1
|
Fay AP, Fizazi K, Matsubara N, Azad AA, Saad F, De Giorgi U, Joung JY, Fong PCC, Jones RJ, Zschäbitz S, Oldenburg J, Shore ND, Dunshee C, Carles J, Cislo P, Chang J, Healy CG, Niyazov A, Agarwal N. First-line talazoparib plus enzalutamide versus placebo plus enzalutamide in men with metastatic castration-resistant prostate cancer and homologous recombination repair gene alterations: patient-reported outcomes from the randomised, double-blind, placebo-controlled, phase 3 TALAPRO-2 trial. Lancet Oncol 2025; 26:481-490. [PMID: 40179907 DOI: 10.1016/s1470-2045(25)00031-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 01/14/2025] [Accepted: 01/21/2025] [Indexed: 04/05/2025]
Abstract
BACKGROUND In the phase 3 TALAPRO-2 trial, talazoparib plus enzalutamide significantly improved radiographic progression-free survival compared with placebo plus enzalutamide in men with metastatic castration-resistant prostate cancer harbouring alterations in genes involved in homologous recombination repair (HRR). We aimed to assess patient-reported outcomes in patients with HRR-deficient metastatic castration-resistant prostate cancer in TALAPRO-2. METHODS TALAPRO-2 is a randomised, double-blind, placebo-controlled, phase 3 trial conducted at 223 hospitals, cancer centres, and medical centres in 26 countries worldwide. Eligible participants were male patients aged 18 years or older (≥20 years in Japan) who were receiving ongoing androgen deprivation therapy, had asymptomatic or mildly symptomatic metastatic castration-resistant prostate cancer, an Eastern Cooperative Oncology Group performance status of 0 or 1, and had not received previous life-prolonging systemic therapy for castration-resistant prostate cancer or metastatic castration-resistant prostate cancer. Patients with HRR gene alterations were randomly assigned (1:1) using a centralised interactive web response system and a permuted block size of 4 to oral talazoparib 0·5 mg once daily or placebo, plus oral enzalutamide 160 mg once daily, stratified by previous second-generation androgen receptor pathway inhibitor (abiraterone or orteronel) or docetaxel (yes vs no) in the castration-sensitive setting. The sponsor, patients, and investigators were masked to allocation of talazoparib or placebo; enzalutamide was open-label. The primary endpoint was radiographic progression-free survival by blinded independent central review and has been reported previously. Patient-reported outcomes were assessed as secondary outcomes in the patient-reported outcomes population, which comprised patients from the intention-to-treat population with a baseline patient-reported outcome assessment and at least one post-baseline patient-reported outcome assessment. Patient-reported outcomes included time to definitive deterioration in global health status/quality of life (GHS/QoL) per European Organisation for Research and Treatment of Cancer (EORTC) Core Quality of Life Questionnaire (QLQ-C30) and prostate cancer-specific urinary symptoms per EORTC Quality of Life Questionnaire-Prostate (QLQ-PR25), and time to deterioration in pain symptoms per Brief Pain Inventory-Short Form (BPI-SF). Mean change from baseline in GHS/QoL, overall cancer and prostate cancer-specific functioning and symptoms (per EORTC QLQ-C30 and QLQ-PR25), in pain symptoms per BPI-SF, and in general health status per EQ-5D-5L were also patient-reported secondary outcomes. This study is registered with ClinicalTrials.gov, NCT03395197, and is ongoing. FINDINGS Between Dec 18, 2018, and Jan 20, 2022, 399 patients with HRR-deficient metastatic castration-resistant prostate cancer were enrolled and randomly assigned, of whom 197 assigned to talazoparib plus enzalutamide and 197 assigned to placebo plus enzalutamide were included in the patient-reported outcome population. Median follow-up was 22·2 months (IQR 13·8-27·7) in the talazoparib plus enzalutamide group and 20·2 months (13·5-26·6) for the placebo plus enzalutamide group. Median time to definitive deterioration of GHS/QoL was longer in the talazoparib plus enzalutamide group (27·1 months [95% CI 21·2-non-estimable]) than in the placebo plus enzalutamide group (19·3 months [16·6-23·0]; hazard ratio [HR] 0·69 [95% CI 0·49-0·97]; two-sided p=0·032). Median time to definitive deterioration in urinary symptoms was also longer in the talazoparib plus enzalutamide group (non-estimable [95% CI 32·2-non-estimable]) than in the placebo plus enzalutamide group (30·2 months [24·6-non-estimable; HR 0·56 [0·34-0·93]; two-sided p=0·022). Median time to deterioration in pain symptoms was non-estimable for both treatment groups (HR 0·58 [0·33-1·01]; two-sided p=0·051). Changes from baseline in worst pain in the past 24 h (BPI-SF, question three) and in general health status (EQ-5D-5L) also favoured talazoparib plus enzalutamide versus placebo plus enzalutamide, although the differences were not clinically meaningful. Between-group differences in mean changes from baseline in GHS/QoL, functioning, and symptoms per EORTC QLQ-C30 did not reach the clinically meaningful threshold of 10 or more points, although physical, emotional, and cognitive functioning and pain favoured talazoparib plus enzalutamide. Similarly, differences in mean changes from baseline for urinary and bowel symptoms per EORTC QLQ-PR25 favoured talazoparib plus enzalutamide, but were not clinically meaningful. INTERPRETATION The demonstrated delays in definitive deterioration in GHS/QoL, urinary symptoms, and other functioning and symptom scales with talazoparib plus enzalutamide compared with placebo plus enzalutamide in patients with HRR-deficient metastatic castration-resistant prostate cancer provide insight that might inform clinical decisions for these patients. FUNDING Pfizer.
Collapse
Affiliation(s)
- Andre P Fay
- PUCRS School of Medicine, Hospital Nora Teixeira, Porto Alegre, Brazil.
| | - Karim Fizazi
- Department of Cancer Medicine, Institut Gustave Roussy, University of Paris-Saclay, Villejuif, France
| | | | - Arun A Azad
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Fred Saad
- Division of Urology, Centre Hospitalier de l'Université de Montréal (CHUM/CRCHUM), Montréal, QC, Canada
| | - Ugo De Giorgi
- Department of Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori "Dino Amadori", Meldola, Italy
| | - Jae Young Joung
- Department of Urology, Center for Urologic Cancer, National Cancer Center, Goyang, South Korea
| | - Peter C C Fong
- Auckland City Hospital, Auckland, New Zealand; University of Auckland, Auckland, New Zealand
| | - Robert J Jones
- School of Cancer Sciences, University of Glasgow, Beatson West of Scotland Cancer Centre, Glasgow, UK
| | - Stefanie Zschäbitz
- Department of Medical Oncology, National Center for Tumor Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | | | - Neal D Shore
- Carolina Urologic Research Center, Myrtle Beach, SC, USA
| | | | - Joan Carles
- Vall d'Hebron University Hospital, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | | | | | | | | | - Neeraj Agarwal
- Huntsman Cancer Institute (NCI-CCC), University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
2
|
Gong T, Jiang J, Uthayopas K, Bornman MSR, Gheybi K, Stricker PD, Weischenfeldt J, Mutambirwa SBA, Jaratlerdsiri W, Hayes VM. Rare pathogenic structural variants show potential to enhance prostate cancer germline testing for African men. Nat Commun 2025; 16:2400. [PMID: 40064858 PMCID: PMC11893795 DOI: 10.1038/s41467-025-57312-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 02/18/2025] [Indexed: 03/14/2025] Open
Abstract
Prostate cancer (PCa) is highly heritable, with men of African ancestry at greatest risk and associated lethality. Lack of representation in genomic data means germline testing guidelines exclude for Africans. Established that structural variations (SVs) are major contributors to human disease and prostate tumourigenesis, their role is under-appreciated in familial and therapeutic testing. Utilising clinico-methodologically matched deep-sequenced whole-genome data for 113 African versus 57 European PCa patients, we interrogate 42,966 high-quality germline SVs using a best-fit pathogenicity prediction workflow. We identify 15 potentially pathogenic SVs representing 12.4% African and 7.0% European patients, of which 72% and 86% met germline testing standard-of-care recommendations, respectively. Notable African-specific loss-of-function gene candidates include DNA damage repair MLH1 and BARD1 and tumour suppressors FOXP1, WASF1 and RB1. Representing only a fraction of the vast African diaspora, this study raises considerations with respect to the contribution of kilo-to-mega-base rare variants to PCa pathogenicity and African-associated disparity.
Collapse
Affiliation(s)
- Tingting Gong
- Ancestry and Health Genomics Laboratory, Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, 2050, Australia
- Human Phenome Institute, Fudan University, Shanghai, China
| | - Jue Jiang
- Ancestry and Health Genomics Laboratory, Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, 2050, Australia
| | - Korawich Uthayopas
- Ancestry and Health Genomics Laboratory, Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, 2050, Australia
| | - M S Riana Bornman
- School of Health Systems and Public Health, University of Pretoria, Pretoria, South Africa
| | - Kazzem Gheybi
- Ancestry and Health Genomics Laboratory, Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, 2050, Australia
| | | | - Joachim Weischenfeldt
- Finsen Laboratory, Rigshospitalet, DK-2200, Copenhagen, Denmark
- Biotech Research & Innovation Centre, University of Copenhagen, DK-2200, Copenhagen, Denmark
| | - Shingai B A Mutambirwa
- Department of Urology, Sefako Makgatho Health Science University, Dr George Mukhari Academic Hospital, Medunsa, Ga-Rankuwa, South Africa
| | - Weerachai Jaratlerdsiri
- Ancestry and Health Genomics Laboratory, Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, 2050, Australia
| | - Vanessa M Hayes
- Ancestry and Health Genomics Laboratory, Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, 2050, Australia.
- School of Health Systems and Public Health, University of Pretoria, Pretoria, South Africa.
- Manchester Cancer Research Centre, University of Manchester, Manchester, M20 4GJ, UK.
| |
Collapse
|
3
|
Fanelli GN, Nuzzo PV, Pederzoli F, Loda M. Deciphering Complexity: The Molecular Landscape of Castration-Resistant Prostate Cancer. Surg Pathol Clin 2025; 18:25-39. [PMID: 39890307 PMCID: PMC11787547 DOI: 10.1016/j.path.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2025]
Abstract
Despite improvements in diagnosis and treatment approaches, prostate cancer (PC) remains a leading cause of cancer-related death in men. PC progresses through various stages, mostly driven by androgen receptor signaling. However, after androgen deprivation therapies, in a significant portion of patients, several different molecular mechanisms contribute to the development of castration resistance. Delving deeply into the molecular landscape of castration-resistant PC, grasping the selective pressures exerted by therapies, and understanding the drivers of lineage plasticity is pivotal to prevent progression. Targeting genetic and epigenetic alterations that drive this transition will guide clinical management strategies and possibly prevent and/or treat lethal disease.
Collapse
Affiliation(s)
- Giuseppe Nicolò Fanelli
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA; Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 57, Pisa 56125, Italy
| | - Pier Vitale Nuzzo
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA
| | - Filippo Pederzoli
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA
| | - Massimo Loda
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
4
|
Agostini M, Giacobbi E, Servadei F, Bishof J, Funke L, Sica G, Rovella V, Carilli M, Iacovelli V, Shi Y, Hou J, Candi E, Melino G, Cervelli G, Scimeca M, Mauriello A, Bove P. Unveiling the molecular profile of a prostate carcinoma: implications for personalized medicine. Biol Direct 2024; 19:146. [PMID: 39741346 PMCID: PMC11686862 DOI: 10.1186/s13062-024-00492-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 06/17/2024] [Indexed: 01/02/2025] Open
Abstract
BACKGROUND Prostate cancer is the most common diagnosed tumor and the fifth cancer related death among men in Europe. Although several genetic alterations such as ERG-TMPRSS2 fusion, MYC amplification, PTEN deletion and mutations in p53 and BRCA2 genes play a key role in the pathogenesis of prostate cancer, specific gene alteration signature that could distinguish indolent from aggressive prostate cancer or may aid in patient stratification for prognosis and/or clinical management of patients with prostate cancer is still missing. Therefore, here, by a multi-omics approach we describe a prostate cancer carrying the fusion of TMPRSS2 with ERG gene and deletion of 16q chromosome arm. RESULTS We have observed deletion of KDM6A gene, which may represent an additional genomic alteration to be considered for patient stratification. The cancer hallmarks gene signatures highlight intriguing molecular aspects that characterize the biology of this tumor by both a high hypoxia and immune infiltration scores. Moreover, our analysis showed a slight increase in the Tumoral Mutational Burden, as well as an over-expression of the immune checkpoints. The omics profiling integrating hypoxia, ROS and the anti-cancer immune response, optimizes therapeutic strategies and advances personalized care for prostate cancer patients. CONCLUSION The here data reported can lay the foundation for predicting a poor prognosis for the studied prostate cancer, as well as the possibility of targeted therapies based on the modulation of hypoxia, ROS, and the anti-cancer immune response.
Collapse
Affiliation(s)
- Massimiliano Agostini
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", Rome, 00133, Italy
| | - Erica Giacobbi
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", Rome, 00133, Italy
| | - Francesca Servadei
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", Rome, 00133, Italy
| | - Julia Bishof
- Indivumed GmbH, Falkenried, 88 Building D, 20251, Hamburg, Germany
| | - Likas Funke
- Indivumed GmbH, Falkenried, 88 Building D, 20251, Hamburg, Germany
| | - Giuseppe Sica
- Department of Surgical Science, University Tor Vergata, Viale Oxford 81, 00133, Rome, Italy
| | - Valentina Rovella
- Department of System Medicine, University of Rome "Tor Vergata", 00133, Rome, Italy
| | - Marco Carilli
- Urology Unit, Department of Surgery, Tor Vergata University of Rome, Rome, Italy
| | - Valerio Iacovelli
- Urology Unit, Department of Surgery, Tor Vergata University of Rome, Rome, Italy
| | - Yufang Shi
- Institutes for Translational Medicine, The Fourth Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215000, China
| | - Jianquan Hou
- Institutes for Translational Medicine, The Fourth Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215000, China
| | - Eleonora Candi
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", Rome, 00133, Italy
| | - Gerry Melino
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", Rome, 00133, Italy
| | - Giulio Cervelli
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", Rome, 00133, Italy
| | - Manuel Scimeca
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", Rome, 00133, Italy
| | - Alessandro Mauriello
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", Rome, 00133, Italy.
| | - Pierluigi Bove
- Urology Unit, Department of Surgery, Tor Vergata University of Rome, Rome, Italy.
| |
Collapse
|
5
|
Alhaddad L, Osipov AN, Leonov S. FLASH Radiotherapy: Benefits, Mechanisms, and Obstacles to Its Clinical Application. Int J Mol Sci 2024; 25:12506. [PMID: 39684218 DOI: 10.3390/ijms252312506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/14/2024] [Accepted: 11/17/2024] [Indexed: 12/18/2024] Open
Abstract
Radiotherapy (RT) has been shown to be a cornerstone of both palliative and curative tumor care. RT has generally been reported to be sharply limited by ionizing radiation (IR)-induced toxicity, thereby constraining the control effect of RT on tumor growth. FLASH-RT is the delivery of ultra-high dose rate (UHDR) several orders of magnitude higher than what is presently used in conventional RT (CONV-RT). The FLASH-RT clinical trials have been designed to examine the UHDR deliverability, the effectiveness of tumor control, the dose tolerance of normal tissue, and the reproducibility of treatment effects across several institutions. Although it is still in its infancy, FLASH-RT has been shown to have potential to rival current RT in terms of safety. Several studies have suggested that the adoption of FLASH-RT is very limited, and the incorporation of this new technique into routine clinical RT will require the use of accurate dosimetry methods and reproducible equipment that enable the reliable and robust measurements of doses and dose rates. The purpose of this review is to highlight the advantages of this technology, the potential mechanisms underpinning the FLASH-RT effect, and the major challenges that need to be tackled in the clinical transfer of FLASH-RT.
