1
|
Xu S, Jia J, Mao R, Cao X, Xu Y. Mitophagy in acute central nervous system injuries: regulatory mechanisms and therapeutic potentials. Neural Regen Res 2025; 20:2437-2453. [PMID: 39248161 PMCID: PMC11801284 DOI: 10.4103/nrr.nrr-d-24-00432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/11/2024] [Accepted: 07/22/2024] [Indexed: 09/10/2024] Open
Abstract
Acute central nervous system injuries, including ischemic stroke, intracerebral hemorrhage, subarachnoid hemorrhage, traumatic brain injury, and spinal cord injury, are a major global health challenge. Identifying optimal therapies and improving the long-term neurological functions of patients with acute central nervous system injuries are urgent priorities. Mitochondria are susceptible to damage after acute central nervous system injury, and this leads to the release of toxic levels of reactive oxygen species, which induce cell death. Mitophagy, a selective form of autophagy, is crucial in eliminating redundant or damaged mitochondria during these events. Recent evidence has highlighted the significant role of mitophagy in acute central nervous system injuries. In this review, we provide a comprehensive overview of the process, classification, and related mechanisms of mitophagy. We also highlight the recent developments in research into the role of mitophagy in various acute central nervous system injuries and drug therapies that regulate mitophagy. In the final section of this review, we emphasize the potential for treating these disorders by focusing on mitophagy and suggest future research paths in this area.
Collapse
Affiliation(s)
- Siyi Xu
- Department of Neurology, Nanjing Drum Tower Hospital, Clinical College of Jiangsu University, Nanjing, Jiangsu Province, China
| | - Junqiu Jia
- Department of Neurology, Nanjing Drum Tower Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Nanjing, Jiangsu Province, China
| | - Rui Mao
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, China
| | - Xiang Cao
- Department of Neurology, Nanjing Drum Tower Hospital, Clinical College of Jiangsu University, Nanjing, Jiangsu Province, China
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, China
- State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, Jiangsu Province, China
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu Province, China
- Nanjing Neurology Medical Center, Nanjing, Jiangsu Province, China
| | - Yun Xu
- Department of Neurology, Nanjing Drum Tower Hospital, Clinical College of Jiangsu University, Nanjing, Jiangsu Province, China
- Department of Neurology, Nanjing Drum Tower Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Nanjing, Jiangsu Province, China
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, China
- State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, Jiangsu Province, China
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu Province, China
- Nanjing Neurology Medical Center, Nanjing, Jiangsu Province, China
| |
Collapse
|
2
|
Yuxuan H, Sixu R, Chenglin L, Xiufen Z, Cuilin Z. Targeting mitochondria quality control for myocardial ischemia-reperfusion injury. Mitochondrion 2025:102046. [PMID: 40419068 DOI: 10.1016/j.mito.2025.102046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 04/24/2025] [Accepted: 05/01/2025] [Indexed: 05/28/2025]
Abstract
Cardiovascular disease (CVD) remains the leading global cause of mortality. Acute myocardial infarction (AMI) refers to acute myocardial ischemia resulting from thrombosis secondary to coronary atherosclerosis, which poses a major threat to human health. Clinically, timely revascularization (reperfusion) represents the basis of clinical treatment for AMI. However, secondary myocardial ischemia-reperfusion injury (MIRI) caused by reperfusion often exacerbates damage, representing a major challenge in clinical practice. Mitochondria represent essential organelles for maintaining cardiac function and cellular bioenergetics in MIRI. In recent years, the role of mitochondrial quality control (MQC) in maintaining cell homeostasis and mediating MIRI has been extensively studied. This review provides a concise overview of MQC mechanisms at the molecular, organelle, and cellular levels and their possible complex regulatory network in MIRI. In addition, potential treatment strategies targeting MQC to mitigate MIRI are summarized, highlighting the gap between current preclinical research and clinical transformation. Overall, this review provides theoretical guidance for further research and clinical translational studies.
Collapse
Affiliation(s)
- He Yuxuan
- Department of Cardiovascular Surgery, The Second Hospital of Jilin University, Changchun 130000, China; Norman Bethune Second Clinical Medical College, Jilin University, Changchun 130000, China
| | - Ren Sixu
- Department of Cardiovascular Surgery, The Second Hospital of Jilin University, Changchun 130000, China; Norman Bethune Second Clinical Medical College, Jilin University, Changchun 130000, China
| | - Liu Chenglin
- China-Japan Union Hospital of Jilin University, Changchun City 130033 Jilin Province, China
| | - Zheng Xiufen
- Department of Surgery, Western University, Ontario, Canada
| | - Zhu Cuilin
- Department of Cardiovascular Surgery, The Second Hospital of Jilin University, Changchun 130000, China; Norman Bethune Second Clinical Medical College, Jilin University, Changchun 130000, China.
| |
Collapse
|
3
|
Nàger M, Larsen KB, Bhujabal Z, Kalstad TB, Rössinger J, Myrmel T, Weinberger F, Birgisdottir AB. Mitophagy is induced in human engineered heart tissue after simulated ischemia and reperfusion. J Cell Sci 2025; 138:jcs263408. [PMID: 39912384 PMCID: PMC11959618 DOI: 10.1242/jcs.263408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 01/30/2025] [Indexed: 02/07/2025] Open
Abstract
The paradoxical exacerbation of cellular injury and death during reperfusion remains a problem in the treatment of myocardial infarction. Mitochondrial dysfunction plays a key role in the pathogenesis of myocardial ischemia and reperfusion injury. Dysfunctional mitochondria can be removed by mitophagy, culminating in their degradation within acidic lysosomes. Mitophagy is pivotal in maintaining cardiac homeostasis and emerges as a potential therapeutic target. Here, we employed beating human engineered heart tissue (EHT) to assess mitochondrial dysfunction and mitophagy during ischemia and reperfusion simulation. Our data indicate adverse ultrastructural changes in mitochondrial morphology and impairment of mitochondrial respiration. Furthermore, our pH-sensitive mitophagy reporter EHTs, generated by a CRISPR/Cas9 endogenous knock-in strategy, revealed induced mitophagy flux in EHTs after ischemia and reperfusion simulation. The induced flux required the activity of the protein kinase ULK1, a member of the core autophagy machinery. Our results demonstrate the applicability of the reporter EHTs for mitophagy assessment in a clinically relevant setting. Deciphering mitophagy in the human heart will facilitate development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Mireia Nàger
- Division of Cardiothoracic and Respiratory Medicine, University Hospital of North Norway, 9019 Tromsø, Norway
| | - Kenneth B. Larsen
- Department of Clinical Medicine, UiT-The Arctic University of Norway, 9019 Tromsø, Norway
- Department of Medical Biology, UiT-The Arctic University of Norway, 9019 Tromsø, Norway
| | - Zambarlal Bhujabal
- Department of Clinical Medicine, UiT-The Arctic University of Norway, 9019 Tromsø, Norway
| | - Trine B. Kalstad
- Department of Clinical Medicine, UiT-The Arctic University of Norway, 9019 Tromsø, Norway
| | - Judith Rössinger
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg Eppendorf, 20251 Hamburg, Germany
- DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, 20251 Hamburg, Germany
| | - Truls Myrmel
- Division of Cardiothoracic and Respiratory Medicine, University Hospital of North Norway, 9019 Tromsø, Norway
- Department of Clinical Medicine, UiT-The Arctic University of Norway, 9019 Tromsø, Norway
| | - Florian Weinberger
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg Eppendorf, 20251 Hamburg, Germany
- DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, 20251 Hamburg, Germany
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain
| | - Asa B. Birgisdottir
- Division of Cardiothoracic and Respiratory Medicine, University Hospital of North Norway, 9019 Tromsø, Norway
- Department of Clinical Medicine, UiT-The Arctic University of Norway, 9019 Tromsø, Norway
| |
Collapse
|
4
|
Yuan Z, Li Y, Sun M, Yuan M, Han Z, Li X, Liu S, Sun Y, Cao J, Li F. Recent progress in ROS-responsive biomaterials for the diagnosis and treatment of cardiovascular diseases. Theranostics 2025; 15:5172-5219. [PMID: 40303333 PMCID: PMC12036867 DOI: 10.7150/thno.106991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 02/23/2025] [Indexed: 05/02/2025] Open
Affiliation(s)
- Zhiyu Yuan
- Department of Oral Implantology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266000, China
| | - Ying Li
- Department of Oral Implantology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266000, China
| | - Ming Sun
- Department of Oral Implantology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266000, China
| | - Mujie Yuan
- Department of Oral Implantology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266000, China
| | - Zeyu Han
- Department of Oral Implantology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266000, China
| | - Xiaojing Li
- Department of Oral Implantology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266000, China
| | - Song Liu
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266000, China
| | - Yong Sun
- Department of Pharmaceutics, Qingdao University School of Pharmacy, Qingdao 266021, China
| | - Jie Cao
- Department of Pharmaceutics, Qingdao University School of Pharmacy, Qingdao 266021, China
| | - Fan Li
- Department of Oral Implantology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266000, China
- Department of Pharmaceutics, Qingdao University School of Pharmacy, Qingdao 266021, China
| |
Collapse
|
5
|
Yang Y, Owusu FB, Wu H, Zhang X, Li R, Liu Z, Zhang S, Leng L, Wang Q. Mitochondria as therapeutic targets for Natural Products in the treatment of Cardiovascular Diseases. JOURNAL OF ETHNOPHARMACOLOGY 2025; 345:119588. [PMID: 40057144 DOI: 10.1016/j.jep.2025.119588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 03/04/2025] [Indexed: 03/20/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Natural products represent a unique medical approach to treating disease and have been used in clinical practice for thousands of years in cardiovascular disease (CVDs). In recent years, natural products have received increasing attention for their high efficiency, safety, and low toxicity, and their targeted regulation of mitochondria offers promising strategies for the treatment of CVDs. However, the potential mechanisms by which natural products target mitochondria for cardiovascular treatment have not been fully elucidated. AIM OF THE STUDY Literature from the past decade is reviewed to emphasize the therapeutic efficacy and potential mechanisms of natural products targeting mitochondria in the treatment of CVDs. MATERIALS AND METHODS In the NCBI PubMed database, relevant literature was searched using 'natural products', 'mitochondria' and 'cardiovascular disease' as search terms, and review papers were excluded. The remaining articles were screened for relevance. Priority was given to articles using rat models, in vivo, ex vivo or in vitro assays. The resulting articles were categorized into natural product categories, including saponins, alkaloids, plant extracts and preparations. This article reviews the research progress on mitochondria as potential therapeutic targets for CVDs and summarizes the application of mitochondria-targeted natural products in the treatment of CVDs. RESULTS Mitochondrial damage may be attributed to impairment of biogenesis (mitochondrial number and mitochondrial DNA damage), dynamics disruption (mitophagy inhibition and overpromotion, fusion and fission),disruption of optimal function including Adenosine triphosphate generation, Reactive oxygen species (ROS) production, fatty acid β oxidation, mitochondrial membrane permeability, calcium homeostasis imbalance, and membrane potential depolarization. Mitochondrial dysfunction or damage leads to cardiomyocyte dysfunction, ion disorders, cell death, and ultimately CVDs, such as myocardial infarction, heart failure, ischemia reperfusion, and diabetic heart disease. Natural products, which include flavonoids, saponins, phenolic acids, alkaloids, polysaccharides, extracts, and formulations, are seen to have significant clinical efficacy in the treatment of CVDs. Mechanistically, natural products regulate mitophagy, mitochondrial fusion and fission, while improving mitochondrial respiratory function, reducing ROS production, and inhibiting mitochondria-dependent apoptosis in cardiomyocytes, thereby protecting myocardial cells and heart function. CONCLUSIONS This paper reviews the potential and mechanism of natural products to regulate mitochondria for the treatment of CVDs, creating more opportunities for understanding their therapeutic targets and derivatization of lead compounds, and providing a scientific basis for advancing CVDs drug research.
Collapse
Affiliation(s)
- Yanze Yang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Felix Boahen Owusu
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Han Wu
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xinyue Zhang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Ruiqiao Li
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China; State Key Laboratory of Component-Based Chinese Medicine, Ministry of Education, Tianjin, China
| | - Zhanbiao Liu
- Laboratory Animal Center, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shaozhuo Zhang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| | - Ling Leng
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China; State Key Laboratory of Component-Based Chinese Medicine, Ministry of Education, Tianjin, China.
| | - Qilong Wang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China; State Key Laboratory of Component-Based Chinese Medicine, Ministry of Education, Tianjin, China; Endocrinology Department, Fourth Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| |
Collapse
|
6
|
Wu H, Diao H, Zhang F, Jiang W, Pan T, Bian Y. Organelle interplay in cardiovascular diseases: Mechanisms, pathogenesis, and therapeutic perspectives. Biomed Pharmacother 2025; 185:117978. [PMID: 40073746 DOI: 10.1016/j.biopha.2025.117978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 02/16/2025] [Accepted: 03/07/2025] [Indexed: 03/14/2025] Open
Abstract
Cardiovascular diseases (CVDs) are the leading cause of rising morbidity and mortality among humans worldwide; however, our approach to the pathogenesis, exploration, and management of CVDs still remains limited. As the heart consists of cardiomyocytes, cardiac fibroblasts, endothelial cells, smooth muscle cells, and several types of cells, different types of dysfunction in the interplay between organelles play an important damaging role, resulting in cardiac pathologies. The interplay between cellular organelles is intricate and vital for maintaining cellular homeostasis, as highlighted by multiple diseases linked to the dysfunction of both organelles. Many studies have revealed the potential mechanisms by which organelles communicate with each other and regulate the pathological processes of CVDs together. However, gaps remain in fully understanding the complexity of these interactions and translating these insights into therapeutic approaches. In this review, we summarized how the interplay between cellular organelles in the cardiomyocytes alters in various heart diseases. We find underexplored areas, such as the crucial signaling pathways governing organelle communication, and discuss their implications for disease future progression. Furthermore, we evaluate emerging potential medicines aimed at restoring organelle interactions. Finally, we propose future directions for researching to advance the development of novel medicines and therapies, addressing current gaps and providing a theoretical basis for improved clinical outcomes in CVDs.
Collapse
Affiliation(s)
- Han Wu
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Hongtao Diao
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Feng Zhang
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Weitao Jiang
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Tengfei Pan
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Yu Bian
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China.
| |
Collapse
|
7
|
Zhang X, Xiao J, Jiang M, Phillips CJC, Shi B. Thermogenesis and Energy Metabolism in Brown Adipose Tissue in Animals Experiencing Cold Stress. Int J Mol Sci 2025; 26:3233. [PMID: 40244078 PMCID: PMC11989373 DOI: 10.3390/ijms26073233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Revised: 03/29/2025] [Accepted: 03/29/2025] [Indexed: 04/18/2025] Open
Abstract
Cold exposure is a regulatory biological functions in animals. The interaction of thermogenesis and energy metabolism in brown adipose tissue (BAT) is important for metabolic regulation in cold stress. Brown adipocytes (BAs) produce uncoupling protein 1 (UCP1) in mitochondria, activating non-shivering thermogenesis (NST) by uncoupling fuel combustion from ATP production in response to cold stimuli. To elucidate the mechanisms underlying thermogenesis and energy metabolism in BAT under cold stress, we explored how cold exposure triggers the activation of BAT thermogenesis and regulates overall energy metabolism. First, we briefly outline the precursor composition and function of BA. Second, we explore the roles of the cAMP- protein kinase A (PKA) and adenosine monophosphate-activated protein kinase (AMPK) signaling pathways in thermogenesis and energy metabolism in BA during cold stress. Then, we analyze the mechanism by which BA regulates mitochondria homeostasis and energy balance during cold stress. This research reveals potential therapeutic targets, such as PKA, AMPK, UCP1 and PGC-1α, which can be used to develop innovative strategies for treating metabolic diseases. Furthermore, it provides theoretical support for optimizing cold stress response strategies, including the pharmacological activation of BAT and the genetic modulation of thermogenic pathways, to improve energy homeostasis in livestock.
Collapse
Affiliation(s)
- Xuekai Zhang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (X.Z.); (M.J.); (B.S.)
| | - Jin Xiao
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (X.Z.); (M.J.); (B.S.)
| | - Min Jiang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (X.Z.); (M.J.); (B.S.)
| | - Clive J. C. Phillips
- Curtin University Sustainability Policy (CUSP) Institute, Curtin University, Perth, WA 6845, Australia;
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, 51006 Tartu, Estonia
| | - Binlin Shi
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (X.Z.); (M.J.); (B.S.)
| |
Collapse
|
8
|
Mohan AA, Talwar P. MAM kinases: physiological roles, related diseases, and therapeutic perspectives-a systematic review. Cell Mol Biol Lett 2025; 30:35. [PMID: 40148800 PMCID: PMC11951743 DOI: 10.1186/s11658-025-00714-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 03/05/2025] [Indexed: 03/29/2025] Open
Abstract
Mitochondria-associated membranes (MAMs) are tethering regions amid the membranes of the endoplasmic reticulum (ER) and mitochondria. They are a lipid raft-like structure occupied by various proteins that facilitates signal transduction between the two organelles. The MAM proteome participates in cellular functions such as calcium (Ca2+) homeostasis, lipid synthesis, ER stress, inflammation, autophagy, mitophagy, and apoptosis. The human kinome is a superfamily of homologous proteins consisting of 538 kinases. MAM-associated kinases participate in the aforementioned cellular functions and act as cell fate executors. Studies have proved the dysregulated kinase interactions in MAM as an etiology for various diseases including cancer, diabetes mellitus, neurodegenerative diseases, cardiovascular diseases (CVDs), and obesity. Several small kinase inhibitory molecules have been well explored as promising drug candidates in clinical trials with an accelerating impact in the field of precision medicine. This review narrates the physiological actions, pathophysiology, and therapeutic potential of MAM-associated kinases with recent updates in the field.
