1
|
Zhang T, Yang J, Li S, Shi X, Yang J. Ovarian squamous cell carcinoma: clinicopathological features, prognosis and immunotherapy outcomes. J Gynecol Oncol 2025; 36:36.e54. [PMID: 39791511 DOI: 10.3802/jgo.2025.36.e54] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/21/2024] [Accepted: 11/11/2024] [Indexed: 01/12/2025] Open
Abstract
OBJECTIVE To explore the characteristics and survival outcomes of ovarian squamous cell carcinoma (SCC) and the treatment effectiveness of immune checkpoint inhibitors (ICIs). METHODS Patients diagnosed with ovarian SCC at Peking Union Medical College Hospital between January 2000 and September 2023 were included. Overall survival (OS) and progression-free survival (PFS) were analyzed using the Kaplan-Meier method. Univariate and multivariate analysis of OS were performed using the Cox proportional hazards model. RESULTS A total of 42 patients were included, with a median age of 51.5 years (range, 23-74). The majority had SCC arising from teratomas (54.8%), followed by endometriosis (14.3%) and Brenner's tumor (2.4%). Patients undergoing molecular testing exhibited a median tumor mutation burden (TMB) of 10.00 mutations/Mb (range, 7.28-46.86), predominantly featuring PIK3CA mutations. Thirty-eight patients (90.5%) received adjuvant chemotherapy. The median OS was 42.0 months, with the 1- and 5-year OS rates were 73.7% and 48.7%, respectively. And the median PFS was 26.9 months, with the 1- and 5-year PFS rates were 57.5% and 43.8%, respectively. Five patients underwent first-line postoperative adjuvant therapy combining ICIs with chemotherapy. During the 9.5 to 25.1 months follow-up, 4 patients showed no evidence of disease, while 1 relapsed and received treatment. Late-stage disease and younger age at diagnosis were associated with worse survival outcomes. CONCLUSION The prognosis for ovarian SCC remains unfavorable. The stage and age were prognostic predictors for survival. ICIs may be beneficial for patients with ovarian SCC, particularly those with a high TMB.
Collapse
Affiliation(s)
- Tianyu Zhang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, National Clinical Research Center for Obstetric & Gynecologic Diseases, Beijing, China
| | - Jie Yang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, National Clinical Research Center for Obstetric & Gynecologic Diseases, Beijing, China.
| | - Sijian Li
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, National Clinical Research Center for Obstetric & Gynecologic Diseases, Beijing, China
| | - Xiaohua Shi
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Jiaxin Yang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, National Clinical Research Center for Obstetric & Gynecologic Diseases, Beijing, China
| |
Collapse
|
2
|
Stephan A, Suhrmann JH, Skowron MA, Che Y, Poschmann G, Petzsch P, Kresbach C, Wruck W, Pongratanakul P, Adjaye J, Stühler K, Köhrer K, Schüller U, Nettersheim D. Molecular and epigenetic ex vivo profiling of testis cancer-associated fibroblasts and their interaction with germ cell tumor cells and macrophages. Matrix Biol 2024; 132:10-23. [PMID: 38851302 DOI: 10.1016/j.matbio.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/10/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024]
Abstract
Germ cell tumors (GCT) are the most common solid tumors in young men of age 15 - 40. In previous studies, we profiled the interaction of GCT cells with cells of the tumor microenvironment (TM), which showed that especially the 3D interaction of fibroblasts (FB) or macrophages with GCT cells influenced the growth behavior and cisplatin response as well as the transcriptome and secretome of the tumor cells, suggesting that the crosstalk of these cells with GCT cells is crucial for tumor progression and therapy outcome. In this study, we shed light on the mechanisms of activation of cancer-associated fibroblasts (CAF) in the GCT setting and their effects on GCT cells lines and the monocyte cell line THP-1. Ex vivo cultures of GCT-derived CAF were established and characterized molecularly and epigenetically by performing DNA methylation arrays, RNA sequencing, and mass spectrometry-based secretome analysis. We demonstrated that the activation state of CAF is influenced by their former prevailing tumor environment in which they have resided. Hereby, we postulate that seminoma (SE) and embryonal carcinoma (EC) activate CAF, while teratoma (TER) play only a minor role in CAF formation. In turn, CAF influence proliferation and the expression of cisplatin sensitivity-related factors in GCT cells lines as well as polarization of in vitro-induced macrophages by the identified effector molecules IGFBP1, LGALS3BP, LYVE1, and PTX3. Our data suggests that the vital interaction of CAF with GCT cells and with macrophages has a huge influence on shaping the extracellular matrix as well as on recruitment of immune cells to the TM. In conclusion, therapeutically interfering with CAF and / or macrophages in addition to the standard therapy might slow-down progression of GCT and re-shaping of the TM to a tumor-promoting environment. Significance: The interaction of CAF with GCT and macrophages considerably influences the microenvironment. Thus, therapeutically interfering with CAF might slow-down progression of GCT and re-shaping of the microenvironment to a tumor-promoting environment.
Collapse
Affiliation(s)
- Alexa Stephan
- Department of Urology, Urological Research Laboratory, Translational UroOncology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Jan-Henrik Suhrmann
- Department of Urology, Urological Research Laboratory, Translational UroOncology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Margaretha A Skowron
- Department of Urology, Urological Research Laboratory, Translational UroOncology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Yue Che
- Department of Urology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Gereon Poschmann
- Molecular Proteomics Laboratory (MPL), Biological and Medical Research Centre (BMFZ), Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Patrick Petzsch
- Genomics and Transcriptomics Laboratory, Biological and Medical Research Centre (BMFZ), Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Catena Kresbach
- Institute of Neuropathology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Wasco Wruck
- Institute for Stem cell Research and Regenerative Medicine, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Pailin Pongratanakul
- Department of Urology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - James Adjaye
- Institute for Stem cell Research and Regenerative Medicine, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Kai Stühler
- Molecular Proteomics Laboratory (MPL), Biological and Medical Research Centre (BMFZ), Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Karl Köhrer
- Genomics and Transcriptomics Laboratory, Biological and Medical Research Centre (BMFZ), Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Ulrich Schüller
- Institute of Neuropathology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Daniel Nettersheim
- Department of Urology, Urological Research Laboratory, Translational UroOncology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Center for Integrated Oncology Aachen, Bonn, Cologne, Düsseldorf (CIO ABCD), Germany.
| |
Collapse
|
3
|
Seidel C, Paulsen FO, Nestler T, Cathomas R, Hentrich M, Paffenholz P, Bokemeyer C, Heidenreich A, Nettersheim D, Bremmer F. Molecular and histopathological characterization of seminoma patients with highly elevated human chorionic gonadotropin levels in the serum. Virchows Arch 2024; 485:123-130. [PMID: 38097681 PMCID: PMC11271319 DOI: 10.1007/s00428-023-03698-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/31/2023] [Accepted: 11/04/2023] [Indexed: 07/20/2024]
Abstract
Approximately 30% of seminoma (SEM) patients present with moderately elevated human chorionic gonadotropin (hCG) levels at first diagnosis. In case of high hCG serum levels, the presence of a non-SEM component, i.e. choriocarcinoma (CC), may be assumed. To characterize cases described as pure seminoma with high serum hCG levels, tissue samples and DNA were analyzed. Patient files from an international registry were screened for patients with SEM and extraordinarily high hCG serum levels. IHC and qRT-PCR analysis was performed for markers of SEM, embryonal carcinoma (EC) and CC/trophoblast cells. The cell lines TCam-2 (SEM), 2102EP, NCCIT, NT2/D1 (EC) and JAR, JEG3 and BeWo (CC) were included for comparison. Of 1031 SEM patients screened, 39 patients (3.7%) showed hCG serum levels > 1000 U/l. Of these, tumor material for IHC and RNA for qRT-PCR was available from n = 7 patients and n = 3 patients, respectively. Median pre-orchiectomy serum hCG level was 5356 U/l (range: 1224-40909 U/L). Histopathologically, all investigated samples were classified as SEM with syncytiotrophoblast sub-populations. SEM cells were SALL4+ / OCT3/4+ / D2-40+, while syncytiotrophoblast cells were hCG+ / GATA3+ / p63+ and SOX2-/CDX2-. qRT-PCR analysis detected trophoblast stem cell markers CDX2, EOMES and TFAP2C as well as the trophectoderm-specifier TEAD4, but not GATA3. Additionally, SOX17 and PRAME, but not SOX2, were detected, confirming the pure SEM-like gene expression signature of the analyzed samples. In conclusion, excessively increased hCG serum levels can appear in patients with pure SEM. To explain detectable hCG serum levels, it is important to diagnose the subtype of a SEM with syncytiotrophoblasts.
Collapse
Affiliation(s)
- Christoph Seidel
- Department of Oncology, Hematology and Stem Cell Transplantation With Division of Pneumology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany.
| | - Finn-Ole Paulsen
- Department of Oncology, Hematology and Stem Cell Transplantation With Division of Pneumology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Tim Nestler
- Department of Urology, Federal Armed Forces Hospital Koblenz, Koblenz, Germany
| | - Richard Cathomas
- Division of Oncology/Hematology, Kantonsspital Graubünden, Chur, Switzerland
| | - Marcus Hentrich
- Red Cross Hospital Munich, Ludwig Maximilian University of Munich, Munich, Germany
| | - Pia Paffenholz
- Department of Urology, Uro-Oncology, Robot-Assisted and Specialized Urologic Surgery, University of Cologne Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Carsten Bokemeyer
- Department of Oncology, Hematology and Stem Cell Transplantation With Division of Pneumology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Axel Heidenreich
- Department of Urology, Uro-Oncology, Robot-Assisted and Specialized Urologic Surgery, University of Cologne Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- Department of Urology, Medical University Vienna, Vienna, Austria
| | - Daniel Nettersheim
- Department of Urology, Urological Research Laboratory, Translational UroOncology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Felix Bremmer
- Institute of Pathology, University Medical Center, Göttingen, Germany
| |
Collapse
|
4
|
Schmitt L, Hoppe J, Cea-Medina P, Bruch PM, Krings KS, Lechtenberg I, Drießen D, Peter C, Bhatia S, Dietrich S, Stork B, Fritz G, Gohlke H, Müller TJJ, Wesselborg S. Novel meriolin derivatives potently inhibit cell cycle progression and transcription in leukemia and lymphoma cells via inhibition of cyclin-dependent kinases (CDKs). Cell Death Discov 2024; 10:279. [PMID: 38862521 PMCID: PMC11167047 DOI: 10.1038/s41420-024-02056-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/13/2024] Open
Abstract
A key feature of cancer is the disruption of cell cycle regulation, which is characterized by the selective and abnormal activation of cyclin-dependent kinases (CDKs). Consequently, targeting CDKs via meriolins represents an attractive therapeutic approach for cancer therapy. Meriolins represent a semisynthetic compound class derived from meridianins and variolins with a known CDK inhibitory potential. Here, we analyzed the two novel derivatives meriolin 16 and meriolin 36 in comparison to other potent CDK inhibitors and could show that they displayed a high cytotoxic potential in different lymphoma and leukemia cell lines as well as in primary patient-derived lymphoma and leukemia cells. In a kinome screen, we showed that meriolin 16 and 36 prevalently inhibited most of the CDKs (such as CDK1, 2, 3, 5, 7, 8, 9, 12, 13, 16, 17, 18, 19, 20). In drug-to-target modeling studies, we predicted a common binding mode of meriolin 16 and 36 to the ATP-pocket of CDK2 and an additional flipped binding for meriolin 36. We could show that cell cycle progression and proliferation were blocked by abolishing phosphorylation of retinoblastoma protein (a major target of CDK2) at Ser612 and Thr82. Moreover, meriolin 16 prevented the CDK9-mediated phosphorylation of RNA polymerase II at Ser2 which is crucial for transcription initiation. This renders both meriolin derivatives as valuable anticancer drugs as they target three different Achilles' heels of the tumor: (1) inhibition of cell cycle progression and proliferation, (2) prevention of transcription, and (3) induction of cell death.
