1
|
Yan Z, Wang C, Wu J, Wang J, Ma T. TIM-3 teams up with PD-1 in cancer immunotherapy: mechanisms and perspectives. MOLECULAR BIOMEDICINE 2025; 6:27. [PMID: 40332725 PMCID: PMC12058639 DOI: 10.1186/s43556-025-00267-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 04/13/2025] [Accepted: 04/18/2025] [Indexed: 05/08/2025] Open
Abstract
Immunotherapy using immune checkpoint inhibitors (ICIs) has become a prominent strategy for cancer treatment over the past ten years. However, the efficacy of ICIs remains limited, with certain cancers exhibiting resistance to these therapeutic approaches. Consequently, several immune checkpoint proteins are presently being thoroughly screened and assessed in both preclinical and clinical studies. Among these candidates, T cell immunoglobulin and mucin-domain containing-3 (TIM-3) is considered a promising target. TIM-3 exhibits multiple immunosuppressive effects on various types of immune cells. Given its differential expression levels at distinct stages of T cell dysfunction in the tumor microenvironment (TME), TIM-3, along with programmed cell death protein 1 (PD-1), serves as indicators of T cell exhaustion. Moreover, it is crucial to carefully evaluate the impact of TIM-3 and PD-1 expression in cancer cells on the efficacy of immunotherapy. To increase the effectiveness of anti-TIM-3 and anti-PD-1 therapies, it is proposed to combine the inhibition of TIM-3, PD-1, and programmed death-ligand 1 (PD-L1). The efficacy of TIM-3 inhibition in conjunction with PD-1/PD-L1 inhibitors is being evaluated in a number of ongoing clinical trials for patients with various cancers. This study systematically investigates the fundamental biology of TIM-3 and PD-1, as well as the detailed mechanisms through which TIM-3 and PD-1/PD-L1 axis contribute to cancer immune evasion. Additionally, this article provides a thorough analysis of ongoing clinical trials evaluating the synergistic effects of combining PD-1/PD-L1 and TIM-3 inhibitors in anti-cancer treatment, along with an overview of the current status of TIM-3 and PD-1 antibodies.
Collapse
Affiliation(s)
- Zhuohong Yan
- Department of Cancer Research Center, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, 101149, China
| | - Chunmao Wang
- Department of Thoracic Surgery, Beijing Chest Hospital, Capital Medical University, Beijing, 101149, China
| | - Jinghong Wu
- Department of Cancer Research Center, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, 101149, China
| | - Jinghui Wang
- Department of Cancer Research Center, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, 101149, China
| | - Teng Ma
- Department of Cancer Research Center, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, 101149, China.
| |
Collapse
|
2
|
Fan TWM, Yan J, Goncalves CFL, Islam JMM, Lin P, Kaddah MMY, Higashi RM, Lane AN, Wang X, Zhu C. Patient-derived organotypic tissue cultures as a platform to evaluate metabolic reprogramming in breast cancer patients. J Biol Chem 2025; 301:108495. [PMID: 40209948 DOI: 10.1016/j.jbc.2025.108495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 03/25/2025] [Accepted: 04/03/2025] [Indexed: 04/12/2025] Open
Abstract
Patient-derived organotypic tissue cultures (PD-OTC) are unique models for probing cancer metabolism and therapeutic responses. They retain patient tissue architectures/microenvironments that are difficult to recapitulate while affording comparison of cancer (CA) versus matched noncancer (NC) tissue responses to treatments. We have developed a long-term culturing method for fresh and cryopreserved PD-OTC of breast cancer patients bearing invasive ductal carcinoma. Five PD-OTC came from patients with treatment-naïve primary ER+/PR+/HER2- tumors while one came from a patient with neoadjuvant therapy for locally metastatic ERlow/PR-/HER2- tumor. They all exhibited tissue outgrowth in 1 month with some CA OTC harboring isolatable organoids and fibroblasts. We interrogated reprogrammed metabolism in CA versus paired NC OTC with dual 2H7-glucose/13C5,15N2-Gln tracers coupled with stable isotope-resolved metabolomic analysis. We noted variable activation of glycolysis, cataplerotic/anaplerotic Krebs cycle including reductive carboxylation, the pentose phosphate pathway, riboneogenesis, gluconeogenesis, de novo and salvage synthesis of purine/pyrimidine nucleotides, and ADP-ribosylation in CA PD-OTC. Altered metabolic activities were in part accountable by expression changes in key enzymes measured by reverse phase protein array profiling. Notably, Gln-fueled gluconeogenesis products were preferentially diverted to support purine nucleotide synthesis. When blocking this novel process with an inhibitor of phosphoenolpyruvate carboxykinase (3-mercaptopicolinic acid), metastatic, ERlow/PR-/HER2- CA OTC displayed compromised cellularity, reduced outgrowth, and disrupted growth/survival-supporting metabolism but the matched NC OTC did not. Thus, our PD-OTC culturing method not only promoted understanding of actual patient's tumor metabolism to uncover viable metabolic targets but also enabled target testing and elucidation of therapeutic efficacy.
Collapse
Affiliation(s)
- Teresa W-M Fan
- Center for Environmental and Systems Biochemistry (CESB), Department of Toxicology and Cancer Biology, and Markey Cancer Center, University of Kentucky, Lexington, Kentucky, USA.
| | - Jing Yan
- F. Joseph Halcomb III, M.D. Department of Biomedical Engineering, University of Kentucky, Lexington, Kentucky, USA
| | - Carlos Frederico L Goncalves
- F. Joseph Halcomb III, M.D. Department of Biomedical Engineering, University of Kentucky, Lexington, Kentucky, USA
| | - Jahid M M Islam
- Center for Environmental and Systems Biochemistry (CESB), Department of Toxicology and Cancer Biology, and Markey Cancer Center, University of Kentucky, Lexington, Kentucky, USA
| | - Penghui Lin
- Center for Environmental and Systems Biochemistry (CESB), Department of Toxicology and Cancer Biology, and Markey Cancer Center, University of Kentucky, Lexington, Kentucky, USA
| | - Mohamed M Y Kaddah
- Center for Environmental and Systems Biochemistry (CESB), Department of Toxicology and Cancer Biology, and Markey Cancer Center, University of Kentucky, Lexington, Kentucky, USA; Pharmaceutical and Fermentation Industries Development Center, City of Scientific Research and Technological Applications, Alexandria, Egypt
| | - Richard M Higashi
- Center for Environmental and Systems Biochemistry (CESB), Department of Toxicology and Cancer Biology, and Markey Cancer Center, University of Kentucky, Lexington, Kentucky, USA
| | - Andrew N Lane
- Center for Environmental and Systems Biochemistry (CESB), Department of Toxicology and Cancer Biology, and Markey Cancer Center, University of Kentucky, Lexington, Kentucky, USA
| | - Xiaoqin Wang
- Department of Radiology, University of Kentucky, Lexington, Kentucky, USA
| | - Caigang Zhu
- F. Joseph Halcomb III, M.D. Department of Biomedical Engineering, University of Kentucky, Lexington, Kentucky, USA.
| |
Collapse
|
3
|
Malicki S, Czarna A, Żyła E, Pucelik B, Gałan W, Chruścicka B, Kamińska M, Sochaj-Gregorczyk A, Magiera-Mularz K, Wang J, Winiarski M, Benedyk-Machaczka M, Kozieł J, Dubin G, Mydel P. Development of selective ssDNA micro-probe for PD1 detection as a novel strategy for cancer imaging. Sci Rep 2024; 14:28652. [PMID: 39562585 PMCID: PMC11576874 DOI: 10.1038/s41598-024-74891-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 09/30/2024] [Indexed: 11/21/2024] Open
Abstract
Programmed death receptor 1, PD1, modulates the function of immune cells by providing inhibitory signals and constitutes the marker of immune exhaustion. Monitoring the level of PD1 promises a useful diagnostic approach in autoimmune diseases and cancer. Here we describe the development of an ssDNA aptamer-based molecular probe capable of specific recognition of human PD1 receptor. The aptamer was selected using SELEX, its sequence was further optimized, and the affinity and specificity were determined in biochemical assays. The aptamer was converted into a fluorescent probe and its potential in molecular imaging was demonstrated in a culture of human cells overexpressing PD1 and murine pancreatic organoids / immune cells mixed co-culture model. We conclude that the provided aptamers are suitable probes for imaging of PD1 expressing immune cells even in complex cellular models and may find future utility as diagnostic tools.
Collapse
Affiliation(s)
- Stanisław Malicki
- Laboratory of Proteolysis and Post-translational Modification of Proteins, Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7a, Krakow, 30-387, Poland.
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Krakow, 30-387, Poland.
| | - Anna Czarna
- Protein Crystallography Research, Group Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7a, Krakow, 30-387, Poland
| | - Edyta Żyła
- Protein Crystallography Research, Group Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7a, Krakow, 30-387, Poland
- Department of Cell Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Krakow, 30-387, Poland
| | - Barbara Pucelik
- Protein Crystallography Research, Group Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7a, Krakow, 30-387, Poland
- 5Łukasiewicz Research Network, Krakow Institute of Technology, ul. Zakopiańska 73, Kraków, 30-418, Poland
| | - Wojciech Gałan
- Department of Computational Biophysics and Bioinformatics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Krakow, 30-387, Poland
| | - Barbara Chruścicka
- Laboratory of Proteolysis and Post-translational Modification of Proteins, Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7a, Krakow, 30-387, Poland
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Krakow, 30-387, Poland
| | - Marta Kamińska
- Broegelmann Research Laboratory, University of Bergen, Haukeland universitetssykehus Laboratoriebygget, Bergen, 5009, Norway
| | - Alicja Sochaj-Gregorczyk
- Laboratory of Proteolysis and Post-translational Modification of Proteins, Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7a, Krakow, 30-387, Poland
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Krakow, 30-387, Poland
| | - Katarzyna Magiera-Mularz
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, Krakow, 30-387, Poland
- Laboratory of protein NMR, Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7a, Krakow, 30- 387, Poland
| | - Jun Wang
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 511442, People's Republic of China
| | - Marek Winiarski
- 2nd Department of General Surgery, Faculty of Medicine, Jagiellonian University Medical College, Kraków, 31-008, Poland
| | - Małgorzata Benedyk-Machaczka
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Krakow, 30-387, Poland
| | - Joanna Kozieł
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Krakow, 30-387, Poland
| | - Grzegorz Dubin
- Protein Crystallography Research, Group Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7a, Krakow, 30-387, Poland.
| | - Piotr Mydel
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Krakow, 30-387, Poland.
- Broegelmann Research Laboratory, University of Bergen, Haukeland universitetssykehus Laboratoriebygget, Bergen, 5009, Norway.
| |
Collapse
|
4
|
Do CTP, Prochnau JY, Dominguez A, Wang P, Rao MK. The Road Ahead in Pancreatic Cancer: Emerging Trends and Therapeutic Prospects. Biomedicines 2024; 12:1979. [PMID: 39335494 PMCID: PMC11428787 DOI: 10.3390/biomedicines12091979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/15/2024] [Accepted: 08/21/2024] [Indexed: 09/30/2024] Open
Abstract
This review explores the challenges and emerging trends in pancreatic cancer therapy. In particular, we focus on the tumor microenvironment and the potential of immunotherapy for pancreatic cancer. Pancreatic ductal adenocarcinoma, characterized by its dense stromal architecture, presents unique challenges for effective treatment. Recent advancements have emphasized the role of the tumor microenvironment in therapeutic resistance and disease progression. We discuss novel strategies targeting the desmoplastic barrier and immunosuppressive cells to enhance immune cell infiltration and activation. Recent clinical trials, particularly those involving novel immunotherapeutic agents and tumor vaccines, are examined to understand their efficacy and limitations. Our analysis reveals that combining immunotherapy with chemotherapy, radiation therapy, or drugs targeting epigenetic processes shows promise, improving overall survival rates and response to treatment. For instance, trials utilizing checkpoint inhibitors in combination with standard chemotherapies have extended disease-free survival by up to 6 months compared to chemotherapy alone. Importantly, vaccines targeting specific tumor neoantigens have shown the potential to increase patient survival. However, these approaches also face significant challenges, including overcoming the immunosuppressive tumor microenvironment and enhancing the delivery and efficacy of therapeutic agents. By providing an overview of both the promising results and the obstacles encountered, this review aims to highlight ongoing efforts to refine immunotherapy approaches for better patient outcomes.