Collapse
Affiliation(s)
- Lina Alhaddad
- Department of Environmental Sciences, Faculty of Science, Damascus University, Damascus P.O. Box 30621, Syria
| | - Andreyan N Osipov
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow 119991, Russia
- Moscow Center for Advanced Studies, Kulakova Str. 20, Moscow 123592, Russia
- State Research Center-Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency (SRC-FMBC), Moscow 123098, Russia
- CANDLE Synchrotron Research Institute, 31 Acharyan, Yerevan 0040, Armenia
| | - Sergey Leonov
- Moscow Center for Advanced Studies, Kulakova Str. 20, Moscow 123592, Russia
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino 142290, Russia
| |
Collapse
|
6
|
Vakili S, Behrooz AB, Whichelo R, Fernandes A, Emwas AH, Jaremko M, Markowski J, Los MJ, Ghavami S, Vitorino R. Progress in Precision Medicine for Head and Neck Cancer. Cancers (Basel) 2024; 16:3716. [PMID: 39518152 PMCID: PMC11544984 DOI: 10.3390/cancers16213716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/24/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
This paper presents a comprehensive comparative analysis of biomarkers for head and neck cancer (HNC), a prevalent but molecularly diverse malignancy. We detail the roles of key proteins and genes in tumourigenesis and progression, emphasizing their diagnostic, prognostic, and therapeutic relevance. Our bioinformatic validation reveals crucial genes such as AURKA, HMGA2, MMP1, PLAU, and SERPINE1, along with microRNAs (miRNA), linked to HNC progression. OncomiRs, including hsa-miR-21-5p, hsa-miR-31-5p, hsa-miR-221-3p, hsa-miR-222-3p, hsa-miR-196a-5p, and hsa-miR-200c-3p, drive tumourigenesis, while tumour-suppressive miRNAs like hsa-miR-375 and hsa-miR-145-5p inhibit it. Notably, hsa-miR-155-3p correlates with survival outcomes in addition to the genes RAI14, S1PR5, OSBPL10, and METTL6, highlighting its prognostic potential. Future directions should focus on leveraging precision medicine, novel therapeutics, and AI integration to advance personalized treatment strategies to optimize patient outcomes in HNC care.
Collapse
Affiliation(s)
- Sanaz Vakili
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0J9, Canada; (S.V.); (A.B.B.); (R.W.)
| | - Amir Barzegar Behrooz
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0J9, Canada; (S.V.); (A.B.B.); (R.W.)
| | - Rachel Whichelo
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0J9, Canada; (S.V.); (A.B.B.); (R.W.)
- Department of Medical Sciences, Institute of Biomedicine—iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Alexandra Fernandes
- Guelph College of Biological Science, University of Guelph, Guelph, ON N1G 2W1, Canada;
| | - Abdul-Hamid Emwas
- Core Lab of NMR, King Abdullah University of Science and Technology (KAUST), Thuwal, Makkah 23955-6900, Saudi Arabia;
| | - Mariusz Jaremko
- Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Makkah 23955-6900, Saudi Arabia;
| | - Jarosław Markowski
- Department of Laryngology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-027 Katowice, Poland;
| | - Marek J. Los
- Biotechnology Center, Silesian University of Technology, 44-100 Gliwice, Poland;
| | - Saeid Ghavami
- Academy of Silesia, Faculty of Medicine, Rolna 43, 40-555 Katowice, Poland
- Paul Albrechtsen Research Institute, Cancer Care Manitoba, Winnipeg, MB R3E 0V9, Canada
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0V9, Canada
| | - Rui Vitorino
- Guelph College of Biological Science, University of Guelph, Guelph, ON N1G 2W1, Canada;
- LAQV/REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
- UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, 4099-002 Porto, Portugal
| |
Collapse
|
7
|
Foley GR, Marthick JR, Lucas SE, Raspin K, Banks A, Stanford JL, Ostrander EA, FitzGerald LM, Dickinson JL. Germline Sequencing of DNA Damage Repair Genes in Two Hereditary Prostate Cancer Cohorts Reveals New Disease Risk-Associated Gene Variants. Cancers (Basel) 2024; 16:2482. [PMID: 39001544 PMCID: PMC11240467 DOI: 10.3390/cancers16132482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/27/2024] [Accepted: 07/02/2024] [Indexed: 07/16/2024] Open
Abstract
Rare, inherited variants in DNA damage repair (DDR) genes have a recognised role in prostate cancer (PrCa) susceptibility. In addition, these genes are therapeutically targetable. While rare variants are informing clinical management in other common cancers, defining the rare disease-associated variants in PrCa has been challenging. Here, whole-genome and -exome sequencing data from two independent, high-risk Australian and North American familial PrCa datasets were interrogated for novel DDR risk variants. Rare DDR gene variants (predicted to be damaging and present in two or more family members) were identified and subsequently genotyped in 1963 individuals (700 familial and 459 sporadic PrCa cases, 482 unaffected relatives, and 322 screened controls), and association analyses accounting for relatedness (MQLS) undertaken. In the combined datasets, rare ERCC3 (rs145201970, p = 2.57 × 10-4) and BRIP1 (rs4988345, p = 0.025) variants were significantly associated with PrCa risk. A PARP2 (rs200603922, p = 0.028) variant in the Australian dataset and a MUTYH (rs36053993, p = 0.031) variant in the North American dataset were also associated with risk. Evaluation of clinicopathological characteristics provided no evidence for a younger age or higher-grade disease at diagnosis in variant carriers, which should be taken into consideration when determining genetic screening eligibility criteria for targeted, gene-based treatments in the future. This study adds valuable knowledge to our understanding of PrCa-associated DDR genes, which will underpin effective clinical screening and treatment strategies.
Collapse
Affiliation(s)
- Georgea R Foley
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS 7000, Australia
| | - James R Marthick
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS 7000, Australia
| | - Sionne E Lucas
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS 7000, Australia
| | - Kelsie Raspin
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS 7000, Australia
| | - Annette Banks
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS 7000, Australia
| | - Janet L Stanford
- Fred Hutchinson Cancer Center, 1100 Fairview Ave. N., M4-B874, Seattle, WA 98109, USA
| | - Elaine A Ostrander
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Liesel M FitzGerald
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS 7000, Australia
| | - Joanne L Dickinson
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS 7000, Australia
| |
Collapse
|
8
|
Nazir SU, Mishra J, Maurya SK, Ziamiavaghi N, Bodas S, Teply BA, Dutta S, Datta K. Deciphering the genetic and epigenetic architecture of prostate cancer. Adv Cancer Res 2024; 161:191-221. [PMID: 39032950 DOI: 10.1016/bs.acr.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Prostate cancer, one of the most frequently diagnosed cancers in men, leads to significant mortality worldwide. Its study is important due to the complexity and diversity in its progression, highlighting the urgent need for improved therapeutic strategies. This chapter probes into the genetic and epigenetic factors influencing prostate cancer progression, underscoring the importance of understanding the disease's molecular fundamentals for the development of targeted therapies. It specifically reviews the role of key genetic mutations in genes such as Androgen Receptor, TP53, SPOP, FOXA1 and PTEN which are crucial for the disease onset and a progression. Furthermore, it examines the impact of epigenetic modifications, including DNA methylation and histone modification, which contribute to the cancer's progression by affecting gene expression and cellular behavior. Further, in this chapter we delve into the underlying signaling mechanism, the advancements in targeting genetic and epigenetic alterations in prostate cancer. These findings have revealed promising targets for therapeutic advancements, aiming to understand and identify promising avenues for future therapies. This chapter improves our current understanding of prostate cancer genetic and epigenetic landscape, emphasizing the necessity of advancing our knowledge to refine and expand treatment options for prostate cancer patients.
Collapse
Affiliation(s)
- Sheeraz Un Nazir
- Department of Biochemistry and Molecular Biology, Massy Cancer Center, Virginia Commonwealth University, Richmond, VA, United States
| | - Juhi Mishra
- Department of Biochemistry and Molecular Biology, Massy Cancer Center, Virginia Commonwealth University, Richmond, VA, United States
| | - Shailendra Kumar Maurya
- Department of Biochemistry and Molecular Biology, Massy Cancer Center, Virginia Commonwealth University, Richmond, VA, United States
| | - Negin Ziamiavaghi
- Department of Biochemistry and Molecular Biology, Massy Cancer Center, Virginia Commonwealth University, Richmond, VA, United States
| | - Sanika Bodas
- Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, United States
| | - Benjamin A Teply
- Internal Medicine, Division of Oncology & Hematology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Samikshan Dutta
- Department of Biochemistry and Molecular Biology, Massy Cancer Center, Virginia Commonwealth University, Richmond, VA, United States
| | - Kaustubh Datta
- Department of Biochemistry and Molecular Biology, Massy Cancer Center, Virginia Commonwealth University, Richmond, VA, United States.
| |
Collapse
|
9
|
Kim YJ, Park HS, Youk J, Han JW, Byeon SH, Kim SS, Ju YS, Lee CS. Subset of retinoblastoma tumours is associated with BRCA1/2 mutations. Br J Ophthalmol 2024; 108:1011-1017. [PMID: 37833038 DOI: 10.1136/bjo-2023-323388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 09/11/2023] [Indexed: 10/15/2023]
Abstract
BACKGROUND We investigated the potential association between pathogenic BRCA1/2 variants and retinoblastoma pathogenicity. METHODS In this single-centre, retrospective case series, we performed hereditary cancer panel tests using blood samples for patients with retinoblastoma diagnosed between March 2017 and October 2021. Bioinformatics prediction tools were then used to conduct in silico pathogenicity assessments for patients with BRCA1/2 family variants, in addition to the American College of Medical Genetics and Genomics (ACMG) variant classification. One patient with a germline BRCA1 variant was analysed with whole-genome sequencing (WGS), mutational signature analysis and methylation analysis for RB1 and BRCA using the patient's tumour and blood samples. RESULTS Of 30 retinoblastoma patients who underwent panel sequencing, six (20%) were found to carry germline variants in the BRCA1/2 or BRIP1 genes. Among these six patients, two had pathogenic or likely pathogenic variants as per the ACMG variant classification. Additionally, three patients showed potential pathogenic BRCA1/2 family variants through further analysis with alternative bioinformatics prediction tools. In the WGS analysis of a tumour from a patient with a germline likely pathogenic BRCA1 variant in one allele, we observed the loss of one RB1 allele due to a large deletion. No somatic non-synonymous mutations or frameshift indels were detected in the RB1 locus of the remaining allele. This sample also showed BRCA1 gene promoter hypermethylation in the tumour, indicating additional epigenetic silencing. CONCLUSION This study demonstrated that some retinoblastoma patients harboured germline BRCA1/2 family variants, which may be associated with the development of retinoblastoma along with RB1 mutations.
Collapse
Affiliation(s)
- Yong Joon Kim
- Department of Ophthalmology, Institute of Vision Research, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyo Song Park
- Department of Ophthalmology, Soonchunhyang University College of Medicine, Cheonan, Republic of Korea
- Department of Ophthalmology, Soonchunhyang University Hospital Bucheon, Bucheon, Republic of Korea
| | - Jeonghwan Youk
- Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jung Woo Han
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Suk Ho Byeon
- Department of Ophthalmology, Institute of Vision Research, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sung Soo Kim
- Department of Ophthalmology, Institute of Vision Research, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Young Seok Ju
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
- GENOME INSIGHT Inc, San Diego, CA 92121, USA
| | - Christopher Seungkyu Lee
- Department of Ophthalmology, Institute of Vision Research, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
10
|
Hayes V, Gong T, Jiang J, Bornman R, Gheybi K, Stricker P, Weischenfeldt J, Mutambirwa S. Rare pathogenic structural variants show potential to enhance prostate cancer germline testing for African men. RESEARCH SQUARE 2024:rs.3.rs-4531885. [PMID: 38947031 PMCID: PMC11213160 DOI: 10.21203/rs.3.rs-4531885/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Prostate cancer (PCa) is highly heritable, with men of African ancestry at greatest risk and associated lethality. Lack of representation in genomic data means germline testing guidelines exclude for African men. Established that structural variations (SVs) are major contributors to human disease and prostate tumourigenesis, their role is under-appreciated in familial and therapeutic testing. Utilising a clinico-methodologically matched African (n = 113) versus European (n = 57) deep-sequenced PCa resource, we interrogated 42,966 high-quality germline SVs using a best-fit pathogenicity prediction workflow. We identified 15 potentially pathogenic SVs representing 12.4% African and 7.0% European patients, of which 72% and 86% met germline testing standard-of-care recommendations, respectively. Notable African-specific loss-of-function gene candidates include DNA damage repair MLH1 and BARD1 and tumour suppressors FOXP1, WASF1 and RB1. Representing only a fraction of the vast African diaspora, this study raises considerations with respect to the contribution of kilo-to-mega-base rare variants to PCa pathogenicity and African associated disparity.
Collapse
Affiliation(s)
| | | | - Jue Jiang
- Garvan Institute of Medical Research
| | | | | | | | | | | |
Collapse
|
11
|
Jian J, Wang X, Zhang J, Zhou C, Hou X, Huang Y, Hou J, Lin Y, Wei X. Molecular landscape for risk prediction and personalized therapeutics of castration-resistant prostate cancer: at a glance. Front Endocrinol (Lausanne) 2024; 15:1360430. [PMID: 38887275 PMCID: PMC11180744 DOI: 10.3389/fendo.2024.1360430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 05/20/2024] [Indexed: 06/20/2024] Open
Abstract
Prostate cancer (PCa) is commonly occurred with high incidence in men worldwide, and many patients will be eventually suffered from the dilemma of castration-resistance with the time of disease progression. Castration-resistant PCa (CRPC) is an advanced subtype of PCa with heterogeneous carcinogenesis, resulting in poor prognosis and difficulties in therapy. Currently, disorders in androgen receptor (AR)-related signaling are widely acknowledged as the leading cause of CRPC development, and some non-AR-based strategies are also proposed for CRPC clinical analyses. The initiation of CRPC is a consequence of abnormal interaction and regulation among molecules and pathways at multi-biological levels. In this study, CRPC-associated genes, RNAs, proteins, and metabolites were manually collected and integrated by a comprehensive literature review, and they were functionally classified and compared based on the role during CRPC evolution, i.e., drivers, suppressors, and biomarkers, etc. Finally, translational perspectives for data-driven and artificial intelligence-powered CRPC systems biology analysis were discussed to highlight the significance of novel molecule-based approaches for CRPC precision medicine and holistic healthcare.
Collapse
Affiliation(s)
- Jingang Jian
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Department of Urology, The Fourth Affiliated Hospital of Soochow University, Suzhou, China
| | - Xin’an Wang
- Department of Urology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jun Zhang
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Chenchao Zhou
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xiaorui Hou
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Department of Urology, The Fourth Affiliated Hospital of Soochow University, Suzhou, China
| | - Yuhua Huang
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Jianquan Hou
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Department of Urology, The Fourth Affiliated Hospital of Soochow University, Suzhou, China
| | - Yuxin Lin
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Center for Systems Biology, Department of Bioinformatics, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Xuedong Wei
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
12
|
Kumar AA. Prostate cancer genotyping for risk stratification and precision treatment. Curr Urol 2024; 18:87-97. [PMID: 39176294 PMCID: PMC11337998 DOI: 10.1097/cu9.0000000000000222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 05/30/2023] [Indexed: 08/24/2024] Open
Abstract
Prostate cancer (PC) is the most frequently diagnosed cancer and second leading cause of cancer-related deaths in men. It is heterogeneous, as is evident from the wide spectrum of therapeutic approaches. Most patients with PC are initially responsive to androgen deprivation therapy; however, the majority of cases are either hormone-sensitive PC or castration-resistant PC. Current therapeutic protocols follow the evolution of PC, a continuously progressive process involving a combination of widespread genomic alterations. These genomic alterations are either hereditary germline mutations, such as mutations in BRCA2, or specific only to tumor cells (somatic). Tumor-specific genomic spectra include genomic structural rearrangements, canonical androgen response genes, and many other specific genes such as TMPRSS2-ERG fusion, SPOP/FOXA1, TP53/RB1/PTEN, and BRCA2. New evidence indicates the involvement of signaling pathways including PI3K, WNT/β-catenin, SRC, and IL-6/STAT, which have been shown to promote epithelial-mesenchymal transition cancer stem cell-like features/stemness, and neuroendocrine differentiation in PC. Over the last decade, our understanding of the genotype-phenotype relationships has been enhanced considerably. The genetic background of PC related to canonical genetic alterations and signaling pathway activation genes has shed more insight into the molecular subtype and disease landscape, resulting in a more flexible role of individual therapies targeting diverse genotypes and phenotypes.
