1
|
de Barros JM, de Farias Morais HG, de Oliveira Costa CS, Rolim LSA, de Sousa Lopes MLD, Guedes Queiroz LM, de Souza LB, Pinto LP. Decreased Nuclear Immunoexpression of ING3 is a Frequent Event in Lip Carcinogenesis. Head Neck Pathol 2024; 18:103. [PMID: 39412571 PMCID: PMC11485000 DOI: 10.1007/s12105-024-01683-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/26/2024] [Indexed: 10/19/2024]
Abstract
PURPOSE Evaluate the immunohistochemical expression of the ING3 in actinic cheilitis and squamous cell carcinoma of the lower lip. METHODS Forty-five specimens of actinic cheilitis and 48 specimens of squamous cell carcinoma of the lower lip were submitted to immunohistochemical detection of ING3. The protein expression in different cellular sublocations was compared between the two groups, and associations with the clinicopathological variables were analyzed. A significance level of 5% was adopted for all tests. RESULTS Deaths were significantly more frequent in tumors with a high histopathological risk score (p < 0.05). In actinic cheilitis, significant differences were found in the nucleus-cytoplasmic expression of ING3 and expression restricted to the cytoplasm with binary histopathological grading (p < 0.05). In squamous cell carcinoma of the lower lip, there was no statistically significant difference when comparing ING3 expressions with clinical and morphological parameters (p > 0.05). Nucleo-cytoplasmic ING3 expression was significantly lower in squamous cell carcinoma of the lower lip when compared to actinic cheilitis (p < 0.05) and the expression restricted to the cytoplasm was significantly higher in squamous cell carcinoma of the lower lip (p < 0.05). CONCLUSION The results of this study suggest that there is a marked decrease in the nuclear expression of ING3 as malignant progression occurs, indicating an impaired tumor suppressor function of this protein in actinic cheilitis and squamous cell carcinoma of the lower lip.
Collapse
Affiliation(s)
- Joyce Magalhães de Barros
- Department of Oral Pathology, Federal University of Rio Grande do Norte, Av. Senador Salgado Filho, Lagoa Nova, Natal, 1787, CEP 59056-000, RN, Brazil
| | - Hannah Gil de Farias Morais
- Department of Oral Pathology, Federal University of Rio Grande do Norte, Av. Senador Salgado Filho, Lagoa Nova, Natal, 1787, CEP 59056-000, RN, Brazil.
| | - Carla Samily de Oliveira Costa
- Department of Oral Pathology, Federal University of Rio Grande do Norte, Av. Senador Salgado Filho, Lagoa Nova, Natal, 1787, CEP 59056-000, RN, Brazil
| | - Larissa Santos Amaral Rolim
- Department of Oral Pathology, Federal University of Rio Grande do Norte, Av. Senador Salgado Filho, Lagoa Nova, Natal, 1787, CEP 59056-000, RN, Brazil
| | - Maria Luiza Diniz de Sousa Lopes
- Department of Oral Pathology, Federal University of Rio Grande do Norte, Av. Senador Salgado Filho, Lagoa Nova, Natal, 1787, CEP 59056-000, RN, Brazil
| | - Lélia Maria Guedes Queiroz
- Department of Oral Pathology, Federal University of Rio Grande do Norte, Av. Senador Salgado Filho, Lagoa Nova, Natal, 1787, CEP 59056-000, RN, Brazil
| | - Lélia Batista de Souza
- Department of Oral Pathology, Federal University of Rio Grande do Norte, Av. Senador Salgado Filho, Lagoa Nova, Natal, 1787, CEP 59056-000, RN, Brazil
| | - Leão Pereira Pinto
- Department of Oral Pathology, Federal University of Rio Grande do Norte, Av. Senador Salgado Filho, Lagoa Nova, Natal, 1787, CEP 59056-000, RN, Brazil
| |
Collapse
|
2
|
Cheng S, Li M, Zheng W, Li C, Hao Z, Dai Y, Wang J, Zhuo J, Zhang L. ING3 inhibits the malignant progression of lung adenocarcinoma by negatively regulating ITGB4 expression to inactivate Src/FAK signaling. Cell Signal 2024; 117:111066. [PMID: 38281617 DOI: 10.1016/j.cellsig.2024.111066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/12/2024] [Accepted: 01/26/2024] [Indexed: 01/30/2024]
Abstract
Lung adenocarcinoma (LUAD) is the most commonly diagnosed subtype of lung cancer worldwide. Inhibitor of growth 3 (ING3) serves as a tumor suppressor in many cancers. This study aimed to elucidate the role of ING3 in the progression of LUAD and investigate the underlying mechanism related to integrin β4 (ITGB4) and Src/focal adhesion kinase (FAK) signaling. ING3 expression in LUAD tissues and the correlation between ING3 expression and prognosis were analyzed by bioinformatics databases. After evaluating ING3 expression in LUAD cells, ING3 was overexpressed to assess the proliferation, cell cycle arrest, migration and invasion of LUAD cells. Then, ITGB4 was upregulated to observe the changes of malignant activities in ING3-overexpressed LUAD cells. The transplantation tumor model of NCI-H1975 cells in nude mice was established to analyze the antineoplastic effect of ING3 upregulation in vivo. Downregulated ING3 expression was observed in LUAD tissues and cells and lower ING3 expression predicated the poor prognosis. ING3 upregulation restrained the proliferation, migration, invasion and induced the cell cycle arrest of NCI-H1975 cells. Additionally, ITGB4 expression was negatively correlated with ING3 expression in LUAD tissue. ING3 led to reduced expression of ITGB4, Src and p-FAK. Moreover, ITGB4 overexpression alleviated the effects of ING3 upregulation on the malignant biological properties of LUAD cells. It could be also found that ING3 upregulation limited the tumor volume, decreased the expression of ITGB4, Src and p-FAK, which was restored by ITGB4 overexpression. Collectively, ING3 inhibited the malignant progression of LUAD by negatively regulating ITGB4 expression to inactivate Src/FAK signaling.
Collapse
Affiliation(s)
- Shiliang Cheng
- Shandong Provincial Third Hospital Medical Laboratory, Shandong University, Jinan City, Shandong Province 250031, China.
| | - Meng Li
- Shandong Provincial Third Hospital Medical Laboratory, Shandong University, Jinan City, Shandong Province 250031, China.