Collapse
Affiliation(s)
- Laura Schmitt
- Institute for Molecular Medicine I, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Julia Hoppe
- Institute for Molecular Medicine I, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Pablo Cea-Medina
- Institute for Pharmaceutical and Medicinal Chemistry, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Peter-Martin Bruch
- Department of Hematology, Oncology and Clinical Immunology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany
- Department of Medicine V, Heidelberg University Hospital, Heidelberg, Germany
- Molecular Medicine Partnership Unit (MMPU), Heidelberg, Germany
- Center for Integrated Oncology Aachen-Bonn-Cologne-Düsseldorf (CIO ABCD), Düsseldorf, Germany
| | - Karina S Krings
- Institute for Molecular Medicine I, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Ilka Lechtenberg
- Institute for Molecular Medicine I, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Daniel Drießen
- Institute of Organic Chemistry and Macromolecular Chemistry, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Christoph Peter
- Institute for Molecular Medicine I, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Sanil Bhatia
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany
| | - Sascha Dietrich
- Department of Hematology, Oncology and Clinical Immunology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany
- Department of Medicine V, Heidelberg University Hospital, Heidelberg, Germany
- Molecular Medicine Partnership Unit (MMPU), Heidelberg, Germany
- Center for Integrated Oncology Aachen-Bonn-Cologne-Düsseldorf (CIO ABCD), Düsseldorf, Germany
| | - Björn Stork
- Institute for Molecular Medicine I, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Gerhard Fritz
- Institute of Toxicology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Holger Gohlke
- Institute for Pharmaceutical and Medicinal Chemistry, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
- John von Neumann Institute for Computing (NIC), Jülich Supercomputing Center (JSC) and Institute of Bio- and Geosciences (IBG-4: Bioinformatics), Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52425, Jülich, Germany
| | - Thomas J J Müller
- Institute of Organic Chemistry and Macromolecular Chemistry, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Sebastian Wesselborg
- Institute for Molecular Medicine I, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany.
- Center for Integrated Oncology Aachen-Bonn-Cologne-Düsseldorf (CIO ABCD), Düsseldorf, Germany.
| |
Collapse
|
5
|
Wu C, Huang J. Enhancer selectivity across cell types delineates three functionally distinct enhancer-promoter regulation patterns. BMC Genomics 2024; 25:483. [PMID: 38750461 PMCID: PMC11097474 DOI: 10.1186/s12864-024-10408-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/13/2024] [Indexed: 05/18/2024] Open
Abstract
BACKGROUND Multiple enhancers co-regulating the same gene is prevalent and plays a crucial role during development and disease. However, how multiple enhancers coordinate the same gene expression across various cell types remains largely unexplored at genome scale. RESULTS We develop a computational approach that enables the quantitative assessment of enhancer specificity and selectivity across diverse cell types, leveraging enhancer-promoter (E-P) interactions data. We observe two well-known gene regulation patterns controlled by enhancer clusters, which regulate the same gene either in a limited number of cell types (Specific pattern, Spe) or in the majority of cell types (Conserved pattern, Con), both of which are enriched for super-enhancers (SEs). We identify a previously overlooked pattern (Variable pattern, Var) that multiple enhancers link to the same gene, but rarely coexist in the same cell type. These three patterns control the genes associating with distinct biological function and exhibit unique epigenetic features. Specifically, we discover a subset of Var patterns contains Shared enhancers with stable enhancer-promoter interactions in the majority of cell types, which might contribute to maintaining gene expression by recruiting abundant CTCF. CONCLUSIONS Together, our findings reveal three distinct E-P regulation patterns across different cell types, providing insights into deciphering the complexity of gene transcriptional regulation.
Collapse
Affiliation(s)
- Chengyi Wu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, 361102, Fujian, China
| | - Jialiang Huang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, 361102, Fujian, China.
- National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, 361102, Fujian, China.
| |
Collapse
|
6
|
Abstract
Eryptosis is a regulated cell death (RCD) of mature erythrocytes initially described as a counterpart of apoptosis for enucleated cells. However, over the recent years, a growing number of studies have emphasized certain differences between both cell death modalities. In this review paper, we underline the hallmarks of eryptosis and apoptosis and highlight resemblances and dissimilarities between both RCDs. We summarize and critically discuss differences in the impact of caspase-3, Ca2+ signaling, ROS signaling pathways, opposing roles of casein kinase 1α, protein kinase C, Janus kinase 3, cyclin-dependent kinase 4, and AMP-activated protein kinase to highlight a certain degree of divergence between apoptosis and eryptosis. This review emphasizes the crucial importance of further studies that focus on deepening our knowledge of cell death machinery and identifying novel differences between cell death of nucleated and enucleated cells. This might provide evidence that erythrocytes can be defined as viable entities capable of programmed cell destruction. Additionally, the revealed cell type-specific patterns in cell death can facilitate the development of cell death-modulating therapeutic agents.
Collapse
Affiliation(s)
- Anton Tkachenko
- 1st Faculty of Medicine, BIOCEV, Charles University, Průmyslová 595, 25250, Vestec, Czech Republic.
| |
Collapse
|
7
|
Pongratanakul P, Bremmer F, Pauls S, Poschmann G, Kresbach C, Parmaksiz F, Skowron MA, Fuß J, Stephan A, Paffenholz P, Stühler K, Schüller U, Ströbel P, Heidenreich A, Che Y, Albers P, Nettersheim D. Assessing the risk to develop a growing teratoma syndrome based on molecular and epigenetic subtyping as well as novel secreted biomarkers. Cancer Lett 2024; 585:216673. [PMID: 38296184 DOI: 10.1016/j.canlet.2024.216673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/17/2024] [Accepted: 01/21/2024] [Indexed: 02/05/2024]
Abstract
In germ cell tumors (GCT), a growing teratoma during chemotherapy with decreasing tumor markers was defined as 'growing teratoma syndrome' (GTS) by Logothetis et al. in 1982. So far, its pathogenesis and specific treatment options remain elusive. We aimed at updating the GTS definition based on molecular and epigenetic features as well as identifying circulating biomarkers. We selected 50 GTS patients for clinical characterization and subsequently 12 samples were molecularly analyzed. We further included 7 longitudinal samples of 2 GTS patients. Teratomas (TER) showing no features of GTS served as controls. GTS were stratified based on growth rates into a slow (<0.5 cm/month), medium (0.5-1.5) and rapid (>1.5) group. By analyzing DNA methylation, microRNA expression and the secretome, we identified putative epigenetic and secreted biomarkers for the GTS subgroups. We found that proteins enriched in the GTS groups compared to TER were involved in proliferation, DNA replication and the cell cycle, while proteins interacting with the immune system were depleted. Additionally, GTSrapid seem to interact more strongly with the surrounding microenvironment than GTSslow. Expression of pluripotency- and yolk-sac tumor-associated genes in GTS and formation of a yolk-sac tumor or somatic-type malignancy in the longitudinal GTS samples, pointed at an additional occult non-seminomatous component after chemotherapy. Thus, updating the Logothetis GTS definition is necessary, which we propose as follows: The GTS describes a continuously growing teratoma that might harbor occult non-seminomatous components considerably reduced during therapy but outgrowing over time again.
Collapse
Affiliation(s)
- Pailin Pongratanakul
- Department of Urology, Urological Research Laboratory, Translational UroOncology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Department of Urology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Felix Bremmer
- Institute of Pathology, University Medical Center Goettingen, Goettingen, Germany
| | - Stella Pauls
- Molecular Proteomics Laboratory (MPL), Biological and Medical Research Center (BMFZ), Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Gereon Poschmann
- Molecular Proteomics Laboratory (MPL), Biological and Medical Research Center (BMFZ), Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Catena Kresbach
- Institute of Neuropathology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Fatma Parmaksiz
- Department of Urology, Urological Research Laboratory, Translational UroOncology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Margaretha A Skowron
- Department of Urology, Urological Research Laboratory, Translational UroOncology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Janina Fuß
- Competence Centre for Genomic Analysis, Kiel, Germany
| | - Alexa Stephan
- Department of Urology, Urological Research Laboratory, Translational UroOncology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Pia Paffenholz
- Department of Urology, University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Kai Stühler
- Molecular Proteomics Laboratory (MPL), Biological and Medical Research Center (BMFZ), Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Ulrich Schüller
- Institute of Neuropathology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Philipp Ströbel
- Institute of Pathology, University Medical Center Goettingen, Goettingen, Germany
| | - Axel Heidenreich
- Department of Urology, University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Yue Che
- Department of Urology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Peter Albers
- Department of Urology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Daniel Nettersheim
- Department of Urology, Urological Research Laboratory, Translational UroOncology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Lighthouse Project Germ Cell Tumors, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD), Germany.
| |
Collapse
|
8
|
Ziegler DV, Parashar K, Fajas L. Beyond cell cycle regulation: The pleiotropic function of CDK4 in cancer. Semin Cancer Biol 2024; 98:51-63. [PMID: 38135020 DOI: 10.1016/j.semcancer.2023.12.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 11/02/2023] [Accepted: 12/17/2023] [Indexed: 12/24/2023]
Abstract
CDK4, along with its regulatory subunit, cyclin D, drives the transition from G1 to S phase, during which DNA replication and metabolic activation occur. In this canonical pathway, CDK4 is essentially a transcriptional regulator that acts through phosphorylation of retinoblastoma protein (RB) and subsequent activation of the transcription factor E2F, ultimately triggering the expression of genes involved in DNA synthesis and cell cycle progression to S phase. In this review, we focus on the newly reported functions of CDK4, which go beyond direct regulation of the cell cycle. In particular, we describe the extranuclear roles of CDK4, including its roles in the regulation of metabolism, cell fate, cell dynamics and the tumor microenvironment. We describe direct phosphorylation targets of CDK4 and decipher how CDK4 influences these physiological processes in the context of cancer.
Collapse
Affiliation(s)
- Dorian V Ziegler
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Kanishka Parashar
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Lluis Fajas
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland; INSERM, Montpellier, France.
| |
Collapse
|
9
|
Söhngen C, Thomas DJ, Skowron MA, Bremmer F, Eckstein M, Stefanski A, Driessen MD, Wakileh GA, Stühler K, Altevogt P, Theodorescu D, Klapdor R, Schambach A, Nettersheim D. CD24 targeting with NK-CAR immunotherapy in testis, prostate, renal and (luminal-type) bladder cancer and identification of direct CD24 interaction partners. FEBS J 2023; 290:4864-4876. [PMID: 37254618 PMCID: PMC11129509 DOI: 10.1111/febs.16880] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 04/26/2023] [Accepted: 05/26/2023] [Indexed: 06/01/2023]
Abstract
Alternative therapeutic options targeting urologic malignancies, such as germ cell tumours, as well as urothelial, renal and prostate carcinomas, are still urgently needed. The membrane protein CD24 represents a promising immunotherapeutical approach. The present study aimed to decipher the molecular function of CD24 in vitro and evaluate the cytotoxic capacity of a third-generation natural killer (NK) cell chimeric antigen receptor (CAR) against CD24 in urologic tumour cell lines. Up to 20 urologic tumour cell lines and several non-malignant control cells were included. XTT viability assays and annexin V/propidium iodide flow cytometry analyses were performed to measure cell viability and apoptosis rates, respectively. Co-immunoprecipitation followed by mass spectrometry analyses identified direct interaction partners of CD24. Luciferase reporter assays were used to functionally validate transactivation of CD24 expression by SOX2. N- and O-glycosylation of CD24 were evaluated by enzymatic digestion and mass spectrometry. The study demonstrates that SOX2 transactivates CD24 expression in embryonal carcinoma cells. In cells of different urological origins, CD24 interacted with proteins involved in cell adhesion, ATP binding, phosphoprotein binding and post-translational modifications, such as histone acetylation and ubiquitination. Treatment of urological tumour cells with NK-CD24-CAR cells resulted in a decreased cell viability and apoptosis induction specifically in CD24+ tumour cells. Limitations of the study include the in vitro setting, which still has to be confirmed in vivo. In conclusion, we show that CD24 is a promising novel target for immune therapeutic approaches targeting urologic malignancies.