Collapse
Affiliation(s)
- A Anjana Mohan
- Apoptosis and Cell Survival Research Laboratory, 412G Pearl Research Park, Department of Biosciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Priti Talwar
- Apoptosis and Cell Survival Research Laboratory, 412G Pearl Research Park, Department of Biosciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
9
|
Liu M, Wang L, Liu Z, Liu D, Li T, Ding L, Zeng S, Wang Z, Wang J, Zhang F, Zhang J, Zhang L, Li M, Liu G, Wang X, Zheng M. MiR-222-3p loaded stem cell nanovesicles repair myocardial ischemia damage via inhibiting mitochondrial oxidative stress. Life Sci 2025; 365:123447. [PMID: 39922425 DOI: 10.1016/j.lfs.2025.123447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 02/01/2025] [Accepted: 02/04/2025] [Indexed: 02/10/2025]
Abstract
AIMS Mitochondrial oxidative stress (MOS) is a key contributor to poor cardiac function and a major driver of myocardial ischemia-reperfusion injury (MIRI). Our previous research demonstrated that stem cell-derived nanovesicles (NVs) enhanced cardiac function following ischemia-reperfusion (I/R) injury, although the underlying mechanisms remain unclear. We constructed and characterized miR-222-3p-loaded NVs. MATERIALS AND METHODS An in vitro hypoxia-reoxygenation (H/R) model was established using H9C2 cardiomyocytes. Mitochondrial oxidative respiratory function was assessed using Seahorse XF technology, while mitochondrial reactive oxygen species (mtROS) levels were quantified via flow cytometry. Additional assessments included mitochondrial permeability transition pore (mPTP) status, mitochondrial membrane potential, and mitochondrial DNA (mtDNA) integrity. An in vivo H/R model was developed using C57BL/6 mice. The therapeutic effects of NVs on MOS reduction and cardiac function improvement were evaluated through Masson's staining, immunofluorescence, echocardiography, transmission electron microscopy (TEM), and positron emission tomography/computed tomography (PET/CT). KEY FINDINGS RNA immunoprecipitation (RIP) confirmed that miR-222-3p directly targets cyp1a1. Overexpression of miR-222-3p or knockdown of cyp1a1 significantly improved mitochondrial activity in cardiomyocytes and conferred protection against I/R injury. Conversely, overexpression of cyp1a1 abrogated the protective effects of miR-222-3p. In vivo, NV treatment enhanced cardiac function, reduced MOS, and improved mitochondrial respiratory capacity in MIRI model mice. NV treatment, via miR-222-3p-mediated suppression of cyp1a1, mitigates MOS, enhances mitochondrial respiratory function, and improves cardiac outcomes in MIRI models. SIGNIFICANCE These findings provide a foundational basis for the clinical translation of NV-based therapies.
Collapse
Affiliation(s)
- Mei Liu
- Department of Cardiovascular Medicine, the First Hospital of HeBei Medical University, Shijiazhuang 050031, Hebei Province, China; Hebei Provincial Key Laboratory of Cardiac Injury Repair Mechanism Study, Shijiazhuang 050031, Hebei Province, China
| | - Le Wang
- Department of Cardiovascular Medicine, the First Hospital of HeBei Medical University, Shijiazhuang 050031, Hebei Province, China; Hebei Provincial Key Laboratory of Heart and Metabolism, Shijiazhuang 050031, Hebei Province, China
| | - Zhao Liu
- Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang 050091, China; The First Affilfated Hospital of Hebei University of Chinese Medicine, Shijiazhuang 050011, China
| | - Dongyue Liu
- Department of Cardiovascular Medicine, the First Hospital of HeBei Medical University, Shijiazhuang 050031, Hebei Province, China; Hebei Provincial Key Laboratory of Cardiac Injury Repair Mechanism Study, Shijiazhuang 050031, Hebei Province, China
| | - Tianshuo Li
- Department of Cardiovascular Medicine, the First Hospital of HeBei Medical University, Shijiazhuang 050031, Hebei Province, China; Hebei Provincial Key Laboratory of Cardiac Injury Repair Mechanism Study, Shijiazhuang 050031, Hebei Province, China
| | - Lini Ding
- Department of Cardiovascular Medicine, the First Hospital of HeBei Medical University, Shijiazhuang 050031, Hebei Province, China; Hebei Provincial Key Laboratory of Cardiac Injury Repair Mechanism Study, Shijiazhuang 050031, Hebei Province, China
| | - Shasha Zeng
- Department of Cardiovascular Medicine, the First Hospital of HeBei Medical University, Shijiazhuang 050031, Hebei Province, China; Hebei Provincial Key Laboratory of Cardiac Injury Repair Mechanism Study, Shijiazhuang 050031, Hebei Province, China
| | - Zi Wang
- Department of Cardiovascular Medicine, the First Hospital of HeBei Medical University, Shijiazhuang 050031, Hebei Province, China; Hebei Provincial Key Laboratory of Cardiac Injury Repair Mechanism Study, Shijiazhuang 050031, Hebei Province, China
| | - Jiaqiu Wang
- Department of Cardiovascular Medicine, the First Hospital of HeBei Medical University, Shijiazhuang 050031, Hebei Province, China; Hebei Provincial Key Laboratory of Cardiac Injury Repair Mechanism Study, Shijiazhuang 050031, Hebei Province, China
| | - Fan Zhang
- Stem Cell Regenerative Medicine Clinical Research Center, the First Hospital of HeBei Medical University, Shijiazhuang 050031, Hebei Province, China
| | - Jun Zhang
- Stem Cell Regenerative Medicine Clinical Research Center, the First Hospital of HeBei Medical University, Shijiazhuang 050031, Hebei Province, China
| | - Limin Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang 050017, China
| | - Meng Li
- College of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang 050017, China
| | - Gang Liu
- Department of Cardiovascular Medicine, the First Hospital of HeBei Medical University, Shijiazhuang 050031, Hebei Province, China; Hebei Provincial Key Laboratory of Cardiac Injury Repair Mechanism Study, Shijiazhuang 050031, Hebei Province, China; Hebei International Joint Research Center for Structural Heart Disease, Shijiazhuang 050031, Hebei Province, China.
| | - Xianyun Wang
- Department of Cardiovascular Medicine, the First Hospital of HeBei Medical University, Shijiazhuang 050031, Hebei Province, China; Hebei Provincial Key Laboratory of Cardiac Injury Repair Mechanism Study, Shijiazhuang 050031, Hebei Province, China.
| | - Mingqi Zheng
- Department of Cardiovascular Medicine, the First Hospital of HeBei Medical University, Shijiazhuang 050031, Hebei Province, China; Hebei Provincial Key Laboratory of Heart and Metabolism, Shijiazhuang 050031, Hebei Province, China.
| |
Collapse
|
10
|
Han R, Wei J, Zhao B, Zhao R. Mitochondrial autophagy-related lncRNAs as prognostic biomarkers and therapeutic targets in gastric adenocarcinoma. Discov Oncol 2025; 16:283. [PMID: 40056287 DOI: 10.1007/s12672-025-02042-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Accepted: 03/03/2025] [Indexed: 03/10/2025] Open
Abstract
Understanding the tumor microenvironment (TME) and the role of long noncoding RNAs (lncRNAs) in gastric adenocarcinoma (GA) is crucial, as these elements not only influence tumor progression but also provide opportunities for more precise prognostic assessments and tailored therapeutic interventions. This study identified mitochondrial autophagy-related lncRNAs, constructed a robust prognostic risk model, and explored the relationship between immune microenvironment characteristics and therapeutic responses. The model's performance was evaluated using ROC curves, Kaplan-Meier survival analysis, and nomograms. Our results demonstrate that the model outperforms traditional clinical factors, such as age and stage, in predicting patient outcomes. Immune cell analysis revealed distinct correlations with risk scores, and several immune checkpoint genes exhibited differential expression between risk groups. Drug sensitivity analysis suggested that low-risk patients could benefit more from ICIs, Oxaliplatin, Irinotecan, Afatinib, and Dabrafenib, while high-risk patients showed higher sensitivity to IGF1R3801, JQI, WZ4003 and NU7441. The identified lncRNA-based risk model provides a reliable prognostic tool for GA patients and highlights distinct immune microenvironment profiles that may influence treatment responses. These findings contribute to developing personalized therapeutic strategies targeting lncRNAs and the TME in GA.
Collapse
Affiliation(s)
- Rongbo Han
- Department of Oncology, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jinxin Wei
- Department of General Surgery, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Benxin Zhao
- Department of Radiotherapy, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Rongchang Zhao
- Department of Oncology, Taixing People's Hospital, Taizhou, Jiangsu, China.
| |
Collapse
|
11
|
Johnson E, Albakri JS, Allemailem KS, Sultan A, Alwanian WM, Alrumaihi F, Almansour NM, Aldakheel FM, Khalil FMA, Abduallah AM, Smith O. Mitochondrial dysfunction and calcium homeostasis in heart failure: Exploring the interplay between oxidative stress and cardiac remodeling for future therapeutic innovations. Curr Probl Cardiol 2025; 50:102968. [PMID: 39653095 DOI: 10.1016/j.cpcardiol.2024.102968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 12/06/2024] [Indexed: 12/20/2024]
Abstract
Heart failure (HF) is a multifaceted clinical syndrome characterized by the heart's inability to pump sufficient blood to meet the body's metabolic demands. It arises from various etiologies, including myocardial injury, hypertension, and valvular heart disease. A critical aspect of HF pathophysiology involves mitochondrial dysfunction, particularly concerning calcium (Ca2+) homeostasis and oxidative stress. This review highlights the pivotal role of excess mitochondrial Ca2+ in exacerbating oxidative stress, contributing significantly to HF progression. Novel insights are provided regarding the mechanisms by which mitochondrial Ca2+ overload leads to increased production of reactive oxygen species (ROS) and impaired cellular function. Despite this understanding, key gaps in research remain, particularly in elucidating the complex interplay between mitochondrial dynamics and oxidative stress across different HF phenotypes. Furthermore, therapeutic strategies targeting mitochondrial dysfunction are still in their infancy, with limited applications in clinical practice. By summarizing recent findings and identifying these critical research gaps, this review aims to pave the way for innovative therapeutic approaches that improve the management of heart failure, ultimately enhancing patient outcomes through targeted interventions.
Collapse
Affiliation(s)
- Emily Johnson
- Department of Cell Systems and Anatomy, Long School of Medicine, UT Health San Antonio, San Antonio, TX 78229, USA
| | | | - Khaled S Allemailem
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Abdulaziz Sultan
- Family Medicine Senior Registrar, Ministry of Health, Saudi Arabia
| | - Wanian M Alwanian
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Faris Alrumaihi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Nahlah Makki Almansour
- Department of Biology, College of Science, University of Hafr Al Batin, Hafr Al Batin 31991, Saudi Arabia
| | - Fahad M Aldakheel
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11433, Saudi Arabia
| | - Fatma Mohamed Ameen Khalil
- King Khalid University, Applied College, Unit of health specialties, basic sciences and their applications, Mohayil Asir Abha, 61421, Saudi Arabia
| | - Alduwish Manal Abduallah
- Department of Biology, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Alkarj 11942, Saudi Arabia
| | - Oliver Smith
- Department of Cell Systems and Anatomy, Long School of Medicine, UT Health San Antonio, San Antonio, TX 78229, USA.
| |
Collapse
|
12
|
Lee TL, Shen WC, Chen YC, Lai TC, Lin SR, Lin SW, Yu IS, Yeh YH, Li TK, Lee IT, Lee CW, Chen YL. Mir221- and Mir222-enriched adsc-exosomes mitigate PM exposure-exacerbated cardiac ischemia-reperfusion injury through the modulation of the BNIP3-MAP1LC3B-BBC3/PUMA pathway. Autophagy 2025; 21:374-393. [PMID: 39245438 PMCID: PMC11760231 DOI: 10.1080/15548627.2024.2395799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 09/10/2024] Open
Abstract
Epidemiology has shown a strong relationship between fine particulate matter (PM) exposure and cardiovascular disease. However, it remains unknown whether PM aggravates myocardial ischemia-reperfusion (I/R) injury, and the related mechanisms are unclear. Our previous study has shown that adipose stem cell-derived exosomes (ADSC-Exos) contain high levels of Mir221 and Mir222. The present study investigated the effects of PM exposure on I/R-induced cardiac injury through mitophagy and apoptosis, as well as the potential role of Mir221 and Mir222 in ADSC-Exos. Wild-type, mir221- and mir222-knockout (KO), and Mir221- and Mir222-overexpressing transgenic (TG) mice were intratracheally injected with PM (10 mg/kg). After 24 h, mice underwent left coronary artery ligation for 30 min, followed by 3 h of reperfusion (I/R). H9c2 cardiomyocytes were cultured under 1% O2 for 6 h, then reoxygenated for 12 h (hypoxia-reoxygenation [H/R]). PM aggravated I/R (or H/R) cardiac injury by increasing ROS levels and causing mitochondrial dysfunction, which increased the expression of mitochondrial fission-related proteins (DNM1L/Drp1 and MFF) and mitophagy-related proteins (BNIP3 and MAP1LC3B/LC3B) in vivo and in vitro. Treatment with ADSC-Exos or Mir221- and Mir222-mimics significantly reduced PM+I/R-induced cardiac injury. Importantly, ADSC-Exos contain Mir221 and Mir222, which directly targets BNIP3, MAP1LC3B/LC3B, and BBC3/PUMA, decreasing their expression and ultimately reducing cardiomyocyte mitophagy and apoptosis. The present data showed that ADSC-Exos treatment regulated mitophagy and apoptosis through the Mir221 and Mir222-BNIP3-MAP1LC3B-BBC3/PUMA pathway and significantly reduced the cardiac damage caused by PM+I/R. The present study revealed the novel therapeutic potential of ADSC-Exos in alleviating PM-induced exacerbation of myocardial I/R injury.Abbreviation: ADSC-Exos: adipose-derived stem cell exosomes; AL: autolysosome; ATP: adenosine triphosphate; BBC3/PUMA: BCL2 binding component 3; BNIP3: BCL2/adenovirus E1B interacting protein 3; CASP3: caspase 3; CASP9: caspase 9; CDKN1B/p27: cyclin dependent kinase inhibitor 1B; CVD: cardiovascular disease; DCFH-DA: 2',7'-dichlorodihydrofluorescein diacetate; DHE: dihydroethidium; DNM1L/Drp1: dynamin 1-like; EF: ejection fraction; FS: fractional shortening; H/R: hypoxia-reoxygenation; I/R: ischemia-reperfusion; LDH: lactate dehydrogenase; MAP1LC3B/LC3B: microtubule-associated protein 1 light chain 3 beta; MFF: mitochondrial fission factor; miRNA: microRNA; NAC: N-acetylcysteine; OCR: oxygen consumption rate; PIK3C3/Vps34: phosphatidylinositol 3-kinase catalytic subunit type 3; PM: particulate matter; PRKAA1/AMPK: protein kinase AMP-activated catalytic subunit alpha 1; ROS: reactive oxygen species; SQSTM1/p62: sequestosome 1; TEM: transmission electron microscopy; TRP53/p53: transformation related protein 53; TUNEL: terminal deoxynucleotidyl transferase dUTP nick end labeling.
Collapse
Affiliation(s)
- Tzu-Lin Lee
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Wen-Chi Shen
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ya-Chun Chen
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Tsai-Chun Lai
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Life Sciences, College of Life Sciences, National Chung Hsing University, Taichung, Taiwan
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | - Shu-Rung Lin
- Department of Bioscience Technology, College of Science, Chung Yuan Christian University, Taoyuan, Taiwan
- Center for Nanotechnology, Chung Yuan Christian University, Taoyuan, Taiwan
| | - Shu-Wha Lin
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - I-Shing Yu
- Laboratory Animal Center, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yen-Hsiu Yeh
- Department and Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Tsai-Kun Li
- Department and Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
- Center for Biotechnology, National Taiwan University, Taipei, Taiwan
- Centers for Genomic and Precision Medicine, National Taiwan University, Taipei, Taiwan
| | - I-Ta Lee
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chiang-Wen Lee
- Department of Orthopaedic Surgery, Chang Gung Memorial Hospital, Puzi, Chiayi, Taiwan
- Department of Nursing, Division of Basic Medical Sciences, and Chronic Diseases and Health Promotion Research Center Chang Gung University of Science and Technology, Puzi, Chiayi, Taiwan
- Research Center for Industry of Human Ecology and Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Taoyuan, Taiwan
| | - Yuh-Lien Chen
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
13
|
Zhou Y, Wang L, Sun L, Tan R, Wang Z, Pei R. Progress in Chinese medicine monomers and their nanoformulations on myocardial ischemia/reperfusion injury. J Mater Chem B 2025; 13:1159-1179. [PMID: 39670754 DOI: 10.1039/d4tb02091j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Myocardial ischemia/reperfusion injury (MIRI) is the entire process of myocardial injury resulting from ischemia and hypoxia following acute myocardial infarction, which involves complicated pathogenesis including energy metabolism disorders, calcium overload, oxidative stress and mitochondrial dysfunction. Traditional Chinese medicine (TCM) has attracted intensive attention in the treatment of MIRI owing to its multitarget therapeutic effects and low systemic toxicity. Increasing evidence indicates the promising application of TCM on the protection of cardiomyocytes, improvement of endothelial cell functions and regulation of energy metabolism and inflammatory response. Although the efficacy of TCM has been well-proven, the underlying mechanisms remain unclear. Additionally, the clinical application of much TCM had been hampered due to its low aqueous solubility, poor gastrointestinal absorption, and decreased bioavailability. In this review, we examined the pathological mechanism of MIRI and highlighted recent research studies on the therapeutic effects and molecular mechanisms of monomer compounds derived from TCM. We also summarized the latest studies in nanoformulation-based strategies for improving the targeting and stability of TCM monomers and exerting synergistic effects. The aim of this study was to provide a scientific basis for the treatment of MIRI with TCM monomers combined with nanomaterials, revealing their clinical significance and development prospects.
