1
|
Vonberg FW, Malik I, O'Reilly M, Hyare H, Carr AS, Roddie C. Neurotoxic complications of chimeric antigen receptor (CAR) T-cell therapy. J Neurol Neurosurg Psychiatry 2025:jnnp-2024-333924. [PMID: 40185628 DOI: 10.1136/jnnp-2024-333924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 03/25/2025] [Indexed: 04/07/2025]
Abstract
Chimeric antigen receptor (CAR) T-cell therapy has revolutionised the treatment of haematological malignancies and has demonstrated efficacy in early trials for solid tumours, neurological and rheumatological autoimmune diseases. However, CAR-T is complicated in some patients by neurotoxicity syndromes including immune-effector cell-associated neurotoxicity syndrome, and the more recently described movement and neurocognitive treatment-emergent adverse events, and tumour inflammation-associated neurotoxicity. These neurotoxic syndromes remain poorly understood and are associated with significant morbidity and mortality. A multidisciplinary approach, including neurologists, haematologists and oncologists, is critical for the diagnosis and management of CAR-T neurotoxicity. This approach will be of increasing importance as the use of CAR-T expands, its applications increase and as novel neurotoxic syndromes emerge.
Collapse
Affiliation(s)
- Frederick W Vonberg
- National Hospital for Neurology and Neurosurgery, London, UK
- UCL Queen Square Institute of Neurology, London, UK
| | - Imran Malik
- University College London Hospitals NHS Foundation Trust, London, UK
| | - Maeve O'Reilly
- Haematology, University College London Hospitals NHS Foundation Trust, London, UK
- UCL Cancer Institute, London, UK
| | - Harpreet Hyare
- UCL Queen Square Institute of Neurology, London, UK
- Neuroradiology, University College London Hospitals NHS Foundation Trust, London, UK
| | - Aisling S Carr
- UCL Queen Square Institute of Neurology, London, UK
- Neurology, National Hospital for Neurology and Neurosurgery, London, UK
| | - Claire Roddie
- Haematology, University College London Hospitals NHS Foundation Trust, London, UK
- UCL Cancer Institute, London, UK
| |
Collapse
|
2
|
Altalbawy FMA, Babamuradova Z, Baldaniya L, Singh A, Singh KU, Ballal S, Sabarivani A, Sead FF, Alam R, Alshahrani MY. The multifaceted role of CS1 (SLAMF7) in immunoregulation: Implications for cancer therapy and autoimmune disorders. Exp Cell Res 2025; 447:114516. [PMID: 40073958 DOI: 10.1016/j.yexcr.2025.114516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/09/2025] [Accepted: 03/09/2025] [Indexed: 03/14/2025]
Abstract
CS1 (SLAMF7), a pivotal immune receptor, plays a dual role in modulating immune responses in autoimmune diseases and cancer. In autoimmunity, aberrant CS1 signaling contributes to the activation of autoreactive lymphocytes, driving pathologies such as systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA). Conversely, in oncology, CS1 serves as a promising immunotherapeutic target, exemplified by the efficacy of the monoclonal antibody Elotuzumab in multiple myeloma. CS1 mediates immune cell functions through intricate signaling pathways, including interactions with EAT-2 and SAP adaptors, which influence cytotoxicity, cytokine production, and immune homeostasis. Beyond cancer and autoimmune diseases, soluble and membrane-bound forms of CS1 are emerging as biomarkers and potential therapeutic targets. Despite significant progress, gaps remain in understanding CS1\u2019s mechanisms, variability in expression, and role in other diseases. This study explores the multifaceted functions of CS1, proposing innovative strategies to leverage its therapeutic potential across diverse pathologies.
Collapse
Affiliation(s)
- Farag M A Altalbawy
- Department of Chemistry, University College of Duba, University of Tabuk, Tabuk, Saudi Arabia; National Institute of Laser Enhanced Sciences (NILES), University of Cairo, Giza 12613, Egypt
| | - Zarrina Babamuradova
- Internal Diseases of Pediatric Faculty, Samarkand State Medical University, Samarkand, Uzbekistan
| | - Lalji Baldaniya
- Marwadi University Research Center, Department of Pharmaceutical Sciences, Faculty of Health Sciences, Marwadi University, Rajkot, 360003, Gujarat, India
| | - Abhayveer Singh
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, 140401, Punjab, India
| | - Kamred Udham Singh
- School of Computing, Graphic Era Hill University, Dehradun, India; Graphic Era Deemed to Be University, Dehradun, Uttarakhand, 248002, India
| | - Suhas Ballal
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to Be University), Bangalore, Karnataka, India
| | - A Sabarivani
- Department of Biomedical, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Fadhil Faez Sead
- Department of Dentistry, College of Dentistry, The Islamic University, Najaf, Iraq; Department of Medical Analysis, Medical Laboratory Technique College, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq; Department of Medical Analysis, Medical Laboratory Technique College, The Islamic University of Babylon, Babylon, Iraq
| | - Rubyat Alam
- Applied Chemistry & Chemical Engineering, University of Dhaka, Bangladesh
| | - Mohammad Y Alshahrani
- Central Labs, King Khalid University, AlQura'a, Abha, Saudi Arabia; Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia.
| |
Collapse
|
3
|
Cao L, Liu Y, Lin G. Strategies for Altering Delivery Technologies to Optimize CAR Therapy. Int J Mol Sci 2025; 26:3206. [PMID: 40244018 PMCID: PMC11989270 DOI: 10.3390/ijms26073206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/22/2025] [Accepted: 03/26/2025] [Indexed: 04/18/2025] Open
Abstract
Chimeric antigen receptor (CAR) T-cell therapy has been proven to be an effective strategy for the treatment of hematological malignancies. At present, how to prepare CAR-T cells efficiently, quickly, and safely is one of the urgent problems to be solved. The durability and activity of engineered T cells in solid tumors need to be further improved, and the strategy of T cells penetrating the tumor microenvironment also needs to be improved. In addition, although the problems mainly caused by T-cell biology are being solved, the manufacturing mode and process still need to be improved to ensure that CAR-T cell therapy can be widely used. This paper summarizes some strategies that can improve the efficacy of CAR-T cells.
Collapse
Affiliation(s)
- Lili Cao
- Student Counseling Center, Shandong University, Jinan 250012, China;
| | - Yingying Liu
- School of Pharmaceutical Science, Shandong University, Jinan 250012, China;
| | - Guimei Lin
- School of Pharmaceutical Science, Shandong University, Jinan 250012, China;
| |
Collapse
|
4
|
Mivehchi H, Eskandari-Yaghbastlo A, Ghazanfarpour M, Ziaei S, Mesgari H, Faghihinia F, Zokaei Ashtiani N, Afjadi MN. Microenvironment-based immunotherapy in oral cancer: a comprehensive review. Med Oncol 2025; 42:140. [PMID: 40153139 DOI: 10.1007/s12032-025-02694-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 03/19/2025] [Indexed: 03/30/2025]
Abstract
Oral cancer, a prevalent form of head and neck malignancy, accounts for 4% of global cancer cases. The most common type, oral squamous cell carcinoma (OSCC), has a survival rate of about 50%. Even though emerging molecular therapies show promise for managing oral cancer, current treatments like surgery, radiotherapy, and chemotherapy have significant side effects. In addition, the complex tumor microenvironment (TME), involving the extracellular matrix (ECM) and cells like fibroblasts and stromal cells like immune cells, promotes tumor growth and inhibits immune responses, complicating treatment. Nonetheless, immunotherapy is crucial in cancer treatment, especially in oral cancers. Indeed, its effectiveness lies in targeting immune checkpoints such as PD-1 and CTLA-4 inhibitors, as well as monoclonal antibodies like pembrolizumab and cetuximab, adoptive cell transfer methods (including CAR-T cell therapy), cytokine therapy such as IL-2, and tumor vaccines. Thus, these interventions collectively regulate tumor proliferation and metastasis by targeting the TME through autocrine-paracrine signaling pathways. Immunotherapy indeed aims to stimulate the immune system, leveraging both innate and adaptive immunity to counteract cancer cell signals and promote tumor destruction. This review will explore how the TME controls tumor proliferation and metastasis via autocrine-paracrine signaling pathways. It will then detail the effectiveness of immunotherapy in oral cancers, focusing on immune checkpoints, targeted monoclonal antibodies, adoptive cell transfer, cytokine therapy, and tumor vaccines.
Collapse
Affiliation(s)
- Hassan Mivehchi
- Faculty of Dentistry, University of Debrecen, Debrecen, Hungary
| | | | | | - SeyedMehdi Ziaei
- Faculty of Dentistry, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Hassan Mesgari
- Oral and Maxillofacial Surgery Department, Faculty of Dentistry, Islamic Azad University, Tehran Branch, Tehran, Iran
| | - Farbod Faghihinia
- School of Dentistry, Yasuj University of Medical Sciences, Yasuj, Iran
| | | | - Mohsen Nabi Afjadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
5
|
Rassek K, Misiak J, Ołdak T, Rozwadowska N, Basak G, Kolanowski T. New player in CAR-T manufacture field: comparison of umbilical cord to peripheral blood strategies. Front Immunol 2025; 16:1561174. [PMID: 40191201 PMCID: PMC11968755 DOI: 10.3389/fimmu.2025.1561174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 02/28/2025] [Indexed: 04/09/2025] Open
Abstract
One of the most successful treatments in hematologic cancer is chimeric antigen receptor (CAR)-T cell-based immunotherapy. However, CAR-T therapy is not without challenges like the costly manufacturing process required to personalize each treatment for individual patients or graft-versus-host disease. Umbilical cord blood (UCB) has been most commonly used for hematopoietic cell transplant as it offers several advantages, including its rich source of hematopoietic stem cells, lower risk of graft-versus-host disease, and easier matching for recipients due to less stringent HLA requirements compared to bone marrow or peripheral blood stem cells. In this review, we have discussed the advantages and disadvantages of different CAR-T cell manufacturing strategies with the use of allogeneic and autologous peripheral blood cells. We compare them to the UCB approach and discuss ongoing pre-clinical and clinical trials in the field. Finally, we propose a cord blood bank as a readily available source of CAR-T cells.
Collapse
Affiliation(s)
- Karolina Rassek
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| | | | - Tomasz Ołdak
- FamicordTx, Warsaw, Poland
- Polish Stem Cell Bank (PBKM), Warsaw, Poland
| | - Natalia Rozwadowska
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
- FamicordTx, Warsaw, Poland
| | - Grzegorz Basak
- Department of Hematology, Transplantation and Internal Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Tomasz Kolanowski
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
- FamicordTx, Warsaw, Poland
| |
Collapse
|
6
|
Peter J, Toppeta F, Trubert A, Danhof S, Hudecek M, Däullary T. Multi-Targeting CAR-T Cell Strategies to Overcome Immune Evasion in Lymphoid and Myeloid Malignancies. Oncol Res Treat 2025:1-15. [PMID: 40090318 DOI: 10.1159/000543806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 01/15/2025] [Indexed: 03/18/2025]
Abstract
BACKGROUND Chimeric antigen receptor (CAR)-T cell therapy has become a groundbreaking treatment for hematological malignancies, particularly lymphomas and multiple myeloma, with high remission rates in refractory and relapsed patients. However, most CAR-T therapies target a single antigen, such as CD19, which can result in immune evasion through antigen escape. This mechanism describes the downregulation or complete loss of the targeted antigen by the tumor cells, eventually leading to relapse. To address this issue, multi-targeting strategies like logic-gated CARs, adapter CARs, or combination therapies can increase the potency of CAR-T cells. These approaches aim to minimize immune evasion by targeting multiple antigens simultaneously, thereby increasing treatment durability. Additionally, advanced tools such as next-generation sequencing (NGS), direct stochastic optical reconstruction microscopy (dSTORM), or multiparametric flow cytometry are helping to identify novel tumor-specific targets and improve therapy designs. SUMMARY This review explores the current landscape of CAR-T cell therapies in lymphoid and myeloid malignancies, highlights ongoing clinical trials, and discusses the future of these innovative multi-targeting approaches to improve patient outcome. KEY MESSAGES Antigen escape limits CAR-T cell therapy success, but multi-targeting strategies like logic gates and adapter CARs offer solutions. Optimizing antigen selection and CAR design, along with larger clinical trials, is essential for improving patient outcomes. Personalization using advanced technologies like CRISPR screening and single-cell RNA sequencing can enhance durability and effectiveness of treatments for heavily pretreated patients.
Collapse
Affiliation(s)
- Jessica Peter
- Chair in Cellular Immunotherapy, Department of Internal Medicine II, University Hospital of Würzburg, Würzburg, Germany
- NCT WERA, National Center for Tumor Diseases (Würzburg, Erlangen, Regensburg and Augsburg), Würzburg, Germany
- BZKF, Bavarian Center for Cancer Research, Erlangen, Germany
| | - Fabio Toppeta
- Chair in Cellular Immunotherapy, Department of Internal Medicine II, University Hospital of Würzburg, Würzburg, Germany
- NCT WERA, National Center for Tumor Diseases (Würzburg, Erlangen, Regensburg and Augsburg), Würzburg, Germany
- BZKF, Bavarian Center for Cancer Research, Erlangen, Germany
| | - Alexandre Trubert
- Chair in Cellular Immunotherapy, Department of Internal Medicine II, University Hospital of Würzburg, Würzburg, Germany
- NCT WERA, National Center for Tumor Diseases (Würzburg, Erlangen, Regensburg and Augsburg), Würzburg, Germany
- BZKF, Bavarian Center for Cancer Research, Erlangen, Germany
| | - Sophia Danhof
- Chair in Cellular Immunotherapy, Department of Internal Medicine II, University Hospital of Würzburg, Würzburg, Germany
- NCT WERA, National Center for Tumor Diseases (Würzburg, Erlangen, Regensburg and Augsburg), Würzburg, Germany
- BZKF, Bavarian Center for Cancer Research, Erlangen, Germany
| | - Michael Hudecek
- Chair in Cellular Immunotherapy, Department of Internal Medicine II, University Hospital of Würzburg, Würzburg, Germany
- NCT WERA, National Center for Tumor Diseases (Würzburg, Erlangen, Regensburg and Augsburg), Würzburg, Germany
- BZKF, Bavarian Center for Cancer Research, Erlangen, Germany
| | - Thomas Däullary
- Chair in Cellular Immunotherapy, Department of Internal Medicine II, University Hospital of Würzburg, Würzburg, Germany
- NCT WERA, National Center for Tumor Diseases (Würzburg, Erlangen, Regensburg and Augsburg), Würzburg, Germany
- BZKF, Bavarian Center for Cancer Research, Erlangen, Germany
| |
Collapse
|
7
|
Ouladan S, Orouji E. Chimeric Antigen Receptor-T Cells in Colorectal Cancer: Pioneering New Avenues in Solid Tumor Immunotherapy. J Clin Oncol 2025; 43:994-1005. [PMID: 39805063 PMCID: PMC11895826 DOI: 10.1200/jco-24-02081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/22/2024] [Accepted: 12/11/2024] [Indexed: 01/16/2025] Open
Abstract
Colorectal cancer (CRC) remains a major global health burden, being one of the most prevalent cancers with high mortality rates. Despite advances in conventional treatment modalities, patients with metastatic CRC often face limited options and poor outcomes. Chimeric antigen receptor-T (CAR-T) cell therapy, initially successful in hematologic malignancies, presents a promising avenue for treating solid tumors, including CRC. This review explores the potential of CAR-T cell therapy in CRC by analyzing clinical trials and highlighting prominent CRC-specific targets. We discuss the challenges such as immunosuppressive microenvironment, tumor heterogeneity, and physical barriers that limit CAR-T efficacy. Emerging strategies, such as logic-gated and dual-targeting CAR-T cells, offer practical solutions to overcome these hurdles. Furthermore, we explore the combination of CAR-T cell therapy with immune checkpoint inhibitors to enhance T-cell persistence and tumor infiltration. As the field continues to evolve, CAR-T cell therapies hold significant potential for revolutionizing the treatment landscape of CRC.