Collapse
Affiliation(s)
- Ashish A. Kumar
- Department of Urology, York & Scarborough Teaching Hospitals NHS Foundation Trust, York, UK
| |
Collapse
|
13
|
Anselmino N, Labanca E, Shepherd PD, Dong J, Yang J, Song X, Nandakumar S, Kundra R, Lee C, Schultz N, Zhang J, Araujo JC, Aparicio AM, Subudhi SK, Corn PG, Pisters LL, Ward JF, Davis JW, Vazquez ES, Gueron G, Logothetis CJ, Futreal A, Troncoso P, Chen Y, Navone NM. Integrative Molecular Analyses of the MD Anderson Prostate Cancer Patient-derived Xenograft (MDA PCa PDX) Series. Clin Cancer Res 2024; 30:2272-2285. [PMID: 38488813 PMCID: PMC11094415 DOI: 10.1158/1078-0432.ccr-23-2438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/10/2023] [Accepted: 03/12/2024] [Indexed: 03/28/2024]
Abstract
PURPOSE Develop and deploy a robust discovery platform that encompasses heterogeneity, clinical annotation, and molecular characterization and overcomes the limited availability of prostate cancer models. This initiative builds on the rich MD Anderson (MDA) prostate cancer (PCa) patient-derived xenograft (PDX) resource to complement existing publicly available databases by addressing gaps in clinically annotated models reflecting the heterogeneity of potentially lethal and lethal prostate cancer. EXPERIMENTAL DESIGN We performed whole-genome, targeted, and RNA sequencing in representative samples of the same tumor from 44 PDXs derived from 38 patients linked to donor tumor metadata and corresponding organoids. The cohort includes models derived from different morphologic groups, disease states, and involved organ sites (including circulating tumor cells), as well as paired samples representing heterogeneity or stages before and after therapy. RESULTS The cohort recapitulates clinically reported alterations in prostate cancer genes, providing a data resource for clinical and molecular interrogation of suitable experimental models. Paired samples displayed conserved molecular alteration profiles, suggesting the relevance of other regulatory mechanisms (e.g., epigenomic) influenced by the microenvironment and/or treatment. Transcriptomically, models were grouped on the basis of morphologic classification. DNA damage response-associated mechanisms emerged as differentially regulated between adenocarcinoma and neuroendocrine prostate cancer in a cross-interrogation of PDX/patient datasets. CONCLUSIONS We addressed the gap in clinically relevant prostate cancer models through comprehensive molecular characterization of MDA PCa PDXs, providing a discovery platform that integrates with patient data and benchmarked to therapeutically relevant consensus clinical groupings. This unique resource supports robust hypothesis generation and testing from basic, translational, and clinical perspectives.
Collapse
Affiliation(s)
- Nicolas Anselmino
- Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Estefania Labanca
- Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Peter D.A. Shepherd
- Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jiabin Dong
- Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jun Yang
- Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Xiaofei Song
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Subhiksha Nandakumar
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ritika Kundra
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Cindy Lee
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Nikolaus Schultz
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jianhua Zhang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - John C. Araujo
- Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ana M. Aparicio
- Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sumit K. Subudhi
- Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Paul G. Corn
- Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Louis L. Pisters
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - John F. Ward
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - John W. Davis
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Elba S. Vazquez
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Laboratorio de Inflamación y Cáncer, Buenos Aires, Argentina
- CONICET- Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina
| | - Geraldine Gueron
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Laboratorio de Inflamación y Cáncer, Buenos Aires, Argentina
- CONICET- Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina
| | - Christopher J. Logothetis
- Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Andrew Futreal
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Patricia Troncoso
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yu Chen
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Nora M. Navone
- Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
14
|
Olmos D, Lorente D, Alameda D, Cattrini C, Romero-Laorden N, Lozano R, Lopez-Casas PP, Jambrina A, Capone C, Vanden Broecke AM, Trevisan M, Van Sanden S, Jürgens A, Herrera-Imbroda B, Castro E. Treatment patterns and outcomes in metastatic castration-resistant prostate cancer patients with and without somatic or germline alterations in homologous recombination repair genes. Ann Oncol 2024; 35:458-472. [PMID: 38417742 DOI: 10.1016/j.annonc.2024.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 03/01/2024] Open
Abstract
BACKGROUND Although germline BRCA mutations have been associated with adverse outcomes in prostate cancer (PC), understanding of the association between somatic/germline alterations in homologous recombination repair (HRR) genes and treatment outcomes in metastatic castration-resistant PC (mCRPC) is limited. The aim of this study was to investigate the prevalence and outcomes associated with somatic/germline HRR alterations, particularly BRCA1/2, in patients initiating first-line (1L) mCRPC treatment with androgen receptor signalling inhibitors (ARSi) or taxanes. PATIENTS AND METHODS Data from 729 mCRPC patients were pooled for CAPTURE from four multicentre observational studies. Eligibility required 1L treatment with ARSi or taxanes, adequate tumour samples and biomarker panel results. Patients underwent paired normal and tumour DNA analyses by next-generation sequencing using a custom gene panel including ATM, BRCA1, BRCA2, BRIP1, CDK12, CHEK2, FANCA, HDAC2, PALB2, RAD51B and RAD54L. Patients were divided into subgroups based on somatic/germline alteration(s): with BRCA1/2 mutations (BRCA); with HRR mutations except BRCA1/2 (HRR non-BRCA); and without HRR alterations (non-HRR). Patients without BRCA1/2 mutations were classified as non-BRCA. Radiographic progression-free survival (rPFS), progression-free survival 2 (PFS2) and overall survival (OS) were assessed. RESULTS Of 729 patients, 96 (13.2%), 127 (17.4%) and 506 (69.4%) were in the BRCA, HRR non-BRCA and non-HRR subgroups, respectively. BRCA patients performed significantly worse for all outcomes than non-HRR or non-BRCA patients (P < 0.05), while PFS2 and OS were significantly shorter for BRCA than HRR non-BRCA patients (P < 0.05). HRR non-BRCA patients also had significantly worse rPFS, PFS2 and OS than non-HRR patients. Exploratory analyses suggested that for BRCA patients, there were no significant differences in outcomes associated with 1L treatment choice (ARSi or taxanes) or with the somatic/germline origin of the alterations. CONCLUSIONS Worse outcomes were observed for mCRPC patients in the BRCA subgroup compared with non-BRCA subgroups, either HRR non-BRCA or non-HRR. Despite its heterogeneity, the HRR non-BRCA subgroup presented worse outcomes than the non-HRR subgroup. Screening early for HRR mutations, especially BRCA1/2, is crucial in improving mCRPC patient prognosis.
Collapse
Affiliation(s)
- D Olmos
- Hospital Universitario 12 de Octubre, Instituto de Investigación Sanitaria Hospital 12 de Octubre, Madrid.
| | - D Lorente
- Instituto Valenciano de Oncología, Valencia; Hospital Provincial de Castellón, Castellón de la Plana
| | - D Alameda
- Instituto de Investigación Biomédica de Málaga, Málaga, Spain
| | - C Cattrini
- Maggiore della Carità University Hospital, Novara, Italy
| | - N Romero-Laorden
- Cátedra UAM-Fundación Instituto Roche de Medicina Personalizada de Precisión, Hospital Universitario de La Princesa, Madrid
| | - R Lozano
- Hospital Universitario de Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
| | - P P Lopez-Casas
- Hospital Universitario 12 de Octubre, Instituto de Investigación Sanitaria Hospital 12 de Octubre, Madrid
| | - A Jambrina
- Hospital Universitario 12 de Octubre, Instituto de Investigación Sanitaria Hospital 12 de Octubre, Madrid
| | - C Capone
- Janssen Inc., Issy-les-Moulineaux, France
| | | | - M Trevisan
- Janssen Pharmaceuticals, Zug, Switzerland
| | | | | | - B Herrera-Imbroda
- Instituto de Investigación Biomédica de Málaga, Málaga, Spain; Hospital Universitario Virgen de la Victoria, Málaga, Spain
| | - E Castro
- Hospital Universitario 12 de Octubre, Instituto de Investigación Sanitaria Hospital 12 de Octubre, Madrid; Instituto de Investigación Biomédica de Málaga, Málaga, Spain.
| |
Collapse
|
15
|
Cunningham ML, Schiewer MJ. PARP-ish: Gaps in Molecular Understanding and Clinical Trials Targeting PARP Exacerbate Racial Disparities in Prostate Cancer. Cancer Res 2024; 84:743102. [PMID: 38635890 PMCID: PMC11217733 DOI: 10.1158/0008-5472.can-23-3458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/25/2024] [Accepted: 04/02/2024] [Indexed: 04/20/2024]
Abstract
PARP is a nuclear enzyme with a major function in the DNA damage response. PARP inhibitors (PARPi) have been developed for treating tumors harboring homologous recombination repair (HRR) defects that lead to a dependency on PARP. There are currently three PARPi approved for use in advanced prostate cancer (PCa), and several others are in clinical trials for this disease. Recent clinical trial results have reported differential efficacy based on the specific PARPi utilized as well as patient race. There is a racial disparity in PCa, where African American (AA) males are twice as likely to develop and die from the disease compared to European American (EA) males. Despite the disparity, there continues to be a lack of diversity in clinical trial cohorts for PCa. In this review, PARP nuclear functions, inhibition, and clinical relevance are explored through the lens of racial differences. This review will touch on the biological variations that have been explored thus far between AA and EA males with PCa to offer rationale for investigating PARPi response in the context of race at both the basic science and the clinical development levels.
Collapse
Affiliation(s)
- Moriah L. Cunningham
- Department of Urology, Thomas Jefferson University, Philadelphia, Pennsylvania.
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania.
| | - Matthew J. Schiewer
- Department of Urology, Thomas Jefferson University, Philadelphia, Pennsylvania.
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania.
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania.
| |
Collapse
|
16
|
Bobbili PJ, Ivanova J, Solit DB, Mettu NB, McCall SJ, Dhawan M, DerSarkissian M, Arondekar B, Chang J, Niyazov A, Lee J, Huq R, Green M, Turski M, Lam P, Muthukumar A, Guo T, Mohan M, Zhang A, Duh MS, Oh WK. Treatment Patterns and Clinical Outcomes Among Patients With Metastatic Prostate Cancer Harboring Homologous Recombination Repair Mutations. Clin Genitourin Cancer 2024; 22:102080. [PMID: 38653037 DOI: 10.1016/j.clgc.2024.102080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/14/2024] [Accepted: 03/15/2024] [Indexed: 04/25/2024]
Abstract
BACKGROUND There is currently limited literature assessing the real-world treatment patterns and clinical outcomes of patients with metastatic castration-resistant prostate cancer (mCRPC) and homologous recombination repair (HRR) mutations. METHODS Medical charts were abstracted for mCRPC patients with ≥ 1 of 12 HRR somatic gene alterations treated at US oncology centers participating in the American Association for Cancer Research Project Genomics Evidence Neoplasia Information Exchange. Treatment patterns and clinical outcomes were assessed from the initiation of first-line or later (1L+) mCRPC therapy received on or after July 1, 2014. RESULTS Among 138 patients included in the study, the most common somatic HRR mutations were CDK12 (47.8%), BRCA2 (22.5%), and ATM (21.0%). Novel hormonal therapy and taxane chemotherapy were most commonly used in 1L; taxane use increased in later lines. Median overall survival (95% confidence interval [CI]) was 36.3 (30.7-47.8) months from initiation of 1L therapy and decreased for subsequent lines. Similarly, there was a trend of decreasing progression-free survival and prostate-specific antigen response from 1L to 4L+ therapy. CONCLUSIONS Treatment patterns identified in this study were similar to those among patients with mCRPC regardless of tumor HRR mutation status in the literature.
Collapse
Affiliation(s)
| | | | - David B Solit
- Memorial Sloan Kettering Cancer Center, New York, NY
| | | | | | | | | | | | | | | | - Jocelyn Lee
- American Association for Cancer Research, Philadelphia, PA
| | - Risha Huq
- Memorial Sloan Kettering Cancer Center, New York, NY
| | - Michelle Green
- Department of Pathology, Duke University Medical Center, Durham, NC
| | | | - Phu Lam
- UCSF Hellen Diller Cancer Center, San Francisco, CA
| | | | | | | | | | | | | |
Collapse
|
17
|
Akhoundova D, Francica P, Rottenberg S, Rubin MA. DNA Damage Response and Mismatch Repair Gene Defects in Advanced and Metastatic Prostate Cancer. Adv Anat Pathol 2024; 31:61-69. [PMID: 38008971 PMCID: PMC10846598 DOI: 10.1097/pap.0000000000000422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2023]
Abstract
Alterations in DNA damage response (DDR) and related genes are present in up to 25% of advanced prostate cancers (PCa). Most frequently altered genes are involved in the homologous recombination repair, the Fanconi anemia, and the mismatch repair pathways, and their deficiencies lead to a highly heterogeneous spectrum of DDR-deficient phenotypes. More than half of these alterations concern non- BRCA DDR genes. From a therapeutic perspective, poly-ADP-ribose polymerase inhibitors have demonstrated robust clinical efficacy in tumors with BRCA2 and BRCA1 alterations. Mismatch repair-deficient PCa, and a subset of CDK12-deficient PCa, are vulnerable to immune checkpoint inhibitors. Emerging data point to the efficacy of ATR inhibitors in PCa with ATM deficiencies. Still, therapeutic implications are insufficiently clarified for most of the non- BRCA DDR alterations, and no successful targeted treatment options have been established.
Collapse
Affiliation(s)
- Dilara Akhoundova
- Department for BioMedical Research
- Department of Medical Oncology
- Bern Center for Precision Medicine, Inselspital, University Hospital of Bern, Bern, Switzerland
| | - Paola Francica
- Department for BioMedical Research
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern
- Bern Center for Precision Medicine, Inselspital, University Hospital of Bern, Bern, Switzerland
| | - Sven Rottenberg
- Department for BioMedical Research
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern
- Bern Center for Precision Medicine, Inselspital, University Hospital of Bern, Bern, Switzerland
| | - Mark A. Rubin
- Department for BioMedical Research
- Bern Center for Precision Medicine, Inselspital, University Hospital of Bern, Bern, Switzerland
| |
Collapse
|
18
|
Casadei C, Scarpi E, Conteduca V, Gurioli G, Cursano MC, Brighi N, Lolli C, Schepisi G, Basso U, Fornarini G, Bleve S, Farolfi A, Altavilla A, Burgio SL, Giunta EF, Gianni C, Filograna A, Ulivi P, Olmos D, Castro E, De Giorgi U. Inherited Mutations in DNA Damage Repair Genes in Italian Men with Metastatic Prostate Cancer: Results from the Meet-URO 10 Study. EUR UROL SUPPL 2024; 61:44-51. [PMID: 38384439 PMCID: PMC10879937 DOI: 10.1016/j.euros.2024.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/25/2024] [Indexed: 02/23/2024] Open
Abstract
Background The prevalence of pathogenic germline mutations in DNA damage repair (gDDR) genes in the Italian population is unknown. Objective In this prospective multicenter cohort study, we evaluated the prevalence of gDDR alterations in the Italian population affected by metastatic prostate cancer (mPCa) and analyzed the impact on response to therapy, survival, and time to castration resistance. Design setting and participants In an observational prospective trial, 300 consecutive Italian mPCa patients, enrolled in the Meet-Uro-10 trial from three academic Italian centers, were recruited between 2017 and 2019 and were screened for gDDR mutations in 107 genes. Outcome measurements and statistical analysis The primary endpoint was to assess the prevalence of gDDR mutations in the Italian population of patients with mPCa. The secondary endpoints included the association of gDDR subgroups with metastatic onset, Gleason score, and time to castration resistance. Results and limitations We identified 297 valuable patients. Forty-six patients had a pathogenic/likely pathogenic variant (15.5%, 95% confidence interval: 11.4-19.6): the more frequent was gBRCA2 found in nine cases (3%), followed by gATM in five cases (1.7%). In patients without mutations, longer median overall survival was observed with the sequence docetaxel-androgen receptor signaling inhibitor (ARSI) than with the sequence ARSI-docetaxel (87.9 vs 42 mo, p = 0.0001). In a univariate analysis, the median time to castration resistance in gDDR mutated patients was 19.8 mo, versus 23.7 mo in no mutated patients (p = 0.024). There were no associations of gDDR subgroups with metastatic onset and Gleason score ≥8. In our cohort, variants of unknown significance in gDDR genes were found in 80 patients and might have a prognostic relevance. Conclusions The study reported the prevalence of gDDR in the Italian population. The presence of gBRCA2 mutations correlates with a shorter time to the onset of castration resistance disease. Patient summary The prevalence of gBRCA2 in the Italian population is 3%, which is similar to that in the Spanish population, identifying similarities between people of the Western Mediterranean area.