Collapse
Affiliation(s)
- Yanrong Zhou
- College of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| | - Li Wang
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| | - Lina Sun
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| | - Rui Tan
- College of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Zheng Wang
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| | - Renjun Pei
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| |
Collapse
|
14
|
Gad ES, Aldossary SA, El-Ansary MR, Abd El-Galil MM, Abd-El-Hamid AH, El-Ansary AR, Hassan NF. Cilostazol counteracts mitochondrial dysfunction in hepatic encephalopathy rat model: Insights into the role of cAMP/AMPK/SIRT1/ PINK-1/parkin hub and p-CREB /BDNF/ TrkB neuroprotective trajectory. Eur J Pharmacol 2025; 987:177194. [PMID: 39667427 DOI: 10.1016/j.ejphar.2024.177194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 11/17/2024] [Accepted: 12/09/2024] [Indexed: 12/14/2024]
Abstract
A devasting stage of chronic hepatic dysfunction is strictly correlated with neurological impairment, signifying hepatic encephalopathy (HE). HE is a multifactorial condition; therefore, hyperammonemia, oxidative stress, neuroinflammation, and mitochondrial dysfunction interplay in HE's progressive development. Cilostazol (Cilo) has shown promising neuroprotective and hepatoprotective effectiveness in different neuronal and hepatic disorders; however, its efficiency against HE hasn't yet been explored. This study aimed to investigate the protective role of Cilo against thioacetamide (TAA)-induced HE in rats targeting mitochondrial dysfunction via modulation of Adenosine monophosphate-activated protein kinase (AMPK)/Silent information regulator 1 (SIRT1) dependent pathways. Rats were allocated into three groups: the normal control group, the TAA group received (100 mg/kg, three times per week, for six weeks) to induce HE, and the Cilo group received (Cilo 100 mg/kg/day for six weeks, oral gavage) concurrently with TAA. Cilo counteracted HE indicated in the enhancement of cognitive impairment and the motor performance of rats (P < 0.0001), modulation AMPK/SIRT1signaling pathway causing reduction of NF-kB p65 (P < 0.0001) evoked inflammation along with histopathological alterations and glial fibrillary acidic protein (GFAP) immunoreactivity (P < 0.0001), restoration nuclear factor E2-related factor 2 (Nrf2) (P < 0.0001) antioxidant effects, reduction of Bax and elevation of Bcl2 immunoreactivity (P < 0.0001) in addition to boosting mitochondrial biogenesis by upregulation of PTEN-induced kinase-1 (PINK-1)/Parkin (P < 0.0001)and restoration of Brain-derived neurotrophic factor (BDNF) (P = 0.0002)/tropomyosin-related kinase B (TrkB) (P < 0.0001)/cAMP response element-binding (CREB) (P < 0.0001) neuroprotective axis. Collectively, Cilo activates the SIRT1 trajectory to abridge mitochondrial dysfunction invigorated in the HE rat model via restoration of mitochondrial hemostasis.
Collapse
Affiliation(s)
- Enas S Gad
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, AL Ahsa, Saudi Arabia; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Sinai University, Kantara Branch, Ismailia, Egypt
| | - Sara A Aldossary
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, AL Ahsa, Saudi Arabia
| | - Mona R El-Ansary
- Department of Biochemistry, Faculty of Pharmacy, Modern University for Technology and Information, Cairo, Egypt
| | - Mona M Abd El-Galil
- Department of Histology and Cell Biology, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt
| | - Asmaa Hassan Abd-El-Hamid
- Department of Histology and Cell Biology, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt
| | - Amira R El-Ansary
- Department of Internal Medicine, Faculty of Medicine, Misr University for Science and Technology, Cairo, Egypt
| | - Noha F Hassan
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Modern University for Technology and Information, Cairo, Egypt.
| |
Collapse
|
15
|
Wu ZL, Liu Y, Song W, Zhou KS, Ling Y, Zhang HH. Role of mitophagy in intervertebral disc degeneration: A narrative review. Osteoarthritis Cartilage 2025; 33:27-41. [PMID: 39537018 DOI: 10.1016/j.joca.2024.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/09/2024] [Accepted: 09/09/2024] [Indexed: 11/16/2024]
Abstract
OBJECTIVE The pivotal role of mitophagy in the initiation and progression of intervertebral disc (IVD) degeneration (IDD) has become increasingly apparent due to a growing body of research on its pathogenesis. This review summarizes the role of mitophagy in IDD and the therapeutic potential of targeting this process. DESIGN This narrative review is divided into three parts: the regulatory mechanisms of mitophagy, the role of mitophagy in IDD, and the applications and prospects of mitophagy for the treatment of IDD. RESULTS Mitophagy protects cells against harmful external stimuli and plays a crucial protective role by promoting extracellular matrix (ECM) production, inhibiting ECM degradation, and reducing apoptosis, senescence, and cartilage endplate calcification. However, excessive mitophagy is often detrimental to cells. Currently, the regulatory mechanisms governing appropriate and excessive mitophagy remain unclear. CONCLUSIONS Proper mitophagy effectively maintains IVD cell homeostasis and slows the progression of IDD. Conversely, excessive mitophagy may accelerate IDD development. Further research is needed to elucidate the regulatory mechanisms underlying appropriate and excessive mitophagy, which could provide new theoretical support for the application of mitophagy targeting to the treatment of IDD.
Collapse
Affiliation(s)
- Zuo-Long Wu
- Department of Orthopedics, The Second Hospital&Clinical Medical School, Lanzhou University, Lanzhou, China; Orthopaedics Key Laboratory of Gansu Province, The Second Hospital&Clinical Medical School, Lanzhou University, Lanzhou, China; The Cuiying Biomedical Research Center, The Second Hospital&Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Yong Liu
- Department of Orthopedics, The Second Hospital&Clinical Medical School, Lanzhou University, Lanzhou, China; Orthopaedics Key Laboratory of Gansu Province, The Second Hospital&Clinical Medical School, Lanzhou University, Lanzhou, China; The Cuiying Biomedical Research Center, The Second Hospital&Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Wei Song
- Department of Orthopedics, The Second Hospital&Clinical Medical School, Lanzhou University, Lanzhou, China; Orthopaedics Key Laboratory of Gansu Province, The Second Hospital&Clinical Medical School, Lanzhou University, Lanzhou, China; The Cuiying Biomedical Research Center, The Second Hospital&Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Kai-Sheng Zhou
- Department of Orthopedics, The Second Hospital&Clinical Medical School, Lanzhou University, Lanzhou, China; Orthopaedics Key Laboratory of Gansu Province, The Second Hospital&Clinical Medical School, Lanzhou University, Lanzhou, China; The Cuiying Biomedical Research Center, The Second Hospital&Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Yan Ling
- Sports Teaching and Research Department of Lanzhou University, Lanzhou, China.
| | - Hai-Hong Zhang
- Department of Orthopedics, The Second Hospital&Clinical Medical School, Lanzhou University, Lanzhou, China; Orthopaedics Key Laboratory of Gansu Province, The Second Hospital&Clinical Medical School, Lanzhou University, Lanzhou, China; The Cuiying Biomedical Research Center, The Second Hospital&Clinical Medical School, Lanzhou University, Lanzhou, China.
| |
Collapse
|
16
|
Zhang W, Guo C, Li Y, Wang H, Wang H, Wang Y, Wu T, Wang H, Cheng G, Man J, Chen S, Fu S, Yang L. Mitophagy mediated by HIF-1α/FUNDC1 signaling in tubular cells protects against renal ischemia/reperfusion injury. Ren Fail 2024; 46:2332492. [PMID: 38584135 PMCID: PMC11000611 DOI: 10.1080/0886022x.2024.2332492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 03/14/2024] [Indexed: 04/09/2024] Open
Abstract
Acute kidney injury (AKI) is associated with a high mortality rate. Pathologically, renal ischemia/reperfusion injury (RIRI) is one of the primary causes of AKI, and hypoxia-inducible factor (HIF)-1α may play a defensive role in RIRI. This study assessed the role of hypoxia-inducible factor 1α (HIF-1α)-mediated mitophagy in protection against RIRI in vitro and in vivo. The human tubular cell line HK-2 was used to assess hypoxia/reoxygenation (H/R)-induced mitophagy through different in vitro assays, including western blotting, immunofluorescence staining, terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL), and reactive oxygen species (ROS) measurement. Additionally, a rat RIRI model was established for evaluation by renal histopathology, renal Doppler ultrasound, and transmission electron microscopy to confirm the in vitro data. The selective HIF-1α inhibitor LW6 reduced H/R-induced mitophagy but increased H/R-induced apoptosis and ROS production. Moreover, H/R treatment enhanced expression of the FUN14 domain-containing 1 (FUNDC1) protein. Additionally, FUNDC1 overexpression reversed the effects of LW6 on the altered expression of light chain 3 (LC3) BII and voltage-dependent anion channels as well as blocked the effects of HIF-1α inhibition in cells. Pretreatment of the rat RIRI model with roxadustat, a novel oral HIF-1α inhibitor, led to decreased renal injury and apoptosis in vivo. In conclusion, the HIF-1α/FUNDC1 signaling pathway mediates H/R-promoted renal tubular cell mitophagy, whereas inhibition of this signaling pathway protects cells from mitophagy, thus aggravating apoptosis, and ROS production. Accordingly, roxadustat may protect against RIRI-related AKI.
Collapse
Affiliation(s)
- Wenjun Zhang
- Department of Nephrology, Lanzhou University Affiliated Second Hospital, Lanzhou, China
- Gansu Provicne Clinical Research Center for Kidney Diseases, Lanzhou, China
| | - Chao Guo
- Scientific Research and Experimental Center, Gansu University of Chinese Medicine, Lanzhou, China
| | - Yi Li
- Department of Anesthesiology, Lanzhou University Affiliated Second Hospital, Lanzhou, China
| | - Hao Wang
- Department of Urology Surgery, Lanzhou University Affiliated Second Hospital, Lanzhou, China
| | - Huabing Wang
- Department of Urology Surgery, Lanzhou University Affiliated Second Hospital, Lanzhou, China
| | - Yingying Wang
- Department of Nephrology, Lanzhou University Affiliated Second Hospital, Lanzhou, China
| | - Tingting Wu
- Department of Functional Examination in Children, Lanzhou University Affiliated Second Hospital, Lanzhou, China
| | - Huinan Wang
- The Second Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Gang Cheng
- The Second Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Jiangwei Man
- Department of Urology Surgery, Lanzhou University Affiliated Second Hospital, Lanzhou, China
| | - Siyu Chen
- Department of Urology Surgery, Lanzhou University Affiliated Second Hospital, Lanzhou, China
| | - Shengjun Fu
- Department of Urology Surgery, Lanzhou University Affiliated Second Hospital, Lanzhou, China
| | - Li Yang
- Department of Urology Surgery, Lanzhou University Affiliated Second Hospital, Lanzhou, China
- Gansu Provicne Clinical Research Center for Urology, Lanzhou, China
| |
Collapse
|
17
|
Zhao X, Wang Z, Wang L, Jiang T, Dong D, Sun M. The PINK1/Parkin signaling pathway-mediated mitophagy: a forgotten protagonist in myocardial ischemia/reperfusion injury. Pharmacol Res 2024; 209:107466. [PMID: 39419133 DOI: 10.1016/j.phrs.2024.107466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 10/12/2024] [Accepted: 10/12/2024] [Indexed: 10/19/2024]
Abstract
Myocardial ischemia causes extensive damage, further exacerbated by reperfusion, a phenomenon called myocardial ischemia/reperfusion injury (MIRI). Nowadays, the pathological mechanisms of MIRI have received extensive attention. Oxidative stress, multiple programmed cell deaths, inflammation and others are all essential pathological mechanisms contributing to MIRI. Mitochondria are the energy supply centers of cells. Numerous studies have found that abnormal mitochondrial function is an essential "culprit" of MIRI, and mitophagy mediated by the phosphatase and tensin homolog (PTEN)-induced kinase 1 (PINK1)/Parkin signaling pathway is an integral part of maintaining mitochondrial function. Therefore, exploring the association between the PINK1/Parkin signaling pathway-mediated mitophagy and MIRI is crucial. This review will mainly summarize the crucial role of the PINK1/Parkin signaling pathway-mediated mitophagy in MIR-induced several pathological mechanisms and various potential interventions that affect the PINK1/Parkin signaling pathway-mediated mitophagy, thus ameliorating MIRI.
Collapse
Affiliation(s)
- Xiaopeng Zhao
- College of Exercise and Health, Shenyang Sport University, Shenyang 110102, China.
| | - Zheng Wang
- School of Medicine, Qilu Institute of Technology, Jinan 250200, China.
| | - Lijie Wang
- Department of Cardiology, The Fourth Affiliated Hospital of China Medical University, Shenyang 110033, China.
| | - Tao Jiang
- Rehabilitation Medicine Center, The Second Hospital of Shandong University, Jinan 250033, China.
| | - Dan Dong
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang 110122, China.
| | - Mingli Sun
- College of Exercise and Health, Shenyang Sport University, Shenyang 110102, China.
| |
Collapse
|
18
|
Guo Z, Tian Y, Gao J, Zhou B, Zhou X, Chang X, Zhou H. Enhancement of Mitochondrial Homeostasis: A Novel Approach to Attenuate Hypoxic Myocardial Injury. Int J Med Sci 2024; 21:2897-2911. [PMID: 39628681 PMCID: PMC11610329 DOI: 10.7150/ijms.103986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 10/18/2024] [Indexed: 12/06/2024] Open
Abstract
Cardiomyocytes are highly oxygen-dependent cells, relying on oxygen-driven oxidative phosphorylation to maintain their function. During hypoxia, mitochondrial ATP production decreases, leading to calcium overload, acidosis, and oxidative stress, which collectively trigger myocardial injury. Ischemic heart disease, caused by coronary atherosclerosis, results in myocardial ischemia and hypoxia, leading to ischemia-reperfusion (I/R) injury. Early myocardial injury is attributed to ischemia and hypoxia, but even after thrombolytic therapy, interventional surgery, or coronary artery bypass grafting (CABG) restores local blood flow and oxygen supply, myocardial reperfusion injury (I/R) may still occur. Mitochondria, often referred to as the "powerhouses" of the cell, play a crucial role in cellular energy production. In the early stages of ischemia and hypoxia, mitochondrial dysfunction disrupts mitochondrial homeostasis, causing the accumulation of unfolded or misfolded proteins in the mitochondria. This activates the mitochondrial unfolded protein response (mtUPR) and mitophagy, which work to clear damaged proteins and mitochondria, playing a key role during this period. This review focuses on mitochondrial mechanisms during the ischemic phase of ischemia-reperfusion injury, aiming to provide new theoretical foundations and potential therapeutic strategies to reduce myocardial damage.
Collapse
Affiliation(s)
- Zhijiang Guo
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Yingjie Tian
- Beijing University of Chinese Medicine, Beijing, 100028, China
| | - Jing Gao
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Bei Zhou
- Center for Drug Evaluation, National Medical Products Administration, Beijing, China
| | - XiuTeng Zhou
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences/State Key Laboratory for Quality Assurance and Sustainable Use of Dao-di Herbs, Beijing, 100700, China
| | - Xing Chang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Hao Zhou
- Senior Department of Cardiology, The Sixth Medical Center of People's Liberation Army General Hospital, Beijing, China
| |
Collapse
|
19
|
Lin J, Chen X, Du Y, Li J, Guo T, Luo S. Mitophagy in Cell Death Regulation: Insights into Mechanisms and Disease Implications. Biomolecules 2024; 14:1270. [PMID: 39456203 PMCID: PMC11506020 DOI: 10.3390/biom14101270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/15/2024] [Accepted: 10/05/2024] [Indexed: 10/28/2024] Open
Abstract
Mitophagy, a selective form of autophagy, plays a crucial role in maintaining optimal mitochondrial populations, normal function, and intracellular homeostasis by monitoring and removing damaged or excess mitochondria. Furthermore, mitophagy promotes mitochondrial degradation via the lysosomal pathway, and not only eliminates damaged mitochondria but also regulates programmed cell death-associated genes, thus preventing cell death. The interaction between mitophagy and various forms of cell death has recently gained increasing attention in relation to the pathogenesis of clinical diseases, such as cancers and osteoarthritis, neurodegenerative, cardiovascular, and renal diseases. However, despite the abundant literature on this subject, there is a lack of understanding regarding the interaction between mitophagy and cell death. In this review, we discuss the main pathways of mitophagy, those related to cell death mechanisms (including apoptosis, ferroptosis, and pyroptosis), and the relationship between mitophagy and cell death uncovered in recent years. Our study offers potential directions for therapeutic intervention and disease diagnosis, and contributes to understanding the molecular mechanism of mitophagy.