Collapse
Affiliation(s)
- Shaida Ouladan
- Department of Pathology, McGill University, Montreal, QC, Canada
| | - Elias Orouji
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| |
Collapse
|
8
|
Li R, Grosskopf AK, Joslyn LR, Stefanich EG, Shivva V. Cellular Kinetics and Biodistribution of Adoptive T Cell Therapies: from Biological Principles to Effects on Patient Outcomes. AAPS J 2025; 27:55. [PMID: 40032717 DOI: 10.1208/s12248-025-01017-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 01/06/2025] [Indexed: 03/05/2025] Open
Abstract
Cell-based immunotherapy has revolutionized cancer treatment in recent years and is rapidly expanding as one of the major therapeutic options in immuno-oncology. So far ten adoptive T cell therapies (TCTs) have been approved by the health authorities for cancer treatment, and they have shown remarkable anti-tumor efficacy with potent and durable responses. While adoptive T cell therapies have shown success in treating hematological malignancies, they are lagging behind in establishing promising efficacy in treating solid tumors, partially due to our incomplete understanding of the cellular kinetics (CK) and biodistribution (including tumoral penetration) of cell therapy products. Indeed, recent clinical studies have provided ample evidence that CK of TCTs can influence clinical outcomes in both hematological malignancies and solid tumors. In this review, we will discuss the current knowledge on the CK and biodistribution of anti-tumor TCTs. We will first describe the typical CK and biodistribution characteristics of these "living" drugs, and the biological factors that influence these characteristics. We will then review the relationships between CK and pharmacological responses of TCT, and potential strategies in enhancing the persistence and tumoral penetration of TCTs in the clinic. Finally, we will also summarize bioanalytical methods, preclinical in vitro and in vivo tools, and in silico modeling approaches used to assess the CK and biodistribution of TCTs.
Collapse
Affiliation(s)
- Ran Li
- Translational Pharmacokinetics and Pharmacodynamics, Genentech Inc, 1 DNA Way, South San Francisco, California, 94080, USA.
| | - Abigail K Grosskopf
- Translational Pharmacokinetics and Pharmacodynamics, Genentech Inc, 1 DNA Way, South San Francisco, California, 94080, USA
| | - Louis R Joslyn
- Translational Pharmacokinetics and Pharmacodynamics, Genentech Inc, 1 DNA Way, South San Francisco, California, 94080, USA
| | - Eric Gary Stefanich
- Translational Pharmacokinetics and Pharmacodynamics, Genentech Inc, 1 DNA Way, South San Francisco, California, 94080, USA
| | - Vittal Shivva
- Translational Pharmacokinetics and Pharmacodynamics, Genentech Inc, 1 DNA Way, South San Francisco, California, 94080, USA.
| |
Collapse
|
9
|
Avolio E, Bassani B, Campanile M, Mohammed KA, Muti P, Bruno A, Spinetti G, Madeddu P. Shared molecular, cellular, and environmental hallmarks in cardiovascular disease and cancer: Any place for drug repurposing? Pharmacol Rev 2025; 77:100033. [PMID: 40148035 DOI: 10.1016/j.pharmr.2024.100033] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 12/17/2024] [Indexed: 03/29/2025] Open
Abstract
Cancer and cardiovascular disease (CVD) are the 2 biggest killers worldwide. Specific treatments have been developed for the 2 diseases. However, mutual therapeutic targets should be considered because of the overlap of cellular and molecular mechanisms. Cancer research has grown at a fast pace, leading to an increasing number of new mechanistic treatments. Some of these drugs could prove useful for treating CVD, which realizes the concept of cancer drug repurposing. This review provides a comprehensive outline of the shared hallmarks of cancer and CVD, primarily ischemic heart disease and heart failure. We focus on chronic inflammation, altered immune response, stromal and vascular cell activation, and underlying signaling pathways causing pathological tissue remodeling. There is an obvious scope for targeting those shared mechanisms, thereby achieving reciprocal preventive and therapeutic benefits. Major attention is devoted to illustrating the logic, advantages, challenges, and viable examples of drug repurposing and discussing the potential influence of sex, gender, age, and ethnicity in realizing this approach. Artificial intelligence will help to refine the personalized application of drug repurposing for patients with CVD. SIGNIFICANCE STATEMENT: Cancer and cardiovascular disease (CVD), the 2 biggest killers worldwide, share several underlying cellular and molecular mechanisms. So far, specific therapies have been developed to tackle the 2 diseases. However, the development of new cardiovascular drugs has been slow compared with cancer drugs. Understanding the intersection between pathological mechanisms of the 2 diseases provides the basis for repurposing cancer therapeutics for CVD treatment. This approach could allow the rapid development of new drugs for patients with CVDs.
Collapse
Affiliation(s)
- Elisa Avolio
- Bristol Heart Institute, Laboratory of Experimental Cardiovascular Medicine, Translational Health Sciences, Bristol Medical School, University of Bristol, United Kingdom.
| | - Barbara Bassani
- Laboratory of Innate Immunity, Unit of Molecular Pathology, Biochemistry, and Immunology, IRCCS MultiMedica, Milan, Italy
| | - Marzia Campanile
- Laboratory of Cardiovascular Pathophysiology - Regenerative Medicine, IRCCS MultiMedica, Milan, Italy; Department of Biosciences, University of Milan, Milan, Italy
| | - Khaled Ak Mohammed
- Bristol Heart Institute, Laboratory of Experimental Cardiovascular Medicine, Translational Health Sciences, Bristol Medical School, University of Bristol, United Kingdom; Department of Cardiothoracic Surgery, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Paola Muti
- IRCCS MultiMedica, Milan, Italy; Department of Biomedical, Surgical and Dental Health Sciences, University of Milan, Italy
| | - Antonino Bruno
- Laboratory of Innate Immunity, Unit of Molecular Pathology, Biochemistry, and Immunology, IRCCS MultiMedica, Milan, Italy; Laboratory of Immunology and General Pathology, Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy.
| | - Gaia Spinetti
- Laboratory of Cardiovascular Pathophysiology - Regenerative Medicine, IRCCS MultiMedica, Milan, Italy.
| | - Paolo Madeddu
- Bristol Heart Institute, Laboratory of Experimental Cardiovascular Medicine, Translational Health Sciences, Bristol Medical School, University of Bristol, United Kingdom.
| |
Collapse
|
10
|
Gao H, Qu L, Li M, Guan X, Zhang S, Deng X, Wang J, Xing F. Unlocking the potential of chimeric antigen receptor T cell engineering immunotherapy: Long road to achieve precise targeted therapy for hepatobiliary pancreatic cancers. Int J Biol Macromol 2025; 297:139829. [PMID: 39814310 DOI: 10.1016/j.ijbiomac.2025.139829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 01/03/2025] [Accepted: 01/11/2025] [Indexed: 01/18/2025]
Abstract
Innovative therapeutic strategies are urgently needed to address the ongoing global health concern of hepatobiliary pancreatic malignancies. This review summarizes the latest and most comprehensive research of chimeric antigen receptor (CAR-T) cell engineering immunotherapy for treating hepatobiliary pancreatic cancers. Commencing with an exploration of the distinct anatomical location and the immunosuppressive, hypoxic tumor microenvironment (TME), this review critically assesses the limitations of current CAR-T therapy in hepatobiliary pancreatic cancers and proposes corresponding solutions. Various studies aim at enhancing CAR-T cell efficacy in these cancers through improving T cell persistence, enhancing antigen specificity and reducing tumor heterogeneity, also modulating the immunosuppressive and hypoxic TME. Additionally, the review examines the application of emerging nanoparticles and biotechnologies utilized in CAR-T therapy for these cancers. The results suggest that constructing optimized CAR-T cells to overcome physical barrier, manipulating the TME to relieve immunosuppression and hypoxia, designing CAR-T combination therapies, and selecting the most suitable delivery strategies, all together could collectively enhance the safety of CAR-T engineering and advance the effectiveness of adaptive cell therapy for hepatobiliary pancreatic cancers.
Collapse
Affiliation(s)
- Hongli Gao
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Lianyue Qu
- Department of Pharmacy, The First Hospital of China Medical University, Shenyang 110001, China
| | - Mu Li
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Xin Guan
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Shuang Zhang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Xin Deng
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| | - Jin Wang
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang 110001, China.
| | - Fei Xing
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| |
Collapse
|
11
|
Maggi E, Landolina N, Munari E, Mariotti FR, Tumino N, Vacca P, Azzarone B, Moretta L. T cells in the microenvironment of solid pediatric tumors: the case of neuroblastoma. Front Immunol 2025; 16:1544137. [PMID: 40092980 PMCID: PMC11906424 DOI: 10.3389/fimmu.2025.1544137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 02/12/2025] [Indexed: 03/19/2025] Open
Abstract
Neuroblastoma (NB) is an immunologically "cold" tumor with poor or no inflamed substrates as most of solid pediatric tumors (SPT). Consistent data indicate that NB tumor microenvironment (TME) is dominated by myeloid cells, with little (but variable) T cell infiltration. The obstacles to lymphocyte infiltration and to their anti-tumor activity are due to different tumor immune evasion strategies, including loss of HLA Class I molecules, high expression of immune checkpoint molecular ligands leading to exhaustion of T effector (and NK) cells, induction of T regulatory, myeloid and stromal cells and secretion of immunosuppressive mediators. In odds with adult solid tumors, NB displays weak immunogenicity caused by intrinsic low mutational burden and scant expression of neoepitopes in the context of MHC-class I antigens which, in turn, are particularly poorly expressed on NB cells, thus inducing low anti-tumor T cell responses. In addition, NB is generated from embryonal cells and is the result of transcriptional abnormalities and not of the accumulation of genetic mutations over time, thus further explaining the low immunogenicity. The poor expression of immunogenic molecules on tumor cells is associated with the high production of immunosuppressive factors which further downregulate lymphocyte infiltration and activity, thus explaining the limited efficacy of new drugs in NB, as immune checkpoint inhibitors. This review is focused on examining the role of T effector and regulatory cells infiltrating TME of NB, taking into account their repertoire, phenotype, function, plasticity and, importantly, predictive value for defining novel targets for therapy.
Collapse
Affiliation(s)
- Enrico Maggi
- Tumor Immunology Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Nadine Landolina
- Tumor Immunology Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Enrico Munari
- Department of Pathology and Diagnostics, University and Hospital Trust of Verona, Verona, Italy
| | | | - Nicola Tumino
- Innate Lymphoid Cells Unit, Immunology Research Area, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Paola Vacca
- Innate Lymphoid Cells Unit, Immunology Research Area, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Bruno Azzarone
- Tumor Immunology Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Lorenzo Moretta
- Tumor Immunology Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| |
Collapse
|
12
|
Nasiri F, Safarzadeh Kozani P, Salem F, Mahboubi Kancha M, Dashti Shokoohi S, Safarzadeh Kozani P. Mechanisms of antigen-dependent resistance to chimeric antigen receptor (CAR)-T cell therapies. Cancer Cell Int 2025; 25:64. [PMID: 39994651 PMCID: PMC11849274 DOI: 10.1186/s12935-025-03697-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 02/14/2025] [Indexed: 02/26/2025] Open
Abstract
Cancer immunotherapy has reshaped the landscape of cancer treatment over the past decades. Genetic manipulation of T cells to express synthetic receptors, known as chimeric antigen receptors (CAR), has led to the creation of tremendous commercial and therapeutic success for the treatment of certain hematologic malignancies. However, since the engagement of CAR-T cells with their respective antigens is solely what triggers their cytotoxic reactions against target cells, the slightest changes to the availability and/or structure of the target antigen often result in the incapacitation of CAR-T cells to enforce tumoricidal responses. This results in the resistance of tumor cells to a particular CAR-T cell therapy that requires meticulous heeding to sustain remissions in cancer patients. In this review, we highlight the antigen-dependent resistance mechanisms by which tumor cells dodge being recognized and targeted by CAR-T cells. Moreover, since substituting the target antigen is the most potent strategy for overcoming antigen-dependent disease relapse, we tend to highlight the current status of some target antigens that might be considered suitable alternatives to the currently available antigens in various cancers. We also propose target antigens whose targeting might reduce the off-tumor adverse events of CAR-T cells in certain malignancies.
Collapse
Affiliation(s)
- Fatemeh Nasiri
- Department of Internal Medicine, College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Research and Development Center of Biotechnology, Tarbiat Modares University, Tehran, Iran
| | - Pouya Safarzadeh Kozani
- Research and Development Center of Biotechnology, Tarbiat Modares University, Tehran, Iran.
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Faeze Salem
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Maral Mahboubi Kancha
- Faculty of Engineering and Science, School of Science, University of Greenwich, Chatham Maritime, Chatham, Kent, ME4 4TB, UK
| | | | - Pooria Safarzadeh Kozani
- Research and Development Center of Biotechnology, Tarbiat Modares University, Tehran, Iran.
