1
|
Guo S, Shuaiying Z, Yingying K, Tang J, Xu J, Dai Y, Geng Y. Screening, expression, and functional validation of camelid-derived nanobodies targeting RSPO2. Vet Immunol Immunopathol 2025; 283:110922. [PMID: 40179630 DOI: 10.1016/j.vetimm.2025.110922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 03/18/2025] [Accepted: 03/21/2025] [Indexed: 04/05/2025]
Abstract
OBJECTIVE RSPO2 (R-spondin 2) is a key regulator of the Wnt/β-catenin signaling pathway, involved in embryogenesis, tissue homeostasis, and cancer progression. Despite its therapeutic potential, effective agents targeting RSPO2 remain elusive. To address the unmet need for RSPO2-targeted therapies, we aimed to develop high-affinity nanobodies via phage display and prokaryotic expression, characterizing their binding specificity and functional blockade of RSPO2-LGR4 interactions. This study provides foundational insights into nanobody-mediated inhibition of Wnt signaling, supporting future therapeutic strategies against RSPO2-driven pathologies. METHODS Recombinant RSPO2 proteins were constructed and purified using PCR-based recombination. Camels (Camelus bactrianus) were immunized with RSPO2, and phage display was employed to screen nanobody libraries. High-affinity nanobodies were cloned, expressed, purified, and assessed for specificity and binding affinity using biolayer interferometry and protein blotting. Functional validation was performed using TOPFLASH assays to evaluate their impact on Wnt/β-catenin signaling. RESULTS Nanobodies with high specificity and nanomolar-range affinity constants (KDs) for RSPO2 were identified. The nanobody effectively inhibited RSPO2-induced Wnt/β-catenin signaling in human renal epithelial cells. CONCLUSION The development of RSPO2-targeting nanobodies offers new prospects for treating RSPO2-related diseases. The nanobody serve as valuable tools for functional research and hold potential as diagnostic and therapeutic agents for RSPO2-driven conditions.
Collapse
Affiliation(s)
- Shaojue Guo
- Department of Biopharmaceutics, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Zhao Shuaiying
- Department of Biopharmaceutics, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Kong Yingying
- State Key Laboratory of Drug Research, The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; College of Pharmacy, Henan University, Kaifeng, Henan 475000, China
| | - Junming Tang
- Department of Physiology, Faculty of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei 442000, China; Hubei Key Laboratory of Embryonic Stem Cell Research and Institute of Biomedicine, Hubei University of Medicine, Shiyan, Hubei 442000, China.
| | - Jianfeng Xu
- Department of Biopharmaceutics, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China.
| | - Yuanyuan Dai
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China; National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital of Chinese Academy of Medical Sciences, Langfang Campus, Langfang 065001, China.
| | - Yong Geng
- State Key Laboratory of Drug Research, The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
2
|
Xi Y, Jiang Q, Dai W, Chen C, Wang Y, Miao X, Lai K, Jiang Z, Yang G, Wang Y. SP7 transcription factor ameliorates bone defect healing in low-density lipoprotein receptor-related protein 5 (LRP5)-dependent osteoporosis mice. J Zhejiang Univ Sci B 2025; 26:254-268. [PMID: 40082204 PMCID: PMC11906391 DOI: 10.1631/jzus.b2300531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/30/2023] [Indexed: 03/16/2025]
Abstract
Loss-of-function variants of low-density lipoprotein receptor-related protein 5 (LRP5) can lead to reduced bone formation, culminating in diminished bone mass. Our previous study reported transcription factor osterix (SP7)-binding sites on the LRP5 promoter and its pivotal role in upregulating LRP5 expression during implant osseointegration. However, the potential role of SP7 in ameliorating LRP5-dependent osteoporosis remained unknown. In this study, we used mice with a conditional knockout (cKO) of LRP5 in mature osteoblasts, which presented decreased osteogenesis. The in vitro experimental results showed that SP7 could promote LRP5 expression, thereby upregulating the osteogenic markers such as alkaline phosphatase (ALP), Runt-related transcription factor 2 (Runx2), and β-catenin (P<0.05). For the in vivo experiment, the SP7 overexpression virus was injected into a bone defect model of LRP5 cKO mice, resulting in increased bone mineral density (BMD) (P<0.001) and volumetric density (bone volume (BV)/total volume (TV)) (P<0.001), and decreased trabecular separation (Tb.Sp) (P<0.05). These data suggested that SP7 could ameliorate bone defect healing in LRP5 cKO mice. Our study provides new insights into potential therapeutic opportunities for ameliorating LRP5-dependent osteoporosis.
Collapse
Affiliation(s)
- Yue Xi
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China
| | - Qifeng Jiang
- School of Stomatology, Zhejiang University, Hangzhou 310058, China
| | - Wei Dai
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China
| | - Chaozhen Chen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China
| | - Yang Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China
| | - Xiaoyan Miao
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China
| | - Kaichen Lai
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China
| | - Zhiwei Jiang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China
| | - Guoli Yang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China.
| | - Ying Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China. ,
| |
Collapse
|
3
|
Nakagaki R, Mukaibo T, Monir A, Gao X, Munemasa T, Nodai T, Tamura A, Obikane YH, Kondo Y, Masaki C, Hosokawa R. Simulated microgravity environment inhibits matrix mineralization during the osteoblast to osteocyte differentiation. Biochem Biophys Res Commun 2024; 739:150963. [PMID: 39550861 DOI: 10.1016/j.bbrc.2024.150963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/16/2024] [Accepted: 11/06/2024] [Indexed: 11/19/2024]
Abstract
This study investigates the effects of microgravity on the differentiation and mineralization of IDG-SW3 osteocyte-like cells to understand the response of bone cells to microgravity and develop strategies to mitigate bone loss in astronauts. IDG-SW3 cells were cultured in collagen-coated dishes and subjected to a 3D clinostat to simulate microgravity 14 days after initiating differentiation. The static group remained under normal gravity. Cells were analyzed on days 14, 18, 22, and 26. Alizarin red staining demonstrated a substantial and time-dependent increase in mineralization in the static group, whereas the microgravity group exhibited little detectable mineralization throughout the experimental period. Quantitative RT-PCR revealed significant upregulation of Rankl, Alpl, Dmp1, and Fgf23 and downregulation of Sost and Phex in the microgravity group. RNA sequencing on day 26 showed distinct gene expression profiles between conditions. Heatmaps highlighted upregulated genes (Ptgs2, Alpl, Comp, Atf4, Lox) and downregulated genes (Rspo2, Ank, Ptn, Mmp13, Aspn, Spp1) under microgravity. Gene ontology (GO) enrichment analysis indicated that upregulated genes were associated with cytoskeletal organization and receptor activities, while downregulated genes were linked to extracellular matrix components and immune response. These findings provide insights into the molecular mechanisms of bone loss in space and emphasize the importance of gravity in bone remodeling. Future studies should validate these genes' functions in osteocyte biology under microgravity.
Collapse
Affiliation(s)
- Ryutaro Nakagaki
- Division of Oral Reconstruction and Rehabilitation, Kyushu Dental University, Kitakyushu, Fukuoka, Japan
| | - Taro Mukaibo
- Division of Oral Reconstruction and Rehabilitation, Kyushu Dental University, Kitakyushu, Fukuoka, Japan.
| | - Ahmed Monir
- Division of Oral Reconstruction and Rehabilitation, Kyushu Dental University, Kitakyushu, Fukuoka, Japan; Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Zagazig University, Sharkia, Egypt
| | - Xin Gao
- Lister Hill National Center for Biomedical Communication, National Library of Medicine, NIH, Bethesda, MD, USA
| | - Takashi Munemasa
- Division of Oral Reconstruction and Rehabilitation, Kyushu Dental University, Kitakyushu, Fukuoka, Japan
| | - Tomotaka Nodai
- Division of Oral Reconstruction and Rehabilitation, Kyushu Dental University, Kitakyushu, Fukuoka, Japan
| | - Akiko Tamura
- Division of Oral Reconstruction and Rehabilitation, Kyushu Dental University, Kitakyushu, Fukuoka, Japan
| | - Yui Hirata Obikane
- Division of Oral Reconstruction and Rehabilitation, Kyushu Dental University, Kitakyushu, Fukuoka, Japan
| | - Yusuke Kondo
- Division of Oral Reconstruction and Rehabilitation, Kyushu Dental University, Kitakyushu, Fukuoka, Japan
| | - Chihiro Masaki
- Division of Oral Reconstruction and Rehabilitation, Kyushu Dental University, Kitakyushu, Fukuoka, Japan
| | - Ryuji Hosokawa
- Division of Oral Reconstruction and Rehabilitation, Kyushu Dental University, Kitakyushu, Fukuoka, Japan
| |
Collapse
|
4
|
Zhang S, Zhu J, Jin S, Sun W, Ji W, Chen Z. Jawbone periosteum-derived cells with high osteogenic potential controlled by R-spondin 3. FASEB J 2024; 38:e70079. [PMID: 39340242 DOI: 10.1096/fj.202400988rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 09/04/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024]
Abstract
The jawbone periosteum, the easily accessible tissue responding to bone repair, has been overlooked in the recent development of cell therapy for jawbone defect reconstruction. Therefore, this study aimed to elucidate the in vitro and in vivo biological characteristics of jawbone periosteum-derived cells (jb-PDCs). For this purpose, we harvested the jb-PDCs from 8-week-old C57BL/6 mice. The in vitro cultured jb-PDCs (passages 1 and 3) contained skeletal stem/progenitor cells and exhibited clonogenicity and tri-lineage differentiation capacity. When implanted in vivo, the jb-PDCs (passage 3) showed evident ectopic bone formation after 4-week subcutaneous implantation, and active contribution to repair the critical-size jawbone defects in mice. Molecular profiling suggested that R-spondin 3 was strongly associated with the superior in vitro and in vivo osteogenic potentials of jb-PDCs. Overall, our study highlights the significance of comprehending the biological characteristics of the jawbone periosteum, which could pave the way for innovative cell-based therapies for the reconstruction of jawbone defects.