| | - Wen Zheng
- Shandong Provincial Third Hospital Medical Laboratory, Shandong University, Jinan City, Shandong Province 250031, China
| | - Chunguang Li
- Shandong Provincial Third Hospital Medical Laboratory, Shandong University, Jinan City, Shandong Province 250031, China
| | - Zhihao Hao
- Shandong Provincial Third Hospital Medical Laboratory, Shandong University, Jinan City, Shandong Province 250031, China
| | - Yonggang Dai
- Shandong Provincial Third Hospital Medical Laboratory, Shandong University, Jinan City, Shandong Province 250031, China
| | - Jue Wang
- Shandong Provincial Third Hospital Medical Laboratory, Shandong University, Jinan City, Shandong Province 250031, China
| | - Jinhua Zhuo
- Shandong Provincial Third Hospital Medical Laboratory, Shandong University, Jinan City, Shandong Province 250031, China
| | - Lu Zhang
- Shandong Provincial Third Hospital Medical Laboratory, Shandong University, Jinan City, Shandong Province 250031, China
| |
Collapse
|
3
|
Zhang L, Zhu D, Jiang J, Min Z, Fa Z. The ubiquitin E3 ligase MDM2 induces chemoresistance in colorectal cancer by degradation of ING3. Carcinogenesis 2023; 44:562-575. [PMID: 37279970 DOI: 10.1093/carcin/bgad040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/12/2023] [Accepted: 06/06/2023] [Indexed: 06/08/2023] Open
Abstract
Chemoresistance is an obstacle for colorectal cancer (CRC) treatment. This study investigates the role of the ubiquitin E3 ligase MDM2 in affecting cell growth and chemosensitivity in CRC cells by modifying the transcription factor inhibitor of growth protein 3 (ING3). The expression of MDM2 and ING3 in CRC tissues was predicted by bioinformatics analysis, followed by expression validation and their interaction in CRC HCT116 and LS180 cells. Ectopic overexpression or knockdown of MDM2/ING3 was performed to test their effect on proliferation and apotptosis as well as chemosensitivity of CRC cells. Finally, the effect of MDM2/ING3 expression on the in vivo tumorigenesis of CRC cells was examined through subcutaneous tumor xenograft experiment in nude mice. MDM2 promoted ubiquitin-proteasome pathway degradation of ING3 through ubiquitination and diminished its protein stability. Overexpression of MDM2 downregulated ING3 expression, which promoted CRC cell proliferation and inhibited the apoptosis. The enhancing role of MDM2 in tumorigenesis and resistance to chemotherapeutic drugs was also confirmed in vivo. Our findings highlight that MDM2 modifies the transcription factor ING3 by ubiquitination-proteasome pathway degradation, thus reducing ING3 protein stability, which finally promotes CRC cell growth and chemoresistance.
Collapse
Affiliation(s)
- Liangliang Zhang
- General Surgery Department, Wujin Hospital Affiliated with Jiangsu University, The Wujin Clinical College of Xuzhou Medical University, Changzhou 213004, P. R. China
| | - Dagang Zhu
- General Surgery Department, Wujin Hospital Affiliated with Jiangsu University, The Wujin Clinical College of Xuzhou Medical University, Changzhou 213004, P. R. China
| | - Jiwen Jiang
- General Surgery Department, Wujin Hospital Affiliated with Jiangsu University, The Wujin Clinical College of Xuzhou Medical University, Changzhou 213004, P. R. China
| | - Zhenyu Min
- General Surgery Department, Wujin Hospital Affiliated with Jiangsu University, The Wujin Clinical College of Xuzhou Medical University, Changzhou 213004, P. R. China
| | - Zhenzhong Fa
- General Surgery Department, Wujin Hospital Affiliated with Jiangsu University, The Wujin Clinical College of Xuzhou Medical University, Changzhou 213004, P. R. China
| |
Collapse
|
4
|
Yue S, Feng X, Cai Y, Ibrahim SA, Liu Y, Huang W. Regulation of Tumor Apoptosis of Poriae cutis-Derived Lanostane Triterpenes by AKT/PI3K and MAPK Signaling Pathways In Vitro. Nutrients 2023; 15:4360. [PMID: 37892435 PMCID: PMC10610537 DOI: 10.3390/nu15204360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/07/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Poria cocos is traditionally used as both food and medicine. Triterpenoids in Poria cocos have a wide range of pharmacological activities, such as diuretic, sedative and tonic properties. In this study, the anti-tumor activities of poricoic acid A (PAA) and poricoic acid B (PAB), purified by high-speed counter-current chromatography, as well as their mechanisms and signaling pathways, were investigated using a HepG2 cell model. After treatment with PAA and PAB on HepG2 cells, the apoptosis was obviously increased (p < 0.05), and the cell cycle arrested in the G2/M phase. Studies showed that PAA and PAB can also inhibit the occurrence and development of tumor cells by stimulating the generation of ROS in tumor cells and inhibiting tumor migration and invasion. Combined Polymerase Chain Reaction and computer simulation of molecular docking were employed to explore the mechanism of tumor proliferation inhibition by PAA and PAB. By interfering with phosphatidylinositol-3-kinase/protein kinase B, Mitogen-activated protein kinases and p53 signaling pathways; and further affecting the expression of downstream caspases; matrix metalloproteinase family, cyclin-dependent kinase -cyclin, Intercellular adhesion molecules-1, Vascular Cell Adhesion Molecule-1 and Cyclooxygenase -2, may be responsible for their anti-tumor activity. Overall, the results suggested that PAA and PAB induced apoptosis, halted the cell cycle, and inhibited tumor migration and invasion through multi-pathway interactions, which may serve as a potential therapeutic agent against cancer.
Collapse
Affiliation(s)
- Shuai Yue
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China;
| | - Xi Feng
- Department of Nutrition, Food Science and Packaging, San Jose State University, San Jose, CA 95192, USA;
| | - Yousheng Cai
- School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China;
| | - Salam A. Ibrahim
- Department of Family and Consumer Sciences, North Carolina A&T State University, 171 Carver Hall, Greensboro, NC 27411, USA;
| | - Ying Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China;
| | - Wen Huang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China;
| |
Collapse
|
5
|
Jin L, Shen N, Wen X, Wang W, Lim SW, Yang CW. CTLA4-Ig protects tacrolimus-induced oxidative stress via inhibiting the AKT/FOXO3 signaling pathway in rats. Korean J Intern Med 2023; 38:393-405. [PMID: 37157174 PMCID: PMC10175874 DOI: 10.3904/kjim.2022.293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 02/16/2023] [Indexed: 05/10/2023] Open
Abstract
BACKGROUND/AIMS Although the conversion from tacrolimus (TAC) to cytotoxic T-lymphocyte-associated antigen 4-immunoglobulin (CTLA4-Ig) is effective in reducing TAC-induced nephrotoxicity, it remains unclear whether CTLA4-Ig has a direct effect on TAC-induced renal injury. In this study, we evaluated the effects of CTLA4-Ig on TAC-induced renal injury in terms of oxidative stress. METHODS In vitro study was performed to assess the effect of CTLA4-Ig on TAC-induced cell death, reactive oxygen species (ROS), apoptosis, and the protein kinase B (AKT)/forkhead transcription factor (FOXO) 3 pathway in human kidney 2 cells. In the in vivo study, the effect of CTLA4-Ig on TAC-induced renal injury was evaluated using renal function, histopathology, markers of oxidative stress (8-hydroxy-2'-deoxyguanosine) and metabolites (4-hydroxy-2-hexenal, catalase, glutathione S-transferase, and glutathione reductase), and activation of the AKT/FOXO3 pathway with insulin-like growth factor 1 (IGF-1). RESULTS CTLA4-Ig significantly decreased cell death, ROS, and apoptosis caused by TAC. TAC treatment increased apoptotic cell death and apoptosis-related proteins (increased Bcl-2-associated X protein and caspase-3 and decreased Bcl-2), but it was reversed by CTLA4-Ig treatment. The activation of p-AKT and p-FOXO3 by TAC decreased with CTLA4-Ig treatment. TAC-induced renal dysfunction and oxidative marker levels were significantly improved by CTLA4-Ig in vivo. Concomitant IGF-1 treatment abolished the effects of CTLA4-Ig. CONCLUSION CTLA4-Ig has a direct protective effect on TAC-induced renal injury via the inhibition of AKT/FOXO3 pathway.
