1
|
Thakur MR, Tupe RS. l-Arginine: A multifaceted regulator of diabetic cardiomyopathy. Biochem Biophys Res Commun 2025; 761:151720. [PMID: 40186920 DOI: 10.1016/j.bbrc.2025.151720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/25/2025] [Accepted: 03/27/2025] [Indexed: 04/07/2025]
Abstract
In diabetes mellitus, dysregulated glucose and lipid metabolism lead to diabetic cardiomyopathy (DCM) by imparting pathological myocardial remodeling and cellular injury. Accelerated glycation, oxidative stress, and activated inflammatory pathways culminate in cardiac fibrosis and hypertrophy in DCM. The regulatory effects of l-Arginine (L-Arg) have been elucidated in the pathological changes of DCM, including myocardial fibrosis, hypertrophy, and apoptosis, by inhibiting glycation and oxidative stress-induced inflammation. Disturbed L-Arg metabolism and decreased intracellular L-Arg pool are correlated with the progression of DCM; therefore, L-Arg supplementation has been prescribed for various cardiovascular dysfunctions. This review expands the therapeutic potential of L-Arg supplementation in DCM by elucidating its molecular mechanism of action and exploring potential clinical outcomes.
Collapse
Affiliation(s)
- Muskan R Thakur
- Symbiosis School of Biological Sciences (SSBS), Symbiosis International (Deemed University) (SIU), Lavale, Pune, 412115, Maharashtra, India
| | - Rashmi S Tupe
- Symbiosis School of Biological Sciences (SSBS), Symbiosis International (Deemed University) (SIU), Lavale, Pune, 412115, Maharashtra, India.
| |
Collapse
|
2
|
Li C, Li S, Zhang G, Li Q, Song W, Wang X, Cook JA, van der Stoel M, Wright BW, Altamirano F, Niewold EL, Han J, Kimble G, Zhang P, Luo X, Urra H, May HI, Ferdous A, Sun XN, Deng Y, Ikonen E, Hetz C, Kaufman RJ, Zhang K, Gillette TG, Scherer PE, Hill JA, Chen J, Wang ZV. IRE1α Mediates the Hypertrophic Growth of Cardiomyocytes Through Facilitating the Formation of Initiation Complex to Promote the Translation of TOP-Motif Transcripts. Circulation 2024; 150:1010-1029. [PMID: 38836349 PMCID: PMC11427172 DOI: 10.1161/circulationaha.123.067606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 05/14/2024] [Indexed: 06/06/2024]
Abstract
BACKGROUND Cardiomyocyte growth is coupled with active protein synthesis, which is one of the basic biological processes in living cells. However, it is unclear whether the unfolded protein response transducers and effectors directly take part in the control of protein synthesis. The connection between critical functions of the unfolded protein response in cellular physiology and requirements of multiple processes for cell growth prompted us to investigate the role of the unfolded protein response in cell growth and underlying molecular mechanisms. METHODS Cardiomyocyte-specific inositol-requiring enzyme 1α (IRE1α) knockout and overexpression mouse models were generated to explore its function in vivo. Neonatal rat ventricular myocytes were isolated and cultured to evaluate the role of IRE1α in cardiomyocyte growth in vitro. Mass spectrometry was conducted to identify novel interacting proteins of IRE1α. Ribosome sequencing and polysome profiling were performed to determine the molecular basis for the function of IRE1α in translational control. RESULTS We show that IRE1α is required for cell growth in neonatal rat ventricular myocytes under prohypertrophy treatment and in HEK293 cells in response to serum stimulation. At the molecular level, IRE1α directly interacts with eIF4G and eIF3, 2 critical components of the translation initiation complex. We demonstrate that IRE1α facilitates the formation of the translation initiation complex around the endoplasmic reticulum and preferentially initiates the translation of transcripts with 5' terminal oligopyrimidine motifs. We then reveal that IRE1α plays an important role in determining the selectivity and translation of these transcripts. We next show that IRE1α stimulates the translation of epidermal growth factor receptor through an unannotated terminal oligopyrimidine motif in its 5' untranslated region. We further demonstrate a physiological role of IRE1α-governed protein translation by showing that IRE1α is essential for cardiomyocyte growth and cardiac functional maintenance under hemodynamic stress in vivo. CONCLUSIONS These studies suggest a noncanonical, essential role of IRE1α in orchestrating protein synthesis, which may have important implications in cardiac hypertrophy in response to pressure overload and general cell growth under other physiological and pathological conditions.
Collapse
Affiliation(s)
- Chao Li
- Division of Cardiology, Department of Internal Medicine, the University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Touchstone Diabetes Center, Department of Internal Medicine, the University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Shiqian Li
- Department of Anatomy and Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki 00290, Finland
- Minerva Foundation Institute for Medical Research, Helsinki 00290, Finland
| | - Guangyu Zhang
- Division of Cardiology, Department of Internal Medicine, the University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Qinfeng Li
- Division of Cardiology, Department of Internal Medicine, the University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Weidan Song
- Division of Cardiology, Department of Internal Medicine, the University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xiaoding Wang
- Division of Cardiology, Department of Internal Medicine, the University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jane A. Cook
- Division of Cardiology, Department of Internal Medicine, the University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Touchstone Diabetes Center, Department of Internal Medicine, the University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Miesje van der Stoel
- Department of Anatomy and Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki 00290, Finland
- Minerva Foundation Institute for Medical Research, Helsinki 00290, Finland
| | - Bradley W. Wright
- Laboratory of Functional Genomics and Translational Control, Cecil H. and Ida Green Center for Reproductive Biology Sciences, the University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Pharmacology, the University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Harold C. Simmons Comprehensive Cancer Center, the University of Texas Southwestern Medical Center, TX 75390, USA
| | - Francisco Altamirano
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Erica L. Niewold
- Division of Cardiology, Department of Internal Medicine, the University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jungsoo Han
- Department of Molecular Biology, the University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Garrett Kimble
- Department of Molecular Biology, the University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Pengfei Zhang
- Department of Diabetes and Cancer Metabolism, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Xiang Luo
- Division of Cardiology, Department of Internal Medicine, the University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Hery Urra
- Facultad de Odontología y Ciencias de la Rehabilitación, Universidad San Sebastián, Bellavista, Santiago, Chile
| | - Herman I. May
- Division of Cardiology, Department of Internal Medicine, the University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Anwarul Ferdous
- Division of Cardiology, Department of Internal Medicine, the University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xue-Nan Sun
- Touchstone Diabetes Center, Department of Internal Medicine, the University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yingfeng Deng
- Department of Diabetes and Cancer Metabolism, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Elina Ikonen
- Department of Anatomy and Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki 00290, Finland
- Minerva Foundation Institute for Medical Research, Helsinki 00290, Finland
| | - Claudio Hetz
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), University of Chile, Santiago 8380453, Chile
| | - Randal J. Kaufman
- Degenerative Diseases Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Kezhong Zhang
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA
| | - Thomas G. Gillette
- Division of Cardiology, Department of Internal Medicine, the University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Philipp E. Scherer
- Touchstone Diabetes Center, Department of Internal Medicine, the University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Joseph A. Hill
- Division of Cardiology, Department of Internal Medicine, the University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Molecular Biology, the University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jin Chen
- Laboratory of Functional Genomics and Translational Control, Cecil H. and Ida Green Center for Reproductive Biology Sciences, the University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Pharmacology, the University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Harold C. Simmons Comprehensive Cancer Center, the University of Texas Southwestern Medical Center, TX 75390, USA
| | - Zhao V. Wang
- Division of Cardiology, Department of Internal Medicine, the University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Diabetes and Cancer Metabolism, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| |
Collapse
|
3
|
Pei P, Guo W, Qi M, Jiang J, Feng S, Luo SZ, Chen L. Identification of low-abundance proteins in the royal jelly using the Osborne classification method. J Proteomics 2024; 306:105266. [PMID: 39053808 DOI: 10.1016/j.jprot.2024.105266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/09/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
Royal jelly (RJ) is recognized as healthy food, with a high content of proteins. These proteins play important roles in honeybee caste and human health, but the proteomic analysis of low-abundance proteins in RJ has long been a challenge. Herein, we used the Osborne classification method to separate the RJ proteins of Xinjiang black bees into various fractions. The globulin, ethanol-soluble protein, and glutelin fractions were further separated by SDS-PAGE, and proteomic analysis was carried out by LC-MS/MS and searched against the UniProt database. A total of 23 secretory proteins were identified by proteomic analysis, in which 7 proteins were identified for the first time in RJ. The Osborne classification method combining one-dimensional gel electrophoresis-based proteomic analysis allows the identification of low-abundance proteins in the RJ and greatly extends the knowledge about the components and functions of RJ proteins. The raw data are available via ProteomeXchange with the identifier PXD023315. SIGNIFICANCE: This study makes an important contribution to the research of the components and functions of low-abundance royal jelly proteins for the following reasons.