Collapse
Affiliation(s)
- Shu Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Jingxian Zhu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Siyu Jin
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Wei Sun
- Department of Implantology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Wei Ji
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Implantology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zhi Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
5
|
King JS, Wan M, Wagley Y, Stestiv M, Kalajzic I, Hankenson KD, Sanjay A. Signaling pathways associated with Lgr6 to regulate osteogenesis. Bone 2024; 187:117207. [PMID: 39033993 DOI: 10.1016/j.bone.2024.117207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/13/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
Fracture management largely relies on the bone's inherent healing capabilities and, when necessary, surgical intervention. Currently, there are limited osteoinductive therapies to promote healing, making targeting skeletal stem/progenitor cells (SSPCs) a promising avenue for therapeutic development. A limiting factor for this approach is our incomplete understanding of the molecular mechanisms governing SSPCs' behavior. We have recently identified that the Leucine-rich repeat-containing G-protein coupled receptor 6 (Lgr6) is expressed in sub-populations of SSPCs, and is required for maintaining bone volume during adulthood and for proper fracture healing. Lgr family members (Lgr4-6) are markers of stem cell niches and play a role in tissue regeneration primarily by binding R-Spondin (Rspo1-4). This interaction promotes canonical Wnt (cWnt) signaling by stabilizing Frizzled receptors. Interestingly, our findings here indicate that Lgr6 may also influence cWnt-independent pathways. Remarkably, Lgr6 expression was enhanced during Bmp-mediated osteogenesis of both human and murine cells. Using biochemical approaches, RNA sequencing, and bioinformatic analysis of published single-cell data, we found that elements of BMP signaling, including its target gene, pSMAD, and gene ontology pathways, are downregulated in the absence of Lgr6. Our findings uncover a molecular interdependency between the Bmp pathway and Lgr6, offering new insights into osteogenesis and potential targets for enhancing fracture healing.
Collapse
Affiliation(s)
- Justin S King
- Department of Orthopaedic Surgery, The Musculoskeletal Research Institute, UCONN Health, Farmington, CT 06032, USA
| | - Matthew Wan
- Department of Orthopaedic Surgery, The Musculoskeletal Research Institute, UCONN Health, Farmington, CT 06032, USA
| | - Yadav Wagley
- Department of Orthopaedic Surgery, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA
| | - Marta Stestiv
- Department of Orthopaedic Surgery, The Musculoskeletal Research Institute, UCONN Health, Farmington, CT 06032, USA
| | - Ivo Kalajzic
- Center for Regenerative Medicine and Skeletal Development, The Musculoskeletal Research Institute, UCONN Health, Farmington, CT 06032, USA
| | - Kurt D Hankenson
- Department of Orthopaedic Surgery, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA
| | - Archana Sanjay
- Department of Orthopaedic Surgery, The Musculoskeletal Research Institute, UCONN Health, Farmington, CT 06032, USA.
| |
Collapse
|
6
|
Hu L, Chen W, Qian A, Li YP. Wnt/β-catenin signaling components and mechanisms in bone formation, homeostasis, and disease. Bone Res 2024; 12:39. [PMID: 38987555 PMCID: PMC11237130 DOI: 10.1038/s41413-024-00342-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 04/27/2024] [Accepted: 05/12/2024] [Indexed: 07/12/2024] Open
Abstract
Wnts are secreted, lipid-modified proteins that bind to different receptors on the cell surface to activate canonical or non-canonical Wnt signaling pathways, which control various biological processes throughout embryonic development and adult life. Aberrant Wnt signaling pathway underlies a wide range of human disease pathogeneses. In this review, we provide an update of Wnt/β-catenin signaling components and mechanisms in bone formation, homeostasis, and diseases. The Wnt proteins, receptors, activators, inhibitors, and the crosstalk of Wnt signaling pathways with other signaling pathways are summarized and discussed. We mainly review Wnt signaling functions in bone formation, homeostasis, and related diseases, and summarize mouse models carrying genetic modifications of Wnt signaling components. Moreover, the therapeutic strategies for treating bone diseases by targeting Wnt signaling, including the extracellular molecules, cytosol components, and nuclear components of Wnt signaling are reviewed. In summary, this paper reviews our current understanding of the mechanisms by which Wnt signaling regulates bone formation, homeostasis, and the efforts targeting Wnt signaling for treating bone diseases. Finally, the paper evaluates the important questions in Wnt signaling to be further explored based on the progress of new biological analytical technologies.
Collapse
Affiliation(s)
- Lifang Hu
- Laboratory for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Laboratory for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Wei Chen
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, 70112, USA
| | - Airong Qian
- Laboratory for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Laboratory for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China.
| | - Yi-Ping Li
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, 70112, USA.
| |
Collapse
|
7
|
Liu Y, Fan M, Yang J, Mihaljević L, Chen KH, Ye Y, Sun S, Qiu Z. KAT6A deficiency impairs cognitive functions through suppressing RSPO2/Wnt signaling in hippocampal CA3. SCIENCE ADVANCES 2024; 10:eadm9326. [PMID: 38758792 PMCID: PMC11100567 DOI: 10.1126/sciadv.adm9326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 04/15/2024] [Indexed: 05/19/2024]
Abstract
Intellectual disability (ID) affects ~2% of the population and ID-associated genes are enriched for epigenetic factors, including those encoding the largest family of histone lysine acetyltransferases (KAT5-KAT8). Among them is KAT6A, whose mutations cause KAT6A syndrome, with ID as a common clinical feature. However, the underlying molecular mechanism remains unknown. Here, we find that KAT6A deficiency impairs synaptic structure and plasticity in hippocampal CA3, but not in CA1 region, resulting in memory deficits in mice. We further identify a CA3-enriched gene Rspo2, encoding Wnt activator R-spondin 2, as a key transcriptional target of KAT6A. Deletion of Rspo2 in excitatory neurons impairs memory formation, and restoring RSPO2 expression in CA3 neurons rescues the deficits in Wnt signaling and learning-associated behaviors in Kat6a mutant mice. Collectively, our results demonstrate that KAT6A-RSPO2-Wnt signaling plays a critical role in regulating hippocampal CA3 synaptic plasticity and cognitive function, providing potential therapeutic targets for KAT6A syndrome and related neurodevelopmental diseases.
Collapse
Affiliation(s)
- Yongqing Liu
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Minghua Fan
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Junhua Yang
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ljubica Mihaljević
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Kevin Hong Chen
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Yingzhi Ye
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Shuying Sun
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Zhaozhu Qiu
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
8
|
Srivastava A, Rikhari D, Srivastava S. RSPO2 as Wnt signaling enabler: Important roles in cancer development and therapeutic opportunities. Genes Dis 2024; 11:788-806. [PMID: 37692504 PMCID: PMC10491879 DOI: 10.1016/j.gendis.2023.01.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 01/16/2023] [Indexed: 09/12/2023] Open
Abstract
R-spondins are secretory proteins localized in the endoplasmic reticulum and Golgi bodies and are processed through the secretory pathway. Among the R-spondin family, RSPO2 has emanated as a novel regulator of Wnt signaling, which has now been acknowledged in numerous in vitro and in vivo studies. Cancer is an abnormal growth of cells that proliferates and spreads uncontrollably due to the accumulation of genetic and epigenetic factors that constitutively activate Wnt signaling in various types of cancer. Colorectal cancer (CRC) begins when cells in the colon and rectum follow an indefinite pattern of division due to aberrant Wnt activation as one of the key hallmarks. Decades-long progress in research on R-spondins has demonstrated their oncogenic function in distinct cancer types, particularly CRC. As a critical regulator of the Wnt pathway, it modulates several phenotypes of cells, such as cell proliferation, invasion, migration, and cancer stem cell properties. Recently, RSPO mutations, gene rearrangements, fusions, copy number alterations, and altered gene expression have also been identified in a variety of cancers, including CRC. In this review, we addressed the recent updates regarding the recurrently altered R-spondins with special emphasis on the RSPO2 gene and its involvement in potentiating Wnt signaling in CRC. In addition to the compelling physiological and biological roles in cellular fate and regulation, we propose that RSPO2 would be valuable as a potential biomarker for prognostic, diagnostic, and therapeutic use in CRC.
Collapse
Affiliation(s)
- Ankit Srivastava
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, Uttar Pradesh 211004, India
| | - Deeksha Rikhari
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, Uttar Pradesh 211004, India
| | - Sameer Srivastava
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, Uttar Pradesh 211004, India
| |
Collapse
|
9
|
He Z, Zhang J, Ma J, Zhao L, Jin X, Li H. R-spondin family biology and emerging linkages to cancer. Ann Med 2023; 55:428-446. [PMID: 36645115 PMCID: PMC9848353 DOI: 10.1080/07853890.2023.2166981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The R-spondin protein family comprises four members (RSPO1-4), which are agonists of the canonical Wnt/β-catenin pathway. Emerging evidence revealed that RSPOs should not only be viewed as agonists of the Wnt/β-catenin pathway but also as regulators for tumor development and progression. Aberrant expression of RSPOs is related to tumorigenesis and tumor development in multiple cancers and their expression of RSPOs has also been correlated with anticancer immune cell signatures. More importantly, the role of RSPOs as potential target therapies and their implication in cancer progressions has been studied in the preclinical and clinical settings. These findings highlight the possible therapeutic value of RSPOs in cancer medicine. However, the expression pattern, effects, and mechanisms of RSPO proteins in cancer remain elusive. Investigating the many roles of RSPOs is likely to expand and improve our understanding of the oncogenic mechanisms mediated by RSPOs. Here, we reviewed the recent advances in the functions and underlying molecular mechanisms of RSPOs in tumor development, cancer microenvironment regulation, and immunity, and discussed the therapeutic potential of targeting RSPOs for cancer treatment. In addition, we also explored the biological feature and clinical relevance of RSPOs in cancer mutagenesis, transcriptional regulation, and immune correlation by bioinformatics analysis.KEY MESSAGESAberrant expressions of RSPOs are detected in various human malignancies and are always correlated with oncogenesis.Although extensive studies of RSPOs have been conducted, their precise molecular mechanism remains poorly understood.Bioinformatic analysis revealed that RSPOs may play a part in the development of the immune composition of the tumor microenvironment.