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
13
|
De Lucia A, Mazzotti L, Gaimari A, Zurlo M, Maltoni R, Cerchione C, Bravaccini S, Delmonte A, Crinò L, Borges de Souza P, Pasini L, Nicolini F, Bianchi F, Juan M, Calderon H, Magnoni C, Gazzola L, Ulivi P, Mazza M. Non-small cell lung cancer and the tumor microenvironment: making headway from targeted therapies to advanced immunotherapy. Front Immunol 2025; 16:1515748. [PMID: 39995659 PMCID: PMC11847692 DOI: 10.3389/fimmu.2025.1515748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 01/20/2025] [Indexed: 02/26/2025] Open
Abstract
Over the past decades, significant progress has been made in the understanding of non-small cell lung cancer (NSCLC) biology and tumor progression mechanisms, resulting in the development of novel strategies for early detection and wide-ranging care approaches. Since their introduction, over 20 years ago, targeted therapies with tyrosine kinase inhibitors (TKIs) have revolutionized the treatment landscape for NSCLC. Nowadays, targeted therapies remain the gold standard for many patients, but still they suffer from many adverse effects, including unexpected toxicity and intrinsic acquired resistance mutations, which lead to relapse. The adoption of immune checkpoint inhibitors (ICIs) in 2015, has offered exceptional survival benefits for patients without targetable alterations. Despite this notable progress, challenges remain, as not all patients respond favorably to ICIs, and resistance to therapy can develop over time. A crucial factor influencing clinical response to immunotherapy is the tumor microenvironment (TME). The TME is pivotal in orchestrating the interactions between neoplastic cells and the immune system, influencing tumor growth and treatment outcomes. In this review, we discuss how the understanding of this intricate relationship is crucial for the success of immunotherapy and survey the current state of immunotherapy intervention, with a focus on forthcoming and promising chimeric antigen receptor (CAR) T cell therapies in NSCLC. The TME sets major obstacles for CAR-T therapies, creating conditions that suppress the immune response, inducing T cell exhaustion. To enhance treatment efficacy, specific efforts associated with CAR-T cell therapy in NSCLC, should definitely focus TME-related immunosuppression and antigen escape mechanisms, by combining CAR-T cells with immune checkpoint blockades.
Collapse
Affiliation(s)
- Anna De Lucia
- Advanced Cellular Therapies and Rare Tumors Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Lucia Mazzotti
- Advanced Cellular Therapies and Rare Tumors Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Anna Gaimari
- Advanced Cellular Therapies and Rare Tumors Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Matteo Zurlo
- Advanced Cellular Therapies and Rare Tumors Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Roberta Maltoni
- Healthcare Administration, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Claudio Cerchione
- Hematology Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Sara Bravaccini
- Department of Medicine and Surgery, “Kore” University of Enna, Enna, Italy
| | - Angelo Delmonte
- Medical Oncology Department, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Lucio Crinò
- Medical Oncology Department, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Patricia Borges de Souza
- Advanced Cellular Therapies and Rare Tumors Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Luigi Pasini
- Advanced Cellular Therapies and Rare Tumors Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Fabio Nicolini
- Advanced Cellular Therapies and Rare Tumors Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Fabrizio Bianchi
- Unit of Cancer Biomarker, Fondazione IRCCS Casa Sollievo Della Sofferenza, San Giovanni Rotondo, FG, Italy
| | - Manel Juan
- Department of Immunology, Institut D’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Hugo Calderon
- Department of Immunology, Institut D’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Chiara Magnoni
- Advanced Cellular Therapies and Rare Tumors Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Luca Gazzola
- Advanced Cellular Therapies and Rare Tumors Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Paola Ulivi
- Translational Oncology Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Massimiliano Mazza
- Advanced Cellular Therapies and Rare Tumors Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| |
Collapse
|
14
|
Mlakar T, Skrbinek M, Fink T, Lainšček D. Enhancing CAR T-Cell Function with Domains of Innate Immunity Sensors. Int J Mol Sci 2025; 26:1339. [PMID: 39941106 PMCID: PMC11818292 DOI: 10.3390/ijms26031339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 01/25/2025] [Accepted: 02/03/2025] [Indexed: 02/16/2025] Open
Abstract
The innate immune system plays an important role in protecting the organism via recognizing the danger signals and pathogens through pattern recognition receptors. By sensing the danger signal and conveying the signaling towards the elimination of the threat, several families of these receptors, expressed on different myeloid and innate lymphoid cells, serve as the first defense line in the innate immunity. Toll-like receptors, C-type lectin receptors, and many other receptors therefore illustrate the importance of the protective role of the immune system. This was additionally confirmed by CAR T-cell-based cancer immunotherapy, where the patient's own immune system is being used for successful tumor elimination. CAR T-cells have proven themselves to be a potent therapeutic option, yet in some cases their efficiency could be enhanced. Innate immune sensors that include strong activation and signaling domains, for instance, part of the Toll-like receptors, MyD88 (Myeloid Differentiation Primary Response gene), NKG2D (Natural killer group 2-member D), and many other domains, could be used as a CAR building module to increase the functionality and potency of the CAR T-cells.
Collapse
Affiliation(s)
- Tjaša Mlakar
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, 1000 Ljubljana, Slovenia; (T.M.); (M.S.)
- Interdisciplinary Doctoral Study of Biomedicine, Medical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Mojca Skrbinek
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, 1000 Ljubljana, Slovenia; (T.M.); (M.S.)
- Interdisciplinary Doctoral Study of Biomedicine, Medical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Tina Fink
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, 1000 Ljubljana, Slovenia; (T.M.); (M.S.)
- Centre for Technologies of Gene and Cell Therapy, National Institute of Chemistry, 1000 Ljubljana, Slovenia
| | - Duško Lainšček
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, 1000 Ljubljana, Slovenia; (T.M.); (M.S.)
- Centre for Technologies of Gene and Cell Therapy, National Institute of Chemistry, 1000 Ljubljana, Slovenia
- EN-FIST Centre of Excellence, 1000 Ljubljana, Slovenia
| |
Collapse
|
15
|
Xiong S, Zhang S, Yue N, Cao J, Wu C. CAR-T cell therapy in the treatment of relapsed or refractory primary central nervous system lymphoma: recent advances and challenges. Leuk Lymphoma 2025:1-13. [PMID: 39898872 DOI: 10.1080/10428194.2025.2458214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 01/01/2025] [Accepted: 01/20/2025] [Indexed: 02/04/2025]
Abstract
Primary central nervous system lymphoma (PCNSL) is a rare and aggressive lymphoma that is isolated in the central nervous system (CNS) or vitreoretinal space. High-dose methotrexate (HD-MTX)-based immunochemotherapy is the frontline for its treatment, with a high early response rate. However, relapsed or refractory (R/R) patients present numerous difficulties and challenges in clinical treatment. Chimeric antigen receptor (CAR)-T cells offer a promising option for the treatment of hematologic malignancies, especially in the R/R B-cell lymphoma and multiple myeloma. Despite the exclusion of most PCNSL cases from pivotal CAR-T cell trials due to their specific tumor microenvironment (TME), available preclinical and clinical studies with small cohorts suggest an overall acceptable safety profile and remarkable anti-tumor effects. In this review, we will provide the development process of CAR-T cells and summarize the research progress, limitations, and future perspectives of CAR-T cell therapy in patients with R/R PCNSL.
Collapse
Affiliation(s)
- Shuzhen Xiong
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, China
| | | | | | | | | |
Collapse
|
16
|
Buono G, Capozzi M, Caputo R, Lauro VD, Cianniello D, Piezzo M, Cocco S, Martinelli C, Verrazzo A, Tafuro M, Calderaio C, Calabrese A, Nuzzo F, Pagliuca M, Laurentiis MD. CAR-T cell therapy for breast cancer: Current status and future perspective. Cancer Treat Rev 2025; 133:102868. [PMID: 39798230 DOI: 10.1016/j.ctrv.2024.102868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/09/2024] [Accepted: 12/23/2024] [Indexed: 01/15/2025]
Abstract
Within the expanding therapeutic landscape for breast cancer (BC), metastatic breast cancer (MBC) remains virtually incurable and tend to develop resistance to conventional treatments ultimately leading to metastatic progression and death. Cellular immunotherapy (CI), particularly chimeric antigen receptor-engineered T (CAR-T) cells, has emerged as a promising approach for addressing this challenge. In the wake of their striking efficacy against hematological cancers, CAR-T cells have also been used where the clinical need is greatest - in patients with aggressive BCs. Unfortunately, current outcomes fall considerably short of replicating that success, primarily owing to the scarcity of tumor-specific antigens and the immunosuppressive microenvironment within BC. Herein, we provide an up-to-date overview of both preclinical and clinical data concerning the application of CAR-T cell therapy in BC. By surveying the existing literature, we discuss the prevailing constrains of this therapeutic approach and overview possible strategies to advance it in the context of breast malignancies. Possible approaches include employing synthetic biology to refine antigen targeting and mitigate off-target toxicity, utilizing logic-gated CAR constructs to enhance specificity, and leveraging armored CARs to remodel the tumor micro-environment. Temporal and spatial regulation of CAR-T cells using inducible gene switches and external triggers further improves safety and functionality. In addition, promoting T cell homing through chemokine receptor engineering and enhancing manufacturing processes with universal CAR platforms expand therapeutic applicability. These innovations not only address antigen escape and T cell exhaustion but also optimize the efficacy and safety profile of CAR-T cell therapy. We, therefore, outline a trajectory wherein CAR-T cells may evolve from a promising experimental approach to a standard modality in BC therapy.
Collapse
Affiliation(s)
- Giuseppe Buono
- Istituto Nazionale Tumori, IRCCS, Fondazione G. Pascale, Napoli, Italy
| | - Monica Capozzi
- Istituto Nazionale Tumori, IRCCS, Fondazione G. Pascale, Napoli, Italy
| | - Roberta Caputo
- Istituto Nazionale Tumori, IRCCS, Fondazione G. Pascale, Napoli, Italy
| | - Vincenzo Di Lauro
- Istituto Nazionale Tumori, IRCCS, Fondazione G. Pascale, Napoli, Italy
| | | | - Michela Piezzo
- Istituto Nazionale Tumori, IRCCS, Fondazione G. Pascale, Napoli, Italy
| | - Stefania Cocco
- Istituto Nazionale Tumori, IRCCS, Fondazione G. Pascale, Napoli, Italy
| | - Claudia Martinelli
- Istituto Nazionale Tumori, IRCCS, Fondazione G. Pascale, Napoli, Italy; Clinical and Translational Oncology, Scuola Superiore Meridionale (SSM), Napoli, Italy
| | - Annarita Verrazzo
- Istituto Nazionale Tumori, IRCCS, Fondazione G. Pascale, Napoli, Italy; Clinical and Translational Oncology, Scuola Superiore Meridionale (SSM), Napoli, Italy
| | - Margherita Tafuro
- Clinical and Translational Oncology, Scuola Superiore Meridionale (SSM), Napoli, Italy; Department of Clinical Medicine and Surgery, University of Naples Federico II, Napoli, Italy
| | - Claudia Calderaio
- Clinical and Translational Oncology, Scuola Superiore Meridionale (SSM), Napoli, Italy; Department of Clinical Medicine and Surgery, University of Naples Federico II, Napoli, Italy
| | | | - Francesco Nuzzo
- Istituto Nazionale Tumori, IRCCS, Fondazione G. Pascale, Napoli, Italy
| | - Martina Pagliuca
- Istituto Nazionale Tumori, IRCCS, Fondazione G. Pascale, Napoli, Italy; Clinical and Translational Oncology, Scuola Superiore Meridionale (SSM), Napoli, Italy; Université Paris-Saclay, Gustave Roussy, INSERM, Molecular Predictors and New Targets in Oncology, Villejuif, France.
| | | |
Collapse
|
17
|
Ren T, Huang Y. Recent advancements in improving the efficacy and safety of chimeric antigen receptor (CAR)-T cell therapy for hepatocellular carcinoma. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:1433-1446. [PMID: 39316087 DOI: 10.1007/s00210-024-03443-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 09/08/2024] [Indexed: 09/25/2024]
Abstract
The liver is one of the most frequent sites of primary malignancies in humans. Hepatocellular carcinoma (HCC) is one of the most prevalent solid tumors with poor prognosis. Current treatments showed limited efficacy in some patients, and, therefore, alternative strategies, such as immunotherapy, cancer vaccines, adoptive cell therapy (ACT), and recently chimeric antigen receptors (CAR)-T cells, are developed to offer better efficacy and safety profile in patients with HCC. Unlike other ACTs like tumor-infiltrating lymphocytes (TILs), CAR-T cells are equipped with engineered CAR receptors that effectively identify tumor antigens and eliminate cancer cells without major histocompatibility complex (MHC) restriction. This process induces intracellular signaling, leading to T lymphocyte recruitment and subsequent activation of other effector cells in the tumor microenvironment (TME). Until today, novel approaches have been used to develop more potent CAR-T cells with robust persistence, specificity, trafficking, and safety. However, the clinical application of CAR-T cells in solid tumors is still challenging. Therefore, this study aims to review the advancement, prospects, and possible avenues of CAR-T cell application in HCC following an outline of the CAR structure and function.
Collapse
Affiliation(s)
- Tuo Ren
- Department of Interventional Radiology, The First Affiliated Hospital, Sun Yat-Sen University, No.58 Zhongsahn 2nd Road, Guangzhou, Guangdong, 510080, China
| | - Yonghui Huang
- Department of Interventional Radiology, The First Affiliated Hospital, Sun Yat-Sen University, No.58 Zhongsahn 2nd Road, Guangzhou, Guangdong, 510080, China.
| |
Collapse
|
18
|
Kushwaha N, Panjwani D, Patel S, Ahlawat P, Yadav MR, Patel AS. Emerging advances in nano-biomaterial assisted amyloid beta chimeric antigen receptor macrophages (CAR-M) therapy: reducing plaque burden in Alzheimer's disease. J Drug Target 2025; 33:185-205. [PMID: 39403775 DOI: 10.1080/1061186x.2024.2417012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 09/23/2024] [Accepted: 10/08/2024] [Indexed: 10/22/2024]
Abstract
Alzheimer's disease is the most common form, accounting for 60-70% of 55 million dementia cases. Even though the precise pathophysiology of AD is not completely understood, clinical trials focused on antibodies targeting aggregated forms of β amyloid (Aβ) have demonstrated that reducing amyloid plaques can arrest cognitive decline in patients in the early stages of AD. In this study, we provide an overview of current research and innovations for controlled release from nano-biomaterial-assisted chimeric antigen receptor macrophage (CAR-M) therapeutic strategies targeted at AD. Nano-bio materials, such as iron-oxide nanoparticles (IONPs), can be made selectively (Hp-Hb/mannose) to bind and take up Aβ plaques like CAR-M cells. By using nano-bio materials, both the delivery and stability of CAR-M cells in brain tissue can be improved to overcome the barriers of the BBB and enhance therapeutic effects. By enhancing the targeting capabilities and stability of CAR-M cells, mRNA-loaded nano-biomaterials can significantly improve the efficacy of immunotherapy for plaque reduction in AD. This novel strategy holds promise for translating preclinical successes into clinical applications, potentially revolutionising the management of AD.