Collapse
Affiliation(s)
- Pengfei Pei
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Wenxu Guo
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Mingxue Qi
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jianhui Jiang
- Engineering Laboratory of Chemical Resources Utilization in South Xinjiang of Xinjiang Production and Construction Corps, College of Life Sciences, Tarim University, Alar, Xinjiang 843300, China.
| | - Shan Feng
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Mass Spectrometry Core Facility, The Biomedical Research Core Facility, Center for Research Equipment and Facilities, Westlake University, Hangzhou, Zhejiang 310024, China
| | - Shi-Zhong Luo
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Long Chen
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
4
|
Zhang Y, Ji P, Zhang M, Tran NT, Li S. Large-scale lysine crotonylation analysis reveals the role of TRAF6-Ecsit complex in endoplasmic reticulum stress in mud crab (Scylla paramamosain). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 148:104898. [PMID: 37531975 DOI: 10.1016/j.dci.2023.104898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/26/2023] [Accepted: 07/30/2023] [Indexed: 08/04/2023]
Abstract
Lysine crotonylation (Kcr) is a newly discovered type of post-translational modification. Although Kcr has been reported in several species, its role in crustaceans remains largely unknown. In this study, Kcr in hemocytes of mud crab (Scylla paramamosain) was characterized using pan anti-crotonyllysine antibody enrichment and high-resolution liquid chromatogram-mass spectrometry analysis after SpTRAF6 or SpEcsit silencing. Altogether, 1,800 Kcr sites with six conserved motifs were identified from 512 proteins. Subcellular localization analysis showed that the identified Kcr proteins were mainly localized to the cytoplasm, nucleus, and mitochondria. The cellular components analysis showed that the 'chromosomal region' was enriched in the hemocytes of SpTRAF6-or SpEcsit-silenced mud crabs. The KEGG and PPI analyses showed that the identified Kcr proteins in the hemocytes SpTRAF6-or SpEcsit-silenced mud crabs were related to the 'protein processing in endoplasmic reticulum'; of which the marker of endoplasmic reticulum stress (Bip) was identified to be crotonylated. These datasets present the first comprehensive analysis of the crotonylome in mud crab hemocytes, providing invaluable insights into the regulatory functions of SpTRAF6 and SpEcsit in Kcr. Additionally, our findings shed light on the potential role of these proteins in activating marker proteins during endoplasmic reticulum stress in invertebrates.
Collapse
Affiliation(s)
- Yongsheng Zhang
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China; Marine Biology Institute, Shantou University, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Peina Ji
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China; Marine Biology Institute, Shantou University, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Ming Zhang
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China; Marine Biology Institute, Shantou University, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Ngoc Tuan Tran
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China; Marine Biology Institute, Shantou University, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Shengkang Li
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China; Marine Biology Institute, Shantou University, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China.
| |
Collapse
|
5
|
Chu H, Fan X, Zhang Z, Han L. miR-199a-5p inhibits aortic valve calcification by targeting ATF6 and GRP78 in valve interstitial cells. Open Med (Wars) 2023; 18:20230777. [PMID: 37693833 PMCID: PMC10487378 DOI: 10.1515/med-2023-0777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/25/2023] [Accepted: 07/31/2023] [Indexed: 09/12/2023] Open
Abstract
Calcific aortic valve disease (CAVD) is an important cause of disease burden among aging populations. Excessive active endoplasmic reticulum stress (ERS) was demonstrated to promote CAVD. The expression level of miR-199a-5p in patients with CAVD was reported to be downregulated. In this article, we aimed to investigate the function and mechanism of miR-199a-5p in CAVD. The expression level of miR-199a-5p and ERS markers was identified in calcific aortic valve samples and osteogenic induction by real-time quantitative polymerase chain reaction (RT-qPCR), immunohistochemistry, and western blotting (WB). Alizarin red staining, RT-qPCR, and WB were used for the verification of the function of miR-199a-5p. The dual luciferase reporter assay and rescue experiment were conducted to illuminate the mechanism of miR-199a-5p. In our study, the expression level of miR-199a-5p was significantly decreased in calcified aortic valves and valve interstitial cells' (VICs) osteogenic induction model, accompanying with the upregulation of ERS markers. Overexpression of miR-199a-5p suppressed the osteogenic differentiation of VICs, while downregulation of miR-199a-5p promoted this function. 78 kDa glucose-regulated protein (GRP78) and activating transcription factor 6 (ATF6), both of which were pivotal modulators in ERS, were potential targets of miR-199a-5p. miR-199a-5p directly targeted GRP78 and ATF6 to modulate osteoblastic differentiation of VICs. miR-199a-5p inhibits osteogenic differentiation of VICs by regulating ERS via targeting GRP78 and ATF6.
Collapse
Affiliation(s)
- Heng Chu
- Department of Thoracic Surgery, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, Shandong, 266000, China
| | - XingLi Fan
- Department of Cardiovascular Surgery, Changhai Hospital Affiliated to Naval Medical University, Shanghai200433, China
| | - Zhe Zhang
- Department of Thoracic Surgery, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), No. 1 Jiaozhou Road, Shibei District,, Qingdao, Shandong, 266000, China
| | - Lin Han
- Department of Cardiovascular Surgery, Changhai Hospital Affiliated to Naval Medical University, 168 Changhai Road, Yangpu District, Shanghai200433, China
| |
Collapse
|
6
|
Akinyemi AO, Simpson KE, Oyelere SF, Nur M, Ngule CM, Owoyemi BCD, Ayarick VA, Oyelami FF, Obaleye O, Esoe DP, Liu X, Li Z. Unveiling the dark side of glucose-regulated protein 78 (GRP78) in cancers and other human pathology: a systematic review. Mol Med 2023; 29:112. [PMID: 37605113 PMCID: PMC10464436 DOI: 10.1186/s10020-023-00706-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/26/2023] [Indexed: 08/23/2023] Open
Abstract
Glucose-Regulated Protein 78 (GRP78) is a chaperone protein that is predominantly expressed in the lumen of the endoplasmic reticulum. GRP78 plays a crucial role in protein folding by assisting in the assembly of misfolded proteins. Under cellular stress conditions, GRP78 can translocate to the cell surface (csGRP78) were it interacts with different ligands to initiate various intracellular pathways. The expression of csGRP78 has been associated with tumor initiation and progression of multiple cancer types. This review provides a comprehensive analysis of the existing evidence on the roles of GRP78 in various types of cancer and other human pathology. Additionally, the review discusses the current understanding of the mechanisms underlying GRP78's involvement in tumorigenesis and cancer advancement. Furthermore, we highlight recent innovative approaches employed in downregulating GRP78 expression in cancers as a potential therapeutic target.
