1
|
Jiang M, Li H, Zhang Q, Xu T, Huang L, Zhang J, Yu H, Zhang J. The role of RGS12 in tissue repair and human diseases. Genes Dis 2025; 12:101480. [PMID: 40271194 PMCID: PMC12017852 DOI: 10.1016/j.gendis.2024.101480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 08/05/2024] [Accepted: 11/02/2024] [Indexed: 04/25/2025] Open
Abstract
Regulator of G protein signaling 12 (RGS12) belongs to the superfamily of RGS proteins defined by a conserved RGS domain that canonically binds and deactivates heterotrimeric G-proteins. As the largest family member, RGS12 is widely expressed in many cells and tissues. In the past few decades, it has been found that RGS12 affects the activity of various cells in the human body, participates in many physiological and pathological processes, and plays an important role in the pathogenesis of many diseases. Here, we set out to comprehensively review the role of RGS12 in human diseases and its mechanisms, highlighting the possibility of RGS12 as a therapeutic target for the treatment of human diseases.
Collapse
Affiliation(s)
- Min Jiang
- Department of Geriatric Oncology and Department of Palliative Care, Chongqing University Cancer Hospital, Chongqing 400030, China
- Department of Plastic Surgery, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, The Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Hongmei Li
- Department of Oncology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Qiong Zhang
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Tongtong Xu
- General Department of Critical Care Medicine, Zhenjiang Traditional Chinese Medicine Hospital, Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Zhenjiang, Jiangsu 212003, China
| | - Le Huang
- Army 72nd Group Military Hospital, Huzhou, Zhejiang 313000, China
| | - Jinghong Zhang
- Department of Plastic Surgery, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, The Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Huiqing Yu
- Department of Geriatric Oncology and Department of Palliative Care, Chongqing University Cancer Hospital, Chongqing 400030, China
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing 400030, China
| | - Junhui Zhang
- Department of Geriatric Oncology and Department of Palliative Care, Chongqing University Cancer Hospital, Chongqing 400030, China
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing 400030, China
| |
Collapse
|
2
|
Ren Y, Xu Z, Xu Y, Xu Y, Chen Y, Chen M, Duan R, Yuan C. Advanced Strategies in Bone Tissue Engineering: "Membrane-Jelly" Hydrogel System to Improve Bone Marrow Stem Cell Osteogenic Differentiation and Bone Regeneration. ACS APPLIED MATERIALS & INTERFACES 2025. [PMID: 40492576 DOI: 10.1021/acsami.5c01346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2025]
Abstract
Traditional bone tissue engineering presents several challenges, including difficulties in obtaining seed cells, relatively slow proliferation within scaffolds, and the potential to induce postimplantation immunogenic reactions. A promising direction for bone-tissue regeneration involves the development of cell-free scaffolds with superior physicochemical and biological properties. This study focused on encapsulating bone marrow stem cells (BMSCs) within stromal cell-derived factor-1α (SDF-1α)-loaded silk fibroin-gelatin methacryloyl (SF-GelMA) hydrogel to create a ″membrane-jelly″ culture platform. Within a specific concentration range, SDF-1α positively influenced BMSC induction and promoted osteogenic differentiation. Decellularized extracellular matrix mimics the stem cell microenvironment, enhancing BMSC adhesion and proliferation, while preventing the loss of stemness. Building upon this foundation, the SDF-1α/GelMA-SF hydrogel matrix provides mechanical support for both the recruitment of BMSCs and their subsequent osteogenic differentiation. Furthermore, it activates various signaling pathways, including bile acid, Notch pathway, and G protein-coupled receptor signaling according to the GO and KEGG results of the RNAseq, thereby synergistically promoting elevated expression of osteogenic markers in BMSCs from multiple perspectives. This comprehensive approach harnesses osteoinductive capacity and accelerates bone tissue regeneration. This system is expected to represent an advanced strategy for bone tissue engineering.
Collapse
Affiliation(s)
- Ying Ren
- School of Stomatology, Xuzhou Medical University, No. 209 Tongshan Road, Yunlong District, Xuzhou City, Jiangsu Province 221004, China
- The Affiliated Stomatological Hospital of Xuzhou Medical University, No. 130 Huaihai West Road, Xuzhou City, Jiangsu Province 221002, China
| | - Zitang Xu
- School of Stomatology, Xuzhou Medical University, No. 209 Tongshan Road, Yunlong District, Xuzhou City, Jiangsu Province 221004, China
| | - Yangpeng Xu
- School of Stomatology, Xuzhou Medical University, No. 209 Tongshan Road, Yunlong District, Xuzhou City, Jiangsu Province 221004, China
| | - Yuanqing Xu
- School of Stomatology, Xuzhou Medical University, No. 209 Tongshan Road, Yunlong District, Xuzhou City, Jiangsu Province 221004, China
| | - Yuhang Chen
- School of Stomatology, Xuzhou Medical University, No. 209 Tongshan Road, Yunlong District, Xuzhou City, Jiangsu Province 221004, China
| | - Minmin Chen
- School of Stomatology, Xuzhou Medical University, No. 209 Tongshan Road, Yunlong District, Xuzhou City, Jiangsu Province 221004, China
- The Affiliated Stomatological Hospital of Xuzhou Medical University, No. 130 Huaihai West Road, Xuzhou City, Jiangsu Province 221002, China
| | - Rongquan Duan
- School of Stomatology, Xuzhou Medical University, No. 209 Tongshan Road, Yunlong District, Xuzhou City, Jiangsu Province 221004, China
- The Affiliated Stomatological Hospital of Xuzhou Medical University, No. 130 Huaihai West Road, Xuzhou City, Jiangsu Province 221002, China
| | - Changyong Yuan
- School of Stomatology, Xuzhou Medical University, No. 209 Tongshan Road, Yunlong District, Xuzhou City, Jiangsu Province 221004, China
- The Affiliated Stomatological Hospital of Xuzhou Medical University, No. 130 Huaihai West Road, Xuzhou City, Jiangsu Province 221002, China
| |
Collapse
|
3
|
Xiong S, Zhao H, Sun Q, Li X, Qiu H, van Gestel CAM, Cao L, Wang S, Li J, Chen G. Maternal exposure to polystyrene nanoplastics during gestation and lactation impaired skeletal growth in progeny mice by inhibiting neutrophil extracellular trap formation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 299:118355. [PMID: 40424725 DOI: 10.1016/j.ecoenv.2025.118355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 05/10/2025] [Accepted: 05/18/2025] [Indexed: 05/29/2025]
Abstract
Microplastics and nanoplastics are widely distributed in the natural environment and shown to accumulate in living organisms. While their potential impact on human health has been investigated, significant uncertainties remain regarding their toxic effects and mechanisms of interaction with the human skeletal system. We examined the potential effects of polystyrene nanoplastics (PS-NPs, 100 nm) on skeletal health and the underlying molecular mechanisms using the human RAW264.7 and MC3T3-E1 cell lines as in-vitro models, along with a murine model. Maternal exposure to PS-NPs (10 mg/L) through drinking water during the prenatal and lactational periods led to an increase in osteoblasts, as well as a significant rise in bone mineral density (BMD) and bone content in offspring mice. Exposure to 100 mg/L PS-NPs resulted in a significant reduction in the thickness of the femoral growth plates. Multi-omics analysis revealed that both high (100 mg/L) and low (10 mg/L) maternal PS-NP exposure concentrations disrupted gene expression and metabolic regulation in the skeletal system of offspring mice. Regulatory analysis showed PS-NPs probably induced inflammation and abnormal immune infiltration levels by inhibiting the formation of neutrophil extracellular traps (NETs), especially in 100 mg/L exposure. In in-vitro tests, the PS-NPs dose-relatedly reduced the relative viability of RAW264.7 cells and promoted osteoclast differentiation, but did not affect MC3T3-E1 cells up to 500 mg/L. Our findings demonstrate that maternal exposure to PS-NPs has detrimental effects on skeletal development and function in progeny mice, providing new insights into their toxicological effects on the skeletal system.
Collapse
Affiliation(s)
- Shiyi Xiong
- Shanghai Key Laboratory of Maternal Fetal Medicine, Department of Fetal Medicine and Prenatal Diagnosis Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 201204, China
| | - Han Zhao
- Shanghai Key Laboratory of Maternal Fetal Medicine, Department of Pathology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 201204, China
| | - Qianqian Sun
- Shanghai Key Laboratory of Maternal Fetal Medicine, Department of Fetal Medicine and Prenatal Diagnosis Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 201204, China
| | - Xing Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hao Qiu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Cornelis A M van Gestel
- Amsterdam Institute for Life and Environment (A-LIFE), Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, Amsterdam 1081 Hz, the Netherlands
| | - Liang Cao
- Department of Ophthalmology, Shanghai International Medical Center, Shanghai, China
| | - Shanshan Wang
- Department of Neonatology, Shanghai First Maternity and Infant Hospital, School of medicine, Tongji University, Shanghai 201204, China
| | - Jing Li
- Department of Neonatology, Shanghai First Maternity and Infant Hospital, School of medicine, Tongji University, Shanghai 201204, China.
| | - Guangquan Chen
- Shanghai Key Laboratory of Maternal Fetal Medicine, Department of Pathology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 201204, China.
| |
Collapse
|
4
|
Han GP, Lim B, Kim JM, Kim DY, Kim HW, Kil DY. Transcriptomic analysis of the liver, jejunum, and uterus in different production stages of laying hens. Poult Sci 2025; 104:105329. [PMID: 40449105 PMCID: PMC12164196 DOI: 10.1016/j.psj.2025.105329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2025] [Revised: 05/20/2025] [Accepted: 05/21/2025] [Indexed: 06/02/2025] Open
Abstract
Egg production in laying hens is related to very complex and elaborate processes involving the cooperation of various tissues. Laying hens undergo this complicated production process in different production stages during overall laying periods. However, many previous studies have focused on a single tissue or specific production stage. Thus, we compared multi-tissue transcriptome profiles across different production stages using RNA-seq to understand which overall metabolic changes occur in laying hens as the stage progresses. Laying hens at three distinct production stages of early-phase (EP, 30 wk of age), mid-phase (MP, 46 wk of age), and late-phase (LP, 60 wk of age) were used to analyze transcriptomic changes for the liver, jejunum, and uterus tissues. Weighted gene co-expression network analysis was adopted to detect core modules and central genes, and finally identified 11 co-expression modules. In the liver and jejunum, the expression of genes (e.g., FABP2, FABP7, PPARG) related to fatty acid synthesis was increased with production stages. However, the expression of genes (e.g., GSTA2, BLB1 and BLB2) related to immune responses, including xenobiotic metabolism pathway and the herpes simplex virus 1 infection pathway, was increased in EP compared with other stages. Moreover, the expression of genes related to calcium signaling pathways (e.g., CACNA2D1) and muscle contraction metabolism (e.g., ACTG2 and RYR2) in the uterus was decreased as laying hens were aged. The current findings pave the way for future investigations into the physiological changes in laying hens across different production stages. This research also provides a foundation for elucidating the multi-tissue transcriptome in laying hens and identifying potential genes regulating various biological processes during overall laying periods.
Collapse
Affiliation(s)
- Gi Ppeum Han
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do 17546, Republic of Korea
| | - Byeonghwi Lim
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do 17546, Republic of Korea
| | - Jun-Mo Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do 17546, Republic of Korea
| | - Deok Yun Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do 17546, Republic of Korea
| | - Hyun Woo Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do 17546, Republic of Korea
| | - Dong Yong Kil
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do 17546, Republic of Korea.
| |
Collapse
|
5
|
Sun P, Liu J, Chen G, Guo Y. The Role of G Protein-Coupled Receptors in the Regulation of Orthopaedic Diseases by Gut Microbiota. Nutrients 2025; 17:1702. [PMID: 40431441 PMCID: PMC12114226 DOI: 10.3390/nu17101702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2025] [Revised: 05/09/2025] [Accepted: 05/11/2025] [Indexed: 05/29/2025] Open
Abstract
Exercise and diet modulate the gut microbiota, which is involved in the regulation of orthopaedic diseases and synthesises a wide range of metabolites that modulate cellular function and play an important role in bone development, remodelling and disease. G protein-coupled receptors (GPCRs), the largest family of transmembrane receptors in the human body, interact with gut microbial metabolites to regulate relevant pathological processes. This paper provides a review of different dietary and exercise effects on the pathogenic gut microbiota and their metabolites associated with GPCRs in orthopaedic diseases. RESULTS: Generally, metabolites produced by gut microbiota contribute to the maintenance of bone health by activating the corresponding GPCRs, which are involved in bone metabolism, regulation of immune response, and maintenance of gut flora homeostasis. Exercise and diet can influence gut microbiota, and an imbalance in gut microbiota homeostasis can trigger a series of adverse immune and metabolic responses by affecting GPCR function, ultimately leading to the onset and progression of various orthopaedic diseases. Understanding these relationships is crucial for elucidating the pathogenesis of orthopaedic diseases and developing personalised probiotic-based therapeutic strategies. In the future, we should further explore how to prevent and treat orthopaedic diseases through GPCR-based modulation of gut microbes and their interactions. The development of substances that precisely modulate gut microbes through different exercises and diets will provide more effective interventions to improve bone health in patients.
Collapse
Affiliation(s)
- Peng Sun
- College of Physical Education and Health, East China Normal University, Shanghai 200241, China
- The Key Laboratory of Adolescent Health Assessment and Exercise Intervention of the Ministry of Education, East China Normal University, Shanghai 200241, China
| | - Jinchao Liu
- College of Physical Education and Health, East China Normal University, Shanghai 200241, China
| | - Guannan Chen
- College of Physical Education and Health, East China Normal University, Shanghai 200241, China
| | - Yilan Guo
- College of Physical Education and Health, East China Normal University, Shanghai 200241, China
| |
Collapse
|
6
|
Meng X, Qin L, Wang X. Biased agonism of G protein-coupled receptors as a novel strategy for osteoarthritis therapy. Bone Res 2025; 13:52. [PMID: 40355428 PMCID: PMC12069619 DOI: 10.1038/s41413-025-00435-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 03/28/2025] [Accepted: 04/02/2025] [Indexed: 05/14/2025] Open
Abstract
Osteoarthritis (OA) is a prevalent degenerative joint disorder marked by chronic pain, inflammation, and cartilage loss, with current treatments limited to symptom relief. G protein-coupled receptors (GPCRs) play a pivotal role in OA progression by regulating inflammation, chondrocyte survival, and matrix homeostasis. However, their multifaceted signaling, via G proteins or β-arrestins, poses challenges for precise therapeutic targeting. Biased agonism, where ligands selectively activate specific GPCR pathways, emerges as a promising approach to optimize efficacy and reduce side effects. This review examines biased signaling in OA-associated GPCRs, including cannabinoid receptors (CB1, CB2), chemokine receptors (CCR2, CXCR4), protease-activated receptors (PAR-2), adenosine receptors (A1R, A2AR, A2BR, A3R), melanocortin receptors (MC1R, MC3R), bradykinin receptors (B2R), prostaglandin E2 receptors (EP-2, EP-4), and calcium-sensing receptors (CaSR). We analyze ligands in clinical trials and explore natural products from Traditional Chinese Medicine as potential biased agonists. These compounds, with diverse structures and bioactivities, offer novel therapeutic avenues. By harnessing biased agonism, this review underscores the potential for developing targeted, safer OA therapies that address its complex pathology, bridging molecular insights with clinical translation.
Collapse
Affiliation(s)
- Xiangbo Meng
- Translational Medicine R&D Center, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, PR China
| | - Ling Qin
- Translational Medicine R&D Center, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial & Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China.
| | - Xinluan Wang
- Translational Medicine R&D Center, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
- University of Chinese Academy of Sciences, Beijing, PR China.
- Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, China.
| |
Collapse
|
7
|
Liu H, Zhang X, Ge X, Hsu C, Wang Y, Chen S, Yan X, Xu R, Ma J, Guo S. Optineurin Cooperates With NRF2 to Regulate Tooth Root Morphogenesis by Controlling Mitochondrial Dynamics and Apoptosis. Cell Prolif 2025; 58:e13799. [PMID: 39762159 PMCID: PMC12099217 DOI: 10.1111/cpr.13799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 11/18/2024] [Accepted: 12/18/2024] [Indexed: 05/24/2025] Open
Abstract
Tooth root development is a complex process essential for tooth function, yet the role of root dentin development in tooth morphogenesis is not fully understood. Optineurin (OPTN), linked to bone disorders like Paget's disease of bone (PDB), may affect tooth root development. In this study, we used single-cell sequencing of embryonic day 16.5 (E16.5), postnatal day 1 (P1), and P7 mouse teeth, as well as embryonic and adult human teeth, to show that OPTN is vital for odontoblastic differentiation. In Optn-/- mice, we observed short root deformities and defective dentin, with impaired apical papilla differentiation and increased apoptosis. In vitro OPTN downregulation in stem cells of the apical papilla (SCAPs) exacerbated apoptosis and hindered odontoblastic differentiation. RNA-seq analysis revealed significant differences in mitochondrial dynamics between control and OPTN knockout SCAPs. We discovered that OPTN influences mitochondrial dynamics primarily by promoting fission, leading to odontoblastic differentiation and mineralisation. Mechanistically, OPTN cooperates with NRF2 to regulate mitochondrial fission via DRP1 phosphorylation and affects the transcription of BCL2. Rescue experiments using an activator of NRF2 in ex vivo organ cultures and local gingival injection experiments confirmed these findings. Therefore, we concluded that OPTN, interacting with NRF2, acts as a key regulator of SCAPs mitochondrial dynamics, mineralisation and apoptosis during tooth development. These findings provide fresh insights into the mechanisms underlying tooth root development.