Collapse
Affiliation(s)
- Chiara Casadei
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Emanuela Scarpi
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | | | - Giorgia Gurioli
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | | | - Nicole Brighi
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Cristian Lolli
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Giuseppe Schepisi
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | | | | | - Sara Bleve
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Alberto Farolfi
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Amelia Altavilla
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Salvatore Luca Burgio
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | | | - Caterina Gianni
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Alessia Filograna
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Paola Ulivi
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - David Olmos
- Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Elena Castro
- Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain
| | - Ugo De Giorgi
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| |
Collapse
|
19
|
Vandekerkhove G, Giri VN, Halabi S, McNair C, Hamade K, Bitting RL, Wyatt AW. Toward Informed Selection and Interpretation of Clinical Genomic Tests in Prostate Cancer. JCO Precis Oncol 2024; 8:e2300654. [PMID: 38547422 PMCID: PMC10994438 DOI: 10.1200/po.23.00654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/15/2023] [Accepted: 02/07/2024] [Indexed: 04/02/2024] Open
Abstract
Clinical genomic testing of patient germline, tumor tissue, or plasma cell-free DNA can enable a personalized approach to cancer management and treatment. In prostate cancer (PCa), broad genotyping tests are now widely used to identify germline and/or somatic alterations in BRCA2 and other DNA damage repair genes. Alterations in these genes can confer cancer sensitivity to poly (ADP-ribose) polymerase inhibitors, are linked with poor prognosis, and can have potential hereditary cancer implications for family members. However, there is huge variability in genomic tests and reporting standards, meaning that for successful implementation of testing in clinical practice, end users must carefully select the most appropriate test for a given patient and critically interpret the results. In this white paper, we outline key pre- and post-test considerations for choosing a genomic test and evaluating reported variants, specifically for patients with advanced PCa. Test choice must be based on clinical context and disease state, availability and suitability of tumor tissue, and the genes and regions that are covered by the test. We describe strategies to recognize false positives or negatives in test results, including frameworks to assess low tumor fraction, subclonal alterations, clonal hematopoiesis, and pathogenic versus nonpathogenic variants. We assume that improved understanding among health care professionals and researchers of the nuances associated with genomic testing will ultimately lead to optimal patient care and clinical decision making.
Collapse
Affiliation(s)
- Gillian Vandekerkhove
- Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, Canada
- Department of Medical Oncology, BC Cancer, Vancouver, BC, Canada
| | - Veda N. Giri
- Yale School of Medicine and Yale Cancer Center, New Haven, CT
| | | | | | | | | | - Alexander W. Wyatt
- Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, Canada
- Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada
| |
Collapse
|
20
|
Zheng X, Lu T, Wu S, Lin X, Bai J, Chen X, Miao Q, Yan J, Jiang K, Zhang L, Zheng X, Wang H, Xu Y, Xiao W, Li C, Peng W, Ding J, Zhong Q, Zou Z, Yang S, Li Y, Chen S, Zhang Q, Yan J, Tang G, Cai Y, kang M, Mok TSK, Lin G. A novel approach to evaluation of tumor response for advanced pulmonary adenocarcinoma using the intertumoral heterogeneity response score. MedComm (Beijing) 2024; 5:e493. [PMID: 38463396 PMCID: PMC10924640 DOI: 10.1002/mco2.493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 01/19/2024] [Accepted: 01/28/2024] [Indexed: 03/12/2024] Open
Abstract
Treatment response and prognosis estimation in advanced pulmonary adenocarcinoma are challenged by the significant heterogeneity of the disease. The current Response Evaluation Criteria in Solid Tumors (RECIST) criteria, despite providing a basis for solid tumor response evaluation, do not fully encompass this heterogeneity. To better represent these nuances, we introduce the intertumoral heterogeneity response score (THRscore), a measure built upon and expanding the RECIST criteria. This retrospective study included patients with 3-10 measurable advanced lung adenocarcinoma lesions who underwent first-line chemotherapy or targeted therapy. The THRscore, derived from the coefficient of variation in size for each measurable tumor before and 4-6 weeks posttreatment, unveiled a correlation with patient outcomes. Specifically, a high THRscore was associated with shorter progression-free survival, lower tumor response rate, and a higher tumor mutation burden. These associations were further validated in an external cohort, confirming THRscore's effectiveness in stratifying patients based on progression risk and treatment response, and enhancing the utility of RECIST in capturing complex tumor behaviors in lung adenocarcinoma. These findings affirm the promise of THRscore as an enhanced tool for tumor response assessment in advanced lung adenocarcinoma, extending the RECIST criteria's utility.
Collapse
Affiliation(s)
- Xinlong Zheng
- Department of Thoracic OncologyClinical Oncology School of Fujian Medical University, Fujian Cancer HospitalFuzhouChina
| | - Tao Lu
- Department of RadiologyClinical Oncology School of Fujian Medical University, Fujian Cancer HospitalFuzhouChina
| | - Shiwen Wu
- Department of Thoracic OncologyClinical Oncology School of Fujian Medical University, Fujian Cancer HospitalFuzhouChina
| | - Xiaoyan Lin
- Department of OncologyFujian Medical University Union HospitalFuzhouChina
| | - Jing Bai
- Department of ResearchGeneplus‐Beijing InstituteBeijingChina
| | - Xiaohui Chen
- Department of Thoracic SurgeryClinical Oncology School of Fujian Medical University, Fujian Cancer HospitalFuzhouChina
| | - Qian Miao
- Department of Thoracic OncologyClinical Oncology School of Fujian Medical University, Fujian Cancer HospitalFuzhouChina
| | - Jianqun Yan
- Department of Thoracic OncologyClinical Oncology School of Fujian Medical University, Fujian Cancer HospitalFuzhouChina
| | - Kan Jiang
- Department of Thoracic OncologyClinical Oncology School of Fujian Medical University, Fujian Cancer HospitalFuzhouChina
| | - Longfeng Zhang
- Department of Thoracic OncologyClinical Oncology School of Fujian Medical University, Fujian Cancer HospitalFuzhouChina
| | - Xiaobing Zheng
- Department of Thoracic OncologyClinical Oncology School of Fujian Medical University, Fujian Cancer HospitalFuzhouChina
| | - Haibo Wang
- Department of Thoracic OncologyClinical Oncology School of Fujian Medical University, Fujian Cancer HospitalFuzhouChina
| | - Yiquan Xu
- Department of Thoracic OncologyClinical Oncology School of Fujian Medical University, Fujian Cancer HospitalFuzhouChina
| | - Weijin Xiao
- Department of PathologyClinical Oncology School of Fujian Medical University, Fujian Cancer HospitalFuzhouChina
| | - Cao Li
- Department of PathologyClinical Oncology School of Fujian Medical University, Fujian Cancer HospitalFuzhouChina
| | - Wenying Peng
- The Second Department of OncologyYunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer CenterKunmingChina
| | - Jianming Ding
- Department of Radiation OncologyClinical Oncology School of Fujian Medical University, Fujian Cancer HospitalFuzhouChina
| | - Qiaofeng Zhong
- Department of Thoracic OncologyClinical Oncology School of Fujian Medical University, Fujian Cancer HospitalFuzhouChina
| | - Zihua Zou
- Department of Thoracic OncologyClinical Oncology School of Fujian Medical University, Fujian Cancer HospitalFuzhouChina
| | - Shanshan Yang
- Department of Thoracic OncologyClinical Oncology School of Fujian Medical University, Fujian Cancer HospitalFuzhouChina
| | - Yujing Li
- Department of Thoracic OncologyClinical Oncology School of Fujian Medical University, Fujian Cancer HospitalFuzhouChina
| | - Sihui Chen
- Department of Thoracic OncologyClinical Oncology School of Fujian Medical University, Fujian Cancer HospitalFuzhouChina
| | - Qiuyu Zhang
- Institute of ImmunotherapyFujian Medical UniversityFuzhouChina
| | - Jianfeng Yan
- College of ChemistryFuzhou UniversityFuzhouChina
| | - Guofeng Tang
- Department of Thoracic OncologyClinical Oncology School of Fujian Medical University, Fujian Cancer HospitalFuzhouChina
| | - Yuandong Cai
- College of ChemistryFuzhou UniversityFuzhouChina
| | - Miao kang
- Department of Thoracic OncologyClinical Oncology School of Fujian Medical University, Fujian Cancer HospitalFuzhouChina
| | - Tony S. K. Mok
- Department of Clinical OncologyState Key Laboratory of Translational OncologyChinese University of Hong KongShatin, Hong Kong Special Administrative RegionChina
| | - Gen Lin
- Department of Thoracic OncologyClinical Oncology School of Fujian Medical University, Fujian Cancer HospitalFuzhouChina
- Fujian Key Laboratory of Advanced Technology for Cancer Screening and Early Diagnosis, Fujian Cancer HospitalFuzhouChina
- Interdisciplinary Institute for Medical EngineeringFuzhou UniversityFuzhouChina
| |
Collapse
|
21
|
Dennis MJ, Bylsma S, Madlensky L, Pagadala MS, Carter H, Patel SP. Germline DNA damage response gene mutations as predictive biomarkers of immune checkpoint inhibitor efficacy. Front Immunol 2024; 15:1322187. [PMID: 38348036 PMCID: PMC10859432 DOI: 10.3389/fimmu.2024.1322187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 01/08/2024] [Indexed: 02/15/2024] Open
Abstract
Background Impaired DNA damage response (DDR) can affect immune checkpoint inhibitors (ICI) efficacy and lead to heightened immune activation. We assessed the impact of pathogenic or likely pathogenic (P/LP) germline DDR mutations on ICI response and toxicity. Materials and methods A retrospective analysis of 131 cancer patients with germline DNA testing and ICI treatment was performed. Results Ninety-two patients were DDR-negative (DDR-), and 39 had ≥1 DDR mutation (DDR+). DDR+ patients showed higher objective response rates (ORRs) compared to DDR- in univariate and multivariable analyses, adjusting for age and metastatic disease (62% vs. 23%, unadjusted OR = 5.41; 95% CI, 2.41-12.14; adjusted OR 5.94; 95% CI, 2.35-15.06). Similar results were seen in mismatch repair (MMR), DDR pathways with intact MMR (DDR+MMRi), and homologous recombination (HR) subgroups versus DDR- (adjusted OR MMR = 24.52; 95% CI 2.72-221.38, DDR+MMRi = 4.26; 95% CI, 1.57-11.59, HR = 4.74; 95% CI, 1.49-15.11). DDR+ patients also had higher ORRs with concurrent chemotherapy (82% vs. 39% DDR-, p=0.03) or concurrent tyrosine kinase inhibitors (50% vs. 5% DDR-, p=0.03). No significant differences in immune-related adverse events were observed between DDR+ and DDR- cohorts. Conclusion P/LP germline DDR mutations may enhance ICI response without significant additional toxicity.
Collapse
Affiliation(s)
- Michael J. Dennis
- Division of Medical Oncology, Moores Cancer Center, University of California, San Diego, San Diego, CA, United States
- Division of Head and Neck Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Sophia Bylsma
- School of Medicine, University of California, San Diego, San Diego, CA, United States
| | - Lisa Madlensky
- Division of Genomics and Precision Medicine, University of California, San Diego, San Diego, CA, United States
- Department of Medicine, University of California, San Diego, San Diego, CA, United States
| | - Meghana S. Pagadala
- Division of Genomics and Precision Medicine, University of California, San Diego, San Diego, CA, United States
| | - Hannah Carter
- Division of Genomics and Precision Medicine, University of California, San Diego, San Diego, CA, United States
- Department of Medicine, University of California, San Diego, San Diego, CA, United States
| | - Sandip P. Patel
- Division of Medical Oncology, Moores Cancer Center, University of California, San Diego, San Diego, CA, United States
- Department of Medicine, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
22
|
Baston C, Preda A, Iordache A, Olaru V, Surcel C, Sinescu I, Gingu C. How to Integrate Prostate Cancer Biomarkers in Urology Clinical Practice: An Update. Cancers (Basel) 2024; 16:316. [PMID: 38254807 PMCID: PMC10813985 DOI: 10.3390/cancers16020316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/04/2024] [Accepted: 01/07/2024] [Indexed: 01/24/2024] Open
Abstract
Nowadays, the management of prostate cancer has become more and more challenging due to the increasing number of available treatment options, therapeutic agents, and our understanding of its carcinogenesis and disease progression. Moreover, currently available risk stratification systems used to facilitate clinical decision-making have limitations, particularly in providing a personalized and patient-centered management strategy. Although prognosis and prostate cancer-specific survival have improved in recent years, the heterogenous behavior of the disease among patients included in the same risk prognostic group negatively impacts not only our clinical decision-making but also oncological outcomes, irrespective of the treatment strategy. Several biomarkers, along with available tests, have been developed to help clinicians in difficult decision-making scenarios and guide management strategies. In this review article, we focus on the scientific evidence that supports the clinical use of several biomarkers considered by professional urological societies (and included in uro-oncological guidelines) in the diagnosis process and specific difficult management strategies for clinically localized or advanced prostate cancer.
Collapse
Affiliation(s)
- Catalin Baston
- Department of Nephrology, Urology, Immunology and Immunology of Transplant, Dermatology, Allergology, Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.B.); (V.O.); (C.S.); (I.S.); (C.G.)
- Center of Uronephrology and Kidney Transplantation, Fundeni Clinical Institute, 258 Fundeni Street, 022328 Bucharest, Romania;
| | - Adrian Preda
- Center of Uronephrology and Kidney Transplantation, Fundeni Clinical Institute, 258 Fundeni Street, 022328 Bucharest, Romania;
| | - Alexandru Iordache
- Center of Uronephrology and Kidney Transplantation, Fundeni Clinical Institute, 258 Fundeni Street, 022328 Bucharest, Romania;
| | - Vlad Olaru
- Department of Nephrology, Urology, Immunology and Immunology of Transplant, Dermatology, Allergology, Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.B.); (V.O.); (C.S.); (I.S.); (C.G.)
- Center of Uronephrology and Kidney Transplantation, Fundeni Clinical Institute, 258 Fundeni Street, 022328 Bucharest, Romania;
| | - Cristian Surcel
- Department of Nephrology, Urology, Immunology and Immunology of Transplant, Dermatology, Allergology, Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.B.); (V.O.); (C.S.); (I.S.); (C.G.)
- Center of Uronephrology and Kidney Transplantation, Fundeni Clinical Institute, 258 Fundeni Street, 022328 Bucharest, Romania;
| | - Ioanel Sinescu
- Department of Nephrology, Urology, Immunology and Immunology of Transplant, Dermatology, Allergology, Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.B.); (V.O.); (C.S.); (I.S.); (C.G.)
- Center of Uronephrology and Kidney Transplantation, Fundeni Clinical Institute, 258 Fundeni Street, 022328 Bucharest, Romania;
| | - Constantin Gingu
- Department of Nephrology, Urology, Immunology and Immunology of Transplant, Dermatology, Allergology, Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.B.); (V.O.); (C.S.); (I.S.); (C.G.)