Collapse
Affiliation(s)
| | | | | | - Maria Nur
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, USA
| | | | | | | | - Felix Femi Oyelami
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, USA
| | | | - Dave-Preston Esoe
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, USA
| | - Xiaoqi Liu
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, USA
- Markey Cancer Center, College of Medicine, University of Kentucky, Lexington, USA
| | - Zhiguo Li
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, USA.
| |
Collapse
|
7
|
Fan F, Liu F, Shen P, Tao L, Zhang H, Wu H. Salvianolic acid B, a new type I IRE1 kinase inhibitor, abrogates AngII-induced angiogenesis by interacting with IRE1 in its active conformation. Clin Exp Pharmacol Physiol 2023; 50:82-95. [PMID: 36153795 DOI: 10.1111/1440-1681.13726] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 09/07/2022] [Accepted: 09/14/2022] [Indexed: 12/13/2022]
Abstract
Angiotensin II (AngII)-mediated pathological angiogenesis is one of the important factors promoting the progression of atherosclerosis, tumour metastasis, and diabetic retinopathy. Here, we first demonstrate that salvianolic acid B (Sal B) attenuated AngII-induced angiogenesis by downregulating the IRE1/ASK1/JNK/p38MAPK signalling pathway and protected vascular endothelial cells from hypoxia-induced damage. These pharmacological consequences could be ascribed to the unique interactions between Sal B and the ATP-binding cavity of IREIα, leading to bi-directional roles of IRE1 kinase and endonuclease activity; this may possibly be one of the essential mechanisms of the bi-directional regulation of angiogenesis in different conditions. Moreover, our results indicated that IRE1 was a novel anti-angiogenesis target and type I IRE1 kinase inhibitor (e.g., Sal B, APY29) and might be a potentially eligible low-toxicity drug for treating AngII-mediated pathological angiogenesis.
Collapse
Affiliation(s)
- Fangtian Fan
- Anhui Engineering Technology Research Center of Biochemical Pharmaceuticals, School of Pharmacy Bengbu Medical College, Bengbu, China
| | - Fang Liu
- Anhui Engineering Technology Research Center of Biochemical Pharmaceuticals, School of Pharmacy Bengbu Medical College, Bengbu, China
| | - Peiliang Shen
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Li Tao
- School of Medicine, Yangzhou University, Yangzhou, China
| | - Hongjiang Zhang
- Department of Pharmacology, Nanjing University of Chinese Medicine Hanlin College, Taizhou, China
| | - Hongyan Wu
- Institute of Biomedical Technology, Jiangsu Vocational College of Medicine, Yancheng, China
| |
Collapse
|
8
|
Havranek T, Mihalj D, Bacova Z, Bakos J. Oxytocin action on components of endoplasmic reticulum in hippocampal neuronal cells. Neurosci Lett 2023; 792:136971. [PMID: 36414131 DOI: 10.1016/j.neulet.2022.136971] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/10/2022] [Accepted: 11/16/2022] [Indexed: 11/21/2022]
Abstract
Despite the known importance of the endoplasmic reticulum (ER) in protein synthesis and vesicular transport, it is not clear whether neuropeptide and neuromodulator oxytocin can directly affect components of the ER in neuronal cells. Therefore, in the present study, we hypothesize that incubation of hippocampal neuronal cells in a presence of oxytocin 1) plays a role in the regulation of the expression of selected ER chaperone components and molecules involved in unfolded protein response pathway 2) affects distribution of the intracellular fluorescence signal highly selective for the ER. We found that oxytocin (1 μM) after 60 min significantly decreased the gene expression of oxidoreductase Ero1β, chaperone glucose-regulated proteins (Grp) 78 and Grp94. A significant decrease in GRP78 protein levels in response to oxytocin treatment occurred after 30, 60 and 120 min. We also observed a time-dependent increase in calreticulin protein levels with a statistically significant increase observed after 360 min. We found that the dynamics of the ER network changes significantly within 2 h of incubation under the influence of oxytocin. In conclusion we have shown that ER chaperones, oxidoreductases and trafficking molecules in neuronal cells are changing in response to oxytocin treatment in a short-term scenario potentially relevant for growth of dendrites and axons.
Collapse
Affiliation(s)
- T Havranek
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia; Faculty of Medicine, Comenius University in Bratislava, Slovakia
| | - D Mihalj
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Z Bacova
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - J Bakos
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia; Faculty of Medicine, Comenius University in Bratislava, Slovakia.
| |
Collapse
|
9
|
Kawaguchi Y, Hagiwara D, Tsumura T, Miyata T, Kobayashi T, Sugiyama M, Onoue T, Yasuda Y, Iwama S, Suga H, Banno R, Grinevich V, Arima H. Knockdown of endoplasmic reticulum chaperone BiP leads to the death of parvocellular AVP/CRH neurons in mice. J Neuroendocrinol 2023; 35:e13223. [PMID: 36535753 DOI: 10.1111/jne.13223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 11/14/2022] [Accepted: 11/14/2022] [Indexed: 12/05/2022]
Abstract
Arginine vasopressin (AVP) is expressed in both magnocellular (magnAVP) and parvocellular AVP (parvAVP) neurons of the paraventricular nucleus, and AVP colocalizes with corticotropin-releasing hormone (CRH) only in the parvocellular neurons. The immunoglobulin heavy chain binding protein (BiP) is a major endoplasmic reticulum (ER) chaperone which regulates the unfolded protein response under ER stress. We previously demonstrated that knockdown of BiP in magnAVP neurons exacerbated ER stress, which resulted in the autophagy-associated cell death of magnAVP neurons. Using the same approach, in the present study we examined the role of BiP in mouse parvAVP/CRH neurons. Our data demonstrate that BiP is expressed in mouse parvAVP/CRH neurons under nonstress conditions and is upregulated in proportion to the increase in CRH expression after adrenalectomy. For BiP knockdown in parvAVP/CRH neurons, we utilized a viral approach in combination with shRNA interference. Knockdown of BiP expression induced ER stress in parvAVP/CRH neurons, as reflected by the expression of C/EBP homologous protein. Furthermore, BiP knockdown led to the loss of parvAVP/CRH neurons after 4 weeks. In summary, our results demonstrate that BiP plays a pivotal role in parvAVP/CRH neurons, which function as neuroendocrine cells producing a large number of secretory proteins.