Collapse
Affiliation(s)
- Zhimin He
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, China
| | - Jialin Zhang
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, China
| | - Jianzhong Ma
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, China
| | - Lei Zhao
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Xiaodong Jin
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Hongbin Li
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, China
| |
Collapse
|
10
|
Leser JM, Torre OM, Gould NR, Guo Q, Buck HV, Kodama J, Otsuru S, Stains JP. Osteoblast-lineage calcium/calmodulin-dependent kinase 2 delta and gamma regulates bone mass and quality. Proc Natl Acad Sci U S A 2023; 120:e2304492120. [PMID: 37976259 PMCID: PMC10666124 DOI: 10.1073/pnas.2304492120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 09/30/2023] [Indexed: 11/19/2023] Open
Abstract
Bone regulates its mass and quality in response to diverse mechanical, hormonal, and local signals. The bone anabolic or catabolic responses to these signals are often received by osteocytes, which then coordinate the activity of osteoblasts and osteoclasts on bone surfaces. We previously established that calcium/calmodulin-dependent kinase 2 (CaMKII) is required for osteocytes to respond to some bone anabolic cues in vitro. However, a role for CaMKII in bone physiology in vivo is largely undescribed. Here, we show that conditional codeletion of the most abundant isoforms of CaMKII (delta and gamma) in mature osteoblasts and osteocytes [Ocn-cre:Camk2d/Camk2g double-knockout (dCKO)] caused severe osteopenia in both cortical and trabecular compartments by 8 wk of age. In addition to having less bone mass, dCKO bones are of worse quality, with significant deficits in mechanical properties, and a propensity to fracture. This striking skeletal phenotype is multifactorial, including diminished osteoblast activity, increased osteoclast activity, and altered phosphate homeostasis both systemically and locally. These dCKO mice exhibited decreased circulating phosphate (hypophosphatemia) and increased expression of the phosphate-regulating hormone fibroblast growth factor 23. Additionally, dCKO mice expressed less bone-derived tissue nonspecific alkaline phosphatase protein than control mice. Consistent with altered phosphate homeostasis, we observed that dCKO bones were hypo-mineralized with prominent osteoid seams, analogous to the phenotypes of mice with hypophosphatemia. Altogether, these data reveal a fundamental role for osteocyte CaMKIIδ and CaMKIIγ in the maintenance of bone mass and bone quality and link osteoblast/osteocyte CaMKII to phosphate homeostasis.
Collapse
Affiliation(s)
- Jenna M. Leser
- Department of Othopaedics, University of Maryland School of Medicine, Baltimore, MD21201
| | - Olivia M. Torre
- Department of Othopaedics, University of Maryland School of Medicine, Baltimore, MD21201
| | - Nicole R. Gould
- Department of Othopaedics, University of Maryland School of Medicine, Baltimore, MD21201
| | - Qiaoyue Guo
- Department of Othopaedics, University of Maryland School of Medicine, Baltimore, MD21201
| | - Heather V. Buck
- Department of Othopaedics, University of Maryland School of Medicine, Baltimore, MD21201
| | - Joe Kodama
- Department of Othopaedics, University of Maryland School of Medicine, Baltimore, MD21201
| | - Satoru Otsuru
- Department of Othopaedics, University of Maryland School of Medicine, Baltimore, MD21201
| | - Joseph P. Stains
- Department of Othopaedics, University of Maryland School of Medicine, Baltimore, MD21201
| |
Collapse
|
11
|
Doherty L, Wan M, Peterson A, Youngstrom DW, King JS, Kalajzic I, Hankenson KD, Sanjay A. Wnt-associated adult stem cell marker Lgr6 is required for osteogenesis and fracture healing. Bone 2023; 169:116681. [PMID: 36708855 PMCID: PMC10015414 DOI: 10.1016/j.bone.2023.116681] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 01/26/2023]
Abstract
Despite the remarkable regenerative capacity of skeletal tissues, nonunion of bone and failure of fractures to heal properly presents a significant clinical concern. Stem and progenitor cells are present in bone and become activated following injury; thus, elucidating mechanisms that promote adult stem cell-mediated healing is important. Wnt-associated adult stem marker Lgr6 is implicated in the regeneration of tissues with well-defined stem cell niches in stem cell-reliant organs. Here, we demonstrate that Lgr6 is dynamically expressed in osteoprogenitors in response to fracture injury. We used an Lgr6-null mouse model and found that Lgr6 expression is necessary for maintaining bone volume and efficient postnatal bone regeneration in adult mice. Skeletal progenitors isolated from Lgr6-null mice have reduced colony-forming potential and reduced osteogenic differentiation capacity due to attenuated cWnt signaling. Lgr6-null mice consist of a lower proportion of self-renewing stem cells. In response to fracture injury, Lgr6-null mice have a deficiency in the proliferation of periosteal progenitors and reduced ALP activity. Further, analysis of the bone regeneration phase and remodeling phase of fracture healing in Lgr6-null mice showed impaired endochondral ossification and decreased mineralization. We propose that in contrast to not being required for successful skeletal development, Lgr6-positive cells have a direct role in endochondral bone repair.
Collapse
Affiliation(s)
- Laura Doherty
- Department of Orthopaedic Surgery, UConn Musculoskeletal Institute, School of Medicine, USA; School of Dental Medicine, UConn Health, Farmington, CT 06030, USA
| | - Matthew Wan
- Department of Orthopaedic Surgery, UConn Musculoskeletal Institute, School of Medicine, USA
| | - Anna Peterson
- Department of Orthopaedic Surgery, UConn Musculoskeletal Institute, School of Medicine, USA
| | - Daniel W Youngstrom
- Department of Orthopaedic Surgery, UConn Musculoskeletal Institute, School of Medicine, USA
| | - Justin S King
- Department of Orthopaedic Surgery, UConn Musculoskeletal Institute, School of Medicine, USA
| | - Ivo Kalajzic
- School of Dental Medicine, UConn Health, Farmington, CT 06030, USA; Department of Reconstructive Sciences, School of Dental Medicine, UConn Health, Farmington, CT 06030, USA
| | - Kurt D Hankenson
- Department of Orthopaedic Surgery, School of Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Archana Sanjay
- Department of Orthopaedic Surgery, UConn Musculoskeletal Institute, School of Medicine, USA.
| |
Collapse
|
12
|
Knights AJ, Farrell EC, Ellis OM, Lammlin L, Junginger LM, Rzeczycki PM, Bergman RF, Pervez R, Cruz M, Knight E, Farmer D, Samani AA, Wu CL, Hankenson KD, Maerz T. Synovial fibroblasts assume distinct functional identities and secrete R-spondin 2 in osteoarthritis. Ann Rheum Dis 2023; 82:272-282. [PMID: 36175067 PMCID: PMC9972892 DOI: 10.1136/ard-2022-222773] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 09/22/2022] [Indexed: 02/04/2023]
Abstract
OBJECTIVES Synovium is acutely affected following joint trauma and contributes to post-traumatic osteoarthritis (PTOA) progression. Little is known about discrete cell types and molecular mechanisms in PTOA synovium. We aimed to describe synovial cell populations and their dynamics in PTOA, with a focus on fibroblasts. We also sought to define mechanisms of synovial Wnt/β-catenin signalling, given its emerging importance in arthritis. METHODS We subjected mice to non-invasive anterior cruciate ligament rupture as a model of human joint injury. We performed single-cell RNA-sequencing to assess synovial cell populations, subjected Wnt-GFP reporter mice to joint injury to study Wnt-active cells, and performed intra-articular injections of the Wnt agonist R-spondin 2 (Rspo2) to assess whether gain of function induced pathologies characteristic of PTOA. Lastly, we used cultured fibroblasts, macrophages and chondrocytes to study how Rspo2 orchestrates crosstalk between joint cell types. RESULTS We uncovered seven distinct functional subsets of synovial fibroblasts in healthy and injured synovium, and defined their temporal dynamics in early and established PTOA. Wnt/β-catenin signalling was overactive in PTOA synovium, and Rspo2 was strongly induced after injury and secreted exclusively by Prg4hi lining fibroblasts. Trajectory analyses predicted that Prg4hi lining fibroblasts arise from a pool of Dpp4+ mesenchymal progenitors in synovium, with SOX5 identified as a potential regulator of this emergence. We also showed that Rspo2 orchestrated pathological crosstalk between synovial fibroblasts, macrophages and chondrocytes. CONCLUSIONS Synovial fibroblasts assume distinct functional identities during PTOA in mice, and Prg4hi lining fibroblasts secrete Rspo2 that may drive pathological joint crosstalk after injury.
Collapse
Affiliation(s)
- Alexander J. Knights
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Easton C. Farrell
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA,Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Olivia M. Ellis
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Lindsey Lammlin
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Lucas M. Junginger
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Phillip M. Rzeczycki
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Rachel F. Bergman
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Rida Pervez
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Monique Cruz
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Eleanor Knight
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Dennis Farmer
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Alexa A. Samani
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Chia-Lung Wu
- Department of Orthopaedic Surgery and Rehabilitation, Center for Musculoskeletal Research, University of Rochester, Rochester, NY, USA
| | - Kurt D. Hankenson
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA,Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Tristan Maerz
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, Michigan, USA .,Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
13
|
Jin R, Zhang H, Lin C, Guo J, Zou W, Chen Z, Liu H. Inhibition of miR338 rescues cleidocranial dysplasia in Runx2 mutant mice partially via the Hif1a-Vegfa axis. Exp Mol Med 2023; 55:69-80. [PMID: 36599929 PMCID: PMC9898552 DOI: 10.1038/s12276-022-00914-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 11/01/2022] [Accepted: 11/08/2022] [Indexed: 01/06/2023] Open
Abstract
Haploinsufficiency of Runt-related transcription factor-2 (RUNX2) is responsible for cleidocranial dysplasia (CCD), a rare hereditary disease with a range of defects, including delayed closure of the cranial sutures and short stature. Symptom-based treatments, such as a combined surgical-orthodontic approach, are commonly used to treat CCD patients. However, there have been few reports of treatments based on Runx2-specific regulation targeting dwarfism symptoms. Previously, we found that the miR338 cluster, a potential diagnostic and therapeutic target for postmenopausal osteoporosis, could directly target Runx2 during osteoblast differentiation in vitro. Here, we generated miR338-/-;Runx2+/- mice to investigate whether inhibition of miR338 could rescue CCD defects caused by Runx2 mutation in vivo. We found that the dwarfism phenotype caused by Runx2 haploinsufficiency was recovered in miR338-/-;Runx2+/- mice, with complete bone density restoration and quicker closure of fontanels. Single-cell RNA-seq analysis revealed that knockout of miR338 specifically rescued the osteoblast lineage priming ability of bone marrow stromal cells in Runx2+/- femurs, which was further confirmed by Osterix-specific conditional knockout of miR338 in Runx2+/- mice (OsxCre; miR338 fl/fl;Runx2+/-). Mechanistically, ablation of the miR338 cluster in Runx2+/- femurs directly rescued the Hif1a-Vegfa pathway in Runx2+/- osteoblasts, as proven by gene expression profiles and ChIP and Re-ChIP assays. Collectively, our data revealed the genetic interaction between Runx2 and the miR338 cluster during osteoblast differentiation and implied that the miR338 cluster could be a potential therapeutic target for CCD.