Collapse
Affiliation(s)
- Chris T P Do
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Jack Y Prochnau
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Angel Dominguez
- Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Pei Wang
- Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Manjeet K Rao
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
- Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
5
|
Holzgruber J, Martins C, Kulcsar Z, Duplaine A, Rasbach E, Migayron L, Singh P, Statham E, Landsberg J, Boniface K, Seneschal J, Hoetzenecker W, Berdan EL, Ho Sui S, Ramsey MR, Barthel SR, Schatton T. Type I interferon signaling induces melanoma cell-intrinsic PD-1 and its inhibition antagonizes immune checkpoint blockade. Nat Commun 2024; 15:7165. [PMID: 39187481 PMCID: PMC11347607 DOI: 10.1038/s41467-024-51496-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 08/09/2024] [Indexed: 08/28/2024] Open
Abstract
Programmed cell death 1 (PD-1) is a premier cancer drug target for immune checkpoint blockade (ICB). Because PD-1 receptor inhibition activates tumor-specific T-cell immunity, research has predominantly focused on T-cell-PD-1 expression and its immunobiology. In contrast, cancer cell-intrinsic PD-1 functional regulation is not well understood. Here, we demonstrate induction of PD-1 in melanoma cells via type I interferon receptor (IFNAR) signaling and reversal of ICB efficacy through IFNAR pathway inhibition. Treatment of melanoma cells with IFN-α or IFN-β triggers IFNAR-mediated Janus kinase-signal transducer and activator of transcription (JAK/STAT) signaling, increases chromatin accessibility and resultant STAT1/2 and IFN regulatory factor 9 (IRF9) binding within a PD-1 gene enhancer, and leads to PD-1 induction. IFNAR1 or JAK/STAT inhibition suppresses melanoma-PD-1 expression and disrupts ICB efficacy in preclinical models. Our results uncover type I IFN-dependent regulation of cancer cell-PD-1 and provide mechanistic insight into the potential unintended ICB-neutralizing effects of widely used IFNAR1 and JAK inhibitors.
Collapse
Affiliation(s)
- Julia Holzgruber
- Department of Dermatology, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Department of Dermatology, Harvard Medical School, Boston, MA, 02115, USA
- Program of Glyco-Immunology and Oncology, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Department of Dermatology and Venereology, Medical Faculty, Johannes Kepler University, 4040, Linz, Austria
| | - Christina Martins
- Department of Dermatology, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Department of Dermatology, Harvard Medical School, Boston, MA, 02115, USA
- Program of Glyco-Immunology and Oncology, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Zsofi Kulcsar
- Department of Dermatology, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Department of Dermatology, Harvard Medical School, Boston, MA, 02115, USA
- Program of Glyco-Immunology and Oncology, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Center for Skin Diseases, Clinic for Dermatooncology and Phlebology, University Hospital Bonn, 53127, Bonn, Germany
| | - Alexandra Duplaine
- Department of Dermatology, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Department of Dermatology, Harvard Medical School, Boston, MA, 02115, USA
- Centre Hospitalier Universitaire de Bordeaux, Dermatology and Pediatric Dermatology, National Reference Center for Rare Skin Disorders, Hôpital Saint-André, UMR 5164, 33000, Bordeaux, France
| | - Erik Rasbach
- Department of Dermatology, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Department of Dermatology, Harvard Medical School, Boston, MA, 02115, USA
- Program of Glyco-Immunology and Oncology, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Department of Surgery, University Hospital Mannheim, 68167, Mannheim, Germany
| | - Laure Migayron
- Department of Dermatology, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Department of Dermatology, Harvard Medical School, Boston, MA, 02115, USA
- Program of Glyco-Immunology and Oncology, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Praveen Singh
- Department of Dermatology, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Department of Dermatology, Harvard Medical School, Boston, MA, 02115, USA
- Program of Glyco-Immunology and Oncology, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Edith Statham
- Department of Dermatology, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Department of Dermatology, Harvard Medical School, Boston, MA, 02115, USA
| | - Jennifer Landsberg
- Center for Skin Diseases, Clinic for Dermatooncology and Phlebology, University Hospital Bonn, 53127, Bonn, Germany
| | - Katia Boniface
- CNRS, ImmunoConcEpT, University of Bordeaux, UMR 5164, 33000, Bordeaux, France
| | - Julien Seneschal
- Centre Hospitalier Universitaire de Bordeaux, Dermatology and Pediatric Dermatology, National Reference Center for Rare Skin Disorders, Hôpital Saint-André, UMR 5164, 33000, Bordeaux, France
- CNRS, ImmunoConcEpT, University of Bordeaux, UMR 5164, 33000, Bordeaux, France
| | - Wolfram Hoetzenecker
- Department of Dermatology and Venereology, Medical Faculty, Johannes Kepler University, 4040, Linz, Austria
| | - Emma L Berdan
- Bioinformatics Core, Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Shannan Ho Sui
- Bioinformatics Core, Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Matthew R Ramsey
- Department of Dermatology, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Department of Dermatology, Harvard Medical School, Boston, MA, 02115, USA
| | - Steven R Barthel
- Department of Dermatology, Brigham and Women's Hospital, Boston, MA, 02115, USA.
- Department of Dermatology, Harvard Medical School, Boston, MA, 02115, USA.
- Program of Glyco-Immunology and Oncology, Brigham and Women's Hospital, Boston, MA, 02115, USA.
| | - Tobias Schatton
- Department of Dermatology, Brigham and Women's Hospital, Boston, MA, 02115, USA.
- Department of Dermatology, Harvard Medical School, Boston, MA, 02115, USA.
- Program of Glyco-Immunology and Oncology, Brigham and Women's Hospital, Boston, MA, 02115, USA.
- Department of Medicine, Boston Children's Hospital, Boston, MA, 02115, USA.
| |
Collapse
|
6
|
Martins C, Rasbach E, Heppt MV, Singh P, Kulcsar Z, Holzgruber J, Chakraborty A, Mucciarone K, Kleffel S, Brandenburg A, Hoetzenecker W, Rahbari NN, DeCaprio JA, Thakuria M, Murphy GF, Ramsey MR, Posch C, Barthel SR, Schatton T. Tumor cell-intrinsic PD-1 promotes Merkel cell carcinoma growth by activating downstream mTOR-mitochondrial ROS signaling. SCIENCE ADVANCES 2024; 10:eadi2012. [PMID: 38241371 PMCID: PMC10798567 DOI: 10.1126/sciadv.adi2012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 12/20/2023] [Indexed: 01/21/2024]
Abstract
Merkel cell carcinoma (MCC) is a rare and aggressive skin cancer. Inhibitors targeting the programmed cell death 1 (PD-1) immune checkpoint have improved MCC patient outcomes by boosting antitumor T cell immunity. Here, we identify PD-1 as a growth-promoting receptor intrinsic to MCC cells. In human MCC lines and clinical tumors, RT-PCR-based sequencing, immunoblotting, flow cytometry, and immunofluorescence analyses demonstrated PD-1 gene and protein expression by MCC cells. MCC-PD-1 ligation enhanced, and its inhibition or silencing suppressed, in vitro proliferation and in vivo tumor xenograft growth. Consistently, MCC-PD-1 binding to PD-L1 or PD-L2 induced, while antibody-mediated PD-1 blockade inhibited, protumorigenic mTOR signaling, mitochondrial (mt) respiration, and ROS generation. Last, pharmacologic inhibition of mTOR or mtROS reversed MCC-PD-1:PD-L1-dependent proliferation and synergized with PD-1 checkpoint blockade in suppressing tumorigenesis. Our results identify an MCC-PD-1-mTOR-mtROS axis as a tumor growth-accelerating mechanism, the blockade of which might contribute to clinical response in patients with MCC.
Collapse
Affiliation(s)
- Christina Martins
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Program of Glyco-Immunology and Oncology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Erik Rasbach
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Program of Glyco-Immunology and Oncology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Surgery, University Hospital Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Markus V. Heppt
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander-University (FAU), 91054 Erlangen, Germany
| | - Praveen Singh
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Program of Glyco-Immunology and Oncology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Zsofi Kulcsar
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Program of Glyco-Immunology and Oncology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Dermatology, University Hospital Bonn, 53127 Bonn, Germany
| | - Julia Holzgruber
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Program of Glyco-Immunology and Oncology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Dermatology and Venerology, Johannes Kepler University, 4020 Linz, Austria
| | - Asmi Chakraborty
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Program of Glyco-Immunology and Oncology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Kyla Mucciarone
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Sonja Kleffel
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Anne Brandenburg
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Dermatology, University Hospital Bonn, 53127 Bonn, Germany
| | - Wolfram Hoetzenecker
- Department of Dermatology and Venerology, Johannes Kepler University, 4020 Linz, Austria
| | - Nuh N. Rahbari
- Department of Surgery, University Hospital Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - James A. DeCaprio
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
- Program in Virology, Graduate School of Arts and Sciences, Harvard University, Cambridge, MA 02138, USA
- Merkel Cell Carcinoma Center of Excellence, Dana-Farber/Brigham and Women’s Hospital Cancer Center, Boston, MA 02115, USA
| | - Manisha Thakuria
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Merkel Cell Carcinoma Center of Excellence, Dana-Farber/Brigham and Women’s Hospital Cancer Center, Boston, MA 02115, USA
| | - George F. Murphy
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Matthew R. Ramsey
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Christian Posch
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Dermatology, Vienna Healthcare Group, 1130 Vienna, Austria
- Faculty of Medicine, Sigmund Freud University Vienna, 1020 Vienna, Austria
- Department of Dermatology and Allergy, School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Steven R. Barthel
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Program of Glyco-Immunology and Oncology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Tobias Schatton
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Program of Glyco-Immunology and Oncology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
7
|
Tzenaki N, Xenou L, Goulielmaki E, Tsapara A, Voudouri I, Antoniou A, Valianatos G, Tzardi M, De Bree E, Berdiaki A, Makrigiannakis A, Papakonstanti EA. A combined opposite targeting of p110δ PI3K and RhoA abrogates skin cancer. Commun Biol 2024; 7:26. [PMID: 38182748 PMCID: PMC10770346 DOI: 10.1038/s42003-023-05639-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 11/27/2023] [Indexed: 01/07/2024] Open
Abstract
Malignant melanoma is the most aggressive and deadly skin cancer with an increasing incidence worldwide whereas SCC is the second most common non-melanoma human skin cancer with limited treatment options. Here we show that the development and metastasis of melanoma and SCC cancers can be blocked by a combined opposite targeting of RhoA and p110δ PI3K. We found that a targeted induction of RhoA activity into tumours by deletion of p190RhoGAP-a potent inhibitor of RhoA GTPase-in tumour cells together with adoptive macrophages transfer from δD910A/D910A mice in mice bearing tumours with active RhoA abrogated growth progression of melanoma and SCC tumours. Τhe efficacy of this combined treatment is the same in tumours lacking activating mutations in BRAF and in tumours harbouring the most frequent BRAF(V600E) mutation. Furthermore, the efficiency of this combined treatment is associated with decreased ATX expression in tumour cells and tumour stroma bypassing a positive feedback expression of ATX induced by direct ATX pharmacological inactivation. Together, our findings highlight the importance of targeting cancer cells and macrophages for skin cancer therapy, emerge a reverse link between ATX and RhoA and illustrate the benefit of p110δ PI3K inhibition as a combinatorial regimen for the treatment of skin cancers.