Collapse
Affiliation(s)
- Yohei Kawaguchi
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Daisuke Hagiwara
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tetsuro Tsumura
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takashi Miyata
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tomoko Kobayashi
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Mariko Sugiyama
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takeshi Onoue
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshinori Yasuda
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shintaro Iwama
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hidetaka Suga
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Ryoichi Banno
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Research Center of Health, Physical Fitness and Sports, Nagoya University, Nagoya, Japan
| | - Valery Grinevich
- Department of Neuropeptide Research in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Hiroshi Arima
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
10
|
Yan Y, He M, Zhao L, Wu H, Zhao Y, Han L, Wei B, Ye D, Lv X, Wang Y, Yao W, Zhao H, Chen B, Jin Z, Wen J, Zhu Y, Yu T, Jin F, Wei M. A novel HIF-2α targeted inhibitor suppresses hypoxia-induced breast cancer stemness via SOD2-mtROS-PDI/GPR78-UPR ER axis. Cell Death Differ 2022; 29:1769-1789. [PMID: 35301432 PMCID: PMC9433403 DOI: 10.1038/s41418-022-00963-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/06/2022] [Accepted: 02/18/2022] [Indexed: 12/24/2022] Open
Abstract
Hypoxic tumor microenvironment (TME) plays critical roles in induction of cancer stem cell-like phenotype in breast cancer and contribute to chemoresistance. However, the mechanism underlying stemness reprogramming of breast cancer cells (BCs) by hypoxic TME remains largely unknown. In the present study, we illustrated that HIF-2α, but not HIF-1α, induces stemness in BCs under hypoxia through SOD2-mtROS-PDI/GRP78-UPRER pathway, linking mitochondrial metabolic state to endoplasmic reticulum (ER) response via mitochondrial reactive oxygen species (mtROS) level. HIF-2α activates endoplasmic reticulum unfolded protein response (UPRER) in drug-sensitive MCF7 and T47D cells to induce drug-resistant stem-like phenotype. Genetic depletion or pharmacological inhibition (YQ-0629) of HIF-2α abolished hypoxia-induced stem-like phenotype in vitro and in vivo. Mechanistically, HIF-2α activates transcription of superoxide dismutase 2 (SOD2) under hypoxia and thereby decreases mtROS level. With less mtROS transported to endoplasmic reticulum, the expression and activity of protein disulfide isomerase (PDI) is suppressed, allowing glucose-regulated protein 78 (GRP78) to dissociate from receptor proteins of UPRER and bind misfolded protein to activate UPRER, which eventually confer chemoresistance and stem-like properties to BCs. Moreover, the increase in mtROS and PDI levels caused by HIF-2α knockdown and the subsequent UPRER inhibition could be substantially rescued by mitoTEMPOL (a mtROS scavenger), 16F16 (a PDI inhibitor), or GRP78 overexpression. Overall, we reported the critical roles of HIF-2α-SOD2-mtROS-PDI/GRP78-UPRER axis in mediating hypoxia-induced stemness in BCs, highlighting the interaction between organelles and providing evidence for further development of targeted HIF-2α inhibitor as a promising therapeutic strategy for chemoresistant breast cancer.
Collapse
Affiliation(s)
- Yuanyuan Yan
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning Province, China.,Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation; Liaoning Cancer immune peptide drug Engineering Technology Research Center; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, Liaoning Province, China
| | - Miao He
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning Province, China.,Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation; Liaoning Cancer immune peptide drug Engineering Technology Research Center; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, Liaoning Province, China
| | - Lin Zhao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning Province, China.,Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation; Liaoning Cancer immune peptide drug Engineering Technology Research Center; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, Liaoning Province, China
| | - Huizhe Wu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning Province, China.,Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation; Liaoning Cancer immune peptide drug Engineering Technology Research Center; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, Liaoning Province, China
| | - Yanyun Zhao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning Province, China.,Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation; Liaoning Cancer immune peptide drug Engineering Technology Research Center; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, Liaoning Province, China
| | - Li Han
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning Province, China.,Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation; Liaoning Cancer immune peptide drug Engineering Technology Research Center; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, Liaoning Province, China
| | - Binbin Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning Province, China.,Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation; Liaoning Cancer immune peptide drug Engineering Technology Research Center; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, Liaoning Province, China
| | - Dongman Ye
- Department of Medical Imaging, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning Province, China
| | - Xuemei Lv
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning Province, China.,Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation; Liaoning Cancer immune peptide drug Engineering Technology Research Center; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, Liaoning Province, China
| | - Yan Wang
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning Province, China.,Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation; Liaoning Cancer immune peptide drug Engineering Technology Research Center; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, Liaoning Province, China
| | - Weifan Yao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning Province, China.,Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation; Liaoning Cancer immune peptide drug Engineering Technology Research Center; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, Liaoning Province, China
| | - Haishan Zhao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning Province, China.,Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation; Liaoning Cancer immune peptide drug Engineering Technology Research Center; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, Liaoning Province, China
| | - Bo Chen
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province, China
| | - Zining Jin
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province, China
| | - Jian Wen
- Department of Breast Surgery, The Fourth Affiliated Hospital of China Medical University, No.4 Chongshan East Road, Shenyang, Liaoning, China
| | - Yan Zhu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning Province, China.,Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation; Liaoning Cancer immune peptide drug Engineering Technology Research Center; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, Liaoning Province, China
| | - Tao Yu
- Department of Medical Imaging, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning Province, China.
| | - Feng Jin
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province, China.
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning Province, China. .,Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation; Liaoning Cancer immune peptide drug Engineering Technology Research Center; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, Liaoning Province, China. .,Liaoning Medical Diagnosis and Treatment Center, Shenyang, Liaoning Province, China.
| |
Collapse
|
11
|
Allu PKR, Kiranmayi M, Mukherjee SD, Chirasani VR, Garg R, Vishnuprabu D, Ravi S, Subramanian L, Sahu BS, Iyer DR, Maghajothi S, Sharma S, Ravi MS, Khullar M, Munirajan AK, Gayen JR, Senapati S, Mullasari AS, Mohan V, Radha V, Naga Prasad SV, Mahapatra NR. Functional Gly297Ser Variant of the Physiological Dysglycemic Peptide Pancreastatin Is a Novel Risk Factor for Cardiometabolic Disorders. Diabetes 2022; 71:538-553. [PMID: 34862200 DOI: 10.2337/db21-0289] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 11/24/2021] [Indexed: 11/13/2022]
Abstract
Pancreastatin (PST), a chromogranin A-derived potent physiological dysglycemic peptide, regulates glucose/insulin homeostasis. We have identified a nonsynonymous functional PST variant (p.Gly297Ser; rs9658664) that occurs in a large section of human populations. Association analysis of this single nucleotide polymorphism with cardiovascular/metabolic disease states in Indian populations (n = 4,300 subjects) displays elevated plasma glucose, glycosylated hemoglobin, diastolic blood pressure, and catecholamines in Gly/Ser subjects as compared with wild-type individuals (Gly/Gly). Consistently, the 297Ser allele confers an increased risk (∼1.3-1.6-fold) for type 2 diabetes/hypertension/coronary artery disease/metabolic syndrome. In corroboration, the variant peptide (PST-297S) displays gain-of-potency in several cellular events relevant for cardiometabolic disorders (e.g., increased expression of gluconeogenic genes, increased catecholamine secretion, and greater inhibition of insulin-stimulated glucose uptake) than the wild-type peptide. Computational docking analysis and molecular dynamics simulations show higher affinity binding of PST-297S peptide with glucose-regulated protein 78 (GRP78) and insulin receptor than the wild-type peptide, providing a mechanistic basis for the enhanced activity of the variant peptide. In vitro binding assays validate these in silico predictions of PST peptides binding to GRP78 and insulin receptor. In conclusion, the PST 297Ser allele influences cardiovascular/metabolic phenotypes and emerges as a novel risk factor for type 2 diabetes/hypertension/coronary artery disease in human populations.