Collapse
Affiliation(s)
| | | | | | | | | | - Sai Luo
- The 1st Affiliated Hospital of Harbin Medical University, No. 23, Youzheng Street, Nangang District, Harbin 150000, China; (J.L.); (X.C.); (Y.D.); (J.L.); (T.G.)
| |
Collapse
|
20
|
Li K, Xia X, Tong Y. Multiple roles of mitochondrial autophagy receptor FUNDC1 in mitochondrial events and kidney disease. Front Cell Dev Biol 2024; 12:1453365. [PMID: 39445333 PMCID: PMC11496291 DOI: 10.3389/fcell.2024.1453365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 09/23/2024] [Indexed: 10/25/2024] Open
Abstract
This article reviews the latest research progress on the role of mitochondrial autophagy receptor FUN14 domain containing 1 (FUNDC1) in mitochondrial events and kidney disease. FUNDC1 is a protein located in the outer membrane of mitochondria, which maintains the function and quality of mitochondria by regulating mitochondrial autophagy, that is, the selective degradation process of mitochondria. The structural characteristics of FUNDC1 enable it to respond to intracellular signal changes and regulate the activity of mitochondrial autophagy through phosphorylation and dephosphorylation. During phosphorylation, unc-51-like kinase 1 (ULK1) promotes the activation of mitophagy by phosphorylating Ser17 of FUNDC1. In contrast, Src and CK2 kinases inhibit the interaction between FUNDC1 and LC3 by phosphorylating Tyr18 and Ser13, thereby inhibiting mitophagy. During dephosphorylation, PGAM5 phosphatase enhances the interaction between FUNDC1 and LC3 by dephosphorylating Ser13, thereby activating mitophagy. BCL2L1 inhibits the activity of PGAM5 by interacting with PGAM5, thereby preventing the dephosphorylation of FUNDC1 and inhibiting mitophagy. FUNDC1 plays an important role in mitochondrial events, participating in mitochondrial fission, maintaining the homeostasis of iron and proteins in mitochondrial matrix, and mediating crosstalk between mitochondria, endoplasmic reticulum and lysosomes, which have important effects on cell energy metabolism and programmed death. In the aspect of kidney disease, the abnormal function of FUNDC1 is closely related to the occurrence and development of many diseases. In acute kidney injury (AKI), cardiorenal syndrome (CRS), diabetic nephropathy (DN), chronic kidney disease (CKD) ,renal fibrosis (RF) and renal anemia, FUNDC1-mediated imbalance of mitophagy may be one of the key factors in disease progression. Therefore, in-depth study of the regulatory mechanism and function of FUNDC1 is of great significance for understanding the pathogenesis of renal disease and developing new treatment strategies.
Collapse
Affiliation(s)
- Kaiqing Li
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xue Xia
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Ying Tong
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
21
|
Yao H, Xie Y, Li C, Liu W, Yi G. Mitochondria-Associated Organelle Crosstalk in Myocardial Ischemia/Reperfusion Injury. J Cardiovasc Transl Res 2024; 17:1106-1118. [PMID: 38807004 DOI: 10.1007/s12265-024-10523-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 05/10/2024] [Indexed: 05/30/2024]
Abstract
Organelle damage is a significant contributor to myocardial ischemia/reperfusion (I/R) injury. This damage often leads to disruption of endoplasmic reticulum protein regulatory programs and dysfunction of mitochondrial energy metabolism. Mitochondria and endoplasmic reticulum are seamlessly connected through the mitochondrial-associated endoplasmic reticulum membrane (MAM), which serves as a crucial site for the exchange of organelles and metabolites. However, there is a lack of reports regarding the communication of information and metabolites between mitochondria and related organelles, which is a crucial factor in triggering myocardial I/R damage. To address this research gap, this review described the role of crosstalk between mitochondria and the correlative organelles such as endoplasmic reticulum, lysosomal and nuclei involved in reperfusion injury of the heart. In summary, this review aims to provide a comprehensive understanding of the crosstalk between organelles in myocardial I/R injury, with the ultimate goal of facilitating the development of targeted therapies based on this knowledge.
Collapse
Affiliation(s)
- Hui Yao
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, 28 Chang Sheng West Road, Hunan, 421001, China
| | - Yuxin Xie
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, 28 Chang Sheng West Road, Hunan, 421001, China
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, 421001, Hunan, China
| | - Chaoquan Li
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, 28 Chang Sheng West Road, Hunan, 421001, China
| | - Wanting Liu
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, 28 Chang Sheng West Road, Hunan, 421001, China
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, 421001, Hunan, China
| | - Guanghui Yi
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, 28 Chang Sheng West Road, Hunan, 421001, China.
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, 421001, Hunan, China.
| |
Collapse
|
22
|
Wen C, Jiang Y, Chen W, Xu Y, Chen G, Zhou Q, Liu Q, Jiang H, Liu Y, Cao X, Yao Y, Zhang R, Qiu Z, Liu S. Targeting translocator protein protects against myocardial ischemia/reperfusion injury by alleviating mitochondrial dysfunction. Exp Ther Med 2024; 28:349. [PMID: 39071907 PMCID: PMC11273255 DOI: 10.3892/etm.2024.12638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 06/11/2024] [Indexed: 07/30/2024] Open
Abstract
Ischemic heart disease (IHD) remains a leading cause of mortalities worldwide, necessitating timely reperfusion to reduce acute mortality. Paradoxically, reperfusion can induce myocardial ischemia/reperfusion (I/R) injury, which is primarily characterized by mitochondrial dysfunction. Translocator protein (TSPO) participates in multiple cellular events; however, its role in IHD, especially in the process of myocardial I/R injury, has not been well determined. The aim of the present study was to investigate the functional role of TSPO in myocardial I/R injury and dissect the concomitant cellular events involved. This study utilized small interfering RNA (siRNA) technology to knock down TSPO expression. The I/R process was simulated using an anoxia/reoxygenation (A/R) model. The role of TSPO in H9c2 cardiomyocytes was assessed using various techniques, such as Western blotting, Flow cytometry, Reverse transcription-quantitative PCR (RT-qPCR), Immunofluorescence, Co-immunoprecipitation (co-IP) and similar methods. It was found that A/R markedly upregulated the expression of TSPO in cardiomyocytes. Inhibition of TSPO improved myocardial cell apoptosis and damage following A/R stimulation. Additionally, targeting TSPO alleviated mitochondrial damage, reduced mitochondrial ROS release and enhanced ATP synthesis following A/R stimulation. It was further confirmed that A/R stimulation induced a significant increase in the expression of pivotal markers [phosporylated-PKR-like ER kinase (PERK)/PERK, activating transcription factor 6 (ATF6) and inositol-requiring enzyme 1] involved in the adaptive unfolded protein response, which is accompanied by downstream signaling during endoplasmic reticulum (ER) stress. Notably, TSPO knockdown increased the expression of the aforementioned markers and, subsequently, TSPO was confirmed to interact with ATF6, suggesting that TSPO might play a role in ER stress during myocardial I/R injury. Finally, inhibition of TSPO upregulated mitophagy, as indicated by further decreases in P62 and increases in Parkin and PINK1 levels following A/R stimulation. Together, the results suggest that TSPO plays a multifaceted role in myocardial I/R injury. Understanding TSPO-induced cellular responses could inform targeted therapeutic strategies for patients with IHD.
Collapse
Affiliation(s)
- Chenghao Wen
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Yunfei Jiang
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Wen Chen
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Yueyue Xu
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Ganyi Chen
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Qiang Zhou
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Quan Liu
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Southeast University, Nanjing, Jiangsu 210006, P.R. China
| | - Hongwei Jiang
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Yafeng Liu
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Xu Cao
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Yiwei Yao
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Ruoyu Zhang
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Zhibing Qiu
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Shengchen Liu
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| |
Collapse
|
23
|
Chang X, Zhou S, Liu J, Wang Y, Guan X, Wu Q, Liu Z, Liu R. Zishenhuoxue decoction-induced myocardial protection against ischemic injury through TMBIM6-VDAC1-mediated regulation of calcium homeostasis and mitochondrial quality surveillance. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 132:155331. [PMID: 38870748 DOI: 10.1016/j.phymed.2023.155331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/07/2023] [Accepted: 12/30/2023] [Indexed: 06/15/2024]
Abstract
BACKGROUND Zishenhuoxue decoction (ZSHX), a Chinese herbal medicine, exhibits myocardial and vascular endothelial protective properties. The intricate regulatory mechanisms underlying myocardial ischemic injury and its association with dysfunctional mitochondrial quality surveillance (MQS) remain elusive. HYPOTHESIS/PURPOSE To study the protective effect of ZSHX on ischemic myocardial injury in mice using a TMBIM6 gene-modified animal model and mitochondrial quality control-related experiments. STUDY DESIGN Using model animals and myocardial infarction surgery-induced ischemic myocardial injury TMBIM6 gene-modified mouse models, the pharmacological activity of ZSHX in inhibiting ischemic myocardial injury and mitochondrial homeostasis disorder in vivo was tested. METHODS Our focal point entailed scrutinizing the impact of ZSHX on ischemic myocardial impairment through the prism of TMBIM6. This endeavor was undertaken utilizing mice characterized by heart-specific TMBIM6 knockout (TMBIM6CKO) and their counterparts, the TMBIM6 transgenic (TMBIM6TG) and VDAC1 transgenic (VDAC1TG) mice. RESULTS ZSHX demonstrated dose-dependent effectiveness in mitigating ischemic myocardial injury and enhancing mitochondrial integrity. TMBIM6CKO hindered ZSHX's cardio-therapeutic and mitochondrial protective effects, while ZSHX's benefits persisted in TMBIM6TG mice. TMBIM6CKO also blocked ZSHX's regulation of mitochondrial function in HR-treated cardiomyocytes. Hypoxia disrupted the MQS in cardiomyocytes, including calcium overload, excessive fission, mitophagy issues, and disrupted biosynthesis. ZSHX counteracted these effects, thereby normalizing MQS and inhibiting calcium overload and cardiomyocyte necroptosis. Our results also showed that hypoxia-induced TMBIM6 blockade resulted in the over-activation of VDAC1, a major mitochondrial calcium uptake pathway, while ZSHX could increase the expression of TMBIM6 and inhibit VDAC1-mediated calcium overload and MQS abnormalities. CONCLUSIONS Our findings suggest that ZSHX regulates mitochondrial calcium homeostasis and MQS abnormalities through a TMBIM6-VDAC1 interaction mechanism, which helps to treat ischemic myocardial injury and provides myocardial protection. This study also offers insights for the clinical translation and application of mitochondrial-targeted drugs in cardiomyocytess.
Collapse
Affiliation(s)
- Xing Chang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, 5 Beixiange, Xicheng District, Beijing 100053, China
| | - Siyuan Zhou
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, 5 Beixiange, Xicheng District, Beijing 100053, China
| | - Jinfeng Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, 5 Beixiange, Xicheng District, Beijing 100053, China
| | - Yanli Wang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, 5 Beixiange, Xicheng District, Beijing 100053, China
| | - Xuanke Guan
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, 5 Beixiange, Xicheng District, Beijing 100053, China
| | - Qiaomin Wu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, 5 Beixiange, Xicheng District, Beijing 100053, China
| | - Zhiming Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, 5 Beixiange, Xicheng District, Beijing 100053, China.
| | - Ruxiu Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, 5 Beixiange, Xicheng District, Beijing 100053, China.
| |
Collapse
|
24
|
Zhang J, Zhao Y, Yan L, Tan M, Jin Y, Yin Y, Han L, Ma X, Li Y, Yang T, Jiang T, Li H. Corosolic acid attenuates cardiac ischemia/reperfusion injury through the PHB2/PINK1/parkin/mitophagy pathway. iScience 2024; 27:110448. [PMID: 39091464 PMCID: PMC11293524 DOI: 10.1016/j.isci.2024.110448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/20/2024] [Accepted: 07/01/2024] [Indexed: 08/04/2024] Open
Abstract
Despite advances in treatment, myocardial infarction remains the leading cause of heart failure and death worldwide, and the restoration of coronary blood flow can also cause heart damage. In this study, we found that corosolic acid (CA), also known as plant insulin, significantly protects the heart from ischemia-reperfusion (I/R) injury. In addition, CA can inhibit oxidative stress and improve mitochondrial structure and function in cardiomyocytes. Subsequently, our study demonstrated that CA improved the expression of the mitophagy-related proteins Prohibitin 2 (PHB2), PTEN-induced putative kinase protein-1 (PINK1), and Parkin. Meanwhile, through molecular docking, we found an excellent binding between CA and PHB2 protein. Finally, the knockdown of PHB2 eliminated the protective effect of CA on hypoxia-reoxygenation in cardiomyocytes. Taken together, our study reveals that CA increases mitophagy in cardiomyocytes via the PHB2/PINK1/Parkin signaling pathway, inhibits oxidative stress response, and maintains mitochondrial function, thereby improving cardiac function after I/R.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Cardiology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu 215006, P.R. China
| | - Yongjian Zhao
- Department of Cardiology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu 215006, P.R. China
| | - Lin Yan
- Department of Cardiology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu 215006, P.R. China
| | - Mingyue Tan
- Department of Cardiology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu 215006, P.R. China
| | - Yifeng Jin
- Department of Cardiology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu 215006, P.R. China
| | - Yunfei Yin
- Department of Cardiology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu 215006, P.R. China
| | - Lianhua Han
- Department of Cardiology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu 215006, P.R. China
| | - Xiao Ma
- Department of Cardiology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu 215006, P.R. China
| | - Yimin Li
- Department of Cardiology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu 215006, P.R. China
| | - Tianke Yang
- Department of Ophthalmology, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, P.R. China
| | - Tingbo Jiang
- Department of Cardiology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu 215006, P.R. China
| | - Hongxia Li
- Department of Cardiology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu 215006, P.R. China
| |
Collapse
|
25
|
Dong X, Zhuang HW, Wen RJ, Huang YS, Liang BX, Li H, Xian SX, Li C, Wang LJ, Wang JY. Xinyang tablet alleviated cardiac dysfunction in a cardiac pressure overload model by regulating the receptor-interacting serum/three-protein kinase 3/FUN14 domain containing 1-mediated mitochondrial unfolded protein response and mitophagy. JOURNAL OF ETHNOPHARMACOLOGY 2024; 330:118152. [PMID: 38614260 DOI: 10.1016/j.jep.2024.118152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/15/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Xinyang tablet (XYT) has been used for heart failure (HF) for over twenty years in clinical practice, but the underlying molecular mechanism remains poorly understood. AIMS OF THE STUDY In the present study, we aimed to explore the protective effects of XYT in HF in vivo and in vitro. MATERIALS AND METHODS Transverse aortic constriction was performed in vivo to establish a mouse model of cardiac pressure overload. Echocardiography, tissue staining, and real-time quantitative PCR (qPCR) were examined to evaluate the protective effects of XYT on cardiac function and structure. Adenosine 5'-triphosphate production, reactive oxygen species staining, and measurement of malondialdehyde and superoxide dismutase was used to detect mitochondrial damage. Mitochondrial ultrastructure was observed by transmission electron microscope. Immunofluorescence staining, qPCR, and Western blotting were performed to evaluate the effect of XYT on the mitochondrial unfolded protein response and mitophagy, and to identify its potential pharmacological mechanism. In vitro, HL-1 cells and neonatal mouse cardiomyocytes were stimulated with Angiotensin II to establish the cell model. Western blotting, qPCR, immunofluorescence staining, and flow cytometry were utilized to determine the effects of XYT on cardiomyocytes. HL-1 cells overexpressing receptor-interacting serum/three-protein kinase 3 (RIPK3) were generated by transfection of RIPK3-overexpressing lentiviral vectors. Cells were then co-treated with XYT to determine the molecular mechanisms. RESULTS In the present study, XYT was found to exerta protective effect on cardiac function and structure in the pressure overload mice. And it was also found XYT reduced mitochondrial damage by enhancing mitochondrial unfolded protein response and restoring mitophagy. Further studies showed that XYT achieved its cardioprotective role through regulating the RIPK3/FUN14 domain containing 1 (FUNDC1) signaling. Moreover, the overexpression of RIPK3 successfully reversed the XYT-induced protective effects and significantly attenuated the positive effects on the mitochondrial unfolded protein response and mitophagy. CONCLUSIONS Our findings indicated that XYT prevented pressure overload-induced HF through regulating the RIPK3/FUNDC1-mediated mitochondrial unfolded protein response and mitophagy. The information gained from this study provides a potential strategy for attenuating mitochondrial damage in the context of pressure overload-induced heart failure using XYT.
Collapse
Affiliation(s)
- Xin Dong
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Guangzhou Key Laboratory of Chinese Medicine for Prevention and Treatment of Chronic Heart Failure, Guangzhou, 510405, China; Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Hao-Wen Zhuang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Guangzhou Key Laboratory of Chinese Medicine for Prevention and Treatment of Chronic Heart Failure, Guangzhou, 510405, China; Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Rui-Jia Wen
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Guangzhou Key Laboratory of Chinese Medicine for Prevention and Treatment of Chronic Heart Failure, Guangzhou, 510405, China; Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Yu-Sheng Huang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Guangzhou Key Laboratory of Chinese Medicine for Prevention and Treatment of Chronic Heart Failure, Guangzhou, 510405, China; Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Bing-Xue Liang
- Chongqing College of Traditional Chinese Medicine, Chongqing, 400000, China
| | - Huan Li
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Guangzhou Key Laboratory of Chinese Medicine for Prevention and Treatment of Chronic Heart Failure, Guangzhou, 510405, China; Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Shao-Xiang Xian
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Guangzhou Key Laboratory of Chinese Medicine for Prevention and Treatment of Chronic Heart Failure, Guangzhou, 510405, China; Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Chun Li
- Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Ling-Jun Wang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Guangzhou Key Laboratory of Chinese Medicine for Prevention and Treatment of Chronic Heart Failure, Guangzhou, 510405, China; Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Jun-Yan Wang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Guangzhou Key Laboratory of Chinese Medicine for Prevention and Treatment of Chronic Heart Failure, Guangzhou, 510405, China; School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| |
Collapse
|
26
|
Zhu G, Li Y, Gao H, Li X, Fan H, Fan L. Mzb1 Attenuates Atherosclerotic Plaque Vulnerability in ApoE-/- Mice by Alleviating Apoptosis and Modulating Mitochondrial Function. J Cardiovasc Transl Res 2024; 17:782-794. [PMID: 38294627 DOI: 10.1007/s12265-024-10483-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/17/2024] [Indexed: 02/01/2024]
Abstract
In this study, we investigated the protective role of Mzb1 in atherosclerotic plaque vulnerability. To explore the impact of Mzb1, we analyzed Mzb1 expression, assessed apoptosis, and evaluated mitochondrial function in atherosclerosis (AS) mouse models and human vascular smooth muscle cells (HVSMCs). We observed a significant decrease in Mzb1 expression in AS mouse models and ox-LDL-treated HVSMCs. Downregulation of Mzb1 increased ox-LDL-induced apoptosis and cholesterol levels of HVSMCs, while Mzb1 overexpression alleviated these effect. Mzb1 was found to enhance mitochondrial function, as evidenced by restored ATP synthesis, mitochondrial membrane potential, and reduced mtROS production. Moreover, Mzb1 overexpression attenuated atherosclerotic plaque vulnerability in ApoE-/- mice. Our findings suggest that Mzb1 overexpression regulates the AMPK/SIRT1 signaling pathway, leading to the attenuation of atherosclerotic plaque vulnerability. This study provides compelling evidence for the protective effect of Mzb1 on atherosclerotic plaques by alleviating apoptosis and modulating mitochondrial function in ApoE-/- mice.