Collapse
Affiliation(s)
- Runze Jin
- grid.49470.3e0000 0001 2331 6153The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory for Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan, 430079 China
| | - Hanshu Zhang
- grid.49470.3e0000 0001 2331 6153The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory for Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan, 430079 China
| | - Chujiao Lin
- grid.49470.3e0000 0001 2331 6153The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory for Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan, 430079 China ,grid.168645.80000 0001 0742 0364Division of Rheumatology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605 USA
| | - Jinqiang Guo
- grid.49470.3e0000 0001 2331 6153The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory for Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan, 430079 China
| | - Weiguo Zou
- grid.410726.60000 0004 1797 8419State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Zhi Chen
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory for Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan, 430079, China.
| | - Huan Liu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory for Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan, 430079, China. .,Department of Periodontology, School of Stomatology, Wuhan University, Wuhan, 430079, China. .,Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China.
| |
Collapse
|
14
|
Abstract
Despite the significant progress made over the past decade with combination of molecular profiling data and the development of new clinical strategies, our understanding of metastasis remains elusive. Bone metastasis is a complex process and a major cause of mortality in breast and prostate cancer patients, for which there is no effective treatment to-date. The current review summarizes the routes taken by the metastatic cells and the interactions between them and the bone microenvironment. We emphasize the role of the specified niches and cues that promote cellular adhesion, colonization, prolonged dormancy, and reactivation. Understanding these mechanisms will provide better insights for future studies and treatment strategies for bone metastatic conditions.
Collapse
|
15
|
Caetano da Silva C, Edouard T, Fradin M, Aubert-Mucca M, Ricquebourg M, Raman R, Salles JP, Charon V, Guggenbuhl P, Muller M, Cohen-Solal M, Collet C. WNT11, a new gene associated with early onset osteoporosis, is required for osteoblastogenesis. Hum Mol Genet 2022; 31:1622-1634. [PMID: 34875064 PMCID: PMC9122655 DOI: 10.1093/hmg/ddab349] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/30/2021] [Accepted: 12/02/2021] [Indexed: 11/12/2022] Open
Abstract
Monogenic early onset osteoporosis (EOOP) is a rare disease defined by low bone mineral density (BMD) that results in increased risk of fracture in children and young adults. Although several causative genes have been identified, some of the EOOP causation remains unresolved. Whole-exome sequencing revealed a de novo heterozygous loss-of-function mutation in Wnt family member 11 (WNT11) (NM_004626.2:c.677_678dup p.Leu227Glyfs*22) in a 4-year-old boy with low BMD and fractures. We identified two heterozygous WNT11 missense variants (NM_004626.2:c.217G > A p.Ala73Thr) and (NM_004626.2:c.865G > A p.Val289Met) in a 51-year-old woman and in a 61-year-old woman, respectively, both with bone fragility. U2OS cells with heterozygous WNT11 mutation (NM_004626.2:c.690_721delfs*40) generated by CRISPR-Cas9 showed reduced cell proliferation (30%) and osteoblast differentiation (80%) as compared with wild-type U2OS cells. The expression of genes in the Wnt canonical and non-canonical pathways was inhibited in these mutant cells, but recombinant WNT11 treatment rescued the expression of Wnt pathway target genes. Furthermore, the expression of RSPO2, a WNT11 target involved in bone cell differentiation, and its receptor leucine-rich repeat containing G protein-coupled receptor 5 (LGR5), was decreased in WNT11 mutant cells. Treatment with WNT5A and WNT11 recombinant proteins reversed LGR5 expression, but Wnt family member 3A (WNT3A) recombinant protein treatment had no effect on LGR5 expression in mutant cells. Moreover, treatment with recombinant RSPO2 but not WNT11 or WNT3A activated the canonical pathway in mutant cells. In conclusion, we have identified WNT11 as a new gene responsible for EOOP, with loss-of-function variant inhibiting bone formation via Wnt canonical and non-canonical pathways. WNT11 may activate Wnt signaling by inducing the RSPO2-LGR5 complex via the non-canonical Wnt pathway.
Collapse
Affiliation(s)
- Caroline Caetano da Silva
- INSERM U1132 and Université de Paris, Reference Centre for Rare Bone Diseases, Hospital Lariboisière, Paris F-75010, France
| | - Thomas Edouard
- Endocrine Bone Diseases and Genetics Unit, Reference Centre for Rare Diseases of Calcium and Phosphate Metabolism, ERN BOND, OSCAR Network, Pediatric Clinical Research Unit, Children’s Hospital, RESTORE INSERM U1301, Toulouse University Hospital, Toulouse 31300, France
| | - Melanie Fradin
- Service de Génétique Clinique, Centre de Référence des Anomalies du Développement de l'Ouest, Hôpital Sud de Rennes, Rennes F-35033, France
| | - Marion Aubert-Mucca
- Endocrine Bone Diseases and Genetics Unit, Reference Centre for Rare Diseases of Calcium and Phosphate Metabolism, ERN BOND, OSCAR Network, Pediatric Clinical Research Unit, Children’s Hospital, RESTORE INSERM U1301, Toulouse University Hospital, Toulouse 31300, France
| | - Manon Ricquebourg
- INSERM U1132 and Université de Paris, Reference Centre for Rare Bone Diseases, Hospital Lariboisière, Paris F-75010, France
| | - Ratish Raman
- Laboratory for Organogenesis and Regeneration (LOR), GIGA-Research, Liège University, Liège 4000, Belgium
| | - Jean Pierre Salles
- Endocrine Bone Diseases and Genetics Unit, Reference Centre for Rare Diseases of Calcium and Phosphate Metabolism, ERN BOND, OSCAR Network, Pediatric Clinical Research Unit, Children’s Hospital, RESTORE INSERM U1301, Toulouse University Hospital, Toulouse 31300, France
| | - Valérie Charon
- Department of Radiology, CHU de Rennes, Rennes F-35000, France
| | | | - Marc Muller
- Laboratory for Organogenesis and Regeneration (LOR), GIGA-Research, Liège University, Liège 4000, Belgium
| | - Martine Cohen-Solal
- INSERM U1132 and Université de Paris, Reference Centre for Rare Bone Diseases, Hospital Lariboisière, Paris F-75010, France
| | - Corinne Collet
- INSERM U1132 and Université de Paris, Reference Centre for Rare Bone Diseases, Hospital Lariboisière, Paris F-75010, France
- Département de Génétique, UF de Génétique Moléculaire, Hôpital Robert Debré, APHP, Paris F-75019, France
| |
Collapse
|
16
|
Khedgikar V, Charles JF, Lehoczky JA. Mouse LGR6 regulates osteogenesis in vitro and in vivo through differential ligand use. Bone 2022; 155:116267. [PMID: 34856421 DOI: 10.1016/j.bone.2021.116267] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 11/04/2021] [Accepted: 11/24/2021] [Indexed: 12/15/2022]
Abstract
Leucine-rich repeat containing G-protein-coupled receptor 6 (LGR6) is a marker of osteoprogenitor cells and is dynamically expressed during in vitro osteodifferentation of mouse and human mesenchymal stem cells (MSCs). While the Lgr6 genomic locus has been associated with osteoporosis in human cohorts, the precise molecular function of LGR6 in osteogenesis and maintenance of bone mass are not yet known. In this study, we performed in vitro Lgr6 knockdown and overexpression experiments in murine osteoblastic cells and find decreased Lgr6 levels results in reduced osteoblast proliferation, differentiation, and mineralization. Consistent with these data, overexpression of Lgr6 in these cells leads to significantly increased proliferation and osteodifferentiation. To determine whether these findings are recapitulated in vivo, we performed microCT and ex vivo osteodifferentiation analyses using our newly generated CRISPR-Cas9 mediated Lgr6 mouse knockout allele (Lgr6-KO). We find that ex vivo osteodifferentiation of Lgr6-KO primary MSCs is significantly reduced, and 8 week-old Lgr6-KO mice have less trabecular bone mass as compared to Lgr6 wildtype controls, indicating that Lgr6 is necessary for normal osteogenesis and bone mass. Towards mechanism, we analyzed in vitro signaling in the context of two LGR6 ligands, RSPO2 and MaR1. We find that RSPO2 stimulates LGR6-mediated WNT/β-catenin signaling whereas MaR1 stimulates LGR6-mediated cAMP activity, suggesting two ligand-dependent functions for LGR6 receptor signaling during osteogenesis. Collectively, this study reveals that Lgr6 is necessary for wildtype levels of proliferation and differentiation of osteoblasts, and achieving normal bone mass.
Collapse
Affiliation(s)
- Vikram Khedgikar
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Julia F Charles
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Jessica A Lehoczky
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Boston, MA 02115, USA.
| |
Collapse
|
17
|
Wnt/β-catenin signalling: function, biological mechanisms, and therapeutic opportunities. Signal Transduct Target Ther 2022; 7:3. [PMID: 34980884 PMCID: PMC8724284 DOI: 10.1038/s41392-021-00762-6] [Citation(s) in RCA: 1076] [Impact Index Per Article: 358.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 06/28/2021] [Accepted: 07/07/2021] [Indexed: 02/06/2023] Open
Abstract
The Wnt/β-catenin pathway comprises a family of proteins that play critical roles in embryonic development and adult tissue homeostasis. The deregulation of Wnt/β-catenin signalling often leads to various serious diseases, including cancer and non-cancer diseases. Although many articles have reviewed Wnt/β-catenin from various aspects, a systematic review encompassing the origin, composition, function, and clinical trials of the Wnt/β-catenin signalling pathway in tumour and diseases is lacking. In this article, we comprehensively review the Wnt/β-catenin pathway from the above five aspects in combination with the latest research. Finally, we propose challenges and opportunities for the development of small-molecular compounds targeting the Wnt signalling pathway in disease treatment.