Collapse
Affiliation(s)
- Christian Söhngen
- Department of Urology, Urological Research Laboratory, Translational UroOncology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Germany
| | - David J. Thomas
- Department of Urology, Urological Research Laboratory, Translational UroOncology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Germany
| | - Margaretha A. Skowron
- Department of Urology, Urological Research Laboratory, Translational UroOncology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Germany
| | - Felix Bremmer
- Institute of Pathology, University Medical Center Goettingen, Goettingen, Germany
| | - Markus Eckstein
- Institute of Pathology, Friedrich Alexander University Erlangen-Nürnberg, University Hospital, Erlangen, Germany
| | - Anja Stefanski
- Molecular Proteomics Laboratory, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Marc D. Driessen
- Molecular Proteomics Laboratory, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Gamal A. Wakileh
- Department of Urology, Urological Research Laboratory, Translational UroOncology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Germany
- Department of Urology, University Hospital Ulm, Ulm, Germany
| | - Kai Stühler
- Molecular Proteomics Laboratory, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Peter Altevogt
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University Heidelberg, Germany
| | - Dan Theodorescu
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Rüdiger Klapdor
- Department of Gynecology and Obstetrics, Hannover Medical School, Hannover, Germany
| | - Axel Schambach
- Department of Gynecology and Obstetrics, Hannover Medical School, Hannover, Germany
- Institute for Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Daniel Nettersheim
- Department of Urology, Urological Research Laboratory, Translational UroOncology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Germany
| |
Collapse
|
10
|
Wang Y, Li Y, Liu D, Zheng D, Li X, Li C, Huang C, Wang Y, Wang X, Li Q, Xu J. A Potential Anti-Glioblastoma Compound LH20 Induces Apoptosis and Arrest of Human Glioblastoma Cells via CDK4/6 Inhibition. Molecules 2023; 28:5047. [PMID: 37446710 DOI: 10.3390/molecules28135047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/03/2023] [Accepted: 06/08/2023] [Indexed: 07/15/2023] Open
Abstract
Glioblastoma (GBM) is a deadly brain tumor characterized by signaling dysregulation and aberrant cell cycle control. The CDK4/6-Rb axis is dysregulated in approximately 80% of all GBM cases. In this study, the anti-GBM effect of a novel pyrimidin-2-amine, LH20 was evaluated in vitro using the primary GBM cell lines U87MG and U251. GBM cells were administered LH20 at concentrations of 0.1, 1, 4, 8, 10, 20, 100, and 200 µM for 24 and 48 h, and the proliferation rate was evaluated using a CCK8 assay. Migration, apoptosis, and cell cycle were also assessed using a wound healing assay, Annexin V-FITC/PI apoptosis assay, and cell cycle staining, respectively. The targets of LH20 were predicted using SwissTargetPrediction and molecular docking. Western blotting analysis was performed to confirm the anti-GBM mechanism of LH20. We found that at concentrations of 4, 8, and 10 µM, LH20 significantly inhibited the proliferation and migration of U87MG and U251 cells, induced late phase apoptosis, promoted tumor cell necrosis, and arrested the G2/M phase of the cell cycle. LH20 also inhibited CDK4 and CDK6 activities by decreasing the phosphorylation of Rb. Our results suggest LH20 as a potential treatment strategy against GBM.
Collapse
Affiliation(s)
- Yan Wang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Key Laboratory for Research and Development of Tropical Herbs, Haikou Key Laboratory of Li Nationality Medicine, School of Pharmacy, Department of Neurology, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China
| | - Youbin Li
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Key Laboratory for Research and Development of Tropical Herbs, Haikou Key Laboratory of Li Nationality Medicine, School of Pharmacy, Department of Neurology, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China
| | - Dong Liu
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Key Laboratory for Research and Development of Tropical Herbs, Haikou Key Laboratory of Li Nationality Medicine, School of Pharmacy, Department of Neurology, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China
| | - Danyang Zheng
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Key Laboratory for Research and Development of Tropical Herbs, Haikou Key Laboratory of Li Nationality Medicine, School of Pharmacy, Department of Neurology, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China
| | - Xiaogang Li
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Key Laboratory for Research and Development of Tropical Herbs, Haikou Key Laboratory of Li Nationality Medicine, School of Pharmacy, Department of Neurology, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China
| | - Chang Li
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Key Laboratory for Research and Development of Tropical Herbs, Haikou Key Laboratory of Li Nationality Medicine, School of Pharmacy, Department of Neurology, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China
- Key Laboratory of Brain Science Research & Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou 571100, China
| | - Caihui Huang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Key Laboratory for Research and Development of Tropical Herbs, Haikou Key Laboratory of Li Nationality Medicine, School of Pharmacy, Department of Neurology, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China
| | - Yun Wang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Key Laboratory for Research and Development of Tropical Herbs, Haikou Key Laboratory of Li Nationality Medicine, School of Pharmacy, Department of Neurology, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China
- Key Laboratory of Brain Science Research & Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou 571100, China
| | - Xuesong Wang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Key Laboratory for Research and Development of Tropical Herbs, Haikou Key Laboratory of Li Nationality Medicine, School of Pharmacy, Department of Neurology, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China
| | - Qifu Li
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Key Laboratory for Research and Development of Tropical Herbs, Haikou Key Laboratory of Li Nationality Medicine, School of Pharmacy, Department of Neurology, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China
- Key Laboratory of Brain Science Research & Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou 571100, China
| | - Junyu Xu
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Key Laboratory for Research and Development of Tropical Herbs, Haikou Key Laboratory of Li Nationality Medicine, School of Pharmacy, Department of Neurology, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China
| |
Collapse
|
11
|
Mortoglou M, Miralles F, Mould RR, Sengupta D, Uysal-Onganer P. Inhibiting CDK4/6 in pancreatic ductal adenocarcinoma via microRNA-21. Eur J Cell Biol 2023; 102:151318. [PMID: 37105116 DOI: 10.1016/j.ejcb.2023.151318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/17/2023] [Accepted: 04/22/2023] [Indexed: 04/29/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive malignancies, with a 5-year survival rate of 5-10 %. The high mortality rate is due to the asymptomatic progression of clinical features in metastatic stages of the disease, which renders standard therapeutic options futile. PDAC is characterised by alterations in several genes that drive carcinogenesis and limit therapeutic response. The two most common genetic aberrations in PDAC are the mutational activation of KRAS and loss of the tumour suppressor CDK inhibitor 2A (CDKN2A), which culminate the activation of the cyclin-dependent kinase 4 and 6 (CDK4/6), that promote G1 cell cycle progression. Therapeutic strategies focusing on the CDK4/6 inhibitors such as palbociclib (PD-0332991) may potentially improve outcomes in this malignancy. MicroRNAs (miRs/miRNAs) are small endogenous non-coding RNA molecules associated with cellular proliferation, invasion, apoptosis, and cell cycle. Primarily, miR-21 promotes cell proliferation and a higher proportion of PDAC cells in the S phase, while knockdown of miR-21 has been linked to cell cycle arrest at the G2/M phase and inhibition of cell proliferation. In this study, using a CRISPR/Cas9 loss-of-function screen, we individually silenced the expression of miR-21 in two PDAC cell lines and in combination with PD-0332991 treatment, we examined the synergetic mechanisms of CDK4/6 inhibitors and miR-21 knockouts (KOs) on cell survival and death. This combination reduced cell proliferation, cell viability, increased apoptosis and G1 arrest in vitro. We further analysed the mitochondrial respiration and glycolysis of PDAC cells; then assessed the protein content of these cells and revealed numerous Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways associated with PD-0332991 treatment and miR-21 knocking out. Our results demonstrate that combined targeting of CDK4/6 and silencing of miR-21 represents a novel therapeutic strategy in PDAC.
Collapse
Affiliation(s)
- Maria Mortoglou
- Cancer Mechanisms and Biomarkers Research Group, School of Life Sciences, University of Westminster, W1W 6UW London, UK
| | - Francesc Miralles
- Centre of Biomedical Education/Molecular and Clinical Sciences, Cell Biology Research Centre, St. George's, University of London, Cranmer Terrace, London SW17 0RE, UK
| | - Rhys Richard Mould
- Research Centre for Optimal Health, School of Life Sciences, University of Westminster, W1W 6UW London, UK
| | - Dipankar Sengupta
- Health Data Sciences Research Group, Research Centre for Optimal Health, School of Life Sciences, University of Westminster, W1W 6UW London, UK
| | - Pinar Uysal-Onganer
- Cancer Mechanisms and Biomarkers Research Group, School of Life Sciences, University of Westminster, W1W 6UW London, UK.
| |
Collapse
|
12
|
Gallanis GT, Sharif GM, Schmidt MO, Friedland BN, Battina R, Rahhal R, Davis JE, Khan IS, Wellstein A, Riegel AT. Stromal Senescence following Treatment with the CDK4/6 Inhibitor Palbociclib Alters the Lung Metastatic Niche and Increases Metastasis of Drug-Resistant Mammary Cancer Cells. Cancers (Basel) 2023; 15:1908. [PMID: 36980794 PMCID: PMC10046966 DOI: 10.3390/cancers15061908] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/05/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
BACKGROUND CDK4/6 inhibitors (CDKi) have improved disease control in hormone-receptor-positive, HER2-negative metastatic breast cancer, but most patients develop progressive disease. METHODS We asked whether host stromal senescence after CDK4/6 inhibition affects metastatic seeding and growth of CDKi-resistant mammary cancer cells by using the p16-INK-ATTAC mouse model of inducible senolysis. RESULTS Palbociclib pretreatment of naïve mice increased lung seeding of CDKi-resistant syngeneic mammary cancer cells, and this effect was reversed by depletion of host senescent cells. RNA sequencing analyses of lungs from non-tumor-bearing p16-INK-ATTAC mice identified that palbociclib downregulates immune-related gene sets and gene expression related to leukocyte migration. Concomitant senolysis reversed a portion of these effects, including pathway-level enrichment of TGF-β- and senescence-related signaling. CIBERSORTx analysis revealed that palbociclib alters intra-lung macrophage/monocyte populations. Notably, lung metastases from palbociclib-pretreated mice revealed senescent endothelial cells. Palbociclib-treated endothelial cells exhibit hallmark senescent features in vitro, upregulate genes involved with the senescence-associated secretory phenotype, leukocyte migration, and TGF-β-mediated paracrine senescence and induce tumor cell migration and monocyte trans-endothelial invasion in co-culture. CONCLUSIONS These studies shed light on how stromal senescence induced by palbociclib affects lung metastasis, and they describe palbociclib-induced gene expression changes in the normal lung and endothelial cell models that correlate with changes in the tumor microenvironment in the lung metastatic niche.