- Center of Uronephrology and Kidney Transplantation, Fundeni Clinical Institute, 258 Fundeni Street, 022328 Bucharest, Romania;
| |
Collapse
|
23
|
Januskevicius T, Vaicekauskaite I, Sabaliauskaite R, Matulevicius A, Vezelis A, Ulys A, Jarmalaite S, Jankevicius F. Germline DNA Damage Response Gene Mutations in Localized Prostate Cancer. MEDICINA (KAUNAS, LITHUANIA) 2023; 60:73. [PMID: 38256334 PMCID: PMC10820233 DOI: 10.3390/medicina60010073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/23/2023] [Accepted: 12/28/2023] [Indexed: 01/24/2024]
Abstract
Background and Objectives: Germline DNA damage response (DDR) gene mutations correlate with increased prostate cancer (PCa) risk and a more aggressive form of the disease. DDR mutation testing is recommended for metastatic PCa cases, while eligible information about the mutations' burden in the early-stage localized PCa is still limited. This study is aimed at the prospective detection of DDR pathway mutations in cases with localized PCa and correlation with clinical, histopathological, and radiological data. A comparison to the previously assessed cohort of the advanced PCa was performed. Materials and Methods: Germline DDR gene mutations were assessed prospectively in DNA samples from 139 patients, using a five-gene panel (BRCA1, BRCA2, ATM, CHEK2, and NBN) targeted next-generation sequencing. Results: This study revealed an almost three-fold higher risk of localized PCa among mutation carriers as compared to non-carriers (OR 2.84 and 95% CI: 0.75-20.23, p = 0.16). The prevalence of germline DDR gene mutations in PCa cases was 16.8% (18/107) and they were detected only in cases with PI-RADS 4/5 lesions. BRCA1/BRCA2/ATM mutation carriers were 2.6 times more likely to have a higher (>1) cISUP grade group compared to those with a CHEK2 mutation (p = 0.27). However, the number of cISUP > 1-grade patients with a CHEK2 mutation was significantly higher in advanced PCa than in localized PCa: 66.67% vs. 23.08% (p = 0.047). Conclusions: The results of our study suggest the potential of genetic screening for selected DDR gene mutations for early identification of cases at risk of aggressive PCa.
Collapse
Affiliation(s)
- Tomas Januskevicius
- Clinic of Gastroenterology, Nephro-Urology and Surgery, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, M. K. Ciurlionio St. 21/27, LT-03101 Vilnius, Lithuania
| | - Ieva Vaicekauskaite
- Laboratory of Genetic Diagnostic, National Cancer Institute, Santariskiu St. 1, LT-08406 Vilnius, Lithuania
- Division of Human Genome Research Centre, Institute of Biomedical Sciences, Life Sciences Center, Vilnius University, Sauletekio Ave. 7, LT-10257 Vilnius, Lithuania
| | - Rasa Sabaliauskaite
- Laboratory of Genetic Diagnostic, National Cancer Institute, Santariskiu St. 1, LT-08406 Vilnius, Lithuania
- Division of Human Genome Research Centre, Institute of Biomedical Sciences, Life Sciences Center, Vilnius University, Sauletekio Ave. 7, LT-10257 Vilnius, Lithuania
| | - Augustinas Matulevicius
- Division of Human Genome Research Centre, Institute of Biomedical Sciences, Life Sciences Center, Vilnius University, Sauletekio Ave. 7, LT-10257 Vilnius, Lithuania
- Urology Centre, Vilnius University Hospital Santaros Klinikos, Santariskiu St. 2, LT-08661 Vilnius, Lithuania
| | - Alvydas Vezelis
- Oncourology Department, National Cancer Institute, Santariskiu St. 1, LT-08660 Vilnius, Lithuania
| | - Albertas Ulys
- Oncourology Department, National Cancer Institute, Santariskiu St. 1, LT-08660 Vilnius, Lithuania
| | - Sonata Jarmalaite
- Laboratory of Genetic Diagnostic, National Cancer Institute, Santariskiu St. 1, LT-08406 Vilnius, Lithuania
- Division of Human Genome Research Centre, Institute of Biomedical Sciences, Life Sciences Center, Vilnius University, Sauletekio Ave. 7, LT-10257 Vilnius, Lithuania
| | - Feliksas Jankevicius
- Clinic of Gastroenterology, Nephro-Urology and Surgery, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, M. K. Ciurlionio St. 21/27, LT-03101 Vilnius, Lithuania
- Urology Centre, Vilnius University Hospital Santaros Klinikos, Santariskiu St. 2, LT-08661 Vilnius, Lithuania
| |
Collapse
|
24
|
Boussios S, Sanchez E, Sheriff M. Frontiers of Molecular Biology of Cancer. Int J Mol Sci 2023; 24:17187. [PMID: 38139014 PMCID: PMC10742739 DOI: 10.3390/ijms242417187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
Cancer is rooted in genetic background, with the expression of oncogenesis playing a pivotal role in the early stages of tumor formation [...].
Collapse
Affiliation(s)
- Stergios Boussios
- Department of Medical Oncology, Medway NHS Foundation Trust, Gillingham ME7 5NY, UK;
- Faculty of Life Sciences & Medicine, School of Cancer & Pharmaceutical Sciences, King’s College London, Strand, London WC2R 2LS, UK
- Kent Medway Medical School, University of Kent, Canterbury CT2 7LX, UK
- AELIA Organization, 9th Km Thessaloniki—Thermi, 57001 Thessaloniki, Greece
| | - Elisabet Sanchez
- Department of Medical Oncology, Medway NHS Foundation Trust, Gillingham ME7 5NY, UK;
| | - Matin Sheriff
- Department of Urology, Medway NHS Foundation Trust, Gillingham ME7 5NY, UK;
| |
Collapse
|
25
|
Davoudi F, Moradi A, Becker TM, Lock JG, Abbey B, Fontanarosa D, Haworth A, Clements J, Ecker RC, Batra J. Genomic and Phenotypic Biomarkers for Precision Medicine Guidance in Advanced Prostate Cancer. Curr Treat Options Oncol 2023; 24:1451-1471. [PMID: 37561382 PMCID: PMC10547634 DOI: 10.1007/s11864-023-01121-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2023] [Indexed: 08/11/2023]
Abstract
OPINION STATEMENT Prostate cancer (PCa) is the second most diagnosed malignant neoplasm and is one of the leading causes of cancer-related death in men worldwide. Despite significant advances in screening and treatment of PCa, given the heterogeneity of this disease, optimal personalized therapeutic strategies remain limited. However, emerging predictive and prognostic biomarkers based on individual patient profiles in combination with computer-assisted diagnostics have the potential to guide precision medicine, where patients may benefit from therapeutic approaches optimally suited to their disease. Also, the integration of genotypic and phenotypic diagnostic methods is supporting better informed treatment decisions. Focusing on advanced PCa, this review discusses polygenic risk scores for screening of PCa and common genomic aberrations in androgen receptor (AR), PTEN-PI3K-AKT, and DNA damage response (DDR) pathways, considering clinical implications for diagnosis, prognosis, and treatment prediction. Furthermore, we evaluate liquid biopsy, protein biomarkers such as serum testosterone levels, SLFN11 expression, total alkaline phosphatase (tALP), neutrophil-to-lymphocyte ratio (NLR), tissue biopsy, and advanced imaging tools, summarizing current phenotypic biomarkers and envisaging more effective utilization of diagnostic and prognostic biomarkers in advanced PCa. We conclude that prognostic and treatment predictive biomarker discovery can improve the management of patients, especially in metastatic stages of advanced PCa. This will result in decreased mortality and enhanced quality of life and help design a personalized treatment regimen.
Collapse
Affiliation(s)
- Fatemeh Davoudi
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, 4059 Australia
- Department of Medical Genetics, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Afshin Moradi
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, 4059 Australia
- Centre for Genomics and Personalised Health, Queensland University of Technology, Brisbane, 4059 Australia
- Translational Research Institute, Queensland University of Technology, Brisbane, 4102 Australia
| | - Therese M. Becker
- Ingham Institute for Applied Medical Research, University of Western Sydney and University of New South Wales, Liverpool, 2170 Australia
| | - John G. Lock
- Ingham Institute for Applied Medical Research, University of Western Sydney and University of New South Wales, Liverpool, 2170 Australia
- School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, 2052 Australia
| | - Brian Abbey
- Department of Mathematical and Physical Sciences, School of Computing Engineering and Mathematical Sciences, La Trobe Institute for Molecular Sciences, La Trobe University, Bundoora, VIC Australia
| | - Davide Fontanarosa
- School of Clinical Sciences, Queensland University of Technology, Gardens Point Campus, 2 George St, Brisbane, QLD 4000 Australia
- Centre for Biomedical Technologies (CBT), Queensland University of Technology, Brisbane, QLD 4000 Australia
| | - Annette Haworth
- Institute of Medical Physics, School of Physics, University of Sydney, Camperdown, NSW 2006 Australia
| | - Judith Clements
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, 4059 Australia
- Translational Research Institute, Queensland University of Technology, Brisbane, 4102 Australia
| | - Rupert C. Ecker
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, 4059 Australia
- Translational Research Institute, Queensland University of Technology, Brisbane, 4102 Australia
- TissueGnostics GmbH, EU 1020 Vienna, Austria
| | - Jyotsna Batra
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, 4059 Australia
- Centre for Genomics and Personalised Health, Queensland University of Technology, Brisbane, 4059 Australia
- Translational Research Institute, Queensland University of Technology, Brisbane, 4102 Australia
| |
Collapse
|
26
|
Gulliver C, Huss S, Semjonow A, Baillie GS, Hoffmann R. Loss of PDE4D7 expression promotes androgen independence, neuroendocrine differentiation and alterations in DNA repair: implications for therapeutic strategies. Br J Cancer 2023; 129:1462-1476. [PMID: 37740039 PMCID: PMC10628190 DOI: 10.1038/s41416-023-02417-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 08/18/2023] [Accepted: 08/24/2023] [Indexed: 09/24/2023] Open
Abstract
BACKGROUND Androgen signalling remains the seminal therapeutic approach for the management of advanced prostate cancer. However, most tumours eventually shift towards an aggressive phenotype, characterised by androgen independence and treatment resistance. The cyclic adenosine monophosphate (cAMP) pathway plays a crucial role in regulating various cellular processes, with the phosphodiesterase PDE4D7 being a vital modulator of cAMP signalling in prostate cancer cells. METHODS Using shRNA-mediated PDE4D7 knockdown in LNCaP cells and downstream analysis via RNA sequencing and phenotypic assays, we replicate clinical observations that diminished PDE4D7 expression promotes an aggressive prostate cancer phenotype. RESULTS Our study provides evidence that loss of PDE4D7 expression represents a pivotal switch driving the transition from an androgen-sensitive state to hormone unresponsiveness and neuroendocrine differentiation. In addition, we demonstrate that PDE4D7 loss affects DNA repair pathways, conferring resistance to poly ADP ribose polymerase (PARP) inhibitors. CONCLUSION Reinstating PDE4D7 expression sensitises prostate cancer cells to anti-androgens, DNA damage response inhibitors, and cytotoxic therapies. These findings provide significant insight into the regulatory role of PDE4D7 in the development of lethal prostate cancer and the potential of its modulation as a novel therapeutic strategy.
Collapse
Affiliation(s)
- Chloe Gulliver
- School of Cardiovascular & Metabolic Health, University of Glasgow, Glasgow, G12 8TA, Scotland, UK.
| | - Sebastian Huss
- Gerhard-Domagk-Institute of Pathology, University Hospital Münster, 48149, Münster, Germany
| | - Axel Semjonow
- Prostate Center, University Hospital Münster, 48149, Münster, Germany
| | - George S Baillie
- School of Cardiovascular & Metabolic Health, University of Glasgow, Glasgow, G12 8TA, Scotland, UK
| | - Ralf Hoffmann
- School of Cardiovascular & Metabolic Health, University of Glasgow, Glasgow, G12 8TA, Scotland, UK.
- Oncology Solutions, Philips Research Europe, High Tech Campus 34, 5656AE, Eindhoven, The Netherlands.
| |
Collapse
|
27
|
Grypari IM, Tzelepi V, Gyftopoulos K. DNA Damage Repair Pathways in Prostate Cancer: A Narrative Review of Molecular Mechanisms, Emerging Biomarkers and Therapeutic Targets in Precision Oncology. Int J Mol Sci 2023; 24:11418. [PMID: 37511177 PMCID: PMC10380086 DOI: 10.3390/ijms241411418] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/09/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Prostate cancer (PCa) has a distinct molecular signature, including characteristic chromosomal translocations, gene deletions and defective DNA damage repair mechanisms. One crucial pathway involved is homologous recombination deficiency (HRD) and it is found in almost 20% of metastatic castrate-resistant PCa (mCRPC). Inherited/germline mutations are associated with a hereditary predisposition to early PCa development and aggressive behavior. BRCA2, ATM and CHECK2 are the most frequently HRD-mutated genes. BRCA2-mutated tumors have unfavorable clinical and pathological characteristics, such as intraductal carcinoma. PARP inhibitors, due to the induction of synthetic lethality, have been therapeutically approved for mCRPC with HRD alterations. Mutations are detected in metastatic tissue, while a liquid biopsy is utilized during follow-up, recognizing acquired resistance mechanisms. The mismatch repair (MMR) pathway is another DNA repair mechanism implicated in carcinogenesis, although only 5% of metastatic PCa is affected. It is associated with aggressive disease. PD-1 inhibitors have been used in MMR-deficient tumors; thus, the MMR status should be tested in all metastatic PCa cases. A surrogate marker of defective DNA repair mechanisms is the tumor mutational burden. PDL-1 expression and intratumoral lymphocytes have ambivalent predictive value. Few experimental molecules have been so far proposed as potential biomarkers. Future research may further elucidate the role of DNA damage pathways in PCa, revealing new therapeutic targets and predictive biomarkers.
Collapse
Affiliation(s)
- Ioanna-Maria Grypari
- Cytology Department, Aretaieion University Hospital, National Kapodistrian University of Athens, 11528 Athens, Greece
| | - Vasiliki Tzelepi
- Department of Pathology, School of Medicine, University of Patras, 26504 Patras, Greece
| | - Kostis Gyftopoulos
- Department of Anatomy, School of Medicine, University of Patras, 26504 Patras, Greece
| |
Collapse
|
28
|
Li Z, Jiao X, Robertson AG, Di Sante G, Ashton AW, DiRocco A, Wang M, Zhao J, Addya S, Wang C, McCue PA, South AP, Cordon-Cardo C, Liu R, Patel K, Hamid R, Parmar J, DuHadaway JB, Jones SJM, Casimiro MC, Schultz N, Kossenkov A, Phoon LY, Chen H, Lan L, Sun Y, Iczkowski KA, Rui H, Pestell RG. The DACH1 gene is frequently deleted in prostate cancer, restrains prostatic intraepithelial neoplasia, decreases DNA damage repair, and predicts therapy responses. Oncogene 2023; 42:1857-1873. [PMID: 37095257 PMCID: PMC10238272 DOI: 10.1038/s41388-023-02668-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/02/2023] [Accepted: 03/13/2023] [Indexed: 04/26/2023]
Abstract
Prostate cancer (PCa), the second leading cause of death in American men, includes distinct genetic subtypes with distinct therapeutic vulnerabilities. The DACH1 gene encodes a winged helix/Forkhead DNA-binding protein that competes for binding to FOXM1 sites. Herein, DACH1 gene deletion within the 13q21.31-q21.33 region occurs in up to 18% of human PCa and was associated with increased AR activity and poor prognosis. In prostate OncoMice, prostate-specific deletion of the Dach1 gene enhanced prostatic intraepithelial neoplasia (PIN), and was associated with increased TGFβ activity and DNA damage. Reduced Dach1 increased DNA damage in response to genotoxic stresses. DACH1 was recruited to sites of DNA damage, augmenting recruitment of Ku70/Ku80. Reduced Dach1 expression was associated with increased homology directed repair and resistance to PARP inhibitors and TGFβ kinase inhibitors. Reduced Dach1 expression may define a subclass of PCa that warrants specific therapies.