Collapse
|
18
|
Nagano K, Yamana K, Saito H, Kiviranta R, Pedroni AC, Raval D, Niehrs C, Gori F, Baron R. R-spondin 3 deletion induces Erk phosphorylation to enhance Wnt signaling and promote bone formation in the appendicular skeleton. eLife 2022; 11:84171. [PMID: 36321691 PMCID: PMC9681208 DOI: 10.7554/elife.84171] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 10/18/2022] [Indexed: 11/23/2022] Open
Abstract
Activation of Wnt signaling leads to high bone density. The R-spondin family of four secreted glycoproteins (Rspo1-4) amplifies Wnt signaling. In humans, RSPO3 variants are strongly associated with bone density. Here, we investigated the role of Rspo3 in skeletal homeostasis in mice. Using a comprehensive set of mouse genetic and mechanistic studies, we show that in the appendicular skeleton, Rspo3 haplo-insufficiency and Rspo3 targeted deletion in Runx2+ osteoprogenitors lead to an increase in trabecular bone mass, with increased number of osteoblasts and bone formation. In contrast and highlighting the complexity of Wnt signaling in the regulation of skeletal homeostasis, we show that Rspo3 deletion in osteoprogenitors results in the opposite phenotype in the axial skeleton, i.e., low vertebral trabecular bone mass. Mechanistically, Rspo3 deficiency impairs the inhibitory effect of Dkk1 on Wnt signaling activation and bone mass. We demonstrate that Rspo3 deficiency leads to activation of Erk signaling which in turn, stabilizes β-catenin and Wnt signaling activation. Our data demonstrate that Rspo3 haplo-insufficiency/deficiency boosts canonical Wnt signaling by activating Erk signaling, to favor osteoblastogenesis, bone formation, and bone mass.
Collapse
Affiliation(s)
- Kenichi Nagano
- School of Dental Medicine, Harvard UniversityBostonUnited States
| | - Kei Yamana
- School of Dental Medicine, Harvard UniversityBostonUnited States
| | - Hiroaki Saito
- School of Dental Medicine, Harvard UniversityBostonUnited States
| | - Riku Kiviranta
- School of Dental Medicine, Harvard UniversityBostonUnited States
| | | | - Dhairya Raval
- School of Dental Medicine, Harvard UniversityBostonUnited States
| | - Christof Niehrs
- German Cancer Research Center, DKFZ-ZMBH AllianceHeidelbergGermany,Institute of Molecular Biology (IMB)MainzGermany
| | - Francesca Gori
- School of Dental Medicine, Harvard UniversityBostonUnited States
| | - Roland Baron
- School of Dental Medicine, Harvard UniversityBostonUnited States,Department of Medicine, Harvard Medical SchoolBostonUnited States,Endocrine Unit, Massachusetts General HospitalBostonUnited States
| |
Collapse
|
19
|
Yue Z, Niu X, Yuan Z, Qin Q, Jiang W, He L, Gao J, Ding Y, Liu Y, Xu Z, Li Z, Yang Z, Li R, Xue X, Gao Y, Yue F, Zhang XHF, Hu G, Wang Y, Li Y, Chen G, Siwko S, Gartland A, Wang N, Xiao J, Liu M, Luo J. RSPO2/RANKL-LGR4 signaling regulates osteoclastic pre-metastatic niche formation and bone metastasis. J Clin Invest 2021; 132:144579. [PMID: 34847079 PMCID: PMC8759794 DOI: 10.1172/jci144579] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 11/24/2021] [Indexed: 11/17/2022] Open
Abstract
Therapeutics targeting osteoclasts are commonly used treatments for bone metastasis; however, whether and how osteoclasts regulate pre-metastatic niche and bone tropism is largely unknown. In this study, we report that osteoclast precursors (OPs) can function as a pre-metastatic niche component that facilitates breast cancer (BCa) bone metastasis at early stages. At the molecular level, unbiased GPCR ligand/agonist screening in BCa cells suggested that R-spondin 2 (RSPO2) and RANKL, through interacting with their receptor LGR4, promoted osteoclastic pre-metastatic niche formation and enhanced BCa bone metastasis. This was achieved by RSPO2/RANKL-LGR4 signal modulating WNT inhibitor DKK1 through Gαq and β-catenin signaling. DKK1 directly facilitated OP recruitment through suppressing its receptor low-density lipoprotein-related receptors 5 (LRP5) but not LRP6, upregulating Rnasek expression via inhibiting canonical WNT signaling. In clinical samples, RSPO2, LGR4 and DKK1 expression showed positive correlation with BCa bone metastasis. Furthermore, soluble LGR4 extracellular domain (ECD) protein, acting as a decoy receptor for RSPO2 and RANKL, significantly alleviated bone metastasis and osteolytic lesions in mouse bone metastasis model. These findings provide unique insights into the functional role of OPs as key components of pre-metastatic niche for BCa bone metastasis, indicate RSPO2/RANKL-LGR4 signaling as a promising target for inhibiting BCa bone metastasis.
Collapse
Affiliation(s)
- Zhiying Yue
- Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Xin Niu
- Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Zengjin Yuan
- Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Qin Qin
- Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Wenhao Jiang
- Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Tongji University School of Medicine, Shanghai, China
| | - Liang He
- Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Tongji University School of Medicine, Shanghai, China
| | - Jingduo Gao
- Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Yi Ding
- Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Yanxi Liu
- Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Ziwei Xu
- Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Zhenxi Li
- Department of Orthopedic Oncology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Zhengfeng Yang
- Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Rong Li
- Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Xiwen Xue
- Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Yankun Gao
- Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, China
| | - Fei Yue
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, United States of America
| | - Xiang H-F Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, United States of America
| | - Guohong Hu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai, China
| | - Yi Wang
- Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, China
| | - Yi Li
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, United States of America
| | - Geng Chen
- Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Stefan Siwko
- Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, United States of America
| | - Alison Gartland
- Department of Oncology and Metabolism, The University of Sheffield, Sheffield, United Kingdom
| | - Ning Wang
- Department of Oncology and Metabolism, The University of Sheffield, Sheffield, United Kingdom
| | - Jianru Xiao
- Department of Orthopaedic Oncology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Mingyao Liu
- Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Jian Luo
- Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| |
Collapse
|
20
|
Garcia J, Smith SS, Karki S, Drissi H, Hrdlicka HH, Youngstrom DW, Delany AM. miR-433-3p suppresses bone formation and mRNAs critical for osteoblast function in mice. J Bone Miner Res 2021; 36:1808-1822. [PMID: 34004029 DOI: 10.1002/jbmr.4339] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 05/03/2021] [Accepted: 05/10/2021] [Indexed: 12/16/2022]
Abstract
MicroRNAs (miRNAs) are key posttranscriptional regulators of osteoblastic commitment and differentiation. miR-433-3p was previously shown to target Runt-related transcription factor 2 (Runx2) and to be repressed by bone morphogenetic protein (BMP) signaling. Here, we show that miR-433-3p is progressively decreased during osteoblastic differentiation of primary mouse bone marrow stromal cells in vitro, and we confirm its negative regulation of this process. Although repressors of osteoblastic differentiation often promote adipogenesis, inhibition of miR-433-3p did not affect adipocyte differentiation in vitro. Multiple pathways regulate osteogenesis. Using luciferase-3' untranslated region (UTR) reporter assays, five novel miR-433-3p targets involved in parathyroid hormone (PTH), mitogen-activated protein kinase (MAPK), Wnt, and glucocorticoid signaling pathways were validated. We show that Creb1 is a miR-433-3p target, and this transcription factor mediates key signaling downstream of PTH receptor activation. We also show that miR-433-3p targets hydroxysteroid 11-β dehydrogenase 1 (Hsd11b1), the enzyme that locally converts inactive glucocorticoids to their active form. miR-433-3p dampens glucocorticoid signaling, and targeting of Hsd11b1 could contribute to this phenomenon. Moreover, miR-433-3p targets R-spondin 3 (Rspo3), a leucine-rich repeat-containing G-protein coupled receptor (LGR) ligand that enhances Wnt signaling. Notably, Wnt canonical signaling is also blunted by miR-433-3p activity. In vivo, expression of a miR-433-3p inhibitor or tough decoy in the osteoblastic lineage increased trabecular bone volume. Mice expressing the miR-433-3p tough decoy displayed increased bone formation without alterations in osteoblast or osteoclast numbers or surface, indicating that miR-433-3p decreases osteoblast activity. Overall, we showed that miR-433-3p is a negative regulator of bone formation in vivo, targeting key bone-anabolic pathways including those involved in PTH signaling, Wnt, and endogenous glucocorticoids. Local delivery of miR-433-3p inhibitor could present a strategy for the management of bone loss disorders and bone defect repair. © 2021 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- John Garcia
- Center for Molecular Oncology, UConn Health, Farmington, Connecticut, USA
| | - Spenser S Smith
- Center for Molecular Oncology, UConn Health, Farmington, Connecticut, USA
| | - Sangita Karki
- Center for Molecular Oncology, UConn Health, Farmington, Connecticut, USA
| | - Hicham Drissi
- Department of Orthopaedics, Emory University and Atlanta VA Medical Center, Decatur, Georgia, USA
| | - Henry H Hrdlicka
- Center for Molecular Oncology, UConn Health, Farmington, Connecticut, USA
| | - Daniel W Youngstrom
- Department of Orthopedic Surgery, UConn Health, Farmington, Connecticut, USA
| | - Anne M Delany
- Center for Molecular Oncology, UConn Health, Farmington, Connecticut, USA
| |
Collapse
|
21
|
Nilsson KH, Henning P, El Shahawy M, Nethander M, Andersen TL, Ejersted C, Wu J, Gustafsson KL, Koskela A, Tuukkanen J, Souza PPC, Tuckermann J, Lorentzon M, Ruud LE, Lehtimäki T, Tobias JH, Zhou S, Lerner UH, Richards JB, Movérare-Skrtic S, Ohlsson C. RSPO3 is important for trabecular bone and fracture risk in mice and humans. Nat Commun 2021; 12:4923. [PMID: 34389713 PMCID: PMC8363747 DOI: 10.1038/s41467-021-25124-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 07/19/2021] [Indexed: 11/22/2022] Open
Abstract
With increasing age of the population, countries across the globe are facing a substantial increase in osteoporotic fractures. Genetic association signals for fractures have been reported at the RSPO3 locus, but the causal gene and the underlying mechanism are unknown. Here we show that the fracture reducing allele at the RSPO3 locus associate with increased RSPO3 expression both at the mRNA and protein levels, increased trabecular bone mineral density and reduced risk mainly of distal forearm fractures in humans. We also demonstrate that RSPO3 is expressed in osteoprogenitor cells and osteoblasts and that osteoblast-derived RSPO3 is the principal source of RSPO3 in bone and an important regulator of vertebral trabecular bone mass and bone strength in adult mice. Mechanistic studies revealed that RSPO3 in a cell-autonomous manner increases osteoblast proliferation and differentiation. In conclusion, RSPO3 regulates vertebral trabecular bone mass and bone strength in mice and fracture risk in humans.