Collapse
Affiliation(s)
- Haojie Liu
- Department of OrthodonticsThe Affiliated Stomatological Hospital of Nanjing Medical UniversityNanjingChina
- State Key Laboratory Cultivation Base of ResearchPrevention and Treatment for Oral Diseases (Nanjing Medical University)NanjingChina
- Jiangsu Province Engineering Research Center of Stomatological Translational MedicineNanjingChina
| | - Xinyu Zhang
- Department of OrthodonticsThe Affiliated Stomatological Hospital of Nanjing Medical UniversityNanjingChina
- State Key Laboratory Cultivation Base of ResearchPrevention and Treatment for Oral Diseases (Nanjing Medical University)NanjingChina
- Jiangsu Province Engineering Research Center of Stomatological Translational MedicineNanjingChina
| | - Xiao Ge
- State Key Laboratory Cultivation Base of ResearchPrevention and Treatment for Oral Diseases (Nanjing Medical University)NanjingChina
- Jiangsu Province Engineering Research Center of Stomatological Translational MedicineNanjingChina
| | - ChingCho Hsu
- Department of OrthodonticsThe Affiliated Stomatological Hospital of Nanjing Medical UniversityNanjingChina
| | - Yan Wang
- Department of OrthodonticsThe Affiliated Stomatological Hospital of Nanjing Medical UniversityNanjingChina
- State Key Laboratory Cultivation Base of ResearchPrevention and Treatment for Oral Diseases (Nanjing Medical University)NanjingChina
- Jiangsu Province Engineering Research Center of Stomatological Translational MedicineNanjingChina
| | - Simai Chen
- Department of OrthodonticsThe Affiliated Stomatological Hospital of Nanjing Medical UniversityNanjingChina
- State Key Laboratory Cultivation Base of ResearchPrevention and Treatment for Oral Diseases (Nanjing Medical University)NanjingChina
- Jiangsu Province Engineering Research Center of Stomatological Translational MedicineNanjingChina
| | - Xingzhi Yan
- Department of OrthodonticsThe Affiliated Stomatological Hospital of Nanjing Medical UniversityNanjingChina
- State Key Laboratory Cultivation Base of ResearchPrevention and Treatment for Oral Diseases (Nanjing Medical University)NanjingChina
- Jiangsu Province Engineering Research Center of Stomatological Translational MedicineNanjingChina
| | - Rongyao Xu
- State Key Laboratory Cultivation Base of ResearchPrevention and Treatment for Oral Diseases (Nanjing Medical University)NanjingChina
- Jiangsu Province Engineering Research Center of Stomatological Translational MedicineNanjingChina
| | - Junqing Ma
- Department of OrthodonticsThe Affiliated Stomatological Hospital of Nanjing Medical UniversityNanjingChina
- State Key Laboratory Cultivation Base of ResearchPrevention and Treatment for Oral Diseases (Nanjing Medical University)NanjingChina
- Jiangsu Province Engineering Research Center of Stomatological Translational MedicineNanjingChina
| | - Shuyu Guo
- Department of OrthodonticsThe Affiliated Stomatological Hospital of Nanjing Medical UniversityNanjingChina
- State Key Laboratory Cultivation Base of ResearchPrevention and Treatment for Oral Diseases (Nanjing Medical University)NanjingChina
- Jiangsu Province Engineering Research Center of Stomatological Translational MedicineNanjingChina
| |
Collapse
|
8
|
Lim W. LGR4 (GPR48): The Emerging Inter-Bridge in Osteoimmunology. Biomedicines 2025; 13:607. [PMID: 40149584 PMCID: PMC11940432 DOI: 10.3390/biomedicines13030607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 02/24/2025] [Accepted: 02/28/2025] [Indexed: 03/29/2025] Open
Abstract
Leucine-rich repeat-containing G-protein-coupled receptor 4 (LGR4), a member of the G-protein-coupled receptor (GPCR) family, has been implicated in various regulatory functions across multiple differentiation stages and numerous target sites in bone diseases. Therefore, LGR4 is a potential regulator of nuclear factor-κB ligand (RANKL) during osteoclast differentiation. However, a comprehensive investigation of its functions and applications in bone immunology is lacking. This review discusses the molecular characteristics, signaling pathways, and role of LGR4 in osteoimmunology, with a particular focus on its interactions with RANKL during osteoclast differentiation, while identifying gaps that warrant further research.
Collapse
Affiliation(s)
- Wonbong Lim
- Department of Orthopaedic Surgery, Chosun University, Gwangju 61453, Republic of Korea; ; Tel.: +82-62-230-6193; Fax: +82-62-226-3379
- Laboratory of Orthopaedic Research, Chosun University, Gwangju 61453, Republic of Korea
- Regional Leading Research Center, Chonnam National University, Yeosu 59626, Republic of Korea
- Department of Premedical Program, School of Medicine, Chosun University, Gwangju 61452, Republic of Korea
| |
Collapse
|
9
|
Krasnova O, Semenova P, Kovaleva A, Sopova J, Turilova V, Yakovleva T, Bystrova O, Martynova M, Neganova I. Derivation of hiPSC line (ICADRB2i007-A-3) from an individual with osteoporosis linked to ADRB2: c.46G > A. Hum Cell 2025; 38:54. [PMID: 39953189 DOI: 10.1007/s13577-025-01180-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 12/01/2024] [Indexed: 02/17/2025]
Abstract
Osteoporosis is a complex multifactorial bone disease with a strong genetic component. Among the various genes implicated in the progression of osteoporosis, those encoding G-protein-coupled receptors (GPCRs) play a crucial role in its pathogenesis. This superfamily of membrane receptors regulates myriad of cellular events including physiological and pathological processes in bone tissue. Beta-2-adrenergic receptor (a member of the GPCR superfamily) mediates cues from sympathetic nervous system to the bone tissue being expressed on both types of bone cells osteoblasts and osteoclasts. While the impact of this receptor typically investigated using animal models, the human gene ADRB2 coding beta-2-adrenergic receptor harbors numerous non-synonymous single-nucleotide polymorphisms (SNPs) that alter the activity of the receptor. One of the most prevalent SNP is c.46G > A; however, its impact on bone homeostasis has only been explored in epidemiological studies with results showing considerable variability. In this study, we generated for the first time induced pluripotent stem cells (iPSCs) line from the patient with osteoporosis carrying c.46G > A in ADRB2. This new cell line exhibits hallmarks of pluripotency, normal karyotype, and ability to differentiate into three-germ layers. Furthermore, we conducted a comparative analysis of ADRB2 expression between newly obtained iPSCs and those derived from healthy donors. This comparison extended to mesenchymal stem cells (iMSCs) derived from these iPSC lines, assessing both basal and osteogenic conditions at the mRNA and protein levels. Our findings revealed that iMSCs from an osteoporotic patient with the c.46G > A in ADRB2 exhibited decreased ADRB2 expression, which correlated with a diminished potential for osteogenic differentiation. Newly obtained iPSCs line represents a promising cell source for in vitro osteoporosis model and offers the possibility to study in-depth the specific impact of c.46G > A in ADRB2 on osteoporosis pathogenesis.
Collapse
Affiliation(s)
- O Krasnova
- The Institute of Cytology, Russian Academy of Sciences, Saint-Petersburg, 194064, Russia.
| | - P Semenova
- The Institute of Cytology, Russian Academy of Sciences, Saint-Petersburg, 194064, Russia
| | - A Kovaleva
- The Institute of Cytology, Russian Academy of Sciences, Saint-Petersburg, 194064, Russia
| | - J Sopova
- The Institute of Cytology, Russian Academy of Sciences, Saint-Petersburg, 194064, Russia
| | - V Turilova
- The Institute of Cytology, Russian Academy of Sciences, Saint-Petersburg, 194064, Russia
| | - T Yakovleva
- The Institute of Cytology, Russian Academy of Sciences, Saint-Petersburg, 194064, Russia
| | - O Bystrova
- The Institute of Cytology, Russian Academy of Sciences, Saint-Petersburg, 194064, Russia
| | - M Martynova
- The Institute of Cytology, Russian Academy of Sciences, Saint-Petersburg, 194064, Russia
| | - I Neganova
- The Institute of Cytology, Russian Academy of Sciences, Saint-Petersburg, 194064, Russia
| |
Collapse
|
10
|
Zhang Y, Li X, Peng P, Qiu Z, Di C, Chen X, Wang N, Chen F, He Y, Liu Z, Zhao F, Zhu D, Dong S, Hu S, Yang Z, Li Y, Guo Y, Yang T. RUNX2 Phase Separation Mediates Long-Range Regulation Between Osteoporosis-Susceptibility Variant and XCR1 to Promote Osteoblast Differentiation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2413561. [PMID: 39704037 PMCID: PMC11809430 DOI: 10.1002/advs.202413561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Indexed: 12/21/2024]
Abstract
GWASs have identified many loci associated with osteoporosis, but the underlying genetic regulatory mechanisms and the potential drug target need to be explored. Here, a new regulatory mechanism is found that a GWAS intergenic SNP (rs4683184) functions as an enhancer to influence the binding affinity of transcription factor RUNX2, whose phase separation can mediate the long-range chromatin interaction between enhancer and target gene XCR1 (a member of the GPCR family), leading to changes of XCR1 expression and osteoblast differentiation. Bone-targeting AAV of Xcr1 can improve bone formation in osteoporosis mice, suggesting that XCR1 can be a new susceptibility gene for osteoporosis. This study is the first to link non-coding SNP with phase separation, providing a new insight into long-range chromatin regulation mechanisms with susceptibility to complex diseases, and finding a potential target for the development of osteoporosis drugs and corresponding translational research.
Collapse
Affiliation(s)
- Yan Zhang
- Key Laboratory of Biomedical Information Engineering of Ministry of EducationKey Laboratory of Biology Multiomics and Diseases in Shaanxi Province Higher Education Institutionsand Biomedical Informatics & Genomics CenterSchool of Life Science and TechnologyXi'an Jiaotong UniversityXi'anShaanxi710049China
| | - Xin‐Hao Li
- Key Laboratory of Biomedical Information Engineering of Ministry of EducationKey Laboratory of Biology Multiomics and Diseases in Shaanxi Province Higher Education Institutionsand Biomedical Informatics & Genomics CenterSchool of Life Science and TechnologyXi'an Jiaotong UniversityXi'anShaanxi710049China
| | - Pai Peng
- Key Laboratory of Biomedical Information Engineering of Ministry of EducationKey Laboratory of Biology Multiomics and Diseases in Shaanxi Province Higher Education Institutionsand Biomedical Informatics & Genomics CenterSchool of Life Science and TechnologyXi'an Jiaotong UniversityXi'anShaanxi710049China
| | - Zi‐Han Qiu
- Key Laboratory of Biomedical Information Engineering of Ministry of EducationKey Laboratory of Biology Multiomics and Diseases in Shaanxi Province Higher Education Institutionsand Biomedical Informatics & Genomics CenterSchool of Life Science and TechnologyXi'an Jiaotong UniversityXi'anShaanxi710049China
| | - Chen‐Xi Di
- Key Laboratory of Biomedical Information Engineering of Ministry of EducationKey Laboratory of Biology Multiomics and Diseases in Shaanxi Province Higher Education Institutionsand Biomedical Informatics & Genomics CenterSchool of Life Science and TechnologyXi'an Jiaotong UniversityXi'anShaanxi710049China
| | - Xiao‐Feng Chen
- Key Laboratory of Biomedical Information Engineering of Ministry of EducationKey Laboratory of Biology Multiomics and Diseases in Shaanxi Province Higher Education Institutionsand Biomedical Informatics & Genomics CenterSchool of Life Science and TechnologyXi'an Jiaotong UniversityXi'anShaanxi710049China
| | - Nai‐Ning Wang
- Key Laboratory of Biomedical Information Engineering of Ministry of EducationKey Laboratory of Biology Multiomics and Diseases in Shaanxi Province Higher Education Institutionsand Biomedical Informatics & Genomics CenterSchool of Life Science and TechnologyXi'an Jiaotong UniversityXi'anShaanxi710049China
- Department of OrthopedicsThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxi710061China
| | - Fei Chen
- Key Laboratory of Biomedical Information Engineering of Ministry of EducationKey Laboratory of Biology Multiomics and Diseases in Shaanxi Province Higher Education Institutionsand Biomedical Informatics & Genomics CenterSchool of Life Science and TechnologyXi'an Jiaotong UniversityXi'anShaanxi710049China
| | - Yin‐Wei He
- Key Laboratory of Biomedical Information Engineering of Ministry of EducationKey Laboratory of Biology Multiomics and Diseases in Shaanxi Province Higher Education Institutionsand Biomedical Informatics & Genomics CenterSchool of Life Science and TechnologyXi'an Jiaotong UniversityXi'anShaanxi710049China
| | - Zhong‐Bo Liu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine ResearchCollege of StomatologyXi'an Jiaotong UniversityXi'anShaanxi710004China
| | - Fan Zhao
- Key Laboratory of Biomedical Information Engineering of Ministry of EducationKey Laboratory of Biology Multiomics and Diseases in Shaanxi Province Higher Education Institutionsand Biomedical Informatics & Genomics CenterSchool of Life Science and TechnologyXi'an Jiaotong UniversityXi'anShaanxi710049China
| | - Dong‐Li Zhu
- Key Laboratory of Biomedical Information Engineering of Ministry of EducationKey Laboratory of Biology Multiomics and Diseases in Shaanxi Province Higher Education Institutionsand Biomedical Informatics & Genomics CenterSchool of Life Science and TechnologyXi'an Jiaotong UniversityXi'anShaanxi710049China
| | - Shan‐Shan Dong
- Key Laboratory of Biomedical Information Engineering of Ministry of EducationKey Laboratory of Biology Multiomics and Diseases in Shaanxi Province Higher Education Institutionsand Biomedical Informatics & Genomics CenterSchool of Life Science and TechnologyXi'an Jiaotong UniversityXi'anShaanxi710049China
| | - Shou‐Ye Hu
- Department of Joint SurgeryHonghui HospitalXi'an Jiaotong UniversityXi'anShaanxi710054China
| | - Zhi Yang
- Department of Joint SurgeryHonghui HospitalXi'an Jiaotong UniversityXi'anShaanxi710054China
| | - Yi‐Ping Li
- Division in Cellular and Molecular MedicineDepartment of Pathology and Laboratory MedicineTulane University School of MedicineTulane UniversityNew OrleansLA70112USA
| | - Yan Guo
- Key Laboratory of Biomedical Information Engineering of Ministry of EducationKey Laboratory of Biology Multiomics and Diseases in Shaanxi Province Higher Education Institutionsand Biomedical Informatics & Genomics CenterSchool of Life Science and TechnologyXi'an Jiaotong UniversityXi'anShaanxi710049China
| | - Tie‐Lin Yang
- Key Laboratory of Biomedical Information Engineering of Ministry of EducationKey Laboratory of Biology Multiomics and Diseases in Shaanxi Province Higher Education Institutionsand Biomedical Informatics & Genomics CenterSchool of Life Science and TechnologyXi'an Jiaotong UniversityXi'anShaanxi710049China
- Department of OrthopedicsThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxi710061China
| |
Collapse
|
11
|
Krasnova O, Sopova J, Kovaleva A, Semenova P, Zhuk A, Smirnova D, Perepletchikova D, Bystrova O, Martynova M, Karelkin V, Lesnyak O, Neganova I. Unraveling the Mechanism of Impaired Osteogenic Differentiation in Osteoporosis: Insights from ADRB2 Gene Polymorphism. Cells 2024; 13:2110. [PMID: 39768200 PMCID: PMC11674950 DOI: 10.3390/cells13242110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/14/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
Osteoporosis is characterized by increased resorption and decreased bone formation; it is predominantly influenced by genetic factors. G-protein coupled receptors (GPCRs) play a vital role in bone homeostasis, and mutations in these genes are associated with osteoporosis. This study aimed to investigate the impact of single nucleotide polymorphism (SNP) rs1042713 in the ADRB2 gene, encoding the beta-2-adrenergic receptor, on osteoblastogenesis. Herein, using quantitative polymerase chain reaction, western immunoblotting, immunofluorescence assays, and flow cytometry, we examined the expression of ADRB2 and markers of bone matrix synthesis in mesenchymal stem cells (MSCs) derived from osteoporosis patient (OP-MSCs) carrying ADRB2 SNP in comparison with MSCs from healthy donor (HD-MSCs). The results showed significantly reduced ADRB2 expression in OP-MSCs at both the mRNA and protein levels, alongside decreased type 1 collagen expression, a key bone matrix component. Notably, OP-MSCs exhibited increased ERK kinase expression during differentiation, indicating sustained cell cycle progression, unlike that going to HD-MSC. These results provide novel insights into the association of ADRB2 gene polymorphisms with osteogenic differentiation. The preserved proliferative activity of OP-MSCs with rs1042713 in ADRB2 contributes to their inability to undergo effective osteogenic differentiation. This research suggests that targeting genetic factors may offer new therapeutic strategies to mitigate osteoporosis progression.