Collapse
Affiliation(s)
- Long Jin
- Department of Nephrology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Department of Nephrology, Air Force Medical Center,Air Force Medical University, Beijing, China
| | - Nan Shen
- Department of Nephrology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xinyu Wen
- Department of Nephrology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Weidong Wang
- Department of Nephrology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Sun Woo Lim
- Transplant Research Center, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Convergent Research Consortium for Immunologic Disease, Seoul, Korea
| | - Chul Woo Yang
- Transplant Research Center, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Convergent Research Consortium for Immunologic Disease, Seoul, Korea
- Division of Nephrology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
6
|
Fu Y, Liu H, Long M, Song L, Meng Z, Lin S, Zhang Y, Qin J. Icariin attenuates the tumor growth by targeting miR-1-3p/TNKS2/Wnt/β-catenin signaling axis in ovarian cancer. Front Oncol 2022; 12:940926. [PMID: 36185280 PMCID: PMC9516086 DOI: 10.3389/fonc.2022.940926] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 08/18/2022] [Indexed: 11/20/2022] Open
Abstract
Purpose Despite various therapy advances, ovarian cancer remains an incurable disease for which survival rates have only modestly improved. Natural products are important sources of anti-cancer lead compounds. Icariin exhibited broad anti-cancer efficacy. However, the mechanism of icariin against ovarian cancer is poorly elucidated. Methods Cell viability was detected to evaluate the effect of icariin on SKOV-3 cells. The cell cycle and apoptosis were analyzed. The transcript of SKOV-3 cells was profiled by RNA-seq. GSEA and DEGs analyses were performed to interpret gene expression data. Western blot and TOP/FOP flash assay were applied to detect Wnt/β-catenin signaling. MiRDB database and dual-luciferase reporter assay was applied to study the regulation of miR-1-3p on TNKS2. Anti-tumor efficacy of icariin was evaluated by xenograft mouse model. Immunohistochemistry was performed with antibodies against Ki67. Results Icariin significantly suppressed the proliferation of SKOV-3 cells. Furthermore, icariin stalled cell cycle and induced apoptosis by blocking TNKS2/Wnt/β-catenin pathway through upregulating the level of miR-1-3p. Finally, icariin dramatically suppressed tumor growth in vivo. Conclusions In this study, we demonstrated for the first time that icariin significantly attenuated the growth of ovarian tumor in xenograft mouse model. Furthermore, we systematically revealed that icariin attenuates the tumor progression by suppressing TNKS2/Wnt/β-catenin signaling via upregulating the level of miR-1-3p in ovarian cancer with transcriptome analysis.
Collapse
Affiliation(s)
- Yanjin Fu
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Haiquan Liu
- Huizhou Traditional Chinese Medicine Hospital, Guangzhou University of Traditional Chinese Medicine, Huizhou, Guangdong, China
| | - Mengsha Long
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Linliang Song
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Zuyu Meng
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Shaozi Lin
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Yiyao Zhang
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - JiaJia Qin
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
- *Correspondence: JiaJia Qin,
| |
Collapse
|
7
|
Long Noncoding RNA LINC01554 Inhibits the Progression of NSCLC Progression by Functioning as a ceRNA for miR-1267 and Regulating ING3/Akt/mTOR Pathway. BIOMED RESEARCH INTERNATIONAL 2022; 2022:7162623. [PMID: 35845928 PMCID: PMC9286878 DOI: 10.1155/2022/7162623] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 06/16/2022] [Accepted: 06/24/2022] [Indexed: 12/11/2022]
Abstract
Objectives This study focused on the biological functions and mechanisms of action of LINC01554 in nonsmall cell lung cancer (NSCLC). Methods The expression and prognostic values of LINC01554 in NSCLC were evaluated using The Cancer Genome Atlas datasets. MTT, colony formation, wound healing, transwell, and in vivo assays were performed to investigate the role of LINC01554 in NSCLC. The related protein expression levels were measured via western blotting. Bioinformatic analysis was conducted to predict targeted genes. The relationship between LINC01554, microRNA- (miR-) 1267, miR-1267, and inhibitor of growth family member 3 (ING3) was analysed via a dual-luciferase reporter assay. Results LINC01554 expression was downregulated in NSCLC and associated with NSCLC prognosis. LINC01554 overexpression suppressed NSCLC cell proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT). Bioinformatic and dual-luciferase reporter assays demonstrated that LINC01554 expression directly targeted miR-1267 expression, which in turn directly acted on ING3. An miR-1267 mimic significantly reduced ING3 expression, whereas an miR-1267 inhibitor observably elevated its expression. LINC01554 overexpression increased ING3 expression, whereas this effect was counteracted by the miR-1267 mimic. LINC01554 overexpression also significantly suppressed the expression of phosphorylated protein kinase B (Akt) and phosphorylated mammalian target of rapamycin (mTOR) expression; this effect was abrogated by the miR-1267 mimic. Mechanistically, LINC01554 overexpression repressed the growth, migration, invasion, and epithelial-mesenchymal transition (EMT) of NSCLC cells through the regulation of the miR-1267/ING3 axis via regulation of the Akt/mTOR signalling pathway. Conclusions We provide the first evidence of the involvement of the LINC01554/miR-1267 axis in NSCLC proliferation and metastasis through the ING3Akt/mTOR pathway. Thus, LINC01554 may serve as a novel therapeutic target for NSCLC.
Collapse
|
8
|
A Novel Splice Variant of the Inhibitor of Growth 3 Lacks the Plant Homeodomain and Regulates Epithelial-Mesenchymal Transition in Prostate Cancer Cells. Biomolecules 2021; 11:biom11081152. [PMID: 34439818 PMCID: PMC8392754 DOI: 10.3390/biom11081152] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 12/14/2022] Open
Abstract
Inhibitor of growth 3 (ING3) is one of five members of the ING tumour suppressor family, characterized by a highly conserved plant homeodomain (PHD) as a reader of the histone mark H3K4me3. ING3 was reported to act as a tumour suppressor in many different cancer types to regulate apoptosis. On the other hand, ING3 levels positively correlate with poor survival prognosis of prostate cancer (PCa) patients. In PCa cells, ING3 acts rather as an androgen receptor (AR) co-activator and harbours oncogenic properties in PCa. Here, we show the identification of a novel ING3 splice variant in both the human PCa cell line LNCaP and in human PCa patient specimen. The novel ING3 splice variant lacks exon 11, ING3∆ex11, which results in deletion of the PHD, providing a unique opportunity to analyse functionally the PHD of ING3 by a natural splice variant. Functionally, overexpression of ING3Δex11 induced morphological changes of LNCaP-derived 3D spheroids with generation of lumen and pore-like structures within spheroids. Since these structures are an indicator of epithelial-mesenchymal transition (EMT), key regulatory factors and markers for EMT were analysed. The data suggest that in contrast to ING3, ING3Δex11 specifically modulates the expression of key EMT-regulating upstream transcription factors and induces the expression of EMT markers, indicating that the PHD of ING3 inhibits EMT. In line with this, ING3 knockdown also induced the expression of EMT markers, confirming the impact of ING3 on EMT regulation. Further, ING3 knockdown induced cellular senescence via a pathway leading to cell cycle arrest, indicating an oncogenic role for ING3 in PCa. Thus, the data suggest that the ING3Δex11 splice variant lacking functional PHD exhibits oncogenic characteristics through triggering EMT in PCa cells.