Collapse
Affiliation(s)
- Niki Tzenaki
- Department of Biochemistry, School of Medicine, University of Crete, Heraklion, Greece
| | - Lydia Xenou
- Department of Biochemistry, School of Medicine, University of Crete, Heraklion, Greece
| | - Evangelia Goulielmaki
- Department of Biochemistry, School of Medicine, University of Crete, Heraklion, Greece
| | - Anna Tsapara
- Department of Biochemistry, School of Medicine, University of Crete, Heraklion, Greece
| | - Irene Voudouri
- Department of Biochemistry, School of Medicine, University of Crete, Heraklion, Greece
| | - Angelika Antoniou
- Department of Biochemistry, School of Medicine, University of Crete, Heraklion, Greece
| | - George Valianatos
- Department of Biochemistry, School of Medicine, University of Crete, Heraklion, Greece
| | - Maria Tzardi
- Department of Pathology, School of Medicine, University of Crete, University Hospital, Heraklion, Greece
| | - Eelco De Bree
- Department of Surgical Oncology, School of Medicine, University of Crete, University Hospital, Heraklion, Greece
| | - Aikaterini Berdiaki
- Department of Obstetrics and Gynaecology, School of Medicine, University of Crete, University Hospital, Heraklion, Greece
| | - Antonios Makrigiannakis
- Department of Obstetrics and Gynaecology, School of Medicine, University of Crete, University Hospital, Heraklion, Greece
| | | |
Collapse
|
8
|
Liu X, Song H, Sun T, Wang H. Responsive Microneedles as a New Platform for Precision Immunotherapy. Pharmaceutics 2023; 15:1407. [PMID: 37242649 PMCID: PMC10220742 DOI: 10.3390/pharmaceutics15051407] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/19/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
Microneedles are a well-known transdermal or transdermal drug delivery system. Different from intramuscular injection, intravenous injection, etc., the microneedle delivery system provides unique characteristics for immunotherapy administration. Microneedles can deliver immunotherapeutic agents to the epidermis and dermis, where immune cells are abundant, unlike conventional vaccine systems. Furthermore, microneedle devices can be designed to respond to certain endogenous or exogenous stimuli including pH, reactive oxygen species (ROS), enzyme, light, temperature, or mechanical force, thereby allowing controlled release of active compounds in the epidermis and dermis. In this way, multifunctional or stimuli-responsive microneedles for immunotherapy could enhance the efficacy of immune responses to prevent or mitigate disease progression and lessen systemic adverse effects on healthy tissues and organs. Since microneedles are a promising drug delivery system for accurate delivery and controlled drug release, this review focuses on the progress of using reactive microneedles for immunotherapy, especially for tumors. Limitations of current microneedle system are summarized, and the controllable administration and targeting of reactive microneedle systems are examined.
Collapse
Affiliation(s)
- Xinyang Liu
- Henan Institutes of Advanced Technology, Zhengzhou University, Zhengzhou 450052, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Haohao Song
- Henan Institutes of Advanced Technology, Zhengzhou University, Zhengzhou 450052, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Tairan Sun
- The Second Affiliated Hospital of Hebei North University, Zhangjiakou 075100, China
| | - Hai Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
9
|
Gong L, Gao D, Zhang X, Chen S, Qian J. REL-NPMI: Exploring genotype and phenotype relationship of pancreatitis based on improved normalized point-by-point mutual information. Comput Biol Med 2023; 158:106868. [PMID: 37037149 DOI: 10.1016/j.compbiomed.2023.106868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 03/02/2023] [Accepted: 03/30/2023] [Indexed: 04/07/2023]
Abstract
Pancreatitis is a relatively serious disease caused by the self-digestion of trypsin in the pancreas. The generation of diseases is closely related to gene and phenotype information. Generally, gene-phenotype relations are mainly obtained through clinical experiments, but the cost is huge. With the amount of published biomedical literature increasing exponentially, it carries a wealth of disease-related gene and phenotype information. This study provided an effective way to obtain disease-related gene and phenotype information. To our best knowledge, this work first attempted to explore relationships between genotype and phenotype about the pancreatitis from the computational perspective. It mined 6152 genes and 76,753 pairs of genotype and phenotype extracted from the biomedical literature about pancreatitis using text mining. Based on the above 76,753 pairs, the study proposed an improved normalized point-wise mutual information (REL-NPMI) model to optimize gene-phenotype relations related to pancreatitis, and obtained 12,562 gene-phenotype pairs which may be related to pancreatitis. The extracted top 20 results were validated and evaluated. The experimental results show that the method is promising for exploring pancreatitis' molecular mechanism, thus it provides a computational way for studying pancreatitis' disease pathogenesis. Data resources and the Pancreatitis Gene-Phenotype Association Database are available at http://114.116.4.45:8081/and resources are also available at https://github.com/polipoptbe8023/REL-NPMI.git.
Collapse
|
10
|
Xu B, Chen Y, Peng M, Zheng JH, Zuo C. Exploring the potential of exosomes in diagnosis and drug delivery for pancreatic ductal adenocarcinoma. Int J Cancer 2023; 152:110-122. [PMID: 35765844 PMCID: PMC9796664 DOI: 10.1002/ijc.34195] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 05/30/2022] [Accepted: 06/09/2022] [Indexed: 01/07/2023]
Abstract
Pancreatic cancer (PC) is a cancer of the digestive system, and pancreatic ductal adenocarcinoma (PDAC) accounts for approximately 90% of all PC cases. Exosomes derived from PDAC (PDAC-exosomes) promote PDAC development and metastasis. Exosomes are nanoscale vesicles secreted by most cells, which can carry biologically active molecules and mediate communication and cargo transportation among cells. Recent studies have focused on transforming exosomes into good drug delivery systems (DDSs) to improve the clinical treatment of PDAC. This review considers PDAC as the main research object to introduce the role of PDAC-exosomes in PDAC development and metastasis. This review focuses on the following two themes: (a) the great potential of PDAC-exosomes as new diagnostic markers for PDAC, and (b) the transformation of exosomes into potential DDSs.
Collapse
Affiliation(s)
- Biaoming Xu
- Department of Gastroduodenal and Pancreatic SurgeryTranslational Medicine Joint Research Center of Liver Cancer of Hunan University, Laboratory of Digestive Oncology, Affiliated Cancer Hospital of Xiangya Medical School & Hunan Cancer Hospital, Central South UniversityChangshaChina
| | - Yu Chen
- Institute of Pathogen Biology and Immunology of College of BiologyHunan Provincial Key Laboratory of Medical Virology, Hunan UniversityChangshaChina
| | - Mingjing Peng
- Department of Gastroduodenal and Pancreatic SurgeryTranslational Medicine Joint Research Center of Liver Cancer of Hunan University, Laboratory of Digestive Oncology, Affiliated Cancer Hospital of Xiangya Medical School & Hunan Cancer Hospital, Central South UniversityChangshaChina
| | - Jin Hai Zheng
- Institute of Pathogen Biology and Immunology of College of BiologyHunan Provincial Key Laboratory of Medical Virology, Hunan UniversityChangshaChina
| | - Chaohui Zuo
- Department of Gastroduodenal and Pancreatic SurgeryTranslational Medicine Joint Research Center of Liver Cancer of Hunan University, Laboratory of Digestive Oncology, Affiliated Cancer Hospital of Xiangya Medical School & Hunan Cancer Hospital, Central South UniversityChangshaChina
| |
Collapse
|
11
|
Yao J, Gao R, Luo M, Li D, Guo L, Yu Z, Xiong F, Wei C, Wu B, Xu Z, Zhang D, Wang J, Wang L. Exosomal LINC00460/miR-503-5p/ANLN positive feedback loop aggravates pancreatic cancer progression through regulating T cell-mediated cytotoxicity and PD-1 checkpoint. Cancer Cell Int 2022; 22:390. [PMID: 36482354 PMCID: PMC9733079 DOI: 10.1186/s12935-022-02741-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 10/04/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Long non-coding RNA (lncRNA) LINC00460 is an onco-lncRNA in a variety of cancers, including pancreatic cancer (PC). This study is aimed to investigate the regulatory mechanisms of LINC00460 in PC. METHODS The tumor and adjacent normal tissues were collected from 73 PC patients. The expression of LINC00460, miR-503-5p, and ANLN was detected using qRT-PCR. We then analyzed the proliferation, migration, invasion, and apoptosis/cell cycle of PC cells by performing the MTT/EdU, transwell, and flow cytometry assays, respectively. The xenograft tumor model were utilized to confirm the effect of LINC00460 knockdown on PC through anti-PD-1 therapy in vivo, and the sensitivity of PANC-1 cells to the cytotoxicity of CD8+ T cells in vitro. Western blotting was used to determine the protein levels. A co-culture model was utilized to explore the effects of exosomes on macrophages. RESULTS LINC00460 was up-regulated in PC tissues and cells. LINC00460 knockdown suppressed cell proliferation, migration, and invasion, facilitated cell apoptosis and G0/G1 phase arrest, and inhibited the tumor growth through anti-PD-1 therapy. Both miR-503-5p down-regulation and ANLN up-regulation reversed the effects of LINC00460 knockdown on inhibiting the proliferation, migration and invasion, and on promoting the apoptosis, G0/G1 phase arrest, and the sensitivity of PC cells to the cytotoxicity of CD8+ T cells. Exosomes were uptaken by the ambient PC cells. PANC-1 cells-derived exosomal LINC00460-induced M2 macrophage polarization accelerates the cell migration and invasion. CONCLUSIONS LINC00460 silencing attenuates the development of PC by regulating the miR-503-5p/ANLN axis and exosomal LINC00460-induced M2 macrophage polarization accelerates the migration and invasion of PANC-1 cells, thus LINC00460 may act as a possible therapeutic target for treating PC.