Collapse
Affiliation(s)
- Olga Krasnova
- Laboratory of Molecular Science, Institute of Cytology, Russian Academy of Sciences, Saint Petersburg 194064, Russia
| | - Julia Sopova
- Laboratory of Molecular Science, Institute of Cytology, Russian Academy of Sciences, Saint Petersburg 194064, Russia
| | - Anastasiia Kovaleva
- Laboratory of Molecular Science, Institute of Cytology, Russian Academy of Sciences, Saint Petersburg 194064, Russia
| | - Polina Semenova
- Laboratory of Molecular Science, Institute of Cytology, Russian Academy of Sciences, Saint Petersburg 194064, Russia
| | - Anna Zhuk
- Institute of Applied Computer Science, Saint Petersburg National Research University of Information Technologies, Mechanics and Optics (ITMO University), Saint Petersburg 197101, Russia
| | - Daria Smirnova
- Laboratory of Regenerative Biomedicine, Institute of Cytology, Russian Academy of Sciences, Saint Petersburg 194064, Russia
| | - Daria Perepletchikova
- Laboratory of Regenerative Biomedicine, Institute of Cytology, Russian Academy of Sciences, Saint Petersburg 194064, Russia
| | - Olga Bystrova
- Laboratory of Cell Morphology, Institute of Cytology, Russian Academy of Sciences, Saint Petersburg 194064, Russia
| | - Marina Martynova
- Laboratory of Cell Morphology, Institute of Cytology, Russian Academy of Sciences, Saint Petersburg 194064, Russia
| | - Vitaly Karelkin
- Russian Scientific Research Institute of Traumatology and Orthopedics Named After Roman Romanovich Vreden, Saint Petersburg 195427, Russia
| | - Olga Lesnyak
- Department of Family Medicine, North-Western State Medical University Named After Ilya Ilyich Mechnikov, Saint Petersburg 191015, Russia
| | - Irina Neganova
- Laboratory of Molecular Science, Institute of Cytology, Russian Academy of Sciences, Saint Petersburg 194064, Russia
| |
Collapse
|
12
|
Sopova J, Krasnova O, Vasilieva G, Zhuk A, Lesnyak O, Karelkin V, Neganova I. SNPs in GPCR Genes and Impaired Osteogenic Potency in Osteoporotic Patient Lines-Based Study. Int J Mol Sci 2024; 25:13594. [PMID: 39769358 PMCID: PMC11677449 DOI: 10.3390/ijms252413594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/11/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
G-protein-coupled receptors (GPCRs) have emerged as critical regulators of bone development and remodeling. In this study, we aimed to identify specific GPCR mutations in osteoporotic patients via next-generation sequencing (NGS). We performed NGS sequencing of six genomic DNA samples taken from osteoporotic patients and two genomic DNA samples from healthy donors. Next, we searched for single-nucleotide polymorphisms (SNPs) in GPCR genes that are associated with osteoporosis. For three osteoporotic patients and one healthy donor, bone biopsies were used to generate patient-specific mesenchymal stem cell (MSC) lines, and their ability to undergo osteodifferentiation was analyzed. We found that MSCs derived from osteoporotic patients have a different response to osteoinductive factors and impaired osteogenic differentiation using qPCR and histochemical staining assays. The NGS analysis revealed specific combinations of SNPs in GPCR genes in these patients, where SNPs in ADRB2 (rs1042713), GIPR (rs1800437), CNR2 (rs2501431, rs3003336), and WLS (rs3762371) were associated with impaired osteogenic differentiation capacity. By integrating NGS data with functional assessments of patient-specific cell lines, we linked GPCR mutations to impaired bone formation, providing a foundation for developing personalized therapeutic strategies. SNP analysis is recognized as a proactive approach to osteoporosis management, enabling earlier interventions and targeted preventive measures for individuals at risk. Furthermore, SNP analysis contributes to the development of robust, holistic risk prediction models that enhance the accuracy of risk assessments across the population. This integration of genetic data into public health strategies facilitates healthcare initiatives. This approach could guide treatment decisions tailored to the patient's genetic profile and provide a foundation for developing personalized therapeutic strategies.
Collapse
Affiliation(s)
- Julia Sopova
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia
- Laboratory of Amyloid Biology, Saint-Petersburg State University, St. Petersburg 199034, Russia
| | - Olga Krasnova
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia
| | - Giomar Vasilieva
- Institute of Applied Computer Science, ITMO University, St. Petersburg 197101, Russia
| | - Anna Zhuk
- Laboratory of Amyloid Biology, Saint-Petersburg State University, St. Petersburg 199034, Russia
- Institute of Applied Computer Science, ITMO University, St. Petersburg 197101, Russia
| | - Olga Lesnyak
- Department of Family Medicine, North-Western State Medical University named after I.I. Mechnikov, St. Petersburg 195298, Russia
| | - Vitaliy Karelkin
- Vreden National Medical Research Center of Traumatology and Orthopedics, St. Petersburg 195427, Russia
| | - Irina Neganova
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia
| |
Collapse
|
13
|
Pyka P, Garbo S, Murzyn A, Satała G, Janusz A, Górka M, Pietruś W, Mituła F, Popiel D, Wieczorek M, Palmisano B, Raucci A, Bojarski AJ, Zwergel C, Szymańska E, Kucwaj-Brysz K, Battistelli C, Handzlik J, Podlewska S. Unlocking the potential of higher-molecular-weight 5-HT 7R ligands: Synthesis, affinity, and ADMET examination. Bioorg Chem 2024; 151:107668. [PMID: 39079393 DOI: 10.1016/j.bioorg.2024.107668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/10/2024] [Accepted: 07/22/2024] [Indexed: 08/30/2024]
Abstract
An increasing number of drugs introduced to the market and numerous repositories of compounds with confirmed activity have posed the need to revalidate the state-of-the-art rules that determine the ranges of properties the compounds should possess to become future drugs. In this study, we designed a series of two chemotypes of aryl-piperazine hydantoin ligands of 5-HT7R, an attractive target in search for innovative CNS drugs, with higher molecular weight (close to or over 500). Consequently, 14 new compounds were synthesised and screened for their receptor activity accompanied by extensive docking studies to evaluate the observed structure-activity/properties relationships. The ADMET characterisation in terms of the biological membrane permeability, metabolic stability, hepatotoxicity, cardiotoxicity, and protein plasma binding of the obtained compounds was carried out in vitro. The outcome of these studies constituted the basis for the comprehensive challenge of computational tools for ADMET properties prediction. All the compounds possessed high affinity to the 5-HT7R (Ki below 250 nM for all analysed structures) with good selectivity over 5-HT6R and varying affinity towards 5-HT2AR, 5-HT1AR and D2R. For the best compounds of this study, the expression profile of genes associated with neurodegeneration, anti-oxidant response and anti-inflammatory function was determined, and the survival of the cells (SH-SY5Y as an in vitro model of Alzheimer's disease) was evaluated. One 5-HT7R agent (32) was characterised by a very promising ADMET profile, i.e. good membrane permeability, low hepatotoxicity and cardiotoxicity, and high metabolic stability with the simultaneous high rate of plasma protein binding and high selectivity over other GPCRs considered, together with satisfying gene expression profile modulations and neural cell survival. Such encouraging properties make it a good candidate for further testing and optimisation as a potential agent in the treatment of CNS-related disorders.
Collapse
Affiliation(s)
- Patryk Pyka
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University, Medical College, Medyczna 9, PL 30-688 Kraków, Poland; Doctoral School of Medical and Health Sciences, Jagiellonian University Medical College, 31-530 Kraków, Poland
| | - Sabrina Garbo
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome
| | - Aleksandra Murzyn
- Maj Institute of Pharmacology Polish Academy of Sciences, Smetna 12, 31-343 Kraków, Poland
| | - Grzegorz Satała
- Maj Institute of Pharmacology Polish Academy of Sciences, Smetna 12, 31-343 Kraków, Poland
| | - Artur Janusz
- Preclinical Development Department, Celon Pharma S.A., R&D Centre, Marymoncka 15, 05-152 Kazuń Nowy, Poland
| | - Michał Górka
- Preclinical Development Department, Celon Pharma S.A., R&D Centre, Marymoncka 15, 05-152 Kazuń Nowy, Poland
| | - Wojciech Pietruś
- Medicinal Chemistry Department, Celon Pharma S.A., R&D Centre, Marymoncka 15, 05-152 Kazuń Nowy, Poland
| | - Filip Mituła
- Preclinical Development Department, Celon Pharma S.A., R&D Centre, Marymoncka 15, 05-152 Kazuń Nowy, Poland
| | - Delfina Popiel
- Preclinical Development Department, Celon Pharma S.A., R&D Centre, Marymoncka 15, 05-152 Kazuń Nowy, Poland
| | - Maciej Wieczorek
- Preclinical Development Department, Celon Pharma S.A., R&D Centre, Marymoncka 15, 05-152 Kazuń Nowy, Poland; Clinical Development Department, Celon Pharma S.A., R&D Centre, Marymoncka 15, 05-152 Kazuń Nowy, Poland
| | - Biagio Palmisano
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome
| | - Alessia Raucci
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Andrzej J Bojarski
- Maj Institute of Pharmacology Polish Academy of Sciences, Smetna 12, 31-343 Kraków, Poland
| | - Clemens Zwergel
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; Division of Bioorganic Chemistry, School of Pharmacy, Saarland University, Campus B 2.1, D-66123 Saarbrücken, Germany
| | - Ewa Szymańska
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University, Medical College, Medyczna 9, PL 30-688 Kraków, Poland
| | - Katarzyna Kucwaj-Brysz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University, Medical College, Medyczna 9, PL 30-688 Kraków, Poland
| | - Cecilia Battistelli
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome.
| | - Jadwiga Handzlik
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University, Medical College, Medyczna 9, PL 30-688 Kraków, Poland.
| | - Sabina Podlewska
- Maj Institute of Pharmacology Polish Academy of Sciences, Smetna 12, 31-343 Kraków, Poland.
| |
Collapse
|
14
|
Anghel SA, Dinu-Pirvu CE, Costache MA, Voiculescu AM, Ghica MV, Anuța V, Popa L. Receptor Pharmacogenomics: Deciphering Genetic Influence on Drug Response. Int J Mol Sci 2024; 25:9371. [PMID: 39273318 PMCID: PMC11395000 DOI: 10.3390/ijms25179371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
The paradigm "one drug fits all" or "one dose fits all" will soon be challenged by pharmacogenetics research and application. Drug response-efficacy or safety-depends on interindividual variability. The current clinical practice does not include genetic screening as a routine procedure and does not account for genetic variation. Patients with the same illness receive the same treatment, yielding different responses. Integrating pharmacogenomics in therapy would provide critical information about how a patient will respond to a certain drug. Worldwide, great efforts are being made to achieve a personalized therapy-based approach. Nevertheless, a global harmonized guideline is still needed. Plasma membrane proteins, like receptor tyrosine kinase (RTK) and G protein-coupled receptors (GPCRs), are ubiquitously expressed, being involved in a diverse array of physiopathological processes. Over 30% of drugs approved by the FDA target GPCRs, reflecting the importance of assessing the genetic variability among individuals who are treated with these drugs. Pharmacogenomics of transmembrane protein receptors is a dynamic field with profound implications for precision medicine. Understanding genetic variations in these receptors provides a framework for optimizing drug therapies, minimizing adverse reactions, and advancing the paradigm of personalized healthcare.
Collapse
Affiliation(s)
- Sorina Andreea Anghel
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy "Carol Davila", 6 Traian Vuia Str., 020956 Bucharest, Romania
- Department of Molecular Cell Biology, Institute of Biochemistry, Splaiul Independentei 296, 060031 Bucharest, Romania
| | - Cristina-Elena Dinu-Pirvu
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy "Carol Davila", 6 Traian Vuia Str., 020956 Bucharest, Romania
- Innovative Therapeutic Structures Research and Development Centre (InnoTher), "Carol Davila" University of Medicine and Pharmacy, 020956 Bucharest, Romania
| | - Mihaela-Andreea Costache
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy "Carol Davila", 6 Traian Vuia Str., 020956 Bucharest, Romania
| | - Ana Maria Voiculescu
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy "Carol Davila", 6 Traian Vuia Str., 020956 Bucharest, Romania
| | - Mihaela Violeta Ghica
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy "Carol Davila", 6 Traian Vuia Str., 020956 Bucharest, Romania
- Innovative Therapeutic Structures Research and Development Centre (InnoTher), "Carol Davila" University of Medicine and Pharmacy, 020956 Bucharest, Romania
| | - Valentina Anuța
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy "Carol Davila", 6 Traian Vuia Str., 020956 Bucharest, Romania
- Innovative Therapeutic Structures Research and Development Centre (InnoTher), "Carol Davila" University of Medicine and Pharmacy, 020956 Bucharest, Romania
| | - Lăcrămioara Popa
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy "Carol Davila", 6 Traian Vuia Str., 020956 Bucharest, Romania
- Innovative Therapeutic Structures Research and Development Centre (InnoTher), "Carol Davila" University of Medicine and Pharmacy, 020956 Bucharest, Romania
| |
Collapse
|
15
|
Müller WEG, Schepler H, Neufurth M, Dobmeyer R, Batel R, Schröder HC, Wang X. Energy level as a theranostic factor for successful therapy of tissue injuries with polyphosphate: the triad metabolic energy - mechanical energy - heat. Theranostics 2024; 14:5262-5280. [PMID: 39267793 PMCID: PMC11388067 DOI: 10.7150/thno.100622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 08/09/2024] [Indexed: 09/15/2024] Open
Abstract
Rationale: Tissue regeneration of skin and bone is an energy-intensive, ATP-consuming process that, if impaired, can lead to the development of chronic clinical pictures. ATP levels in the extracellular space including the exudate of wounds, especially chronic wounds, are low. This deficiency can be compensated by inorganic polyphosphate (polyP) supplied via the blood platelets to the regenerating site. Methods: The contribution of the different forms of energy derived from polyP (metabolic energy, mechanical energy and heat) to regeneration processes was dissected and studied both in vitro and in patients. ATP is generated metabolically during the enzymatic cleavage of the energy-rich anhydride bonds between the phosphate units of polyP, involving the two enzymes alkaline phosphatase (ALP) and adenylate kinase (ADK). Exogenous polyP was administered after incorporation into compressed collagen or hydrogel wound coverages to evaluate its regenerative activity for chronic wound healing. Results: In a proof-of-concept study, fast healing of chronic wounds was achieved with the embedded polyP, supporting the crucial regeneration-promoting activity of ATP. In the presence of Ca2+ in the wound exudate, polyP undergoes a coacervation process leading to a conversion of fibroblasts into myofibroblasts, a crucial step supporting cell migration during regenerative tissue repair. During coacervation, a switch from an endothermic to an exothermic, heat-generating process occurs, reflecting a shift from an entropically- to an enthalpically-driven thermodynamic reaction. In addition, mechanical forces cause the appearance of turbulent flows and vortices during liquid-liquid phase separation. These mechanical forces orient the cellular and mineralic (hydroxyapatite crystallite) components, as shown using mineralizing SaOS-2 cells as a model. Conclusion: Here we introduce the energetic triad: metabolic energy (ATP), thermal energy and mechanical energy as a novel theranostic biomarker, which contributes essentially to a successful application of polyP for regeneration processes.
Collapse
Affiliation(s)
- Werner E G Müller
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, 55128 Mainz, GERMANY
| | - Hadrian Schepler
- Department of Dermatology, University Medical Center of the Johannes Gutenberg University, Langenbeckstraße 1, 55131 Mainz, GERMANY
| | - Meik Neufurth
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, 55128 Mainz, GERMANY
| | - Rita Dobmeyer
- Galenus GH AG, Rainstrasse 7, 6052 Hergiswil, Switzerland
| | - Renato Batel
- Faculty of Natural Sciences, Juraj Dobrila University, Zagrebačka 30, 52100 Pula, Croatia
| | - Heinz C Schröder
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, 55128 Mainz, GERMANY
| | - Xiaohong Wang
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, 55128 Mainz, GERMANY
| |
Collapse
|
16
|
Li S, Luo H, Tang P, Tian C, Hu J, Lu H, Shui W. Generation of a Deep Mouse Brain Spectral Library for Transmembrane Proteome Profiling in Mental Disease Models. Mol Cell Proteomics 2024; 23:100777. [PMID: 38670310 PMCID: PMC11137342 DOI: 10.1016/j.mcpro.2024.100777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 04/21/2024] [Accepted: 04/23/2024] [Indexed: 04/28/2024] Open
Abstract
Transmembrane (TM) proteins constitute over 30% of the mammalian proteome and play essential roles in mediating cell-cell communication, synaptic transmission, and plasticity in the central nervous system. Many of these proteins, especially the G protein-coupled receptors (GPCRs), are validated or candidate drug targets for therapeutic development for mental diseases, yet their expression profiles are underrepresented in most global proteomic studies. Herein, we establish a brain TM protein-enriched spectral library based on 136 data-dependent acquisition runs acquired from various brain regions of both naïve mice and mental disease models. This spectral library comprises 3043 TM proteins including 171 GPCRs, 231 ion channels, and 598 transporters. Leveraging this library, we analyzed the data-independent acquisition data from different brain regions of two mouse models exhibiting depression- or anxiety-like behaviors. By integrating multiple informatics workflows and library sources, our study significantly expanded the mental stress-perturbed TM proteome landscape, from which a new GPCR regulator of depression was verified by in vivo pharmacological testing. In summary, we provide a high-quality mouse brain TM protein spectral library to largely increase the TM proteome coverage in specific brain regions, which would catalyze the discovery of new potential drug targets for the treatment of mental disorders.