Collapse
Affiliation(s)
| | | | - Marcel O. Schmidt
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20007, USA
| | | | | | | | | | | | | | - Anna T. Riegel
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20007, USA
| |
Collapse
|
13
|
Wong TT, Tsai ML, Chang H, Hsieh KLC, Ho DMT, Lin SC, Yen HJ, Chen YW, Lee HL, Yang TF. Brain and Spinal Tumors Originating from the Germ Line Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1405:421-455. [PMID: 37452948 DOI: 10.1007/978-3-031-23705-8_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Primary central nervous system germ cell tumors (CNS GCTs) are part of the GCTs in children and adults. This tumor entity presents with geographic variation, age, and sex predilection. There are two age peaks of incidence distribution at the first few months of life and in adolescence. CNS GCTs are heterogeneous in histopathological subtypes, locations, and tumor marker (AFP, β-hCG) secretions. In the WHO CNS tumor classification, GCTS are classified as germinoma and nongerminomatous GCT (NGGCT) with different subtypes (including teratoma). Excluding mature teratoma, the remaining NGGCTs are malignant (NGMGCT). In teratoma, growing teratoma syndrome and teratoma with somatic-type malignancy should be highlighted. The common intracranial locations are pineal region, neurohypophysis (NH), bifocal pineal-NH, basal ganglia, and cerebral ventricle. Above 50% of intracranial GCTs (IGCTs) present obstructive hydrocephalus. Spinal tumors are rare. Age, locations, hydrocephalus, and serum/CSF titer of β-hCG correlate with clinical manifestations. Delayed diagnosis is common in tumors arising in neurohypophysis, bifocal, and basal ganglia resulting in the increasing of physical dysfunction and hormonal deficits. Staging work-up includes CSF cytology for tumor cells and contrast-enhanced MRI of brain and spine for macroscopic metastasis before treatment commences. The therapeutic approach of CNS GCTs integrates locations, histopathology, staging, tumor marker level, and therapeutic classification. Treatment strategies include surgical biopsy/excision, chemotherapy, radiotherapy (single or combination). Secreting tumors with consistent imaging may not require histopathological diagnosis. Primary germinomas are highly radiosensitive and the therapeutic aim is to maintain high survival rate using optimal radiotherapy regimen with/without chemotherapy combination. Primary NGNGCTs are less radiosensitive. The therapeutic aim is to increase survival utilizing more intensive chemotherapy and radiotherapy. The negative prognostic factors are residue disease at the end of treatment and serum or CSF AFP level >1000 ng/mL at diagnosis. In refractory or recurrent NMGGCTs, besides high-dose chemotherapy, new therapy is necessary. Molecular profiling and analysis help for translational research. Survivors of pediatric brain tumors frequently experience cancer-related cognitive dysfunction, physical disability, pituitary hormone deficiency, and other CNS complications after cranial radiotherapy. Continuous surveillance and assessment may lead to improvements in treatment protocols, transdisciplinary interventions, after-treatment rehabilitation, and quality of life.
Collapse
Affiliation(s)
- Tai-Tong Wong
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan.
- Pediatric Brain Tumor Program, Taipei Cancer Center, Taipei Medical University, Taipei, 110, Taiwan.
- Division of Pediatric Neurosurgery, Department of Neurosurgery, Taipei Medical University Hospital, Taipei Medical University, Taipei, 110, Taiwan.
- Neuroscience Research Center, Taipei Medical University Hospital, Taipei, 110, Taiwan.
| | - Min-Lan Tsai
- Pediatric Brain Tumor Program, Taipei Cancer Center, Taipei Medical University, Taipei, 110, Taiwan
- Department of Pediatrics, College of Medicine, Taipei Medical University Hospital, Taipei Medical University, Taipei, 110, Taiwan
| | - Hsi Chang
- Pediatric Brain Tumor Program, Taipei Cancer Center, Taipei Medical University, Taipei, 110, Taiwan
| | - Kevin Li-Chun Hsieh
- Pediatric Brain Tumor Program, Taipei Cancer Center, Taipei Medical University, Taipei, 110, Taiwan
- Department of Medical Imaging, College of Medicine, Taipei Medical University Hospital, Taipei Medical University, Taipei, 110, Taiwan
| | - Donald Ming-Tak Ho
- Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei, 112, Taiwan
- Department of Pathology and Laboratory Medicine, Cheng Hsin General Hospital, Taipei, 112, Taiwan
| | - Shih-Chieh Lin
- Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei, 112, Taiwan
- Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Hsiu-Ju Yen
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Taipei Veterans General Hospital and National Yang-Ming University School of Medicine, Taipei, Taiwan
| | - Yi-Wei Chen
- Division of Radiation Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan
- Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Hsin-Lun Lee
- Pediatric Brain Tumor Program, Taipei Cancer Center, Taipei Medical University, Taipei, 110, Taiwan
- Department of Radiation Oncology, Taipei Medical University Hospital, Taipei, 110, Taiwan
- Department of Radiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan
| | - Tsui-Fen Yang
- Department of Physical Medicine and Rehabilitation, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Physical Therapy and Assistive Technology, National Yang-Ming University, Taipei, Taiwan, ROC
| |
Collapse
|
14
|
Skowron MA, Eul K, Stephan A, Ludwig GF, Wakileh GA, Bister A, Söhngen C, Raba K, Petzsch P, Poschmann G, Kuffour EO, Degrandi D, Ali S, Wiek C, Hanenberg H, Münk C, Stühler K, Köhrer K, Mass E, Nettersheim D. Profiling the 3D interaction between germ cell tumors and microenvironmental cells at the transcriptome and secretome level. Mol Oncol 2022; 16:3107-3127. [PMID: 35811571 PMCID: PMC9441004 DOI: 10.1002/1878-0261.13282] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/30/2022] [Accepted: 07/07/2022] [Indexed: 11/05/2022] Open
Abstract
The tumor microenvironment (TM), consisting of the extracellular matrix (ECM), fibroblasts, endothelial cells, and immune cells, might affect tumor invasiveness and the outcome of standard chemotherapy. This study investigated the cross talk between germ cell tumors (GCT) and surrounding TM cells (macrophages, T-lymphocytes, endothelial cells, and fibroblasts) at the transcriptome and secretome level. Using high-throughput approaches of three-dimensional (3D) co-cultured cellular aggregates, this study offers newly identified pathways to be studied with regard to sensitivity toward cisplatin-based chemotherapy or tumor invasiveness as a consequence of the cross talk between tumor cells and TM components. Mass-spectrometry-based secretome analyses revealed that TM cells secreted factors involved in ECM organization, cell adhesion, angiogenesis, and regulation of insulin-like growth factor (IGF) transport. To evaluate direct cell-cell contacts, green fluorescent protein (GFP)-expressing GCT cells and mCherry-expressing TM cells were co-cultured in 3D. Afterward, cell populations were separated by flow cytometry and analyzed by RNA sequencing. Correlating the secretome with transcriptome data indicated molecular processes such as cell adhesion and components of the ECM being enriched in most cell populations. Re-analyses of secretome data with regard to lysine- and proline-hydroxylated peptides revealed a gain in proteins, such as collagens and fibronectin. Cultivation of GCT cells on collagen I/IV- or fibronectin-coated plates significantly elevated adhesive and migratory capacity, while decreasing cisplatin sensitivity of GCT cells. Correspondingly, cisplatin sensitivity was significantly reduced in GCT cells under the influence of conditioned medium from fibroblasts and endothelial cells. This study sheds light on the cross talk between GCT cells and their circumjacent TM, which results in deposition of the ECM and eventually promotes a pro-tumorigenic environment through enhanced migratory and adhesive capacity, as well as decreased cisplatin sensitivity. Hence, our observations indicate that targeting the ECM and its cellular components might be a novel therapeutic option in combination with cisplatin-based chemotherapy for GCT patients.
Collapse
Affiliation(s)
- Margaretha A. Skowron
- Department of Urology, Urological Research Laboratory, Translational UroOncology, Medical Faculty and University Hospital DüsseldorfHeinrich Heine University DüsseldorfDüsseldorfGermany
| | - Katharina Eul
- Department of Urology, Urological Research Laboratory, Translational UroOncology, Medical Faculty and University Hospital DüsseldorfHeinrich Heine University DüsseldorfDüsseldorfGermany
| | - Alexa Stephan
- Department of Urology, Urological Research Laboratory, Translational UroOncology, Medical Faculty and University Hospital DüsseldorfHeinrich Heine University DüsseldorfDüsseldorfGermany
| | - Gillian F. Ludwig
- Department of Urology, Urological Research Laboratory, Translational UroOncology, Medical Faculty and University Hospital DüsseldorfHeinrich Heine University DüsseldorfDüsseldorfGermany
| | - Gamal A. Wakileh
- Department of Urology, Urological Research Laboratory, Translational UroOncology, Medical Faculty and University Hospital DüsseldorfHeinrich Heine University DüsseldorfDüsseldorfGermany
- Department of Urology and Paediatric UrologyUniversity Hospital UlmUlmGermany
| | - Arthur Bister
- Department of Otorhinolaryngology and Head/Neck Surgery, Medical Faculty and University Hospital DüsseldorfHeinrich Heine University DüsseldorfDüsseldorfGermany
| | - Christian Söhngen
- Department of Urology, Urological Research Laboratory, Translational UroOncology, Medical Faculty and University Hospital DüsseldorfHeinrich Heine University DüsseldorfDüsseldorfGermany
| | - Katharina Raba
- Institute for Transplantation Diagnostics and Cell TherapeuticsMedical Faculty and University Hospital Düsseldorf, Heinrich Heine University DüsseldorfDüsseldorfGermany
| | - Patrick Petzsch
- Genomics and Transcriptomics Laboratory, Biological and Medical Research Centre (BMFZ)Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University DüsseldorfDüsseldorfGermany
| | - Gereon Poschmann
- Molecular Proteomics Laboratory, Biological and Medical Research Centre (BMFZ)Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University DüsseldorfDüsseldorfGermany
| | - Edmund Osei Kuffour
- Clinic for Gastroenterology, Hepatology and Infectious DiseasesMedical Faculty and University Hospital Düsseldorf, Heinrich Heine University DüsseldorfDüsseldorfGermany
| | - Daniel Degrandi
- Institute of Medical Microbiology and Hospital HygieneMedical Faculty and University Hospital Düsseldorf, Heinrich Heine University DüsseldorfDüsseldorfGermany
| | - Shafaqat Ali
- Institute of Medical Microbiology and Hospital HygieneMedical Faculty and University Hospital Düsseldorf, Heinrich Heine University DüsseldorfDüsseldorfGermany
| | - Constanze Wiek
- Department of Otorhinolaryngology and Head/Neck Surgery, Medical Faculty and University Hospital DüsseldorfHeinrich Heine University DüsseldorfDüsseldorfGermany
| | - Helmut Hanenberg
- Department of Otorhinolaryngology and Head/Neck Surgery, Medical Faculty and University Hospital DüsseldorfHeinrich Heine University DüsseldorfDüsseldorfGermany
- Department of Pediatrics IIIUniversity Children's Hospital Essen, University of Duisburg‐EssenEssenGermany
| | - Carsten Münk
- Clinic for Gastroenterology, Hepatology and Infectious DiseasesMedical Faculty and University Hospital Düsseldorf, Heinrich Heine University DüsseldorfDüsseldorfGermany
| | - Kai Stühler
- Molecular Proteomics Laboratory, Biological and Medical Research Centre (BMFZ)Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University DüsseldorfDüsseldorfGermany
| | - Karl Köhrer
- Genomics and Transcriptomics Laboratory, Biological and Medical Research Centre (BMFZ)Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University DüsseldorfDüsseldorfGermany
| | - Elvira Mass
- Life and Medical Sciences (LIMES) Institute, Developmental Biology of the Immune SystemUniversity of BonnBonnGermany
| | - Daniel Nettersheim
- Department of Urology, Urological Research Laboratory, Translational UroOncology, Medical Faculty and University Hospital DüsseldorfHeinrich Heine University DüsseldorfDüsseldorfGermany
| |
Collapse
|
15
|
Koirala N, Dey N, Aske J, De P. Targeting Cell Cycle Progression in HER2+ Breast Cancer: An Emerging Treatment Opportunity. Int J Mol Sci 2022; 23:6547. [PMID: 35742993 PMCID: PMC9224522 DOI: 10.3390/ijms23126547] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/09/2022] [Accepted: 06/09/2022] [Indexed: 11/16/2022] Open
Abstract
The development of HER2-targeted therapies has dramatically improved patient survival and patient management and increased the quality of life in the HER2+ breast cancer patient population. Due to the activation of compensatory pathways, patients eventually suffer from resistance to HER2-directed therapies and develop a more aggressive disease phenotype. One of these mechanisms is the crosstalk between ER and HER2 signaling, especially the CDK4/6-Cyclin D-Rb signaling axis that is commonly active and has received attention for its potential role in regulating tumor progression. CDK 4/6 inhibitors interfere with the binding of cell-cycle-dependent kinases (CDKs) with their cognate partner cyclins, and forestall the progression of the cell cycle by preventing Rb phosphorylation and E2F release that consequentially leads to cancer cell senescence. CDK 4/6 inhibitors, namely, palbociclib, ribociclib, and abemaciclib, in combination with anti-estrogen therapies, have shown impressive outcomes in hormonal receptor-positive (HR+) disease and have received approval for this disease context. As an extension of this concept, preclinical/clinical studies incorporating CDK 4/6 inhibitors with HER2-targeted drugs have been evaluated and have shown potency in limiting tumor progression, restoring therapeutic sensitivity, and may improving the management of the disease. Currently, several clinical trials are examining the synergistic effects of CDK 4/6 inhibitors with optimized HER2-directed therapies for the (ER+/-) HER2+ population in the metastatic setting. In this review, we aim to interrogate the burden of HER2+ disease in light of recent treatment progress in the field and examine the clinical benefit of CDK 4/6 inhibitors as a replacement for traditional chemotherapy to improve outcomes in HER2+ breast cancer.