Collapse
Affiliation(s)
- Jun Yao
- grid.258164.c0000 0004 1790 3548Department of Gastroenterology, Jinan University of Second Clinical Medical Sciences, Shenzhen Municipal People’s Hospital, No. 1017, East Gate Road, Shenzhen City, 518020 Guangdong Province China
| | - Ruoyu Gao
- grid.258164.c0000 0004 1790 3548Department of Gastroenterology, Jinan University of Second Clinical Medical Sciences, Shenzhen Municipal People’s Hospital, No. 1017, East Gate Road, Shenzhen City, 518020 Guangdong Province China
| | - Minghan Luo
- grid.258164.c0000 0004 1790 3548Department of Gastroenterology, Jinan University of Second Clinical Medical Sciences, Shenzhen Municipal People’s Hospital, No. 1017, East Gate Road, Shenzhen City, 518020 Guangdong Province China
| | - Defeng Li
- grid.258164.c0000 0004 1790 3548Department of Gastroenterology, Jinan University of Second Clinical Medical Sciences, Shenzhen Municipal People’s Hospital, No. 1017, East Gate Road, Shenzhen City, 518020 Guangdong Province China
| | - Liliangzi Guo
- grid.258164.c0000 0004 1790 3548Department of Gastroenterology, Jinan University of Second Clinical Medical Sciences, Shenzhen Municipal People’s Hospital, No. 1017, East Gate Road, Shenzhen City, 518020 Guangdong Province China
| | - Zichao Yu
- grid.258164.c0000 0004 1790 3548Department of Gastroenterology, Jinan University of Second Clinical Medical Sciences, Shenzhen Municipal People’s Hospital, No. 1017, East Gate Road, Shenzhen City, 518020 Guangdong Province China
| | - Feng Xiong
- grid.258164.c0000 0004 1790 3548Department of Gastroenterology, Jinan University of Second Clinical Medical Sciences, Shenzhen Municipal People’s Hospital, No. 1017, East Gate Road, Shenzhen City, 518020 Guangdong Province China
| | - Cheng Wei
- grid.258164.c0000 0004 1790 3548Department of Gastroenterology, Jinan University of Second Clinical Medical Sciences, Shenzhen Municipal People’s Hospital, No. 1017, East Gate Road, Shenzhen City, 518020 Guangdong Province China
| | - Benhua Wu
- grid.258164.c0000 0004 1790 3548Department of Gastroenterology, Jinan University of Second Clinical Medical Sciences, Shenzhen Municipal People’s Hospital, No. 1017, East Gate Road, Shenzhen City, 518020 Guangdong Province China
| | - Zhenglei Xu
- grid.258164.c0000 0004 1790 3548Department of Gastroenterology, Jinan University of Second Clinical Medical Sciences, Shenzhen Municipal People’s Hospital, No. 1017, East Gate Road, Shenzhen City, 518020 Guangdong Province China
| | - Dingguo Zhang
- grid.258164.c0000 0004 1790 3548Department of Gastroenterology, Jinan University of Second Clinical Medical Sciences, Shenzhen Municipal People’s Hospital, No. 1017, East Gate Road, Shenzhen City, 518020 Guangdong Province China
| | - Jianyao Wang
- grid.452787.b0000 0004 1806 5224Department of General Surgery, Shenzhen Children’s Hospital, No. 7019, Yitian Road Road, Shenzhen City, 518026 Guangdong Province China
| | - Lisheng Wang
- grid.258164.c0000 0004 1790 3548Department of Gastroenterology, Jinan University of Second Clinical Medical Sciences, Shenzhen Municipal People’s Hospital, No. 1017, East Gate Road, Shenzhen City, 518020 Guangdong Province China
| |
Collapse
|
12
|
Gautam SK, Basu S, Aithal A, Dwivedi NV, Gulati M, Jain M. Regulation of pancreatic cancer therapy resistance by chemokines. Semin Cancer Biol 2022; 86:69-80. [PMID: 36064086 PMCID: PMC10370390 DOI: 10.1016/j.semcancer.2022.08.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 12/12/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal malignancy characterized by high resistance and poor response to chemotherapy. In addition, the poorly immunogenic pancreatic tumors constitute an immunosuppressive tumor microenvironment (TME) that render immunotherapy-based approaches ineffective. Understanding the mechanisms of therapy resistance, identifying new targets, and developing effective strategies to overcome resistance can significantly impact the management of PDAC patients. Chemokines are small soluble factors that are significantly deregulated during PDAC pathogenesis, contributing to tumor growth, metastasis, immune cell trafficking, and therapy resistance. Thus far, different chemokine pathways have been explored as therapeutic targets in PDAC, with some promising results in recent clinical trials. Particularly, immunotherapies such as immune check point blockade therapies and CAR-T cell therapies have shown promising results when combined with chemokine targeted therapies. Considering the emerging pathological and clinical significance of chemokines in PDAC, we reviewed major chemokine-regulated pathways leading to therapy resistance and the ongoing endeavors to target chemokine signaling in PDAC. This review discusses the role of chemokines in regulating therapy resistance in PDAC and highlights the continuing efforts to target chemokine-regulated pathways to improve the efficacy of various treatment modalities.
Collapse
Affiliation(s)
- Shailendra K Gautam
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Soumi Basu
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Abhijit Aithal
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Nidhi V Dwivedi
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Mansi Gulati
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Maneesh Jain
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA; Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA.
| |
Collapse
|
13
|
Nagaraju GP, Malla RR, Basha R, Motofei IG. Contemporary clinical trials in pancreatic cancer immunotherapy targeting PD-1 and PD-L1. Semin Cancer Biol 2022; 86:616-621. [PMID: 34774995 DOI: 10.1016/j.semcancer.2021.11.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 11/09/2021] [Indexed: 01/27/2023]
Abstract
Pancreatic cancer (PC) is a major gastrointestinal cancer in terms of worldwide incidence and mortality. Despite advances in diagnostic and treatment modalities, the mortality of PC is still a serious concern in both sexes. Immune therapy using inhibitors of immune checkpoints, especially inhibitors of programmed cell death protein 1/programmed cell death ligand-1(PD-1/PD-L1), offer huge benefits to cancer patients. This review describes an up-to-date information on the role of PD-1 and PD-L1 in the development of immune tolerance in PC alongside the current clinical trials and the known outcomes citing the available literature. We also included the details on PD-1/PD-L1-mediated signalling in maintenance of PC stem cells and metastasis. We reviewed the critical information on safety, tolerance, and efficacy of clinically important regimens of PD-1/PD-L1 blocking agents and targeted therapeutics. This review elucidates the underlying mechanisms of PD-1/PD-L1 alliance in tolerance of the immune system, maintenance of stem cells, and metastasis promotion as well as design regimens with high safety and excellent tolerability and efficacy for management of PC in advanced stages.
Collapse
Affiliation(s)
- Ganji Purnachandra Nagaraju
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA, 30322, USA
| | - Rama Rao Malla
- Cancer Biology Laboratory, Department of Biochemistry and Bioinformatics, Institute of Science, GITAM (Deemed to be University), Visakhapatnam, AP, 530045, India
| | - Riyaz Basha
- Graduate School of Biomedical Sciences, The University of North Texas Health Science Center, Fort Worth, Texas, Department of Pediatrics and Women's Health, Texas College of Osteopathic Medicine, The University of North Texas Health Science Center, Fort Worth, TX, 76107, United States
| | - Ion G Motofei
- Department of Oncology/ Surgery, St. Pantelimon Hospital, Carol Davila University, Dionisie Lupu Street, No. 37, Bucharest, 020022, Romania.
| |
Collapse
|
14
|
Distinct antibody clones detect PD-1 checkpoint expression and block PD-L1 interactions on live murine melanoma cells. Sci Rep 2022; 12:12491. [PMID: 35864188 PMCID: PMC9304406 DOI: 10.1038/s41598-022-16776-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 07/15/2022] [Indexed: 12/16/2022] Open
Abstract
Monoclonal antibodies (abs) targeting the programmed cell death 1 (PD-1) immune checkpoint pathway have revolutionized tumor therapy. Because T-cell-directed PD-1 blockade boosts tumor immunity, anti-PD-1 abs have been developed for examining T-cell-PD-1 functions. More recently, PD-1 expression has also been reported directly on cancer cells of various etiology, including in melanoma. Nevertheless, there is a paucity of studies validating anti-PD-1 ab clone utility in specific assay types for characterizing tumor cell-intrinsic PD-1. Here, we demonstrate reactivity of several anti-murine PD-1 ab clones and recombinant PD-L1 with live B16-F10 melanoma cells and YUMM lines using multiple independent methodologies, positive and negative PD-1-specific controls, including PD-1-overexpressing and PD-1 knockout cells. Flow cytometric analyses with two separate anti-PD-1 ab clones, 29F.1A12 and RMP1-30, revealed PD-1 surface protein expression on live murine melanoma cells, which was corroborated by marked enrichment in PD-1 gene (Pdcd1) expression. Immunoblotting, immunoprecipitation, and mass spectrometric sequencing confirmed PD-1 protein expression by B16-F10 cells. Recombinant PD-L1 also recognized melanoma cell-expressed PD-1, the blockade of which by 29F.1A12 fully abrogated PD-1:PD-L1 binding. Together, our data provides multiple lines of evidence establishing PD-1 expression by live murine melanoma cells and validates ab clones and assay systems for tumor cell-directed PD-1 pathway investigations.
Collapse
|
15
|
Harper MM, Lin M, Cavnar MJ, Pandalai PK, Patel RA, Gao M, Kim J. Interaction of immune checkpoint PD-1 and chemokine receptor 4 (CXCR4) promotes a malignant phenotype in pancreatic cancer cells. PLoS One 2022; 17:e0270832. [PMID: 35797269 PMCID: PMC9262213 DOI: 10.1371/journal.pone.0270832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 06/20/2022] [Indexed: 12/25/2022] Open
Abstract
Despite recent therapeutic advances, pancreatic ductal adenocarcinoma (PDAC) remains a devastating disease with limited therapeutic options. Immune checkpoint inhibitors (ICIs) have demonstrated promising results in many cancers, but thus far have yielded little clinical benefit in PDAC. Based on recent combined targeting of programmed cell death protein-1 (PD-1) and C-X-C chemokine receptor 4 (CXCR4) in patient-derived xenografts (PDXs) and a pilot clinical trial, we sought to elucidate potential interactions between PD-1 and CXCR4. We observed concomitant expression and direct interaction of PD-1 and CXCR4 in PDAC cells. This interaction was disrupted upon CXCR4 antagonism with AMD3100 and led to increased cell surface expression of PD-1. Importantly, CXCR4-mediated PDAC cell migration was also blocked by PD-1 inhibition. Our work provides a possible mechanism by which prior studies have demonstrated that combined CXCR4 and PD-1 inhibition leads to decreased tumor growth. This is the first report investigating PD-1 and CXCR4 interactions in PDAC cells and our results can serve as the basis for further investigation of combined therapeutic targeting of CXCR4 and PD-1.
Collapse
Affiliation(s)
- Megan M. Harper
- Division of Surgical Oncology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Miranda Lin
- Division of Surgical Oncology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Michael J. Cavnar
- Division of Surgical Oncology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Prakash K. Pandalai
- Division of Surgical Oncology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Reema A. Patel
- Division of Medical Oncology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Mei Gao
- Division of Surgical Oncology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Joseph Kim
- Division of Surgical Oncology, University of Kentucky, Lexington, Kentucky, United States of America
| |
Collapse
|
16
|
Circulating Protein Biomarkers for Prognostic Use in Patients with Advanced Pancreatic Ductal Adenocarcinoma Undergoing Chemotherapy. Cancers (Basel) 2022; 14:cancers14133250. [PMID: 35805022 PMCID: PMC9264968 DOI: 10.3390/cancers14133250] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/25/2022] [Accepted: 06/28/2022] [Indexed: 02/06/2023] Open
Abstract
Patients with advanced pancreatic ductal adenocarcinoma (PDAC) have a dismal prognosis. We aimed to find a prognostic protein signature for overall survival (OS) in patients with advanced PDAC, and to explore whether early changes in circulating-protein levels could predict survival. We investigated 92 proteins using the Olink Immuno-Oncology panel in serum samples from 363 patients with advanced PDAC. Protein panels for several survival cut-offs were developed independently by two bioinformaticians using LASSO and Ridge regression models. Two panels of proteins discriminated patients with OS < 90 days from those with OS > 2 years. Index I (CSF-1, IL-6, PDCD1, TNFRSF12A, TRAIL, TWEAK, and CA19-9) had AUCs of 0.99 (95% CI: 0.98−1) (discovery cohort) and 0.89 (0.74−1) (replication cohort). For Index II (CXCL13, IL-6, PDCD1, and TNFRSF12A), the corresponding AUCs were 0.97 (0.93−1) and 0.82 (0.68−0.96). Four proteins (ANGPT2, IL-6, IL-10, and TNFRSF12A) were associated with survival across all treatment groups. Longitudinal samples revealed several changes, including four proteins that were also part of the prognostic signatures (CSF-1, CXCL13, IL-6, TNFRSF12A). This study identified two circulating-protein indices with the potential to identify patients with advanced PDAC with very short OS and with long OS.