Collapse
Affiliation(s)
- Shanshan Li
- Institutes of Biomedical Sciences and Department of Chemistry, Fudan University, Shanghai, China; iHuman Institute, ShanghaiTech University, Shanghai, China
| | - Huoqing Luo
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China; Department of Anesthesiology & Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Pan Tang
- iHuman Institute, ShanghaiTech University, Shanghai, China; School of Life Science and Technology, ShanghaiTech University, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Cuiping Tian
- iHuman Institute, ShanghaiTech University, Shanghai, China
| | - Ji Hu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China; CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.
| | - Haojie Lu
- Institutes of Biomedical Sciences and Department of Chemistry, Fudan University, Shanghai, China.
| | - Wenqing Shui
- iHuman Institute, ShanghaiTech University, Shanghai, China; School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| |
Collapse
|
17
|
Yao Y, Wang D, Zheng L, Zhao J, Tan M. Advances in prognostic models for osteosarcoma risk. Heliyon 2024; 10:e28493. [PMID: 38586328 PMCID: PMC10998144 DOI: 10.1016/j.heliyon.2024.e28493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/09/2024] Open
Abstract
The risk prognosis model is a statistical model that uses a set of features to predict whether an individual will develop a specific disease or clinical outcome. It can be used in clinical practice to stratify disease severity and assess risk or prognosis. With the advancement of large-scale second-generation sequencing technology, along Prognosis models for osteosarcoma are increasingly being developed as large-scale second-generation sequencing technology advances and clinical and biological data becomes more abundant. This expansion greatly increases the number of prognostic models and candidate genes suitable for clinical use. This article will present the predictive effects and reliability of various prognosis models, serving as a reference for their evaluation and application.
Collapse
Affiliation(s)
- Yi Yao
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, 530021, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical Bioresource Development and Application Co-constructed by the Province and Ministry, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, 530021, China
- Life Sciences Institute, Guangxi Medical University, Nanning, 530021, China
| | - Dapeng Wang
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, 530021, China
| | - Li Zheng
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, 530021, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical Bioresource Development and Application Co-constructed by the Province and Ministry, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, 530021, China
- Life Sciences Institute, Guangxi Medical University, Nanning, 530021, China
| | - Jinmin Zhao
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, 530021, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical Bioresource Development and Application Co-constructed by the Province and Ministry, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, 530021, China
- Department of Orthopedics, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Manli Tan
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, 530021, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical Bioresource Development and Application Co-constructed by the Province and Ministry, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, 530021, China
- Life Sciences Institute, Guangxi Medical University, Nanning, 530021, China
| |
Collapse
|
18
|
Hansen MS, Madsen K, Price M, Søe K, Omata Y, Zaiss MM, Gorvin CM, Frost M, Rauch A. Transcriptional reprogramming during human osteoclast differentiation identifies regulators of osteoclast activity. Bone Res 2024; 12:5. [PMID: 38263167 PMCID: PMC10806178 DOI: 10.1038/s41413-023-00312-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 11/08/2023] [Accepted: 12/15/2023] [Indexed: 01/25/2024] Open
Abstract
Enhanced osteoclastogenesis and osteoclast activity contribute to the development of osteoporosis, which is characterized by increased bone resorption and inadequate bone formation. As novel antiosteoporotic therapeutics are needed, understanding the genetic regulation of human osteoclastogenesis could help identify potential treatment targets. This study aimed to provide an overview of transcriptional reprogramming during human osteoclast differentiation. Osteoclasts were differentiated from CD14+ monocytes from eight female donors. RNA sequencing during differentiation revealed 8 980 differentially expressed genes grouped into eight temporal patterns conserved across donors. These patterns revealed distinct molecular functions associated with postmenopausal osteoporosis susceptibility genes based on RNA from iliac crest biopsies and bone mineral density SNPs. Network analyses revealed mutual dependencies between temporal expression patterns and provided insight into subtype-specific transcriptional networks. The donor-specific expression patterns revealed genes at the monocyte stage, such as filamin B (FLNB) and oxidized low-density lipoprotein receptor 1 (OLR1, encoding LOX-1), that are predictive of the resorptive activity of mature osteoclasts. The expression of differentially expressed G-protein coupled receptors was strong during osteoclast differentiation, and these receptors are associated with bone mineral density SNPs, suggesting that they play a pivotal role in osteoclast differentiation and activity. The regulatory effects of three differentially expressed G-protein coupled receptors were exemplified by in vitro pharmacological modulation of complement 5 A receptor 1 (C5AR1), somatostatin receptor 2 (SSTR2), and free fatty acid receptor 4 (FFAR4/GPR120). Activating C5AR1 enhanced osteoclast formation, while activating SSTR2 decreased the resorptive activity of mature osteoclasts, and activating FFAR4 decreased both the number and resorptive activity of mature osteoclasts. In conclusion, we report the occurrence of transcriptional reprogramming during human osteoclast differentiation and identified SSTR2 and FFAR4 as antiresorptive G-protein coupled receptors and FLNB and LOX-1 as potential molecular markers of osteoclast activity. These data can help future investigations identify molecular regulators of osteoclast differentiation and activity and provide the basis for novel antiosteoporotic targets.
Collapse
Affiliation(s)
- Morten S Hansen
- Molecular Endocrinology Laboratory (KMEB), Department of Endocrinology, Odense University Hospital, DK-5000, Odense C, Denmark
- Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, DK-5000, Odense C, Denmark
- Clinical Cell Biology, Pathology Research Unit, Department of Clinical Research, University of Southern Denmark, DK-5000, Odense C, Denmark
| | - Kaja Madsen
- Molecular Endocrinology Laboratory (KMEB), Department of Endocrinology, Odense University Hospital, DK-5000, Odense C, Denmark
- Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, DK-5000, Odense C, Denmark
| | - Maria Price
- Institute of Metabolism and Systems Research (IMSR) and Centre for Diabetes, Endocrinology and Metabolism (CEDAM), University of Birmingham, Birmingham, B15 2TT, UK
- Centre for Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, Birmingham, B15 2TT, UK
| | - Kent Søe
- Clinical Cell Biology, Pathology Research Unit, Department of Clinical Research, University of Southern Denmark, DK-5000, Odense C, Denmark
- Department of Molecular Medicine, University of Southern Denmark, DK-5000, Odense C, Denmark
| | - Yasunori Omata
- Department of Orthopedic Surgery, Faculty of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, D-91054, Erlangen, Germany
| | - Mario M Zaiss
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, D-91054, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, D-91054, Erlangen, Germany
| | - Caroline M Gorvin
- Institute of Metabolism and Systems Research (IMSR) and Centre for Diabetes, Endocrinology and Metabolism (CEDAM), University of Birmingham, Birmingham, B15 2TT, UK
- Centre for Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, Birmingham, B15 2TT, UK
| | - Morten Frost
- Molecular Endocrinology Laboratory (KMEB), Department of Endocrinology, Odense University Hospital, DK-5000, Odense C, Denmark.
- Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, DK-5000, Odense C, Denmark.
- Steno Diabetes Center Odense, Odense University Hospital, DK-5000, Odense C, Denmark.
| | - Alexander Rauch
- Molecular Endocrinology Laboratory (KMEB), Department of Endocrinology, Odense University Hospital, DK-5000, Odense C, Denmark.
- Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, DK-5000, Odense C, Denmark.
- Steno Diabetes Center Odense, Odense University Hospital, DK-5000, Odense C, Denmark.
| |
Collapse
|
19
|
Park SY, Kim D, Jung JW, An HJ, Lee J, Park Y, Lee D, Lee S, Kim JM. Targeting class A GPCRs for hard tissue regeneration. Biomaterials 2024; 304:122425. [PMID: 38100905 DOI: 10.1016/j.biomaterials.2023.122425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 12/01/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023]
Abstract
G protein-coupled receptors (GPCRs) play important roles in various pathogeneses and physiological regulations. Owing to their functional diversity, GPCRs are considered one of the primary pharmaceutical targets. However, drugs targeting GPCRs have not been developed yet to regenerate hard tissues such as teeth and bones. Mesenchymal stromal cells (MSCs) have high proliferation and multi-lineage differentiation potential, which are essential for hard tissue regeneration. Here, we present a strategy for targeting class A GPCRs for hard tissue regeneration by promoting the differentiation of endogenous MSCs into osteogenic and odontogenic progenitor cells. Through in vitro screening targeted at class A GPCRs, we identified six target receptors (LPAR1, F2R, F2RL1, F2RL2, S1PR1, and ADORA2A) and candidate drugs with potent biomineralization effects. Through a combination of profiling whole transcriptome and accessible chromatin regions, we identified that p53 acts as a key transcriptional activator of genes that modulate the biomineralization process. Moreover, the therapeutic potential of class A GPCR-targeting drugs was demonstrated in tooth pulpotomy and calvarial defect models. The selected drugs revealed potent regenerative effects in both tooth and bone defects, represented by newly formed highly mineralized regions. Consequently, this study provides translational evidence for a new regenerative strategy for damaged hard tissue.
Collapse
Affiliation(s)
- So Young Park
- Department of Oral Microbiology and Immunology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, 08826, Republic of Korea
| | - Dohyun Kim
- Department of Conservative Dentistry and Oral Science Research Center, Yonsei University College of Dentistry, Seoul, 03722, Republic of Korea
| | - Ju Won Jung
- Department of Oral Microbiology and Immunology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hyun-Ju An
- Department of Orthopaedic Surgery, CHA Bundang Medical Center, CHA University School of Medicine, Bundang-gu, Seongnam-si, 13496, Republic of Korea
| | - Jaemin Lee
- Department of Orthopaedic Surgery, CHA Bundang Medical Center, CHA University School of Medicine, Bundang-gu, Seongnam-si, 13496, Republic of Korea
| | - Yeji Park
- Department of Conservative Dentistry and Oral Science Research Center, Yonsei University College of Dentistry, Seoul, 03722, Republic of Korea
| | - Dasun Lee
- Department of Conservative Dentistry and Oral Science Research Center, Yonsei University College of Dentistry, Seoul, 03722, Republic of Korea
| | - Soonchul Lee
- Department of Orthopaedic Surgery, CHA Bundang Medical Center, CHA University School of Medicine, Bundang-gu, Seongnam-si, 13496, Republic of Korea.
| | - Jin Man Kim
- Department of Oral Microbiology and Immunology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
20
|
He L, Xu Z, Niu X, Li R, Wang F, You Y, Gao J, Zhao L, Shah KM, Fan J, Liu M, Luo J. GPRC5B protects osteoarthritis by regulation of autophagy signaling. Acta Pharm Sin B 2023; 13:2976-2989. [PMID: 37521864 PMCID: PMC10372909 DOI: 10.1016/j.apsb.2023.05.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/17/2023] [Accepted: 03/14/2023] [Indexed: 08/01/2023] Open
Abstract
Osteoarthritis (OA) is one of the most common chronic diseases in the world. However, current treatment modalities mainly relieve pain and inhibit cartilage degradation, but do not promote cartilage regeneration. In this study, we show that G protein-coupled receptor class C group 5 member B (GPRC5B), an orphan G-protein-couple receptor, not only inhibits cartilage degradation, but also increases cartilage regeneration and thereby is protective against OA. We observed that Gprc5b deficient chondrocytes had an upregulation of cartilage catabolic gene expression, along with downregulation of anabolic genes in vitro. Furthermore, mice deficient in Gprc5b displayed a more severe OA phenotype in the destabilization of the medial meniscus (DMM) induced OA mouse model, with upregulation of cartilage catabolic factors and downregulation of anabolic factors, consistent with our in vitro findings. Overexpression of Gprc5b by lentiviral vectors alleviated the cartilage degeneration in DMM-induced OA mouse model by inhibiting cartilage degradation and promoting regeneration. We also assessed the molecular mechanisms downstream of Gprc5b that may mediate these observed effects and identify the role of protein kinase B (AKT)-mammalian target of rapamycin (mTOR)-autophagy signaling pathway. Thus, we demonstrate an integral role of GPRC5B in OA pathogenesis, and activation of GPRC5B has the potential in preventing the progression of OA.
Collapse
Affiliation(s)
- Liang He
- Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Tongji University School of Medicine, Shanghai 201613, China
| | - Ziwei Xu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Xin Niu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Rong Li
- Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Tongji University School of Medicine, Shanghai 201613, China
| | - Fanhua Wang
- Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Tongji University School of Medicine, Shanghai 201613, China
| | - Yu You
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Jingduo Gao
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Lei Zhao
- Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Tongji University School of Medicine, Shanghai 201613, China
| | - Karan M. Shah
- Department of Oncology and Metabolism, the Medical School, the University of Sheffield, Sheffield S10 2TN, UK
| | - Jian Fan
- Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine, Shanghai 200092, China
| | - Mingyao Liu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Jian Luo
- Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Tongji University School of Medicine, Shanghai 201613, China
| |
Collapse
|
21
|
Liu H, Zhao X, Li Y, Yi J, Zhang C, Zheng Z, Dai S, Yin G, Zhao S. Bioinformatic analysis of the molecular mechanisms underlying the progression of bone defects. Front Med (Lausanne) 2023; 10:1157099. [PMID: 37359021 PMCID: PMC10286739 DOI: 10.3389/fmed.2023.1157099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/25/2023] [Indexed: 06/28/2023] Open
Abstract
Background The pathophysiology of bone defects (BDs) is complex, and the treatment for bone defects, in particular massive bone defects, remains a major clinical challenge. Our study was conducted to explore the molecular events related to the progression of bone defects a common clinical condition. Methods First, microarray data of GSE20980 were obtained from the Gene Expression Omnibus (GEO) database, where 33 samples in total were used to analyze the molecular biological processes related to bone defects. Next, the original data were normalized and differentially expressed genes (DEGs) were identified. Additionally, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were conducted. Finally, a protein-protein interaction (PPI) network was constructed and the trends of the different genes were confirmed. Results Compared with the samples of non-critical size defects (NCSD), the samples of critical size defects (CSD) had 2057, 827, and 1,024 DEGs at 7, 14, and 21 days post injury, respectively. At day 7, the DEGs were significantly enriched in metabolic pathways, at day 14 the DEGs were predominantly enriched in G-protein coupled signaling pathways and the Janus kinase (JAK)-signal transducer and activator of transcription (STAT) signaling pathway, and at day 21 the DEGs were mainly enriched in circadian entrainment and synaptic-related functions. The PPI network showed similar results. Quantitative real-time PCR (qRT-PCR) and western blot (WB) were performed to validate the partial results of sequencing. Conclusion This study provides some clues about the molecular mechanism behind bone defects, which should contribute to scientific research and clinical treatment of this condition.
Collapse
Affiliation(s)
- Hao Liu
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Jiangsu Institute of Functional Reconstruction and Rehabilitation, Nanjing, Jiangsu, China
- Spinal Cord Disease Research Center, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xuan Zhao
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Jiangsu Institute of Functional Reconstruction and Rehabilitation, Nanjing, Jiangsu, China
- Spinal Cord Disease Research Center, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yin Li
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Jiangsu Institute of Functional Reconstruction and Rehabilitation, Nanjing, Jiangsu, China
- Spinal Cord Disease Research Center, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jiang Yi
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Jiangsu Institute of Functional Reconstruction and Rehabilitation, Nanjing, Jiangsu, China
- Spinal Cord Disease Research Center, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chenxi Zhang
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Jiangsu Institute of Functional Reconstruction and Rehabilitation, Nanjing, Jiangsu, China
- Spinal Cord Disease Research Center, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ziyang Zheng
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Jiangsu Institute of Functional Reconstruction and Rehabilitation, Nanjing, Jiangsu, China
- Spinal Cord Disease Research Center, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Siming Dai
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Jiangsu Institute of Functional Reconstruction and Rehabilitation, Nanjing, Jiangsu, China
- Spinal Cord Disease Research Center, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Guoyong Yin
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Jiangsu Institute of Functional Reconstruction and Rehabilitation, Nanjing, Jiangsu, China
- Spinal Cord Disease Research Center, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Shujie Zhao
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Jiangsu Institute of Functional Reconstruction and Rehabilitation, Nanjing, Jiangsu, China
- Spinal Cord Disease Research Center, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
22
|
Roy A. Advances in the molecular level understanding of G-protein coupled receptor. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 196:1-13. [PMID: 36813353 DOI: 10.1016/bs.pmbts.2022.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
G-protein coupled receptors (GPCRs) represent largest family of plasma membrane-bound receptor proteins that are involved in numerous cellular and physiological functions. Many extracellular stimuli such as hormones, lipids and chemokines activate these receptors. Aberrant expression and genetic alteration in GPCR are associated with many human diseases including cancer and cardiovascular disease. GPCRs have emerged as potential therapeutic target and numerous drugs are either approved by FDA or under clinical trial. This chapter provides an update on GPCR research and its significance as a promising therapeutic target.
