology, Chiba University Hospital, Chiba, Japan
| | - Shintaro Ide
- Department of Endocrinology, Hematology and Gerontology, Chiba University Graduate School of Medicine, Chiba, Japan
- Division of Diabetes, Metabolism and Endocrinology, Chiba University Hospital, Chiba, Japan
| | - Mayumi Shoji
- Department of Endocrinology, Hematology and Gerontology, Chiba University Graduate School of Medicine, Chiba, Japan
- Division of Diabetes, Metabolism and Endocrinology, Chiba University Hospital, Chiba, Japan
| | - Takumi Kitamoto
- Department of Endocrinology, Hematology and Gerontology, Chiba University Graduate School of Medicine, Chiba, Japan
- Division of Diabetes, Metabolism and Endocrinology, Chiba University Hospital, Chiba, Japan
| | - Yusuke Endo
- Laboratory of Medical Omics Research, Kazusa DNA Research Institute, Kisarazu, Japan
- Department of Omics Medicine, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Hideyuki Ogata
- Department of Plastic, Reconstructive, And Aesthetic Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Yoshitaka Kubota
- Department of Plastic, Reconstructive, And Aesthetic Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Nobuyuki Mitsukawa
- Department of Plastic, Reconstructive, And Aesthetic Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Atsushi Iwama
- Division of Stem Cell and Molecular Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yasuo Ouchi
- Department of Regenerative Medicine, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Naoya Takayama
- Department of Regenerative Medicine, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Koji Eto
- Department of Regenerative Medicine, Chiba University Graduate School of Medicine, Chiba, Japan
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Katsunori Fujii
- Department of Pediatrics, Chiba University Graduate School of Medicine, Chiba, Japan
- Department of Pediatrics, International University of Welfare and Health School of Medicine, Narita, Japan
| | - Tomozumi Takatani
- Department of Pediatrics, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Tadashi Shiohama
- Department of Pediatrics, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Hiromichi Hamada
- Department of Pediatrics, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Yoshiro Maezawa
- Department of Endocrinology, Hematology and Gerontology, Chiba University Graduate School of Medicine, Chiba, Japan
- Division of Diabetes, Metabolism and Endocrinology, Chiba University Hospital, Chiba, Japan
| | - Koutaro Yokote
- Department of Endocrinology, Hematology and Gerontology, Chiba University Graduate School of Medicine, Chiba, Japan
- Division of Diabetes, Metabolism and Endocrinology, Chiba University Hospital, Chiba, Japan
| |
Collapse
|