Collapse
|
17
|
Harper MM, Lin M, Qasem SA, Patel RA, Cavnar MJ, Pandalai PK, Gao M, Kim J. Endogenous Pancreatic Cancer Cell PD-1 Activates MET and Induces Epithelial-Mesenchymal Transition to Promote Cancer Progression. Cancers (Basel) 2022; 14:3051. [PMID: 35804822 PMCID: PMC9264908 DOI: 10.3390/cancers14133051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/09/2022] [Accepted: 06/17/2022] [Indexed: 11/24/2022] Open
Abstract
We recently demonstrated that immune checkpoint PD-1 was endogenously expressed in pancreatic ductal adenocarcinoma (PDAC) cells. Our data indicated that PD-1 proteins are not exclusive to immune cells and have unrecognized signal transduction cascades intrinsic to cancer cells. Building on this paradigm shift, we sought to further characterize PD-1 expression in PDAC. We utilized a phospho-explorer array to identify pathways upregulated by PD-1 signaling. We discovered PD-1-mediated activation of the proto-oncogene MET in PDAC cells, which was dependent on hepatocyte growth factor (MET ligand) and not secondary to direct protein interaction. We then discovered that the PD-1/MET axis in PDAC cells regulated growth, migration, and invasion. Importantly, the PD-1/MET axis induced epithelial-to-mesenchymal transition (EMT), a well-established early oncogenic process in PDAC. We observed that combined targeting of PDAC cell PD-1 and MET resulted in substantial direct tumor cell cytotoxicity and growth inhibition in PDAC cell lines, patient-derived organoids, and patient-derived xenografts independent of cytotoxic immune responses. This is the first report of PDAC-endogenous PD-1 expression regulating MET signaling, which builds upon our growing body of work showing the oncogenic phenotype of PD-1 expression in PDAC cells is distinct from its immunogenic role. These results highlight a paradigm shift that the tumor-specific PD-1 axis is a novel target to effectively kill PDAC cells by antagonizing previously unrecognized PD-1-dependent oncogenic pathways.
Collapse
Affiliation(s)
- Megan M. Harper
- Division of Surgical Oncology, University of Kentucky, Lexington, KY 40536, USA; (M.M.H.); (M.L.); (M.J.C.); (P.K.P.); (M.G.)
| | - Miranda Lin
- Division of Surgical Oncology, University of Kentucky, Lexington, KY 40536, USA; (M.M.H.); (M.L.); (M.J.C.); (P.K.P.); (M.G.)
| | - Shadi A. Qasem
- Department of Pathology & Laboratory Medicine, University of Kentucky, Lexington, KY 40536, USA;
| | - Reema A. Patel
- Division of Medical Oncology, University of Kentucky, Lexington, KY 40536, USA;
| | - Michael J. Cavnar
- Division of Surgical Oncology, University of Kentucky, Lexington, KY 40536, USA; (M.M.H.); (M.L.); (M.J.C.); (P.K.P.); (M.G.)
| | - Prakash K. Pandalai
- Division of Surgical Oncology, University of Kentucky, Lexington, KY 40536, USA; (M.M.H.); (M.L.); (M.J.C.); (P.K.P.); (M.G.)
| | - Mei Gao
- Division of Surgical Oncology, University of Kentucky, Lexington, KY 40536, USA; (M.M.H.); (M.L.); (M.J.C.); (P.K.P.); (M.G.)
| | - Joseph Kim
- Division of Surgical Oncology, University of Kentucky, Lexington, KY 40536, USA; (M.M.H.); (M.L.); (M.J.C.); (P.K.P.); (M.G.)
| |
Collapse
|
18
|
Checkpoints and Immunity in Cancers: Role of GNG12. Pharmacol Res 2022; 180:106242. [DOI: 10.1016/j.phrs.2022.106242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/25/2022] [Accepted: 04/28/2022] [Indexed: 12/24/2022]
|
19
|
Davern M, Fitzgerald MC, Buckley CE, Heeran AB, Donlon NE, McGrath J, O' Connell F, Deshpande MR, Hayes C, MacDonald J, Sheppard AD, Reynolds JV, Maher SG, Lynam-Lennon N, Murphy B, Lysaght J. PD-1 and TIGIT blockade differentially affect tumour cell survival under hypoxia and glucose deprived conditions in oesophageal adenocarcinoma; implications for overcoming resistance to PD-1 blockade in hypoxic tumours. Transl Oncol 2022; 19:101381. [PMID: 35245832 PMCID: PMC8894275 DOI: 10.1016/j.tranon.2022.101381] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 12/17/2022] Open
Abstract
PD-1 and TIGIT expression are highly expressed on the surface of oesophageal epithelial cells during the early stages of metaplasia. Glucose deprivation and hypoxia upregulate PD-1 and TIGIT on the surface of oesophageal adenocarcinoma (OAC) cells in vitro. PD-1 and TIGIT blockade decrease Bcl-2 and Bcl-xL expression in OAC cells. PD-1 blockade in OAC cells enhances basal respiration and glycolytic reserve and upregulates GLUT1 on the surface of a subpopulation of OAC cells. PD-1 inhibition confers a survival advantage to OAC cells under glucose deprivation and hypoxia. TIGIT blockade decreases OAC cell proliferation and induces OAC cell death under normoxia, hypoxia and nutrient deprivation. TIGIT blockade increases ECAR yet decreases a range of metabolic parameters in OAC cells.
Recent studies have demontrated that immune checkpoint receptors are expressed on the surface of oesophageal adenocarcinoma (OAC) cells and might confer a survival advantage. This study explores the role of PD-1 and TIGIT signalling in OAC cells in either promoting or inhibiting the survival of OAC cells under characteristic features of the tumour microenvironment including nutrient-deprivation and hypoxia. PD-1 and TIGIT are expressed in normal and pre-malignant oesophageal epithelial cells and this expression significantly decreases along the normal- Barrett's Oesophagus- OAC disease sequence. However, glucose-deprivation and hypoxia significantly upregulated PD-1 and TIGIT on the surface of OAC cells in vitro. PD-1 blockade decreased OAC cell proliferation under normoxia but enhanced proliferation and decreased cell death in OAC cells under hypoxia and glucose-deprivation. TIGIT blockade decreased proliferation and induced OAC cell death, an effect that was maintained under nutrient-deprivation and hypoxia. Basal respiration and glycolytic reserve were enhanced and GLUT1 was upregulated on the surface of a subpopulation of OAC cells following PD-1 blockade. In contrast, TIGIT blockade enhanced a glycolytic phenotype in OAC cells, yet decreased other metabolic parameters including oxidative phosphorylation and basal respiration. Interestingly, inhibition of oxidative phosphorylation significantly upregulated TIGIT expression and inhibition of oxidative phosphorylation and glycolysis significantly decreased PD-1 on the surface of a subpopulation of OAC cells in vitro. These findings suggest an immune-independent mechanism for PD-1 inhibitor resistance in hypoxic tumours and suggest that TIGIT might be a more effective therapeutic target in OAC compared with PD-1 for treating hypoxic tumours.
Collapse
Affiliation(s)
- Maria Davern
- Cancer Immunology and Immunotherapy Group, Department of Surgery, Trinity St. James's Cancer Institute, Trinity Translational Medicine Institute, St. James's Hospital campus, Dublin 8, Ireland
| | - Marie-Claire Fitzgerald
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, D02 YN77 Dublin 2, Ireland
| | - Croí E Buckley
- Translational Radiobiology and Diagnostics Group, Department of Surgery, Trinity St. James's Cancer Institute, Trinity Translational Medicine Institute, St. James's Hospital campus, Dublin 8, Ireland
| | - Aisling B Heeran
- Translational Gastrointestinal Research Group, Department of Surgery, Trinity St. James's Cancer Institute, Trinity Translational Medicine Institute, St. James's Hospital campus, Dublin 8, Ireland
| | - Noel E Donlon
- Cancer Immunology and Immunotherapy Group, Department of Surgery, Trinity St. James's Cancer Institute, Trinity Translational Medicine Institute, St. James's Hospital campus, Dublin 8, Ireland
| | - Jason McGrath
- Cancer Chemoradiation Group, Department of Surgery, Trinity St. James's Cancer Institute, Trinity Translational Medicine Institute, St. James's Hospital campus, Dublin 8, Ireland
| | - Fiona O' Connell
- Translational Gastrointestinal Research Group, Department of Surgery, Trinity St. James's Cancer Institute, Trinity Translational Medicine Institute, St. James's Hospital campus, Dublin 8, Ireland
| | - Malvika R Deshpande
- Cancer Immunology and Immunotherapy Group, Department of Surgery, Trinity St. James's Cancer Institute, Trinity Translational Medicine Institute, St. James's Hospital campus, Dublin 8, Ireland
| | - Conall Hayes
- Department of Surgery, Trinity St. James's Cancer Institute, Trinity Translational Medicine Institute, St. James's Hospital, Trinity College Dublin, Dublin, Ireland
| | - Jamie MacDonald
- Cancer Immunology and Immunotherapy Group, Department of Surgery, Trinity St. James's Cancer Institute, Trinity Translational Medicine Institute, St. James's Hospital campus, Dublin 8, Ireland
| | - Andrew D Sheppard
- Cancer Immunology and Immunotherapy Group, Department of Surgery, Trinity St. James's Cancer Institute, Trinity Translational Medicine Institute, St. James's Hospital campus, Dublin 8, Ireland
| | - John V Reynolds
- Department of Surgery, Trinity St. James's Cancer Institute, Trinity Translational Medicine Institute, St. James's Hospital, Trinity College Dublin, Dublin, Ireland
| | - Stephen G Maher
- Cancer Chemoradiation Group, Department of Surgery, Trinity St. James's Cancer Institute, Trinity Translational Medicine Institute, St. James's Hospital campus, Dublin 8, Ireland
| | - Niamh Lynam-Lennon
- Translational Radiobiology and Diagnostics Group, Department of Surgery, Trinity St. James's Cancer Institute, Trinity Translational Medicine Institute, St. James's Hospital campus, Dublin 8, Ireland
| | - Brona Murphy
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, D02 YN77 Dublin 2, Ireland
| | - Joanne Lysaght
- Cancer Immunology and Immunotherapy Group, Department of Surgery, Trinity St. James's Cancer Institute, Trinity Translational Medicine Institute, St. James's Hospital campus, Dublin 8, Ireland.
| |
Collapse
|
20
|
Kaneko J, Ishiwatari H, Sasaki K, Yasuda I, Takahashi K, Imura J, Iwashita T, Uemura S, Hatano Y, Miyazaki T, Satoh T, Sato J, Ishikawa K. Macroscopic visible core length can predict the histological sample quantity in endoscopic ultrasound-guided tissue acquisition: Multicenter prospective study. Dig Endosc 2022; 34:622-631. [PMID: 34437732 DOI: 10.1111/den.14116] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 08/10/2021] [Accepted: 08/25/2021] [Indexed: 12/12/2022]
Abstract
OBJECTIVES Measurement of the macroscopic visible core (MVC) length during macroscopic on-site quality evaluation (MOSE) may allow estimation of sample adequacy for next-generation sequencing (NGS), and prediction of correct diagnosis in endoscopic ultrasound-guided tissue acquisition (EUS-TA) of pancreatic masses. METHODS This multicenter prospective study included consecutive patients who underwent EUS-TA for pancreatic masses using a 22-G Franseen needle. MVC length and pathological samples obtained from two needle passes were analyzed on a per-pass basis. Outcome measures included respective correlations of MVC length with histological sample quantity and diagnostic yields. RESULTS The analysis included 204 passes from 102 EUS-TAs. MVC length correlated positively with histological sample quantity (P < 0.01). On the receiver operating characteristic curve for MVC length, the cut-off value and area under the curve for obtaining a candidate sample for NGS were 30 mm and 0.74 (95% confidence interval [CI] 0.65-0.83), respectively. On multivariate analysis, MVC length ≥30 mm was a significant factor affecting suitability for NGS (odds ratio 6.19; 95% CI 2.72-14.10). Histologic diagnostic yield correlated positively with MVC length (P = 0.01); however, there was no positive correlation between MVC length and overall (histology plus cytology) diagnostic yield. CONCLUSIONS Measuring MVC length to predict histological sample quantity on MOSE may be of clinical significance during EUS-TA using a 22-G Franseen needle. It may be an effective method, particularly while submitting samples for NGS. REGISTRATION University Hospital Medical Information Network Trials Registry (UMIN000036528).