Collapse
Affiliation(s)
- Prasanna K R Allu
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| | - Malapaka Kiranmayi
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| | - Sromona D Mukherjee
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Venkat R Chirasani
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| | - Richa Garg
- Pharmaceutics & Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Durairajpandian Vishnuprabu
- Department of Genetics, Dr. ALM Post Graduate Institute of Basic Medical Sciences, University of Madras, Chennai, India
| | - Sudesh Ravi
- Department of Genetics, Dr. ALM Post Graduate Institute of Basic Medical Sciences, University of Madras, Chennai, India
| | - Lakshmi Subramanian
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| | - Bhavani S Sahu
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| | - Dhanya R Iyer
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| | - Sakthisree Maghajothi
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| | - Saurabh Sharma
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Marimuthu S Ravi
- Department of Cardiology, Madras Medical College and Government General Hospital, Chennai, India
| | - Madhu Khullar
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Arasambattu K Munirajan
- Department of Genetics, Dr. ALM Post Graduate Institute of Basic Medical Sciences, University of Madras, Chennai, India
| | - Jiaur R Gayen
- Pharmaceutics & Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Sanjib Senapati
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| | - Ajit S Mullasari
- Institute of Cardiovascular Diseases, Madras Medical Mission, Chennai, India
| | - Viswanathan Mohan
- Department of Molecular Genetics, Madras Diabetes Research Foundation, Chennai, India
| | - Venkatesan Radha
- Department of Molecular Genetics, Madras Diabetes Research Foundation, Chennai, India
| | - Sathyamangala V Naga Prasad
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Nitish R Mahapatra
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| |
Collapse
|
12
|
Hsu Y, Huang K, Cheng K. Resuscitating the Field of Cardiac Regeneration: Seeking Answers from Basic Biology. Adv Biol (Weinh) 2021; 6:e2101133. [PMID: 34939372 DOI: 10.1002/adbi.202101133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 12/02/2021] [Indexed: 11/09/2022]
Abstract
Heart failure (HF) is one of the leading causes for hospital admissions worldwide. HF patients are classified based on the chronic changes in left ventricular ejection fraction (LVEF) as preserved (LVEF ≥ 50%), reduced (LVEF ≤ 40%), or mid-ranged (40% < LVEF < 50%) HFs. Treatments nowadays can prevent HFrEF progress, whereas only a few of the treatments have been proven to be effective in improving the survival of HFpEF. In this review, numerous mediators involved in the pathogenesis of HF are summarized. The regional upstream signaling and their diagnostic and therapeutic potential are also discussed. Additionally, the recent challenges and development in cardiac regenerative therapy that hold opportunities for future research and clinical translation are discussed.
Collapse
Affiliation(s)
- Yaching Hsu
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC, 27607, USA.,Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill & North Carolina State University, Raleigh, NC, 27607, USA
| | - Ke Huang
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC, 27607, USA.,Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill & North Carolina State University, Raleigh, NC, 27607, USA
| | - Ke Cheng
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC, 27607, USA.,Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill & North Carolina State University, Raleigh, NC, 27607, USA
| |
Collapse
|
13
|
Liu X, Wang Z, Wang X, Yan X, He Q, Liu S, Ye M, Li X, Yuan Z, Wu J, Yi J, Wen L, Li R. Involvement of endoplasmic reticulum stress-activated PERK-eIF2α-ATF4 signaling pathway in T-2 toxin-induced apoptosis of porcine renal epithelial cells. Toxicol Appl Pharmacol 2021; 432:115753. [PMID: 34637808 DOI: 10.1016/j.taap.2021.115753] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 09/28/2021] [Accepted: 10/05/2021] [Indexed: 12/13/2022]
Abstract
T-2 toxin is a highly toxic trichothecene that can induce toxic effects in a variety of organs and tissues, but the pathogenesis of its nephrotoxicity has not been elucidated. In this study, we assessed the involvement of protein kinase RNA-like ER kinase (PERK)-mediated endoplasmic reticulum (ER) stress and apoptosis in PK-15 cells cultured at different concentrations of T-2 toxin. Cell viability, antioxidant capacity, intracellular calcium (Ca2+) content, apoptotic rate, levels of ER stress, and apoptosis-related proteins were studied. T-2 toxin inhibited cell proliferation; increased the apoptosis rate; and was accompanied by increased cleaved caspase-3 expression, altered intracellular oxidative stress marker levels, and intracellular Ca2+ overloading. The ER stress inhibitor 4-phenylbutyrate (4-PBA) and PERK selective inhibitor GSK2606414 prevented the decrease of cell activity and apoptosis caused by T-2 toxin. The altered expression of glucose regulatory protein 78 (GRP78), C/EBP homologous protein (CHOP), and caspase-12 proved that ER stress was involved in cell injury triggered by T-2 toxin. T-2 toxin activated the phosphorylation of PERK and the alpha subunit of eukaryotic initiation factor 2 (eIF2α) and upregulated the activating transcription factor 4 (ATF4), thereby triggering ER stress via the GRP78/PERK/CHOP signaling pathway. This study provides a new perspective for understanding the nephrotoxicity of T-2 toxin.
Collapse
Affiliation(s)
- Xiangyan Liu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, PR China
| | - Ze Wang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, PR China
| | - Xianglin Wang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, PR China
| | - Xiaona Yan
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, PR China
| | - Qing He
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, PR China
| | - Sha Liu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, PR China
| | - Mengke Ye
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, PR China
| | - Xiaowen Li
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, PR China
| | - Zhihang Yuan
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, PR China; Hunan Engineering Research Center of Livestock and Poultry Health Care, Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha City, 410128, China; Hunan Co-innovation Center of Animal Production Safety, Changsha City 410128, China
| | - Jing Wu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, PR China; Hunan Engineering Research Center of Livestock and Poultry Health Care, Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha City, 410128, China; Hunan Co-innovation Center of Animal Production Safety, Changsha City 410128, China
| | - Jine Yi
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, PR China; Hunan Engineering Research Center of Livestock and Poultry Health Care, Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha City, 410128, China; Hunan Co-innovation Center of Animal Production Safety, Changsha City 410128, China
| | - Lixin Wen
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, PR China; Hunan Engineering Research Center of Livestock and Poultry Health Care, Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha City, 410128, China; Hunan Co-innovation Center of Animal Production Safety, Changsha City 410128, China
| | - Rongfang Li
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, PR China; Hunan Engineering Research Center of Livestock and Poultry Health Care, Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha City, 410128, China; Hunan Co-innovation Center of Animal Production Safety, Changsha City 410128, China.
| |
Collapse
|
14
|
Mutation in FBXO32 causes dilated cardiomyopathy through up-regulation of ER-stress mediated apoptosis. Commun Biol 2021; 4:884. [PMID: 34272480 PMCID: PMC8285540 DOI: 10.1038/s42003-021-02391-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 06/23/2021] [Indexed: 02/06/2023] Open
Abstract
Endoplasmic reticulum (ER) stress induction of cell death is implicated in cardiovascular diseases. Sustained activation of ER-stress induces the unfolded protein response (UPR) pathways, which in turn activate three major effector proteins. We previously reported a missense homozygous mutation in FBXO32 (MAFbx, Atrogin-1) causing advanced heart failure by impairing autophagy. In the present study, we performed transcriptional profiling and biochemical assays, which unexpectedly revealed a reduced activation of UPR effectors in patient mutant hearts, while a strong up-regulation of the CHOP transcription factor and of its target genes are observed. Expression of mutant FBXO32 in cells is sufficient to induce CHOP-associated apoptosis, to increase the ATF2 transcription factor and to impair ATF2 ubiquitination. ATF2 protein interacts with FBXO32 in the human heart and its expression is especially high in FBXO32 mutant hearts. These findings provide a new underlying mechanism for FBXO32-mediated cardiomyopathy, implicating abnormal activation of CHOP. These results suggest alternative non-canonical pathways of CHOP activation that could be considered to develop new therapeutic targets for the treatment of FBXO32-associated DCM. Al-Yacoub et al. investigate the consequences of FBXO32 mutation on dilated cardiomyopathy. ER stress, abnormal CHOP activation and CHOP-induced apoptosis with no UPR effector activation are found to underlie the FBXO32 mutation induced cardiomyopathy, suggesting an alternative pathway that can be considered to develop new therapeutic targets for its treatment.