Collapse
MESH Headings
- Animals
- Apoptosis
- Plaque, Atherosclerotic
- Disease Models, Animal
- Mice, Knockout, ApoE
- Signal Transduction
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Humans
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- Atherosclerosis/genetics
- Atherosclerosis/prevention & control
- Sirtuin 1/metabolism
- Sirtuin 1/genetics
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- AMP-Activated Protein Kinases/metabolism
- Mice, Inbred C57BL
- Cells, Cultured
- Male
- Lipoproteins, LDL/metabolism
- Mitochondria/metabolism
- Mitochondria/pathology
- Rupture, Spontaneous
- Membrane Potential, Mitochondrial
- Aortic Diseases/pathology
- Aortic Diseases/genetics
- Aortic Diseases/metabolism
- Aortic Diseases/prevention & control
- Apolipoproteins E/genetics
- Apolipoproteins E/deficiency
- Adenosine Triphosphate/metabolism
- Aorta/metabolism
- Aorta/pathology
Collapse
Affiliation(s)
- Guanglang Zhu
- Department of Vascular Surgery, Qingpu Branch of Zhongshan Hospital, Fudan University, 1158 Park Road, Qingpu, Shanghai, 201700, People's Republic of China
| | - Yang Li
- Department of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Hongxia Gao
- Department of Vascular Surgery, Qingpu Branch of Zhongshan Hospital, Fudan University, 1158 Park Road, Qingpu, Shanghai, 201700, People's Republic of China
| | - Xu Li
- Department of Vascular Surgery, Qingpu Branch of Zhongshan Hospital, Fudan University, 1158 Park Road, Qingpu, Shanghai, 201700, People's Republic of China
| | - Heyu Fan
- School of Arts and Sciences, Rutgers University, New Brunswick, NJ, USA
| | - Longhua Fan
- Department of Vascular Surgery, Qingpu Branch of Zhongshan Hospital, Fudan University, 1158 Park Road, Qingpu, Shanghai, 201700, People's Republic of China.
- Department of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China.
| |
Collapse
|
27
|
Wu Y, Zou Y, Song C, Cao K, Cai K, Chen S, Zhang Z, Geng D, Zhang N, Feng H, Tang M, Li Z, Sun G, Zhang Y, Sun Y, Zhang Y. The role of serine/threonine protein kinases in cardiovascular disease and potential therapeutic methods. Biomed Pharmacother 2024; 177:117093. [PMID: 38971012 DOI: 10.1016/j.biopha.2024.117093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/02/2024] [Accepted: 07/02/2024] [Indexed: 07/08/2024] Open
Abstract
Protein phosphorylation is an important link in a variety of signaling pathways, and most of the important life processes in cells involve protein phosphorylation. Based on the amino acid residues of phosphorylated proteins, protein kinases can be categorized into the following families: serine/threonine protein kinases, tyrosine-specific protein kinases, histidine-specific protein kinases, tryptophan kinases, and aspartate/glutamyl protein kinases. Of all the protein kinases, most are serine/threonine kinases, where serine/threonine protein kinases are protein kinases that catalyze the phosphorylation of serine or threonine residues on target proteins using ATP as a phosphate donor. The current socially accepted classification of serine/threonine kinases is to divide them into seven major groups: protein kinase A, G, C (AGC), CMGC, Calmodulin-dependent protein kinase (CAMK), Casein kinase (CK1), STE, Tyrosine kinase (TKL) and others. After decades of research, a preliminary understanding of the specific classification and respective functions of serine/threonine kinases has entered a new period of exploration. In this paper, we review the literature of the previous years and introduce the specific signaling pathways and related therapeutic modalities played by each of the small protein kinases in the serine/threonine protein kinase family, respectively, in some common cardiovascular system diseases such as heart failure, myocardial infarction, ischemia-reperfusion injury, and diabetic cardiomyopathy. To a certain extent, the current research results, including molecular mechanisms and therapeutic methods, are fully summarized and a systematic report is made for the prevention and treatment of cardiovascular diseases in the future.
Collapse
Affiliation(s)
- Yanjiao Wu
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province 110001, People's Republic of China
| | - Yuanming Zou
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province 110001, People's Republic of China
| | - Chunyu Song
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province 110001, People's Republic of China
| | - Kexin Cao
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province 110001, People's Republic of China
| | - Kexin Cai
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province 110001, People's Republic of China
| | - Shuxian Chen
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province 110001, People's Republic of China
| | - Zhaobo Zhang
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province 110001, People's Republic of China
| | - Danxi Geng
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province 110001, People's Republic of China
| | - Naijin Zhang
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province 110001, People's Republic of China; Institute of health sciences, China Medical University, 77 Puhe Road, Shenbei New District, Shenyang, Liaoning Province 110001, People's Republic of China; Key Laboratory of Reproductive and Genetic Medicine (China Medical University), National Health Commission, Shenyang 110004, China.
| | - Hao Feng
- Department of Ophthalmology, The First Affiliated Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province 110001, People's Republic of China.
| | - Man Tang
- Department of clinical pharmacology, College of Pharmacy, China Medical University, 77 Puhe Road, Shenbei New District, Shenyang, Liaoning Province 110001, People's Republic of China.
| | - Zhao Li
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province 110001, People's Republic of China.
| | - Guozhe Sun
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province 110001, People's Republic of China.
| | - Yixiao Zhang
- Department of Urology Surgery, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, Liaoning Province 110004, People's Republic of China.
| | - Yingxian Sun
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province 110001, People's Republic of China; Institute of health sciences, China Medical University, 77 Puhe Road, Shenbei New District, Shenyang, Liaoning Province 110001, People's Republic of China; Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, 77 Puhe Road, Shenbei New District, Shenyang, Liaoning Province 110001, People's Republic of China.
| | - Ying Zhang
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province 110001, People's Republic of China; Institute of health sciences, China Medical University, 77 Puhe Road, Shenbei New District, Shenyang, Liaoning Province 110001, People's Republic of China.
| |
Collapse
|
28
|
Tao J, Qiu J, Zheng J, Li R, Chang X, He Q. Phosphoglycerate mutase 5 exacerbates alcoholic cardiomyopathy in male mice by inducing prohibitin-2 dephosphorylation and impairing mitochondrial quality control. Clin Transl Med 2024; 14:e1806. [PMID: 39143739 PMCID: PMC11324691 DOI: 10.1002/ctm2.1806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/12/2024] [Accepted: 07/26/2024] [Indexed: 08/16/2024] Open
Abstract
BACKGROUND The induction of mitochondrial quality control (MQC) mechanisms is essential for the re-establishment of mitochondrial homeostasis and cellular bioenergetics during periods of stress. Although MQC activation has cardioprotective effects in various cardiovascular diseases, its precise role and regulatory mechanisms in alcoholic cardiomyopathy (ACM) remain incompletely understood. METHODS We explored whether two mitochondria-related proteins, phosphoglycerate mutase 5 (Pgam5) and prohibitin 2 (Phb2), influence MQC in male mice during ACM. RESULTS Myocardial Pgam5 expression was upregulated in a male mouse model of ACM. Notably, following ACM induction, heart dysfunction was markedly reversed in male cardiomyocyte-specific Pgam5 knockout (Pgam5cKO) mice. Meanwhile, in alcohol-treated male mouse-derived neonatal cardiomyocytes, Pgam5 depletion preserved cell survival and restored mitochondrial dynamics, mitophagy, mitochondrial biogenesis and the mitochondrial unfolded protein response (mtUPR). We further found that in alcohol-treated cardiomyocyte, Pgam5 binds Phb2 and induces its dephosphorylation at Ser91. Alternative transduction of phospho-mimetic (Phb2S91D) and phospho-defective (Phb2S9A) Phb2 mutants attenuated and enhanced, respectively, alcohol-related mitochondrial dysfunction in cardiomyocytes. Moreover, transgenic male mice expressing Phb2S91D were resistant to alcohol-induced heart dysfunction. CONCLUSIONS We conclude that ACM-induced Pgam5 upregulation results in Pgam5-dependent Phb2S91 dephosphorylation, leading to MQC destabilisation and mitochondrial dysfunction in heart. Therefore, modulating the Pgam5/Phb2 interaction could potentially offer a novel therapeutic strategy for ACM in male mice. HIGHLIGHTS Pgam5 knockout attenuates alcohol-induced cardiac histopathology and heart dysfunction in male mice. Pgam5 KO reduces alcohol-induced myocardial inflammation, lipid peroxidation and metabolic dysfunction in male mice. Pgam5 depletion protects mitochondrial function in alcohol-exposed male mouse cardiomyocytes. Pgam5 depletion normalises MQC in ACM. EtOH impairs MQC through inducing Phb2 dephosphorylation at Ser91. Pgam5 interacts with Phb2 and induces Phb2 dephosphorylation. Transgenic mice expressing a Ser91 phospho-mimetic Phb2 mutant are resistant to ACM.
Collapse
Affiliation(s)
- Jun Tao
- Department of Cardiovascular Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Junxiong Qiu
- Department of Cardiovascular Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Junmeng Zheng
- Department of Cardiovascular Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ruibing Li
- Department of Clinical Laboratory Medicine, The First Medical Centre, Medical School of Chinese People's Liberation Army, Beijing, China
- Xianning Medical College, Hubei University of Science & Technology, Xianning, China, Xianning, China
| | - Xing Chang
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qingyong He
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
29
|
Ling Z, Pan J, Zhang Z, Chen G, Geng J, Lin Q, Zhang T, Cao S, Chen C, Lin J, Yuan H, Ding W, Xiao F, Xu X, Li F, Wang G, Zhang Y, Li J. Small-molecule Molephantin induces apoptosis and mitophagy flux blockage through ROS production in glioblastoma. Cancer Lett 2024; 592:216927. [PMID: 38697460 DOI: 10.1016/j.canlet.2024.216927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/15/2024] [Accepted: 04/27/2024] [Indexed: 05/05/2024]
Abstract
Glioblastoma (GBM), one of the most malignant brain tumors in the world, has limited treatment options and a dismal survival rate. Effective and safe disease-modifying drugs for glioblastoma are urgently needed. Here, we identified a small molecule, Molephantin (EM-5), effectively penetrated the blood-brain barrier (BBB) and demonstrated notable antitumor effects against GBM with good safety profiles both in vitro and in vivo. Mechanistically, EM-5 not only inhibits the proliferation and invasion of GBM cells but also induces cell apoptosis through the reactive oxygen species (ROS)-mediated PI3K/Akt/mTOR pathway. Furthermore, EM-5 causes mitochondrial dysfunction and blocks mitophagy flux by impeding the fusion of mitophagosomes with lysosomes. It is noteworthy that EM-5 does not interfere with the initiation of autophagosome formation or lysosomal function. Additionally, the mitophagy flux blockage caused by EM-5 was driven by the accumulation of intracellular ROS. In vivo, EM-5 exhibited significant efficacy in suppressing tumor growth in a xenograft model. Collectively, our findings not only identified EM-5 as a promising, effective, and safe lead compound for treating GBM but also uncovered its underlying mechanisms from the perspective of apoptosis and mitophagy.
Collapse
Affiliation(s)
- Zhipeng Ling
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China; Department of Pharmacology, School of Medicine, and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, China
| | - Junping Pan
- Guangdong Second Provincial General Hospital, Integrated Chinese and Western Medicine Postdoctoral Research Station, School of Medicine, Jinan University, Guangzhou, China
| | - Zhongfei Zhang
- Department of Neurosurgery, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Guisi Chen
- Department of Pharmacology, School of Medicine, and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, China
| | - Jiayuan Geng
- Department of Microbial and Biochemical Pharmacy, College of Pharmacy, Jinan University, Guangzhou, China
| | - Qiang Lin
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China
| | - Tao Zhang
- Department of Kidney Transplantation, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Shuqin Cao
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Cheng Chen
- Department of Neurosurgery, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Jinrong Lin
- Department of Neurosurgery, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Hongyao Yuan
- Department of Neurosurgery, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Weilong Ding
- Department of Pharmacology, School of Medicine, and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, China
| | - Fei Xiao
- Department of Pharmacology, School of Medicine, and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, China
| | - Xinke Xu
- Department of Neurosurgery, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Fangcheng Li
- Department of Neurosurgery, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Guocai Wang
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China.
| | - Yubo Zhang
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China; Department of Pharmacology, School of Medicine, and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, China.
| | - Junliang Li
- Department of Neurosurgery, Guangzhou Women and Children's Medical Center, Guangzhou, China.
| |
Collapse
|
30
|
He W, Sun Z, Tong G, Zeng L, He W, Chen X, Zhen C, Chen P, Tan N, He P. FUNDC1 alleviates doxorubicin-induced cardiotoxicity by restoring mitochondrial-endoplasmic reticulum contacts and blocked autophagic flux. Theranostics 2024; 14:3719-3738. [PMID: 38948070 PMCID: PMC11209712 DOI: 10.7150/thno.92771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 05/21/2024] [Indexed: 07/02/2024] Open
Abstract
Rationale: Autophagy dysregulation is known to be a mechanism of doxorubicin (DOX)-induced cardiotoxicity (DIC). Mitochondrial-Endoplasmic Reticulum Contacts (MERCs) are where autophagy initiates and autophagosomes form. However, the role of MERCs in autophagy dysregulation in DIC remains elusive. FUNDC1 is a tethering protein of MERCs. We aim to investigate the effect of DOX on MERCs in cardiomyocytes and explore whether it is involved in the dysregulated autophagy in DIC. Methods: We employed confocal microscopy and transmission electron microscopy to assess MERCs structure. Autophagic flux was analyzed using the mCherry-EGFP-LC3B fluorescence assay and western blotting for LC3BII. Mitophagy was studied through the mCherry-EGFP-FIS1 fluorescence assay and colocalization analysis between LC3B and mitochondria. A total dose of 18 mg/kg of doxorubicin was administrated in mice to construct a DIC model in vivo. Additionally, we used adeno-associated virus (AAV) to cardiac-specifically overexpress FUNDC1. Cardiac function and remodeling were evaluated by echocardiography and Masson's trichrome staining, respectively. Results: DOX blocked autophagic flux by inhibiting autophagosome biogenesis, which could be attributed to the downregulation of FUNDC1 and disruption of MERCs structures. FUNDC1 overexpression restored the blocked autophagosome biogenesis by maintaining MERCs structure and facilitating ATG5-ATG12/ATG16L1 complex formation without altering mitophagy. Furthermore, FUNDC1 alleviated DOX-induced oxidative stress and cardiomyocytes deaths in an autophagy-dependent manner. Notably, cardiac-specific overexpression of FUNDC1 protected DOX-treated mice against adverse cardiac remodeling and improved cardiac function. Conclusions: In summary, our study identified that FUNDC1-meditated MERCs exerted a cardioprotective effect against DIC by restoring the blocked autophagosome biogenesis. Importantly, this research reveals a novel role of FUNDC1 in enhancing macroautophagy via restoring MERCs structure and autophagosome biogenesis in the DIC model, beyond its previously known regulatory role as an mitophagy receptor.