Collapse
Affiliation(s)
- Nishabh Kushwaha
- Department of Pharmaceutics, Parul Institute of Pharmacy, Parul University, Vadodara, India
| | - Drishti Panjwani
- Department of Pharmaceutics, Parul Institute of Pharmacy, Parul University, Vadodara, India
| | - Shruti Patel
- Department of Pharmaceutics, Parul Institute of Pharmacy, Parul University, Vadodara, India
| | - Priyanka Ahlawat
- Department of Pharmaceutics, Parul Institute of Pharmacy, Parul University, Vadodara, India
| | - Mange Ram Yadav
- Research and Development Cell, Parul University, Vadodara, India
| | - Asha S Patel
- Department of Pharmaceutics, Parul Institute of Pharmacy, Parul University, Vadodara, India
| |
Collapse
|
19
|
Hernández-López A, Olaya-Vargas A, Bustamante-Ogando JC, Meneses-Acosta A. Expanding the Horizons of CAR-T Cell Therapy: A Review of Therapeutic Targets Across Diverse Diseases. Pharmaceuticals (Basel) 2025; 18:156. [PMID: 40005970 PMCID: PMC11858291 DOI: 10.3390/ph18020156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 01/15/2025] [Accepted: 01/21/2025] [Indexed: 02/27/2025] Open
Abstract
CAR-T cell therapy has shown promising results in treating malignant hematologic diseases. The principle of this therapy is based on the use of genetically modified T lymphocytes to express a Chimeric Antigen Receptor (CAR) on their membrane that specifically recognizes an antigen predominantly expressed on target cells. The molecular design of the CAR, along with advancements in molecular techniques and the development of "omics", has opened the possibility of discovering new therapeutic targets and thereby expanding the range of diseases treated with CAR-T cells beyond the use of anti-CD19 and anti-BCMA for hematologic cancer. This review summarizes the novel therapeutic targets that are currently used in clinical trials with CAR-T cell therapy on autoimmune diseases and other challenging conditions, such as cardiac fibrosis, and different infections. Additionally, challenges and novel opportunities are discussed for expanding clinical access to this innovative therapy.
Collapse
Affiliation(s)
- Alejandrina Hernández-López
- Laboratorio 7 of Biotecnología Farmacéutica, Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Cuernavaca 62210, Mexico;
- Consejo Nacional de Humanidades, Ciencias y Tecnologías (CONAHCYT), Mexico City 03940, Mexico
| | - Alberto Olaya-Vargas
- Programa de Trasplante de Células Madre Hematopoyéticas y Terapia Celular, Instituto Nacional de Pediatría, Mexico City 04530, Mexico;
| | - Juan Carlos Bustamante-Ogando
- Laboratorio de Investigación en Inmunodeficiencias y Departamento de Inmunología Clínica, Instituto Nacional de Pediatría, Mexico City 04530, Mexico;
| | - Angélica Meneses-Acosta
- Laboratorio 7 of Biotecnología Farmacéutica, Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Cuernavaca 62210, Mexico;
| |
Collapse
|
20
|
Marei HE, Bedair K, Hasan A, Al-Mansoori L, Caratelli S, Sconocchia G, Gaiba A, Cenciarelli C. Current status and innovative developments of CAR-T-cell therapy for the treatment of breast cancer. Cancer Cell Int 2025; 25:3. [PMID: 39755633 PMCID: PMC11700463 DOI: 10.1186/s12935-024-03615-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 12/12/2024] [Indexed: 01/06/2025] Open
Abstract
Breast cancer will overtake all other cancers in terms of diagnoses in 2024. Breast cancer counts highest among women in terms of cancer incidence and death rates. Innovative treatment approaches are desperately needed because treatment resistance brought on by current clinical drugs impedes therapeutic efficacy. The T cell-based immunotherapy known as chimeric antigen receptor (CAR) T cell treatment, which uses the patient's immune cells to fight cancer, has demonstrated remarkable efficacy in treating hematologic malignancies; nevertheless, the treatment effects in solid tumors, like breast cancer, have not lived up to expectations. We discuss in detail the role of tumor-associated antigens in breast cancer, current clinical trials, barriers to the intended therapeutic effects of CAR-T cell therapy, and potential ways to increase treatment efficacy. Finally, our review aims to stimulate readers' curiosity by summarizing the most recent advancements in CAR-T cell therapy for breast cancer.
Collapse
Affiliation(s)
- Hany E Marei
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35116, Egypt.
| | - Khaled Bedair
- Department of Social Sciences, College of Arts and Sciences, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Anwarul Hasan
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha, Qatar
| | - Layla Al-Mansoori
- Biomedical Research Center, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Sara Caratelli
- Institute of Translational Pharmacology-CNR, Rome, Italy
| | | | - Alice Gaiba
- Institute of Translational Pharmacology-CNR, Rome, Italy
| | | |
Collapse
|
21
|
Lee J, Song J, Yoo W, Choi H, Jung D, Choi E, Jo SG, Gong EY, Jeoung YH, Park YS, Son WC, Lee H, Lee H, Kim JJ, Kim T, Lee S, Park JJ, Kim TD, Kim SH. Therapeutic potential of anti-ErbB3 chimeric antigen receptor natural killer cells against breast cancer. Cancer Immunol Immunother 2025; 74:73. [PMID: 39751931 PMCID: PMC11698710 DOI: 10.1007/s00262-024-03923-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 12/13/2024] [Indexed: 01/04/2025]
Abstract
ErbB3 is markedly overexpressed in breast cancer cells and is associated with resistance and metastasis. Additionally, ErbB3 expression levels are positively correlated with low densities of tumor-infiltrating lymphocytes, a marker of poor prognosis. Consequently, ErbB3 is a promising therapeutic target for cancer immunotherapy. Here, we report the generation of ErbB3-targeted chimeric antigen receptor (CAR)-modified natural killer (NK) cells by transducing cord blood-derived primary NK cells using vsv-g envelope-pseudotyped lentiviral vectors. Transduced cells displayed stable CAR-expressing activity and increased cytotoxicity against ErbB3-positive breast cancer cell lines. Furthermore, anti-ErbB3 (aErbB3) CAR-NK cells strongly reduced the tumor burden in the SK-BR-3 xenograft mouse model without observable side effects. These findings underscore the potential of aErbB3 CAR-NK cells as targeted immunotherapy for ErbB3-positive breast cancer, suggesting a promising alternative to conventional treatments.
Collapse
Affiliation(s)
- Juheon Lee
- Department of Health Sciences, The Graduate School of Dong-A University, Busan, 49315, Republic of Korea
| | - Jinhoo Song
- Department of Health Sciences, The Graduate School of Dong-A University, Busan, 49315, Republic of Korea
| | - Wonbeak Yoo
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Hyunji Choi
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Dana Jung
- Department of Health Sciences, The Graduate School of Dong-A University, Busan, 49315, Republic of Korea
| | - Eunjeong Choi
- Department of Health Sciences, The Graduate School of Dong-A University, Busan, 49315, Republic of Korea
| | - Seo-Gyeong Jo
- Department of Health Sciences, The Graduate School of Dong-A University, Busan, 49315, Republic of Korea
| | - Eun-Yeung Gong
- Department of Medicinal Biotechnology, College of Health Science, Dong-A University, Busan, 49315, Republic of Korea
| | - Young-Hee Jeoung
- Department of Medicinal Biotechnology, College of Health Science, Dong-A University, Busan, 49315, Republic of Korea
| | - You-Soo Park
- Department of Research Center, Dongnam Institute of Radiological and Medical Sciences Busan, Busan, 46033, Republic of Korea
| | - Woo-Chang Son
- Department of Research Center, Dongnam Institute of Radiological and Medical Sciences Busan, Busan, 46033, Republic of Korea
| | - Hosuk Lee
- ISU Abxis, Drug Discovery Division, Bundang-gu, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea
| | - Hayoung Lee
- ISU Abxis, Drug Discovery Division, Bundang-gu, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea
| | - Jeom Ji Kim
- ISU Abxis, Drug Discovery Division, Bundang-gu, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea
| | - TaeEun Kim
- ISU Abxis, Drug Discovery Division, Bundang-gu, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea
| | - Sooyun Lee
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Jang-June Park
- ISU Abxis, Drug Discovery Division, Bundang-gu, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea.
| | - Tae-Don Kim
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea.
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea.
| | - Seok-Ho Kim
- Department of Health Sciences, The Graduate School of Dong-A University, Busan, 49315, Republic of Korea.
- Department of Medicinal Biotechnology, College of Health Science, Dong-A University, Busan, 49315, Republic of Korea.
| |
Collapse
|
22
|
Rangel-Peláez C, Martínez-Gutiérrez L, Tristán-Manzano M, Callejas JL, Ortego-Centeno N, Martín F, Martín J. CD19 CAR-T cell therapy: a new dawn for autoimmune rheumatic diseases? Front Immunol 2024; 15:1502712. [PMID: 39742256 PMCID: PMC11685126 DOI: 10.3389/fimmu.2024.1502712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 11/25/2024] [Indexed: 01/03/2025] Open
Abstract
Autoimmune rheumatic diseases (ARDs), such as rheumatoid arthritis, systemic lupus erythematosus, and systemic sclerosis, involve dysregulated immune responses causing chronic inflammation and tissue damage. Despite advancements in clinical management, many patients do not respond to current treatments, which often show limited efficacy due to the persistence of autoreactive B cells. Chimeric antigen receptor (CAR)-T cell therapy, which has shown success in oncology for B cell malignancies, targets specific antigens and involves the adoptive transfer of genetically engineered T cells. CD19 CAR-T cells, in particular, have shown promise in depleting circulating B cells and achieving clinical remission. This review discusses the potential of CD19 CAR-T cells in ARDs, highlighting clinical achievements and addressing key considerations such as optimal target cell populations, CAR construct design, acceptable toxicities, and the potential for lasting immune reset, crucial for the safe and effective adoption of CAR-T cell therapy in autoimmune treatments.
Collapse
Affiliation(s)
- Carlos Rangel-Peláez
- Institute of Parasitology and Biomedicine López-Neyra, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| | - Laura Martínez-Gutiérrez
- Institute of Parasitology and Biomedicine López-Neyra, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| | - María Tristán-Manzano
- LentiStem Biotech, Pfizer-University of Granada-Andalusian Regional Government Centre for Genomics and Oncological Research (GENYO), Granada, Spain
| | - José Luis Callejas
- Systemic Autoimmune Disease Unit, Hospital Clínico San Cecilio, Instituto de Investigación Biosanitaria Ibs, Granada, Spain
- Department of Medicine, University of Granada, Granada, Spain
| | - Norberto Ortego-Centeno
- Systemic Autoimmune Disease Unit, Hospital Clínico San Cecilio, Instituto de Investigación Biosanitaria Ibs, Granada, Spain
- Department of Medicine, University of Granada, Granada, Spain
| | - Francisco Martín
- Department of Biochemistry and Molecular Biology III and Immunology, Faculty of Medicine, Instituto Biosanitario de Granada (ibs.GRANADA), University of Granada, Granada, Spain
- Department of Genomic Medicine, Pfizer-University of Granada-Andalusian Regional Government Centre for Genomics and Oncological Research (GENYO), Granada, Spain
- Instituto Biosanitario de Granada (ibs.GRANADA), University of Granada, Granada, Spain
| | - Javier Martín
- Institute of Parasitology and Biomedicine López-Neyra, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| |
Collapse
|
23
|
Yao P, Liu YG, Huang G, Hao L, Wang R. The development and application of chimeric antigen receptor natural killer (CAR-NK) cells for cancer therapy: current state, challenges and emerging therapeutic advances. Exp Hematol Oncol 2024; 13:118. [PMID: 39633491 PMCID: PMC11616395 DOI: 10.1186/s40164-024-00583-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 11/18/2024] [Indexed: 12/07/2024] Open
Abstract
Immunotherapy has transformed the landscape of cancer treatment, with chimeric antigen receptor (CAR)-engineered T (CAR-T) cell therapy emerging as a front runner in addressing some hematological malignancies. Despite its considerable efficacy, the occurrence of severe adverse effects associated with CAR-T cell therapy has limited their scope and prompted the exploration of alternative therapeutic strategies. Natural killer (NK) cells, characterized by both their innate cytotoxicity and ability to lyse target cells without the constraint of peptide specificity conferred by a major histocompatibility complex (MHC), have similarly garnered attention as a viable immunotherapy. As such, another therapeutic approach has recently emerged that seeks to combine the continued success of CAR-T cell therapy with the flexibility of NK cells. Clinical trials involving CAR-engineered NK (CAR-NK) cell therapy have exhibited promising efficacy with fewer deleterious side effects. This review aims to provide a concise overview of the cellular and molecular basis of NK cell biology, facilitating a better understanding of advancements in CAR design and manufacturing. The focus is on current approaches and strategies employed in CAR-NK cell development, exploring at both preclinical and clinical settings. We will reflect upon the achievements, advantages, and challenges intrinsic to CAR-NK cell therapy. Anticipating the maturation of CAR-NK cell therapy technology, we foresee its encouraging prospects for a broader range of cancer patients and other conditions. It is our belief that this CAR-NK progress will bring us closer to making significant strides in the treatment of refractory and recurrent cancers, as well as other immune-mediated disorders.
Collapse
Affiliation(s)
- Pin Yao
- Department of Health Management, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, China
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, China
| | - Ya-Guang Liu
- Department of Pathology and Laboratory Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Gang Huang
- Department of Pathology and Laboratory Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
- Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Liangchun Hao
- Department of Pediatrics, Shengjing Hospital of China Medical University, No.36, Sanhao Street, Shenyang, 110004, Liaoning, China
| | - Runan Wang
- Department of Pediatrics, Shengjing Hospital of China Medical University, No.36, Sanhao Street, Shenyang, 110004, Liaoning, China.
| |
Collapse
|
24
|
Xu M, Pan Y. Chimeric Antigen Receptor (CAR)-T Cells: A New Era for Hepatocellular Carcinoma Treatment. J Biochem Mol Toxicol 2024; 38:e70091. [PMID: 39664011 DOI: 10.1002/jbt.70091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/24/2024] [Accepted: 11/29/2024] [Indexed: 12/13/2024]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common cancers and a worldwide health concern that requires novel treatment approaches. Tyrosine kinase inhibitors (TKIs) and immune checkpoint blockades (ICBs) are the current standard of care; however, their clinical benefits are limited in some advanced and metastatic patients. With the help of gene engineering techniques, a novel adoptive cellular therapy (ACT) called chimeric antigen receptor (CAR)-T cells was recently introduced for treating HCC. A plethora of current clinical and preclinical studies are attempting to improve the efficacy of CAR-T cells by dominating the immunosuppressive environment of HCC and finding the best tumor-specific antigens (TSAs). The future of care for HCC patients might be drastically improved due to the convergence of novel therapeutic methods and the continuous progress in ACT research. However, the clinical application of CAR-T cells in solid tumors is still facing several challenges. In this study, we provide an overview of the advancement and prospects of CAR-T cell immunotherapy in HCC, as well as an investigation of how cutting-edge engineering could improve CAR-T cell efficacy and safety profile.