Collapse
Affiliation(s)
| | | | | | - Pradip De
- Translational Oncology Laboratory, Avera Cancer Institute, Sioux Falls, SD 57105, USA; (N.K.); (N.D.); (J.A.)
| |
Collapse
|
16
|
Funke K, Düster R, Wilson PDG, Arévalo L, Geyer M, Schorle H. Transcriptional CDK Inhibitors as Potential Treatment Option for Testicular Germ Cell Tumors. Cancers (Basel) 2022; 14:1690. [PMID: 35406461 PMCID: PMC8997165 DOI: 10.3390/cancers14071690] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 02/04/2023] Open
Abstract
Type II testicular germ cell tumors (TGCT) are the most frequently diagnosed solid malignancy in young men. Up to 15% of patients with metastatic non-seminomas show cisplatin resistance and a very poor survival rate due to lacking treatment options. Transcriptional cyclin-dependent kinases (CDK) have been shown to be effective targets in the treatment of different types of cancer. Here, we investigated the effects of the CDK inhibitors dinaciclib, flavopiridol, YKL-5-124, THZ1, NVP2, SY0351 and THZ531. An XTT viability assay revealed a strong cytotoxic impact of CDK7/12/13 inhibitor SY0351 and CDK9 inhibitor NVP2 on the TGCT wild-type cell lines (2102EP, NCCIT, TCam2) and the cisplatin-resistant cell lines (2102EP-R, NCCIT-R). The CDK7 inhibitor YKL-5-124 showed a strong impact on 2102EP, 2102EP-R, NCCIT and NCCIT-R cell lines, leaving the MPAF control cell line mostly unaffected. FACS-based analysis revealed mild effects on the cell cycle of 2102EP and TCam2 cells after SY0351, YKL-5-124 or NVP2 treatment. Molecular analysis showed a cell-line-specific response for SY0351 and NVP2 inhibition while YKL-5-124 induced similar molecular changes in 2102EP, TCam2 and MPAF cells. Thus, after TGCT subtype determination, CDK inhibitors might be a potential alternative for optimized and individualized therapy independent of chemotherapy sensitivity.
Collapse
Affiliation(s)
- Kai Funke
- Department of Developmental Pathology, Institute of Pathology, University Hospital Bonn, 53127 Bonn, Germany; (K.F.); (P.D.-G.W.); (L.A.)
| | - Robert Düster
- The Institute of Structural Biology, University of Bonn, 53127 Bonn, Germany; (R.D.); (M.G.)
| | - Prince De-Graft Wilson
- Department of Developmental Pathology, Institute of Pathology, University Hospital Bonn, 53127 Bonn, Germany; (K.F.); (P.D.-G.W.); (L.A.)
| | - Lena Arévalo
- Department of Developmental Pathology, Institute of Pathology, University Hospital Bonn, 53127 Bonn, Germany; (K.F.); (P.D.-G.W.); (L.A.)
| | - Matthias Geyer
- The Institute of Structural Biology, University of Bonn, 53127 Bonn, Germany; (R.D.); (M.G.)
| | - Hubert Schorle
- Department of Developmental Pathology, Institute of Pathology, University Hospital Bonn, 53127 Bonn, Germany; (K.F.); (P.D.-G.W.); (L.A.)
| |
Collapse
|
17
|
Gayer FA, Fichtner A, Legler TJ, Reichardt HM. A Coculture Model Mimicking the Tumor Microenvironment Unveils Mutual Interactions between Immune Cell Subtypes and the Human Seminoma Cell Line TCam-2. Cells 2022; 11:cells11050885. [PMID: 35269507 PMCID: PMC8909655 DOI: 10.3390/cells11050885] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/24/2022] [Accepted: 03/02/2022] [Indexed: 11/24/2022] Open
Abstract
Testicular germ cell cancer (TGCC) is the most common type of cancer in young men. Seminomas account for around half of them and are characterized by a pronounced infiltration of immune cells. So far, the impact of the tumor microenvironment (TME) on disease progression, especially the interaction of individual immune cell subtypes with the tumor cells, remains unclear. To address this question, we used an in vitro TME model involving the seminoma-derived cell line Tcam-2 and immune cell subsets purified from human peripheral blood. T cells and monocytes were strongly activated when individually cocultured with Tcam-2 cells as revealed by increased expression of activation markers and pro-inflammatory cytokines both on the mRNA and protein level. Importantly, the interaction between tumor and immune cells was mutual. Gene expression of pluripotency markers as well as markers of proliferation and cell cycle activity were upregulated in Tcam-2 cells in cocultures with T cells, whereas gene expression of SOX17, a marker for seminomas, was unaltered. Interestingly, the impact of monocytes on gene expression of Tcam-2 cells was less pronounced, indicating that the effects of individual immune cell subsets on tumor cells in the TME are highly specific. Collectively, our data indicate that seminoma cells induce immune cell activation and thereby generate a strong pro-inflammatory milieu, whereas T cells conversely increase the proliferation, metastatic potential, and stemness of tumor cells. Although the employed model does not fully mimic the physiological situation found in TGCC in vivo, it provides new insights potentially explaining the connection between inflammatory infiltrates in seminomas and their tendency to burn out and metastasize.
Collapse
Affiliation(s)
- Fabian A. Gayer
- Institute for Cellular and Molecular Immunology, University Medical Center Göttingen, 37073 Göttingen, Germany;
- Clinic of Urology, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Alexander Fichtner
- Institute of Pathology, University Medical Center Göttingen, 37075 Göttingen, Germany;
| | - Tobias J. Legler
- Department of Transfusion Medicine, University Medical Center Göttingen, 37075 Göttingen, Germany;
| | - Holger M. Reichardt
- Institute for Cellular and Molecular Immunology, University Medical Center Göttingen, 37073 Göttingen, Germany;
- Correspondence: ; Tel.: +49-551-39-63365
| |
Collapse
|
18
|
Abate A, Rossini E, Tamburello M, Laganà M, Cosentini D, Grisanti S, Fiorentini C, Tiberio GAM, Scatolini M, Grosso E, Hantel C, Memo M, Berruti A, Sigala S. Ribociclib Cytotoxicity Alone or Combined With Progesterone and/or Mitotane in in Vitro Adrenocortical Carcinoma Cells. Endocrinology 2022; 163:6455501. [PMID: 34875044 DOI: 10.1210/endocr/bqab248] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Indexed: 11/19/2022]
Abstract
Mitotane is the only approved drug for treating adrenocortical carcinoma (ACC). The regimen added to mitotane is chemotherapy with etoposide, doxorubicin, and cisplatin. This pharmacological approach, however, has a limited efficacy and significant toxicity. Target-therapy agents represent a new promising approach to cancer therapy. Among these, a preeminent role is played by agents that interfere with cell-cycle progression, such as CDK4/6-inhibitors. Here, we investigate whether ribociclib could induce a cytotoxic effect both in ACC cell line and patient-derived primary cell cultures, alone or in combined settings. Cell viability was determined by 3-(4,5-dimethyl-2-thiazol)-2,5-diphenyl-2H-tetrazolium bromide assay, whereas cell proliferation was evaluated by direct count. Binary combination experiments were performed using Chou and Talalay method. Gene expression was analyzed by quantitative RT-PCR, whereas protein expression was evaluated by immunofluorescence. A double staining assay revealed that ribociclib induced a prevalent apoptotic cell death. Cell-cycle analysis was performed to evaluate the effect of ribociclib treatment on cell-cycle progression in ACC cell models. Our results indicate that ribociclib was cytotoxic and reduced the cell proliferation rate. The effect on cell viability was enhanced when ribociclib was combined with progesterone and/or mitotane. The effect of ribociclib on cell-cycle progression revealed a drug-induced cell accumulation in G2 phase. The positive relationship underlined by our results between ribociclib, progesterone, and mitotane strengthen the clinical potential of this combination.
Collapse
Affiliation(s)
- Andrea Abate
- Section of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, 25123, Italy
| | - Elisa Rossini
- Section of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, 25123, Italy
| | - Mariangela Tamburello
- Section of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, 25123, Italy
| | - Marta Laganà
- Medical Oncology Unit, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, Brescia, 25123, Italy
| | - Deborah Cosentini
- Medical Oncology Unit, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, Brescia, 25123, Italy
| | - Salvatore Grisanti
- Medical Oncology Unit, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, Brescia, 25123, Italy
| | - Chiara Fiorentini
- Section of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, 25123, Italy
| | - Guido A M Tiberio
- Surgical Clinic, Department of Clinical and Experimental Sciences, University of Brescia at ASST Spedali Civili di Brescia, Brescia, 25123, Italy
| | - Maria Scatolini
- Molecular Oncology Laboratory, "Edo ed Elvo Tempia" Foundation, Ponderano, 13875, Biella, Italy
| | - Enrico Grosso
- Molecular Oncology Laboratory, "Edo ed Elvo Tempia" Foundation, Ponderano, 13875, Biella, Italy
| | - Constanze Hantel
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ) and University of Zurich (UZH), Zurich, Switzerland
- Medizinische Klinik und Poliklinik III, University Hospital Carl Gustav Carus Dresden, Dresden, Germany
| | - Maurizio Memo
- Section of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, 25123, Italy
| | - Alfredo Berruti
- Medical Oncology Unit, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, Brescia, 25123, Italy
| | - Sandra Sigala
- Section of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, 25123, Italy
| |
Collapse
|
19
|
Skowron MA, Becker TK, Kurz L, Jostes S, Bremmer F, Fronhoffs F, Funke K, Wakileh GA, Müller MR, Burmeister A, Lenz T, Stefanski A, Stühler K, Petzsch P, Köhrer K, Altevogt P, Albers P, Kristiansen G, Schorle H, Nettersheim D. The signal transducer CD24 suppresses the germ cell program and promotes an ectodermal rather than mesodermal cell fate in embryonal carcinomas. Mol Oncol 2022; 16:982-1008. [PMID: 34293822 PMCID: PMC8847992 DOI: 10.1002/1878-0261.13066] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/22/2021] [Accepted: 07/21/2021] [Indexed: 12/26/2022] Open
Abstract
Testicular germ cell tumors (GCTs) are stratified into seminomas and nonseminomas. Seminomas share many histological and molecular features with primordial germ cells, whereas the nonseminoma stem cell population-embryonal carcinoma (EC)-is pluripotent and thus able to differentiate into cells of all three germ layers (teratomas). Furthermore, ECs are capable of differentiating into extra-embryonic lineages (yolk sac tumors, choriocarcinomas). In this study, we deciphered the molecular and (epi)genetic mechanisms regulating expression of CD24, a highly glycosylated signaling molecule upregulated in many cancers. CD24 is overexpressed in ECs compared with other GCT entities and can be associated with an undifferentiated pluripotent cell fate. We demonstrate that CD24 can be transactivated by the pluripotency factor SOX2, which binds in proximity to the CD24 promoter. In GCTs, CD24 expression is controlled by epigenetic mechanisms, that is, histone acetylation, since CD24 can be induced by the application histone deacetylase inhibitors. Vice versa, CD24 expression is downregulated upon inhibition of histone methyltransferases, E3 ubiquitin ligases, or bromodomain (BRD) proteins. Additionally, three-dimensional (3D) co-cultivation of EC cells with microenvironmental cells, such as fibroblasts, and endothelial or immune cells, reduced CD24 expression, suggesting that crosstalk with the somatic microenvironment influences CD24 expression. In a CRISPR/Cas9 deficiency model, we demonstrate that CD24 fulfills a bivalent role in differentiation via regulation of homeobox, and phospho- and glycoproteins; that is, it is involved in suppressing the germ cell/spermatogenesis program and mesodermal/endodermal differentiation, while poising the cells for ectodermal differentiation. Finally, blocking CD24 by a monoclonal antibody enhanced sensitivity toward cisplatin in EC cells, including cisplatin-resistant subclones, highlighting CD24 as a putative target in combination with cisplatin.