Collapse
Affiliation(s)
- Weibin He
- Department of Cardiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences) Southern Medical University, 510080 Guangzhou, China
- Department of Cardiology, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Guangdong Cardiovascular Institute, 510080 Guangzhou, China
| | - Zhongchan Sun
- Department of Cardiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences) Southern Medical University, 510080 Guangzhou, China
- Department of Cardiology, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Guangdong Cardiovascular Institute, 510080 Guangzhou, China
| | - Guang Tong
- Department of Cardiac Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences) Southern Medical university, 510080 Guangzhou, China
| | - Lin Zeng
- Department of Cardiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences) Southern Medical University, 510080 Guangzhou, China
- Department of Cardiology, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Guangdong Cardiovascular Institute, 510080 Guangzhou, China
| | - Wenlong He
- Department of Cardiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences) Southern Medical University, 510080 Guangzhou, China
- Department of Cardiology, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Guangdong Cardiovascular Institute, 510080 Guangzhou, China
| | - Xiaopan Chen
- Department of Cardiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences) Southern Medical University, 510080 Guangzhou, China
| | - Cien Zhen
- School of Medicine, South China University of Technology, 510006 Guangzhou, China
| | - Pengyuan Chen
- Department of Cardiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences) Southern Medical University, 510080 Guangzhou, China
- Department of Cardiology, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Guangdong Cardiovascular Institute, 510080 Guangzhou, China
| | - Ning Tan
- Department of Cardiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences) Southern Medical University, 510080 Guangzhou, China
- Department of Cardiology, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Guangdong Cardiovascular Institute, 510080 Guangzhou, China
| | - Pengcheng He
- Department of Cardiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences) Southern Medical University, 510080 Guangzhou, China
- Department of Cardiology, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Guangdong Cardiovascular Institute, 510080 Guangzhou, China
- Department of Cardiology, Heyuan People's Hospital, 517000 Heyuan, China
| |
Collapse
|
31
|
Du Y, Li J, Dai Z, Chen Y, Zhao Y, Liu X, Xia T, Zhu P, Wang Y. Pyruvate kinase M2 sustains cardiac mitochondrial quality surveillance in septic cardiomyopathy by regulating prohibitin 2 abundance via S91 phosphorylation. Cell Mol Life Sci 2024; 81:254. [PMID: 38856931 PMCID: PMC11335292 DOI: 10.1007/s00018-024-05253-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 04/11/2024] [Accepted: 04/20/2024] [Indexed: 06/11/2024]
Abstract
The endogenous mitochondrial quality control (MQC) system serves to protect mitochondria against cellular stressors. Although mitochondrial dysfunction contributes to cardiac damage during many pathological conditions, the regulatory signals influencing MQC disruption during septic cardiomyopathy (SC) remain unclear. This study aimed to investigate the involvement of pyruvate kinase M2 (PKM2) and prohibitin 2 (PHB2) interaction followed by MQC impairment in the pathogenesis of SC. We utilized LPS-induced SC models in PKM2 transgenic (PKM2TG) mice, PHB2S91D-knockin mice, and PKM2-overexpressing HL-1 cardiomyocytes. After LPS-induced SC, cardiac PKM2 expression was significantly downregulated in wild-type mice, whereas PKM2 overexpression in vivo sustained heart function, suppressed myocardial inflammation, and attenuated cardiomyocyte death. PKM2 overexpression relieved sepsis-related mitochondrial damage via MQC normalization, evidenced by balanced mitochondrial fission/fusion, activated mitophagy, restored mitochondrial biogenesis, and inhibited mitochondrial unfolded protein response. Docking simulations, co-IP, and domain deletion mutant protein transfection experiments showed that PKM2 phosphorylates PHB2 at Ser91, preventing LPS-mediated PHB2 degradation. Additionally, the A domain of PKM2 and the PHB domain of PHB2 are required for PKM2-PHB2 binding and PHB2 phosphorylation. After LPS exposure, expression of a phosphorylation-defective PHB2S91A mutant negated the protective effects of PKM2 overexpression. Moreover, knockin mice expressing a phosphorylation-mimetic PHB2S91D mutant showed improved heart function, reduced inflammation, and preserved mitochondrial function following sepsis induction. Abundant PKM2 expression is a prerequisite to sustain PKM2-PHB2 interaction which is a key element for preservation of PHB2 phosphorylation and MQC, presenting novel interventive targets for the treatment of septic cardiomyopathy.
Collapse
Affiliation(s)
- Yingzhen Du
- The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, China
| | - Jialei Li
- School of Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhe Dai
- School of Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Yuxin Chen
- School of Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Yao Zhao
- School of Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiaoman Liu
- School of Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Tian Xia
- Department of Clinical Laboratory Medicine, The First Medical Centre, Medical School of Chinese People's Liberation Army, Beijing, China
- Xianning Medical College, Hubei University of Science & Technology, Xianning, China
| | - Pingjun Zhu
- The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, China.
| | - Yijin Wang
- The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, China.
| |
Collapse
|
32
|
Welt FGP, Batchelor W, Spears JR, Penna C, Pagliaro P, Ibanez B, Drakos SG, Dangas G, Kapur NK. Reperfusion Injury in Patients With Acute Myocardial Infarction: JACC Scientific Statement. J Am Coll Cardiol 2024; 83:2196-2213. [PMID: 38811097 DOI: 10.1016/j.jacc.2024.02.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/15/2024] [Accepted: 02/26/2024] [Indexed: 05/31/2024]
Abstract
Despite impressive improvements in the care of patients with ST-segment elevation myocardial infarction, mortality remains high. Reperfusion is necessary for myocardial salvage, but the abrupt return of flow sets off a cascade of injurious processes that can lead to further necrosis. This has been termed myocardial ischemia-reperfusion injury and is the subject of this review. The pathologic and molecular bases for myocardial ischemia-reperfusion injury are increasingly understood and include injury from reactive oxygen species, inflammation, calcium overload, endothelial dysfunction, and impaired microvascular flow. A variety of pharmacologic strategies have been developed that have worked well in preclinical models and some have shown promise in the clinical setting. In addition, there are newer mechanical approaches including mechanical unloading of the heart prior to reperfusion that are in current clinical trials.
Collapse
Affiliation(s)
- Frederick G P Welt
- Department of Medicine, Division of Cardiovascular Medicine, University of Utah Hospital, Salt Lake City, Utah, USA.
| | | | - J Richard Spears
- Department of Cardiovascular Medicine, Beaumont Systems, Royal Oak, Michigan, USA
| | - Claudia Penna
- Department of Clinical and Biological Sciences, University of Torino, Turin, Italy
| | - Pasquale Pagliaro
- Department of Clinical and Biological Sciences, University of Torino, Turin, Italy
| | - Borja Ibanez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain; CIBER de Enfermedades Cardiovasculares, Madrid, Spain; Department of Cardiology, Hospital Fundación Jiménez Díaz, Madrid, Spain
| | - Stavros G Drakos
- Department of Medicine, Division of Cardiovascular Medicine, University of Utah Hospital, Salt Lake City, Utah, USA; Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah, USA
| | - George Dangas
- Division of Cardiology, Mount Sinai Health System, New York, New York, USA
| | - Navin K Kapur
- The CardioVascular Center and Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts, USA
| |
Collapse
|
33
|
Liu BH, Xu CZ, Liu Y, Lu ZL, Fu TL, Li GR, Deng Y, Luo GQ, Ding S, Li N, Geng Q. Mitochondrial quality control in human health and disease. Mil Med Res 2024; 11:32. [PMID: 38812059 PMCID: PMC11134732 DOI: 10.1186/s40779-024-00536-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 05/07/2024] [Indexed: 05/31/2024] Open
Abstract
Mitochondria, the most crucial energy-generating organelles in eukaryotic cells, play a pivotal role in regulating energy metabolism. However, their significance extends beyond this, as they are also indispensable in vital life processes such as cell proliferation, differentiation, immune responses, and redox balance. In response to various physiological signals or external stimuli, a sophisticated mitochondrial quality control (MQC) mechanism has evolved, encompassing key processes like mitochondrial biogenesis, mitochondrial dynamics, and mitophagy, which have garnered increasing attention from researchers to unveil their specific molecular mechanisms. In this review, we present a comprehensive summary of the primary mechanisms and functions of key regulators involved in major components of MQC. Furthermore, the critical physiological functions regulated by MQC and its diverse roles in the progression of various systemic diseases have been described in detail. We also discuss agonists or antagonists targeting MQC, aiming to explore potential therapeutic and research prospects by enhancing MQC to stabilize mitochondrial function.
Collapse
Affiliation(s)
- Bo-Hao Liu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Department of Thoracic Surgery, First Hospital of Jilin University, Changchun, 130021, China
| | - Chen-Zhen Xu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yi Liu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Zi-Long Lu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Ting-Lv Fu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Guo-Rui Li
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yu Deng
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Guo-Qing Luo
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Song Ding
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Ning Li
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| | - Qing Geng
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
34
|
Lv Y, Yu Z, Zhang P, Zhang X, Li H, Liang T, Guo Y, Cheng L, Peng F. The structure and function of FUN14 domain-containing protein 1 and its contribution to cardioprotection by mediating mitophagy. Front Pharmacol 2024; 15:1389953. [PMID: 38828457 PMCID: PMC11140143 DOI: 10.3389/fphar.2024.1389953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/29/2024] [Indexed: 06/05/2024] Open
Abstract
Cardiovascular disease (CVD) is a serious public health risk, and prevention and treatment efforts are urgently needed. Effective preventive and therapeutic programs for cardiovascular disease are still lacking, as the causes of CVD are varied and may be the result of a multifactorial combination. Mitophagy is a form of cell-selective autophagy, and there is increasing evidence that mitophagy is involved in cardioprotective processes. Recently, many studies have shown that FUN14 domain-containing protein 1 (FUNDC1) levels and phosphorylation status are highly associated with many diseases, including heart disease. Here, we review the structure and functions of FUNDC1 and the path-ways of its mediated mitophagy, and show that mitophagy can be effectively activated by dephosphorylation of Ser13 and Tyr18 sites, phosphorylation of Ser17 site and ubiquitination of Lys119 site in FUNDC1. By effectively activating or inhibiting excessive mitophagy, the quality of mitochondria can be effectively controlled. The main reason is that, on the one hand, improper clearance of mitochondria and accumulation of damaged mitochondria are avoided, and on the other hand, excessive mitophagy causing apoptosis is avoided, both serving to protect the heart. In addition, we explore the possible mechanisms by which FUNDC1-mediated mitophagy is involved in exercise preconditioning (EP) for cardioprotection. Finally, we also point out unresolved issues in FUNDC1 and its mediated mitophagy and give directions where further research may be needed.
Collapse
Affiliation(s)
- Yuhu Lv
- College of Physical Education, Guangdong University of Education, Guangzhou, China
- Research Center for Adolescent Sports and Health Promotion of Guangdong Province, Guangzhou, China
| | - Zhengze Yu
- College of Physical Education and Health, Guangxi Normal University, Guilin, China
| | - Peiwen Zhang
- College of Nursing and Rehabilitation, Xi an FanYi University, Xi’an, China
| | - Xiqian Zhang
- College of Physical Education, Guangdong University of Education, Guangzhou, China
- Research Center for Adolescent Sports and Health Promotion of Guangdong Province, Guangzhou, China
| | - Huarui Li
- College of Physical Education and Health, Guangxi Normal University, Guilin, China
| | - Ting Liang
- College of Physical Education and Health, Guangxi Normal University, Guilin, China
| | - Yanju Guo
- College of Physical Education and Health, Guangxi Normal University, Guilin, China
| | - Lin Cheng
- College of Physical Education and Health, Guangxi Normal University, Guilin, China
| | - Fenglin Peng
- College of Physical Education and Health, Guangxi Normal University, Guilin, China
| |
Collapse
|
35
|
Yang K, Yan Y, Yu A, Zhang R, Zhang Y, Qiu Z, Li Z, Zhang Q, Wu S, Li F. Mitophagy in neurodegenerative disease pathogenesis. Neural Regen Res 2024; 19:998-1005. [PMID: 37862201 PMCID: PMC10749592 DOI: 10.4103/1673-5374.385281] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/23/2023] [Accepted: 08/15/2023] [Indexed: 10/22/2023] Open
Abstract
Mitochondria are critical cellular energy resources and are central to the life of the neuron. Mitophagy selectively clears damaged or dysfunctional mitochondria through autophagic machinery to maintain mitochondrial quality control and homeostasis. Mature neurons are postmitotic and consume substantial energy, thus require highly efficient mitophagy pathways to turn over damaged or dysfunctional mitochondria. Recent evidence indicates that mitophagy is pivotal to the pathogenesis of neurological diseases. However, more work is needed to study mitophagy pathway components as potential therapeutic targets. In this review, we briefly discuss the characteristics of nonselective autophagy and selective autophagy, including ERphagy, aggrephagy, and mitophagy. We then introduce the mechanisms of Parkin-dependent and Parkin-independent mitophagy pathways under physiological conditions. Next, we summarize the diverse repertoire of mitochondrial membrane receptors and phospholipids that mediate mitophagy. Importantly, we review the critical role of mitophagy in the pathogenesis of neurodegenerative diseases including Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. Last, we discuss recent studies considering mitophagy as a potential therapeutic target for treating neurodegenerative diseases. Together, our review may provide novel views to better understand the roles of mitophagy in neurodegenerative disease pathogenesis.
Collapse
Affiliation(s)
- Kan Yang
- Department of Developmental and Behavioural Pediatric & Child Primary Care, Brain and Behavioural Research Unit of Shanghai Institute for Pediatric Research and MOE-Shanghai Key Laboratory for Children’s Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences, Shanghai, China
- College of Materials and Chemical Engineering, Hunan Institute of Engineering, Xiangtan, Hunan Province, China
| | - Yuqing Yan
- School of Medicine, Yunnan University, Kunming, Yunnan Province, China
| | - Anni Yu
- College of Materials and Chemical Engineering, Hunan Institute of Engineering, Xiangtan, Hunan Province, China
| | - Ru Zhang
- College of Materials and Chemical Engineering, Hunan Institute of Engineering, Xiangtan, Hunan Province, China
| | - Yuefang Zhang
- Songjiang Research Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zilong Qiu
- Songjiang Research Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhengyi Li
- Neurosurgery Department, Kunming Yenan Hospital, Kunming, Yunnan Province, China
| | - Qianlong Zhang
- Department of Developmental and Behavioural Pediatric & Child Primary Care, Brain and Behavioural Research Unit of Shanghai Institute for Pediatric Research and MOE-Shanghai Key Laboratory for Children’s Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shihao Wu
- School of Medicine, Yunnan University, Kunming, Yunnan Province, China
| | - Fei Li
- Department of Developmental and Behavioural Pediatric & Child Primary Care, Brain and Behavioural Research Unit of Shanghai Institute for Pediatric Research and MOE-Shanghai Key Laboratory for Children’s Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
36
|
Wang T, Xing G, Fu T, Ma Y, Wang Q, Zhang S, Chang X, Tong Y. Role of mitochondria in doxorubicin-mediated cardiotoxicity: From molecular mechanisms to therapeutic strategies. Cell Stress Chaperones 2024; 29:349-357. [PMID: 38485043 PMCID: PMC10999808 DOI: 10.1016/j.cstres.2024.03.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/09/2024] [Indexed: 04/05/2024] Open
Abstract
This comprehensive review delves into the pivotal role of mitochondria in doxorubicin-induced cardiotoxicity, a significant complication limiting the clinical use of this potent anthracycline chemotherapeutic agent. Doxorubicin, while effective against various malignancies, is associated with dose-dependent cardiotoxicity, potentially leading to irreversible cardiac damage. The review meticulously dissects the molecular mechanisms underpinning this cardiotoxicity, particularly focusing on mitochondrial dysfunction, a central player in this adverse effect. Central to the discussion is the concept of mitochondrial quality control, including mitochondrial dynamics (fusion/fission balance) and mitophagy. The review presents evidence linking aberrations in these processes to cardiotoxicity in doxorubicin-treated patients. It elucidates how doxorubicin disrupts mitochondrial dynamics, leading to an imbalance between mitochondrial fission and fusion, and impairs mitophagy, culminating in the accumulation of dysfunctional mitochondria and subsequent cardiac cell damage. Furthermore, the review explores emerging therapeutic strategies targeting mitochondrial dysfunction. It highlights the potential of modulating mitochondrial dynamics and enhancing mitophagy to mitigate doxorubicin-induced cardiac damage. These strategies include pharmacological interventions with mitochondrial fission inhibitors, fusion promoters, and agents that modulate mitophagy. The review underscores the promising results from preclinical studies while advocating for more extensive clinical trials to validate these approaches in human patients. In conclusion, this review offers valuable insights into the intricate relationship between mitochondrial dysfunction and doxorubicin-mediated cardiotoxicity. It underscores the need for continued research into targeted mitochondrial therapies as a means to improve the cardiac safety profile of doxorubicin, thereby enhancing the overall treatment outcomes for cancer patients.
Collapse
Affiliation(s)
- Tianen Wang
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Guoli Xing
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Tong Fu
- Brandeis University, Waltham, MA, USA
| | - Yanchun Ma
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Qi Wang
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Shuxiang Zhang
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xing Chang
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Ying Tong
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China.
| |
Collapse
|
37
|
Deng J, Liu Q, Ye L, Wang S, Song Z, Zhu M, Qiang F, Zhou Y, Guo Z, Zhang W, Chen T. The Janus face of mitophagy in myocardial ischemia/reperfusion injury and recovery. Biomed Pharmacother 2024; 173:116337. [PMID: 38422659 DOI: 10.1016/j.biopha.2024.116337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/20/2024] [Accepted: 02/23/2024] [Indexed: 03/02/2024] Open
Abstract
In myocardial ischemia/reperfusion injury (MIRI), moderate mitophagy is a protective or adaptive mechanism because of clearing defective mitochondria accumulates during MIRI. However, excessive mitophagy lead to an increase in defective mitochondria and ultimately exacerbate MIRI by causing overproduction or uncontrolled production of mitochondria. Phosphatase and tensin homolog (PTEN)-induced kinase 1 (Pink1), Parkin, FUN14 domain containing 1 (FUNDC1) and B-cell leukemia/lymphoma 2 (BCL-2)/adenovirus E1B19KD interaction protein 3 (BNIP3) are the main mechanistic regulators of mitophagy in MIRI. Pink1 and Parkin are mitochondrial surface proteins involved in the ubiquitin-dependent pathway, while BNIP3 and FUNDC1 are mitochondrial receptor proteins involved in the non-ubiquitin-dependent pathway, which play a crucial role in maintaining mitochondrial homeostasis and mitochondrial quality. These proteins can induce moderate mitophagy or inhibit excessive mitophagy to protect against MIRI but may also trigger excessive mitophagy or insufficient mitophagy, thereby worsening the condition. Understanding the actions of these mitophagy mechanistic proteins may provide valuable insights into the pathological mechanisms underlying MIRI development. Based on the above background, this article reviews the mechanism of mitophagy involved in MIRI through Pink1/Parkin pathway and the receptor mediated pathway led by FUNDC1 and BNIP3, as well as the related drug treatment, aim to provide effective strategies for the prevention and treatment of MIRI.