Collapse
|
15
|
Chakafana G, Spracklen TF, Kamuli S, Zininga T, Shonhai A, Ntusi NAB, Sliwa K. Heat Shock Proteins: Potential Modulators and Candidate Biomarkers of Peripartum Cardiomyopathy. Front Cardiovasc Med 2021; 8:633013. [PMID: 34222357 PMCID: PMC8241919 DOI: 10.3389/fcvm.2021.633013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 05/06/2021] [Indexed: 12/31/2022] Open
Abstract
Peripartum cardiomyopathy (PPCM) is a potentially life-threatening condition in which heart failure and systolic dysfunction occur late in pregnancy or within months following delivery. To date, no reliable biomarkers or therapeutic interventions for the condition exist, thus necessitating an urgent need for identification of novel PPCM drug targets and candidate biomarkers. Leads for novel treatments and biomarkers are therefore being investigated worldwide. Pregnancy is generally accompanied by dramatic hemodynamic changes, including a reduced afterload and a 50% increase in cardiac output. These increased cardiac stresses during pregnancy potentially impair protein folding processes within the cardiac tissue. The accumulation of misfolded proteins results in increased toxicity and cardiac insults that trigger heart failure. Under stress conditions, molecular chaperones such as heat shock proteins (Hsps) play crucial roles in maintaining cellular proteostasis. Here, we critically assess the potential role of Hsps in PPCM. We further predict specific associations between the Hsp types Hsp70, Hsp90 and small Hsps with several proteins implicated in PPCM pathophysiology. Furthermore, we explore the possibility of select Hsps as novel candidate PPCM biomarkers and drug targets. A better understanding of how these Hsps modulate PPCM pathogenesis holds promise in improving treatment, prognosis and management of the condition, and possibly other forms of acute heart failure.
Collapse
Affiliation(s)
- Graham Chakafana
- Department of Medicine, Faculty of Health Sciences, Cape Heart Institute, University of Cape Town, Cape Town, South Africa.,Division of Cardiology, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Timothy F Spracklen
- Department of Medicine, Faculty of Health Sciences, Cape Heart Institute, University of Cape Town, Cape Town, South Africa.,Division of Cardiology, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Stephen Kamuli
- Department of Medicine, Faculty of Health Sciences, Cape Heart Institute, University of Cape Town, Cape Town, South Africa.,Division of Cardiology, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Tawanda Zininga
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa
| | - Addmore Shonhai
- Department of Biochemistry, University of Venda, Thohoyandou, South Africa
| | - Ntobeko A B Ntusi
- Department of Medicine, Faculty of Health Sciences, Cape Heart Institute, University of Cape Town, Cape Town, South Africa.,Division of Cardiology, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.,Cape Universities Body Imaging Centre, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Karen Sliwa
- Department of Medicine, Faculty of Health Sciences, Cape Heart Institute, University of Cape Town, Cape Town, South Africa.,Division of Cardiology, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
16
|
Ming T, Wu Y, Huan H, Jiang Q, Su C, Lu C, Zhou J, Li Y, Su X. Integrative proteomics and metabolomics profiling of the protective effects of Phascolosoma esculent ferritin on BMSCs in Cd(II) injury. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 212:111995. [PMID: 33529923 DOI: 10.1016/j.ecoenv.2021.111995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 01/05/2021] [Accepted: 01/25/2021] [Indexed: 06/12/2023]
Abstract
Ferritin is the major intracellular iron storage protein and is essential for iron homeostasis and detoxification. Cadmium affects cellular homeostasis and induces cell toxicity via sophisticated mechanisms. Here, we aimed to explore the mechanisms of cytoprotective effect of Phascolosoma esculenta ferritin (PeFer) on Cd(II)-induced bone marrow mesenchymal stem cell (BMSC) injury. Herein, the effects of different treated groups on apoptosis and cell cycle were assessed using flow cytometric analysis. We further investigated the alterations of the three groups using integrative 2-DE-based proteomics and 1H NMR-based metabolomics profiles. The results indicate that PeFer reduces BMSC apoptosis induced by Cd(II) and delays G0/G1 cell cycle progression. A total of 19 proteins and 70 metabolites were significantly different among BMSC samples of the three groups. Notably, multiomics analysis revealed that Cd(II) might perturb the ER stress-mediated apoptosis pathway and disrupt biological processes related to the TCA cycle, amino acid metabolism, purine and pyrimidine metabolism, thereby suppressing the cell growth rate and initiating apoptosis; however, the addition of PeFer might protect BMSCs against cell apoptosis to improve cell survival by enhancing energy metabolism. This study provides a better understanding of the underlying molecular mechanisms of the protective effect of PeFer in BMSCs against Cd(II) injury.
Collapse
Affiliation(s)
- Tinghong Ming
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China; School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315832, China
| | - Yan Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China; College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315832, China
| | - Hengshang Huan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China; College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315832, China
| | - Qinqin Jiang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China; College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315832, China
| | - Chang Su
- Zhejiang Collaborative Innovation Center for High Value Utilization of Byproducts from Ethylene Project, Ningbo Polytechnic College, Ningbo, Zhejiang 315800, China
| | - Chenyang Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China; School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315832, China
| | - Jun Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China; School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315832, China
| | - Ye Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China; School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315832, China
| | - Xiurong Su
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China; School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315832, China.
| |
Collapse
|
17
|
Zhang X, Hu C, Zhang N, Wei WY, Li LL, Wu HM, Ma ZG, Tang QZ. Matrine attenuates pathological cardiac fibrosis via RPS5/p38 in mice. Acta Pharmacol Sin 2021; 42:573-584. [PMID: 32694761 PMCID: PMC8115053 DOI: 10.1038/s41401-020-0473-8] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 07/04/2020] [Indexed: 02/08/2023]
Abstract
Pathological cardiac fibrosis is a common feature in multiple cardiovascular diseases that contributes to the occurrence of heart failure and life-threatening arrhythmias. Our previous study demonstrated that matrine could attenuate doxorubicin-induced oxidative stress and cardiomyocyte apoptosis. In this study, we investigated the effect of matrine on cardiac fibrosis. Mice received aortic banding (AB) operation or continuous injection of isoprenaline (ISO) to generate pathological cardiac fibrosis and then were exposed to matrine lavage (200 mg·kg-1·d-1) or an equal volume of vehicle as the control. We found that matrine lavage significantly attenuated AB or ISO-induced fibrotic remodeling and cardiac dysfunction. We also showed that matrine (200 μmol/L) significantly inhibited the proliferation, migration, collagen production, and phenotypic transdifferentiation of cardiac fibroblasts. Mechanistically, matrine suppressed p38 activation in vivo and in vitro, and overexpression of constitutively active p38 completely abolished the protective effects of matrine. We also demonstrated that ribosomal protein S5 (RPS5) upregulation was responsible for matrine-mediated inhibition on p38 and fibrogenesis. More importantly, matrine was capable of ameliorating preexisting cardiac fibrosis in mice. In conclusion, matrine treatment attenuates cardiac fibrosis by regulating RPS5/p38 signaling in mice, and it might be a promising therapeutic agent for treating pathological cardiac fibrosis.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, China
| | - Can Hu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, China
| | - Ning Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, China
| | - Wen-Ying Wei
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, China
| | - Ling-Li Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, China
| | - Hai-Ming Wu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, China
| | - Zhen-Guo Ma
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, China.