Collapse
Affiliation(s)
- Adhiraj Roy
- Amity Institute of Molecular Medicine & Stem Cell Research, Amity University, Noida, Uttar Pradesh, India.
| |
Collapse
|
23
|
Flegel J, Shaaban S, Jia ZJ, Schulte B, Lian Y, Krzyzanowski A, Metz M, Schneidewind T, Wesseler F, Flegel A, Reich A, Brause A, Xue G, Zhang M, Dötsch L, Stender ID, Hoffmann JE, Scheel R, Janning P, Rastinejad F, Schade D, Strohmann C, Antonchick AP, Sievers S, Moura-Alves P, Ziegler S, Waldmann H. The Highly Potent AhR Agonist Picoberin Modulates Hh-Dependent Osteoblast Differentiation. J Med Chem 2022; 65:16268-16289. [PMID: 36459434 PMCID: PMC9791665 DOI: 10.1021/acs.jmedchem.2c00956] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Indexed: 12/03/2022]
Abstract
Identification and analysis of small molecule bioactivity in target-agnostic cellular assays and monitoring changes in phenotype followed by identification of the biological target are a powerful approach for the identification of novel bioactive chemical matter in particular when the monitored phenotype is disease-related and physiologically relevant. Profiling methods that enable the unbiased analysis of compound-perturbed states can suggest mechanisms of action or even targets for bioactive small molecules and may yield novel insights into biology. Here we report the enantioselective synthesis of natural-product-inspired 8-oxotetrahydroprotoberberines and the identification of Picoberin, a low picomolar inhibitor of Hedgehog (Hh)-induced osteoblast differentiation. Global transcriptome and proteome profiling revealed the aryl hydrocarbon receptor (AhR) as the molecular target of this compound and identified a cross talk between Hh and AhR signaling during osteoblast differentiation.
Collapse
Affiliation(s)
- Jana Flegel
- Department
of Chemical Biology, Max Planck Institute
of Molecular Physiology, Dortmund 44227, Germany
- Faculty
of Chemistry, Chemical Biology, Technical
University Dortmund, Dortmund 44227, Germany
| | - Saad Shaaban
- Department
of Chemical Biology, Max Planck Institute
of Molecular Physiology, Dortmund 44227, Germany
- Faculty
of Chemistry, Institute of Organic Chemistry, University of Vienna Währinger Str. 38, Vienna 1090, Austria
| | - Zhi Jun Jia
- Department
of Chemical Biology, Max Planck Institute
of Molecular Physiology, Dortmund 44227, Germany
- Key
Laboratory of Birth Defects and Related Diseases of Women and Children,
Evidence-Based Pharmacy Center, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Britta Schulte
- Department
of Chemical Biology, Max Planck Institute
of Molecular Physiology, Dortmund 44227, Germany
- Faculty
of Chemistry, Chemical Biology, Technical
University Dortmund, Dortmund 44227, Germany
| | - Yilong Lian
- Ludwig
Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7DQ, United
Kingdom
| | - Adrian Krzyzanowski
- Department
of Chemical Biology, Max Planck Institute
of Molecular Physiology, Dortmund 44227, Germany
- Faculty
of Chemistry, Chemical Biology, Technical
University Dortmund, Dortmund 44227, Germany
| | - Malte Metz
- Department
of Chemical Biology, Max Planck Institute
of Molecular Physiology, Dortmund 44227, Germany
| | - Tabea Schneidewind
- Department
of Chemical Biology, Max Planck Institute
of Molecular Physiology, Dortmund 44227, Germany
- Faculty
of Chemistry, Chemical Biology, Technical
University Dortmund, Dortmund 44227, Germany
| | - Fabian Wesseler
- Department
of Chemical Biology, Max Planck Institute
of Molecular Physiology, Dortmund 44227, Germany
- Faculty
of Chemistry, Chemical Biology, Technical
University Dortmund, Dortmund 44227, Germany
| | - Anke Flegel
- Department
of Chemical Biology, Max Planck Institute
of Molecular Physiology, Dortmund 44227, Germany
| | - Alisa Reich
- Department
of Chemical Biology, Max Planck Institute
of Molecular Physiology, Dortmund 44227, Germany
| | - Alexandra Brause
- Department
of Chemical Biology, Max Planck Institute
of Molecular Physiology, Dortmund 44227, Germany
| | - Gang Xue
- Department
of Chemical Biology, Max Planck Institute
of Molecular Physiology, Dortmund 44227, Germany
| | - Minghao Zhang
- Nuffield
Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, OX3 7FZ, UK
| | - Lara Dötsch
- Department
of Chemical Biology, Max Planck Institute
of Molecular Physiology, Dortmund 44227, Germany
- Faculty
of Chemistry, Chemical Biology, Technical
University Dortmund, Dortmund 44227, Germany
| | - Isabelle D. Stender
- Protein
Chemistry Facility, Max Planck Institute
of Molecular Physiology, Dortmund 44227, Germany
| | - Jan-Erik Hoffmann
- Protein
Chemistry Facility, Max Planck Institute
of Molecular Physiology, Dortmund 44227, Germany
| | - Rebecca Scheel
- Faculty
of Chemistry, Inorganic Chemistry, Technical
University Dortmund, Dortmund 44227, Germany
| | - Petra Janning
- Department
of Chemical Biology, Max Planck Institute
of Molecular Physiology, Dortmund 44227, Germany
| | - Fraydoon Rastinejad
- Nuffield
Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, OX3 7FZ, UK
| | - Dennis Schade
- Dept.
of Pharmaceutical & Medicinal Chemistry, Institute of Pharmacy, Christian-Albrechts-University of Kiel, Kiel 24118, Germany
| | - Carsten Strohmann
- Faculty
of Chemistry, Inorganic Chemistry, Technical
University Dortmund, Dortmund 44227, Germany
| | - Andrey P. Antonchick
- Department
of Chemical Biology, Max Planck Institute
of Molecular Physiology, Dortmund 44227, Germany
- Faculty
of Chemistry, Chemical Biology, Technical
University Dortmund, Dortmund 44227, Germany
- Department
of Chemistry and Forensics, School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham, NG11 8NS, United Kingdom
| | - Sonja Sievers
- Department
of Chemical Biology, Max Planck Institute
of Molecular Physiology, Dortmund 44227, Germany
- Compound
Management and Screening Center, Dortmund 44227, Germany
| | - Pedro Moura-Alves
- Ludwig
Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7DQ, United
Kingdom
- i3S-Instituto
de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- IBMC-Instituto
de Biologia Molecular e Celular, Universidade
do Porto, 4200-135 Porto, Portugal
| | - Slava Ziegler
- Department
of Chemical Biology, Max Planck Institute
of Molecular Physiology, Dortmund 44227, Germany
| | - Herbert Waldmann
- Department
of Chemical Biology, Max Planck Institute
of Molecular Physiology, Dortmund 44227, Germany
- Faculty
of Chemistry, Chemical Biology, Technical
University Dortmund, Dortmund 44227, Germany
| |
Collapse
|
24
|
de Jesus VC, Mittermuller BA, Hu P, Schroth RJ, Chelikani P. Association between Downstream Taste Signaling Genes, Oral Microbiome, and Severe Early Childhood Caries. Int J Mol Sci 2022; 24:81. [PMID: 36613519 PMCID: PMC9820665 DOI: 10.3390/ijms24010081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/14/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Polymorphisms in taste receptor genes have been shown to play a role in early childhood caries (ECC), a multifactorial, biofilm-mediated disease. This study aimed to evaluate associations between severe-ECC (S-ECC), the oral microbiome, and variants in genes that encode components of the G protein-coupled receptor (GPCR) signaling cascade involved in taste sensation. A total of 176 children (88 caries-free; 88 with S-ECC) were recruited. Analyses of 16S and ITS1 rRNA microbial genes and seven (GNAQ, GNAS, GNAT3, GNAI2, RAC1, RALB, and PLCB2) human genes were pursued using next-generation sequencing. Regression analyses were performed to evaluate associations between genetic variants, S-ECC, and the supragingival plaque microbiome. Results suggest that PLCB2 rs2305645 (T), rs1869901 (G), and rs2305649 (G) alleles had a protective effect on S-ECC (rs2305645, odds ratio (OR) = 0.27 (95% confidence interval (CI): 0.14-0.51); rs1869901, OR = 0.34 (95% CI: 0.20-0.58); and rs2305649, OR = 0.43 (95% CI: 0.26-0.71)). Variants in GNAQ, GNAS, GNAT3, PLCB2, RALB, and RAC1 were associated with oral fungal and bacterial community composition. This study revealed that three loci at PLCB2 are significantly associated with S-ECC. Variants in multiple genes were associated with the composition of dental biofilm. These findings contribute to the current knowledge about the role of genetics in S-ECC.
Collapse
Affiliation(s)
- Vivianne Cruz de Jesus
- Manitoba Chemosensory Biology Research Group, Department of Oral Biology, University of Manitoba, Winnipeg, MB R3E 0W2, Canada
- Children’s Hospital Research Institute of Manitoba (CHRIM), Winnipeg, MB R3E 3P4, Canada
| | - Betty-Anne Mittermuller
- Manitoba Chemosensory Biology Research Group, Department of Oral Biology, University of Manitoba, Winnipeg, MB R3E 0W2, Canada
- Children’s Hospital Research Institute of Manitoba (CHRIM), Winnipeg, MB R3E 3P4, Canada
- Department of Preventive Dental Science, University of Manitoba, Winnipeg, MB R3E 0W2, Canada
| | - Pingzhao Hu
- Children’s Hospital Research Institute of Manitoba (CHRIM), Winnipeg, MB R3E 3P4, Canada
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB R3E 3N4, Canada
- Department of Biochemistry, Western University, London, ON N6A 5C1, Canada
| | - Robert J. Schroth
- Manitoba Chemosensory Biology Research Group, Department of Oral Biology, University of Manitoba, Winnipeg, MB R3E 0W2, Canada
- Children’s Hospital Research Institute of Manitoba (CHRIM), Winnipeg, MB R3E 3P4, Canada
- Department of Preventive Dental Science, University of Manitoba, Winnipeg, MB R3E 0W2, Canada
- Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, MB R3A 1S1, Canada
| | - Prashen Chelikani
- Manitoba Chemosensory Biology Research Group, Department of Oral Biology, University of Manitoba, Winnipeg, MB R3E 0W2, Canada
- Children’s Hospital Research Institute of Manitoba (CHRIM), Winnipeg, MB R3E 3P4, Canada
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB R3E 3N4, Canada
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| |
Collapse
|
25
|
Liebscher I, Cevheroğlu O, Hsiao CC, Maia AF, Schihada H, Scholz N, Soave M, Spiess K, Trajković K, Kosloff M, Prömel S. A guide to adhesion GPCR research. FEBS J 2022; 289:7610-7630. [PMID: 34729908 DOI: 10.1111/febs.16258] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 10/20/2021] [Accepted: 11/01/2021] [Indexed: 01/14/2023]
Abstract
Adhesion G protein-coupled receptors (aGPCRs) are a class of structurally and functionally highly intriguing cell surface receptors with essential functions in health and disease. Thus, they display a vastly unexploited pharmacological potential. Our current understanding of the physiological functions and signaling mechanisms of aGPCRs form the basis for elucidating further molecular aspects. Combining these with novel tools and methodologies from different fields tailored for studying these unusual receptors yields a powerful potential for pushing aGPCR research from singular approaches toward building up an in-depth knowledge that will facilitate its translation to applied science. In this review, we summarize the state-of-the-art knowledge on aGPCRs in respect to structure-function relations, physiology, and clinical aspects, as well as the latest advances in the field. We highlight the upcoming most pressing topics in aGPCR research and identify strategies to tackle them. Furthermore, we discuss approaches how to promote, stimulate, and translate research on aGPCRs 'from bench to bedside' in the future.
Collapse
Affiliation(s)
- Ines Liebscher
- Division of Molecular Biochemistry, Medical Faculty, Rudolf Schönheimer Institute of Biochemistry, Leipzig University, Germany
| | | | - Cheng-Chih Hsiao
- Department of Experimental Immunology, Amsterdam Institute for Infection and Immunity, Amsterdam University Medical Centers, University of Amsterdam, The Netherlands
| | - André F Maia
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal.,IBMC - Instituto Biologia Molecular e Celular, Universidade do Porto, Portugal
| | - Hannes Schihada
- C3 Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| | - Nicole Scholz
- Division of General Biochemistry, Medical Faculty, Rudolf Schönheimer Institute of Biochemistry, Leipzig University, Germany
| | - Mark Soave
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, UK.,Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, UK
| | - Katja Spiess
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Katarina Trajković
- Biology of Robustness Group, Mediterranean Institute for Life Sciences, Split, Croatia
| | - Mickey Kosloff
- Department of Human Biology, Faculty of Natural Sciences, The University of Haifa, Israel
| | - Simone Prömel
- Institute of Cell Biology, Department of Biology, Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
26
|
Pihlström S, Määttä K, Öhman T, Mäkitie RE, Aronen M, Varjosalo M, Mäkitie O, Pekkinen M. A multi-omics study to characterize the transdifferentiation of human dermal fibroblasts to osteoblast-like cells. Front Mol Biosci 2022; 9:1032026. [PMID: 36465561 PMCID: PMC9714459 DOI: 10.3389/fmolb.2022.1032026] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/26/2022] [Indexed: 09/19/2023] Open
Abstract
Background: Various skeletal disorders display defects in osteoblast development and function. An in vitro model can help to understand underlying disease mechanisms. Currently, access to appropriate starting material for in vitro osteoblastic studies is limited. Native osteoblasts and their progenitors, the bone marrow mesenchymal stem cells, (MSCs) are problematic to isolate from affected patients and challenging to expand in vitro. Human dermal fibroblasts in vitro are a promising substitute source of cells. Method: We developed an in vitro culturing technique to transdifferentiate fibroblasts into osteoblast-like cells. We obtained human fibroblasts from forearm skin biopsy and differentiated them into osteoblast-like cells with ß-glycerophosphate, ascorbic acid, and dexamethasone treatment. Osteoblastic phenotype was confirmed by staining for alkaline phosphatase (ALP), calcium and phosphate deposits (Alizarin Red, Von Kossa) and by a multi-omics approach (transcriptomic, proteomic, and phosphoproteomic analyses). Result: After 14 days of treatment, both fibroblasts and MSCs (reference cells) stained positive for ALP together with a significant increase in bone specific ALP (p = 0.04 and 0.004, respectively) compared to untreated cells. At a later time point, both cell types deposited minerals, indicating mineralization. In addition, fibroblasts and MSCs showed elevated expression of several osteogenic genes (e.g. ALPL, RUNX2, BMPs and SMADs), and decreased expression of SOX9. Ingenuity Pathways Analysis of RNA sequencing data from fibroblasts and MSCs showed that the osteoarthritis pathway was activated in both cell types (p_adj. = 0.003 and 0.004, respectively). Discussion: These data indicate that our in vitro treatment induces osteoblast-like differentiation in fibroblasts and MSCs, producing an in vitro osteoblastic cell system. This culturing system provides an alternative tool for bone biology research and skeletal tissue engineering.
Collapse
Affiliation(s)
- Sandra Pihlström
- Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Kirsi Määttä
- Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Tiina Öhman
- Institute of Biotechnology and Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Riikka E. Mäkitie
- Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Otorhinolaryngology—Head and Neck Surgery, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Mira Aronen
- Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland
| | - Markku Varjosalo
- Institute of Biotechnology and Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Outi Mäkitie
- Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Children’s Hospital, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Minna Pekkinen
- Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Children’s Hospital, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| |
Collapse
|
27
|
Zhang W, Zhang Y, Hu N, Wang A. Alzheimer's disease-associated inflammatory pathways might contribute to osteoporosis through the interaction between PROK2 and CSF3. Front Neurol 2022; 13:990779. [PMID: 36203970 PMCID: PMC9531648 DOI: 10.3389/fneur.2022.990779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 08/03/2022] [Indexed: 11/13/2022] Open
Abstract
This study aimed to explore the potential molecular pathways and targets of Alzheimer's disease leading to osteoporosis using bioinformatics tools. The Alzheimer's and osteoporosis microarray gene expression data were retrieved from the Gene Expression Omnibus, and differentially expressed genes in the blood microenvironment related to Alzheimer's disease and osteoporosis were identified. The intersection of the three datasets (GSE97760, GSE168813, and GSE62402) was used to obtain 21 co-expressed targets in the peripheral blood samples in patients with Alzheimer's disease and osteoporosis. Based on the degree algorithm, the top 10 potential core target genes related to these diseases were identified, which included CLEC4D, PROK2, SIGLEC7, PDGFB, PTCRA, ECH1, etc. Two differentially expressed mRNAs, Prokineticin 2 (PROK2) and three colony-stimulating factor 3 (CSF3), were screened in the GSE62402 dataset associated with osteoporosis. Protein–protein rigid docking with ZDOCK revealed that PROK2 and CSF3 could form a stable protein docking model. The interaction of PROK2 and CSF3, core genes related to osteoporosis inflammation, plays an important role in the mechanism of osteoporosis in patients with Alzheimer's. Therefore, abnormalities or alterations in the inflammatory pathways in the peripheral blood samples of Alzheimer's patients may affect the course of osteoporosis.