Collapse
Affiliation(s)
- Ming Xu
- Department of Liver, Gallbladder, Spleen and Stomach, Heilongjiang Academy of Chinese Mediceal Sciences, Harbin, Heilongjiang, China
| | - Yang Pan
- Department of Liver, Gallbladder, Spleen and Stomach, Heilongjiang Academy of Chinese Mediceal Sciences, Harbin, Heilongjiang, China
| |
Collapse
|
25
|
Maggi E, Munari E, Landolina N, Mariotti FR, Azzarone B, Moretta L. T cell landscape in the microenvironment of human solid tumors. Immunol Lett 2024; 270:106942. [PMID: 39486594 DOI: 10.1016/j.imlet.2024.106942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 10/30/2024] [Indexed: 11/04/2024]
Abstract
T cells are the main effectors involved in anti-tumor immunity, mediating most of the adaptive response towards cancer. After priming in lymph nodes, tumor antigens-specific naïve T lymphocytes proliferate and differentiate into effector CD4+ and CD8+ T cells that migrate from periphery into tumor sites aiming to eliminate cancer cells. Then while most effector T cells die, a small fraction persists and recirculates as long-lived memory T cells which generate enhanced immune responses when re-encountering the same antigen. A number of T (and non-T) cell subsets, stably resides in non-lymphoid peripheral tissues and may provide rapid immune response independently of T cells recruited from blood, against the reemergence of cancer cells. When tumor grows, however, tumor cells have evaded immune surveillance of effector cells (NK and CTL cells) which are exhausted, thus favoring the local expansion of T (and non-T) regulatory cells. In this review, the current knowledge of features of T cells present in the tumor microenvironment (TME) of solid adult and pediatric tumors, the mechanisms upregulating immune-checkpoint molecules and transcriptional and epigenetic landscapes leading to dysfunction and exhaustion of T effector cells are reviewed. The interaction of T cells with cancer- or TME non-neoplastic cells and their secreted molecules shape the T cell profile compromising the intrinsic plasticity of T cells and, therefore, favoring immune evasion. In this phase regulatory T cells contribute to maintain a high immunosuppressive TME thus facilitating tumor cell proliferation and metastatic spread. Despite the advancements of cancer immunotherapy, many tumors are unresponsive to immune checkpoint inhibitors, or therapeutical vaccines or CAR T cell-based adoptive therapy: some novel strategies to improve these T cell-based treatments are lastly proposed.
Collapse
Affiliation(s)
- Enrico Maggi
- Tumor Immunology Unit, Bambino Gesù Children's Hospital, IRCCS 00146 Rome, Italy
| | - Enrico Munari
- Department of Pathology and Diagnostics, University and Hospital Trust of Verona, Verona 37126, Italy
| | - Nadine Landolina
- Tumor Immunology Unit, Bambino Gesù Children's Hospital, IRCCS 00146 Rome, Italy
| | | | - Bruno Azzarone
- Tumor Immunology Unit, Bambino Gesù Children's Hospital, IRCCS 00146 Rome, Italy
| | - Lorenzo Moretta
- Tumor Immunology Unit, Bambino Gesù Children's Hospital, IRCCS 00146 Rome, Italy.
| |
Collapse
|
26
|
Butler SE, Ackerman ME. Challenges and future perspectives for high-throughput chimeric antigen receptor T cell discovery. Curr Opin Biotechnol 2024; 90:103216. [PMID: 39437676 PMCID: PMC11627592 DOI: 10.1016/j.copbio.2024.103216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 08/09/2024] [Accepted: 09/23/2024] [Indexed: 10/25/2024]
Abstract
Novel chimeric antigen receptor (CAR) T cell designs are being developed to overcome challenges with tumor recognition, trafficking, on-target but off-tumor binding, cytotoxicity, persistence, and immune suppression within the tumor microenvironment. Whereas traditional CAR engineering is an iterative, hypothesis-driven process in which novel designs are rationally constructed and tested for in vivo efficacy, drawing from the fields of small-molecule and protein-based therapeutic discovery, we consider how high-throughput, functional screening technologies are beginning to be applied for the development of promising CAR candidates. We review how the development of high-throughput screening methods has the potential to streamline the CAR discovery process, ultimately improving efficiency and clinical efficacy.
Collapse
Affiliation(s)
- Savannah E Butler
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Margaret E Ackerman
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA; Thayer School of Engineering, Dartmouth College, Hanover, NH, USA.
| |
Collapse
|
27
|
Vera-Cruz S, Jornet Culubret M, Konetzki V, Alb M, Friedel SR, Hudecek M, Einsele H, Danhof S, Scheller L. Cellular Therapies for Multiple Myeloma: Engineering Hope. Cancers (Basel) 2024; 16:3867. [PMID: 39594822 PMCID: PMC11592760 DOI: 10.3390/cancers16223867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/11/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
Multiple myeloma (MM) treatment remains challenging due to its relapsed/refractory disease course as well as intra- and inter-patient heterogeneity. Cellular immunotherapies, especially chimeric antigen receptor (CAR)-T cells targeting B cell maturation antigen (BCMA), mark a major breakthrough, achieving long-lasting remissions and instilling hope for a potential cure. While ongoing clinical trials are increasingly driving approved cellular products towards earlier lines of therapy, novel targets as well as advanced approaches employing natural killer (NK) cells or dendritic cell (DC) vaccines are currently under investigation. Treatment resistance, driven by tumor-intrinsic factors such as antigen escape and the intricate dynamics of the tumor microenvironment (TME), along with emerging side effects such as movement and neurocognitive treatment-emergent adverse events (MNTs), are the major limitations of approved cellular therapies. To improve efficacy and overcome resistance, cutting-edge research is exploring strategies to target the microenvironment as well as synergistic combinatorial approaches. Recent advances in CAR-T cell production involve shortened manufacturing protocols and "off-the-shelf" CAR-T cells, aiming at decreasing socioeconomic barriers and thereby increasing patient access to this potential lifesaving therapy. In this review, we provide an extensive overview of the evolving field of cellular therapies for MM, underlining the potential to achieve long-lasting responses.
Collapse
Affiliation(s)
- Sarah Vera-Cruz
- Medizinische Klinik und Poliklinik II und Lehrstuhl für Zelluläre Immuntherapie, Medizinische Klinik II, Universitätsklinikum Würzburg, 97080 Würzburg, Germany
| | - Maria Jornet Culubret
- Medizinische Klinik und Poliklinik II und Lehrstuhl für Zelluläre Immuntherapie, Medizinische Klinik II, Universitätsklinikum Würzburg, 97080 Würzburg, Germany
| | - Verena Konetzki
- Medizinische Klinik und Poliklinik II und Lehrstuhl für Zelluläre Immuntherapie, Medizinische Klinik II, Universitätsklinikum Würzburg, 97080 Würzburg, Germany
| | - Miriam Alb
- Medizinische Klinik und Poliklinik II und Lehrstuhl für Zelluläre Immuntherapie, Medizinische Klinik II, Universitätsklinikum Würzburg, 97080 Würzburg, Germany
| | - Sabrina R. Friedel
- Medizinische Klinik und Poliklinik II und Lehrstuhl für Zelluläre Immuntherapie, Medizinische Klinik II, Universitätsklinikum Würzburg, 97080 Würzburg, Germany
| | - Michael Hudecek
- Medizinische Klinik und Poliklinik II und Lehrstuhl für Zelluläre Immuntherapie, Medizinische Klinik II, Universitätsklinikum Würzburg, 97080 Würzburg, Germany
- Fraunhofer-Institut für Zelltherapie und Immunologie (IZI), Außenstelle Zelluläre Immuntherapie, 97080 Würzburg, Germany
| | - Hermann Einsele
- Medizinische Klinik und Poliklinik II und Lehrstuhl für Zelluläre Immuntherapie, Medizinische Klinik II, Universitätsklinikum Würzburg, 97080 Würzburg, Germany
| | - Sophia Danhof
- Medizinische Klinik und Poliklinik II und Lehrstuhl für Zelluläre Immuntherapie, Medizinische Klinik II, Universitätsklinikum Würzburg, 97080 Würzburg, Germany
- Mildred Scheel Early Career Center, Universitätsklinikum Würzburg, 97080 Würzburg, Germany
| | - Lukas Scheller
- Medizinische Klinik und Poliklinik II und Lehrstuhl für Zelluläre Immuntherapie, Medizinische Klinik II, Universitätsklinikum Würzburg, 97080 Würzburg, Germany
- Interdisziplinäres Zentrum für Klinische Forschung (IZKF), Universitätsklinikum Würzburg, 97080 Würzburg, Germany
| |
Collapse
|
28
|
Khaliulin M, Valiullina A, Petukhov A, Yuan Y, Spada S, Bulatov E. Breaking the shield of solid tumors: a combined approach for enhanced efficacy of CAR-T cells. Cancer Immunol Immunother 2024; 74:3. [PMID: 39487875 PMCID: PMC11531461 DOI: 10.1007/s00262-024-03817-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 08/22/2024] [Indexed: 11/04/2024]
Abstract
The use of chimeric antigen receptor (CAR)-T cells has enhanced the range of available therapeutic modalities in the context of cancer treatment. CAR-T cells have demonstrated considerable efficacy in the targeted eradication of blood cancer cells, thereby stimulating substantial interest in the advancement of such therapeutic approaches. However, the efficacy of CAR-T cells against solid tumor cells has been limited due to the presence of various obstacles. Solid tumors exhibit antigenic diversity and an immunosuppressive microenvironment, which presents a challenge for immune cells attempting to penetrate the tumor. CAR-T cells also demonstrate decreased proliferative activity and cytotoxicity. Furthermore, concerns exist regarding tumor antigen loss and therapy-associated toxicity. Currently, scientists are working to enhance the structure of the CAR and improve the survival and efficiency of CAR-T cells in recognizing tumor antigens in solid tumors. Chemotherapy drugs are frequently employed in the treatment of malignant neoplasms and can also be used prior to cell therapy to enhance CAR-T cell engraftment. Recent studies have demonstrated that chemotherapy drugs can mitigate the suppressive impact of TME, eliminate the physical barrier by destroying the tumor stroma, and facilitate greater penetration of immune cells and CAR-T cells into the tumor. This, in turn, increases their survival, persistence, and cytotoxicity, as well as affects the metabolism of immune cells inside the tumor. However, the effectiveness of the combined approach against solid tumors depends on several factors, including the type of tumor, dosage, population of CAR-T cells, and individual characteristics of the body. This review examines the principal obstacles to the utilization of CAR-T cells against solid tumors, proposes solutions to these issues, and assesses the potential advantages of a combined approach to radiation exposure, which has the potential to enhance the sensitivity of the tumor to other agents.
Collapse
Affiliation(s)
- Marat Khaliulin
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia, 420008
| | - Aygul Valiullina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia, 420008
| | - Alexey Petukhov
- Nazarbaev University, Qabanbay Batyr Ave 53, 010000, Astana, Kazakhstan
| | - Youyong Yuan
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 511442, People's Republic of China
| | - Sheila Spada
- Tumor Immunology and Immunotherapy Unit, IRCCS-Regina Elena National Cancer Institute, Via E. Chianesi 53, 00144, Rome, Italy
| | - Emil Bulatov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia, 420008.
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia, 117997.
- Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia, 119048.
| |
Collapse
|
29
|
Ijaz M, Ullah Z, Aslam B, Khurshid M, Chen P, Guo B. From promise to progress: the dynamic landscape of glioblastoma immunotherapy. Drug Discov Today 2024; 29:104188. [PMID: 39307298 DOI: 10.1016/j.drudis.2024.104188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 09/09/2024] [Accepted: 09/17/2024] [Indexed: 09/29/2024]
Abstract
Glioblastoma multiforme (GBM) is the most common CNS cancer, it has dismal survival rates despite several effective mediators: intensified cytotoxic therapy, chimeric antigen receptor (CAR)-T cell therapy, viral therapy, adoptive cell therapy, immune checkpoint blockade therapy, radiation therapy and vaccine therapy. This review examines the basic concepts underlying immune targeting and examines products such as checkpoint blockade drugs, CAR-T cells, oncolytic viruses, combinatory multimodal immunotherapy and cancer vaccines. New approaches to overcoming current constraints and challenges in GBM therapy are discussed, based on recent studies into these tactics, findings from ongoing clinical trials, as well as previous trial results.
Collapse
Affiliation(s)
- Muhammad Ijaz
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen 518055, China; Institute of Microbiology, Government College University Faisalabad, Pakistan
| | - Zia Ullah
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen 518055, China
| | - Bilal Aslam
- Institute of Microbiology, Government College University Faisalabad, Pakistan
| | - Mohsin Khurshid
- Institute of Microbiology, Government College University Faisalabad, Pakistan
| | - Pengfei Chen
- Department of Traumatic Orthopedics, Shenzhen Longhua District Central Hospital, Shenzhen, China.
| | - Bing Guo
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen 518055, China.
| |
Collapse
|
30
|
Rabie LE, Mohran AA, Gaber KA, Ali NM, Abd El Naby AM, Ghoniem EA, Abd Elmaksod BA, Abdallah AN. Beyond Conventional Treatments: Exploring CAR-T Cell Therapy for Cancer Stem Cell Eradication. Stem Cell Rev Rep 2024; 20:2001-2015. [PMID: 39312080 PMCID: PMC11554798 DOI: 10.1007/s12015-024-10786-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2024] [Indexed: 11/12/2024]
Abstract
BACKGROUND For decades cancer remained the center of attention in the scientific community as its survival rates are low. Researchers from all around the world wanted to know the core of the problem as to what initiates cancer in a patient and helps with its progression. Many postulations came to light, but Cancer Stem Cells (CSC) was the most appealing and convincing. MAIN BODY In this review, we shed light on a potential solution to the problem by reviewing CAR-T cells (Chimeric antigen receptor T cells). These specialized T cells are designed to detect specific antigens on cancer cells. We analyse the steps of their formation from the collection of T cells from the patient's bloodstream and modifying it to exhibit specific CAR structures on their surfaces, to reinjecting them back and evaluating their efficacy. We thoroughly investigate the structure of the CAR design with improvements across different generations. The focus extends to the unique properties of CSCs as in how targeting specific markers on them can enhance the precision of cancer therapy. CONCLUSION Despite the successes, the review discusses the existing limitations and toxicities associated with CAR-derived therapies, highlighting the ongoing need for research and refinement. Looking ahead, we explore proposed strategies aimed at optimizing CAR-T cell therapy to mitigate adverse effects for improved cancer treatments.