Collapse
Affiliation(s)
- Karin H Nilsson
- Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Petra Henning
- Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Maha El Shahawy
- Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Faculty of Dentistry, Department of Oral Biology, Minia University, Minia, Egypt
| | - Maria Nethander
- Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Thomas Levin Andersen
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Department of Pathology, Odense University Hospital, Odense, Denmark
| | - Charlotte Ejersted
- Department of Endocrinology, Odense University Hospital, Odense, Denmark
| | - Jianyao Wu
- Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Karin L Gustafsson
- Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Antti Koskela
- Department of Anatomy and Cell Biology, Faculty of Medicine, Institute of Cancer Research and Translational Medicine, University of Oulu, Oulu, Finland
| | - Juha Tuukkanen
- Department of Anatomy and Cell Biology, Faculty of Medicine, Institute of Cancer Research and Translational Medicine, University of Oulu, Oulu, Finland
| | - Pedro P C Souza
- Innovation in Biomaterials Laboratory, Faculty of Dentistry, Federal University of Goiás, Goiâna, Brazil
| | - Jan Tuckermann
- Institute of Comparative Molecular Endocrinology (CME), University of Ulm, Ulm, Germany
| | - Mattias Lorentzon
- Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Region Västra Götaland, Department of Geriatric Medicine, Sahlgrenska University Hospital, Mölndal, Sweden
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, Australia
| | - Linda Engström Ruud
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere, Finland
- Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Jon H Tobias
- Musculoskeletal Research Unit, Translational Health Sciences, and Medical Research Council Integrative Epidemiology Unit, Bristol Medical School, University of Bristol, Bristol, UK
| | - Sirui Zhou
- Department of Medicine, Centre for Clinical Epidemiology, Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, QC, Canada
- Department of Human Genetics, McGill University, Montréal, QC, Canada
| | - Ulf H Lerner
- Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - J Brent Richards
- Department of Medicine, Centre for Clinical Epidemiology, Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, QC, Canada
- Department of Human Genetics, McGill University, Montréal, QC, Canada
| | - Sofia Movérare-Skrtic
- Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.
| | - Claes Ohlsson
- Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.
- Region Västra Götaland, Department of Drug Treatment, Sahlgrenska University Hospital, Gothenburg, Sweden.
| |
Collapse
|
22
|
Singla B, Lin HP, Chen A, Ahn W, Ghoshal P, Cherian-Shaw M, White J, Stansfield BK, Csányi G. Role of R-spondin 2 in arterial lymphangiogenesis and atherosclerosis. Cardiovasc Res 2021; 117:1489-1509. [PMID: 32750106 PMCID: PMC8152716 DOI: 10.1093/cvr/cvaa244] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 07/16/2020] [Accepted: 07/30/2020] [Indexed: 12/17/2022] Open
Abstract
AIMS Impaired lymphatic drainage of the arterial wall results in intimal lipid accumulation and atherosclerosis. However, the mechanisms regulating lymphangiogenesis in atherosclerotic arteries are not well understood. Our studies identified elevated levels of matrix protein R-spondin 2 (RSPO2) in atherosclerotic arteries. In this study, we investigated the role of RSPO2 in lymphangiogenesis, arterial cholesterol efflux into lesion-draining lymph nodes (LNs) and development of atherosclerosis. METHODS AND RESULTS The effect of RSPO2 on lymphangiogenesis was investigated using human lymphatic endothelial cells (LEC) in vitro and implanted Matrigel plugs in vivo. Cellular and molecular approaches, pharmacological agents, and siRNA silencing of RSPO2 receptor LGR4 were used to investigate RSPO2-mediated signalling in LEC. In vivo low-density lipoprotein (LDL) tracking and perivascular blockade of RSPO2-LGR4 signalling using LGR4-extracellular domain (ECD) pluronic gel in hypercholesterolemic mice were utilized to investigate the role of RSPO2 in arterial reverse cholesterol transport and atherosclerosis. Immunoblotting and imaging experiments demonstrated increased RSPO2 expression in human and mouse atherosclerotic arteries compared to non-atherosclerotic controls. RSPO2 treatment inhibited lymphangiogenesis both in vitro and in vivo. LGR4 silencing and inhibition of RSPO2-LGR4 signalling abrogated RSPO2-induced inhibition of lymphangiogenesis. Mechanistically, we found that RSPO2 suppresses PI3K-AKT-endothelial nitric oxide synthase (eNOS) signalling via LGR4 and inhibits activation of the canonical Wnt-β-catenin pathway. ApoE-/- mice treated with LGR4-ECD developed significantly less atherosclerosis compared with control treatment. Finally, increased arterial lymphatic vessel density and improved lymphatic drainage of fluorescently labelled LDL to deep cervical LNs were observed in LGR4-ECD-treated mice. CONCLUSION These findings demonstrate that RSPO2 inhibits lymphangiogenesis via LGR4 and downstream impairment of AKT-eNOS-nitric oxide signalling. These results may also inform new therapeutic strategies to promote lymphangiogenesis and improve cholesterol efflux from atherosclerotic arteries.
Collapse
Affiliation(s)
- Bhupesh Singla
- Vascular Biology Center, Medical College of Georgia at Augusta University, 1460 Laney Walker Blvd., Augusta, GA, 30912, USA
| | - Hui-Ping Lin
- Vascular Biology Center, Medical College of Georgia at Augusta University, 1460 Laney Walker Blvd., Augusta, GA, 30912, USA
| | - Alex Chen
- Medical Scholars Program, Medical College of Georgia at Augusta University, 1460 Laney Walker Blvd., Augusta, GA, 30912, USA
| | - WonMo Ahn
- Vascular Biology Center, Medical College of Georgia at Augusta University, 1460 Laney Walker Blvd., Augusta, GA, 30912, USA
| | - Pushpankur Ghoshal
- Vascular Biology Center, Medical College of Georgia at Augusta University, 1460 Laney Walker Blvd., Augusta, GA, 30912, USA
| | - Mary Cherian-Shaw
- Vascular Biology Center, Medical College of Georgia at Augusta University, 1460 Laney Walker Blvd., Augusta, GA, 30912, USA
| | - Joseph White
- Department of Pathology, Medical College of Georgia at Augusta University, 1120 15th Street, BF 104, Augusta, GA 30912, USA
| | - Brian K Stansfield
- Vascular Biology Center, Medical College of Georgia at Augusta University, 1460 Laney Walker Blvd., Augusta, GA, 30912, USA
- Department of Pediatrics, Medical College of Georgia at Augusta University, 1120 15th Street, BI6031, Augusta, GA 30912, USA
| | - Gábor Csányi
- Vascular Biology Center, Medical College of Georgia at Augusta University, 1460 Laney Walker Blvd., Augusta, GA, 30912, USA
- Department of Pharmacology and Toxicology, Medical College of Georgia at Augusta University, 1460 Laney Walker Blvd., Augusta, GA, 30912, USA
| |
Collapse
|
23
|
Chen X, Wang S, Cui Z, Gu Y. Bone marrow mesenchymal stem cell-derived extracellular vesicles containing miR-497-5p inhibit RSPO2 and accelerate OPLL. Life Sci 2021; 279:119481. [PMID: 33857573 DOI: 10.1016/j.lfs.2021.119481] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/02/2021] [Accepted: 04/09/2021] [Indexed: 12/17/2022]
Abstract
AIMS Muscle and adipose tissue-derived mesenchymal stem cells presented high osteogenic potentials, which modulate osteoblast function through releasing extracellular vesicles (EVs) containing miRNAs. Herein, this study evaluated the function of bone marrow mesenchymal stem cell-derived extracellular vesicles (BMSC-EVs) delivering miR-497-5p in ossification of the posterior longitudinal ligament (OPLL). MAIN METHODS The expression level of miR-497-5p was validated in ossified posterior longitudinal ligament (PLL) tissues and BMSC-EVs. The uptake of BMSC-EVs by ligament fibroblasts was observed by immunofluorescence. miR-497-5p was overexpressed or downregulated to assess its role in osteogenic differentiation of ligament fibroblasts. Further, an OPLL rat model was established to substantiate the effect of BMSC-EVs enriched with miR-497-5p on OPLL. KEY FINDINGS Ossified PLL tissues presented with high miR-497-5p expression. PLL fibroblasts were identified to endocytose BMSC-EVs. BMSC-EVs could upregulate miR-497-5p and shuttle it to ligament fibroblasts to accelerate the osteogenic differentiation. miR-497-5p targeted and inversely regulated RSPO2. Then, RSPO2 overexpression activated Wnt/β-catenin pathway and repressed the osteogenic differentiation of ligament fibroblasts. In vivo experiments further showed that miR-497-5p-containing BMSC-EVs enhanced OPLL through diminishing RSPO2 and inactivating Wnt/β-catenin pathway. SIGNIFICANCE BMSC-EVs could deliver miR-497-5p to ligament fibroblasts and modulate RSPO2-mediated Wnt/β-catenin pathway, thereby accelerating OPLL.
Collapse
Affiliation(s)
- Xiaohui Chen
- Department of Orthopaedics, First Affiliated Hospital of Xiamen University, Xiamen 361003, PR China
| | - Shengxing Wang
- Department of Orthopaedics, Zhongshan Hospital of Fudan University, Shanghai 200032, PR China
| | - Zhan Cui
- Zhenjiang Hospital of Traditional Chinese and Western Medicine, Zhenjiang 212005, PR China
| | - Yutong Gu
- Department of Orthopaedics, Zhongshan Hospital of Fudan University, Shanghai 200032, PR China.