Collapse
Affiliation(s)
- Junichi Kaneko
- Division of, Endoscopy, Shizuoka Cancer Center, Shizuoka, Japan
| | | | - Keiko Sasaki
- Division of, Pathology, Shizuoka Cancer Center, Shizuoka, Japan
| | - Ichiro Yasuda
- Third Department of Internal Medicine, University of Toyama, Toyama, Japan
| | - Kosuke Takahashi
- Third Department of Internal Medicine, University of Toyama, Toyama, Japan
| | - Johji Imura
- Department of Diagnostic Pathology, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama, Japan
| | - Takuji Iwashita
- First Department of Internal Medicine, Gifu University Hospital, Gifu, Japan
| | - Shinya Uemura
- First Department of Internal Medicine, Gifu University Hospital, Gifu, Japan
| | - Yuichiro Hatano
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, Japan
| | | | - Tatsunori Satoh
- Division of, Endoscopy, Shizuoka Cancer Center, Shizuoka, Japan
| | - Junya Sato
- Division of, Endoscopy, Shizuoka Cancer Center, Shizuoka, Japan
| | - Kazuma Ishikawa
- Division of, Endoscopy, Shizuoka Cancer Center, Shizuoka, Japan
| |
Collapse
|
21
|
PD-1 blockade enhances chemotherapy toxicity in oesophageal adenocarcinoma. Sci Rep 2022; 12:3259. [PMID: 35228614 PMCID: PMC8885636 DOI: 10.1038/s41598-022-07228-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 02/01/2022] [Indexed: 12/17/2022] Open
Abstract
Chemotherapy upregulates immune checkpoint (IC) expression on the surface of tumour cells and IC-intrinsic signalling confers a survival advantage against chemotherapy in several cancer-types including oesophageal adenocarcinoma (OAC). However, the signalling pathways mediating chemotherapy-induced IC upregulation and the mechanisms employed by ICs to protect OAC cells against chemotherapy remain unknown. Longitudinal profiling revealed that FLOT-induced IC upregulation on OE33 OAC cells was sustained for up to 3 weeks post-treatment, returning to baseline upon complete tumour cell recovery. Pro-survival MEK signalling mediated FLOT-induced upregulation of PD-L1, TIM-3, LAG-3 and A2aR on OAC cells promoting a more immune-resistant phenotype. Single agent PD-1, PD-L1 and A2aR blockade decreased OAC cell viability, proliferation and mediated apoptosis. Mechanistic insights demonstrated that blockade of the PD-1 axis decreased stem-like marker ALDH and expression of DNA repair genes. Importantly, combining single agent PD-1, PD-L1 and A2aR blockade with FLOT enhanced cytotoxicity in OAC cells. These findings reveal novel mechanistic insights into the immune-independent functions of IC-intrinsic signalling in OAC cells with important clinical implications for boosting the efficacy of the first-line FLOT chemotherapy regimen in OAC in combination with ICB, to not only boost anti-tumour immunity but also to suppress IC-mediated promotion of key hallmarks of cancer that drive tumour progression.
Collapse
|
22
|
Qu J, Kalyani FS, Liu L, Cheng T, Chen L. Tumor organoids: synergistic applications, current challenges, and future prospects in cancer therapy. Cancer Commun (Lond) 2021; 41:1331-1353. [PMID: 34713636 PMCID: PMC8696219 DOI: 10.1002/cac2.12224] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/29/2021] [Accepted: 09/17/2021] [Indexed: 02/06/2023] Open
Abstract
Patient-derived cancer cells (PDCs) and patient-derived xenografts (PDXs) are often used as tumor models, but have many shortcomings. PDCs not only lack diversity in terms of cell type, spatial organization, and microenvironment but also have adverse effects in stem cell cultures, whereas PDX are expensive with a low transplantation success rate and require a long culture time. In recent years, advances in three-dimensional (3D) organoid culture technology have led to the development of novel physiological systems that model the tissues of origin more precisely than traditional culture methods. Patient-derived cancer organoids bridge the conventional gaps in PDC and PDX models and closely reflect the pathophysiological features of natural tumorigenesis and metastasis, and have led to new patient-specific drug screening techniques, development of individualized treatment regimens, and discovery of prognostic biomarkers and mechanisms of resistance. Synergistic combinations of cancer organoids with other technologies, for example, organ-on-a-chip, 3D bio-printing, and CRISPR-Cas9-mediated homology-independent organoid transgenesis, and with treatments, such as immunotherapy, have been useful in overcoming their limitations and led to the development of more suitable model systems that recapitulate the complex stroma of cancer, inter-organ and intra-organ communications, and potentially multiorgan metastasis. In this review, we discuss various methods for the creation of organ-specific cancer organoids and summarize organ-specific advances and applications, synergistic technologies, and treatments as well as current limitations and future prospects for cancer organoids. Further advances will bring this novel 3D organoid culture technique closer to clinical practice in the future.
Collapse
Affiliation(s)
- Jingjing Qu
- Department of Respiratory DiseaseThoracic Disease CenterThe First Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhouZhejiang310003P. R. China
- Lung Cancer and Gastroenterology DepartmentHunan Cancer HospitalAffiliated Tumor Hospital of Xiangya Medical SchoolCentral South UniversityChangshaHunan410008P. R. China
| | - Farhin Shaheed Kalyani
- Department of Respiratory DiseaseThoracic Disease CenterThe First Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhouZhejiang310003P. R. China
| | - Li Liu
- Lung Cancer and Gastroenterology DepartmentHunan Cancer HospitalAffiliated Tumor Hospital of Xiangya Medical SchoolCentral South UniversityChangshaHunan410008P. R. China
| | - Tianli Cheng
- Thoracic Medicine Department 1Hunan Cancer HospitalAffiliated Tumor Hospital of Xiangya Medical SchoolCentral South UniversityChangshaHunan410008P. R. China
| | - Lijun Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhouZhejiang310003P. R. China
| |
Collapse
|
23
|
Tao X, Xiang H, Pan Y, Shang D, Guo J, Gao G, Xiao GG. Pancreatitis initiated pancreatic ductal adenocarcinoma: Pathophysiology explaining clinical evidence. Pharmacol Res 2021; 168:105595. [PMID: 33823219 DOI: 10.1016/j.phrs.2021.105595] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/04/2021] [Accepted: 03/31/2021] [Indexed: 12/15/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly malignant lethal disease due to its asymptomatic at its early lesion of the disease and drug resistance. Target therapy associated with molecular pathways so far seems not to produce reasonable outcomes. Understanding of the molecular mechanisms underlying inflammation-initiated tumorigenesis may be helpful for development of an effective therapy of the disease. A line of studies showed that pancreatic tumorigenesis was resulted from pancreatitis, which was caused synergistically by various pancreatic cells. This review focuses on those players and their possible clinic implications, such as exocrine acinar cells, ductal cells, and various stromal cells, including pancreatic stellate cells (PSCs), macrophages, lymphocytes, neutrophils, mast cells, adipocytes and endothelial cells, working together with each other in an inflammation-mediated microenvironment governed by a myriad of cellular signaling networks towards PDAC.
Collapse
Affiliation(s)
- Xufeng Tao
- Department of Pharmacology at School of Chemical Engineering, Dalian University of Technology, Dalian, China
| | - Hong Xiang
- Clinical Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yue Pan
- Department of Pharmacology at School of Chemical Engineering, Dalian University of Technology, Dalian, China
| | - Dong Shang
- Clinical Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Junchao Guo
- Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Ge Gao
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Gary Guishan Xiao
- Department of Pharmacology at School of Chemical Engineering, Dalian University of Technology, Dalian, China; The UCLA Agi Hirshberg Center for Pancreatic Diseases, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States; Functional Genomics and Proteomics Laboratory, Osteoporosis Research Center, Creighton University Medical Center, Omaha, NE, United States.
| |
Collapse
|
24
|
Kiaie SH, Sanaei MJ, Heshmati M, Asadzadeh Z, Azimi I, Hadidi S, Jafari R, Baradaran B. Immune checkpoints in targeted-immunotherapy of pancreatic cancer: New hope for clinical development. Acta Pharm Sin B 2021; 11:1083-1097. [PMID: 34094821 PMCID: PMC8144893 DOI: 10.1016/j.apsb.2020.12.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/29/2020] [Accepted: 09/14/2020] [Indexed: 12/13/2022] Open
Abstract
Immunotherapy has been recently considered as a promising alternative for cancer treatment. Indeed, targeting of immune checkpoint (ICP) strategies have shown significant success in human malignancies. However, despite remarkable success of cancer immunotherapy in pancreatic cancer (PCa), many of the developed immunotherapy methods show poor therapeutic outcomes in PCa with no or few effective treatment options thus far. In this process, immunosuppression in the tumor microenvironment (TME) is found to be the main obstacle to the effectiveness of antitumor immune response induced by an immunotherapy method. In this paper, the latest findings on the ICPs, which mediate immunosuppression in the TME have been reviewed. In addition, different approaches for targeting ICPs in the TME of PCa have been discussed. This review has also synopsized the cutting-edge advances in the latest studies to clinical applications of ICP-targeted therapy in PCa.