Collapse
Affiliation(s)
- Lobna E Rabie
- Faculty of Pharmacy, Fayoum University, Fayoum, Egypt
| | - Ahmed A Mohran
- Zoology Department, Faculty of Science, Alexandria University, Alexandria, Egypt.
| | - Kholoud A Gaber
- Molecular Biology and Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Nour M Ali
- Chemistry Department, Faculty of Science, KFS University, Kafr El-Sheikh, Egypt
| | - Asmaa M Abd El Naby
- Zoology-Chemistry Department, Faculty of Science, Beni Suef University, Beni Suef, Egypt
| | - Eman A Ghoniem
- Biotechnology and Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | | | - Ahmed N Abdallah
- Hormones Department, Medical Research and Clinical Studies Institute, National research Centre, Cairo, Egypt
| |
Collapse
|
31
|
Messaoudi D, Perez F, Gouveia Z. [The new generations of CAR-T cells]. Med Sci (Paris) 2024; 40:848-857. [PMID: 39656982 DOI: 10.1051/medsci/2024151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024] Open
Abstract
Chimeric antigen receptor (CAR)-T is one of the most promising modern cancer immunotherapies. In the recent years, impressive results have been obtained in the treatment of cancer which led to FDA approval for the treatment of liquid tumors. In this cell-based therapy, immune cells (e.g. T and NK cells) are engineered to express a synthetic receptor CAR to specifically recognize and eliminate cells expressing a target antigen. CAR has evolved through different generations aiming to boost its biological activity and overcome limitations such as low persistence, limited potency, life-threatening toxicity and inefficient activity against solid tumor. The present review provides an overview of the different CAR generations, starting from the 1st generation with limited cytotoxic activity until the latest generation, the 5th generation or new generation, developed to overcome various limitations of CAR T therapy. The current ongoing clinical trials in cancer and autoimmune diseases, and the limitation associated with CAR-T cells in cancer therapy, are also discussed.
Collapse
Affiliation(s)
- Djamel Messaoudi
- Dynamics of intracellular organization laboratory, Institut Curie, PSL Research University, Sorbonne Université, CNRS, UMR144, Paris, France
| | - Franck Perez
- Dynamics of intracellular organization laboratory, Institut Curie, PSL Research University, Sorbonne Université, CNRS, UMR144, Paris, France
| | - Zélia Gouveia
- Dynamics of intracellular organization laboratory, Institut Curie, PSL Research University, Sorbonne Université, CNRS, UMR144, Paris, France - Cell therapy Acceleration and Innovation (CellAction), Institut Curie, Suresnes, France
| |
Collapse
|
32
|
Ponterio E, Haas TL, De Maria R. Oncolytic virus and CAR-T cell therapy in solid tumors. Front Immunol 2024; 15:1455163. [PMID: 39539554 PMCID: PMC11557337 DOI: 10.3389/fimmu.2024.1455163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 10/08/2024] [Indexed: 11/16/2024] Open
Abstract
Adoptive immunotherapy with T cells, genetically modified to express a tumor-reactive chimeric antigen receptor (CAR), is an innovative and rapidly developing life-saving treatment for cancer patients without other therapeutic opportunities. CAR-T cell therapy has proven effective only in hematological malignancies. However, although by now only a few clinical trials had promising outcomes, we predict that CAR-T therapy will eventually become an established treatment for several solid tumors. Oncolytic viruses (OVs) can selectively replicate in and kill cancer cells without harming healthy cells. They can stimulate an immune response against the tumor, because OVs potentially stimulate adaptive immunity and innate components of the host immune system. Using CAR-T cells along with oncolytic viruses may enhance the efficacy of CAR-T cell therapy in destroying solid tumors by increasing the tumor penetrance of T cells and reducing the immune suppression by the tumor microenvironment. This review describes recent advances in the design of oncolytic viruses and CAR-T cells while providing an overview of the potential combination of oncolytic virotherapy with CAR-T cells for solid cancers. In this review, we will focus on the host-virus interaction in the tumor microenvironment to reverse local immunosuppression and to develop CAR-T cell effector function.
Collapse
Affiliation(s)
- Eleonora Ponterio
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
- Dipartimento di Medicina e Chirurgia Traslazionali, Sezione di Patologia Generale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Tobias Longin Haas
- Dipartimento di Medicina e Chirurgia Traslazionali, Sezione di Patologia Generale, Università Cattolica del Sacro Cuore, Rome, Italy
- IIGM - Italian Institute for Genomic Medicine, Candiolo, TO, Italy
| | - Ruggero De Maria
- Dipartimento di Medicina e Chirurgia Traslazionali, Sezione di Patologia Generale, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario “A. Gemelli” - I.R.C.C.S., Rome, Italy
| |
Collapse
|
33
|
Pu J, Liu T, Sharma A, Jiang L, Wei F, Ren X, Schmidt-Wolf IGH, Hou J. Advances in adoptive cellular immunotherapy and therapeutic breakthroughs in multiple myeloma. Exp Hematol Oncol 2024; 13:105. [PMID: 39468695 PMCID: PMC11514856 DOI: 10.1186/s40164-024-00576-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 10/14/2024] [Indexed: 10/30/2024] Open
Abstract
The basic idea of modulating the immune system to better recognize and fight tumor cells has led to the successful introduction of adoptive cellular immunotherapy (ACT). ACT-based treatment regimens, in which the patient's own immune cells are isolated and subsequently expanded (ex vivo) and reinfused, have also contributed significantly to the development of a personalized treatment strategy. Complementing this, the unprecedented advances in ACTs as chimeric antigen receptor (CAR)-T cell therapies and their derivatives such as CAR-NK, CAR-macrophages, CAR-γδT and CAR-NKT have further maximized the therapeutic outcomes. Herein, we provide a comprehensive overview of the development of ACTs in multiple myeloma (MM) and outline how they have evolved from an experimental form to a mainstay of standard clinical settings. Besides, we provide insights into cytokine-induced killer cell (CIK) therapy, an alternative form of ACT that (as CIK or CAR-CIK) has enormous potential in the clinical spectrum of MM. We also summarize the results of the major preclinical and clinical studies of adoptive cell therapy in MM and address the current challenges (such as cytokine release syndrome (CRS) and neurotoxicity) that limit its complete success in the cancer landscape.
Collapse
Affiliation(s)
- Jingjing Pu
- Department of Integrated Oncology, Center for Integrated Oncology (CIO) Bonn, University Hospital Bonn, 53127, Bonn, NRW, Germany
- Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Ting Liu
- Translational Biogerontology Lab, German Center for Neurodegenerative Diseases (DZNE), 53127, Bonn, NRW, Germany
| | - Amit Sharma
- Department of Integrated Oncology, Center for Integrated Oncology (CIO) Bonn, University Hospital Bonn, 53127, Bonn, NRW, Germany
| | - Liping Jiang
- Wuxi Maternity and Child Health Care Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi, 214002, Jiangsu, China
| | - Feng Wei
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300070, China
| | - Xiubao Ren
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300070, China.
| | - Ingo G H Schmidt-Wolf
- Department of Integrated Oncology, Center for Integrated Oncology (CIO) Bonn, University Hospital Bonn, 53127, Bonn, NRW, Germany.
| | - Jian Hou
- Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
| |
Collapse
|
34
|
Masnikosa R, Cvetković Z, Pirić D. Tumor Biology Hides Novel Therapeutic Approaches to Diffuse Large B-Cell Lymphoma: A Narrative Review. Int J Mol Sci 2024; 25:11384. [PMID: 39518937 PMCID: PMC11545713 DOI: 10.3390/ijms252111384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 10/13/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is a malignancy of immense biological and clinical heterogeneity. Based on the transcriptomic or genomic approach, several different classification schemes have evolved over the years to subdivide DLBCL into clinically (prognostically) relevant subsets, but each leaves unclassified samples. Herein, we outline the DLBCL tumor biology behind the actual and potential drug targets and address the challenges and drawbacks coupled with their (potential) use. Therapeutic modalities are discussed, including small-molecule inhibitors, naked antibodies, antibody-drug conjugates, chimeric antigen receptors, bispecific antibodies and T-cell engagers, and immune checkpoint inhibitors. Candidate drugs explored in ongoing clinical trials are coupled with diverse toxicity issues and refractoriness to drugs. According to the literature on DLBCL, the promise for new therapeutic targets lies in epigenetic alterations, B-cell receptor and NF-κB pathways. Herein, we present putative targets hiding in lipid pathways, ferroptosis, and the gut microbiome that could be used in addition to immuno-chemotherapy to improve the general health status of DLBCL patients, thus increasing the chance of being cured. It may be time to devote more effort to exploring DLBCL metabolism to discover novel druggable targets. We also performed a bibliometric and knowledge-map analysis of the literature on DLBCL published from 2014-2023.
Collapse
Affiliation(s)
- Romana Masnikosa
- Department of Physical Chemistry, Vinca Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovica Alasa 12-14, 11000 Belgrade, Serbia;
| | - Zorica Cvetković
- Department of Hematology, Clinical Hospital Centre Zemun, Vukova 9, 11000 Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, Dr Subotića 8, 11000 Belgrade, Serbia
| | - David Pirić
- Department of Physical Chemistry, Vinca Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovica Alasa 12-14, 11000 Belgrade, Serbia;
| |
Collapse
|
35
|
Kandav G, Chandel A. Revolutionizing cancer treatment: an in-depth exploration of CAR-T cell therapies. Med Oncol 2024; 41:275. [PMID: 39400611 DOI: 10.1007/s12032-024-02491-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 08/27/2024] [Indexed: 10/15/2024]
Abstract
Cancer is a leading cause of fatality worldwide. Due to the heterogeneity of cancer cells the effectiveness of various conventional cancer treatment techniques is constrained. Thus, researchers are diligently investigating therapeutic approaches like immunotherapy for effective tumor managements. Immunotherapy harnesses the inherent potential of patient's immune system to achieve desired outcomes. Within the realm of immunotherapy, CAR-T (Chimeric Antigen Receptor T) cells, emerges as a revolutionary innovation for cancer therapy. The process of CAR-T cell therapy entails extracting the patient's T cells, altering them with customized receptors designed to specifically recognize and eradicate the tumor cells, and then reinfusing the altered cells into the patient's body. Although there has been significant progress with CAR-T cell therapy in certain cases of specific B-cell leukemia and lymphoma, its effectiveness is hindered in hematological and solid tumors due to the challenges such as severe toxicities, restricted tumor infiltration, cytokine release syndrome and antigen escape. Overcoming these obstacles requires innovative approaches to design more effective CAR-T cells, which require a competent and diverse team to develop and implement. This comprehensive review addresses numerous therapeutic issues and provides a strategic solution while providing a deep understanding of the structural intricacies and production processes of CAR-T cells. In addition, this review explores the practical aspects of CAR-T cell therapy in clinical settings.
Collapse
Affiliation(s)
- Gurpreet Kandav
- Chandigarh College of Pharmacy, Chandigarh Group of Colleges, Landran, Sahibzada Ajit Singh Nagar, Punjab, 140307, India.
| | - Akash Chandel
- Chandigarh College of Pharmacy, Chandigarh Group of Colleges, Landran, Sahibzada Ajit Singh Nagar, Punjab, 140307, India
| |
Collapse
|
36
|
Andrea AE, Chiron A, Sarrabayrouse G, Bessoles S, Hacein-Bey-Abina S. A structural, genetic and clinical comparison of CAR-T cells and CAR-NK cells: companions or competitors? Front Immunol 2024; 15:1459818. [PMID: 39430751 PMCID: PMC11486669 DOI: 10.3389/fimmu.2024.1459818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/16/2024] [Indexed: 10/22/2024] Open
Abstract
In recent years, following the groundbreaking achievements of chimeric antigen receptor (CAR) T cell therapy in hematological cancers, and advancements in cell engineering technologies, the exploration of other immune cells has garnered significant attention. CAR-Therapy extended beyond T cells to include CAR natural killer (NK) cells and CAR-macrophages, which are firmly established in the clinical trial landscape. Less conventional immune cells are also making their way into the scene, such as CAR mucosal-associated invariant T (MAIT) cells. This progress is advancing precision medicine and facilitating the development of ready-to-use biological treatments. However, in view of the unique features of natural killer cells, adoptive NK cell immunotherapy has emerged as a universal, allogenic, "off-the shelf" therapeutic strategy. CAR-NK cytotoxic cells present targeted tumor specificity but seem to be devoid of the side effects associated with CAR-T cells. CAR-NK cells appear to be potentially promising candidates for cancer immunotherapy. However, their application is hindered by significant challenges, particularly the limited persistence of CAR-NK cells in the body, which poses a hurdle to their sustained effectiveness in treating cancer. Based upon the foregoing, this review discusses the current status and applications of both CAR-T cells and CAR-NK cells in hematological cancers, and provides a comparative analysis of the structure, genetics, and clinical outcomes between these two types of genetically modified immune cells.
Collapse
Affiliation(s)
- Alain E. Andrea
- Department of Biology, Faculty of Arts and Sciences, Saint George University of Beirut, Beirut, Lebanon
| | - Andrada Chiron
- Université Paris Cité, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Unité des Technologies Chimiques et Biologiques pour la Santé (UTCBS), Paris, France
- Clinical Immunology Laboratory, Groupe Hospitalier Universitaire Paris Saclay, Hôpital Bicêtre, Assistance Publique-Hôpitaux de Paris, Le-Kremlin-Bicêtre, France
| | - Guillaume Sarrabayrouse
- Université Paris Cité, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Unité des Technologies Chimiques et Biologiques pour la Santé (UTCBS), Paris, France
| | - Stéphanie Bessoles
- Université Paris Cité, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Unité des Technologies Chimiques et Biologiques pour la Santé (UTCBS), Paris, France
| | - Salima Hacein-Bey-Abina
- Université Paris Cité, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Unité des Technologies Chimiques et Biologiques pour la Santé (UTCBS), Paris, France
- Clinical Immunology Laboratory, Groupe Hospitalier Universitaire Paris Saclay, Hôpital Bicêtre, Assistance Publique-Hôpitaux de Paris, Le-Kremlin-Bicêtre, France
| |
Collapse
|
37
|
Barzegari A, Salemi F, Kamyab A, Aratikatla A, Nejati N, Valizade M, Eltouny E, Ebrahimi A. The efficacy and applicability of chimeric antigen receptor (CAR) T cell-based regimens for primary bone tumors: A comprehensive review of current evidence. J Bone Oncol 2024; 48:100635. [PMID: 39381633 PMCID: PMC11460493 DOI: 10.1016/j.jbo.2024.100635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/17/2024] [Accepted: 09/17/2024] [Indexed: 10/10/2024] Open
Abstract
Primary bone tumors (PBT), although rare, could pose significant mortality and morbidity risks due to their high incidence of lung metastasis. Survival rates of patients with PBTs may vary based on the tumor type, therapeutic interventions, and the time of diagnosis. Despite advances in the management of patients with these tumors over the past four decades, the survival rates seem not to have improved significantly, implicating the need for novel therapeutic interventions. Surgical resection with wide margins, radiotherapy, and systemic chemotherapy are the main lines of treatment for PBTs. Neoadjuvant and adjuvant chemotherapy, along with emerging immunotherapeutic approaches such as chimeric antigen receptor (CAR)-T cell therapy, have the potential to improve the treatment outcomes for patients with PBTs. CAR-T cell therapy has been introduced as an option in hematologic malignancies, with FDA approval for several CD19-targeting CAR-T cell products. This review aims to highlight the potential of immunotherapeutic strategies, specifically CAR T cell therapy, in managing PBTs.