| |
Collapse
|
24
|
Gong Y, Yuan S, Sun J, Wang Y, Liu S, Guo R, Dong W, Li R. R-Spondin 2 Induces Odontogenic Differentiation of Dental Pulp Stem/Progenitor Cells via Regulation of Wnt/β-Catenin Signaling. Front Physiol 2020; 11:918. [PMID: 32848860 PMCID: PMC7426510 DOI: 10.3389/fphys.2020.00918] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 07/09/2020] [Indexed: 12/28/2022] Open
Abstract
Odontoblast cells generated from human dental pulp stem/progenitor cells (hDPSCs) secrete reparative dentin in responds to an injury. Endogenous Wnt signaling is also activated during this process, and these Wnt-activated cells are responsible for the following repair response. R-spondin 2 (Rspo2) is a potent stem cell growth factor, which strongly potentiates Wnt/β-catenin signaling and plays a vital role in cell differentiation and regeneration. However, the role of Rspo2 during odontoblast differentiation in hDPSCs has not yet been completely understood. This study investigated the effects of Rspo2 on hDPSCs to provide therapeutic insight into dentin regeneration and reparative dentin formation. HDPSCs were extracted from human molars or premolars. Immunofluorescence staining and flow cytometric analysis were used to detect the mesenchymal stem cell markers in hDPSCs. EdU assay and Cell Counting Kit-8 (CCK-8) were performed to explore cell proliferation. The odontogenic differentiation levels were determined by measuring the mRNA and protein expression of DSPP, DMP-1, ALP, and BSP. Immunofluorescence staining was performed to detect the localization of β-catenin. The biological effects of Rspo2 on hDPSCs was investigated using the Lentivirus-based Rspo2 shRNA and recombined human Rspo2 (rhRspo2). Recombined human DKK-1 (rhDKK-1) and recombined human Wnt3a (rhWnt3a) were used for further investigation. The cells generated from human dental pulp expressed mesenchymal stem cell markers Vimentin, Stro-1, Nestin, C-kit, CD90, and CD73, while were negative for CD3, CD31, and CD34. The mRNA expression levels of the odontogenic-related genes DSPP, DMP-1, ALP, and BSP were upregulated in the rhRspo2 treated cells. Silencing Rspo2 suppressed the proliferation and differentiation of the hDPSCs. Blockade of Wnt signaling with DKK-1 inhibited Rspo2-induced activation of Wnt/β-catenin signaling and cell differentiation. The combined use of rhWnt3a and rhRspo2 created a synergistic effect to improve the activation of Wnt/β-catenin signaling. Rspo2 promoted the proliferation and odontogenic differentiation of hDPSCs by regulating the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Yuping Gong
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Department of Clinical Medicine, Academy of Medical Sciences at Zhengzhou University, Zhengzhou, China
| | - Shuai Yuan
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jingjing Sun
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ying Wang
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Sirui Liu
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Runying Guo
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wenhang Dong
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Rui Li
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
25
|
Doherty L, Sanjay A. LGRs in Skeletal Tissues: An Emerging Role for Wnt-Associated Adult Stem Cell Markers in Bone. JBMR Plus 2020; 4:e10380. [PMID: 32666024 PMCID: PMC7340442 DOI: 10.1002/jbm4.10380] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 05/18/2020] [Accepted: 05/31/2020] [Indexed: 02/06/2023] Open
Abstract
Leucine-rich repeat-containing G protein-coupled receptors (LGRs) are adult stem cell markers that have been described across various stem cell niches, and expression of LGRs and their corresponding ligands (R-spondins) has now been reported in multiple bone-specific cell types. The skeleton harbors elusive somatic stem cell populations that are exceedingly compartment-specific and under tight regulation from various signaling pathways. Skeletal progenitors give rise to multiple tissues during development and during regenerative processes of bone, requiring postnatal endochondral and intramembranous ossification. The relevance of LGRs and the LGR/R-spondin ligand interaction in bone and tooth biology is becoming increasingly appreciated. LGRs may define specific stem cell and progenitor populations and their behavior during both development and regeneration, and their role as Wnt-associated receptors with specific ligands poses these proteins as unique therapeutic targets via potential R-spondin agonism. This review seeks to outline the current literature on LGRs in the context of bone and its associated tissues, and points to key future directions for studying the functional role of LGRs and ligands in skeletal biology. © 2020 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Laura Doherty
- Department of Orthopaedic SurgeryUConn HealthFarmingtonCTUSA
| | - Archana Sanjay
- Department of Orthopaedic SurgeryUConn HealthFarmingtonCTUSA
| |
Collapse
|
26
|
Lin X, Patil S, Gao YG, Qian A. The Bone Extracellular Matrix in Bone Formation and Regeneration. Front Pharmacol 2020; 11:757. [PMID: 32528290 PMCID: PMC7264100 DOI: 10.3389/fphar.2020.00757] [Citation(s) in RCA: 397] [Impact Index Per Article: 79.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 05/06/2020] [Indexed: 12/17/2022] Open
Abstract
Bone regeneration repairs bone tissue lost due to trauma, fractures, and tumors, or absent due to congenital disorders. The extracellular matrix (ECM) is an intricate dynamic bio-environment with precisely regulated mechanical and biochemical properties. In bone, ECMs are involved in regulating cell adhesion, proliferation, and responses to growth factors, differentiation, and ultimately, the functional characteristics of the mature bone. Bone ECM can induce the production of new bone by osteoblast-lineage cells, such as MSCs, osteoblasts, and osteocytes and the absorption of bone by osteoclasts. With the rapid development of bone regenerative medicine, the osteoinductive, osteoconductive, and osteogenic potential of ECM-based scaffolds has attracted increasing attention. ECM-based scaffolds for bone tissue engineering can be divided into two types, that is, ECM-modified biomaterial scaffold and decellularized ECM scaffold. Tissue engineering strategies that utilize the functional ECM are superior at guiding the formation of specific tissues at the implantation site. In this review, we provide an overview of the function of various types of bone ECMs in bone tissue and their regulation roles in the behaviors of osteoblast-lineage cells and osteoclasts. We also summarize the application of bone ECM in bone repair and regeneration. A better understanding of the role of bone ECM in guiding cellular behavior and tissue function is essential for its future applications in bone repair and regenerative medicine.
Collapse
Affiliation(s)
| | | | - Yong-Guang Gao
- Laboratory for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Laboratory for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Airong Qian
- Laboratory for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Laboratory for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| |
Collapse
|
27
|
Knani L, Venditti M, Kechiche S, Banni M, Messaoudi I, Minucci S. Melatonin protects bone against cadmium-induced toxicity via activation of Wnt/β-catenin signaling pathway. Toxicol Mech Methods 2019; 30:237-245. [PMID: 31809235 DOI: 10.1080/15376516.2019.1701595] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Among heavy metals, cadmium (Cd) is one of the most toxic for health due to it accumulation in several tissues including bone. Since melatonin (MLT) favors new bone formation through several pathways including Wnt/β-catenin, here we assessed whether MLT has a protective role against Cd induced toxicity in the rat bone tissue. Adult male Wistar rats receiving 50 mg CdCl2/L and/or 3 mg/L MLT were used and were sacrificed 30 days after the treatment. Femurs and plasma were collected and analyzed by various biochemicals, molecular and histological investigation. The results showed that Cd exposure induced bone disorder characterized by histopathological alterations, a decreased alkaline phosphatase activity and plasmatic concentration of osteocalcin. Moreover, also the expression levels of some osteogenic-related genes (Runx2, Ocn and Alp) were down-regulated after Cd treatment. Since mechanistically Cd toxicity reduced the Kinase activity of GSK3β and protein levels of Wnt3a and β-catenin, we observed that MLT administration significantly ameliorated the toxic effects induced by the metal. Our findings provide clues about a potential protective effect of MLT against Cd-induced bone metabolism destruction and that the protection was partially mediated via the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Latifa Knani
- LR11ES41: Génétique, Biodiversité et Valorisation des Bioressources, Institut Supérieur de Biotechnologie, Université de Monastir, Monastir, Tunisia
| | - Massimo Venditti
- Dipartimento di Medicina Sperimentale, Sez. Fisiologia Umana e Funzioni Biologiche Integrate "F. Bottazzi", Università della Campania "Luigi Vanvitelli", Napoli, Italy
| | - Safa Kechiche
- LR11ES41: Génétique, Biodiversité et Valorisation des Bioressources, Institut Supérieur de Biotechnologie, Université de Monastir, Monastir, Tunisia
| | - Mohamed Banni
- UR13AGR08: Biochimie et Ecotoxicologie, ISA Chott-Mariem, Université de Sousse, Sousse, Tunisia
| | - Imed Messaoudi
- LR11ES41: Génétique, Biodiversité et Valorisation des Bioressources, Institut Supérieur de Biotechnologie, Université de Monastir, Monastir, Tunisia
| | - Sergio Minucci
- Dipartimento di Medicina Sperimentale, Sez. Fisiologia Umana e Funzioni Biologiche Integrate "F. Bottazzi", Università della Campania "Luigi Vanvitelli", Napoli, Italy
| |
Collapse
|
28
|
The Regulation of Bone Metabolism and Disorders by Wnt Signaling. Int J Mol Sci 2019; 20:ijms20225525. [PMID: 31698687 PMCID: PMC6888566 DOI: 10.3390/ijms20225525] [Citation(s) in RCA: 225] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/03/2019] [Accepted: 11/04/2019] [Indexed: 12/21/2022] Open
Abstract
Wnt, a secreted glycoprotein, has an approximate molecular weight of 40 kDa, and it is a cytokine involved in various biological phenomena including ontogeny, morphogenesis, carcinogenesis, and maintenance of stem cells. The Wnt signaling pathway can be classified into two main pathways: canonical and non-canonical. Of these, the canonical Wnt signaling pathway promotes osteogenesis. Sclerostin produced by osteocytes is an inhibitor of this pathway, thereby inhibiting osteogenesis. Recently, osteoporosis treatment using an anti-sclerostin therapy has been introduced. In this review, the basics of Wnt signaling, its role in bone metabolism and its involvement in skeletal disorders have been covered. Furthermore, the clinical significance and future scopes of Wnt signaling in osteoporosis, osteoarthritis, rheumatoid arthritis and neoplasia are discussed.
Collapse
|
29
|
Goel PN, Moharrer Y, Hebb JH, Egol AJ, Kaur G, Hankenson KD, Ahn J, Ashley JW. Suppression of Notch Signaling in Osteoclasts Improves Bone Regeneration and Healing. J Orthop Res 2019; 37:2089-2103. [PMID: 31166033 PMCID: PMC6739141 DOI: 10.1002/jor.24384] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 05/28/2019] [Indexed: 02/04/2023]
Abstract
Owing to the central role of osteoclasts in bone physiology and remodeling, manipulation of their maturation process provides a potential therapeutic strategy for treating bone diseases. To investigate this, we genetically inhibited the Notch signaling pathway in the myeloid lineage, which includes osteoclast precursors, using a dominant negative form of MAML (dnMAML) that inhibits the transcriptional complex required for downstream Notch signaling. Osteoclasts derived from dnMAML mice showed no significant differences in early osteoclastic gene expression compared to the wild type. Further, these demonstrated significantly lowered resorption activity using bone surfaces while retaining their osteoblast stimulating ability using ex vivo techniques. Using in vivo approaches, we detected significantly higher bone formation rates and osteoblast gene expression in dnMAML cohorts. Further, these mice exhibited increased bone/tissue mineral density compared to wild type and larger bony calluses in later stages of fracture healing. These observations suggest that therapeutic suppression of osteoclast Notch signaling could reduce, but not eliminate, osteoclastic resorption without suppression of restorative bone remodeling and, therefore, presents a balanced paradigm for increasing bone formation, regeneration, and healing. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 37:2089-2103, 2019.