Collapse
|
9
|
Wu LZ, Huang ML, Qi CL, Shen LJ, Zou Y, Yang R, Sheng JF, Chen SM. Overexpression of Notch2 enhances radiosensitivity via inhibition of the AKT/mTOR signaling pathway in nasopharyngeal carcinoma. Bioengineered 2021; 12:3398-3409. [PMID: 34224316 PMCID: PMC8806669 DOI: 10.1080/21655979.2021.1949236] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Our previous study found that in nasopharyngeal carcinoma (NPC) cells, overexpression of Notch2 can inhibit epithelial-mesenchymal transition (EMT), which plays a vital role in mediating radiosensitivity. The purpose of this study was to explore the radiosensitizing efficacy of the Notch2 gene in NPC cells and its potential mechanism. We used the recombinant plasmid transfection technique to establish Notch2-overexpressing 5–8 F and CNE-2 NPC cells. Cell proliferation, radiosensitivity, apoptosis and cell cycle distribution were assessed by cell counting kit-8 (CCK-8) experiments, colony formation experiments and flow cytometry. The levels of proteins related to cell cycle, apoptosis, and the AKT/mTOR signaling pathway were evaluated by using Western blotting. The results suggested that Notch2 overexpression increased the radiosensitivity of NPC cells, with sensitizing enhancement ratios (SERs) of 1.24 (5–8 F cells) and 1.34 (CNE-2 cells). Flow cytometry indicated that the level of apoptosis and percentage of cells in G2/M-phase were highest in NPC cells overexpressing Notch2 and treated with radiotherapy compared to cells overexpressing Notch2 alone or administered radiotherapy alone. Western blotting showed that compared to that of cells treated with Notch2 overexpression or radiotherapy alone, the levels of γH2AX, Bax, Bcl-2, Cyclin D1 and AKT/mTOR signaling pathway-related proteins were modified in NPC cells overexpressing Notch2 and treated with radiotherapy. These findings showed that overexpression of Notch2 can increase the radiosensitivity of NPC cells by inhibiting the AKT/mTOR pathway.
Abbreviations
NPC: Nasopharyngeal carcinoma; EMT: Epithelial-mesenchymal transition; CCK8: Cell counting kit-8; EBV: Epstein-Barr virus; FBS: Fetal bovine serum; PE: Plating efficiency; SF: Survival fraction; SER: Sensitizing enhancement ratio; DSBs: DNA double-strand breaks![]() ![]()
Collapse
Affiliation(s)
- Li-Zhi Wu
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, P. R. China
| | - Mao-Ling Huang
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, P. R. China
| | - Cheng-Lin Qi
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, P. R. China
| | - Li-Jun Shen
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, P. R. China
| | - You Zou
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, P. R. China
| | - Rui Yang
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, P. R. China
| | - Jian-Fei Sheng
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, P. R. China
| | - Shi-Ming Chen
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, P. R. China.,Research Institute of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, P. R. China
| |
Collapse
|
10
|
Li H, Zhang H, Tan X, Liu D, Guo R, Wang M, Tang Y, Zheng K, Chen W, Li H, Tan M, Wang K, Liu R, Tang S. Overexpression of ING3 is associated with attenuation of migration and invasion in breast cancer. Exp Ther Med 2021; 22:699. [PMID: 34007308 PMCID: PMC8120550 DOI: 10.3892/etm.2021.10131] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 03/24/2021] [Indexed: 12/13/2022] Open
Abstract
Inhibitor of growth 3 (ING3) has been identified as a potential cancer drug target, but little is known about its role in breast cancer. Thus, the present study aimed to investigate ING3 expression in breast cancer, its clinical value, and how ING3 influences the migration and invasion of breast cancer cells. The Cancer Genome Atlas and UALCAN databases were used to analyze ING3 expression in cancer tissues and normal tissues. Survival analysis was performed using the UALCAN, UCSC Xena and KM-plot databases. In addition, reverse transcription-quantitative PCR and western blot analyses were performed to detect ING3 mRNA and protein expression levels. ING3 was overexpressed via lentiviral vector transfection, while the Transwell and wound healing assays were performed to assess the cell migratory and invasive abilities. Protein interaction and pathway analyses were performed using the GeneMANIA and Kyoto Encyclopedia of Genes and Genomes databases, respectively. The results demonstrated that ING3 expression was significantly lower in cancer tissues compared with normal tissues (P<0.05). In addition, luminal A and human epidermal growth factor receptor 2 (HER2)-enriched breast cancer tissues expressed lower levels of ING3 compared with normal breast tissues. Notably, statistically significant differences were observed in long-term survival between patients with luminal A (P=0.04) and HER2-enriched (P=0.008) breast cancer, with high and low expression levels of ING3. The results of the Transwell migration and invasion assays demonstrated that overexpression of ING3 significantly inhibited the migratory and invasive abilities of MCF7 (P<0.05) and HCC1937 (P<0.05) cells. The results of the wound healing assay demonstrated that the percentage wound closure significantly decreased in cells transfected with LV5-ING3 compared with the negative control group at 12 h (P<0.05) and 24 h (P<0.01). The PI3K/AKT, JAK/STAT, NF-κB and Wnt/β-catenin pathways are the potential pathways regulated by ING3. Notably, overexpression of ING3 inhibited migration and invasion in vitro. However, further studies are required to determine whether ING3 regulates the biological behavior of breast cancer via tumor-related pathways.
Collapse
Affiliation(s)
- Huimeng Li
- Department of Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, Yunnan 650118, P.R. China
| | - Hengyu Zhang
- Department of Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, Yunnan 650118, P.R. China
| | - Xin Tan
- Department of Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, Yunnan 650118, P.R. China
| | - Dequan Liu
- Department of Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, Yunnan 650118, P.R. China
| | - Rong Guo
- Department of Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, Yunnan 650118, P.R. China
| | - Maohua Wang
- Department of Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, Yunnan 650118, P.R. China
| | - Yiyin Tang
- Department of Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, Yunnan 650118, P.R. China
| | - Kai Zheng
- Department of Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, Yunnan 650118, P.R. China
| | - Wenlin Chen
- Department of Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, Yunnan 650118, P.R. China
| | - Hongwan Li
- Department of Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, Yunnan 650118, P.R. China
| | - Mingjian Tan
- Department of Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, Yunnan 650118, P.R. China
| | - Ke Wang
- Department of Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, Yunnan 650118, P.R. China
| | - Rui Liu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| | - Shicong Tang
- Department of Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, Yunnan 650118, P.R. China
| |
Collapse
|
11
|
Effects of repetitive Iodine thyroid blocking on the foetal brain and thyroid in rats: a systems biology approach. Sci Rep 2020; 10:10839. [PMID: 32616734 PMCID: PMC7331645 DOI: 10.1038/s41598-020-67564-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 06/03/2020] [Indexed: 12/20/2022] Open
Abstract
A single administration of an iodine thyroid blocking agent is usually sufficient to protect thyroid from radioactive iodine and prevent thyroid cancer. Repeated administration of stable iodine (rKI) may be necessary during prolonged or repeated exposure to radioactive iodine. We previously showed that rKI for eight days offers protection without toxic effects in adult rats. However, the effect of rKI administration in the developing foetus is unknown, especially on brain development, although a correlation between impaired maternal thyroid status and a decrease in intelligence quotient of the progeny has been observed. This study revealed distinct gene expression profiles between the progeny of rats receiving either rKI or saline during pregnancy. To understand the implication of these differentially expressed (DE) genes, a systems biology approach was used to construct networks for each organ using three different techniques: Bayesian statistics, sPLS-DA and manual construction of a Process Descriptive (PD) network. The PD network showed DE genes from both organs participating in the same cellular processes that affect mitophagy and neuronal outgrowth. This work may help to evaluate the doctrine for using rKI in case of repetitive or prolonged exposure to radioactive particles upon nuclear accidents.