Collapse
Affiliation(s)
| | - Fateme Salemi
- Hematology, Oncology and Stem Cell Transplantation Research Center, Research Institute for Oncology, Hematology and Cell Therapy, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Adarsh Aratikatla
- School of Medicine, Royal College of Surgeons in Ireland, Dublin, County Dublin, Ireland
| | - Negar Nejati
- Pediatric Cell and Gene Therapy Research Centre, Gene, Cell & Tissue Research Institute, Tehran University of Medical Sciences, Iran
| | - Mojgan Valizade
- School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Ehab Eltouny
- Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Alireza Ebrahimi
- Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
38
|
Abdalhadi HM, Chatham WW, Alduraibi FK. CAR-T-Cell Therapy for Systemic Lupus Erythematosus: A Comprehensive Overview. Int J Mol Sci 2024; 25:10511. [PMID: 39408836 PMCID: PMC11476835 DOI: 10.3390/ijms251910511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
Systemic lupus erythematosus (SLE) is a complex autoimmune disorder characterized by the production of autoreactive B and T cells and cytokines, leading to chronic inflammation affecting multiple organs. SLE is associated with significant complications that substantially increase morbidity and mortality. Given its complex pathogenesis, conventional treatments for SLE often have significant side effects and limited efficacy, necessitating the exploration of novel therapeutic strategies. One promising approach is the use of chimeric antigen receptor (CAR)-T-cell therapy, which has shown remarkable success in treating refractory hematological malignancies. This review provides a comprehensive analysis of the current use of CAR-T-cell therapy in SLE.
Collapse
Affiliation(s)
- Haneen M. Abdalhadi
- Department of Medicine, Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Walter W. Chatham
- Department of Medicine, Division of Clinical Immunology and Rheumatology, University of Nevada, Las Vegas, NV 89102, USA;
| | - Fatima K. Alduraibi
- Department of Medicine, Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
- Department of Medicine, Division of Clinical Immunology and Rheumatology, Harvard Teaching Hospital, Boston, MA 02215, USA
- Department of Medicine, Division of Clinical Immunology and Rheumatology, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
| |
Collapse
|
39
|
Giorgioni L, Ambrosone A, Cometa MF, Salvati AL, Nisticò R, Magrelli A. Revolutionizing CAR T-Cell Therapies: Innovations in Genetic Engineering and Manufacturing to Enhance Efficacy and Accessibility. Int J Mol Sci 2024; 25:10365. [PMID: 39408696 PMCID: PMC11476879 DOI: 10.3390/ijms251910365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/15/2024] [Accepted: 09/19/2024] [Indexed: 10/20/2024] Open
Abstract
Chimeric antigen receptor (CAR) T-cell therapy has achieved notable success in treating hematological cancers but faces significant challenges in solid-tumor treatment and overall efficacy. Key limitations include T-cell exhaustion, tumor relapse, immunosuppressive tumor microenvironments (TME), immunogenicity, and antigen heterogeneity. To address these issues, various genetic engineering strategies have been proposed. Approaches such as overexpression of transcription factors or metabolic armoring and dynamic CAR regulation are being explored to improve CAR T-cell function and safety. Other efforts to improve CAR T-cell efficacy in solid tumors include targeting novel antigens or developing alternative strategies to address antigen diversity. Despite the promising preclinical results of these solutions, challenges remain in translating CAR T-cell therapies to the clinic to enable economically viable access to these transformative medicines. The efficiency and scalability of autologous CAR T-cell therapy production are hindered by traditional, manual processes which are costly, time-consuming, and prone to variability and contamination. These high-cost, time-intensive processes have complex quality-control requirements. Recent advancements suggest that smaller, decentralized solutions such as microbioreactors and automated point-of-care systems could improve production efficiency, reduce costs, and shorten manufacturing timelines, especially when coupled with innovative manufacturing methods such as transposons and lipid nanoparticles. Future advancements may include harmonized consumables and AI-enabled technologies, which promise to streamline manufacturing, reduce costs, and enhance production quality.
Collapse
Affiliation(s)
- Lorenzo Giorgioni
- Faculty of Physiology and Pharmacology “V. Erspamer”, Sapienza Università di Roma, 00185 Rome, Italy;
| | - Alessandra Ambrosone
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, 00161 Rome, Italy; (A.A.); (M.F.C.)
| | - Maria Francesca Cometa
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, 00161 Rome, Italy; (A.A.); (M.F.C.)
| | - Anna Laura Salvati
- Faculty of Pharmacy, Tor Vergata University of Rome, 00133 Rome, Italy (R.N.)
| | - Robert Nisticò
- Faculty of Pharmacy, Tor Vergata University of Rome, 00133 Rome, Italy (R.N.)
- Agenzia Italiana del Farmaco, Via del Tritone 181, 00187 Rome, Italy
| | - Armando Magrelli
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, 00161 Rome, Italy; (A.A.); (M.F.C.)
| |
Collapse
|
40
|
Si Q, Bai M, Wang X, Wang T, Qin Y. Photonanozyme-Kras-ribosome combination treatment of non-small cell lung cancer after COVID-19. Front Immunol 2024; 15:1420463. [PMID: 39308869 PMCID: PMC11412844 DOI: 10.3389/fimmu.2024.1420463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 08/14/2024] [Indexed: 09/25/2024] Open
Abstract
With the outbreak of the coronavirus disease 2019 (COVID-19), reductions in T-cell function and exhaustion have been observed in patients post-infection of COVID-19. T cells are key mediators of anti-infection and antitumor, and their exhaustion increases the risk of compromised immune function and elevated susceptibility to cancer. Non-small cell lung cancer (NSCLC) is the most common subtype of lung cancer with high incidence and mortality. Although the survival rate after standard treatment such as surgical treatment and chemotherapy has improved, the therapeutic effect is still limited due to drug resistance, side effects, and recurrence. Recent advances in molecular biology and immunology enable the development of highly targeted therapy and immunotherapy for cancer, which has driven cancer therapies into individualized treatments and gradually entered clinicians' views for treating NSCLC. Currently, with the development of photosensitizer materials, phototherapy has been gradually applied to the treatment of NSCLC. This review provides an overview of recent advancements and limitations in different treatment strategies for NSCLC under the background of COVID-19. We discuss the latest advances in phototherapy as a promising treatment method for NSCLC. After critically examining the successes, challenges, and prospects associated with these treatment modalities, their profound prospects were portrayed.
Collapse
Affiliation(s)
- Qiaoyan Si
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China
- School of Biomedical Engineering, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Mingjian Bai
- School of Biomedical Engineering, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
| | - Xiaolong Wang
- School of Biomedical Engineering, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
| | - Tianyu Wang
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China
| | - Yan Qin
- School of Biomedical Engineering, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
41
|
Drougkas K, Karampinos K, Karavolias I, Gomatou G, Koumprentziotis IA, Ploumaki I, Triantafyllou E, Kotteas E. CAR-T Cell Therapy in Pancreatic and Biliary Tract Cancers: An Updated Review of Clinical Trials. J Gastrointest Cancer 2024; 55:990-1003. [PMID: 38695995 DOI: 10.1007/s12029-024-01054-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2024] [Indexed: 08/27/2024]
Abstract
BACKGROUND Pancreatic and biliary tract cancers are digestive system tumors with dismal prognosis and limited treatment options. The effectiveness of conventional surgical interventions, radiation therapy, and systemic therapy is restricted in these cases. Furthermore, clinical trials have shown that immunotherapy using immune checkpoint inhibitors has only demonstrated modest clinical results when applied to patients with pancreatobiliary tumors. This highlights the importance of implementing combination immunotherapy approaches or exploring alternative therapeutic strategies to improve treatment outcomes. MATERIALS AND METHODS We reviewed the relevant literature on chimeric antigen receptor (CAR)-T cell therapy for pancreatobiliary cancers from PubMed/Medline and ClinicalTrials.gov and retrieved the relevant data accordingly. Attention was additionally given to the examination of grey literature with the aim of obtaining additional details regarding ongoing clinical trials. We mainly focused on abstracts and presentations and e-posters and slides of recent important annual meetings (namely ESMO Immuno-Oncology Congress, ESMO Congress, ASCO Virtual Scientific Program, ASCO Gastrointestinal Cancers Symposium). RESULTS CAR-T cell therapy has emerged as a promising and evolving treatment approach for pancreatic and biliary tract cancer. This form of adoptive cell therapy utilizes genetic engineering to modify the expression of specific antibodies on the surface of T cells enabling them to target specific cancer-associated antigens and to induce potent anti-tumor activity. The aim of this review is to provide an updated summary of the available evidence from clinical trials that have explored the application of CAR-T cell therapy in treating pancreatobiliary cancers. CONCLUSIONS While the utilization of CAR-T cell therapy in pancreatobiliary cancers is still in its initial phases with only a limited amount of clinical data available, the field is advancing rapidly, incorporating novel technologies to mitigate potential toxicities and enhance antigen-directed tumor eradication.
Collapse
Affiliation(s)
- Konstantinos Drougkas
- Oncology Unit, 3rd Department of Medicine, 'Sotiria' General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantinos Karampinos
- Oncology Unit, 3rd Department of Medicine, 'Sotiria' General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Ioannis Karavolias
- Oncology Unit, 3rd Department of Medicine, 'Sotiria' General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Georgia Gomatou
- Oncology Unit, 3rd Department of Medicine, 'Sotiria' General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Ioannis-Alexios Koumprentziotis
- Oncology Unit, 3rd Department of Medicine, 'Sotiria' General Hospital, National and Kapodistrian University of Athens, Athens, Greece.
| | - Ioanna Ploumaki
- Oncology Unit, 3rd Department of Medicine, 'Sotiria' General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Efthymios Triantafyllou
- Oncology Unit, 3rd Department of Medicine, 'Sotiria' General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Elias Kotteas
- Oncology Unit, 3rd Department of Medicine, 'Sotiria' General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
42
|
Zhou Z, Mai Y, Zhang G, Wang Y, Sun P, Jing Z, Li Z, Xu Y, Han B, Liu J. Emerging role of immunogenic cell death in cancer immunotherapy: Advancing next-generation CAR-T cell immunotherapy by combination. Cancer Lett 2024; 598:217079. [PMID: 38936505 DOI: 10.1016/j.canlet.2024.217079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/11/2024] [Accepted: 06/18/2024] [Indexed: 06/29/2024]
Abstract
Immunogenic cell death (ICD) is a stress-driven form of regulated cell death (RCD) in which dying tumor cells' specific signaling pathways are activated to release damage-associated molecular patterns (DAMPs), leading to the robust anti-tumor immune response as well as a reversal of the tumor immune microenvironment from "cold" to "hot". Chimeric antigen receptor (CAR)-T cell therapy, as a landmark in anti-tumor immunotherapy, plays a formidable role in hematologic malignancies but falls short in solid tumors. The Gordian knot of CAR-T cells for solid tumors includes but is not limited to, tumor antigen heterogeneity or absence, physical and immune barriers of tumors. The combination of ICD induction therapy and CAR-T cell immunotherapy is expected to promote the intensive use of CAR-T cell in solid tumors. In this review, we summarize the characteristics of ICD, stress-responsive mechanism, and the synergistic effect of various ICD-based therapies with CAR-T cells to effectively improve anti-tumor capacity.
Collapse
Affiliation(s)
- Zhaokai Zhou
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Yumiao Mai
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Ge Zhang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Henan Province Key Laboratory of Cardiac Injury and Repair, Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan, 450052, China
| | - Yingjie Wang
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Pan Sun
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Zhaohe Jing
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Zhengrui Li
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yudi Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Jian Liu
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China.
| |
Collapse
|
43
|
Al Hadidi S, Heslop HE, Brenner MK, Suzuki M. Bispecific antibodies and autologous chimeric antigen receptor T cell therapies for treatment of hematological malignancies. Mol Ther 2024; 32:2444-2460. [PMID: 38822527 PMCID: PMC11405165 DOI: 10.1016/j.ymthe.2024.05.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/14/2024] [Accepted: 05/29/2024] [Indexed: 06/03/2024] Open
Abstract
In recent years, the therapeutic landscape for hematological malignancies has markedly advanced, particularly since the inaugural approval of autologous chimeric antigen receptor T cell (CAR-T) therapy in 2017 for relapsed/refractory acute lymphoblastic leukemia (ALL). Autologous CAR-T therapy involves the genetic modification of a patient's T cells to specifically identify and attack cancer cells, while bispecific antibodies (BsAbs) function by binding to both cancer cells and immune cells simultaneously, thereby triggering an immune response against the tumor. The subsequent approval of various CAR-T therapies and BsAbs have revolutionized the treatment of multiple hematological malignancies, highlighting high response rates and a subset of patients achieving prolonged disease control. This review explores the mechanisms underlying autologous CAR-T therapies and BsAbs, focusing on their clinical application in multiple myeloma, ALL, and non-Hodgkin lymphoma. We provide comprehensive insights into their individual efficacy, limitations concerning broad application, and the potential of combination therapies. These upcoming strategies aim to propel the field forward, paving the way for safer and more effective therapeutic interventions in hematological malignancies.
Collapse
MESH Headings
- Humans
- Antibodies, Bispecific/therapeutic use
- Hematologic Neoplasms/therapy
- Hematologic Neoplasms/immunology
- Immunotherapy, Adoptive/methods
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/genetics
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Animals
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell/genetics
- Combined Modality Therapy
Collapse
Affiliation(s)
- Samer Al Hadidi
- Myeloma Center, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Helen E Heslop
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital, Texas Children's Hospital, Houston, TX, USA
| | - Malcolm K Brenner
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital, Texas Children's Hospital, Houston, TX, USA
| | - Masataka Suzuki
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital, Texas Children's Hospital, Houston, TX, USA.
| |
Collapse
|
44
|
Srivastava S, Singh S, Singh A. Augmenting the landscape of chimeric antigen receptor T-cell therapy. Expert Rev Anticancer Ther 2024; 24:755-773. [PMID: 38912754 DOI: 10.1080/14737140.2024.2372330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 06/21/2024] [Indexed: 06/25/2024]
Abstract
INTRODUCTION The inception of recombinant DNA technology and live cell genomic alteration have paved the path for the excellence of cell and gene therapies and often provided the first curative treatment for many indications. The approval of the first Chimeric Antigen Receptor (CAR) T-cell therapy was one of the breakthrough innovations that became the headline in 2017. Currently, the therapy is primarily restricted to a few nations, and the market is growing at a CAGR (current annual growth rate) of 11.6% (2022-2032), as opposed to the established bio-therapeutic market at a CAGR of 15.9% (2023-2030). The limited technology democratization is attributed to its autologous nature, lack of awareness, therapy inclusion criteria, high infrastructure cost, trained personnel, complex manufacturing processes, regulatory challenges, recurrence of the disease, and long-term follow-ups. AREAS COVERED This review discusses the vision and strategies focusing on the CAR T-cell therapy democratization with mitigation plans. Further, it also covers the strategies to leverage the mRNA-based CAR T platform for building an ecosystem to ensure availability, accessibility, and affordability to the community. EXPERT OPINION mRNA-guided CAR T cell therapy is a rapidly growing area wherein a collaborative approach among the stakeholders is needed for its success.