Collapse
Affiliation(s)
- Jiaxin Deng
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Qian Liu
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Linxi Ye
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Shuo Wang
- State Key Laboratory of Modern Chinese Medicine, Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae for the Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zhenyan Song
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Mingyan Zhu
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Fangfang Qiang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Yulin Zhou
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Zhen Guo
- Hunan Provincial Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, Changsha Medical University, Changsha 410219, China; Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha 410219, China; Hunan Provincial Key Laboratory of the TCM Agricultural Biogenomics, Changsha Medical University, Changsha 410219, China.
| | - Wei Zhang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha 410208, China.
| | - Ting Chen
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha 410208, China; National Key Laboratory Cultivation Base of Chinese Medicinal Powder & Innovative Medicinal Jointly Established by Province and Ministry, Changsha 410208, China.
| |
Collapse
|
38
|
Wang T, Xing G, Fu T, Ma Y, Wang Q, Zhang S, Chang X, Tong Y. Role of mitochondria in doxorubicin-mediated cardiotoxicity: from molecular mechanisms to therapeutic strategies. Int J Med Sci 2024; 21:809-816. [PMID: 38617011 PMCID: PMC11008476 DOI: 10.7150/ijms.94485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 02/27/2024] [Indexed: 04/16/2024] Open
Abstract
This comprehensive review delves into the pivotal role of mitochondria in doxorubicin-induced cardiotoxicity, a significant complication limiting the clinical use of this potent anthracycline chemotherapeutic agent. Doxorubicin, while effective against various malignancies, is associated with dose-dependent cardiotoxicity, potentially leading to irreversible cardiac damage. The review meticulously dissects the molecular mechanisms underpinning this cardiotoxicity, particularly focusing on mitochondrial dysfunction, a central player in this adverse effect. Central to the discussion is the concept of mitochondrial quality control (MQC), including mitochondrial dynamics (fusion/fission balance) and mitophagy. The review presents evidence linking aberrations in these processes to cardiotoxicity in doxorubicin-treated patients. It elucidates how doxorubicin disrupts mitochondrial dynamics, leading to an imbalance between mitochondrial fission and fusion, and impairs mitophagy, culminating in the accumulation of dysfunctional mitochondria and subsequent cardiac cell damage. Furthermore, the review explores emerging therapeutic strategies targeting mitochondrial dysfunction. It highlights the potential of modulating mitochondrial dynamics and enhancing mitophagy to mitigate doxorubicin-induced cardiac damage. These strategies include pharmacological interventions with mitochondrial fission inhibitors, fusion promoters, and agents that modulate mitophagy. The review underscores the promising results from preclinical studies while advocating for more extensive clinical trials to validate these approaches in human patients. In conclusion, this review offers valuable insights into the intricate relationship between mitochondrial dysfunction and doxorubicin-mediated cardiotoxicity. It underscores the need for continued research into targeted mitochondrial therapies as a means to improve the cardiac safety profile of doxorubicin, thereby enhancing the overall treatment outcomes for cancer patients.
Collapse
Affiliation(s)
- Tianen Wang
- First Afliated Hospital, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Guoli Xing
- First Afliated Hospital, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Tong Fu
- Brandeis University, Waltham, MA 02453, USA
| | - Yanchun Ma
- Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Qi Wang
- First Afliated Hospital, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Shuxiang Zhang
- Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Xing Chang
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Ying Tong
- First Afliated Hospital, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| |
Collapse
|
39
|
Tang J, Tam E, Song E, Xu A, Sweeney G. Crosstalk between myocardial autophagy and sterile inflammation in the development of heart failure. AUTOPHAGY REPORTS 2024; 3:2320605. [PMID: 40395524 PMCID: PMC11864620 DOI: 10.1080/27694127.2024.2320605] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/02/2024] [Accepted: 02/13/2024] [Indexed: 05/22/2025]
Abstract
Heart failure, a leading driver of global mortality, remains a topic of intense contemporary research interest due to the prevailing unmet need in cardiometabolic therapeutics. Numerous mechanisms with the potential to influence the onset and development of heart failure remain incompletely understood. Firstly, myocardial autophagy, which involves lysosomal degradation of damaged cellular components, confers context-dependent beneficial and detrimental effects. Secondly, sterile inflammation may arise following cardiac stress and exacerbate the progression of heart failure. Inflammation changes in a temporal manner and its onset must be adequately resolved to limit progression of heart failure. Mitochondria are an important factor in contributing to sterile inflammation by releasing damage associated molecular patterns (DAMPs) including mitochondrial DNA (mtDNA). Accordingly, this is one reason why the selective autophagy of mitochondria to maintain optimal function is important in determining cardiac function. In this review, we examine the increasing evidence suggesting crosstalk between autophagy and sterile inflammation together with their role in the development of heart failure. In particular, this is exemplified in the preclinical models of ischaemia/reperfusion injury and pressure overload induced heart failure. We also highlight potential therapeutic approaches focusing on autophagy and addressing sterile inflammation, aiming to enhance outcomes in heart failure.
Collapse
Affiliation(s)
- Jialing Tang
- Department of Biology, York University, Toronto, ON, Canada
| | - Eddie Tam
- Department of Biology, York University, Toronto, ON, Canada
| | - Erfei Song
- Department of Medicine, School of Clinical Medicine, State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong SAR, China
- Department of Metabolic and Bariatric Surgery, the First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Aimin Xu
- Department of Medicine, School of Clinical Medicine, State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong SAR, China
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong SAR, China
| | - Gary Sweeney
- Department of Biology, York University, Toronto, ON, Canada
| |
Collapse
|
40
|
Tong Y, Li G, Shi X, Wang L, Zhou J, Chu M, Wang Z, Abd El-Aty AM, Dang J. Protection against myocardial ischemia/reperfusion injury in mice by 3-caffeoylquinic acid isomers isolated from Saxifraga tangutica. RSC Adv 2024; 14:6642-6655. [PMID: 38390505 PMCID: PMC10883144 DOI: 10.1039/d4ra00046c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 02/11/2024] [Indexed: 02/24/2024] Open
Abstract
The development of ischemic heart disease (IHD) involves a variety of pathophysiological responses, such as mitochondrial dysfunction. Many compounds with antioxidant activity isolated from natural products have been shown to have significant effects on the prevention and treatment of cardiovascular diseases. However, little is known about the palliative effects of 3-caffeoylquinic acid isomers isolated from Saxifraga tangutica (S. tangutica) on myocardial ischemia/reperfusion injury (MIRI). Three isomers of 3-caffeoylquinic acid were isolated from S. tangutica and identified as neochlorogenic acid (Fr2-4-1-1, 18.5 mg), chlorogenic acid (Fr2-5-1-1, 81.7 mg) and cryptochlorogenic acid (Fr2-5-2-1, 15.0 mg) using medium-pressure liquid chromatography-high-pressure two-dimensional liquid chromatography. An in vitro DPPH assay showed that cryptochlorogenic acid (CCGA), neochlorogenic acid (NCGA) and chlorogenic acid (CGA) (in order of activity from strongest to weakest) possessed superior antioxidant activity. Langendorff's in vitro model was utilized to explore the protective effects of 3 caffeoylquinic acid isomers against MIRI. The ex vivo MIRI assay demonstrated that CCGA significantly improved hemodynamic function (P < 0.05), hemodynamic function-related indices (LVDP, RPP, +dP/dt and -dP/dt), and cell morphology in I/R myocardium tissues. In addition, the results of western blot analysis showed that mitochondrial biogenesis was significantly increased in I/R myocardial tissues after treatment with CCGA. In contrast, the activities of CGA and NCGA were lower. This is the first demonstration of efficient preparative isolation of 3-caffeoylquinic acid isomers (CGA, NCGA and CCGA) from S. tangutica. CCGA may be a promising approach for the treatment of cardiac I/R injury, especially for the regulation of mitochondrial biogenesis after MIRI.
Collapse
Affiliation(s)
- Yingying Tong
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences Xining 810001 Qinghai China +86-971-6143282 +86-971-6143282
- Center for Mitochondria and Healthy Aging, College of Life Sciences, Yantai University Yantai 264005 China
| | - Gang Li
- Center for Mitochondria and Healthy Aging, College of Life Sciences, Yantai University Yantai 264005 China
| | - Xiaobing Shi
- Center for Mitochondria and Healthy Aging, College of Life Sciences, Yantai University Yantai 264005 China
| | - Lin Wang
- Center for Mitochondria and Healthy Aging, College of Life Sciences, Yantai University Yantai 264005 China
| | - Jia Zhou
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences Xining 810001 Qinghai China +86-971-6143282 +86-971-6143282
- Center for Mitochondria and Healthy Aging, College of Life Sciences, Yantai University Yantai 264005 China
| | - Ming Chu
- Center for Mitochondria and Healthy Aging, College of Life Sciences, Yantai University Yantai 264005 China
| | - Zhenhua Wang
- Center for Mitochondria and Healthy Aging, College of Life Sciences, Yantai University Yantai 264005 China
| | - A M Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University Giza 12211 Egypt
- Department of Medical Pharmacology, Faculty of Medicine, Atatürk University Erzurum 25240 Turkey
| | - Jun Dang
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences Xining 810001 Qinghai China +86-971-6143282 +86-971-6143282
| |
Collapse
|
41
|
Hosseinzadeh A, Pourhanifeh MH, Amiri S, Sheibani M, Irilouzadian R, Reiter RJ, Mehrzadi S. Therapeutic potential of melatonin in targeting molecular pathways of organ fibrosis. Pharmacol Rep 2024; 76:25-50. [PMID: 37995089 DOI: 10.1007/s43440-023-00554-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 10/29/2023] [Accepted: 10/31/2023] [Indexed: 11/24/2023]
Abstract
Fibrosis, the excessive deposition of fibrous connective tissue in an organ in response to injury, is a pathological condition affecting many individuals worldwide. Fibrosis causes the failure of tissue function and is largely irreversible as the disease progresses. Pharmacologic treatment options for organ fibrosis are limited, but studies suggest that antioxidants, particularly melatonin, can aid in preventing and controlling fibrotic damage to the organs. Melatonin, an indole nocturnally released from the pineal gland, is commonly used to regulate circadian and seasonal biological rhythms and is indicated for treating sleep disorders. While it is often effective in treating sleep disorders, melatonin's anti-inflammatory and antioxidant properties also make it a promising molecule for treating other disorders such as organ fibrosis. Melatonin ameliorates the necrotic and apoptotic changes that lead to fibrosis in various organs including the heart, liver, lung, and kidney. Moreover, melatonin reduces the infiltration of inflammatory cells during fibrosis development. This article outlines the protective effects of melatonin against fibrosis, including its safety and potential therapeutic effects. The goal of this article is to provide a summary of data accumulated to date and to encourage further experimentation with melatonin and increase its use as an anti-fibrotic agent in clinical settings.
Collapse
Affiliation(s)
- Azam Hosseinzadeh
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Pourhanifeh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Shiva Amiri
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Sheibani
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Rana Irilouzadian
- Clinical Research Development Unit of Shohada-e Tajrish Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX, USA
| | - Saeed Mehrzadi
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
42
|
Liu N, Ding Y, Zhou H, Chang X, Lou L. Dual-specificity phosphatase 1 interacts with prohibitin 2 to improve mitochondrial quality control against type-3 cardiorenal syndrome. Int J Med Sci 2024; 21:547-561. [PMID: 38322592 PMCID: PMC10845262 DOI: 10.7150/ijms.90484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/22/2023] [Indexed: 02/08/2024] Open
Abstract
Type-3 cardiorenal syndrome (CRS-3) is acute kidney injury followed by cardiac injury/dysfunction. Mitochondrial injury may impair myocardial function during CRS-3. Since dual-specificity phosphatase 1 (DUSP1) and prohibitin 2 (PHB2) both promote cardiac mitochondrial quality control, we assessed whether these proteins were dysregulated during CRS-3-related cardiac depression. We found that DUSP1 was downregulated in heart tissues from a mouse model of CRS-3. DUSP1 transgenic (DUSP1Tg) mice were protected from CRS-3-induced myocardial damage, as evidenced by their improved heart function and myocardial structure. CRS-3 induced the inflammatory response, oxidative stress and mitochondrial dysfunction in wild-type hearts, but not in DUSP1Tg hearts. DUSP1 overexpression normalized cardiac mitochondrial quality control during CRS-3 by suppressing mitochondrial fission, restoring mitochondrial fusion, re-activating mitophagy and augmenting mitochondrial biogenesis. We found that DUSP1 sustained cardiac mitochondrial quality control by binding directly to PHB2 and maintaining PHB2 phosphorylation, while CRS-3 disrupted this physiological interaction. Transgenic knock-in mice carrying the Phb2S91D variant were less susceptible to cardiac depression upon CRS-3, due to a reduced inflammatory response, suppressed oxidative stress and improved mitochondrial quality control in their heart tissues. Thus, CRS-3-induced myocardial dysfunction can be attributed to reduced DUSP1 expression and disrupted DUSP1/PHB2 binding, leading to defective cardiac mitochondrial quality control.
Collapse
Affiliation(s)
- Nanyang Liu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yanqiu Ding
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Hao Zhou
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Xing Chang
- Cardiovascular department, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Long Lou
- Kunming Municipal Hospital of Traditional Chinese Medicine, Yunnan, China
| |
Collapse
|
43
|
Marzoog BA. Autophagy Behavior in Endothelial Cell Regeneration. Curr Aging Sci 2024; 17:58-67. [PMID: 37861048 DOI: 10.2174/0118746098260689231002044435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/16/2023] [Accepted: 08/25/2023] [Indexed: 10/21/2023]
Abstract
Autophagy plays a crucial role in maintaining endothelial cell homeostasis through the turnover of intracellular components during stress conditions in a lysosomal-dependent manner. The regeneration strategy involves several aspects, including autophagy. Autophagy is a catabolic degenerative lysosomal-dependent degradation of intracellular components. Autophagy modifies cellular and subcellular endothelial cell functions, including mitochondria stress, lysosomal stress, and endoplasmic reticulum unfolded protein response. Activation of common signaling pathways of autophagy and regeneration and enhancement of intracellular endothelial cell metabolism serve as the bases for the induction of endothelial regeneration. Endothelial progenitor cells include induced pluripotent stem cells (iPSC), embryonic stem cells, and somatic cells, such as fibroblasts. Future strategies of endothelial cell regeneration involve the induction of autophagy to minimize the metabolic degeneration of the endothelial cells and optimize the regeneration outcomes.
Collapse
Affiliation(s)
- Basheer Abdullah Marzoog
- World-Class Research Center «Digital Biodesign and Personalized Healthcare», I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, 119991, Russia
| |
Collapse
|
44
|
Zuo W, Wang L, Tian R, Wang L, Liu Y, Qian H, Yang X, Liu Z. Dapagliflozin Alleviates Myocardial Ischaemia Reperfusion Injury by Activating Mitophagy via the AMPK-PINK1/Parkin Signalling Pathway. Curr Vasc Pharmacol 2024; 22:203-217. [PMID: 38141195 DOI: 10.2174/0115701611269801231211104905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/18/2023] [Accepted: 10/23/2023] [Indexed: 12/25/2023]
Abstract
INTRODUCTION Myocardial ischaemia reperfusion injury (MIRI) determines infarct size and long-term outcomes after acute myocardial infarction (AMI). Dapagliflozin, a sodium-glucose cotransporter 2 inhibitor, alleviates MIRI in animal models. METHOD We investigated the potential mechanisms underlying the cardioprotective effect of dapagliflozin against MIRI, focusing on mitochondrial injury and mitophagy. MIRI mouse and H9C2 cell models were established. RESULTS 2,3,5-Triphenyltetrazolium chloride (TTC) staining showed a significant alleviation of MIRI after pre-treatment of dapagliflozin compared to the model group (14.91 ± 1.76 vs. 40.47 ± 3.69%). Data from the pre-treatment dapagliflozin group showed a significant decrease in left ventricular ejection fraction (LVEF) (44.8 ± 2.7 vs. 28.5 ± 5.3%, P<0.01), left ventricular end-diastolic volume (LVEDV) (70.6 ± 9.5 vs. 93.5 ± 13.8 ul, P<0.05), and left ventricular end-systolic volume (LVESV) (39.0 ± 8.3 vs. 67.9 ± 13.7 ul, P<0.05) compared to the model group. Dapagliflozin also reduced the levels of reactive oxygen species (ROS) and fragmented mitochondrial DNA, reversed the decrease in mitochondrial membrane potential, and suppressed apoptosis. Further study showed that dapagliflozin could protect against mitochondrial injury by rapidly clearing damaged mitochondria via mitophagy in a phosphatase and tensin homologue (PTEN)-induced putative kinase 1 (PINK1)/parkindependent manner. Dapagliflozin regulated mitophagy in cardiomyocytes by suppressing the adenosine 5'monophosphate-activated protein kinase (AMPK)-PINK1/parkin signalling pathway, resulting in attenuated MIRI. CONCLUSION Dapagliflozin alleviated MIRI by activating mitophagy via the AMPK-PINK1/parkin signalling pathway.