Collapse
Affiliation(s)
- Margaretha A. Skowron
- Department of UrologyUrological Research LaboratoryTranslational UroOncologyMedical Faculty and University Hospital DüsseldorfHeinrich Heine University DüsseldorfGermany
| | - Teresa K. Becker
- Department of UrologyUrological Research LaboratoryTranslational UroOncologyMedical Faculty and University Hospital DüsseldorfHeinrich Heine University DüsseldorfGermany
| | - Lukas Kurz
- Department of UrologyUrological Research LaboratoryTranslational UroOncologyMedical Faculty and University Hospital DüsseldorfHeinrich Heine University DüsseldorfGermany
| | - Sina Jostes
- Department of Oncological ScienceIcahn School of Medicine at Mount SinaiHess Center for Science and MedicineNew YorkNYUSA
| | - Felix Bremmer
- Institute of PathologyUniversity Medical Center GoettingenGermany
| | | | - Kai Funke
- Department of Developmental PathologyInstitute of PathologyUniversity Hospital BonnGermany
| | - Gamal A. Wakileh
- Department of UrologyUrological Research LaboratoryTranslational UroOncologyMedical Faculty and University Hospital DüsseldorfHeinrich Heine University DüsseldorfGermany
- Department of UrologyUniversity Hospital UlmGermany
| | - Melanie R. Müller
- Department of UrologyUrological Research LaboratoryTranslational UroOncologyMedical Faculty and University Hospital DüsseldorfHeinrich Heine University DüsseldorfGermany
| | - Aaron Burmeister
- Department of UrologyUrological Research LaboratoryTranslational UroOncologyMedical Faculty and University Hospital DüsseldorfHeinrich Heine University DüsseldorfGermany
| | - Thomas Lenz
- Molecular Proteomics LaboratoryHeinrich‐Heine‐University DüsseldorfGermany
| | - Anja Stefanski
- Molecular Proteomics LaboratoryHeinrich‐Heine‐University DüsseldorfGermany
| | - Kai Stühler
- Molecular Proteomics LaboratoryHeinrich‐Heine‐University DüsseldorfGermany
| | - Patrick Petzsch
- Genomics & Transcriptomics LabHeinrich Heine University DüsseldorfGermany
| | - Karl Köhrer
- Genomics & Transcriptomics LabHeinrich Heine University DüsseldorfGermany
| | - Peter Altevogt
- Skin Cancer UnitGerman Cancer Research Center (DKFZ)HeidelbergGermany
- Department of Dermatology, Venereology and AllergologyUniversity Medical Center MannheimRuprecht‐Karl University HeidelbergGermany
| | - Peter Albers
- Department of UrologyMedical Faculty and University Hospital Düsseldorf, Heinrich Heine University DüsseldorfGermany
| | | | - Hubert Schorle
- Department of Developmental PathologyInstitute of PathologyUniversity Hospital BonnGermany
| | - Daniel Nettersheim
- Department of UrologyUrological Research LaboratoryTranslational UroOncologyMedical Faculty and University Hospital DüsseldorfHeinrich Heine University DüsseldorfGermany
| |
Collapse
|
20
|
Therapeutical interference with the epigenetic landscape of germ cell tumors: a comparative drug study and new mechanistical insights. Clin Epigenetics 2022; 14:5. [PMID: 34996497 PMCID: PMC8742467 DOI: 10.1186/s13148-021-01223-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/18/2021] [Indexed: 12/18/2022] Open
Abstract
Background Type II germ cell tumors (GCT) are the most common solid cancers in males of age 15 to 35 years. Treatment of these tumors includes cisplatin-based therapy achieving high cure rates, but also leading to late toxicities. As mainly young men are suffering from GCTs, late toxicities play a major role regarding life expectancy, and the development of therapy resistance emphasizes the need for alternative therapeutic options. GCTs are highly susceptible to interference with the epigenetic landscape; therefore, this study focuses on screening of drugs against epigenetic factors as a treatment option for GCTs.
Results We present seven different epigenetic inhibitors efficiently decreasing cell viability in GCT cell lines including cisplatin-resistant subclones at low concentrations by targeting epigenetic modifiers and interactors, like histone deacetylases (Quisinostat), histone demethylases (JIB-04), histone methyltransferases (Chaetocin), epigenetic readers (MZ-1, LP99) and polycomb-repressive complexes (PRT4165, GSK343). Mass spectrometry-based analyses of the histone modification landscape revealed effects beyond the expected mode-of-action of each drug, suggesting a wider spectrum of activity than initially assumed. Moreover, we characterized the effects of each drug on the transcriptome of GCT cells by RNA sequencing and found common deregulations in gene expression of ion transporters and DNA-binding factors. A kinase array revealed deregulations of signaling pathways, like cAMP, JAK-STAT and WNT. Conclusion Our study identified seven drugs against epigenetic modifiers to treat cisplatin-resistant GCTs. Further, we extensively analyzed off-target effects and modes-of-action, which are important for risk assessment of the individual drugs. Supplementary Information The online version contains supplementary material available at 10.1186/s13148-021-01223-1.
Collapse
|
21
|
Miranda-Gonçalves V, Lobo J, Guimarães-Teixeira C, Barros-Silva D, Guimarães R, Cantante M, Braga I, Maurício J, Oing C, Honecker F, Nettersheim D, Looijenga LHJ, Henrique R, Jerónimo C. The component of the m 6A writer complex VIRMA is implicated in aggressive tumor phenotype, DNA damage response and cisplatin resistance in germ cell tumors. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:268. [PMID: 34446080 PMCID: PMC8390281 DOI: 10.1186/s13046-021-02072-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 08/11/2021] [Indexed: 12/22/2022]
Abstract
Background Germ cell tumors (GCTs) are developmental cancers, tightly linked to embryogenesis and germ cell development. The recent and expanding field of RNA modifications is being increasingly implicated in such molecular events, as well as in tumor progression and resistance to therapy, but still rarely explored in GCTs. In this work, and as a follow-up of our recent study on this topic in TGCT tissue samples, we aim to investigate the role of N6-methyladenosine (m6A), the most abundant of such modifications in mRNA, in in vitro and in vivo models representative of such tumors. Methods Four cell lines representative of GCTs (three testicular and one mediastinal), including an isogenic cisplatin resistant subline, were used. CRISPR/Cas9-mediated knockdown of VIRMA was established and the chorioallantoic membrane assay was used to study its phenotypic effect in vivo. Results We demonstrated the differential expression of the various m6A writers, readers and erasers in GCT cell lines representative of the major classes of these tumors, seminomas and non-seminomas, and we evidenced changes occurring upon differentiation with all-trans retinoic acid treatment. We showed differential expression also among cells sensitive and resistant to cisplatin treatment, implicating these players in acquisition of cisplatin resistant phenotype. Knockdown of VIRMA led to disruption of the remaining methyltransferase complex and decrease in m6A abundance, as well as overall reduced tumor aggressiveness (with decreased cell viability, tumor cell proliferation, migration, and invasion) and increased sensitivity to cisplatin treatment, both in vitro and confirmed in vivo. Enhanced response to cisplatin after VIRMA knockdown was related to significant increase in DNA damage (with higher γH2AX and GADD45B levels) and downregulation of XLF and MRE11. Conclusions VIRMA has an oncogenic role in GCTs confirming our previous tissue-based study and is further involved in response to cisplatin by interfering with DNA repair. These data contribute to our better understanding of the emergence of cisplatin resistance in GCTs and support recent attempts to therapeutically target elements of the m6A writer complex. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-021-02072-9.
Collapse
Affiliation(s)
- Vera Miranda-Gonçalves
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP) / RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Center (Porto.CCC), R. Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal.,Department of Pathology and Molecular Immunology, ICBAS - School of Medicine and Biomedical Sciences, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira 228, 4050-513, Porto, Portugal
| | - João Lobo
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP) / RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Center (Porto.CCC), R. Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal.,Department of Pathology and Molecular Immunology, ICBAS - School of Medicine and Biomedical Sciences, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira 228, 4050-513, Porto, Portugal.,Department of Pathology, Portuguese Oncology Institute of Porto (IPOP), R. Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal.,Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584, CS, Utrecht, The Netherlands
| | - Catarina Guimarães-Teixeira
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP) / RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Center (Porto.CCC), R. Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
| | - Daniela Barros-Silva
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP) / RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Center (Porto.CCC), R. Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
| | - Rita Guimarães
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP) / RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Center (Porto.CCC), R. Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal.,Department of Pathology, Portuguese Oncology Institute of Porto (IPOP), R. Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
| | - Mariana Cantante
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP) / RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Center (Porto.CCC), R. Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal.,Department of Pathology, Portuguese Oncology Institute of Porto (IPOP), R. Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
| | - Isaac Braga
- Department of Urology, Portuguese Oncology Institute of Porto (IPOP), R. Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
| | - Joaquina Maurício
- Department of Medical Oncology, Portuguese Oncology Institute of Porto (IPOP), R. Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
| | - Christoph Oing
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section of Pneumology, Mildred Scheel Cancer Career Center HaTriCs4, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Friedemann Honecker
- Tumour and Breast Center ZeTuP St. Gallen, Rorschacher Strasse 150, 9006, St. Gallen, Switzerland
| | - Daniel Nettersheim
- Department of Urology, Urological Research Lab, Translational UroOncology, University Hospital Düsseldorf, 40225, Düsseldorf, Germany
| | - Leendert H J Looijenga
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584, CS, Utrecht, The Netherlands
| | - Rui Henrique
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP) / RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Center (Porto.CCC), R. Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal. .,Department of Pathology and Molecular Immunology, ICBAS - School of Medicine and Biomedical Sciences, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira 228, 4050-513, Porto, Portugal. .,Department of Pathology, Portuguese Oncology Institute of Porto (IPOP), R. Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal.
| | - Carmen Jerónimo
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP) / RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Center (Porto.CCC), R. Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal. .,Department of Pathology and Molecular Immunology, ICBAS - School of Medicine and Biomedical Sciences, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira 228, 4050-513, Porto, Portugal.
| |
Collapse
|
22
|
Targeting DNA Damage Response and Repair to Enhance Therapeutic Index in Cisplatin-Based Cancer Treatment. Int J Mol Sci 2021; 22:ijms22158199. [PMID: 34360968 PMCID: PMC8347825 DOI: 10.3390/ijms22158199] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/24/2021] [Accepted: 07/26/2021] [Indexed: 02/06/2023] Open
Abstract
Platinum-based chemotherapies, such as cisplatin, play a large role in cancer treatment. The development of resistance and treatment toxicity creates substantial barriers to disease control, yet. To enhance the therapeutic index of cisplatin-based chemotherapy, it is imperative to circumvent resistance and toxicity while optimizing tumor sensitization. One of the primary mechanisms by which cancer cells develop resistance to cisplatin is through upregulation of DNA repair pathways. In this review, we discuss the DNA damage response in the context of cisplatin-induced DNA damage. We describe the proteins involved in the pathways and their roles in resistance development. Common biomarkers for cisplatin resistance and their utilization to improve patient risk stratification and treatment personalization are addressed. Finally, we discuss some of the current treatments and future strategies to circumvent the development of cisplatin resistance.