| | - Qi-Zhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, China.
| |
Collapse
|
18
|
Evangelisti A, Butler H, del Monte F. The Heart of the Alzheimer's: A Mindful View of Heart Disease. Front Physiol 2021; 11:625974. [PMID: 33584340 PMCID: PMC7873884 DOI: 10.3389/fphys.2020.625974] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 12/21/2020] [Indexed: 12/16/2022] Open
Abstract
Purpose of Review: This review summarizes the current evidence for the involvement of proteotoxicity and protein quality control systems defects in diseases of the central nervous and cardiovascular systems. Specifically, it presents the commonalities between the pathophysiology of protein misfolding diseases in the heart and the brain. Recent Findings: The involvement of protein homeostasis dysfunction has been for long time investigated and accepted as one of the leading pathophysiological causes of neurodegenerative diseases. In cardiovascular diseases instead the mechanistic focus had been on the primary role of Ca2+ dishomeostasis, myofilament dysfunction as well as extracellular fibrosis, whereas no attention was given to misfolding of proteins as a pathogenetic mechanism. Instead, in the recent years, several contributions have shown protein aggregates in failing hearts similar to the ones found in the brain and increasing evidence have highlighted the crucial importance that proteotoxicity exerts via pre-amyloidogenic species in cardiovascular diseases as well as the prominent role of the cellular response to misfolded protein accumulation. As a result, proteotoxicity, unfolding protein response (UPR), and ubiquitin-proteasome system (UPS) have recently been investigated as potential key pathogenic pathways and therapeutic targets for heart disease. Summary: Overall, the current knowledge summarized in this review describes how the misfolding process in the brain parallels in the heart. Understanding the folding and unfolding mechanisms involved early through studies in the heart will provide new knowledge for neurodegenerative proteinopathies and may prepare the stage for targeted and personalized interventions.
Collapse
Affiliation(s)
| | - Helen Butler
- School of Medicine, Department of Molecular and Cellular Biology and Pathobiology, Medical University of South Carolina, Charleston, SC, United States
| | - Federica del Monte
- Department of Medicine, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
19
|
Endoplasmic reticulum chaperone BiP/GRP78 knockdown leads to autophagy and cell death of arginine vasopressin neurons in mice. Sci Rep 2020; 10:19730. [PMID: 33184425 PMCID: PMC7661499 DOI: 10.1038/s41598-020-76839-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 11/03/2020] [Indexed: 12/13/2022] Open
Abstract
The immunoglobulin heavy chain binding protein (BiP), also referred to as 78-kDa glucose-regulated protein (GRP78), is a pivotal endoplasmic reticulum (ER) chaperone which modulates the unfolded protein response under ER stress. Our previous studies showed that BiP is expressed in arginine vasopressin (AVP) neurons under non-stress conditions and that BiP expression is upregulated in proportion to the increased AVP expression under dehydration. To clarify the role of BiP in AVP neurons, we used a viral approach in combination with shRNA interference for BiP knockdown in mouse AVP neurons. Injection of a recombinant adeno-associated virus equipped with a mouse AVP promoter and BiP shRNA cassette provided specific BiP knockdown in AVP neurons of the supraoptic (SON) and paraventricular nuclei (PVN) in mice. AVP neuron-specific BiP knockdown led to ER stress and AVP neuronal loss in the SON and PVN, resulting in increased urine volume due to lack of AVP secretion. Immunoelectron microscopy of AVP neurons revealed that autophagy was activated through the process of AVP neuronal loss, whereas no obvious features characteristic of apoptosis were observed. Pharmacological inhibition of autophagy by chloroquine exacerbated the AVP neuronal loss due to BiP knockdown, indicating a protective role of autophagy in AVP neurons under ER stress. In summary, our results demonstrate that BiP is essential for the AVP neuron system.
Collapse
|
20
|
Kaur N, Raja R, Ruiz-Velasco A, Liu W. Cellular Protein Quality Control in Diabetic Cardiomyopathy: From Bench to Bedside. Front Cardiovasc Med 2020; 7:585309. [PMID: 33195472 PMCID: PMC7593653 DOI: 10.3389/fcvm.2020.585309] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 09/09/2020] [Indexed: 12/14/2022] Open
Abstract
Heart failure is a serious comorbidity and the most common cause of mortality in diabetes patients. Diabetic cardiomyopathy (DCM) features impaired cellular structure and function, culminating in heart failure; however, there is a dearth of specific clinical therapy for treating DCM. Protein homeostasis is pivotal for the maintenance of cellular viability under physiological and pathological conditions, particularly in the irreplaceable cardiomyocytes; therefore, it is tightly regulated by a protein quality control (PQC) system. Three evolutionarily conserved molecular processes, the unfolded protein response (UPR), the ubiquitin-proteasome system (UPS), and autophagy, enhance protein turnover and preserve protein homeostasis by suppressing protein translation, degrading misfolded or unfolded proteins in cytosol or organelles, disposing of damaged and toxic proteins, recycling essential amino acids, and eliminating insoluble protein aggregates. In response to increased cellular protein demand under pathological insults, including the diabetic condition, a coordinated PQC system retains cardiac protein homeostasis and heart performance, on the contrary, inappropriate PQC function exaggerates cardiac proteotoxicity with subsequent heart dysfunction. Further investigation of the PQC mechanisms in diabetes propels a more comprehensive understanding of the molecular pathogenesis of DCM and opens new prospective treatment strategies for heart disease and heart failure in diabetes patients. In this review, the function and regulation of cardiac PQC machinery in diabetes mellitus, and the therapeutic potential for the diabetic heart are discussed.
Collapse
Affiliation(s)
- Namrita Kaur
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine, and Health, The University of Manchester, Manchester, United Kingdom
| | - Rida Raja
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine, and Health, The University of Manchester, Manchester, United Kingdom
| | - Andrea Ruiz-Velasco
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine, and Health, The University of Manchester, Manchester, United Kingdom
| | - Wei Liu
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine, and Health, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
21
|
Gao X, Kim S, Zhao T, Ren M, Chae J. Social defeat stress induces myocardial injury by modulating inflammatory factors. J Int Med Res 2020; 48:300060520936903. [PMID: 32687424 PMCID: PMC7372629 DOI: 10.1177/0300060520936903] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVES We investigated the endoplasmic reticulum (ER) stress markers C/EBP homologous protein (CHOP) and glucose-regulated protein (GRP) 78, as well as the inflammatory factors nuclear factor (NF)-κB and IκBα, to assess how social defeat stress induces myocardial injury. Furthermore, we evaluated the protective effects of the ER stress inhibitor 4-phenylbutyric acid (PBA) on myocardial injury in mice. METHODS Adult mice were divided into control, control + PBA, social defeat, and social defeat + PBA groups. The social defeat and social defeat + PBA groups were exposed to social defeat stress for 10 days. Cardiac tissues from all groups were analyzed after social defeat stress. H9C2 cells were used to detect the role of the ER stress agonist thapsigargin on expression of ER stress and inflammatory markers. RESULTS Social defeat stress promoted apoptosis of cardiomyocytes, increased CHOP, NF-κB and, phospho-NF-κB protein expression, and decreased GRP78 and IκBα protein expression. Moreover, PBA significantly reversed these changes and attenuated thapsigargin-induced increased expression of CHOP and phospho-NF-κB, and decreased IκBα expression in H9C2 cells. CONCLUSIONS Social defeat stress initiates ER stress, promotes expression of inflammatory factors, and induces myocardial injury. Inhibiting ER stress could protect the myocardium from social defeat stress-induced myocardial injury.