Collapse
Affiliation(s)
- Zhiping Li
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, PA, 18902, USA
| | - Xuanmao Jiao
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, PA, 18902, USA
| | - A Gordon Robertson
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, BC, VSZ 4S6, Canada
- Dxige Research, Courtenay, BC, V9N 1C2, Canada
| | - Gabriele Di Sante
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, PA, 18902, USA
| | - Anthony W Ashton
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, PA, 18902, USA
- Lankenau Institute for Medical Research, 100 East Lancaster Avenue, Wynnewood, PA, 19096, USA
- Division of Perinatal Research, Kolling Institute, Northern Sydney Local Health District, St Leonards, NSW, 2065, Australia
- Sydney Medical School Northern, University of Sydney, Sydney, NSW, 2006, Australia
| | - Agnese DiRocco
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, PA, 18902, USA
| | - Min Wang
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, PA, 18902, USA
| | - Jun Zhao
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, PA, 18902, USA
| | - Sankar Addya
- Department of Cancer Biology, Thomas Jefferson University, Bluemle Life Sciences Building, 233 South 10th Street, Philadelphia, PA, 19107, USA
| | - Chenguang Wang
- Department of Cancer Biology, Thomas Jefferson University, Bluemle Life Sciences Building, 233 South 10th Street, Philadelphia, PA, 19107, USA
| | - Peter A McCue
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Bluemle Life Sciences Building, 233 South 10th Street, Philadelphia, PA, 19107, USA
| | - Andrew P South
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Bluemle Life Sciences Building, 233 South 10th Street, Philadelphia, PA, 19107, USA
| | - Carlos Cordon-Cardo
- Department of Pathology, Mt. Sinai, Hospital, 1468 Madison Ave., Floor 15, New York, NY, 10029, USA
| | - Runzhi Liu
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, PA, 18902, USA
| | - Kishan Patel
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, PA, 18902, USA
| | - Rasha Hamid
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, PA, 18902, USA
| | - Jorim Parmar
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, PA, 18902, USA
| | - James B DuHadaway
- Lankenau Institute for Medical Research, 100 East Lancaster Avenue, Wynnewood, PA, 19096, USA
| | - Steven J M Jones
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, BC, VSZ 4S6, Canada
| | - Mathew C Casimiro
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, PA, 18902, USA
- Abraham Baldwin Agricultural College, Department of Science and Mathematics, Box 15, 2802 Moore Highway, Tifton, GA, 31794, USA
| | - Nikolaus Schultz
- Human Oncology and Pathogenesis Program, Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Andrew Kossenkov
- Center for Systems and Computational Biology, The Wistar Institute, 3601 Spruce St., Philadelphia, PA, 19104, USA
| | - Lai Yee Phoon
- Department of Radiation Oncology, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA, USA
| | - Hao Chen
- Department of Radiation Oncology, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA, USA
| | - Li Lan
- Department of Radiation Oncology, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA, USA
| | - Yunguang Sun
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI, USA
| | | | - Hallgeir Rui
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Richard G Pestell
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, PA, 18902, USA.
- The Wistar Cancer Center, Philadelphia, PA, 19104, USA.
| |
Collapse
|
29
|
Yedla P, Babalghith AO, Andra VV, Syed R. PROTACs in the Management of Prostate Cancer. Molecules 2023; 28:molecules28093698. [PMID: 37175108 PMCID: PMC10179857 DOI: 10.3390/molecules28093698] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/15/2023] [Accepted: 04/17/2023] [Indexed: 05/15/2023] Open
Abstract
Cancer treatments with targeted therapy have gained immense interest due to their low levels of toxicity and high selectivity. Proteolysis-Targeting Chimeras (PROTACs) have drawn special attention in the development of cancer therapeutics owing to their unique mechanism of action, their ability to target undruggable proteins, and their focused target engagement. PROTACs selectively degrade the target protein through the ubiquitin-proteasome system, which describes a different mode of action compared to conventional small-molecule inhibitors or even antibodies. Among different cancer types, prostate cancer (PC) is the most prevalent non-cutaneous cancer in men. Genetic alterations and the overexpression of several genes, such as FOXA1, AR, PTEN, RB1, TP53, etc., suppress the immune response, resulting in drug resistance to conventional drugs in prostate cancer. Since the progression of ARV-110 (PROTAC for PC) into clinical phases, the focus of research has quickly shifted to protein degraders targeting prostate cancer. The present review highlights an overview of PROTACs in prostate cancer and their superiority over conventional inhibitors. We also delve into the underlying pathophysiology of the disease and explain the structural design and linkerology strategies for PROTAC molecules. Additionally, we touch on the various targets for PROTAC in prostate cancer, including the androgen receptor (AR) and other critical oncoproteins, and discuss the future prospects and challenges in this field.
Collapse
Affiliation(s)
- Poornachandra Yedla
- Department of Pharmacogenomics, Institute of Translational Research, Asian Healthcare Foundation, Asian Institute of Gastroenterology Hospitals, Gachibowli, Hyderabad 500082, India
| | - Ahmed O Babalghith
- Department of Medical Genetics, Faculty of Medicine, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Vindhya Vasini Andra
- Department of Medical Oncology, Omega Hospitals, Gachibowli, Hyderabad 500032, India
| | - Riyaz Syed
- Department of Chemiinformatics, Centella Scientific, JHUB, Jawaharlal Nehru Technological University, Hyderabad 500085, India
| |
Collapse
|
30
|
Kaitsumaru M, Shiota M, Takamatsu D, Blas L, Matsumoto T, Inokuchi J, Oda Y, Eto M. Interstitial pneumonia after regression by olaparib for neuroendocrine prostate cancer with BRCA1 mutation: a case report. Int Cancer Conf J 2023; 12:131-136. [PMID: 36896198 PMCID: PMC9989121 DOI: 10.1007/s13691-022-00592-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 12/28/2022] [Indexed: 01/04/2023] Open
Abstract
A 67-year-old man with metastatic prostate cancer was treated with leuprorelin and enzalutamide, but presented radiographic progression after 1 year. Although docetaxel chemotherapy was initiated, liver metastasis appeared with elevation of nerve-specific enolase in serum. Pathological findings of needle biopsy of lymph node metastasis in the right inguinal region showed neuroendocrine carcinoma. FoundationOne CDx® using a biopsy sample of the prostate at initial diagnosis detected the BRCA1 mutation (deletion of intron 3-7), but BRACAnalysis® test revealed no BRCA mutation in germline. Then, olaparib treatment was initiated, resulting in remarkable remission of tumors, but comorbidity with interstitial pneumonia. This case suggested that olaparib could be effective for neuroendocrine prostate cancer with BRCA1 gene mutation, but may cause interstitial pneumonia.
Collapse
Affiliation(s)
- Masashi Kaitsumaru
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812–8582 Japan
| | - Masaki Shiota
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812–8582 Japan
| | - Dai Takamatsu
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812–8582 Japan
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Leandro Blas
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812–8582 Japan
| | - Takashi Matsumoto
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812–8582 Japan
| | - Junichi Inokuchi
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812–8582 Japan
| | - Yoshinao Oda
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masatoshi Eto
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812–8582 Japan
| |
Collapse
|
31
|
Gordon N, Gallagher PT, Neupane NP, Mandigo AC, McCann JK, Dylgjeri E, Vasilevskaya I, McNair C, Paller CJ, Kelly WK, Knudsen KE, Shafi AA, Schiewer MJ. PARP inhibition and pharmacological ascorbate demonstrate synergy in castration-resistant prostate cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.23.533944. [PMID: 36993449 PMCID: PMC10055378 DOI: 10.1101/2023.03.23.533944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Prostate cancer (PCa) is the second leading cause of cancer death for men in the United States. While organ-confined disease has reasonable expectation of cure, metastatic PCa is universally fatal upon recurrence during hormone therapy, a stage termed castration-resistant prostate cancer (CRPC). Until such time as molecularly defined subtypes can be identified and targeted using precision medicine, it is necessary to investigate new therapies that may apply to the CRPC population as a whole. The administration of ascorbate, more commonly known as ascorbic acid or Vitamin C, has proved lethal to and highly selective for a variety of cancer cell types. There are several mechanisms currently under investigation to explain how ascorbate exerts anti-cancer effects. A simplified model depicts ascorbate as a pro-drug for reactive oxygen species (ROS), which accumulate intracellularly and generate DNA damage. It was therefore hypothesized that poly(ADP-ribose) polymerase (PARP) inhibitors, by inhibiting DNA damage repair, would augment the toxicity of ascorbate. Results Two distinct CRPC models were found to be sensitive to physiologically relevant doses of ascorbate. Moreover, additional studies indicate that ascorbate inhibits CRPC growth in vitro via multiple mechanisms including disruption of cellular energy dynamics and accumulation of DNA damage. Combination studies were performed in CRPC models with ascorbate in conjunction with escalating doses of three different PARP inhibitors (niraparib, olaparib, and talazoparib). The addition of ascorbate augmented the toxicity of all three PARP inhibitors and proved synergistic with olaparib in both CRPC models. Finally, the combination of olaparib and ascorbate was tested in vivo in both castrated and non-castrated models. In both cohorts, the combination treatment significantly delayed tumor growth compared to monotherapy or untreated control. Conclusions These data indicate that pharmacological ascorbate is an effective monotherapy at physiological concentrations and kills CRPC cells. Ascorbate-induced tumor cell death was associated with disruption of cellular energy dynamics and accumulation of DNA damage. The addition of PARP inhibition increased the extent of DNA damage and proved effective at slowing CRPC growth both in vitro and in vivo. These findings nominate ascorbate and PARPi as a novel therapeutic regimen that has the potential to improve CRPC patient outcomes.
Collapse
Affiliation(s)
- Nicolas Gordon
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Peter T. Gallagher
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | - Amy C. Mandigo
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Jennifer K. McCann
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Emanuela Dylgjeri
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Irina Vasilevskaya
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Christopher McNair
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Channing J. Paller
- Department of Oncology, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Wm. Kevin Kelly
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Karen E. Knudsen
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
- Department of Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Ayesha A. Shafi
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, Bethesda, MD 20817, USA. The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | - Matthew J. Schiewer
- Department of Urology, Thomas Jefferson University, Philadelphia, PA 19107, USA
- Department of Pharmacology/Physiology/Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
- Department of Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
32
|
Satapathy S, Das CK, Aggarwal P, Sood A, Parihar AS, Singh SK, Mittal BR. Genomic characterization of metastatic castration-resistant prostate cancer patients undergoing PSMA radioligand therapy: A single-center experience. Prostate 2023; 83:169-178. [PMID: 36259290 DOI: 10.1002/pros.24450] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/28/2022] [Accepted: 10/05/2022] [Indexed: 12/30/2022]
Abstract
BACKGROUND Genomic defects in DNA-damage repair (DDR) mechanisms have been proposed to affect the radiosensitivity of prostate cancers. In this study, we intended to evaluate the prevalence of genetic alterations in a cohort of metastatic castration-resistant prostate cancer (mCRPC) patients undergoing radioligand therapy (RLT) with prostate-specific membrane antigen (PSMA)-inhibitors as well as the impact of such mutations on treatment outcomes. METHODS Data of consecutive mCRPC patients from 2017 to 2021 who were treated with PSMA-RLT and underwent next-generation sequencing (NGS) were collected and analyzed for response and survival outcomes. RESULTS In 95 patients of mCRPC treated with PSMA-RLT, 15 patients (median age: 66 years, range: 50-73 years; [177 Lu]Lu-PSMA-617, n = 12; [225 Ac]Ac-PSMA-617, n = 3) underwent NGS. The median progression-free survival (PFS) of this cohort was 3 months (95% confidence interval: 1.6-4.4 months). On NGS, 21 genetic alterations were reported in 10/15 (67%) patients, of which 13 were DDR-associated alterations involving the genes: ATM (n = 3), BRCA2 (n = 3), TP53 (n = 2), PTEN (n = 2), FANCD2 (n = 1), FANCM (n = 1), and NBN (n = 1). Overall, 5/15 (33%) patients harbored six pathogenic variants (BRCA2, n = 2; ATM, n = 1; TP53, n = 1; PTEN, n = 2). No significant difference was noted for the biochemical response, radiological response, PFS, and overall survival between the patients with and without genetic alterations. CONCLUSIONS Patients of mCRPC undergoing PSMA-RLT were frequently seen to harbor DDR-associated aberrations, albeit with no significant impact on treatment outcomes. Large prospective trials comparing PSMA-RLT-related outcomes in DDR-deficient and -proficient patients are required to bring out the differences, if any, in a more observable manner.
Collapse
Affiliation(s)
- Swayamjeet Satapathy
- Department of Nuclear Medicine, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Chandan K Das
- Department of Clinical Haematology and Medical Oncology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Piyush Aggarwal
- Department of Nuclear Medicine, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Ashwani Sood
- Department of Nuclear Medicine, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Ashwin S Parihar
- Department of Nuclear Medicine, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Shrawan K Singh
- Department of Urology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Bhagwant R Mittal
- Department of Nuclear Medicine, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
33
|
He W, Xiao Y, Yan S, Zhu Y, Ren S. Cell-free DNA in the management of prostate cancer: Current status and future prospective. Asian J Urol 2022. [PMID: 37538150 PMCID: PMC10394290 DOI: 10.1016/j.ajur.2022.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Objective With the escalating prevalence of prostate cancer (PCa) in China, there is an urgent demand for novel diagnostic and therapeutic approaches. Extensive investigations have been conducted on the clinical implementation of circulating free DNA (cfDNA) in PCa. This review aims to provide a comprehensive overview of the present state of cfDNA as a biomarker for PCa and to examine its merits and obstacles for future clinical utilization. Methods Relevant peer-reviewed manuscripts on cfDNA as a PCa marker were evaluated by PubMed search (2010-2022) to evaluate the roles of cfDNA in PCa diagnosis, prognosis, and prediction, respectively. Results cfDNA is primarily released from cells undergoing necrosis and apoptosis, allowing for non-invasive insight into the genomic, transcriptomic, and epigenomic alterations within various PCa disease states. Next-generation sequencing, among other detection methods, enables the assessment of cfDNA abundance, mutation status, fragment characteristics, and epigenetic modifications. Multidimensional analysis based on cfDNA can facilitate early detection of PCa, risk stratification, and treatment monitoring. However, standardization of cfDNA detection methods is still required to expedite its clinical application. Conclusion cfDNA provides a non-invasive, rapid, and repeatable means of acquiring multidimensional information from PCa patients, which can aid in guiding clinical decisions and enhancing patient management. Overcoming the application barriers of cfDNA necessitates increased data sharing and international collaboration.
Collapse
|
34
|
Akhoundova D, Feng FY, Pritchard CC, Rubin MA. Molecular Genetics of Prostate Cancer and Role of Genomic Testing. Surg Pathol Clin 2022; 15:617-628. [PMID: 36344179 DOI: 10.1016/j.path.2022.08.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Prostate cancer (PCa) is characterized by profound genomic heterogeneity. Recent advances in personalized treatment entail an increasing need of genomic profiling. For localized PCa, gene expression assays can support clinical decisions regarding active surveillance and adjuvant treatment. In metastatic PCa, homologous recombination deficiency, microsatellite instability-high (MSI-H), and CDK12 deficiency constitute main actionable alterations. Alterations in DNA repair genes confer variable sensitivities to poly(ADP-ribose)polymerase inhibitors, and the use of genomic instability assays as predictive biomarker is still incipient. MSI can be assessed by immunohistochemistry To date there is a lack of consensus as to testing standards.