Collapse
Affiliation(s)
- Seyed Hossein Kiaie
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5173957616, Iran
- Nano Drug Delivery Research Center, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran
| | - Mohammad Javad Sanaei
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord 8815713471, Iran
| | - Masoud Heshmati
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord 8815713471, Iran
| | - Zahra Asadzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5173957616, Iran
| | - Iman Azimi
- School of Pharmacy and Pharmacology, College of Health and Medicine, University of Tasmania, Hobart 7001, Tasmania, Australia
| | - Saleh Hadidi
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord 8815713471, Iran
| | - Reza Jafari
- Solid Tumor Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia 5714783734, Iran
- Department of Immunology and Genetics, School of Medicine, Urmia University of Medical Sciences, Urmia 5714783734, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5173957616, Iran
| |
Collapse
|
25
|
Bagherifar R, Kiaie SH, Hatami Z, Ahmadi A, Sadeghnejad A, Baradaran B, Jafari R, Javadzadeh Y. Nanoparticle-mediated synergistic chemoimmunotherapy for tailoring cancer therapy: recent advances and perspectives. J Nanobiotechnology 2021; 19:110. [PMID: 33865432 PMCID: PMC8052859 DOI: 10.1186/s12951-021-00861-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 04/09/2021] [Indexed: 12/15/2022] Open
Abstract
Nowadays, a potent challenge in cancer treatment is considered the lack of efficacious strategy, which has not been able to significantly reduce mortality. Chemoimmunotherapy (CIT) as a promising approach in both for the first-line and relapsed therapy demonstrated particular benefit from two key gating strategies, including chemotherapy and immunotherapy to cancer therapy; therefore, the discernment of their participation and role of potential synergies in CIT approach is determinant. In this study, in addition to balancing the pros and cons of CIT with the challenges of each of two main strategies, the recent advances in the cancer CIT have been discussed. Additionally, immunotherapeutic strategies and the immunomodulation effect induced by chemotherapy, which boosts CIT have been brought up. Finally, harnessing and development of the nanoparticles, which mediated CIT have expatiated in detail.
Collapse
Affiliation(s)
- Rafieh Bagherifar
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyed Hossein Kiaie
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Nano Drug Delivery Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Zahra Hatami
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Armin Ahmadi
- Department of Chemical & Materials Engineering, The University of Alabama in Huntsville, Huntsville, AL, 35899, USA
| | | | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Jafari
- Solid Tumor Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Shafa St, Ershad Blvd., P.O. BoX: 1138, 57147, Urmia, Iran.
- Department of Immunology and Genetics, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
| | - Yousef Javadzadeh
- Biotechnology Research Center, and Faculty of Pharmacy, Tabriz University of Medical Science, 5166-15731, Tabriz, Iran.
| |
Collapse
|
26
|
Kaur J, Singh P, Enzler T, Sahai V. Emerging antibody therapies for pancreatic adenocarcinoma: a review of recent phase 2 trials. Expert Opin Emerg Drugs 2021; 26:103-129. [PMID: 33734833 DOI: 10.1080/14728214.2021.1905795] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction: Pancreatic adenocarcinoma is now the third-leading cause of cancer-related deaths in the US which can be attributed to rising incidence, diagnosis at advanced stages and early development of metastasis. Systemic therapy remains palliative with early development of resistance possibly related to the constitutive activation of 'undruggable' KRAS, immunosuppressive microenvironment, and intense desmoplasia. The advancements in molecular biology has led to the development and investigation of targeted and immune therapeutics.Areas covered: This study provides a comprehensive review of the literature to further the understanding of molecular targets with their respective antibody-based therapies in clinical development in pancreatic cancer. PubMed was systematically searched for English-language articles discussing antibody-based therapies under phase 2 clinical trial investigation in pancreatic adenocarcinoma.Expert opinion: PDAC remains highly resistant to chemotherapy with no significant improvement in survival for patients with advanced or metastatic cancer. Unfortunately, the majority of the antibody-based targeted and immune therapeutics have failed to meet their primary efficacy endpoints in early phase trials. However, there are a few promising antibody-based drugs with intriguing preliminary data that merit further investigation, while many more continue to be developed and investigated preclinically, and in early phase trials.
Collapse
Affiliation(s)
- Jasmeet Kaur
- Department of Internal Medicine, Saint Joseph Mercy Oakland Hospital, Pontiac, MI, USA
| | - Paramveer Singh
- Division of Hematology and Oncology, Department of Internal Medicine, Wayne State University, Detroit, MI, USA
| | - Thomas Enzler
- Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Vaibhav Sahai
- Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
27
|
Gao M, Harper MM, Lin M, Qasem SA, Patel RA, Mardini SH, Gabr MM, Cavnar MJ, Pandalai PK, Kim J. Development of a Single-Cell Technique to Increase Yield and Use of Gastrointestinal Cancer Organoids for Personalized Medicine Application. J Am Coll Surg 2021; 232:504-514. [PMID: 33253861 PMCID: PMC8005421 DOI: 10.1016/j.jamcollsurg.2020.11.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 11/13/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Organoids are excellent 3-dimensional in vitro models of gastrointestinal cancers. However, patient-derived organoids (PDOs) remain inconsistent and unreliable for rapid actionable drug sensitivity testing due to size variation and limited material. STUDY DESIGN On day10/passage 2 after standard creation of organoids, half of PDOs were dissociated into single-cells with TrypLE Express Enzyme/DNase I and mechanical dissociation; and half of PDOs were expanded by the standard technique. Hematoxylin and eosin and immunohistochemistry with CK7 and CK20 were performed for characterization. Drug sensitivity testing was completed for single-cells and paired standard PDOs to assess reproducibility. RESULTS After 2 to 3 days, >50% of single-cells reformed uniform miniature PDOs (∼50 μm). We developed 10 PDO single-cell lines (n = 4, gastric cancer, [GC]; and n = 6, pancreatic ductal adenocarcinoma, [PDAC]), which formed epithelialized cystic structures and by IHC, exhibited CK7(high)/CK20(low) expression patterns mirroring parent tissues. Compared with paired standard PDOs, single-cells (n = 2, PDAC; = 2, GC) showed similar architecture, albeit smaller and more uniform. Importantly, single cells demonstrated similar sensitivity to cytotoxic drugs to matched PDOs. CONCLUSIONS PDO single-cells are accurate for rapid clinical drug testing in gastrointestinal cancers. Using early passage PDO single-cells facilitates high-volume drug testing, decreasing time from tumor sampling to actionable clinical decisions, and provides a personalized medicine platform to optimally select drugs for gastrointestinal cancer patients.
Collapse
Affiliation(s)
- Mei Gao
- Division of Surgical Oncology, University of Kentucky, Lexington, KY
| | - Megan M Harper
- Division of Surgical Oncology, University of Kentucky, Lexington, KY
| | - Miranda Lin
- Division of Surgical Oncology, University of Kentucky, Lexington, KY
| | - Shadi A Qasem
- Department of Pathology and Laboratory Medicine, University of Kentucky, Lexington, KY
| | - Reema A Patel
- Divisions of Hematology and Medical Oncology, University of Kentucky, Lexington, KY
| | | | - Moamen M Gabr
- Gastroenterology, University of Kentucky, Lexington, KY
| | - Michael J Cavnar
- Division of Surgical Oncology, University of Kentucky, Lexington, KY
| | | | - Joseph Kim
- Division of Surgical Oncology, University of Kentucky, Lexington, KY.
| |
Collapse
|
28
|
Davern M, Donlon NE, Sheppard A, Connell FO, Hayes C, Bhardwaj A, Foley E, Toole DO, Lynam-Lennon N, Ravi N, Reynolds JV, Maher SG, Lysaght J. Chemotherapy regimens induce inhibitory immune checkpoint protein expression on stem-like and senescent-like oesophageal adenocarcinoma cells. Transl Oncol 2021; 14:101062. [PMID: 33765543 PMCID: PMC8008239 DOI: 10.1016/j.tranon.2021.101062] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/18/2021] [Accepted: 03/01/2021] [Indexed: 02/07/2023] Open
Abstract
OAC cells express several inhibitory immune checkpoint (IC) ligands and receptors. Chemotherapy upregulates IC ligands and receptors on the surface of OAC cells. ICs are enriched on stem-like and senescent OAC cells following chemotherapy. PD-1 blockade induced apoptosis and enhanced chemotherapy toxicity in OAC cells.
Use of immune checkpoint inhibitors (ICIs) with chemotherapy to enhance responses in oesophageal adenocarcinoma (OAC) is an attractive approach. We identified subpopulations of OAC cells expressing inhibitory immune checkpoint (IC) ligands (PD-L1, PD-L2 and CD160) and receptors (PD-1, TIGIT, TIM-3, LAG-3 and A2aR) in vitro and in ex vivo biopsies. Combination chemotherapy regimens FLOT and CROSS promote a more immune-resistant phenotype through upregulation of IC ligands and receptors on OAC cells in vitro. Importantly, this study investigated if OAC cells, enriched for ICs exhibited a more stem-like and senescent-like phentoype. FLOT preferentially upregulates PD-L1 on a stem-like OAC cell phenotype, defined by ALDH activity. Expression of senescence-associated β-galactosidase is induced in a subpopulation of OAC cells following FLOT and CROSS chemotherapy treatment, along with enhanced expression of TIM-3 and A2aR ICs. Blockade of PD-1 signalling in OAC cells induced apoptosis and enhanced FLOT and CROSS chemotherapy toxicity in vitro. Upregulation of ICs on OAC cells following chemotherapy may represent potential mechanisms of chemo-immune resistance. Combination ICIs may be required to enhance the efficacy of chemotherapy and immunotherapy in OAC patients.
Collapse
Affiliation(s)
- Maria Davern
- Cancer Immunology and Immunotherapy Group, Department of Surgery, Trinity St. James's Cancer Institute, Trinity Translational Medicine Institute, St. James's Hospital campus, Dublin 8, Ireland
| | - Noel E Donlon
- Cancer Immunology and Immunotherapy Group, Department of Surgery, Trinity St. James's Cancer Institute, Trinity Translational Medicine Institute, St. James's Hospital campus, Dublin 8, Ireland
| | - Andrew Sheppard
- Cancer Immunology and Immunotherapy Group, Department of Surgery, Trinity St. James's Cancer Institute, Trinity Translational Medicine Institute, St. James's Hospital campus, Dublin 8, Ireland
| | - Fiona O' Connell
- Translational Gastrointestinal Research Group, Department of Surgery, Trinity St. James's Cancer Institute, Trinity Translational Medicine Institute, St. James's Hospital campus, Dublin 8, Ireland
| | - Conall Hayes
- Department of Surgery, Trinity St. James's Cancer Institute, Trinity Translational Medicine Institute, St. James's Hospital, Trinity College Dublin, Dublin, Ireland
| | - Anshul Bhardwaj
- Department of Surgery, Trinity St. James's Cancer Institute, Trinity Translational Medicine Institute, St. James's Hospital, Trinity College Dublin, Dublin, Ireland
| | - Emma Foley
- Department of Surgery, Trinity St. James's Cancer Institute, Trinity Translational Medicine Institute, St. James's Hospital, Trinity College Dublin, Dublin, Ireland
| | - Dermot O' Toole
- Translational Gastrointestinal Research Group, Department of Surgery, Trinity St. James's Cancer Institute, Trinity Translational Medicine Institute, St. James's Hospital campus, Dublin 8, Ireland
| | - Niamh Lynam-Lennon
- Translational Radiobiology and Diagnostics Group, Department of Surgery, Trinity St. James's Cancer Institute, Trinity Translational Medicine Institute, St. James's Hospital campus, Dublin 8, Ireland
| | - Narayanasamy Ravi
- Translational Gastrointestinal Research Group, Department of Surgery, Trinity St. James's Cancer Institute, Trinity Translational Medicine Institute, St. James's Hospital campus, Dublin 8, Ireland
| | - John V Reynolds
- Translational Gastrointestinal Research Group, Department of Surgery, Trinity St. James's Cancer Institute, Trinity Translational Medicine Institute, St. James's Hospital campus, Dublin 8, Ireland
| | - Stephen G Maher
- Cancer Chemoradiation Group, Department of Surgery, Trinity St. James's Cancer Institute, Trinity Translational Medicine Institute, St. James's Hospital campus, Dublin 8, Ireland
| | - Joanne Lysaght
- Cancer Immunology and Immunotherapy Group, Department of Surgery, Trinity St. James's Cancer Institute, Trinity Translational Medicine Institute, St. James's Hospital campus, Dublin 8, Ireland.