Collapse
|
12
|
Zhou R, Rotte A, Li G, Chen X, Chen G, Bhandaru M. Nuclear localization of ING3 is required to suppress melanoma cell migration, invasion and angiogenesis. Biochem Biophys Res Commun 2020; 527:418-424. [PMID: 32334834 DOI: 10.1016/j.bbrc.2020.04.056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 04/12/2020] [Indexed: 02/08/2023]
Abstract
Inhibitor of growth family member 3 (ING3), a tumor suppressor, plays crucial roles in cell cycle regulation, apoptosis and transcription. Previous studies suggest important roles of nuclear ING3, however, the nuclear localization sequence (NLS) of ING3 is not defined and its biological functions remain to be elucidated. In this study, various ING3 mutants were generated to identify its NLS. The NLS of ING3 was determined as KKFK between 164 and 167 amino acids. More intriguingly, replacement of Lysine 164 residue of ING3 with alanine (K164A) resulted in retention of ING3 in the cytoplasm. Overexpression of ING3 led to inhibition of melanoma cell migration, invasion, and angiogenesis respectively, however, this inhibition was abrogated in cells with overexpression of ING3-K164A mutant. In conclusion, this study identified the NLS of ING3 and demonstrated the significance of ING3 nuclear localization for tumor suppressive functions of ING3, and future studies await to elucidate the role of ING3 (K164) post-modificaton in its nuclear transportation and cancer development.
Collapse
Affiliation(s)
- Ruiyao Zhou
- Department of General Surgery, The Third Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Anand Rotte
- Department of Dermatology and Skin Science, Jack Bell Research Centre, Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, British Columbia, Canada.
| | - Gang Li
- Department of Dermatology and Skin Science, Jack Bell Research Centre, Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, British Columbia, Canada.
| | - Xiaolei Chen
- Department of General Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Guangdi Chen
- Department of Dermatology and Skin Science, Jack Bell Research Centre, Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, British Columbia, Canada; Bioelectromagnetics Laboratory, Department of Public Health, Zhejiang University School of Medicine, China.
| | - Madhuri Bhandaru
- Department of Dermatology and Skin Science, Jack Bell Research Centre, Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
13
|
Li X, Zhang Q, Zhang M, Luo Y, Fu Y. Downregulation of nuclear ING3 expression and translocalization to cytoplasm promotes tumorigenesis and progression in head and neck squamous cell carcinoma (HNSCC). Histol Histopathol 2019; 35:681-690. [PMID: 31886514 DOI: 10.14670/hh-18-197] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
ING3 (inhibitor of growth gene 3) is a member of the ING gene family, and is considered as a candidate tumor suppressor gene. In order to explore the roles of ING3 in tumorigenesis and cancer progression of head and neck squamous cell carcinoma (HNSCC), ING3 expression was assessed in 173 cases of HNSCC by immunohistochemistry. The expression of ING3 was also compared to clinicopathological variables, and the expression of several tumorigenic markers. Nuclear expression of ING3 in HNSCC was significantly lower than that in dysplasia and normal epithelium, and was negatively correlated with a poor-differentiated status, T staging and TNM staging. In contrast, cytoplasmic expression of ING3 was significantly increased in HNSCC, and was statistically associated with lymph node metastasis and 14-3-3η expression. In addition, nuclear expression of ING3 was positively correlated with the expression of p300, p21 and acetylated p53. In conclusion, decreases in nuclear ING3 may play important roles in tumorigenesis, progression and tumor differentiation in HNSCC. Increases in cytoplasmic ING3 may be due to 14-3-3η binding and may also be involved in malignant progression. Nuclear ING3 may modulate the transactivation of target genes, promoting apoptosis through interactions with p300 and p21. Moreover, ING3 may interact with p300 to upregulate the level of acetylation of p53, and promote p53-mediated cell cycle arrest, senescence and/or apoptosis. Therefore, ING3 may be a potential tumor suppressor and a possible therapeutic target in HNSCC.
Collapse
Affiliation(s)
- Xiaohan Li
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Qun Zhang
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Mingming Zhang
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yusong Luo
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yaping Fu
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
14
|
Fink D, Yau T, Nabbi A, Wagner B, Wagner C, Hu SM, Lang V, Handschuh S, Riabowol K, Rülicke T. Loss of Ing3 Expression Results in Growth Retardation and Embryonic Death. Cancers (Basel) 2019; 12:cancers12010080. [PMID: 31905726 PMCID: PMC7017303 DOI: 10.3390/cancers12010080] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/19/2019] [Accepted: 12/24/2019] [Indexed: 12/29/2022] Open
Abstract
The ING3 candidate tumour suppressor belongs to a family of histone modifying proteins involved in regulating cell proliferation, senescence, apoptosis, chromatin remodeling, and DNA repair. It is a stoichiometric member of the minimal NuA4 histone acetyl transferase (HAT) complex consisting of EAF6, EPC1, ING3, and TIP60. This complex is responsible for the transcription of an essential cascade of genes involved in embryonic development and in tumour suppression. ING3 has been linked to head and neck and hepatocellular cancers, although its status as a tumour suppressor has not been well established. Recent studies suggest a pro-metastasis role in prostate cancer progression. Here, we describe a transgenic mouse strain with insertional mutation of an UbC-mCherry expression cassette into the endogenous Ing3 locus, resulting in the disruption of ING3 protein expression. Homozygous mutants are embryonically lethal, display growth retardation, and severe developmental disorders. At embryonic day (E) 10.5, the last time point viable homozygous embryos were found, they were approximately half the size of heterozygous mice that develop normally. µCT analysis revealed a developmental defect in neural tube closure, resulting in the failure of formation of closed primary brain vesicles in homozygous mid-gestation embryos. This is consistent with high ING3 expression levels in the embryonic brains of heterozygous and wild type mice and its lack in homozygous mutant embryos that show a lack of ectodermal differentiation. Our data provide direct evidence that ING3 is an essential factor for normal embryonic development and that it plays a fundamental role in prenatal brain formation.
Collapse
Affiliation(s)
- Dieter Fink
- Institute of Laboratory Animal Science, University of Veterinary Medicine Vienna, 1210 Vienna, Austria; (T.Y.); (B.W.); (S.M.H.); (V.L.); (T.R.)