Collapse
MESH Headings
- Animals
- Glucosides/pharmacology
- Mitophagy/drug effects
- Myocardial Reperfusion Injury/pathology
- Myocardial Reperfusion Injury/drug therapy
- Myocardial Reperfusion Injury/physiopathology
- Myocardial Reperfusion Injury/prevention & control
- Myocardial Reperfusion Injury/metabolism
- Signal Transduction/drug effects
- Protein Kinases/metabolism
- Benzhydryl Compounds/pharmacology
- Ubiquitin-Protein Ligases/metabolism
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/pathology
- Myocytes, Cardiac/enzymology
- Myocytes, Cardiac/metabolism
- AMP-Activated Protein Kinases/metabolism
- Disease Models, Animal
- Male
- Ventricular Function, Left/drug effects
- Cell Line
- Mice, Inbred C57BL
- Mitochondria, Heart/drug effects
- Mitochondria, Heart/pathology
- Mitochondria, Heart/metabolism
- Mitochondria, Heart/enzymology
- Myocardial Infarction/drug therapy
- Myocardial Infarction/pathology
- Myocardial Infarction/physiopathology
- Myocardial Infarction/metabolism
- Sodium-Glucose Transporter 2 Inhibitors/pharmacology
- Mice
- Rats
- Reactive Oxygen Species/metabolism
- Apoptosis/drug effects
- Stroke Volume/drug effects
Collapse
Affiliation(s)
- Wei Zuo
- Department of Pharmacy, Peking Union Medical College Hospital, Beijing, China
| | - Liang Wang
- Department of Cardiology, Peking Union Medical College Hospital, Beijing, China
| | - Ran Tian
- Department of Cardiology, Peking Union Medical College Hospital, Beijing, China
| | - Lun Wang
- Department of Cardiology, Peking Union Medical College Hospital, Beijing, China
| | - Yifan Liu
- Department of Cardiology, Peking Union Medical College Hospital, Beijing, China
| | - Hao Qian
- Department of Cardiology, Peking Union Medical College Hospital, Beijing, China
| | - Xinglin Yang
- Department of Cardiology, Peking Union Medical College Hospital, Beijing, China
| | - Zhenyu Liu
- Department of Cardiology, Peking Union Medical College Hospital, Beijing, China
| |
Collapse
|
45
|
Yu W, Wang L, Ren WY, Xu HX, Wu NN, Yu DH, Reiter RJ, Zha WL, Guo QD, Ren J. SGLT2 inhibitor empagliflozin alleviates cardiac remodeling and contractile anomalies in a FUNDC1-dependent manner in experimental Parkinson's disease. Acta Pharmacol Sin 2024; 45:87-97. [PMID: 37679644 PMCID: PMC10770167 DOI: 10.1038/s41401-023-01144-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 07/25/2023] [Indexed: 09/09/2023]
Abstract
Recent evidence shows a close link between Parkinson's disease (PD) and cardiac dysfunction with limited treatment options. Mitophagy plays a crucial role in the control of mitochondrial quantity, metabolic reprogramming and cell differentiation. Mutation of the mitophagy protein Parkin is directly associated with the onset of PD. Parkin-independent receptor-mediated mitophagy is also documented such as BCL2/adenovirus E1B 19 kDa protein-interacting protein 3 (BNIP3) and FUN14 domain containing 1 (FUNDC1) for receptor-mediated mitophagy. In this study we investigated cardiac function and mitophagy including FUNDC1 in PD patients and mouse models, and evaluated the therapeutic potential of a SGLT2 inhibitor empagliflozin. MPTP-induced PD model was established. PD patients and MPTP mice not only displayed pronounced motor defects, but also low plasma FUNDC1 levels, as well as cardiac ultrastructural and geometric anomalies (cardiac atrophy, interstitial fibrosis), functional anomalies (reduced E/A ratio, fractional shortening, ejection fraction, cardiomyocyte contraction) and mitochondrial injury (ultrastructural damage, UCP2, PGC1α, elevated mitochondrial Ca2+ uptake proteins MCU and VDAC1, and mitochondrial apoptotic protein calpain), dampened autophagy, FUNDC1 mitophagy and apoptosis. By Gene set enrichment analysis (GSEA), we found overtly altered glucose transmembrane transport in the midbrains of MPTP-treated mice. Intriguingly, administration of SGLT2 inhibitor empagliflozin (10 mg/kg, i.p., twice per week for 2 weeks) in MPTP-treated mice significantly ameliorated myocardial anomalies (with exception of VDAC1), but did not reconcile the motor defects or plasma FUNDC1. FUNDC1 global knockout (FUNDC1-/- mice) did not elicit any phenotype on cardiac geometry or function in the absence or presence of MPTP insult, but it nullified empagliflozin-caused cardioprotection against MPTP-induced cardiac anomalies including remodeling (atrophy and fibrosis), contractile dysfunction, Ca2+ homeostasis, mitochondrial (including MCU, mitochondrial Ca2+ overload, calpain, PARP1) and apoptotic anomalies. In neonatal and adult cardiomyocytes, treatment with PD neurotoxin preformed fibrils of α-synuclein (PFF) caused cytochrome c release and cardiomyocyte mechanical defects. These effects were mitigated by empagliflozin (10 μM) or MCU inhibitor Ru360 (10 μM). MCU activator kaempferol (10 μM) or calpain activator dibucaine (500 μM) nullified the empagliflozin-induced beneficial effects. These results suggest that empagliflozin protects against PD-induced cardiac anomalies, likely through FUNDC1-mediated regulation of mitochondrial integrity.
Collapse
Affiliation(s)
- Wei Yu
- Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, China
- Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, Xianning, 437100, China
| | - Lin Wang
- Department of Geriatrics, Xijing Hospital, the Air Force Military Medical University, Xi'an, 710032, China
| | - Wei-Ying Ren
- Department of Geriatrics, Zhongshan Hospital Fudan University, Shanghai, 200032, China
| | - Hai-Xia Xu
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
- Department of Cardiology, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Ne N Wu
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
| | - Dong-Hui Yu
- Xianning Central Hospital, Xianning, 437100, China
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX, USA
| | - Wen-Liang Zha
- Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, China.
- Second Affiliated Hospital, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, China.
| | - Qing-Dong Guo
- Department of Neurosurgery, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China.
| | - Jun Ren
- Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, China.
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China.
| |
Collapse
|
46
|
Sun J, Liu C, Liu YY, Guo ZA. Mitophagy in renal interstitial fibrosis. Int Urol Nephrol 2024; 56:167-179. [PMID: 37450241 DOI: 10.1007/s11255-023-03686-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/06/2023] [Indexed: 07/18/2023]
Abstract
As a high energy consumption organ, kidney relies on a large number of mitochondria to ensure normal physiological activities. Under specific stimulation, mitophagy and mitochondrial dynamics (fission, fusion) cooperatively regulate mitochondrial quality and participate in many life activities such as energy metabolism, inflammatory response, oxidative stress, cell senescence and death. Mitophagy plays a key role in the progression of acute kidney injury and chronic kidney disease. The early induction of oxidative stress in renal parenchyma, the activation of pro-inflammatory cytokines and TGF-β signal pathway are closely related to renal interstitial fibrosis. Macrophage reprogramming is also considered to be an important participant in the progression of kidney fibrosis. This review summarizes the molecular mechanism of mitochondrial autophagy and its relationship with the pathway of promoting fibrosis, and discusses the possibility of restoring mitophagy balance as a pharmacological target for the treatment of renal interstitial fibrosis, so as to provide new ideas for more efficient anti-fibrosis and delay the progress of chronic kidney disease.
Collapse
Affiliation(s)
- Jun Sun
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chong Liu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ying-Ying Liu
- Department of Nephrology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhao-An Guo
- Department of Nephrology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.
| |
Collapse
|
47
|
Ma L, Chang X, Gao J, Zhang Y, Chen Y, Zhou H, Zhou N, Du N, Li J, Bi J, Chen Z, Chen X, He Q. METTL3 boosts mitochondrial fission and induces cardiac fibrosis after ischemia/reperfusion injury. Int J Biol Sci 2024; 20:433-445. [PMID: 38169612 PMCID: PMC10758110 DOI: 10.7150/ijbs.87535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 10/30/2023] [Indexed: 01/05/2024] Open
Abstract
METTL3, an RNA methyltransferase enzyme, exerts therapeutic effects on various cardiovascular diseases. Myocardial ischemia-reperfusion injury (MIRI) and subsequently cardiac fibrosis is linked to acute cardiomyocyte death or dysfunction induced by mitochondrial damage, particularly mitochondrial fission. Our research aims to elucidate the potential mechanisms underlying the therapeutic actions of METTL3 in MIRI, with focus on mitochondrial fission. When compared with Mettl3flox mice subjected to MIRI, Mettl3 cardiomyocyte knockout (Mettl3Cko) mice have reduced infarct size, decreased serum levels of myocardial injury-related factors, limited cardiac fibrosis, and preserved myocardial ultrastructure and contractile/relaxation capacity. The cardioprotective actions of Mettl3 knockout were associated with reduced inflammatory responses, decreased myocardial neutrophil infiltration, and suppression of cardiomyocyte death. Through signaling pathway validation experiments and assays in cultured HL-1 cardiomyocytes exposed to hypoxia/reoxygenation, we confirmed that Mettl3 deficiency interfere with DNA-PKcs phosphorylation, thereby blocking the downstream activation of Fis1 and preventing pathological mitochondrial fission. In conclusion, this study confirms that inhibition of METTL3 can alleviate myocardial cardiac fibrosis inflammation and prevent cardiomyocyte death under reperfusion injury conditions by disrupting DNA-PKcs/Fis1-dependent mitochondrial fission, ultimately improving cardiac function. These findings suggest new approaches for clinical intervention in patients with MIRI.
Collapse
Affiliation(s)
- Li Ma
- Heart Center, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Xing Chang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Jing Gao
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Ying Zhang
- Senior Department of Cardiology, The Sixth Medical Center of People's Liberation Army General Hospital, Beijing 100048, China
| | - Ye Chen
- Senior Department of Cardiology, The Sixth Medical Center of People's Liberation Army General Hospital, Beijing 100048, China
| | - Hao Zhou
- Senior Department of Cardiology, The Sixth Medical Center of People's Liberation Army General Hospital, Beijing 100048, China
| | - Na Zhou
- Heart Center, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Na Du
- Heart Center, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Jiamin Li
- Heart Center, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Jiachen Bi
- Heart Center, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Ziyue Chen
- Heart Center, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Xinxin Chen
- Heart Center, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Qingyong He
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| |
Collapse
|
48
|
Zhang X, Zhou H, Chang X. Involvement of mitochondrial dynamics and mitophagy in diabetic endothelial dysfunction and cardiac microvascular injury. Arch Toxicol 2023; 97:3023-3035. [PMID: 37707623 DOI: 10.1007/s00204-023-03599-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 08/30/2023] [Indexed: 09/15/2023]
Abstract
Endothelial cells (ECs), found in the innermost layer of blood vessels, are crucial for maintaining the structure and function of coronary microcirculation. Dysregulated coronary microcirculation poses a fundamental challenge in diabetes-related myocardial microvascular injury, impacting myocardial blood perfusion, thrombogenesis, and inflammation. Extensive research aims to understand the mechanistic connection and functional relationship between cardiac EC dysfunction and the development, diagnosis, and treatment of diabetes-related myocardial microvascular injury. Despite the low mitochondrial content in ECs, mitochondria act as sensors of environmental and cellular stress, influencing EC viability, structure, and function. Mitochondrial dynamics and mitophagy play a vital role in orchestrating mitochondrial responses to various stressors by regulating morphology, localization, and degradation. Impaired mitochondrial dynamics or reduced mitophagy is associated with EC dysfunction, serving as a potential molecular basis and promising therapeutic target for diabetes-related myocardial microvascular injury. This review introduces newly recognized mechanisms of damaged coronary microvasculature in diabetes-related microvascular injury and provides updated insights into the molecular aspects of mitochondrial dynamics and mitophagy. Additionally, novel targeted therapeutic approaches against diabetes-related microvascular injury or endothelial dysfunction, focusing on mitochondrial fission and mitophagy in endothelial cells, are summarized.
Collapse
Affiliation(s)
- Xiao Zhang
- Dermatology, Liaocheng Hospital of Traditional Chinese Medicine, Liaocheng, 252000, China
| | - Hao Zhou
- Department of Cardiology, The Sixth Medical Center of People's Liberation Army General Hospital, Beijing, 100048, China.
| | - Xing Chang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, 5 Beixiagge, Xicheng District, Beijing, 100053, China.
| |
Collapse
|
49
|
Corradi F, Masini G, Bucciarelli T, De Caterina R. Iron deficiency in myocardial ischaemia: molecular mechanisms and therapeutic perspectives. Cardiovasc Res 2023; 119:2405-2420. [PMID: 37722377 DOI: 10.1093/cvr/cvad146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 05/14/2023] [Accepted: 07/10/2023] [Indexed: 09/20/2023] Open
Abstract
Systemic iron deficiency (SID), even in the absence of anaemia, worsens the prognosis and increases mortality in heart failure (HF). Recent clinical-epidemiological studies, however, have shown that a myocardial iron deficiency (MID) is frequently present in cases of severe HF, even in the absence of SID and without anaemia. In addition, experimental studies have shown a poor correlation between the state of systemic and myocardial iron. MID in animal models leads to severe mitochondrial dysfunction, alterations of mitophagy, and mitochondrial biogenesis, with profound alterations in cardiac mechanics and the occurrence of a fatal cardiomyopathy, all effects prevented by intravenous administration of iron. This shifts the focus to the myocardial state of iron, in the absence of anaemia, as an important factor in prognostic worsening and mortality in HF. There is now epidemiological evidence that SID worsens prognosis and mortality also in patients with acute and chronic coronary heart disease and experimental evidence that MID aggravates acute myocardial ischaemia as well as post-ischaemic remodelling. Intravenous administration of ferric carboxymaltose (FCM) or ferric dextrane improves post-ischaemic adverse remodelling. We here review such evidence, propose that MID worsens ischaemia/reperfusion injury, and discuss possible molecular mechanisms, such as chronic hyperactivation of HIF1-α, exacerbation of cytosolic and mitochondrial calcium overload, amplified increase of mitochondrial [NADH]/[NAD+] ratio, and depletion of energy status and NAD+ content with inhibition of sirtuin 1-3 activity. Such evidence now portrays iron metabolism as a core factor not only in HF but also in myocardial ischaemia.
Collapse
Affiliation(s)
- Francesco Corradi
- Department of Medicine and Aging Sciences, "G. D'Annunzio" University of Chieti-Pescara, Via dei Vestini, 66100, Chieti, Italy
| | - Gabriele Masini
- Chair and Postgraduate School of Cardiology, University of Pisa, Via Savi 10, 56126, Pisa, Italy
| | - Tonino Bucciarelli
- Department of Medicine and Aging Sciences, "G. D'Annunzio" University of Chieti-Pescara, Via dei Vestini, 66100, Chieti, Italy
| | - Raffaele De Caterina
- Chair and Postgraduate School of Cardiology, University of Pisa, Via Savi 10, 56126, Pisa, Italy
- Fondazione VillaSerena per la Ricerca, Viale L. Petruzzi 42, 65013, Città Sant'Angelo, Pescara, Italy
| |
Collapse
|
50
|
Wang X, Ling G, Wei Y, Li W, Zhang Y, Tan N, Li W, Li H, Qiu Q, Wang W, Wang Y. Activation of ULK1 to trigger FUNDC1-mediated mitophagy in heart failure: Effect of Ginsenoside Rg3 intervention. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 120:155042. [PMID: 37659296 DOI: 10.1016/j.phymed.2023.155042] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/01/2023] [Accepted: 08/18/2023] [Indexed: 09/04/2023]
Abstract
BACKGROUND Although the development of therapies for heart failure (HF) continues apace, clinical outcomes are often far from ideal. Unc51-like-kinase 1 (ULK1)-mediated mitophagy prevents pathological cardiac remodeling and heart failure (HF). Molecularly ULK1-targeted agent to enhance mitophagy is scanty. HYPOTHESIS/PURPOSE This study aimed to investigate whether Ginsenoside Rg3 (Rg3) can activate ULK1 to trigger FUNDC1-mediated mitophagy for protecting heart failure. METHODS Molecular docking and surface plasmon resonance were used to detect the ULK1 binding behavior of Rg3. Established HF model in rats and transcriptome sequencing were used to evaluate the therapeutic effect and regulatory mechanism of Rg3. Loss-of-function approaches in vivo and in vitro were performed to determine the role of ULK1 in Rg3-elicited myocardial protection against HF. FUNDC1 recombinant plasmid of site mutation was applied to elucidate more in-depth mechanisms. RESULTS Structurally, a good binding mode was unveiled between ULK1 and Rg3. In vivo, Rg3 improved cardiac dysfunction, adverse remodeling, and mitochondrial damage in HF rats. Furthermore, Rg3 promoted Ulk1-triggered mitophagy both in vivo and in vitro, manifested by the impetus of downstream Fundc1-Lc3 interaction. Of note, the protective effects conferred by Rg3 against mitophagy defects, pathological remodeling, and cardiac dysfunction were compromised by Ulk1 gene silencing both in vivo and in vitro. Mechanistically, Rg3 activated mitophagy by inducing ULK1-mediated phosphorylation of FUNDC1 at the Ser17 site, not the Ser13 site. CONCLUSION Together these observations demonstrated that Rg3 acts as a ULK1 activator for the precise treatment of HF, which binds to ULK1 to activate FUNDC1-mediated mitophagy.
Collapse
Affiliation(s)
- Xiaoping Wang
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; Department of Pathophysiology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Guanjing Ling
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yan Wei
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Weili Li
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yawen Zhang
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Nannan Tan
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Wei Li
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Haijing Li
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Qi Qiu
- Department of Pharmacy, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China.
| | - Wei Wang
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Beijing Key Laboratory of TCM Syndrome and Formula, Beijing 100029, China; Key Laboratory of Beijing University of Chinese Medicine, Ministry of Education, Beijing 100029, China
| | - Yong Wang
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; Beijing Key Laboratory of TCM Syndrome and Formula, Beijing 100029, China; Key Laboratory of Beijing University of Chinese Medicine, Ministry of Education, Beijing 100029, China.
| |
Collapse
|