Collapse
Affiliation(s)
| | - Sanjay Singh
- mRNA Department, Gennova Biopharmaceuticals Ltd. ITBT Park, Pune, India
| | - Ajay Singh
- mRNA Department, Gennova Biopharmaceuticals Ltd. ITBT Park, Pune, India
| |
Collapse
|
45
|
Bui TA, Mei H, Sang R, Ortega DG, Deng W. Advancements and challenges in developing in vivo CAR T cell therapies for cancer treatment. EBioMedicine 2024; 106:105266. [PMID: 39094262 PMCID: PMC11345408 DOI: 10.1016/j.ebiom.2024.105266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 07/08/2024] [Accepted: 07/22/2024] [Indexed: 08/04/2024] Open
Abstract
The Chimeric Antigen Receptor (CAR) T cell therapy has emerged as a ground-breaking immunotherapeutic approach in cancer treatment. To overcome the complexity and high manufacturing cost associated with current ex vivo CAR T cell therapy products, alternative strategies to produce CAR T cells directly in the body have been developed in recent years. These strategies involve the direct infusion of CAR genes via engineered nanocarriers or viral vectors to generate CAR T cells in situ. This review offers a comprehensive overview of recent advancements in the development of T cell-targeted CAR generation in situ. Additionally, it identifies the challenges associated with in vivo CAR T method and potential strategies to overcome these issues.
Collapse
Affiliation(s)
- Thuy Anh Bui
- School of Biomedical Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia; Whitlam Orthopaedic Research Centre, Ingham Institute for Applied Medical Research, Liverpool, NSW 2170, Australia; School of Clinical Medicine, Faculty of Medicine, University of New South Wales Sydney, Kensington, NSW 2052, Australia
| | - Haoqi Mei
- School of Biomedical Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Rui Sang
- Graduate School of Biomedical Engineering, ARC Centre of Excellence in Nanoscale Biophotonics, Faculty of Engineering, UNSW Sydney, NSW 2052, Australia
| | - David Gallego Ortega
- School of Biomedical Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia; Garvan Institute of Medical Research, The Kinghorn Cancer Centre, Darlinghurst, NSW 2010, Australia; School of Clinical Medicine, Faculty of Medicine, University of New South Wales Sydney, Kensington, NSW 2052, Australia
| | - Wei Deng
- School of Biomedical Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia; Graduate School of Biomedical Engineering, ARC Centre of Excellence in Nanoscale Biophotonics, Faculty of Engineering, UNSW Sydney, NSW 2052, Australia.
| |
Collapse
|
46
|
Ercilla-Rodríguez P, Sánchez-Díez M, Alegría-Aravena N, Quiroz-Troncoso J, Gavira-O'Neill CE, González-Martos R, Ramírez-Castillejo C. CAR-T lymphocyte-based cell therapies; mechanistic substantiation, applications and biosafety enhancement with suicide genes: new opportunities to melt side effects. Front Immunol 2024; 15:1333150. [PMID: 39091493 PMCID: PMC11291200 DOI: 10.3389/fimmu.2024.1333150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 06/14/2024] [Indexed: 08/04/2024] Open
Abstract
Immunotherapy has made significant strides in cancer treatment with strategies like checkpoint blockade antibodies and adoptive T cell transfer. Chimeric antigen receptor T cells (CAR-T) have emerged as a promising approach to combine these strategies and overcome their limitations. This review explores CAR-T cells as a living drug for cancer treatment. CAR-T cells are genetically engineered immune cells designed to target and eliminate tumor cells by recognizing specific antigens. The study involves a comprehensive literature review on CAR-T cell technology, covering structure optimization, generations, manufacturing processes, and gene therapy strategies. It examines CAR-T therapy in haematologic cancers and solid tumors, highlighting challenges and proposing a suicide gene-based mechanism to enhance safety. The results show significant advancements in CAR-T technology, particularly in structure optimization and generation. The manufacturing process has improved for broader clinical application. However, a series of inherent challenges and side effects still need to be addressed. In conclusion, CAR-T cells hold great promise for cancer treatment, but ongoing research is crucial to improve efficacy and safety for oncology patients. The proposed suicide gene-based mechanism offers a potential solution to mitigate side effects including cytokine release syndrome (the most common toxic side effect of CAR-T therapy) and the associated neurotoxicity.
Collapse
MESH Headings
- Humans
- Immunotherapy, Adoptive/adverse effects
- Immunotherapy, Adoptive/methods
- Receptors, Chimeric Antigen/genetics
- Receptors, Chimeric Antigen/immunology
- Genes, Transgenic, Suicide
- Neoplasms/therapy
- Neoplasms/immunology
- Neoplasms/genetics
- T-Lymphocytes/immunology
- Animals
- Genetic Therapy/adverse effects
- Genetic Therapy/methods
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
Collapse
Affiliation(s)
| | - Marta Sánchez-Díez
- ETSIAAB, Universidad Politécnica de Madrid, Madrid, Spain
- Laboratorio Cancer Stem Cell, HST group, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Madrid, Spain
| | - Nicolás Alegría-Aravena
- Grupo de Biología y Producción de Cérvidos, Instituto de Desarrollo Regional, Universidad de Castilla-La Mancha, Albacete, Spain
- Asociación Española Contra el Cáncer (AECC)-Fundación Científica AECC, Albacete, Spain
| | - Josefa Quiroz-Troncoso
- ETSIAAB, Universidad Politécnica de Madrid, Madrid, Spain
- Laboratorio Cancer Stem Cell, HST group, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Madrid, Spain
| | - Clara E. Gavira-O'Neill
- Laboratorio Cancer Stem Cell, HST group, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Madrid, Spain
- Sección de Oncología, Instituto de Investigación Sanitaria San Carlos, Madrid, Spain
| | - Raquel González-Martos
- ETSIAAB, Universidad Politécnica de Madrid, Madrid, Spain
- Laboratorio Cancer Stem Cell, HST group, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Madrid, Spain
| | - Carmen Ramírez-Castillejo
- ETSIAAB, Universidad Politécnica de Madrid, Madrid, Spain
- Laboratorio Cancer Stem Cell, HST group, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Madrid, Spain
- Sección de Oncología, Instituto de Investigación Sanitaria San Carlos, Madrid, Spain
| |
Collapse
|
47
|
Chen Q, Sun Y, Li H. Application of CAR-T cell therapy targeting mesothelin in solid tumor treatment. Discov Oncol 2024; 15:289. [PMID: 39023820 PMCID: PMC11258118 DOI: 10.1007/s12672-024-01159-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024] Open
Abstract
Chimeric antigen receptor (CAR)-T-cell therapy is one of the most effective immunotherapies. CAR-T-cell therapy has achieved great success in the treatment of hematological malignancies. However, due to the characteristics of solid malignant tumors, such as on-target effects, off-tumor toxicity, an immunosuppressive tumor microenvironment (TME), and insufficient trafficking, CAR-T-cell therapy for solid tumors is still in the exploration stage. Mesothelin (MSLN) is a molecule expressed on the surface of various solid malignant tumor cells that is suitable as a target of tumor cells with high MSLN expression for CAR-T-cell therapy. This paper briefly described the development of CAR-T cell therapy and the structural features of MSLN, and especially summarized the strategies of structure optimization of MSLN-targeting CAR-T-cells and the enhancement methods of MSLN-targeting CAR-T cell anti-tumor efficacy by summarizing some preclinical experiment and clinical trials. When considering MSLN-targeting CAR-T-cell therapy as an example, this paper summarizes the efforts made by researchers in CAR-T-cell therapy for solid tumors and summarizes feasible treatment plans by integrating the existing research results.
Collapse
Affiliation(s)
- Qiuhong Chen
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014, People's Republic of China
| | - Yang Sun
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014, People's Republic of China
| | - Hua Li
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014, People's Republic of China.
| |
Collapse
|
48
|
Liu B, Zhou H, Tan L, Siu KTH, Guan XY. Exploring treatment options in cancer: Tumor treatment strategies. Signal Transduct Target Ther 2024; 9:175. [PMID: 39013849 PMCID: PMC11252281 DOI: 10.1038/s41392-024-01856-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/24/2024] [Accepted: 04/29/2024] [Indexed: 07/18/2024] Open
Abstract
Traditional therapeutic approaches such as chemotherapy and radiation therapy have burdened cancer patients with onerous physical and psychological challenges. Encouragingly, the landscape of tumor treatment has undergone a comprehensive and remarkable transformation. Emerging as fervently pursued modalities are small molecule targeted agents, antibody-drug conjugates (ADCs), cell-based therapies, and gene therapy. These cutting-edge treatment modalities not only afford personalized and precise tumor targeting, but also provide patients with enhanced therapeutic comfort and the potential to impede disease progression. Nonetheless, it is acknowledged that these therapeutic strategies still harbour untapped potential for further advancement. Gaining a comprehensive understanding of the merits and limitations of these treatment modalities holds the promise of offering novel perspectives for clinical practice and foundational research endeavours. In this review, we discussed the different treatment modalities, including small molecule targeted drugs, peptide drugs, antibody drugs, cell therapy, and gene therapy. It will provide a detailed explanation of each method, addressing their status of development, clinical challenges, and potential solutions. The aim is to assist clinicians and researchers in gaining a deeper understanding of these diverse treatment options, enabling them to carry out effective treatment and advance their research more efficiently.
Collapse
Affiliation(s)
- Beilei Liu
- Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong, China
- State Key Laboratory for Liver Research, The University of Hong Kong, Hong Kong, China
| | - Hongyu Zhou
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong, China
| | - Licheng Tan
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong, China
| | - Kin To Hugo Siu
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong, China
| | - Xin-Yuan Guan
- Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China.
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong, China.
- State Key Laboratory for Liver Research, The University of Hong Kong, Hong Kong, China.
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, China.
- MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou, China.
| |
Collapse
|
49
|
Ramoni D, Montecucco F, Carbone F. CAR T therapy from haematological malignancies to aging-related diseases: An ever-expanding universe. Eur J Clin Invest 2024; 54:e14203. [PMID: 38551245 DOI: 10.1111/eci.14203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 06/06/2024]
Abstract
BACKGROUND Short but impactful, the two-decade story of gene editing allowed a significant breakthrough in the treatment of haematological malignancies. However, despite different generations of chimeric antigen receptor T (CAR T), such a successful therapy has not yet been replicated in solid tumours and non-oncological diseases. METHODS This narrative review discusses how CAR T therapy still faces challenges in overcoming the complexity of the solid tumour microenvironment and the concerns that its long-term activity raises about potential unknown and unpredictable consequences in non-oncological diseases. RESULTS In the most recent studies, the senolytic potential of CAR T is becoming an exciting field of research. Still, experimental but promising results indeed indicate the clearance of senescent cells as an effective strategy to improve exercise capacity and metabolic dysfunction in physiological ageing, with long-term therapeutic and preventive effects. However, an effective expansion of a CAR T population requires a lympho-depleting chemotherapy prior to infusion. While this procedure sounds reasonable for rescue therapy of oncological diseases, it poses genotoxic risks that may not be justified for non-malignant diseases. Those represent the leading gaps for applying CAR T therapy in non-oncological diseases. CONCLUSION More is expected from current studies on the other classes of CAR cells now under investigation. Engineering NK cells and macrophages are candidates to improve cytotoxic and immunomodulating properties, potentially able to broaden application in solid tumours and non-oncological diseases. Finally, engineering autologous T cells in old individuals may generate biologically deteriorated CAR T clones with impaired function and unpredictable effects on cytokine release.
Collapse
Affiliation(s)
- Davide Ramoni
- Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - Fabrizio Montecucco
- Department of Internal Medicine, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino Genoa, Italian Cardiovascular Network, Genoa, Italy
| | - Federico Carbone
- Department of Internal Medicine, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino Genoa, Italian Cardiovascular Network, Genoa, Italy
| |
Collapse
|
50
|
Kuznetsova AV, Glukhova XA, Popova OP, Beletsky IP, Ivanov AA. Contemporary Approaches to Immunotherapy of Solid Tumors. Cancers (Basel) 2024; 16:2270. [PMID: 38927974 PMCID: PMC11201544 DOI: 10.3390/cancers16122270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/11/2024] [Accepted: 06/15/2024] [Indexed: 06/28/2024] Open
Abstract
In recent years, the arrival of the immunotherapy industry has introduced the possibility of providing transformative, durable, and potentially curative outcomes for various forms of malignancies. However, further research has shown that there are a number of issues that significantly reduce the effectiveness of immunotherapy, especially in solid tumors. First of all, these problems are related to the protective mechanisms of the tumor and its microenvironment. Currently, major efforts are focused on overcoming protective mechanisms by using different adoptive cell therapy variants and modifications of genetically engineered constructs. In addition, a complex workforce is required to develop and implement these treatments. To overcome these significant challenges, innovative strategies and approaches are necessary to engineer more powerful variations of immunotherapy with improved antitumor activity and decreased toxicity. In this review, we discuss recent innovations in immunotherapy aimed at improving clinical efficacy in solid tumors, as well as strategies to overcome the limitations of various immunotherapies.
Collapse
Affiliation(s)
- Alla V. Kuznetsova
- Laboratory of Molecular and Cellular Pathology, Russian University of Medicine (Formerly A.I. Evdokimov Moscow State University of Medicine and Dentistry), Ministry of Health of the Russian Federation, Bld 4, Dolgorukovskaya Str, 1127006 Moscow, Russia; (A.V.K.); (O.P.P.)
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 26 Vavilov Street, 119334 Moscow, Russia
| | - Xenia A. Glukhova
- Onni Biotechnologies Ltd., Aalto University Campus, Metallimiehenkuja 10, 02150 Espoo, Finland; (X.A.G.); (I.P.B.)
| | - Olga P. Popova
- Laboratory of Molecular and Cellular Pathology, Russian University of Medicine (Formerly A.I. Evdokimov Moscow State University of Medicine and Dentistry), Ministry of Health of the Russian Federation, Bld 4, Dolgorukovskaya Str, 1127006 Moscow, Russia; (A.V.K.); (O.P.P.)
| | - Igor P. Beletsky
- Onni Biotechnologies Ltd., Aalto University Campus, Metallimiehenkuja 10, 02150 Espoo, Finland; (X.A.G.); (I.P.B.)
| | - Alexey A. Ivanov
- Laboratory of Molecular and Cellular Pathology, Russian University of Medicine (Formerly A.I. Evdokimov Moscow State University of Medicine and Dentistry), Ministry of Health of the Russian Federation, Bld 4, Dolgorukovskaya Str, 1127006 Moscow, Russia; (A.V.K.); (O.P.P.)
| |
Collapse
|