Collapse
Affiliation(s)
- Wenzheng Zhang
- Department of Joint Sports Medicine, The Affiliated Taian City Central Hospital of Qingdao University, Taian, China
| | - Ya Zhang
- Department of Pathology, The Second Affiliated Hospital of Shandong First Medical University, Taian, China
| | - Naixia Hu
- Neurointensive Care Unit, The Second Affiliated Hospital of Shandong First Medical University, Taian, China
| | - Anying Wang
- Department of Orthopedics, The Second Affiliated Hospital of Shandong First Medical University, Taian, China
- *Correspondence: Anying Wang
| |
Collapse
|
28
|
Implications of a Neuronal Receptor Family, Metabotropic Glutamate Receptors, in Cancer Development and Progression. Cells 2022; 11:cells11182857. [PMID: 36139432 PMCID: PMC9496915 DOI: 10.3390/cells11182857] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/29/2022] [Accepted: 09/07/2022] [Indexed: 12/03/2022] Open
Abstract
Cancer is the second leading cause of death, and incidences are increasing globally. Simply defined, cancer is the uncontrolled proliferation of a cell, and depending on the tissue of origin, the cancer etiology, biology, progression, prognosis, and treatment will differ. Carcinogenesis and its progression are associated with genetic factors that can either be inherited and/or acquired and are classified as an oncogene or tumor suppressor. Many of these genetic factors converge on common signaling pathway(s), such as the MAPK and PI3K/AKT pathways. In this review, we will focus on the metabotropic glutamate receptor (mGluR) family, an upstream protein that transmits extracellular signals into the cell and has been shown to regulate many aspects of tumor development and progression. We explore the involvement of members of this receptor family in various cancers that include breast cancer, colorectal cancer, glioma, kidney cancer, melanoma, oral cancer, osteosarcoma, pancreatic cancer, prostate cancer, and T-cell cancers. Intriguingly, depending on the member, mGluRs can either be classified as oncogenes or tumor suppressors, although in general most act as an oncogene. The extensive work done to elucidate the role of mGluRs in various cancers suggests that it might be a viable strategy to therapeutically target glutamatergic signaling.
Collapse
|
29
|
Dhakal S, Macreadie I. The Use of Yeast in Biosensing. Microorganisms 2022; 10:1772. [PMID: 36144374 PMCID: PMC9505958 DOI: 10.3390/microorganisms10091772] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/24/2022] [Accepted: 08/30/2022] [Indexed: 11/18/2022] Open
Abstract
Yeast has been used as a model for several diseases as it is the simplest unicellular eukaryote, safe and easy to culture and harbors most of the fundamental processes that are present in almost all higher eukaryotes, including humans. From understanding the pathogenesis of disease to drug discovery studies, yeast has served as an important biosensor. It is not only due to the conservation of genetics, amenable modification of its genome and easily accessible analytical methods, but also some characteristic features such as its ability to survive with defective mitochondria, making it a highly flexible microbe for designing whole-cell biosensing systems. The aim of this review is to report on how yeasts have been utilized as biosensors, reporting on responses to various stimuli.
Collapse
Affiliation(s)
| | - Ian Macreadie
- School of Science, RMIT University, Bundoora, VIC 3083, Australia
| |
Collapse
|
30
|
Ghafouri-Fard S, Gholami L, Nazer N, Hussen BM, Sayad A, Hajiesmaeili M. Downregulation of oxytocin-related genes in periodontitis. Front Mol Neurosci 2022; 15:950919. [PMID: 36090248 PMCID: PMC9448980 DOI: 10.3389/fnmol.2022.950919] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 07/07/2022] [Indexed: 11/13/2022] Open
Abstract
Periodontitis is a common oral disorder leading to tooth loss in both developed and developing regions of the world. This multifactorial condition is related to the abnormal activity of several molecular pathways, among them are oxytocin-related pathways. In this study, we enrolled 26 patients and 28 controls and assessed the expression of four oxytocin-related genes, namely, FOS, ITPR, RCAN1, and RGS2, in circulation and affected tissues of enrolled individuals using real-time PCR. Expression of FOS was downregulated in total periodontitis tissues compared with total control tissues [ratio of mean expression (RME) = 0.23, P-value = 0.03]. Expression of FOS was also lower in total blood samples of patients compared with total controls. Expression of ITPR was downregulated in total periodontitis tissues compared with total control tissues (RME = 0.16, P-value = 0.01). Moreover, the expression of ITPR was reduced in total blood samples of patients compared with controls (RME = 0.25, P-value = 0.03). Expression of RCAN1 was downregulated in total periodontitis tissues compared with total control tissues (RME = 0.17, P-value = 0.01). However, the expression of RCAN1 was not different in blood samples of affected vs. unaffected individuals. Finally, the expression of RGS2 was lower in total periodontitis tissues compared with total control tissues (RME = 0.24, P-value = 0.01) and in total blood samples of affected individuals compared with controls (RME = 0.42, P-value = 0.05). This study provides data about the association between expressions of oxytocin-related genes and the presence of periodontitis. Future studies are needed to unravel the mechanistic links and find the correlation between expressions of these genes and the pathological stage of periodontitis.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Leila Gholami
- Department of Periodontics, Dental Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Naghme Nazer
- Department of Electrical Engineering, Sharif University of Technology, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Iraq
- Center of Research and Strategic Studies, Lebanese French University, Erbil, Iraq
| | - Arezou Sayad
- Dental Research Center, Research Institute for Dental Sciences, Dental School, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- *Correspondence: Arezou Sayad,
| | - Mohammadreza Hajiesmaeili
- Critical Care Quality Improvement Research Center, Loghman Hakin Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Mohammadreza Hajiesmaeili,
| |
Collapse
|
31
|
Kalinkovich A, Becker M, Livshits G. New Horizons in the Treatment of Age-Associated Obesity, Sarcopenia and Osteoporosis. Drugs Aging 2022; 39:673-683. [PMID: 35781216 DOI: 10.1007/s40266-022-00960-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/04/2022] [Indexed: 11/03/2022]
Abstract
The rapid increase in both the lifespan and proportion of older adults in developed countries is accompanied by the dramatic growth of age-associated chronic diseases, including obesity, sarcopenia, and osteoporosis. Hence, prevention and treatment of age-associated chronic diseases has become increasingly urgent. The key to achieving this goal is a better understanding of the mechanisms underlying their pathophysiology, some aspects of which, despite extensive investigation, are still not fully understood. Aging, obesity, sarcopenia, and osteoporosis are characterized by the creation of a systemic, chronic, low-grade inflammation (SCLGI). The common mechanisms that govern the development of these chronic conditions include a failed resolution of inflammation. Physiologically, the process of inflammation resolution is provided mainly by specialized pro-resolving mediators (SPMs) acting via cognate G protein-coupled receptors (GPCRs). Noteworthy, SPM levels and the expression of their receptors are significantly reduced in aging and the associated chronic disorders. In preclinical studies, supplementation of SPMs or their stable, small-molecule SPM mimetics and receptor agonists reveals clear beneficial effects in inflammation-related obesity and sarcopenic and osteoporotic conditions, suggesting a translational potential. Age-associated chronic disorders are also characterized by gut dysbiosis and the accumulation of senescent cells in the adipose tissue, skeletal muscle, and bones. Based on these findings, we propose SCLGI resolution as a novel strategy for the prevention/treatment of age-associated obesity, sarcopenia, and osteoporosis. Our approach entails the enhancement of inflammation resolution by SPM mimetics and receptor agonists in concert with probiotics/prebiotics and compounds that eliminate senescent cells and their pro-inflammatory activity.
Collapse
Affiliation(s)
- Alexander Kalinkovich
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel-Aviv University, 6905126, Tel-Aviv, Israel
| | - Maria Becker
- Adelson School of Medicine, Ariel University, 4077625, Ariel, Israel
| | - Gregory Livshits
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel-Aviv University, 6905126, Tel-Aviv, Israel. .,Adelson School of Medicine, Ariel University, 4077625, Ariel, Israel.
| |
Collapse
|
32
|
Hidaka S, Mouri Y, Akiyama M, Miyasaka N, Nakahama KI. GPR110, a receptor for synaptamide, expressed in osteoclasts negatively regulates osteoclastogenesis. Prostaglandins Leukot Essent Fatty Acids 2022; 182:102457. [PMID: 35690003 DOI: 10.1016/j.plefa.2022.102457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 05/24/2022] [Accepted: 06/02/2022] [Indexed: 12/29/2022]
Abstract
Bone remodeling is precisely regulated mainly by osteoblasts and osteoclasts. Although some G-protein coupled receptors (GPCRs) were reported to play roles in osteoblast function, little is known about the roles in osteoclasts. In this study, we found, for the first time, that the expression of GPR110 increased during osteoclastogenesis. GPR110 belongs to adhesion GPCR and was the functional receptor of N-docosahexaenoyl ethanolamine (also called synaptamide). Synaptamide suppressed osteoclastogenesis induced by receptor activator of nuclear factor-kappa B ligand. Considering that synaptamide is the endogenous metabolite of DHA, we hypothesized that DHA may inhibit osteoclastogenesis by affecting synaptamide/GPR110 signaling. But GPR110 knockout and subsequent rescue experiments revealed a pivotal role of GPR110 in the attenuation of osteoclastogenesis by synaptamide but not by DHA. These results suggest that synaptamide/GPR110 signaling negatively regulates osteoclastogenesis. Our study suggested that ligands of GPR110, such as synaptamide, might be a useful drug for osteoporotic patients.
Collapse
Affiliation(s)
- Shiho Hidaka
- Department of Cellular Physiological Chemistry, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan; Department of Obstetrics and Gynecology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Yuki Mouri
- Department of Cellular Physiological Chemistry, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Masako Akiyama
- Research Administration Division, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8549, Japan
| | - Naoyuki Miyasaka
- Department of Obstetrics and Gynecology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Ken-Ichi Nakahama
- Department of Cellular Physiological Chemistry, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan.
| |
Collapse
|
33
|
Köck Z, Ermel U, Martin J, Morgner N, Achilleas Frangakis S, Dötsch V, Hilger D, Bernhard F. Biochemical characterization of cell-free synthesized human β 1 adrenergic receptor cotranslationally inserted into nanodiscs. J Mol Biol 2022; 434:167687. [PMID: 35717996 DOI: 10.1016/j.jmb.2022.167687] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 11/26/2022]
Abstract
Cell-free expression enables direct cotranslational insertion of G protein coupled receptors (GPCRs) and other membrane proteins into the defined membrane environments of nanodiscs. This technique avoids GPCR contacts with detergents and allows rapid identification of lipid effects on GPCR function as well as fast screening of receptor derivatives. Critical steps of conventional GPCR preparation from cellular membranes followed by detergent-based reconstitution into nanodisc membranes are thus eliminated. We report the efficient cotranslational insertion of full-length human β1-adrenergic receptor and of a truncated derivative into preformed nanodisc membranes. Their biochemical characterization revealed significant differences in lipid requirements, dimer formation and ligand binding activity. The truncated receptor showed a higher affinity to most tested ligands, in particular in presence of choline-containing lipids. However, introducing the naturally occurring G389R polymorphism in the full-length receptor resulted into an increased affinity to the antagonists alprenolol and carvedilol. Receptor quality was generally improved by coexpression with the agonist isoproterenol and the percentage of the ligand binding active fraction was twofold increased. Specific coupling of full-length and truncated human receptors in nanodisc membranes to Mini-Gαs protein as well as to purified Gs heterotrimer could be demonstrated and homogeneity of purified GPCR/Gs protein complexes in nanodiscs was demonstrated by negative stain single particle analysis.
Collapse
Affiliation(s)
- Zoe Köck
- Centre for Biomolecular Magnetic Resonance, Institute for Biophysical Chemistry, Goethe-University of Frankfurt/Main
| | - Utz Ermel
- Buchmann Institute for Molecular Life Sciences and Institute for Biophysics, Goethe University of Frankfurt/Main
| | - Janosch Martin
- Institute of Physical and Theoretical Chemistry, Goethe University of Frankfurt/Main
| | - Nina Morgner
- Institute of Physical and Theoretical Chemistry, Goethe University of Frankfurt/Main
| | - S Achilleas Frangakis
- Buchmann Institute for Molecular Life Sciences and Institute for Biophysics, Goethe University of Frankfurt/Main
| | - Volker Dötsch
- Centre for Biomolecular Magnetic Resonance, Institute for Biophysical Chemistry, Goethe-University of Frankfurt/Main
| | - Daniel Hilger
- Department of Pharmaceutical Chemistry, Philipps-University Marburg
| | - Frank Bernhard
- Centre for Biomolecular Magnetic Resonance, Institute for Biophysical Chemistry, Goethe-University of Frankfurt/Main.
| |
Collapse
|
34
|
Yang X, Liang X, Guo H, Ma L, Jian L, Zhao X, Wang J, Yang L, Meng Z, Jin Q. β2-Adrenergic receptor expression in subchondral bone of patients with varus knee osteoarthritis. Open Med (Wars) 2022; 17:1031-1044. [PMID: 35794997 PMCID: PMC9175016 DOI: 10.1515/med-2022-0498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 05/05/2022] [Accepted: 05/09/2022] [Indexed: 11/15/2022] Open
Abstract
Abstract
An important causative factor in osteoarthritis (OA) is the abnormal mechanical stress-induced bone remodeling of the subchondral bone. β2-adrenergic receptor (Adrb2) plays a major role in mechanical stresses that induce bone remodeling. The medial tibial plateau (MTP) and lateral tibial plateau (LTP) of patients with varus Knee osteoarthritis (KO) bear different mechanical stresses. The present study aimed to investigate the expression of Adrb2 in medial tibial plateau subchondral bone (MTPSB) and lateral tibial plateau subchondral bone (LTPSB) in patients with varus KO. A total of 30 tibial plateau samples from patients undergoing total knee arthroplasty for varus KO and MTPSB and LTPSB were studied. Statistical analysis was performed using paired sample t-tests. Safranin O-Fast Green staining and Micro-computed tomography showed significant differences in the bone structure between MTPSB and LTPSB. Tartrate-resistant acid phosphatase (TRAP)-positive cell density in MTPSB was higher than that in LTPSB. Immunohistochemistry, reverse transcription-quantitative polymerase chain reaction, and Western blot analysis revealed that compared to LTPSB, the levels of Adrb2, tyrosine hydroxylase (TH), and osteocalcin increased significantly in MTPSB. Double-labeling immunofluorescence showed Adrb2 was present in the majority of TRAP-positive multinuclear cells of the MTPSB. The expression of Adrb2 and TH was significantly higher in MTPSB than in LTPSB, confirming the involvement of these molecules in the development of OA.
Collapse
Affiliation(s)
- Xiaochun Yang
- Department of Orthopedics Ward 3, The General Hospital of Ningxia Medical University , Yinchuan , 750004, Ningxia , China
| | - Xuegang Liang
- Department of The General Hospital of Ningxia Medical University, Ningxia Medical University , Yinchuan , 750004, Ningxia , China
| | - Haohui Guo
- Department of Orthopedics Ward 3, The General Hospital of Ningxia Medical University , Yinchuan , 750004, Ningxia , China
| | - Long Ma
- Department of Orthopedics Ward 3, The General Hospital of Ningxia Medical University , Yinchuan , 750004, Ningxia , China
| | - Li Jian
- Department of Pathology, The General Hospital of Ningxia Medical University , Yinchuan , 750004, Ningxia , China
| | - Xin Zhao
- Department of Orthopedics Ward 3, The General Hospital of Ningxia Medical University , Yinchuan , 750004, Ningxia , China
| | - Jian Wang
- Department of Orthopedics Ward 3, The General Hospital of Ningxia Medical University , Yinchuan , 750004, Ningxia , China
| | - Lvlin Yang
- Department of The General Hospital of Ningxia Medical University, Ningxia Medical University , Yinchuan , 750004, Ningxia , China
| | - Zhiqiang Meng
- Department of The General Hospital of Ningxia Medical University, Ningxia Medical University , Yinchuan , 750004, Ningxia , China
| | - Qunhua Jin
- Department of Orthopedics Ward 3, The General Hospital of Ningxia Medical University , Yinchuan , 750004, Ningxia , China
| |
Collapse
|
35
|
Zhao Y, Shao G, Liu X, Li Z. Assessment of the Therapeutic Potential of Melatonin for the Treatment of Osteoporosis Through a Narrative Review of Its Signaling and Preclinical and Clinical Studies. Front Pharmacol 2022; 13:866625. [PMID: 35645810 PMCID: PMC9130700 DOI: 10.3389/fphar.2022.866625] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/06/2022] [Indexed: 12/21/2022] Open
Abstract
Melatonin is a bioamine produced primarily in the pineal gland, although peripheral sites, including the gut, may also be its minor source. Melatonin regulates various functions, including circadian rhythm, reproduction, temperature regulation, immune system, cardiovascular system, energy metabolism, and bone metabolism. Studies on cultured bone cells, preclinical disease models of bone loss, and clinical trials suggest favorable modulation of bone metabolism by melatonin. This narrative review gives a comprehensive account of the current understanding of melatonin at the cell/molecular to the systems levels. Melatonin predominantly acts through its cognate receptors, of which melatonin receptor 2 (MT2R) is expressed in mesenchymal stem cells (MSCs), osteoblasts (bone-forming), and osteoclasts (bone-resorbing). Melatonin favors the osteoblastic fate of MSCs, stimulates osteoblast survival and differentiation, and inhibits osteoclastogenic differentiation of hematopoietic stem cells. Produced from osteoblastic cells, osteoprotegerin (OPG) and receptor activator of nuclear factor kappa B ligand (RANKL) critically regulate osteoclastogenesis and melatonin by suppressing the osteoclastogenic RANKL, and upregulating the anti-osteoclastogenic OPG exerts a strong anti-resorptive effect. Although the anti-inflammatory role of melatonin favors osteogenic function and antagonizes the osteoclastogenic function with the participation of SIRT signaling, various miRNAs also mediate the effects of the hormone on bone cells. In rodent models of osteoporosis, melatonin has been unequivocally shown to have an anti-osteoporotic effect. Several clinical trials indicate the bone mass conserving effect of melatonin in aging/postmenopausal osteoporosis. This review aims to determine the possibility of melatonin as a novel class of anti-osteoporosis therapy through the critical assessment of the available literature.