| |
Collapse
|
29
|
Xia X, Li R, Zhou P, Xing Z, Lu C, Long Z, Wang F, Wang R. Decreased NSG3 enhances PD-L1 expression by Erk1/2 pathway to promote pancreatic cancer progress. Am J Cancer Res 2021; 11:916-929. [PMID: 33791163 PMCID: PMC7994162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 11/03/2020] [Indexed: 06/12/2023] Open
Abstract
Inhibiting the functioning of PD-1/PD-L1 to activate human immune system and improve the prognosis of pancreatic cancer (PC) would provide a significant boost to handling the disease. One research found the expression level of NSG3 was reduced in pediatric pilocytic astrocytoma, so is PC and we found NSG3 could regulate the expression of PD-L1. So NSG3 could become a new target for enhancing the immune response to PC. The GEPIA website was employed to analyze the prognoses in PC patients with different NSG3 levels. Immunohistochemistry (IHC) analysis was applied to detect different levels of NSG3 in para-PC and PC tissues. Cell biological function tests (in vitro) were performed and a subcutaneous nude mice tumor model (in vivo) was established to verify the effect of NSG3 on PC. Immunoblotting and RT-qPCR were utilized to demonstrate the inhibiting effect of NSG3 on PD-L1 through regulating Erk1/2 phosphorylation. A subcutaneous C57BL/6 tumor mice model was established to assess the possibility of a synergistic effect of NSG3 expression and the use of an anti-PD-L1 antibody on PC. PC tissues had decreased NSG3 expression levels, which led to poor prognosis. Overexpressing NSG3 suppressed proliferation, invasion and migration capacities of PC cells. On the contrary, knocking-down NSG3 prompted PC malignancy whether in vivo or in vitro. Importantly, NSG3 prevented Erk1/2 phosphorylation to inhibit PD-L1 expression. Additionally, NSG3 and an immune checkpoint inhibitor anti-PD-1 antibody acted synergistically, which enhanced the efficacy of the inhibitor. NSG3 inhibited PD-L1 expression by suppressing Erk1/2 phosphorylation to improve the immune response to PC. NSG3 is, therefore, a potential new diagnostic and prognostic marker, particularly useful in immune checkpoint blockade therapy.
Collapse
Affiliation(s)
- Xigang Xia
- The Second Clinical Medical College, Jingzhou Central Hospital, Yangtze UniversityJingzhou 434020, China
- Pancreatic Surgery, Zhongnan Hospital of Wuhan UniversityWuhan 430022, China
- Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430022, China
| | - Ran Li
- Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430022, China
- Guizhou Medical UniversityUniversity Town, Guian New District, Guizhou 550025, China
| | - Peng Zhou
- The Second Clinical Medical College, Jingzhou Central Hospital, Yangtze UniversityJingzhou 434020, China
- Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430022, China
| | - Zhixiang Xing
- The Second Clinical Medical College, Jingzhou Central Hospital, Yangtze UniversityJingzhou 434020, China
- Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430022, China
| | - Chao Lu
- The Second Clinical Medical College, Jingzhou Central Hospital, Yangtze UniversityJingzhou 434020, China
- Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430022, China
| | - Zhida Long
- The Second Clinical Medical College, Jingzhou Central Hospital, Yangtze UniversityJingzhou 434020, China
- Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430022, China
| | - Feiyang Wang
- Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430022, China
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of MedicineShanghai, China
| | - Rui Wang
- The Second Clinical Medical College, Jingzhou Central Hospital, Yangtze UniversityJingzhou 434020, China
- Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430022, China
| |
Collapse
|
30
|
Davern M, Lysaght J. Cooperation between chemotherapy and immunotherapy in gastroesophageal cancers. Cancer Lett 2020; 495:89-99. [DOI: 10.1016/j.canlet.2020.09.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/05/2020] [Accepted: 09/12/2020] [Indexed: 02/07/2023]
|
31
|
Stopa KB, Kusiak AA, Szopa MD, Ferdek PE, Jakubowska MA. Pancreatic Cancer and Its Microenvironment-Recent Advances and Current Controversies. Int J Mol Sci 2020; 21:E3218. [PMID: 32370075 PMCID: PMC7246785 DOI: 10.3390/ijms21093218] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 04/28/2020] [Accepted: 04/29/2020] [Indexed: 02/06/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) causes annually well over 400,000 deaths world-wide and remains one of the major unresolved health problems. This exocrine pancreatic cancer originates from the mutated epithelial cells: acinar and ductal cells. However, the epithelia-derived cancer component forms only a relatively small fraction of the tumor mass. The majority of the tumor consists of acellular fibrous stroma and diverse populations of the non-neoplastic cancer-associated cells. Importantly, the tumor microenvironment is maintained by dynamic cell-cell and cell-matrix interactions. In this article, we aim to review the most common drivers of PDAC. Then we summarize the current knowledge on PDAC microenvironment, particularly in relation to pancreatic cancer therapy. The focus is placed on the acellular stroma as well as cell populations that inhabit the matrix. We also describe the altered metabolism of PDAC and characterize cellular signaling in this cancer.
Collapse
Affiliation(s)
- Kinga B. Stopa
- Malopolska Centre of Biotechnology, Jagiellonian University, ul. Gronostajowa 7A, 30-387 Krakow, Poland;
| | - Agnieszka A. Kusiak
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, ul. Gronostajowa 7, 30-387 Krakow, Poland; (A.A.K.); (M.D.S.)
| | - Mateusz D. Szopa
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, ul. Gronostajowa 7, 30-387 Krakow, Poland; (A.A.K.); (M.D.S.)
| | - Pawel E. Ferdek
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, ul. Gronostajowa 7, 30-387 Krakow, Poland; (A.A.K.); (M.D.S.)
| | - Monika A. Jakubowska
- Malopolska Centre of Biotechnology, Jagiellonian University, ul. Gronostajowa 7A, 30-387 Krakow, Poland;
| |
Collapse
|
32
|
Lin M, Gao M, Pandalai PK, Cavnar MJ, Kim J. An Organotypic Microcosm for the Pancreatic Tumor Microenvironment. Cancers (Basel) 2020; 12:E811. [PMID: 32231028 PMCID: PMC7225919 DOI: 10.3390/cancers12040811] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/24/2020] [Accepted: 03/26/2020] [Indexed: 12/16/2022] Open
Abstract
Pancreatic duct adenocarcinoma (PDAC) is projected to become the second leading cause of cancer-related deaths in the next few years. Unfortunately, the development of novel therapies for PDAC has been challenged by a uniquely complex tumor microenvironment. The development of in vitro cancer organoids in recent years has demonstrated potential to increase therapies for patients with PDAC. Organoids have been established from PDAC murine and human tissues and they are representative of the primary tumor. Further, organoids have been shown beneficial in studies of molecular mechanisms and drug sensitivity testing. This review will cover the use of organoids to study PDAC development, invasiveness, and therapeutic resistance in the context of the tumor microenvironment, which is characterized by a dense desmoplastic reaction, hindered immune activity, and pro-tumor metabolic signaling. We describe investigations utilizing organoids to characterize the tumor microenvironment and also describe their limitations. Overall, organoids have great potential to serve as a versatile model of drug response and may be used to increase available therapies and improve survival for patients with PDAC.
Collapse
Affiliation(s)
| | | | | | | | - Joseph Kim
- Department of Surgery, University of Kentucky, Lexington, KY 40536, USA; (M.L.); (M.G.); (P.K.P.); (M.J.C.)
| |
Collapse
|
33
|
Di Maggio F, El-Shakankery KH. Desmoplasia and Biophysics in Pancreatic Ductal Adenocarcinoma: Can We Learn From Breast Cancer? Pancreas 2020; 49:313-325. [PMID: 32168249 DOI: 10.1097/mpa.0000000000001504] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) treatments have historically focused on targeting tumor cells directly. However, in pancreatic masses, the stroma encasing the malignant epithelial cells constitutes up to 80% to 90% of the tumor bulk. This extracellular matrix, which was previously neglected when designing cancer therapies, is now considered fundamental for tumor progression and drug delivery. Desmoplastic tissue is extensively cross-linked, resulting in tremendous tensile strength. This key pathological feature is procarcinogenic, linking PDAC and breast cancer (BC). Physical forces exerted onto cellular surfaces are detected intracellularly and transduced via biochemical messengers in a process called mechanotransduction. Mechanotransduction and tensional homeostasis are linked, with an integral role in influencing tumor growth, metastasis, and interactions with the immune system. It is essential to enhance our knowledge of these integral elements of parenchymal tumors. We aim to review the topic, with a special emphasis on desmoplastic processes and their importance in pancreatic and BC development and treatments, mindful that innovative diagnostic and therapeutic strategies cannot focus on biochemical pathways alone. We then focus on common therapeutic targets identified in both PDAC and BC models and/or patients, aiming to understand these treatments and draw similarities between the two tumors.
Collapse
|
34
|
Gautam SK, Kumar S, Dam V, Ghersi D, Jain M, Batra SK. MUCIN-4 (MUC4) is a novel tumor antigen in pancreatic cancer immunotherapy. Semin Immunol 2020; 47:101391. [PMID: 31952903 PMCID: PMC7160012 DOI: 10.1016/j.smim.2020.101391] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 01/01/2020] [Indexed: 12/12/2022]
Abstract
Pancreatic cancer (PC) is a highly lethal malignancy with a dismal five-year survival rate. This is due to its asymptomatic nature, lack of reliable biomarkers, poor resectability, early metastasis, and high recurrence rate. Limited efficacies of current treatment modalities treatment-associated toxicity underscore the need for the development of immunotherapy-based approaches. For non-resectable, locally advanced metastatic PC, immunotherapy-based approaches including vaccines, antibody-targeted, immune checkpoint inhibition, CAR-T-cells, and adoptive T-cell transfer could be valuable additions to existing treatment modalities. Thus far, the vaccine candidates in PC have demonstrated modest immunological responses in different treatment modalities. The identification of tumor-associated antigens (TAA) and their successful implication in PC treatment is still a challenge. MUC4, a high molecular weight glycoprotein that functionally contributes to PC pathogenesis, is an attractive TAA. It is not detected in the normal pancreas; however, it is overexpressed in mouse and human pancreatic tumors. The recombinant MUC4 domain, as well as predicted immunogenic T-cell epitopes, elicited cellular and humoral anti-MUC4 response, suggesting its ulility as a vaccine candidate for PC therapy. Existence of PC-associated MUC4 splice variants, autoantibodies against overexpressed and aberrantly glycosylated MUC4 and presence of T-cell clones against the mutations present in MUC4 further reinforce its significance as a tumor antigen for vaccine development. Herein, we review the significance of MUC4 as a tumor antigen in PC immunotherapy and discuss both, the development and challenges associated with MUC4 based immunotherapy. Lastly, we will present our perspective on MUC4 antigenicity for the future development of MUC4-based PC immunotherapy.
Collapse
Affiliation(s)
- Shailendra K Gautam
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Sushil Kumar
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Vi Dam
- School of Interdisciplinary Informatics, University of Nebraska Omaha, NE, 68182, USA
| | - Dario Ghersi
- School of Interdisciplinary Informatics, University of Nebraska Omaha, NE, 68182, USA
| | - Maneesh Jain
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, 68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA; Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|