Collapse
Affiliation(s)
- Peeyush N Goel
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA,Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA
| | - Yasaman Moharrer
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA,Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA
| | - John H Hebb
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA,Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA,Georgetown University School of Medicine, Washington D.C
| | - Alexander J Egol
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA,Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA
| | | | | | - Jaimo Ahn
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA,Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA,Co-corresponding Author: Jaimo Ahn, MD, PhD, FACS, FAOA, Advisory Dean, MSTP Steering Committee, Perelman School of Medicine, Co-Director, Orthopaedic Trauma, University of Pennsylvania Health System, Perelman School of Medicine, University of Pennsylvania, Investigator, Translational Musculoskeletal Research Center, Philadelphia Veterans Affairs Medical Center, 3737 Market Street, Floor 6, Philadelphia, PA-19104, Phone # +1 (215)-662-3340, Fax # +1 (215)-349-5890,
| | - Jason W Ashley
- Eastern Washington University, Cheney, WA,Corresponding Author: Jason Waid Ashley, PhD, Assistant Professor, Biology Department, 526 5th Street, SCI236, Eastern Washington University, Cheney, WA 99004, Phone # +1(509)-359-4665,
| |
Collapse
|
30
|
Humenik F, Cizkova D, Cikos S, Luptakova L, Madari A, Mudronova D, Kuricova M, Farbakova J, Spirkova A, Petrovova E, Cente M, Mojzisova Z, Aboulouard S, Murgoci AN, Fournier I, Salzet M. Canine Bone Marrow-derived Mesenchymal Stem Cells: Genomics, Proteomics and Functional Analyses of Paracrine Factors. Mol Cell Proteomics 2019; 18:1824-1835. [PMID: 31285283 PMCID: PMC6731083 DOI: 10.1074/mcp.ra119.001507] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 06/28/2019] [Indexed: 12/11/2022] Open
Abstract
Adult stem cells have become prominent candidates for treating various diseases in veterinary practice. The main goal of our study was therefore to provide a comprehensive study of canine bone marrow-derived mesenchymal stem cells (BMMSC) and conditioned media, isolated from healthy adult dogs of different breeds. Under well-defined standardized isolation protocols, the multipotent differentiation and specific surface markers of BMMSC were supplemented with their gene expression, proteomic profile, and their biological function. The presented data confirm that canine BMMSC express important genes for differentiation toward osteo-, chondro-, and tendo-genic directions, but also genes associated with angiogenic, neurotrophic, and immunomodulatory properties. Furthermore, using proteome profiling, we identify for the first time the dynamic release of various bioactive molecules, such as transcription and translation factors and osteogenic, growth, angiogenic, and neurotrophic factors from canine BMMSC conditioned medium. Importantly, the relevant genes were linked to their proteins as detected in the conditioned medium and further associated with angiogenic activity in chorioallantoic membrane (CAM) assay. In this way, we show that the canine BMMSC release a variety of bioactive molecules, revealing a strong paracrine component that may possess therapeutic potential in various pathologies. However, extensive experimental or preclinical trials testing canine sources need to be performed in order to better understand their paracrine action, which may lead to novel therapeutic strategies in veterinary medicine.
Collapse
Affiliation(s)
- Filip Humenik
- ‡University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, Košice 041 81, Slovakia
| | - Dasa Cizkova
- ‡University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, Košice 041 81, Slovakia; §Institute of Neuroimmunology, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava 845 10, Slovakia; ¶Université Lille, INSERM, U1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, F-59000 Lille, France.
| | - Stefan Cikos
- ‖Institute of Animal Physiology, Centre of Biosciences of the Slovak Academy of Sciences, Šoltésovej 4-6, Košice 04001, Slovakia
| | - Lenka Luptakova
- ‡University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, Košice 041 81, Slovakia
| | - Aladar Madari
- ‡University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, Košice 041 81, Slovakia
| | - Dagmar Mudronova
- ‡University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, Košice 041 81, Slovakia
| | - Maria Kuricova
- ‡University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, Košice 041 81, Slovakia
| | - Jana Farbakova
- ‡University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, Košice 041 81, Slovakia
| | - Alexandra Spirkova
- ‖Institute of Animal Physiology, Centre of Biosciences of the Slovak Academy of Sciences, Šoltésovej 4-6, Košice 04001, Slovakia
| | - Eva Petrovova
- ‡University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, Košice 041 81, Slovakia
| | - Martin Cente
- §Institute of Neuroimmunology, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava 845 10, Slovakia
| | - Zuzana Mojzisova
- ‡University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, Košice 041 81, Slovakia
| | - Soulaimane Aboulouard
- ¶Université Lille, INSERM, U1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, F-59000 Lille, France
| | - Adriana-Natalia Murgoci
- §Institute of Neuroimmunology, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava 845 10, Slovakia; ¶Université Lille, INSERM, U1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, F-59000 Lille, France
| | - Isabelle Fournier
- ¶Université Lille, INSERM, U1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, F-59000 Lille, France
| | - Michel Salzet
- ¶Université Lille, INSERM, U1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, F-59000 Lille, France.
| |
Collapse
|
31
|
Wu L, Wei Q, Lv Y, Xue J, Zhang B, Sun Q, Xiao T, Huang R, Wang P, Dai X, Xia H, Li J, Yang X, Liu Q. Wnt/β-Catenin Pathway Is Involved in Cadmium-Induced Inhibition of Osteoblast Differentiation of Bone Marrow Mesenchymal Stem Cells. Int J Mol Sci 2019; 20:ijms20061519. [PMID: 30917596 PMCID: PMC6471709 DOI: 10.3390/ijms20061519] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 03/18/2019] [Accepted: 03/22/2019] [Indexed: 12/15/2022] Open
Abstract
Cadmium is a common environmental pollutant that causes bone damage. However, the effects of cadmium on the osteogenic differentiation of bone marrow mesenchymal stem cells (BMMSCs) and its mechanism of action in this process are unclear. Here, we determined the effects of cadmium chloride (CdCl₂) on the osteogenic differentiation of BMMSCs and the potential mechanism involved in this process. As determined in the present investigation, CdCl₂, in a concentration-dependent manner, affected the viability of BMMSCs and their cytoskeletons. Exposure to 0.1 or 0.2 µM CdCl₂ inhibited osteogenic differentiation of BMMSCs, which was reflected in the down-regulation of osteoblast-related genes (ALP, OCN, Runx2, OSX, and OPN); in suppression of the protein expression of alkaline phosphatase (ALP) and runt-related transcription factor 2 (Runx2); and in decreased ALP activity and capacity for mineralization. Moreover, mRNA microarray was performed to determine the roles of these factors in BMMSCs treated with CdCl₂ in comparison to control BMMSCs. As determined with the microarrays, the Wingless-type (Wnt), mothers against decapentaplegic and the C. elegans gene Sam (SMAD), and Janus kinase-Signal Transducers and Activators of Transcription (JAK-STAT) signaling pathways were involved in the effects caused by CdCl₂. Moreover, during differentiation, the protein levels of Wnt3a, β-catenin, lymphoid enhancer factor 1 (LEF1), and T-cell factor 1 (TCF1) were reduced by CdCl₂. The current research shows that CdCl₂ suppresses the osteogenesis of BMMSCs via inhibiting the Wnt/β-catenin pathway. The results establish a previously unknown mechanism for bone injury induced by CdCl₂.
Collapse
Affiliation(s)
- Lu Wu
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| | - Qinzhi Wei
- Food Safety and Health Research Center, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China.
| | - Yingjian Lv
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430, China.
| | - Junchao Xue
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| | - Bo Zhang
- Food Safety and Health Research Center, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China.
| | - Qian Sun
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| | - Tian Xiao
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| | - Rui Huang
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430, China.
| | - Ping Wang
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430, China.
| | - Xiangyu Dai
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| | - Haibo Xia
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| | - Junjie Li
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| | - Xingfen Yang
- Food Safety and Health Research Center, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China.
| | - Qizhan Liu
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
32
|
Ni H, Ni T, Feng J, Bian T, Liu Y, Zhang J. Spondin-2 is a novel diagnostic biomarker for laryngeal squamous cell carcinoma. Pathol Res Pract 2018; 215:286-291. [PMID: 30527359 DOI: 10.1016/j.prp.2018.11.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 11/08/2018] [Accepted: 11/23/2018] [Indexed: 12/19/2022]
Abstract
Spondin-2, belongs to the SOX (SRY-related HMG box) gene family, plays a vital role in the development of malignancy, however, the role of Spondin-2 in laryngeal squamous cell carcinoma (LSCC) remains unknown. The aim of this study is to investigate the prognostic significance of and probable mechanism of Spondin-2 in LSCC. qRT-PCR, western blotting assays and IHC analysis demonstrated that Spondin-2 was significantly increased in LSCC tissues compared with adjacent non-tumorous tissues. In addition, high levels of Spondin-2 was associated with clinical stage, lymph node metastasis and pathology grade of LSCC patients (P <0.05). Kaplan-Meier analysis showed that patients with high expression of Spondin-2 had a lower overall survival rate (P<0.05) than that with low expression of Spondin-2. Moreover, spondin-2 silencing inhibited the proliferation of LSCC cells through inhibiting the activation of PI3K/AKT signaling. In conclusion, spondin-2 might be a novel therapeutic target and prognostic biomarker for LSCC patients.
Collapse
Affiliation(s)
- Haosheng Ni
- Department of Otorhinolaryngology, Affiliated Hospital of Nantong University, No. 20 Xi Si Road, Nantong, 226001, China
| | - Tingting Ni
- Department of Oncology, Nantong Tumor Hospital, No. 30 Tong Yang North Road, Nantong 226001, China
| | - Jia Feng
- Department of Pathology, Affiliated Hospital of Nantong University, No. 20 Xi Si Road, Nantong, 226001, China
| | - Tingting Bian
- Department of Pathology, Affiliated Hospital of Nantong University, No. 20 Xi Si Road, Nantong, 226001, China
| | - Yifei Liu
- Department of Pathology, Affiliated Hospital of Nantong University, No. 20 Xi Si Road, Nantong, 226001, China.
| | - Jianguo Zhang
- Department of Pathology, Affiliated Hospital of Nantong University, No. 20 Xi Si Road, Nantong, 226001, China.
| |
Collapse
|