- Correspondence: ; Tel.: +43-(0)-1-25077-2820
| | - Tienyin Yau
- Institute of Laboratory Animal Science, University of Veterinary Medicine Vienna, 1210 Vienna, Austria; (T.Y.); (B.W.); (S.M.H.); (V.L.); (T.R.)
| | - Arash Nabbi
- Departments of Biochemistry & Molecular Biology and Oncology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (A.N.); (K.R.)
| | - Bettina Wagner
- Institute of Laboratory Animal Science, University of Veterinary Medicine Vienna, 1210 Vienna, Austria; (T.Y.); (B.W.); (S.M.H.); (V.L.); (T.R.)
| | - Christine Wagner
- Division of Immunology, Allergy and Infectious Diseases (DIAID), Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria;
| | - Shiting Misaki Hu
- Institute of Laboratory Animal Science, University of Veterinary Medicine Vienna, 1210 Vienna, Austria; (T.Y.); (B.W.); (S.M.H.); (V.L.); (T.R.)
| | - Viktor Lang
- Institute of Laboratory Animal Science, University of Veterinary Medicine Vienna, 1210 Vienna, Austria; (T.Y.); (B.W.); (S.M.H.); (V.L.); (T.R.)
| | - Stephan Handschuh
- VetImaging, VetCore Facility for Research, University of Veterinary Medicine Vienna, 1210 Vienna, Austria;
| | - Karl Riabowol
- Departments of Biochemistry & Molecular Biology and Oncology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (A.N.); (K.R.)
| | - Thomas Rülicke
- Institute of Laboratory Animal Science, University of Veterinary Medicine Vienna, 1210 Vienna, Austria; (T.Y.); (B.W.); (S.M.H.); (V.L.); (T.R.)
| |
Collapse
|
15
|
Archambeau J, Blondel A, Pedeux R. Focus-ING on DNA Integrity: Implication of ING Proteins in Cell Cycle Regulation and DNA Repair Modulation. Cancers (Basel) 2019; 12:cancers12010058. [PMID: 31878273 PMCID: PMC7017203 DOI: 10.3390/cancers12010058] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/20/2019] [Accepted: 12/21/2019] [Indexed: 12/16/2022] Open
Abstract
The ING family of tumor suppressor genes is composed of five members (ING1-5) involved in cell cycle regulation, DNA damage response, apoptosis and senescence. All ING proteins belong to various HAT or HDAC complexes and participate in chromatin remodeling that is essential for genomic stability and signaling pathways. The gatekeeper functions of the INGs are well described by their role in the negative regulation of the cell cycle, notably by modulating the stability of p53 or the p300 HAT activity. However, the caretaker functions are described only for ING1, ING2 and ING3. This is due to their involvement in DNA repair such as ING1 that participates not only in NERs after UV-induced damage, but also in DSB repair in which ING2 and ING3 are required for accumulation of ATM, 53BP1 and BRCA1 near the lesion and for the subsequent repair. This review summarizes evidence of the critical roles of ING proteins in cell cycle regulation and DNA repair to maintain genomic stability.
Collapse
|
16
|
Dantas A, Al Shueili B, Yang Y, Nabbi A, Fink D, Riabowol K. Biological Functions of the ING Proteins. Cancers (Basel) 2019; 11:E1817. [PMID: 31752342 PMCID: PMC6896041 DOI: 10.3390/cancers11111817] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 11/07/2019] [Indexed: 02/06/2023] Open
Abstract
The proteins belonging to the inhibitor of growth (ING) family of proteins serve as epigenetic readers of the H3K4Me3 histone mark of active gene transcription and target histone acetyltransferase (HAT) or histone deacetylase (HDAC) protein complexes, in order to alter local chromatin structure. These multidomain adaptor proteins interact with numerous other proteins to facilitate their localization and the regulation of numerous biochemical pathways that impinge upon biological functions. Knockout of some of the ING genes in murine models by various groups has verified their status as tumor suppressors, with ING1 knockout resulting in the formation of large clear-cell B-lymphomas and ING2 knockout increasing the frequency of ameloblastomas, among other phenotypic effects. ING4 knockout strongly affects innate immunity and angiogenesis, and INGs1, ING2, and ING4 have been reported to affect apoptosis in different cellular models. Although ING3 and ING5 knockouts have yet to be published, preliminary reports indicate that ING3 knockout results in embryonic lethality and that ING5 knockout may have postpartum effects on stem cell maintenance. In this review, we compile the known information on the domains of the INGs and the effects of altering ING protein expression, to better understand the functions of this adaptor protein family and its possible uses for targeted cancer therapy.
Collapse
Affiliation(s)
- Arthur Dantas
- Arnie Charbonneau Cancer Institute, Departments of Biochemistry and Molecular Biology and Oncology, University of Calgary, 374 HMRB, 3330 Hospital Dr. NW, Calgary, AB T2N 4N1, Canada; (A.D.); (B.A.S.); (Y.Y.)
| | - Buthaina Al Shueili
- Arnie Charbonneau Cancer Institute, Departments of Biochemistry and Molecular Biology and Oncology, University of Calgary, 374 HMRB, 3330 Hospital Dr. NW, Calgary, AB T2N 4N1, Canada; (A.D.); (B.A.S.); (Y.Y.)
| | - Yang Yang
- Arnie Charbonneau Cancer Institute, Departments of Biochemistry and Molecular Biology and Oncology, University of Calgary, 374 HMRB, 3330 Hospital Dr. NW, Calgary, AB T2N 4N1, Canada; (A.D.); (B.A.S.); (Y.Y.)
| | - Arash Nabbi
- Princess Margaret Cancer Centre, Toronto, ON M5G 2M9, Canada
| | - Dieter Fink
- Institute of Laboratory Animal Science, Department for Biomedical Sciences, University of Veterinary Medicine Vienna, 1210 Vienna, Austria;
| | - Karl Riabowol
- Arnie Charbonneau Cancer Institute, Departments of Biochemistry and Molecular Biology and Oncology, University of Calgary, 374 HMRB, 3330 Hospital Dr. NW, Calgary, AB T2N 4N1, Canada; (A.D.); (B.A.S.); (Y.Y.)
| |
Collapse
|
17
|
Hu X, Mandika C, He L, You Y, Chang Y, Wang J, Chen T, Zhu X. Construction of Urokinase-Type Plasminogen Activator Receptor-Targeted Heterostructures for Efficient Photothermal Chemotherapy against Cervical Cancer To Achieve Simultaneous Anticancer and Antiangiogenesis. ACS APPLIED MATERIALS & INTERFACES 2019; 11:39688-39705. [PMID: 31588724 DOI: 10.1021/acsami.9b15751] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Rational design and construction of theranostic nanomedicines based on clinical characteristics of cervical cancer is an important strategy to achieve precise cancer therapy. Herein, we fabricate a cervical cancer-targeting gold nanorod-mesoporous silica heterostructure for codelivery of synergistic cisplatin and antiangiogenic drug Avastin (cisplatin-AuNRs@SiO2-Avastin@PEI/AE105) to achieve synergistic chemophotothermal therapy. Based on database analysis and clinical sample staining, conjugation of the AE105-targeting peptide obviously improves the intracellular uptake of the nanosystem and enhances the cancer-killing ability and selectivity between cervical cancer and normal cells. It could also be used to specifically monitor the urokinase-type plasminogen activator receptor (uPAR) expression level in clinical cervical specimens, which would be an early indicator of prognosis in cancer treatment. Under 808 nm laser irradiation, the nanosystem demonstrates smart NIR-light-triggered drug release and prominent photodynamic activity via induction of reactive oxygen species overproduction-mediated cell apoptosis. The nanosystem also simultaneously suppresses HeLa tumor growth and angiogenesis in vivo, with no evident histological damage observed in the major organs. In short, this study not only provides a clinical data-based rational design strategy of smart nanomedicine for precise treatment and rapid clinical diagnosis of cervical cancer but also contributes to the development of the clinical translation of nanomedicines.