Collapse
|
23
|
Klein K, Witalisz-Siepracka A, Gotthardt D, Agerer B, Locker F, Grausenburger R, Knab VM, Bergthaler A, Sexl V. T Cell-Intrinsic CDK6 Is Dispensable for Anti-Viral and Anti-Tumor Responses In Vivo. Front Immunol 2021; 12:650977. [PMID: 34248938 PMCID: PMC8264666 DOI: 10.3389/fimmu.2021.650977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 06/03/2021] [Indexed: 12/28/2022] Open
Abstract
The cyclin-dependent kinase 6 (CDK6) regulates the transition through the G1-phase of the cell cycle, but also acts as a transcriptional regulator. As such CDK6 regulates cell survival or cytokine secretion together with STATs, AP-1 or NF-κB. In the hematopoietic system, CDK6 regulates T cell development and promotes leukemia and lymphoma. CDK4/6 kinase inhibitors are FDA approved for treatment of breast cancer patients and have been reported to enhance T cell-mediated anti-tumor immunity. The involvement of CDK6 in T cell functions remains enigmatic. We here investigated the role of CDK6 in CD8+ T cells, using previously generated CDK6 knockout (Cdk6-/-) and kinase-dead mutant CDK6 (Cdk6K43M) knock-in mice. RNA-seq analysis indicated a role of CDK6 in T cell metabolism and interferon (IFN) signaling. To investigate whether these CDK6 functions are T cell-intrinsic, we generated a T cell-specific CDK6 knockout mouse model (Cdk6fl/fl CD4-Cre). T cell-intrinsic loss of CDK6 enhanced mitochondrial respiration in CD8+ T cells, but did not impact on cytotoxicity and production of the effector cytokines IFN-γ and TNF-α by CD8+ T cells in vitro. Loss of CDK6 in peripheral T cells did not affect tumor surveillance of MC38 tumors in vivo. Similarly, while we observed an impaired induction of early responses to type I IFN in CDK6-deficient CD8+ T cells, we failed to observe any differences in the response to LCMV infection upon T cell-intrinsic loss of CDK6 in vivo. This apparent contradiction might at least partially be explained by the reduced expression of Socs1, a negative regulator of IFN signaling, in CDK6-deficient CD8+ T cells. Therefore, our data are in line with a dual role of CDK6 in IFN signaling; while CDK6 promotes early IFN responses, it is also involved in the induction of a negative feedback loop. These data assign CDK6 a role in the fine-tuning of cytokine responses.
Collapse
Affiliation(s)
- Klara Klein
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Agnieszka Witalisz-Siepracka
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
- Department of Pharmacology, Physiology and Microbiology, Division Pharmacology, Karl Landsteiner University of Health Sciences, Krems, Austria
| | - Dagmar Gotthardt
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Benedikt Agerer
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Felix Locker
- Institute of Physiology, Pathophysiology and Biophysics, University of Veterinary Medicine, Vienna, Austria
| | - Reinhard Grausenburger
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Vanessa Maria Knab
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Andreas Bergthaler
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Veronika Sexl
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| |
Collapse
|
24
|
Lee HA, Chu KB, Moon EK, Quan FS. Histone Deacetylase Inhibitor-Induced CDKN2B and CDKN2D Contribute to G2/M Cell Cycle Arrest Incurred by Oxidative Stress in Hepatocellular Carcinoma Cells via Forkhead Box M1 Suppression. J Cancer 2021; 12:5086-5098. [PMID: 34335925 PMCID: PMC8317537 DOI: 10.7150/jca.60027] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 06/13/2021] [Indexed: 01/03/2023] Open
Abstract
Forkhead box protein M1 (FOXM1) is a pivotal regulator of G2/M cell cycle progression in many types of cancer. Previously, our study demonstrated that histone deacetylase inhibition (HDACi) sensitizes hepatocellular carcinoma cells (HCC) to oxidative stress through FOXM1 suppression. However, the mechanism underlying its suppression by HDACi still requires elucidation. We hypothesized that HDACi induce genes responsible for destabilizing and inactivating FOXM1. The transcriptome in the HepG2 was revealed by massive analysis of cDNA end (MACE). Expression of mRNA and proteins were analyzed by quantitative real-time PCR (qPCR) and western blot, respectively. Cell cycle was analyzed by fluorescence-activated cell sorting (FACS). Oxidative stress and HDACi suppressed CDK4/6 levels while enhancing CDK inhibitor 2B and 2D (CDKN2B and CDKN2D) expressions in HCC. Palbociclib, a specific inhibitor of CDK4/6, induced G2/M cell cycle arrest in HCC by down-regulating phosphorylation level of FOXM1, and its downstream target genes such as aurora kinase A (AURKA) and polo-like kinase 1 (PLK1). HDACi treatment increased the ubiquitination level of FOXM1 by suppressing ubiquitin-specific peptidase 21 (USP21), which deubiquitinates FOXM1. Inhibiting FOXM1 degradation with MG132 treatment affected neither palbociclib-induced G2/M cell cycle arrest nor expression of its target genes. Double knockdown of CDKN2B and CDKN2D reduced the oxidative stress and HDACi-induced G/2M cell cycle arrest. In conclusion, oxidative stress and HDACi synergistically cause G2/M cell cycle arrest via CDKN2 induction, which sequentially inhibits CDK4/6, FOXM1, and its downstream target genes AURKA, PLK1, and CCNB1 phosphorylation in HCC.
Collapse
Affiliation(s)
- Hae-Ahm Lee
- Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, School of Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Ki-Back Chu
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Eun-Kyung Moon
- Department of Medical Zoology, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Fu-Shi Quan
- Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, School of Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea.,Department of Medical Zoology, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
25
|
Inhibition of CDK4/6 as Therapeutic Approach for Ovarian Cancer Patients: Current Evidences and Future Perspectives. Cancers (Basel) 2021; 13:cancers13123035. [PMID: 34204543 PMCID: PMC8235237 DOI: 10.3390/cancers13123035] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/14/2021] [Accepted: 06/14/2021] [Indexed: 02/02/2023] Open
Abstract
Simple Summary Altered regulation of the cell cycle is a hallmark of cancer. The recent clinical success of the inhibitors of CDK4 and CDK6 has convincingly demonstrated that targeting cell cycle components may represent an effective anti-cancer strategy, at least in some cancer types. However, possible applications of CDK4/6 inhibitors in patients with ovarian cancer is still under evaluation. Here, we describe the possible biological role of CDK4 and CDK6 complexes in ovarian cancer and provide the rationale for the use of CDK4/6 inhibitors in this pathology, alone or in combination with other drugs. This review, coupling basic, preclinical and clinical research studies, could be of great translational value for investigators attempting to design new clinical trials for the better management of ovarian cancer patients. Abstract Alterations in components of the cell-cycle machinery are present in essentially all tumor types. In particular, molecular alterations resulting in dysregulation of the G1 to S phase transition have been observed in almost all human tumors, including ovarian cancer. These alterations have been identified as potential therapeutic targets in several cancer types, thereby stimulating the development of small molecule inhibitors of the cyclin dependent kinases. Among these, CDK4 and CDK6 inhibitors confirmed in clinical trials that CDKs might indeed represent valid therapeutic targets in, at least some, types of cancer. CDK4 and CDK6 inhibitors are now used in clinic for the treatment of patients with estrogen receptor positive metastatic breast cancer and their clinical use is being tested in many other cancer types, alone or in combination with other agents. Here, we review the role of CDK4 and CDK6 complexes in ovarian cancer and propose the possible use of their inhibitors in the treatment of ovarian cancer patients with different types and stages of disease.
Collapse
|
26
|
Cacic D, Reikvam H, Nordgård O, Meyer P, Hervig T. Platelet Microparticles Protect Acute Myelogenous Leukemia Cells against Daunorubicin-Induced Apoptosis. Cancers (Basel) 2021; 13:cancers13081870. [PMID: 33919720 PMCID: PMC8070730 DOI: 10.3390/cancers13081870] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/08/2021] [Accepted: 04/11/2021] [Indexed: 12/21/2022] Open
Abstract
The role of platelets in cancer development and progression is increasingly evident, and several platelet-cancer interactions have been discovered, including the uptake of platelet microparticles (PMPs) by cancer cells. PMPs inherit a myriad of proteins and small RNAs from the parental platelets, which in turn can be transferred to cancer cells following internalization. However, the exact effect this may have in acute myelogenous leukemia (AML) is unknown. In this study, we sought to investigate whether PMPs could transfer their contents to the THP-1 cell line and if this could change the biological behavior of the recipient cells. Using acridine orange stained PMPs, we demonstrated that PMPs were internalized by THP-1 cells, which resulted in increased levels of miR-125a, miR-125b, and miR-199. In addition, co-incubation with PMPs protected THP-1 and primary AML cells against daunorubicin-induced cell death. We also showed that PMPs impaired cell growth, partially inhibited cell cycle progression, decreased mitochondrial membrane potential, and induced differentiation toward macrophages in THP-1 cells. Our results suggest that this altering of cell phenotype, in combination with decrease in cell activity may offer resistance to daunorubicin-induced apoptosis, as serum starvation also yielded a lower frequency of dead and apoptotic cells when treated with daunorubicin.
Collapse
Affiliation(s)
- Daniel Cacic
- Department of Hematology and Oncology, Stavanger University Hospital, 4068 Stavanger, Norway; (O.N.); (P.M.)
- Correspondence:
| | - Håkon Reikvam
- Department of Clinical Science, University of Bergen, 5021 Bergen, Norway; (H.R.); (T.H.)
- Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway
| | - Oddmund Nordgård
- Department of Hematology and Oncology, Stavanger University Hospital, 4068 Stavanger, Norway; (O.N.); (P.M.)
- Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, 4036 Stavanger, Norway
| | - Peter Meyer
- Department of Hematology and Oncology, Stavanger University Hospital, 4068 Stavanger, Norway; (O.N.); (P.M.)
| | - Tor Hervig
- Department of Clinical Science, University of Bergen, 5021 Bergen, Norway; (H.R.); (T.H.)