Collapse
Affiliation(s)
- Dilara Akhoundova
- Department for BioMedical Research, University of Bern, Murtenstrasse 24, Bern 3008, Switzerland; Department of Medical Oncology, Inselspital, University Hospital of Bern, Bern 3010, Switzerland
| | - Felix Y Feng
- Department of Radiation Oncology, University of California, 1600 Divisadero Street, Suite H-1031, San Francisco, CA 94115, USA
| | - Colin C Pritchard
- Department of Laboratory Medicine and Pathology, University of Washington, 1959 NE Pacific St Seattle, WA 98195-7110, USA
| | - Mark A Rubin
- Department for BioMedical Research, University of Bern, Murtenstrasse 24, Bern 3008, Switzerland; Bern Center for Precision Medicine, Inselspital, University Hospital of Bern, Bern, 3008, Switzerland.
| |
Collapse
|
35
|
Wasim S, Lee SY, Kim J. Complexities of Prostate Cancer. Int J Mol Sci 2022; 23:14257. [PMID: 36430730 PMCID: PMC9696501 DOI: 10.3390/ijms232214257] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 11/19/2022] Open
Abstract
Prostate cancer has a long disease history and a wide variety and uncertainty in individual patients' clinical progress. In recent years, we have seen a revolutionary advance in both prostate cancer patient care and in the research field. The power of deep sequencing has provided cistromic and transcriptomic knowledge of prostate cancer that has not discovered before. Our understanding of prostate cancer biology, from bedside and molecular imaging techniques, has also been greatly advanced. It is important that our current theragnostic schemes, including our diagnostic modalities, therapeutic responses, and the drugs available to target non-AR signaling should be improved. This review article discusses the current progress in the understanding of prostate cancer biology and the recent advances in diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Sobia Wasim
- Department of Neuroscience, College of Medicine, Gachon University, Incheon 21936, Republic of Korea
| | - Sang-Yoon Lee
- Department of Neuroscience, College of Medicine, Gachon University, Incheon 21936, Republic of Korea
| | - Jaehong Kim
- Department of Biochemistry, College of Medicine, Gachon University, Incheon 21999, Republic of Korea
| |
Collapse
|
36
|
Lieb V, Abdulrahman A, Weigelt K, Hauch S, Gombert M, Guzman J, Bellut L, Goebell PJ, Stöhr R, Hartmann A, Wullich B, Taubert H, Wach S. Cell-Free DNA Sequencing Reveals Gene Variants in DNA Damage Repair Genes Associated with Prognosis of Prostate Cancer Patients. Cells 2022; 11:cells11223618. [PMID: 36429046 PMCID: PMC9688453 DOI: 10.3390/cells11223618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/04/2022] [Accepted: 11/11/2022] [Indexed: 11/18/2022] Open
Abstract
In the present study, we further analyzed the data obtained in our previous study, where we investigated the cell-free DNA (cfDNA) of 34 progressive prostate cancer patients via targeted sequencing. Here, we studied the occurrence and prognostic impact of sequence variants according to their clinical pathological significance (CPS) or their functional impact (FI) in 23 DNA damage repair (DDR) genes with a focus on the ATM serine/threonine kinase gene (ATM). All patients had at least one DDR gene with a CPS or FI variant. Kaplan-Meier analysis indicated that the group with a higher number of CPS variants in DDR genes had a shorter time to treatment change (TTC) compared to the group with a lower number of CPS variants (p = 0.038). Analysis of each DDR gene revealed that CPS variants in the ATM gene and FI variants in the nibrin (NBN) gene showed a shorter TTC (p = 0.034 and p = 0.042). In addition, patients with CPS variants in the ATM gene had shorter overall survival (OS; p = 0.022) and disease-specific survival (DSS; p = 0.010) than patients without these variants. Interestingly, patients with CPS variants in seven DDR genes possessed a better OS (p = 0.008) and DSS (p = 0.009), and patients with FI variants in four DDR genes showed a better OS (p = 0.007) and DSS (p = 0.008). Together, these findings demonstrated that the analysis of cfDNA for gene variants in DDR genes provides prognostic information that may be helpful for future temporal and targeted treatment decisions for advanced PCa patients.
Collapse
Affiliation(s)
- Verena Lieb
- Department of Urology and Pediatric Urology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), 91054 Erlangen, Germany
| | - Amer Abdulrahman
- Department of Urology and Pediatric Urology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), 91054 Erlangen, Germany
| | - Katrin Weigelt
- Department of Urology and Pediatric Urology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), 91054 Erlangen, Germany
| | | | | | - Juan Guzman
- Department of Urology and Pediatric Urology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), 91054 Erlangen, Germany
| | - Laura Bellut
- Department of Urology and Pediatric Urology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), 91054 Erlangen, Germany
| | - Peter J. Goebell
- Department of Urology and Pediatric Urology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), 91054 Erlangen, Germany
| | - Robert Stöhr
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), 91054 Erlangen, Germany
- Institute of Pathology, University Hospital Erlangen, FAU Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Arndt Hartmann
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), 91054 Erlangen, Germany
- Institute of Pathology, University Hospital Erlangen, FAU Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Bernd Wullich
- Department of Urology and Pediatric Urology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), 91054 Erlangen, Germany
| | - Helge Taubert
- Department of Urology and Pediatric Urology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), 91054 Erlangen, Germany
- Correspondence: ; Tel.: +49-93138523373
| | - Sven Wach
- Department of Urology and Pediatric Urology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), 91054 Erlangen, Germany
| |
Collapse
|
37
|
Wu MS, Goldberg H. Role of Rucaparib in the Treatment of Prostate Cancer: Clinical Perspectives and Considerations. Cancer Manag Res 2022; 14:3159-3174. [PMID: 36411744 PMCID: PMC9675324 DOI: 10.2147/cmar.s353411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 11/05/2022] [Indexed: 11/16/2022] Open
Abstract
Prostate cancer is one of the most common types of cancer worldwide and has strong genetic associations. This is important for the development of therapeutics for the condition, as metastatic castrate-resistant prostate cancer (mCRPC) is resistant to standard androgen deprivation therapy (ADT) and has a relatively poor prognosis. We conducted a literature review on rucaparib, a poly(adenosine diphosphate-ribose) polymerase (PARP) inhibitor that is currently indicated for the treatment of patients with mCRPC who harbor mutations in BRCA1/2 (homologous recombination repair [HRR] genes) and who have already tried androgen receptor-axis-targeted therapies (ARAT) and a taxane chemotherapy. We describe rucaparib's FDA approval, which was based on the results of the single-arm, open-label, Phase II TRITON2 clinical trial, which found an objective response rate (ORR) of 43.5%, a duration of response (DOR) of over six months in length and an acceptable safety profile. Rucaparib's dosage and clinical considerations for use were also discussed. We also compared rucaparib's use and safety profile with Olaparib, niraparib and talazoparib, three other PARP inhibitors tested for the treatment of mCRPC. Overall, initial results show that the safety profile of all four drugs in mCRPC was relatively similar, and further testing is currently indicated for all four. Differences in their metabolism, however, also warrant further research. The clinical validity of rucaparib will be tested by the follow-up TRITON3 clinical trial, which is comparing the effect of rucaparib compared to standard therapies for mCRPC harboring BRCA1/2 or ATM mutations. Other than TRITON3, other clinical trials are testing rucaparib's ability against other cancers (prostate or otherwise) with HRR mutations, and also the efficacy of combination therapies involving rucaparib. Finally, more research is needed to elucidate rucaparib's effect on HRR mutations other than BRCA1/2. Advancements in understanding the genetic landscape of mCRPC will also assist in understanding rucaparib's full therapeutic potential.
Collapse
Affiliation(s)
- Maximillian S Wu
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Hanan Goldberg
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA
| |
Collapse
|
38
|
Zhao J, Zhang C, Wang W, Li C, Mu X, Hu K. Current progress of nanomedicine for prostate cancer diagnosis and treatment. Biomed Pharmacother 2022; 155:113714. [PMID: 36150309 DOI: 10.1016/j.biopha.2022.113714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 11/02/2022] Open
Abstract
Prostate cancer (PCa) is the most common new cancer case and the second most fatal malignancy in men. Surgery, endocrine therapy, radiotherapy and chemotherapy are the main clinical treatment options for PCa. However, most prostate cancers can develop into castration-resistant prostate cancer (CRPC), and due to the invasiveness of prostate cancer cells, they become resistant to different treatments and activate tumor-promoting signaling pathways, thereby inducing chemoresistance, radioresistance, ADT resistance, and immune resistance. Nanotechnology, which can combine treatment with diagnostic imaging tools, is emerging as a promising treatment modality in prostate cancer therapy. Nanoparticles can not only promote their accumulation at the pathological site through passive targeting techniques for enhanced permeability and retention (EPR), but also provide additional advantages for active targeting using different ligands. This property results in a reduced drug dose to achieve the desired effect, a longer duration of action within the tumor and fewer side effects on healthy tissues. In addition, nanotechnology can create good synergy with radiotherapy, chemotherapy, thermotherapy, photodynamic therapy and gene therapy to enhance their therapeutic effects with greater scope, and reduce the resistance of prostate cancer. In this article, we intend to review and discuss the latest technologies regarding the use of nanomaterials as therapeutic and diagnostic tools for prostate cancer.
Collapse
Affiliation(s)
- Jiang Zhao
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Chi Zhang
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Weihao Wang
- Department of Plastic and Reconstructive Surgery, The First Hospital of Jilin University, Changchun 130021, China
| | - Chen Li
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun 130021, China
| | - Xupeng Mu
- Scientific Research Center, China-Japan Union Hospital, Jilin University, Changchun 130033, China.
| | - Kebang Hu
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China.
| |
Collapse
|
39
|
Matsumoto T, Shiota M, Blas L, Eto M. Role of Olaparib in the Management of Metastatic Castration-Resistant Prostate Cancer: A Japanese Clinician's Perspective. Cancer Manag Res 2022; 14:2389-2397. [PMID: 35967752 PMCID: PMC9373991 DOI: 10.2147/cmar.s326114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 08/01/2022] [Indexed: 11/23/2022] Open
Abstract
Several studies have identified various targetable genomic alterations in prostate cancer, which accumulate during carcinogenesis and cancer progression. Genomic alterations in genes involved in DNA damage repair by homologous recombination repair may predict increased sensitivity to poly-ADP ribose polymerase (PARP) inhibitors. The Phase 3 PROfound trial has shown that treatment with the PARP inhibitor olaparib was associated with an improved radiographic progression-free survival and overall survival among patients with homologous recombination repair-deficient metastatic castration-resistant prostate cancer (mCRPC) after the treatment with androgen receptor targeting therapy, especially in men with BRCA1 or BRCA2 mutation. In Japan, olaparib was approved in December 2020 for the treatment of mCRPC with BRCA1 or BRCA2 mutation. In addition, genetic tests to detect BRCA1 or BRCA2 mutation to select patients who are likely to benefit from olaparib were also approved. This review summarizes the status of olaparib treatment for mCRPC, focusing on the situation in Japan.
Collapse
Affiliation(s)
- Takashi Matsumoto
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masaki Shiota
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Leandro Blas
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masatoshi Eto
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
40
|
Homologous recombination deficiency (HRD) score in aggressive prostatic adenocarcinoma with or without intraductal carcinoma of the prostate (IDC-P). BMC Med 2022; 20:237. [PMID: 35864546 PMCID: PMC9306093 DOI: 10.1186/s12916-022-02430-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 06/07/2022] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Intraductal carcinoma of the prostate (IDC-P) is a subtype of prostate cancer featured by poor prognosis. Previous studies suggested IDC-P could have a potentially unstable genome. Homologous recombination deficiency (HRD) score is a result-oriented method to describe the genomic instability status. This study investigates the association of HRD scores with IDC-P and other clinicopathological factors and the prognostic implication of HRD scores in an aggressive prostate cancer cohort. METHODS This study involved 123 PCa patients, including high-risk localized (M0) and de novo metastatic (M1) diseases. HRD score is calculated based on over 10,000 single-nucleotide polymorphisms distributed across the human genome. We explored the association between HRD scores and clinicopathological characteristics, genomic alterations, and patients' prognoses using rank-sum tests, chi-square tests, Kaplan-Meier curves, and Cox proportional hazards method. RESULTS The median HRD score of this cohort is 21.0, with 65 (52.8%) patients showing HRD score≥21. Tumors with IDC-P displayed higher HRD scores than adenocarcinoma (P=0.002); other high HRD score-related factors included M1 (P =0.008) and high ISUP grades (4-5) (P=0.001). MYC mutations were associated with high HRD scores (P<0.001) in the total cohort. TP53 mutations (P=0.010) and HRR pathway mutations (P=0.028) corresponded to high HRD scores in IDC-P positive and non-IDC-P patients, respectively, but not vice versa. HRD scores higher than 21 indicated significantly worse survival in the total cohort. CONCLUSIONS M1, high Gleason score, and IDC-P pathology represent higher HRD scores in PCa. Tumors with IDC-P might have different driven mechanisms for high HRD scores than non-IDC-P. HRD score displayed prognostic value in this aggressive prostate cancer cohort.
Collapse
|
41
|
Symonds L, Konnick E, Vakar-Lopez F, Cheng HH, Schweizer MT, Nelson PS, Pritchard CC, Montgomery B. BRCA2 Alterations in Neuroendocrine/Small-Cell Carcinoma Prostate Cancer: A Case Series. JCO Precis Oncol 2022; 6:e2200091. [PMID: 35834759 DOI: 10.1200/po.22.00091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Lynn Symonds
- Division of Medical Oncology, University of Washington, Seattle, WA
| | - Erik Konnick
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA
| | - Funda Vakar-Lopez
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA
| | - Heather H Cheng
- Division of Medical Oncology, University of Washington, Seattle, WA.,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Michael T Schweizer
- Division of Medical Oncology, University of Washington, Seattle, WA.,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Peter S Nelson
- Division of Medical Oncology, University of Washington, Seattle, WA.,Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA.,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA.,Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Colin C Pritchard
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA.,Brotman Baty Institute for Precision Medicine, Seattle, WA
| | - Bruce Montgomery
- Division of Medical Oncology, University of Washington, Seattle, WA.,VA Puget Sound and Precision Oncology Program for Cancer of the Prostate, Seattle, WA
| |
Collapse
|
42
|
Finch A, Clark R, Vesprini D, Lorentz J, Kim RH, Thain E, Fleshner N, Akbari MR, Cybulski C, Narod SA. An appraisal of genetic testing for prostate cancer susceptibility. NPJ Precis Oncol 2022; 6:43. [PMID: 35732815 PMCID: PMC9217944 DOI: 10.1038/s41698-022-00282-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 05/13/2022] [Indexed: 11/09/2022] Open
Abstract
Most criteria for genetic testing for prostate cancer susceptibility require a prior diagnosis of prostate cancer, in particular cases with metastatic disease are selected. Advances in the field are expected to improve outcomes through tailored treatments for men with advanced prostate cancer with germline pathogenic variants, although these are not currently offered in the curative setting. A better understanding of the value of genetic testing for prostate cancer susceptibility in screening, for early detection and prevention is necessary. We review and summarize the literature describing germline pathogenic variants in genes associated with increased prostate cancer risk and aggressivity. Important questions include: what is our ability to screen for and prevent prostate cancer in a man with a germline pathogenic variant and how does knowledge of a germline pathogenic variant influence treatment of men with nonmetastatic disease, with hormone-resistant disease and with metastatic disease? The frequency of germline pathogenic variants in prostate cancer is well described, according to personal and family history of cancer and by stage and grade of disease. The role of these genes in aggressive prostate cancer is also discussed. It is timely to consider whether or not genetic testing should be offered to all men with prostate cancer. The goals of testing are to facilitate screening for early cancers in unaffected high-risk men and to prevent advanced disease in men with cancer.
Collapse
Affiliation(s)
- Amy Finch
- Women's College Research Institute, Women's College Hospital, Toronto, Ontario, Canada
| | - Roderick Clark
- Women's College Research Institute, Women's College Hospital, Toronto, Ontario, Canada
- Division of Urology, University of Toronto, Ontario, Canada
| | - Danny Vesprini
- Department of Radiation Oncology, Sunnybrook Health Sciences Center, University of Toronto, Ontario, Canada
| | - Justin Lorentz
- Department of Radiation Oncology, Sunnybrook Health Sciences Center, University of Toronto, Ontario, Canada
| | - Raymond H Kim
- Familial Cancer Clinic, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Emily Thain
- Familial Cancer Clinic, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Neil Fleshner
- Division of Urology, Departments of Surgery and Surgical Oncology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Mohammad R Akbari
- Women's College Research Institute, Women's College Hospital, Toronto, Ontario, Canada
- Dalla Lana School of Public Health, University of Toronto, Ontario, Canada
| | - Cezary Cybulski
- Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Steven A Narod
- Women's College Research Institute, Women's College Hospital, Toronto, Ontario, Canada.