Collapse
Affiliation(s)
- Xiaoli Hu
- Department of Obstetrics and Gynecology , The Second Affiliated Hospital of Wenzhou Medical University , Wenzhou 325000 , China
| | - Chetry Mandika
- Department of Obstetrics and Gynecology , The Second Affiliated Hospital of Wenzhou Medical University , Wenzhou 325000 , China
| | - Lizhen He
- Department of Chemistry , Jinan University , Guangzhou 510632 , China
| | - Yuanyuan You
- Department of Chemistry , Jinan University , Guangzhou 510632 , China
| | - Yanzhou Chang
- Department of Chemistry , Jinan University , Guangzhou 510632 , China
| | - Jing Wang
- Department of Obstetrics and Gynecology , The Second Affiliated Hospital of Wenzhou Medical University , Wenzhou 325000 , China
| | - Tianfeng Chen
- Department of Obstetrics and Gynecology , The Second Affiliated Hospital of Wenzhou Medical University , Wenzhou 325000 , China
- Department of Chemistry , Jinan University , Guangzhou 510632 , China
| | - Xueqiong Zhu
- Department of Obstetrics and Gynecology , The Second Affiliated Hospital of Wenzhou Medical University , Wenzhou 325000 , China
| |
Collapse
|
18
|
He X, Jiang H, Gao F, Liang S, Wei M, Chen L. Indoxyl sulfate-induced calcification of vascular smooth muscle cells via the PI3K/Akt/NF-κB signaling pathway. Microsc Res Tech 2019; 82:2000-2006. [PMID: 31448474 DOI: 10.1002/jemt.23369] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 08/06/2019] [Accepted: 08/11/2019] [Indexed: 12/12/2022]
Abstract
Vascular calcification (VC) is highly prevalent in patients with chronic kidney disease (CKD) and contributes to their high rate of cardiovascular mortality. Indoxyl sulfate (IS) is a representative protein-bound uremic toxin in CKD patients, which has been recognized as a major risk factor for VC. Recent studies have demonstrated that nuclear factor-kappa B (NK-κB) is highly activated in the chronic inflammation conditions of CKD patients and participated in the pathogenesis of VC. However, whether NK-κB is involved in the progression of IS-induced VC remains without elucidation. Here, we showed that NK-κB activity was increased in the IS-induced calcification of human aortic smooth muscle cells (HASMCs). Blocking the NK-κB with a selective inhibitor (Bay-11-7082) significantly relieved the osteogenic transdifferentiation of HASMCs, characterized by the downregulation of early osteogenic-specific marker, core-binding factor alpha subunit 1 (Cbfα1), and upregulation of smooth muscle α-actin (α-SMA), a specific vascular smooth muscle cell marker. Besides, IS stimulated the activation of PI3K/Akt signaling. Furthermore, LY294002, a specific inhibitor of PI3K/Akt pathway, attenuated the activation of NK-κB and osteogenic differentiation of HASMCs. Together, these results suggest that PI3K/Akt/NK-κB signaling plays an important role in the pathogenesis of osteogenic transdifferentiation induced by IS.
Collapse
Affiliation(s)
- Xin He
- Dialysis Department of Nephrology Hospital, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Hongli Jiang
- Dialysis Department of Nephrology Hospital, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Fanfan Gao
- Dialysis Department of Nephrology Hospital, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Shanshan Liang
- Dialysis Department of Nephrology Hospital, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Meng Wei
- Dialysis Department of Nephrology Hospital, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Lei Chen
- Dialysis Department of Nephrology Hospital, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
19
|
Hao Y, Zhang C, Sun Y, Xu H. Licochalcone A inhibits cell proliferation, migration, and invasion through regulating the PI3K/AKT signaling pathway in oral squamous cell carcinoma. Onco Targets Ther 2019; 12:4427-4435. [PMID: 31239711 PMCID: PMC6556467 DOI: 10.2147/ott.s201728] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 04/26/2019] [Indexed: 12/16/2022] Open
Abstract
Background: Oral squamous cell carcinoma (OSCC) is one of the most common cancers, with high metastasis and mortality. Licochalcone A (LCA) is a chalconoid from the root of Glycyrrhiza inflata, which has anti-tumor, anti-inflammatory, anti-angiogenesis effects in many cancers. However, the mechanism that underlies LCA regulating cell proliferation, migration, and invasion in OSCC remains poorly understood. Methods: LY294002 or insulin-like growth factor 1 (IGF-1) were used to block or stimulate the phosphatidylinositol 3 kinase (PI3K)/protein kinase B (AKT) pathway in OSCC cells. Cell proliferation was investigated by MTT assay and proliferating cell nuclear antigen (PCNA) protein level using Western blot. The expression of metastasis-related protein was detected via Western blot. Cell migration and invasion abilities were evaluated by trans-well assay. A murine xenograft model of OSCC was established to investigate the anti-tumor effect of LCA in vivo. Results: Treatment of LCA inhibited cell proliferation in SCC4 and CAL-27 cells. Moreover, PI3K/AKT signaling was blocked by LY294002, and activated by IGF-1. LCA could suppress proliferation, migration, and invasion of OSCC cells, which was similar to the treatment of LY294002. In addition, LCA decreased IGF-1-induced OSCC progression. In a murine xenograft model, LCA treatment protected against tumor growth and metastasis in vivo. Conclusions: LCA might inhibit cell proliferation, migration, and invasion through regulating the PI3K/AKT pathway in OSCC, developing a potential chemotherapeutic agent for OSCC.
Collapse
Affiliation(s)
- Yuli Hao
- Department of Stomatology, Yuhuangding Hospital, Yantai 264000, People's Republic of China
| | - Chunping Zhang
- Department of Stomatology, Yuhuangding Hospital, Yantai 264000, People's Republic of China
| | - Yuanyuan Sun
- Department of Periodontology, Yantai Stomatological Hospital, Yantai 264000, People's Republic of China
| | - Hongyan Xu
- Department of Stomatology, Shaanxi People's Hospital, Xian 710000, People's Republic of China
| |
Collapse
|
20
|
Liu Q, Li Z, Liu Y, Xiao Q, Peng X, Chen Q, Deng R, Gao Z, Yu F, Zhang Y. Hydromorphine postconditioning protects isolated rat heart against ischemia-reperfusion injury via activating P13K/Akt/eNOS signaling. Cardiovasc Ther 2019; 36:e12481. [PMID: 30597772 DOI: 10.1111/1755-5922.12481] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 12/28/2018] [Indexed: 12/13/2022] Open
Abstract
INTRODUCTION Myocardial ischemia/reperfusion injury (myocardial I/R injury) has a high disability rate and mortality. Novel treatments for myocardial I/R injury are necessary. AIM In order to explore the protective effect of hydromorphine on myocardial I/R injury, we illuminate the underlying mechanism of the protective effect. RESULTS Hydromorphine significantly reduced myocardial infarct size (IFN/AAR), CKMB (Creatine Kinase MB) and TN-T (Troponin T) release, and improved cardiac function compared with I/R group. However, these advantageous effects were partly suppressed in the presence of hydromorphine. Myocardial I/R injury significantly decreased the phosphorylation of Akt and eNOS, and down-regulated total nitric oxide and nitrotyrosine content, while these inhibitory effects were partly abolished by hydromorphine. Conversely, the activated effects of hydromorphine on the phosphorylation of Akt and eNOS, and NO release were totally reversed by LY294002, which, used individually, show the same influence on reperfusion injury. CONCLUSIONS These findings suggest that hydromorphine postconditioning may protect isolated rat heart against reperfusion injury via activating P13K/Akt/eNOS signaling.