- Laboratory of Immunology and Transfusion Medicine, Haugesund Hospital, 5528 Haugesund, Norway
| |
Collapse
|
27
|
AMPK Is the Crucial Target for the CDK4/6 Inhibitors Mediated Therapeutic Responses in PANC-1 and MIA PaCa-2 Pancreatic Cancer Cell Lines. STRESSES 2021. [DOI: 10.3390/stresses1010005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The survival rate of pancreatic ductal adenocarcinoma (PDAC) patients is short, and PDAC is a cancer type that ranks fourth in the statistics regarding death due to cancer. Mutation in the KRAS gene, which plays a role in pancreatic cancer development, activates the PI3K/AKT/mTOR signaling pathway. The activity of the AMPK as a cellular energy sensor is one of the fundamental mechanisms that can induce effective therapeutic responses against CDK4/6 inhibitors via adjusting the cellular and tumor microenvironment stress management. The phosphorylation of AMPKα at the different phosphorylation residues such as Thr172 and Ser 377 causes metabolic differentiation in the cells following CDK4/6 inhibitor treatment in accordance with an increased cell cycle arrest and senescence under the control of different cellular players. In this study, we examined the competencies of the CDK4/6 inhibitors LY2835219 and PD-0332991 on the mechanism of cell survival and death based on AMPK signaling. Both CDK4/6 inhibitors LY2835219 and PD-0332991 modulated different molecular players on the PI3K/AKT/mTOR and AMPK signaling axis in different ways to reduce cell survival in a cell type dependent manner. These drugs are potential inducers of apoptosis and senescence that can alter the therapeutic efficacy cells.
Collapse
|
28
|
Cisplatin Cytotoxicity in Human Testicular Germ Cell Tumor Cell Lines Is Enhanced by the CDK4/6 Inhibitor Palbociclib. Clin Genitourin Cancer 2021; 19:316-324. [PMID: 33676835 DOI: 10.1016/j.clgc.2021.01.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/29/2021] [Accepted: 01/31/2021] [Indexed: 12/21/2022]
Abstract
BACKGROUND Cisplatin-based chemotherapy is the mainstay of pharmacological treatment of testicular germ cell tumors (TGCTs) that, together with early diagnosis, surgery, and/or radiotherapy, has dramatically improved the prognosis. However, under the pressure of such pharmacological therapy (both classical cytotoxic drugs and targeted therapy), cancer cells may develop resistance. Thus, combination therapy that may include cytotoxic drugs and targeted therapy could offer an advantage to curing cancers. Here, we investigated the in vitro and in vivo antitumor activity of cisplatin, as a single-agent or in combination with palbociclib. PATIENTS AND METHODS The cell viability of Ntera-2/cl.D1 (NT2/D1) and 833K after exposure to palbociclib and/or cisplatin was evaluated by MTT dye reduction assay and by ATPLite Luminescence Assay. Gene and protein expression was evaluated by quantitative reverse transcription polymerase chain reaction and by western blot. Flow cytometric cell-cycle analysis was performed, as well. The in vivo experiments were conducted on NT2/D1 xenografts in AB zebrafish embryos exposed to the drugs. RESULTS Palbociclib and cisplatin decreased TGCT cell viability both in vitro and in vivo. This effect was additive when cells were exposed to the drug combination. In the NT2/D1 cell lines, the drug combination also exerted a positive effect with regard to delaying cell recovery after the toxic insult. In the combination experiments, cisplatin-induced cell accumulation in G2/M was predominant compared with the palbociclib effect. CONCLUSIONS These results could provide the rationale for developing further studies to improve the pharmacological treatment of TGCTs, but they must be demonstrated in a dedicated clinical trial.
Collapse
|
29
|
Wruck W, Bremmer F, Kotthoff M, Fichtner A, Skowron MA, Schönberger S, Calaminus G, Vokuhl C, Pfister D, Heidenreich A, Albers P, Adjaye J, Nettersheim D. The pioneer and differentiation factor FOXA2 is a key driver of yolk-sac tumour formation and a new biomarker for paediatric and adult yolk-sac tumours. J Cell Mol Med 2021; 25:1394-1405. [PMID: 33448076 PMCID: PMC7875904 DOI: 10.1111/jcmm.16222] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/04/2020] [Accepted: 12/08/2020] [Indexed: 01/04/2023] Open
Abstract
Yolk-sac tumours (YSTs), a germ cell tumour subtype, occur in newborns and infants as well as in young adults of age 14-44 years. In clinics, adult patients with YSTs face a poor prognosis, as these tumours are often therapy-resistant and count for many germ cell tumour related deaths. So far, the molecular and (epi)genetic mechanisms that control development of YST are far from being understood. We deciphered the molecular and (epi)genetic mechanisms regulating YST formation by meta-analysing high-throughput data of gene and microRNA expression, DNA methylation and mutational burden. We validated our findings by qRT-PCR and immunohistochemical analyses of paediatric and adult YSTs. On a molecular level, paediatric and adult YSTs were nearly indistinguishable, but were considerably different from embryonal carcinomas, the stem cell precursor of YSTs. We identified FOXA2 as a putative key driver of YST formation, subsequently inducing AFP, GPC3, APOA1/APOB, ALB and GATA3/4/6 expression. In YSTs, WNT-, BMP- and MAPK signalling-related genes were up-regulated, while pluripotency- and (primordial) germ cell-associated genes were down-regulated. Expression of FOXA2 and related key factors seems to be regulated by DNA methylation, histone methylation / acetylation and microRNAs. Additionally, our results highlight FOXA2 as a promising new biomarker for paediatric and adult YSTs.
Collapse
Affiliation(s)
- Wasco Wruck
- Institute for Stem Cell Research and Regenerative MedicineUniversity Hospital DüsseldorfDüsseldorfGermany
| | - Felix Bremmer
- Institute of PathologyUniversity Medical Center GoettingenGoettingenGermany
| | - Mara Kotthoff
- Department of UrologyUrological Research LabTranslational UroOncologyUniversity Hospital DüsseldorfDüsseldorfGermany
| | - Alexander Fichtner
- Institute of PathologyUniversity Medical Center GoettingenGoettingenGermany
| | - Margaretha A. Skowron
- Department of UrologyUrological Research LabTranslational UroOncologyUniversity Hospital DüsseldorfDüsseldorfGermany
| | - Stefan Schönberger
- Department of Pediatric Hematology and OncologyUniversity Children's HospitalEssenGermany
| | - Gabriele Calaminus
- Department of Pediatric Hematology and OncologyUniversity Hospital BonnBonnGermany
| | | | - David Pfister
- Department of UrologyUniversity Hospital CologneCologneGermany
| | | | - Peter Albers
- Department of UrologyUniversity Hospital DüsseldorfDüsseldorfGermany
| | - James Adjaye
- Institute for Stem Cell Research and Regenerative MedicineUniversity Hospital DüsseldorfDüsseldorfGermany
| | - Daniel Nettersheim
- Department of UrologyUrological Research LabTranslational UroOncologyUniversity Hospital DüsseldorfDüsseldorfGermany
| |
Collapse
|
30
|
Differential gene expression in cisplatin-resistant and -sensitive testicular germ cell tumor cell lines. Oncotarget 2020; 11:4735-4753. [PMID: 33473258 PMCID: PMC7771712 DOI: 10.18632/oncotarget.27844] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 11/30/2020] [Indexed: 12/14/2022] Open
Abstract
Testicular germ cell tumors (TGCTs) represent a well curable malignity due to their exceptional response to cisplatin (CDDP). Despite remarkable treatment results, approximately 5% of TGCT patients develop CDDP resistance and die. Exceptional curability makes TGCTs a highly valuable model system for studying the molecular mechanisms of CDDP sensitivity. Our study was aimed at revealing difference in gene expression between the CDDP-resistant and -sensitive TGCT cell lines, and hence at identifying candidate genes that could serve as potential biomarkers of CDDP response. Using gene expression array, we identified 281 genes that are differentially expressed in CDDP-resistant compared to -sensitive TGCT cell lines. The expression of 25 genes with the highest fold change was validated by RT-qPCR. Of them, DNMT3L, GAL, IGFBP2, IGFBP7, L1TD1, NANOG, NTF3, POU5F1, SOX2, WNT6, ZFP42, ID2, PCP4, SLC40A1 and TRIB3, displayed comparable expression change in gene expression array and RT-qPCR, when all CDDP-resistant TGCT cell lines were pairwise combined with all -sensitive ones. Products of the identified genes are pluripotency factors, or are involved in processes, such as cell metabolism, proliferation or migration. We propose that, after clinical validation, these genes could serve as prognostic biomarkers for early detection of CDDP response in TGCT patients.
Collapse
|
31
|
Efficacy of HDAC Inhibitors Belinostat and Panobinostat against Cisplatin-Sensitive and Cisplatin-Resistant Testicular Germ Cell Tumors. Cancers (Basel) 2020; 12:cancers12102903. [PMID: 33050470 PMCID: PMC7601457 DOI: 10.3390/cancers12102903] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/06/2020] [Accepted: 10/08/2020] [Indexed: 12/16/2022] Open
Abstract
Simple Summary There is a need for novel treatment options for patients with testicular germ cell tumors, especially for those that are resistant to standard chemotherapy, who show poor prognosis. In this work, we test two compounds that inhibit epigenetic enzymes called histone deacetylases—belinostat and panobinostat. We show that these enzymes are expressed at different levels in different germ cell tumor subtypes (seminomas and non-seminomas) and that both drugs are effective in reducing tumor cell viability, by decreasing cell proliferation and increasing cell death. These results are promising and should prompt further works with these compounds, envisioning the improvement of care of germ cell tumor patients. Abstract Novel treatment options are needed for testicular germ cell tumor (TGCT) patients, particularly important for those showing or developing cisplatin resistance, the major cause of cancer-related deaths. As TGCTs pathobiology is highly related to epigenetic (de)regulation, epidrugs are potentially effective therapies. Hence, we sought to explore, for the first time, the effect of the two most recently FDA-approved HDAC inhibitors (HDACis), belinostat and panobinostat, in (T)GCT cell lines including those resistant to cisplatin. In silico results were validated in 261 patient samples and differential expression of HDACs was also observed across cell lines. Belinostat and panobinostat reduced cell viability in both cisplatin-sensitive cells (NCCIT-P, 2102Ep-P, and NT2-P) and, importantly, also in matched cisplatin-resistant subclones (NCCIT-R, 2102Ep-R, and NT2-R), with IC50s in the low nanomolar range for all cell lines. Treatment of NCCIT-R with both drugs increased acetylation, induced cell cycle arrest, reduced proliferation, decreased Ki67 index, and increased p21, while increasing cell death by apoptosis, with upregulation of cleaved caspase 3. These findings support the effectiveness of HDACis for treating TGCT patients in general, including those developing cisplatin resistance. Future studies should explore them as single or combination agents.
Collapse
|
32
|
Cisplatin Resistance in Testicular Germ Cell Tumors: Current Challenges from Various Perspectives. Cancers (Basel) 2020; 12:cancers12061601. [PMID: 32560427 PMCID: PMC7352163 DOI: 10.3390/cancers12061601] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/13/2020] [Accepted: 06/16/2020] [Indexed: 02/07/2023] Open
Abstract
Testicular germ cell tumors share a marked sensitivity to cisplatin, contributing to their overall good prognosis. However, a subset of patients develop resistance to platinum-based treatments, by still-elusive mechanisms, experiencing poor quality of life due to multiple (often ineffective) interventions and, eventually, dying from disease. Currently, there is a lack of defined treatment opportunities for these patients that tackle the mechanism(s) underlying the emergence of resistance. Herein, we aim to provide a multifaceted overview of cisplatin resistance in testicular germ cell tumors, from the clinical perspective, to the pathobiology (including mechanisms contributing to induction of the resistant phenotype), to experimental models available for studying this occurrence. We provide a systematic summary of pre-target, on-target, post-target, and off-target mechanisms putatively involved in cisplatin resistance, providing data from preclinical studies and from those attempting validation in clinical samples, including those exploring specific alterations as therapeutic targets, some of them included in ongoing clinical trials. We briefly discuss the specificities of resistance related to teratoma (differentiated) phenotype, including the phenomena of growing teratoma syndrome and development of somatic-type malignancy. Cisplatin resistance is most likely multifactorial, and a combination of therapeutic strategies will most likely produce the best clinical benefit.
Collapse
|