- Dalla Lana School of Public Health, University of Toronto, Ontario, Canada.
| |
Collapse
|
43
|
Pacheco-Barcia V, Muñoz A, Castro E, Ballesteros AI, Marquina G, González-Díaz I, Colomer R, Romero-Laorden N. The Homologous Recombination Deficiency Scar in Advanced Cancer: Agnostic Targeting of Damaged DNA Repair. Cancers (Basel) 2022; 14:2950. [PMID: 35740616 PMCID: PMC9221128 DOI: 10.3390/cancers14122950] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 12/24/2022] Open
Abstract
BRCA1 and BRCA2 are the most recognized tumor-suppressor genes involved in double-strand DNA break repair through the homologous recombination (HR) system. Widely known for its role in hereditary cancer, HR deficiency (HRD) has turned out to be critical beyond breast and ovarian cancer: for prostate and pancreatic cancer also. The relevance for the identification of these patients exceeds diagnostic purposes, since results published from clinical trials with poly-ADP ribose polymerase (PARP) inhibitors (PARPi) have shown how this type of targeted therapy can modify the long-term evolution of patients with HRD. Somatic aberrations in other HRD pathway genes, but also indirect genomic instability as a sign of this DNA repair impairment (known as HRD scar), have been reported to be relevant events that lead to more frequently than expected HR loss of function in several tumor types, and should therefore be included in the current diagnostic and therapeutic algorithm. However, the optimal strategy to identify HRD and potential PARPi responders in cancer remains undefined. In this review, we summarize the role and prevalence of HRD across tumor types and the current treatment landscape to guide the agnostic targeting of damaged DNA repair. We also discuss the challenge of testing patients and provide a special insight for new strategies to select patients who benefit from PARPi due to HRD scarring.
Collapse
Affiliation(s)
- Vilma Pacheco-Barcia
- Department of Medical Oncology, School of Medicine, Alcala University (UAH), Hospital Central de la Defensa “Gómez Ulla”, 28047 Madrid, Spain;
| | - Andrés Muñoz
- Department of Medical Oncology, Hospital Universitario Gregorio Marañón, 28007 Madrid, Spain;
| | - Elena Castro
- Department of Medical Oncology, Instituto de Investigación Biomédica de Málaga (IBIMA), 29590 Málaga, Spain;
| | - Ana Isabel Ballesteros
- Department of Medical Oncology, Hospital Universitario La Princesa, 28006 Madrid, Spain; (A.I.B.); (R.C.)
| | - Gloria Marquina
- Department of Medical Oncology, Department of Medicine, School of Medicine, Complutense University (UCM), Hospital Universitario Clínico San Carlos, IdISSC, 28040 Madrid, Spain;
| | - Iván González-Díaz
- Department of Obstetrics and Gynecology, Hospital Universitario Severo Ochoa, 28911 Madrid, Spain;
| | - Ramon Colomer
- Department of Medical Oncology, Hospital Universitario La Princesa, 28006 Madrid, Spain; (A.I.B.); (R.C.)
| | - Nuria Romero-Laorden
- Department of Medical Oncology, Hospital Universitario La Princesa, 28006 Madrid, Spain; (A.I.B.); (R.C.)
| |
Collapse
|
44
|
Gulliver C, Hoffmann R, Baillie GS. Ataxia-telangiectasia mutated and ataxia telangiectasia and Rad3-related kinases as therapeutic targets and stratification indicators for prostate cancer. Int J Biochem Cell Biol 2022; 147:106230. [PMID: 35609768 DOI: 10.1016/j.biocel.2022.106230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/05/2022] [Accepted: 05/18/2022] [Indexed: 12/15/2022]
Abstract
The DNA damage response is an integral part of a cells' ability to maintain genomic integrity by responding to and ameliorating DNA damage, or initiating cell death for irrepairably damaged cells. This response is often hijacked by cancer cells to evade cell death allowing mutant cells to persist, as well as in the development of treatment resistance to DNA damaging agents such as chemotherapy and radiation. Prostate cancer (PCa) cells often exhibit alterations in DNA damage response genes including ataxia telangiectasia mutated (ATM), correlating with aggressive disease phenotype. The recent success of Poly (ADP-ribose) polymerase (PARP) inhibition has led to several clinically approved PARP inhibitors for the treatment of men with metastatic PCa, however a key limitation is the development of drug resistance and relapse. An alternative approach is selectively targeting ATM and ataxia telangiectasia and Rad3-related (ATR) which, due to their position at the forefront of the DDR, represent attractive pharmacological targets. ATR inhibition has been shown to act synergistically with PARP inhibition and other cancer treatments to enhance anti-tumour activity. ATM-deficiency is a common characteristic of PCa and a synthetic lethal relationship exists between ATM and ATR, with ATR inhibition inducing selective cell death in ATM-deficient PCa cells. The current research highlights the feasibility of therapeutically targeting ATR in ATM-deficient prostate tumours and in combination with other treatments to enhance overall efficacy and reduce therapeutic resistance. ATM also represents an important molecular biomarker to stratify patients into targeted treatment groups and aid prognosis for personalised medicine.
Collapse
Affiliation(s)
- Chloe Gulliver
- Institute of Cardiovascular and Medical Science, College of Veterinary, Medical and Life Science, University of Glasgow, Glasgow, UK.
| | - Ralf Hoffmann
- Institute of Cardiovascular and Medical Science, College of Veterinary, Medical and Life Science, University of Glasgow, Glasgow, UK; Philips Research Europe, High Tech Campus, Eindhoven, the Netherlands.
| | - George S Baillie
- Institute of Cardiovascular and Medical Science, College of Veterinary, Medical and Life Science, University of Glasgow, Glasgow, UK.
| |
Collapse
|
45
|
Lozano R, Olmos D, Castro E. Implications of DNA damage repair alterations for the management of prostate cancer. Curr Opin Urol 2022; 32:302-310. [PMID: 35266912 DOI: 10.1097/mou.0000000000000983] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW In this review, we summarize the prevalence of alterations in DNA damage repair (DDR) genes in prostate cancer, their clinical significance, the therapeutic strategies developed to take advantage of the impaired tumour ability to repair DNA and the diagnostic approaches available to identify patients likely to benefit from DDR-targeting agents. RECENT FINDINGS DDR alterations are more frequent in metastatic than in localized prostate cancer and some of them associate with aggressive disease whereas the significance of others remain unclear. The most appropriate management approach for DDR-defective prostate cancer patients is unknown. Clinical trials have demonstrated the efficacy of different poly-ADP ribose polymerase inhibitors (PARPi) to treat metastatic castration-resistant prostate cancer patients with BRCA1/2 alterations, although there may be other DDR alterations that sensitize patients to these drugs. Multiple strategies to target DDR defects are being investigated, including PARPi in combination, platinum-based chemotherapy and immunotherapy, both in earlier and late disease stages. Optimization of molecular testing is paramount for the implementation of precision oncology in prostate cancer. SUMMARY Certain DDR defects present in prostate cancer have prognostic and therapeutic implications whereas the significance of other DDR alterations is yet to be elucidated.
Collapse
Affiliation(s)
- Rebeca Lozano
- Department of Medical Oncology, Salamanca University Hospital, Salamanca
| | - David Olmos
- Department of Medical Oncology, 12 Octubre University Hospital, Madrid
- Research Institute Hospital 12 de Octubre, Madrid
- Genitourinary Cancers Traslational Research Group, Institute of Biomedical Research in Malaga (IBIMA), Malaga
| | - Elena Castro
- Genitourinary Cancers Traslational Research Group, Institute of Biomedical Research in Malaga (IBIMA), Malaga
- Department of Medical Oncology, Virgen de la Victoria University Hospital, Malaga, Spain
| |
Collapse
|
46
|
DNA Damage Response Inhibitors in Cholangiocarcinoma: Current Progress and Perspectives. Cells 2022; 11:cells11091463. [PMID: 35563769 PMCID: PMC9101358 DOI: 10.3390/cells11091463] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/16/2022] [Accepted: 04/24/2022] [Indexed: 12/27/2022] Open
Abstract
Cholangiocarcinoma (CCA) is a poorly treatable type of cancer and its incidence is dramatically increasing. The lack of understanding of the biology of this tumor has slowed down the identification of novel targets and the development of effective treatments. Based on next generation sequencing profiling, alterations in DNA damage response (DDR)-related genes are paving the way for DDR-targeting strategies in CCA. Based on the notion of synthetic lethality, several DDR-inhibitors (DDRi) have been developed with the aim of accumulating enough DNA damage to induce cell death in tumor cells. Observing that DDRi alone could be insufficient for clinical use in CCA patients, the combination of DNA-damaging regimens with targeted approaches has started to be considered, as evidenced by many emerging clinical trials. Hence, novel therapeutic strategies combining DDRi with patient-specific targeted drugs could be the next level for treating cholangiocarcinoma.
Collapse
|
47
|
Dalmasso B, Puccini A, Catalano F, Borea R, Iaia ML, Bruno W, Fornarini G, Sciallero S, Rebuzzi SE, Ghiorzo P. Beyond BRCA: The Emerging Significance of DNA Damage Response and Personalized Treatment in Pancreatic and Prostate Cancer Patients. Int J Mol Sci 2022; 23:4709. [PMID: 35563100 PMCID: PMC9099822 DOI: 10.3390/ijms23094709] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 12/07/2022] Open
Abstract
The BRCA1/2 germline and/or somatic pathogenic variants (PVs) are key players in the hereditary predisposition and therapeutic response for breast, ovarian and, more recently, pancreatic and prostate cancers. Aberrations in other genes involved in homologous recombination and DNA damage response (DDR) pathways are being investigated as promising targets in ongoing clinical trials. However, DDR genes are not routinely tested worldwide. Due to heterogeneity in cohort selection and dissimilar sequencing approaches across studies, neither the burden of PVs in DDR genes nor the prevalence of PVs in genes in common among pancreatic and prostate cancer can be easily quantified. We aim to contextualize these genes, altered in both pancreatic and prostate cancers, in the DDR process, to summarize their hereditary and somatic burden in different studies and harness their deficiency for cancer treatments in the context of currently ongoing clinical trials. We conclude that the inclusion of DDR genes, other than BRCA1/2, shared by both cancers considerably increases the detection rate of potentially actionable variants, which are triplicated in pancreatic and almost doubled in prostate cancer. Thus, DDR alterations are suitable targets for drug development and to improve the outcome in both pancreatic and prostate cancer patients. Importantly, this will increase the detection of germline pathogenic variants, thereby patient referral to genetic counseling.
Collapse
Affiliation(s)
- Bruna Dalmasso
- IRCCS Ospedale Policlinico San Martino, Genetics of Rare Cancers, 16132 Genoa, Italy; (B.D.); (W.B.)
| | - Alberto Puccini
- IRCCS Ospedale Policlinico San Martino, Medical Oncology Unit 1, 16132 Genoa, Italy; (A.P.); (F.C.); (R.B.); (M.L.I.); (G.F.); (S.S.)
| | - Fabio Catalano
- IRCCS Ospedale Policlinico San Martino, Medical Oncology Unit 1, 16132 Genoa, Italy; (A.P.); (F.C.); (R.B.); (M.L.I.); (G.F.); (S.S.)
| | - Roberto Borea
- IRCCS Ospedale Policlinico San Martino, Medical Oncology Unit 1, 16132 Genoa, Italy; (A.P.); (F.C.); (R.B.); (M.L.I.); (G.F.); (S.S.)
| | - Maria Laura Iaia
- IRCCS Ospedale Policlinico San Martino, Medical Oncology Unit 1, 16132 Genoa, Italy; (A.P.); (F.C.); (R.B.); (M.L.I.); (G.F.); (S.S.)
| | - William Bruno
- IRCCS Ospedale Policlinico San Martino, Genetics of Rare Cancers, 16132 Genoa, Italy; (B.D.); (W.B.)
- Department of Internal Medicine and Medical Specialties, University of Genoa, 16132 Genoa, Italy;
| | - Giuseppe Fornarini
- IRCCS Ospedale Policlinico San Martino, Medical Oncology Unit 1, 16132 Genoa, Italy; (A.P.); (F.C.); (R.B.); (M.L.I.); (G.F.); (S.S.)
| | - Stefania Sciallero
- IRCCS Ospedale Policlinico San Martino, Medical Oncology Unit 1, 16132 Genoa, Italy; (A.P.); (F.C.); (R.B.); (M.L.I.); (G.F.); (S.S.)
| | - Sara Elena Rebuzzi
- Department of Internal Medicine and Medical Specialties, University of Genoa, 16132 Genoa, Italy;
- Ospedale San Paolo, Medical Oncology, 17100 Savona, Italy
| | - Paola Ghiorzo
- IRCCS Ospedale Policlinico San Martino, Genetics of Rare Cancers, 16132 Genoa, Italy; (B.D.); (W.B.)
- Department of Internal Medicine and Medical Specialties, University of Genoa, 16132 Genoa, Italy;
| |
Collapse
|
48
|
[Molecular diagnostics and molecular tumor board in uro-oncology : Precision medicine using the example of metastatic castration-resistant prostate cancer]. Urologe A 2022; 61:311-322. [PMID: 35157098 DOI: 10.1007/s00120-022-01784-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/26/2022] [Indexed: 10/19/2022]
Abstract
Novel approaches to molecular tumor profiling evaluate DNA, RNA and protein alterations to create a detailed molecular map that enables precise and personalized treatment decisions. As the field of molecular profiling is constantly evolving, the training and networking of doctors is of decisive importance. Through the establishment of precision medicine with precision oncological consultations supported by interdisciplinary molecular tumor boards, many patients with difficult to treat tumor diseases can be advised and treated. Many pathophysiological relationships in progressive tumors can be elucidated resulting in new therapeutic options for the profiled patients; however, understanding the complex mutational profiles remains a very demanding task that requires a suitably trained and committed team that should be in close contact with the scientific advancements in precision oncology.
Collapse
|
49
|
PARP Inhibitors and Radiometabolic Approaches in Metastatic Castration-Resistant Prostate Cancer: What’s Now, What’s New, and What’s Coming? Cancers (Basel) 2022; 14:cancers14040907. [PMID: 35205654 PMCID: PMC8869833 DOI: 10.3390/cancers14040907] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/03/2022] [Accepted: 02/08/2022] [Indexed: 12/04/2022] Open
Abstract
Simple Summary Prostate cancer still represents an important health problem in men, considering its high frequency. Over the last decade, novel treatment options have emerged, leading to notable clinical benefits. These recent scientific acquisitions are creating the basis to widen the treatment scenario of this tumor, evolving from targeting the androgen receptor axis or the traditional chemotherapy approach. Abstract In recent years, the advances in the knowledge on the molecular characteristics of prostate cancer is allowing to explore novel treatment scenarios. Furthermore, technological discoveries are widening diagnostic and treatment weapons at the clinician disposal. Among these, great relevance is being gained by PARP inhibitors and radiometabolic approaches. The result is that DNA repair genes need to be altered in a high percentage of patients with metastatic prostate cancer, making these patients optimal candidates for PARP inhibitors. These compounds have already been proved to be active in pretreated patients and are currently being investigated in other settings. Radiometabolic approaches combine specific prostate cancer cell ligands to radioactive particles, thus allowing to deliver cytotoxic radiations in cancer cells. Among these, radium-223 and lutetium-177 have shown promising activity in metastatic pretreated prostate cancer patients and further studies are ongoing to expand the applications of this therapeutic approach. In addition, nuclear medicine techniques also have an important diagnostic role in prostate cancer. Herein, we report the state of the art on the knowledge on PARP inhibitors and radiometabolic approaches in advanced prostate cancer and present ongoing clinical trials that will hopefully expand these two treatment fields.
Collapse
|
50
|
Leith A, Ribbands A, Kim J, Last M, Barlow S, Yang L, Ghate SR. Real-world homologous recombination repair mutation testing in metastatic castration-resistant prostate cancer in the USA, Europe and Japan. Future Oncol 2022; 18:937-951. [DOI: 10.2217/fon-2021-1113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Aim: To assess homologous recombination repair mutation (HRRm) testing patterns in metastatic castration-resistant prostate cancer. Methods: A point-in-time, international survey conducted January–August 2020. Results: Three-quarters of physicians (oncologists, urologists, specialist surgeons) globally reported access to genetic/genomic testing and just over half were HRRm testers. Surveyed physicians reported HRRm testing and positivity rates for 1913 patients, which were 18.1% and 33.7%, respectively. Of patients tested (n = 347), the most common HRR genes tested were BRCA (91.6%) and ATM (47.3%). Conclusion: Overall testing rates were low, with physicians mostly testing patients they considered higher risk. Increased awareness and education are needed to encourage broader testing, to understand familial risk and to identify patients with worse outcomes or those eligible for life-prolonging treatments.
Collapse
Affiliation(s)
| | | | - Jeri Kim
- Merck & Co., Inc., Kenilworth, NJ, USA
| | | | | | - Lingfeng Yang
- Merck & Co., Inc., Kenilworth, NJ, USA
- Employee at the time the study was conducted
| | | |
Collapse
|