Collapse
Affiliation(s)
- Qing Liu
- Department of Anesthesiology, Affiliated traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Zhengfen Li
- Department of Anesthesiology, Affiliated traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Yuexin Liu
- Department of Anesthesiology, Affiliated traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Qiuxia Xiao
- Department of Anesthesiology, Affiliated traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Xuan Peng
- Department of Anesthesiology, Affiliated traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Qi Chen
- Department of Anesthesiology, Affiliated traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Rui Deng
- Department of Anesthesiology, Affiliated traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Zhiwei Gao
- Department of Anesthesiology, Affiliated traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Fengxu Yu
- Department of Cardio-thoracic Surgery, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Ying Zhang
- Department of Anesthesiology, Affiliated traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
21
|
Zeng ZS, Lin J, Xu CB, Cao L, Chen C, Li J. Minimally modified low-density lipoprotein upregulates the ET B and α 1 receptors in mouse mesenteric arteries in vivo by activating the PI3K/Akt pathway. J Pharm Pharmacol 2019; 71:937-944. [PMID: 30663067 DOI: 10.1111/jphp.13069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Accepted: 12/07/2018] [Indexed: 12/15/2022]
Abstract
OBJECTIVES The current study aimed to explore whether minimally modified low-density lipoprotein (mmLDL) via tail vein injection upregulates the ETB and α1 receptors in mouse mesenteric arteries by activating the PI3K/Akt pathway. METHODS The contraction curves of the mesenteric arteries caused by sarafotoxin 6c (S6c, ETB receptor agonist) and phenylephrine (PE, α1 receptor agonist) were measured by a myograph system. Serum oxLDL was detected using enzyme-linked immunosorbent assays. The levels of the ETB receptor, the α1 receptor, PI3K, p-PI3K and p-Akt were detected using real-time polymerase chain reaction and Western blot analyses. KEY FINDINGS Minimally modified low-density lipoprotein noticeably enhanced the contraction effect curves of S6c and PE, with significantly increased Emax values (P < 0.01), compared to those of the control group. This treatment significantly increased the mRNA expression and protein levels of the ETB and α1 receptors and the protein levels of p-PI3K and p-Akt in the vessel wall (P < 0.01). LY294002 inhibited the effect of mmLDL. CONCLUSIONS An increase in mmLDL activated the PI3K/Akt pathway, which upregulated the expression of the ETB and α1 receptors and enhanced the ETB and α1- receptor-mediated contractile function.
Collapse
Affiliation(s)
- Zhong-San Zeng
- Institute of Pharmacy and Pharmacology, The First People's Hospital of Chenzhou, University of South China, Chenzhou, China
| | - Jie Lin
- Institute of Pharmacy and Pharmacology, The First People's Hospital of Chenzhou, University of South China, Chenzhou, China
| | - Cang-Bao Xu
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, China
| | - Lei Cao
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Chen Chen
- Institute of Pharmacy and Pharmacology, The First People's Hospital of Chenzhou, University of South China, Chenzhou, China
| | - Jie Li
- Institute of Pharmacy and Pharmacology, The First People's Hospital of Chenzhou, University of South China, Chenzhou, China
| |
Collapse
|
22
|
Regulat-INGs in tumors and diseases: Focus on ncRNAs. Cancer Lett 2019; 447:66-74. [PMID: 30673590 DOI: 10.1016/j.canlet.2019.01.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 12/21/2018] [Accepted: 01/08/2019] [Indexed: 12/11/2022]
Abstract
ING family genes (Inhibitor of Growth) are tumor suppressor genes that play a vital role in cell homeostasis. It has been shown that their expression is lost or diminished in many cancers and other diseases. The main mechanisms by which they are regulated in oncogenesis have not yet been fully elucidated. The involvement of non-coding RNAs (ncRNAs) and in particular microRNAs (miRNAs) in post-transcriptional gene regulation is well established. miRNAs are short sequences (18-25 nucleotides) that can bind to the 3 'UTR sequence of the targeted messenger RNA (mRNA), leading to its degradation or translational repression. Interactions between the ING family and miRNAs have been described in some cancers but also in other diseases. The involvement of miRNAs in ING family regulation opens up new fields of investigation, particularly for targeted therapies. In this review, we will summarize the regulatory mechanisms at the RNA and protein level of the ING family and focus on the interactions with ncRNAs.
Collapse
|
23
|
Sun X, Kong L, Li B, Zhang Y, Yang H. Peroxiredoxin 1 silencing inhibited the growth and promoted apoptosis of pancreatic cancer cells via targeting FOXO3 gene. Cancer Manag Res 2018; 10:5019-5026. [PMID: 30464602 PMCID: PMC6208491 DOI: 10.2147/cmar.s177243] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Objective Our study aimed to investigate the interaction between peroxiredoxin 1 (Prx1) and forkhead box O3 (FOXO3) and to explore the role of PI3K/AKT pathway in the development of pancreatic cancer. Material and methods Human pancreatic normal cells HPDE6-C7 and pancreatic cancer cells PANC-1 were randomly divided into control group, Prx1-silencing (si-Prx1) group, Prx1/FOXO3 dual-silencing (si-Prx1/FOXO3) group, and negative control group. Cell proliferation assay, clone formation assay, and cell apoptosis assay were performed to investigate the effects of Prx1 silencing and FOXO3 silencing on the proliferation and apoptosis ability of pancreatic cancer cells. qRT-PCR and Western blot were performed to study the Prx1 and FOXO3 mRNA in the two cells and FOXO3 protein expression in PANC-1 cells. Result We found Prx1 silencing could inhibit growth and promote apoptosis of PANC-1 cells. And Prx1 silencing could decrease the Prx1 mRNA level and increase FOXO3 mRNA level. To further explore the role of Prx1 in PI3K/AKT, we study the cell proliferation and apoptosis ability after adding the PI3K inhibitor and PI3K activator. We observed that PI3K inhibitor could inhibit tumor cell growth and promote cell apoptosis. And PI3K inhibitor also downregulated Prx1 protein expression. Conclusion We concluded that the Prx1 silencing inhibited the growth and promoted apoptosis of pancreatic cancer cells via modulation of PI3K/AKT pathway by targeting FOXO3 gene.
Collapse
Affiliation(s)
- Xianchun Sun
- Department of No. 2 Gastrointestinal Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai 264000, China
| | - Lingting Kong
- Department of Emergency, Yantaishan Hospital, Yantai 264000, China,
| | - Bingshu Li
- Department of Emergency, Yantaishan Hospital, Yantai 264000, China,
| | - Yan Zhang
- Department of Emergency, Yantaishan Hospital, Yantai 264000, China,
| | - Haiyan Yang
- Department of Emergency, Yantaishan Hospital, Yantai 264000, China,
| |
Collapse
|