Collapse
Affiliation(s)
- Yongchao Zhao
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Guoxi Shao
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Xingang Liu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Zhengwei Li
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
36
|
Taylor EL, Weaver SR, Lorang IM, Arnold KM, Bradley EW, Marron Fernandez de Velasco E, Wickman K, Westendorf JJ. GIRK3 deletion facilitates kappa opioid signaling in chondrocytes, delays vascularization and promotes bone lengthening in mice. Bone 2022; 159:116391. [PMID: 35314385 PMCID: PMC9035100 DOI: 10.1016/j.bone.2022.116391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/03/2022] [Accepted: 03/14/2022] [Indexed: 11/29/2022]
Abstract
Long bones are formed and repaired through the process of endochondral ossification. Activation of G protein-coupled receptor (GPCR) signaling pathways is crucial for skeletal development and long bone growth. G protein-gated inwardly-rectifying K+ (GIRK) channel genes are key functional components and effectors of GPCR signaling pathways in excitable cells of the heart and brain, but their roles in non-excitable cells that directly contribute to endochondral bone formation have not been studied. In this study, we analyzed skeletal phenotypes of Girk2-/-, Girk3-/- and Girk2/3-/- mice. Bones from 12-week-old Girk2-/- mice were normal in length, but femurs and tibiae from Girk3-/- and Girk2/3-/- mice were longer than age-matched controls at 12-weeks-old. Epiphyseal chondrocytes from 5-day-old Girk3-/- mice expressed higher levels of genes involved in collagen chain trimerization and collagen fibril assembly, lower levels of genes encoding VEGF receptors, and produced larger micromasses than wildtype chondrocytes in vitro. Girk3-/- chondrocytes were also more responsive to the kappa opioid receptor (KOR) ligand dynorphin, as evidenced by greater pCREB expression, greater cAMP and GAG production, and upregulation of Col2a1 and Sox9 transcripts. Imaging studies showed that Kdr (Vegfr2) and endomucin expression was dramatically reduced in bones from young Girk3-/- mice, supporting a role for delayed vasculogenesis and extended postnatal endochondral bone growth. Together these data indicate that GIRK3 controls several processes involved in bone lengthening.
Collapse
Affiliation(s)
- Earnest L Taylor
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, United States of America; Department of Cell Biology, University of North Carolina, NC, United States of America
| | - Samantha R Weaver
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, United States of America
| | - Ian M Lorang
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, United States of America; University of Washington School of Medicine, Seattle, WA, United States of America
| | - Katherine M Arnold
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, United States of America
| | - Elizabeth W Bradley
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, United States of America; Department of Orthopedic Surgery, University of Minnesota, Minneapolis, MN, United States of America
| | | | - Kevin Wickman
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, United States of America
| | - Jennifer J Westendorf
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, United States of America; Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States of America.
| |
Collapse
|
37
|
Checkpoints and Immunity in Cancers: Role of GNG12. Pharmacol Res 2022; 180:106242. [DOI: 10.1016/j.phrs.2022.106242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/25/2022] [Accepted: 04/28/2022] [Indexed: 12/24/2022]
|
38
|
Tan M, Gao S, Ru X, He M, Zhao J, Zheng L. Prediction and Identification of GPCRs Targeting for Drug Repurposing in Osteosarcoma. Front Oncol 2022; 12:828849. [PMID: 35463319 PMCID: PMC9021700 DOI: 10.3389/fonc.2022.828849] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/09/2022] [Indexed: 11/13/2022] Open
Abstract
Background Osteosarcoma (OS) is a malignant bone tumor common in children and adolescents. The 5-year survival rate is only 67-69% and there is an urgent need to explore novel drugs effective for the OS. G protein-coupled receptors (GPCRs) are the common drug targets and have been found to be associated with the OS, but have been seldom used in OS. Methods The GPCRs were obtained from GPCRdb, and the GPCRs expression profile of the OS was downloaded from the UCSC Xena platform including clinical data. 10-GPCRs model signatures related to OS risk were identified by risk model analysis with R software. The predictive ability and pathological association of the signatures in OS were explored by bio-informatics analysis. The therapeutic effect of the target was investigated, followed by the investigation of the targeting drug by the colony formation experiment were. Results We screened out 10 representative GPCRs from 50 GPCRs related to OS risk and established a 10-GPCRs prognostic model (with CCR4, HCRTR2, DRD2, HTR1A, GPR158, and GPR3 as protective factors, and HTR1E, OPN3, GRM4, and GPR144 as risk factors). We found that the low-risk group of the model was significantly associated with the higher survival probability, with the area under the curve (AUC) of the ROC greater than 0.9, conforming with the model. Moreover, both risk-score and metastasis were the independent risk factor of the OS, and the risk score was positively associated with the metastatic. Importantly, the CD8 T-cells were more aggregated in the low-risk group, in line with the predict survival rate of the model. Finally, we found that DRD2 was a novel target with approved drugs (cabergoline and bromocriptine), and preliminarily proved the therapeutic effects of the drugs on OS. These novel findings might facilitate the development of OS drugs. Conclusion This study offers a satisfactory 10-GPCRs model signature to predict the OS prognostic, and based on the model signature, candidate targets with approved drugs were provided.
Collapse
Affiliation(s)
- Manli Tan
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Shangzhi Gao
- Collaborative Innovation Center of Regenerative Medicine and Medical Biological Resources Development and Application of Guangxi Medical University, Nanning, China
| | - Xiao Ru
- Collaborative Innovation Center of Regenerative Medicine and Medical Biological Resources Development and Application of Guangxi Medical University, Nanning, China
| | - Maolin He
- Collaborative Innovation Center of Regenerative Medicine and Medical Biological Resources Development and Application of Guangxi Medical University, Nanning, China
| | - Jinmin Zhao
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Li Zheng
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
39
|
Bevacizumab attenuates osteosarcoma angiogenesis by suppressing MIAT encapsulated by serum-derived extracellular vesicles and facilitating miR-613-mediated GPR158 inhibition. Cell Death Dis 2022; 13:272. [PMID: 35347106 PMCID: PMC8960875 DOI: 10.1038/s41419-022-04620-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 01/14/2022] [Accepted: 01/26/2022] [Indexed: 12/20/2022]
Abstract
Targeting angiogenesis has been considered a promising treatment for a large number of malignancies, including osteosarcoma. Bevacizumab (Bev) is an anti-vascular endothelial growth factor being used for this purpose. We herein investigate the therapeutic potential of Bev in angiogenesis during osteosarcoma and the related mechanisms. Bioinformatics were performed for identification of osteosarcoma-related microarray dataset to collect related lncRNA and miRNA, with MIAT and miR-613 obtained. The predicted binding site between miR-613 and GPR158 3'UTR region was further confirmed by luciferase assay. Then, their effects combined with treatment with Bev on osteosarcoma cells were explored by the gain- and loss-of-function. After extraction from osteosarcoma patients' serum (serum-EVs) and identification, EVs were co-cultured with osteosarcoma cells, the biological behaviors of which were detected by CCK-8 assay and microtubule formation in vitro. A mouse tumor xenograft model was used to determine the effect of Bev on tumor angiogenesis in vivo. Bev inhibited osteosarcoma cell proliferation and angiogenesis in vivo and in vitro. Besides, serum-EVs could transfer MIAT (EV-MIAT) into osteosarcoma cells, where it is competitively bound to miR-613 to elevate GPR158, thus promoting osteosarcoma cell proliferation and angiogenesis. Furthermore, Bev arrested osteosarcoma cell proliferation and angiogenesis by inhibiting EV-MIAT and inducing miR-613-mediated GPR158 inhibition. In conclusion, the Bev-mediated MIAT/miR-613/GPR158 regulatory feedback revealed a new molecular mechanism in the pathogenesis of osteosarcoma angiogenesis.
Collapse
|
40
|
Chan WC, Tan L, Liu J, Yang Q, Wang J, Wang M, Yue Y, Hao L, Man Y. Inhibition of Rgs10 aggravates periodontitis with collagen-induced arthritis via the NF-κB pathway. Oral Dis 2022; 29:1802-1811. [PMID: 35122384 DOI: 10.1111/odi.14147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 01/20/2022] [Accepted: 01/31/2022] [Indexed: 02/05/2023]
Abstract
OBJECTIVE To explore the role of the Rgs10-associated nuclear factor (NF)-κB signalling pathway in periodontitis with rheumatoid arthritis. METHODS Porphyromonas gingivalis and collagen were locally applied to mice to establish in vivo periodontitis and rheumatoid arthritis models, respectively. Both agents were administered together to establish the comorbid group. All models were treated with adeno-associated virus-green fluorescent protein (AAV-GFP) or adeno-associated virus small hairpin Rgs10 (AAV-sh-Rgs10). In vivo expression of Rgs10 and inflammatory cytokines was analysed, along with exploration of the NF-κB signalling pathway in lipopolysaccharide (LPS)-stimulated mouse-derived RAW264.7 cells, with and without treatment of small interfering RNA (siRNA; Rgs10-Mus-MSS245072). RESULTS In the comorbidity mouse group (mice with both periodontitis and rheumatoid arthritis), inhibition of Rgs10 exacerbated periodontitis, along with upregulation of phospho-RelA (pP65), tumour necrosis factor-α (TNF-α), and interleukin-6 (IL-6) expression in the NF-κB signalling pathway. Similarly, treatment of LPS-stimulated RAW264.7 cells with siRNA resulted in the inhibition of Rgs10, along with upregulation of pP65, TNF-α, and IL-6 expression in vitro. CONCLUSION Inhibition of Rgs10 in mice with periodontitis and rheumatoid arthritis can promote the progression of periodontitis, indicating the potential therapeutic role of Rgs10 in this condition.
Collapse
Affiliation(s)
- Wei-Cheng Chan
- The State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Sichuan, People's Republic of China
| | - Liangyu Tan
- Department of Prosthodontics, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, People's Republic of China
| | - Jie Liu
- The State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Sichuan, People's Republic of China
| | - Qin Yang
- The State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Sichuan, People's Republic of China
| | - Jiajia Wang
- The State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Sichuan, People's Republic of China
| | - Min Wang
- The State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Sichuan, People's Republic of China
| | - Yuan Yue
- The State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Sichuan, People's Republic of China
| | - Liang Hao
- The State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Sichuan, People's Republic of China
| | - Yi Man
- The State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Sichuan, People's Republic of China
| |
Collapse
|
41
|
Kwon EJ, Kim HJ, Woo BH, Joo JY, Kim YH, Park HR. Profiling of plasma-derived exosomal RNA expression in patients with periodontitis: a pilot study. Oral Dis 2022; 29:1726-1737. [PMID: 35119164 DOI: 10.1111/odi.14145] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 01/04/2022] [Accepted: 01/17/2022] [Indexed: 11/29/2022]
Abstract
OBJECTIVE This study aimed to profile differentially expressed (DE) exosomal RNAs in healthy subjects and periodontitis patients and compare their levels before and after treatment. MATERIALS AND METHODS Plasma samples from healthy subjects and patients with periodontitis (pre-/post-periodontal treatment) were collected for this case-control study. After isolation of exosomes from the plasma, the RNA was extracted and small RNA sequencing was performed (3 healthy samples, 4 pre-treatment samples, and 5 post-treatment samples). Two-way analyses were conducted according to the treatment status in the periodontitis group, unpaired analysis (grouping as pre-/post-treatment) and paired analysis (matching pre- and post-treatment in the same subject). The DE exosomal RNAs were screened by sequencing and visualized using the R software. Gene Ontology analysis was performed, and target genes were identified. RESULTS In both paired and unpaired analyses, two DE microRNAs (DEmiRs; miR-1304-3p and miR-200c-3p) and two DE small nucleolar RNAs (DEsnoRs; SNORD57 and SNODB1771) were common, and they were found to be downregulated during periodontitis and recovered to healthy levels after treatment. The top three target genes (NR3C1, GPR158, and CNN3) commonly regulated by DEmiRs were identified. CONCLUSIONS Plasma-derived exosomal miRs (miR-1304-3p and miR-200c-3p) and snoRs (SNORD57 and SNODB1771) could be valuable biomarkers for periodontitis.
Collapse
Affiliation(s)
- Eun Jung Kwon
- Interdisciplinary Program of Genomic Science, Pusan National University, Yangsan, Republic of Korea
| | - Hyun-Joo Kim
- Department of Periodontology, Dental and Life Science Institute, Pusan National University, School of Dentistry, Yangsan, Republic of Korea.,Department of Periodontology and Dental Research Institute, Pusan National University Dental Hospital, Yangsan, Republic of Korea
| | - Bok Hee Woo
- Department of Oral Pathology, School of Dentistry, Pusan National University, Yangsan, Republic of Korea.,Periodontal Disease Signaling Network Research Center, School of Dentistry, Pusan National University, Yangsan, Republic of Korea
| | - Ji-Young Joo
- Department of Periodontology, Dental and Life Science Institute, Pusan National University, School of Dentistry, Yangsan, Republic of Korea.,Department of Periodontology and Dental Research Institute, Pusan National University Dental Hospital, Yangsan, Republic of Korea
| | - Yun Hak Kim
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan, Republic of Korea.,Department of Biomedical Informatics, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Hae Ryoun Park
- Department of Oral Pathology, School of Dentistry, Pusan National University, Yangsan, Republic of Korea.,Periodontal Disease Signaling Network Research Center, School of Dentistry, Pusan National University, Yangsan, Republic of Korea
| |
Collapse
|
42
|
Khedgikar V, Charles JF, Lehoczky JA. Mouse LGR6 regulates osteogenesis in vitro and in vivo through differential ligand use. Bone 2022; 155:116267. [PMID: 34856421 DOI: 10.1016/j.bone.2021.116267] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 11/04/2021] [Accepted: 11/24/2021] [Indexed: 12/15/2022]
Abstract
Leucine-rich repeat containing G-protein-coupled receptor 6 (LGR6) is a marker of osteoprogenitor cells and is dynamically expressed during in vitro osteodifferentation of mouse and human mesenchymal stem cells (MSCs). While the Lgr6 genomic locus has been associated with osteoporosis in human cohorts, the precise molecular function of LGR6 in osteogenesis and maintenance of bone mass are not yet known. In this study, we performed in vitro Lgr6 knockdown and overexpression experiments in murine osteoblastic cells and find decreased Lgr6 levels results in reduced osteoblast proliferation, differentiation, and mineralization. Consistent with these data, overexpression of Lgr6 in these cells leads to significantly increased proliferation and osteodifferentiation. To determine whether these findings are recapitulated in vivo, we performed microCT and ex vivo osteodifferentiation analyses using our newly generated CRISPR-Cas9 mediated Lgr6 mouse knockout allele (Lgr6-KO). We find that ex vivo osteodifferentiation of Lgr6-KO primary MSCs is significantly reduced, and 8 week-old Lgr6-KO mice have less trabecular bone mass as compared to Lgr6 wildtype controls, indicating that Lgr6 is necessary for normal osteogenesis and bone mass. Towards mechanism, we analyzed in vitro signaling in the context of two LGR6 ligands, RSPO2 and MaR1. We find that RSPO2 stimulates LGR6-mediated WNT/β-catenin signaling whereas MaR1 stimulates LGR6-mediated cAMP activity, suggesting two ligand-dependent functions for LGR6 receptor signaling during osteogenesis. Collectively, this study reveals that Lgr6 is necessary for wildtype levels of proliferation and differentiation of osteoblasts, and achieving normal bone mass.
Collapse
Affiliation(s)
- Vikram Khedgikar
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Julia F Charles
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Jessica A Lehoczky
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Boston, MA 02115, USA.
| |
Collapse
|
43
|
Krishna Deepak RNV, Verma RK, Hartono YD, Yew WS, Fan H. Recent Advances in Structure, Function, and Pharmacology of Class A Lipid GPCRs: Opportunities and Challenges for Drug Discovery. Pharmaceuticals (Basel) 2021; 15:12. [PMID: 35056070 PMCID: PMC8779880 DOI: 10.3390/ph15010012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/17/2021] [Accepted: 12/17/2021] [Indexed: 01/01/2023] Open
Abstract
Great progress has been made over the past decade in understanding the structural, functional, and pharmacological diversity of lipid GPCRs. From the first determination of the crystal structure of bovine rhodopsin in 2000, much progress has been made in the field of GPCR structural biology. The extraordinary progress in structural biology and pharmacology of GPCRs, coupled with rapid advances in computational approaches to study receptor dynamics and receptor-ligand interactions, has broadened our comprehension of the structural and functional facets of the receptor family members and has helped usher in a modern age of structure-based drug design and development. First, we provide a primer on lipid mediators and lipid GPCRs and their role in physiology and diseases as well as their value as drug targets. Second, we summarize the current advancements in the understanding of structural features of lipid GPCRs, such as the structural variation of their extracellular domains, diversity of their orthosteric and allosteric ligand binding sites, and molecular mechanisms of ligand binding. Third, we close by collating the emerging paradigms and opportunities in targeting lipid GPCRs, including a brief discussion on current strategies, challenges, and the future outlook.
Collapse
Affiliation(s)
- R. N. V. Krishna Deepak
- Bioinformatics Institute, A*STAR, 30 Biopolis Street, Matrix #07-01, Singapore 138671, Singapore; (R.K.V.); (Y.D.H.)
| | - Ravi Kumar Verma
- Bioinformatics Institute, A*STAR, 30 Biopolis Street, Matrix #07-01, Singapore 138671, Singapore; (R.K.V.); (Y.D.H.)
| | - Yossa Dwi Hartono
- Bioinformatics Institute, A*STAR, 30 Biopolis Street, Matrix #07-01, Singapore 138671, Singapore; (R.K.V.); (Y.D.H.)
- Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, Singapore 117599, Singapore;
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore 117597, Singapore
| | - Wen Shan Yew
- Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, Singapore 117599, Singapore;
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore 117597, Singapore
| | - Hao Fan
- Bioinformatics Institute, A*STAR, 30 Biopolis Street, Matrix #07-01, Singapore 138671, Singapore; (R.K.V.); (Y.D.H.)
- Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, Singapore 117599, Singapore;
| |
Collapse
|
44
|
Ge Y, Zhou C, Xiao X, Jin Z, Zhou L, Chen Z, Liu F, Yuan Q, Zhang G, Shan L, Tong P. A Novel Mutation of the KLK6 Gene in a Family With Knee Osteoarthritis. Front Genet 2021; 12:784176. [PMID: 34858488 PMCID: PMC8631809 DOI: 10.3389/fgene.2021.784176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 10/20/2021] [Indexed: 12/12/2022] Open
Abstract
To investigate the correlation between gene mutation and knee osteoarthritis (KOA), a whole-exome sequencing (WES) was applied to analyze blood samples of four KOA patients and two normal subjects in a family. Gene mutations were identified by gene-trapping and high-throughput sequencing analysis across the differences between the patients and normal subjects. The interactive gene network analysis on the retrieval of interacting genes (STRING) database and the KOA-related genes expression data sets was performed. A possibly detrimental and nonsynonymous mutation at the kallikrein-related peptidase 6 (KLK6) gene (rs201586262, c. C80A, P27H) was identified and attracted our attention. KLK6 belongs to the kallikrein family of serine proteases and its serum level is known as a prevalent biomarker in inflammatory and malignant diseases. KLK6 expresses in the extracellular compartment for matrix degradation, highlighting that KLK6 plays a role in the pathogenesis of KOA. By using the gene databases, the KOA-related genes were mined after de-duplication and IL6 was selected as the most relevant gene through interactive analysis of protein-protein interaction (PPI) network. The data suggested that KLK6 gene mutation and the related expression alteration of IL6 gene might determine the occurrence of hereditary KOA. The is the first study discovering the gene mutation of KLK6 as a factor of pathogenesis of KOA, especially the hereditary KOA.
Collapse
Affiliation(s)
- Yanzhi Ge
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Chenfen Zhou
- National Genomics Data Center, CAS Key Laboratory of Computational Biology, Bio-Med Big Data Center, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xiujuan Xiao
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhijiang Jin
- Department of Orthopaedics, The 9th People's Hospital of Hangzhou, Hangzhou, China
| | - Li Zhou
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zuxiang Chen
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Fucun Liu
- Department of Orthopaedics, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Qiang Yuan
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Guoqing Zhang
- National Genomics Data Center, CAS Key Laboratory of Computational Biology, Bio-Med Big Data Center, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Letian Shan
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Peijian Tong
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
45
|
Study of selected genes of Wnt signaling pathway in relation to the parameters in the bone tissue of the laying hens. Saudi J Biol Sci 2021; 29:2526-2531. [PMID: 35531234 PMCID: PMC9072936 DOI: 10.1016/j.sjbs.2021.12.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/29/2021] [Accepted: 12/12/2021] [Indexed: 11/02/2022] Open
Abstract
The Wnt signaling pathway plays a critical role in almost all aspects of skeletal development and homeostasis. Many studies suggest the importance of this signaling pathway in connection with bone metabolism through many skeletal disorders caused by mutations in Wnt signaling genes. The knowledge gained through targeting this pathway is of great value for skeletal health and diseases, for example of increased bone mass in the case of osteoporosis. Our objective was to focus on the detection of single nucleotide polymorphisms and investigate the associations between possible polymorphisms in selected genes that are part of those signaling pathways and parameters of bones in hens of ISA Brown hybrids (bone breaking strength, length, width, and bone mass). Different regions of the GPR177, ESR1 and RUNX2 genes were studied, using PCR and sequencing, in a total of forty-eight samples for each marker. Thirteen polymorphisms have been discovered in selected regions of studied genes, whereas these polymorphisms were only within the GPR177 gene. Eight of these polymorphisms were synonymous and five were in the intron. The tested regions of the ESR1 and RUNX2 genes were monomorphic. The only statistically significant difference was found within the GPR177 gene (exon 2) and the bone length parameter, in the c.443 + 86G > A polymorphism. However, this polymorphism was found in the intron, and no other one was found within the selected regions to show associations with the observed bone parameters.
Collapse
|
46
|
Rimal R, Desai P, Marquez AB, Sieg K, Marquardt Y, Singh S. 3-D vascularized breast cancer model to study the role of osteoblast in formation of a pre-metastatic niche. Sci Rep 2021; 11:21966. [PMID: 34754042 PMCID: PMC8578551 DOI: 10.1038/s41598-021-01513-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 10/25/2021] [Indexed: 02/06/2023] Open
Abstract
Breast cancer cells (BCCs) preferentially metastasize to bone. It is known that BCCs remotely primes the distant bone site prior to metastasis. However, the reciprocal influence of bone cells on the primary tumor is relatively overlooked. Here, to study the bone-tumor paracrine influence, a tri-cellular 3-D vascularized breast cancer tissue (VBCTs) model is engineered which comprised MDA-MB231, a triple-negative breast cancer cells (TNBC), fibroblasts, and endothelial cells. This is indirectly co-cultured with osteoblasts (OBs), thereby constituting a complex quad-cellular tumor progression model. VBCTs alone and in conjunction with OBs led to abnormal vasculature and reduced vessel density but enhanced VEGF production. A total of 1476 significantly upregulated and 775 downregulated genes are identified in the VBCTs exposed to OBs. HSP90N, CYCS, RPS27A, and EGFR are recognized as upregulated hub-genes. Kaplan Meier plot shows HSP90N to have a significant outcome in TNBC patient survivability. Furthermore, compared to cancer tissues without vessels, gene analysis recognized 1278 significantly upregulated and 566 downregulated genes in VBCTs. DKK1, CXCL13, C3 protein and BMP4 are identified to be downregulated hub genes in VBCTs. Together, a multi-cellular breast cancer model and culture protocols are established to study pre-metastatic events in the presence of OBs.
Collapse
Affiliation(s)
- Rahul Rimal
- DWI-Leibniz Institute for Interactive Materials, Forkenbeckstrasse 50, 52074, Aachen, Germany
| | - Prachi Desai
- DWI-Leibniz Institute for Interactive Materials, Forkenbeckstrasse 50, 52074, Aachen, Germany
| | - Andrea Bonnin Marquez
- DWI-Leibniz Institute for Interactive Materials, Forkenbeckstrasse 50, 52074, Aachen, Germany
| | - Karina Sieg
- DWI-Leibniz Institute for Interactive Materials, Forkenbeckstrasse 50, 52074, Aachen, Germany
| | - Yvonne Marquardt
- Department of Dermatology and Allergology, University Hospital, RWTH Aachen University, 52074, Aachen, Germany
| | - Smriti Singh
- DWI-Leibniz Institute for Interactive Materials, Forkenbeckstrasse 50, 52074, Aachen, Germany.
- Max Planck Institute for Medical Research, Jahnstrasse 29, 69120, Heidelberg, Germany.
| |
Collapse
|
47
|
Yuan J, Yuan Z, Ye A, Wu T, Jia J, Guo J, Zhang J, Li T, Cheng X. Low GNG12 Expression Predicts Adverse Outcomes: A Potential Therapeutic Target for Osteosarcoma. Front Immunol 2021; 12:758845. [PMID: 34691083 PMCID: PMC8527884 DOI: 10.3389/fimmu.2021.758845] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 09/17/2021] [Indexed: 01/04/2023] Open
Abstract
Background G protein subunit gamma 12 (GNG12) is observed in some types of cancer, but its role in osteosarcoma is unknown. This study hypothesized that GNG12 may be a potential biomarker and therapeutic target. We aimed to identify an association between GNG12 and osteosarcoma based on the Gene Expression Omnibus and the Therapeutically Applicable Research to Generate Effective Treatments (TARGET) databases. Methods Osteosarcoma samples in GSE42352 and TARGET database were selected as the test cohorts. As the external validation cohort, 78 osteosarcoma specimens from The Second Affiliated Hospital of Nanchang University were collected. Patients with osteosarcoma were divided into high and low GNG12 mRNA-expression groups; differentially expressed genes were identified as GNG12-related genes. The biological function of GNG12 was annotated using Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, gene set enrichment analysis, and immune infiltration analysis. Gene expression correlation analysis and competing endogenous RNA regulatory network construction were used to determine potential biological regulatory relationships of GNG12. Overall survival, Kaplan–Meier analysis, and log-rank tests were calculated to determine GNG12 reliability in predicting survival prognosis. Results GNG12 expression decreased in osteosarcoma samples. GNG12 was a highly effective biomarker for osteosarcoma [area under the receiver operating characteristic (ROC) curve (AUC) = 0.920], and the results of our Kaplan–Meier analysis indicated that overall survival and progression-free survival differed significantly between low and high GNG-expression group (p < 0.05). Functional analyses indicated that GNG12 may promote osteosarcoma through regulating the endoplasmic reticulum. Expression correlation analysis and competing endogenous RNA network construction showed that HOTTIP/miR-27a-3p may regulate GNG12 expression. Furthermore, the subunit suppresses adaptive immunity via inhibiting M1 and M2 macrophage infiltration. GNG12 was inhibited in metastatic osteosarcoma compared with non-metastatic osteosarcoma, and its expression predicted survival of patients (1, 3, and 5-year AUCs were 0.961, 0.826, and 0.808, respectively). Conclusion This study identified GNG12 as a potential biomarker for osteosarcoma prognosis, highlighting its potential as an immunotherapy target.
Collapse
Affiliation(s)
- Jinghong Yuan
- Department of Orthopaedics, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhao Yuan
- Clinical Research Center, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Aifang Ye
- Department of Otorhinolaryngology, Jiangxi Provincial Children's Hospital, Nanchang, China
| | - Tianlong Wu
- Institute of Orthopaedics of Jiangxi Province, Nanchang, China
| | - Jingyu Jia
- Institute of Minimally Invasive Orthopaedics of Nanchang University, Nanchang University, Nanchang, China
| | - Jia Guo
- Department of Orthopaedics, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, China
| | - Jian Zhang
- Department of Orthopaedics, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Tao Li
- Department of Orthopaedics, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xigao Cheng
- Department of Orthopaedics, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Institute of Orthopaedics of Jiangxi Province, Nanchang, China.,Institute of Minimally Invasive Orthopaedics of Nanchang University, Nanchang University, Nanchang, China
| |
Collapse
|
48
|
Wen ZQ, Liu D, Zhang Y, Cai ZJ, Xiao WF, Li YS. G Protein-Coupled Receptors in Osteoarthritis: A Novel Perspective on Pathogenesis and Treatment. Front Cell Dev Biol 2021; 9:758220. [PMID: 34746150 PMCID: PMC8564363 DOI: 10.3389/fcell.2021.758220] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 09/27/2021] [Indexed: 11/30/2022] Open
Abstract
G protein-coupled receptors (GPCRs) are transmembrane receptor proteins that trigger numerous intracellular signaling pathways in response to the extracellular stimuli. The GPCRs superfamily contains enormous structural and functional diversity and mediates extensive biological processes. Until now, critical roles have been established in many diseases, including osteoarthritis (OA). Existing studies have shown that GPCRs play an important role in some OA-related pathogenesis, such as cartilage matrix degradation, synovitis, subchondral bone remodeling, and osteophyte formation. However, current pharmacological treatments are mostly symptomatic and there is a paucity of disease-modifying OA drugs so far. Targeting GPCRs is capable of inhibiting cartilage matrix degradation and synovitis and up-regulating cartilage matrix synthesis, providing a new therapeutic strategy for OA. In this review, we have comprehensively summarized the structures, biofunctions, and the novel roles of GPCRs in the pathogenesis and treatment of OA, which is expected to lay the foundation for the development of novel therapeutics against OA. Even though targeting GPCRs may ameliorate OA progression, many GPCRs-related therapeutic strategies are still in the pre-clinical stage and require further investigation.
Collapse
Affiliation(s)
- Ze-qin Wen
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Di Liu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
| | - Yi Zhang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zi-jun Cai
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
| | - Wen-feng Xiao
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yu-sheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
49
|
Kinsella GK, Cannito S, Bordano V, Stephens JC, Rosa AC, Miglio G, Guaschino V, Iannaccone V, Findlay JBC, Benetti E. GPR21 Inhibition Increases Glucose-Uptake in HepG2 Cells. Int J Mol Sci 2021; 22:ijms221910784. [PMID: 34639123 PMCID: PMC8509304 DOI: 10.3390/ijms221910784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/24/2021] [Accepted: 09/29/2021] [Indexed: 02/08/2023] Open
Abstract
GPR21 is a constitutively active, orphan, G-protein-coupled receptor, with in vivo studies suggesting its involvement in the modulation of insulin sensitivity. However, its precise contribution is not fully understood. As the liver is both a major target of insulin signalling and critically involved in glucose metabolism, the aim of this study was to examine the role of GPR21 in the regulation of glucose uptake and production in human hepatocytes. In particular, HepG2 cells, which express GPR21, were adopted as cellular models. Compared with untreated cells, a significant increase in glucose uptake was measured in cells treated with siRNA to downregulate GPR21 expression or with the GPR21-inverse agonist, GRA2. Consistently, a significantly higher membrane translocation of GLUT-2 was measured under these conditions. These effects were accompanied by an increased ratio of phAKT(Ser473)/tot-AKT and phGSK-3β(Ser9)/tot-GSK-3β, thus indicating a marked activation of the insulin signalling pathway. Moreover, a significant reduction in ERK activation was observed with GPR21 inhibition. Collectively, these results indicate that GPR21 mediates the negative effects on glucose uptake by the liver cells. In addition, they suggest that the pharmacological inhibition of GPR21 could be a novel strategy to improve glucose homeostasis and counteract hepatic insulin resistance.
Collapse
Affiliation(s)
- Gemma K. Kinsella
- School of Food Sciences and Environmental Health, Technological University Dublin, Grangegorman, D07 ADY7 Dublin, Ireland;
| | - Stefania Cannito
- Department of Clinical and Biological Sciences, University of Turin, 10125 Turin, Italy;
| | - Valentina Bordano
- Dipartimento di Scienza e Tecnologia del Farmaco, University of Turin, Via Pietro Giuria 9, 10125 Turin, Italy; (V.B.); (A.C.R.); (G.M.); (V.G.); (V.I.)
| | - John C. Stephens
- Department of Chemistry, Maynooth University, Maynooth, Co. Kildare, Ireland;
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Arianna C. Rosa
- Dipartimento di Scienza e Tecnologia del Farmaco, University of Turin, Via Pietro Giuria 9, 10125 Turin, Italy; (V.B.); (A.C.R.); (G.M.); (V.G.); (V.I.)
| | - Gianluca Miglio
- Dipartimento di Scienza e Tecnologia del Farmaco, University of Turin, Via Pietro Giuria 9, 10125 Turin, Italy; (V.B.); (A.C.R.); (G.M.); (V.G.); (V.I.)
| | - Valeria Guaschino
- Dipartimento di Scienza e Tecnologia del Farmaco, University of Turin, Via Pietro Giuria 9, 10125 Turin, Italy; (V.B.); (A.C.R.); (G.M.); (V.G.); (V.I.)
| | - Valeria Iannaccone
- Dipartimento di Scienza e Tecnologia del Farmaco, University of Turin, Via Pietro Giuria 9, 10125 Turin, Italy; (V.B.); (A.C.R.); (G.M.); (V.G.); (V.I.)
| | - John B. C. Findlay
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland;
- School of Biomedical Sciences, University of Leeds, LS2 9JT Leeds, UK
| | - Elisa Benetti
- Dipartimento di Scienza e Tecnologia del Farmaco, University of Turin, Via Pietro Giuria 9, 10125 Turin, Italy; (V.B.); (A.C.R.); (G.M.); (V.G.); (V.I.)
- Correspondence: ; Tel.: +39-0116707137
| |
Collapse
|
50
|
Ichimura A. Elucidation of the Physiological Functions of Membrane Proteins as Novel Drug Target Candidate Molecules. Biol Pharm Bull 2021; 44:1167-1173. [PMID: 34471043 DOI: 10.1248/bpb.b21-00296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
For pharmaceutical research focused on identifying novel drug target candidate molecules, it is essential to explore unknown biological phenomena, elucidate underlying molecular mechanisms and regulate biological processes based on these findings. Proteins expressed on the plasma membrane and endoplasmic reticulum (ER) membrane play important roles in linking extracellular environmental information to intracellular processes. Stimulating membranous proteins induces various kinds of changes in cells, such as alterations in gene expression levels and enzymatic activities. However, the physiological functions and endogenous ligands of many G-protein-coupled receptors (GPCRs) have not been determined, although GPCRs already constitute a large class of drug-target membrane proteins. Furthermore, the precise physiological roles played by many ER membrane proteins have not been elucidated to date. In this review article, I summarize the results of our recent studies, including the observations that the lipid sensor FFAR4/GPR120 controlled systemic energy homeostasis and that the ER membrane monovalent cation channel trimeric intracellular cation (TRIC)-B and the plasma membrane divalent cation channel transient receptor potential melastatin 7 (TRPM7) regulated bone formation. I further describe the therapeutic significance of these membranous protein-related biological processes.
Collapse
Affiliation(s)
- Atsuhiko Ichimura
- Department of Biological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University
| |
Collapse
|