Collapse
Affiliation(s)
- XiaoLei Gao
- Division of Cardiology, Department of Internal Medicine, Jeonbuk National University Medical School, Jeonju, Republic of Korea.,Department of Cardiology, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - SangJin Kim
- Division of Cardiology, Department of Internal Medicine, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| | - Tong Zhao
- Department of Psychiatry, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - MingFen Ren
- Department of Cardiology, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - JeiKeon Chae
- Division of Cardiology, Department of Internal Medicine, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| |
Collapse
|
22
|
Kubra KT, Akhter MS, Uddin MA, Barabutis N. Unfolded protein response in cardiovascular disease. Cell Signal 2020; 73:109699. [PMID: 32592779 DOI: 10.1016/j.cellsig.2020.109699] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 06/20/2020] [Accepted: 06/21/2020] [Indexed: 12/21/2022]
Abstract
The unfolded protein response (UPR) is a highly conserved molecular machinery, which protects the cells against a diverse variety of stimuli. Activation of this element has been associated with both human health and disease. The purpose of the current manuscript is to provide the most updated information on the involvement of UPR towards the improvement; or deterioration of cardiovascular functions. Since UPR is consisted of three distinct elements, namely the activating transcription factor 6, the protein kinase RNA-like endoplasmic reticulum kinase; and the inositol-requiring enzyme-1α, a highly orchestrated manipulation of those molecular branches may provide new therapeutic possibilities against the severe outcomes of cardiovascular disease.
Collapse
Affiliation(s)
- Khadeja-Tul Kubra
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, USA
| | - Mohammad S Akhter
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, USA
| | - Mohammad A Uddin
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, USA
| | - Nektarios Barabutis
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, USA.
| |
Collapse
|
23
|
Characterization of Endoplasmic Reticulum (ER) in Human Pluripotent Stem Cells Revealed Increased Susceptibility to Cell Death upon ER Stress. Cells 2020; 9:cells9051078. [PMID: 32357563 PMCID: PMC7291192 DOI: 10.3390/cells9051078] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/22/2020] [Accepted: 04/23/2020] [Indexed: 12/19/2022] Open
Abstract
Human pluripotent stem cells (hPSCs), such as embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), have a well-orchestrated program for differentiation and self-renewal. However, the structural features of unique proteostatic-maintaining mechanisms in hPSCs and their features, distinct from those of differentiated cells, in response to cellular stress remain unclear. We evaluated and compared the morphological features and stress response of hPSCs and fibroblasts. Compared to fibroblasts, electron microscopy showed simpler/fewer structures with fewer networks in the endoplasmic reticulum (ER) of hPSCs, as well as lower expression of ER-related genes according to meta-analysis. As hPSCs contain low levels of binding immunoglobulin protein (BiP), an ER chaperone, thapsigargin treatment sharply increased the gene expression of the unfolded protein response. Thus, hPSCs with decreased chaperone function reacted sensitively to ER stress and entered apoptosis faster than fibroblasts. Such ER stress-induced apoptotic processes were abolished by tauroursodeoxycholic acid, an ER-stress reliever. Hence, our results revealed that as PSCs have an underdeveloped structure and express fewer BiP chaperone proteins than somatic cells, they are more susceptible to ER stress-induced apoptosis in response to stress.
Collapse
|
24
|
Zhang H, Tian Y, Liang D, Fu Q, Jia L, Wu D, Zhu X. The Effects of Inhibition of MicroRNA-375 in a Mouse Model of Doxorubicin-Induced Cardiac Toxicity. Med Sci Monit 2020; 26:e920557. [PMID: 32186283 PMCID: PMC7102408 DOI: 10.12659/msm.920557] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Doxorubicin-induced myocardial toxicity is associated with oxidative stress, cardiomyocyte, apoptosis, and loss of contractile function. Previous studies showed that microRNA-375 (miR-375) expression was increased in mouse models of heart failure and clinically, and that inhibition of miR-375 reduced inflammation and increased survival of cardiomyocytes. This study aimed to investigate the effects and mechanisms of inhibition of miR-375 in a mouse model of doxorubicin-induced cardiac toxicity in vivo and in doxorubicin-treated rat and mouse cardiomyocytes in vitro. MATERIAL AND METHODS The mouse model of doxorubicin-induced cardiac toxicity was developed using an intraperitoneal injection of doxorubicin (15 mg/kg diluted in 0.9% saline) for eight days. Treatment was followed by a single subcutaneous injection of miR-375 inhibitor. H9c2 rat cardiac myocytes and adult murine cardiomyocytes (AMCs) were cultured in vitro and treated with doxorubicin, with and without pretreatment with miR-375 inhibitor. RESULTS Doxorubicin significantly upregulated miR-375 expression in vitro and in vivo, and inhibition of miR-375 re-established myocardial redox homeostasis, prevented doxorubicin-induced oxidative stress and cardiomyocyte apoptosis, and activated the PDK1/AKT axis by reducing the direct binding of miR-375 to 3' UTR of the PDK1 gene. Inhibition of PDK1 and AKT abolished the protective role of miR-375 inhibition on doxorubicin-induced oxidative damage. CONCLUSIONS Inhibition of miR-375 prevented oxidative damage in a mouse model of doxorubicin-induced cardiac toxicity in vivo and in doxorubicin-treated rat and mouse cardiomyocytes in vitro through the PDK1/AKT signaling pathway.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Cardiovascular Surgery, Tianjin Medical University General Hospital, Tianjing, China (mainland)
| | - Yikui Tian
- Department of Cardiovascular Surgery, Tianjin Medical University General Hospital, Tianjing, China (mainland)
| | - Degang Liang
- Department of Cardiovascular Surgery, Tianjin Medical University General Hospital, Tianjing, China (mainland)
| | - Qiang Fu
- Department of Cardiovascular Surgery, Tianjin Medical University General Hospital, Tianjing, China (mainland)
| | - Liqun Jia
- Department of Cardiovascular Surgery, Tianjin Medical University General Hospital, Tianjing, China (mainland)
| | - Dawei Wu
- Department of Cardiovascular Surgery, Tianjin Medical University General Hospital, Tianjing, China (mainland)
| | - Xinyuan Zhu
- Department of Cardiovascular Surgery, Tianjin Medical University General Hospital, Tianjing, China (mainland)
| |
Collapse
|
25
|
Arrieta A, Blackwood EA, Stauffer WT, Glembotski CC. Integrating ER and Mitochondrial Proteostasis in the Healthy and Diseased Heart. Front Cardiovasc Med 2020; 6:193. [PMID: 32010709 PMCID: PMC6974444 DOI: 10.3389/fcvm.2019.00193] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 12/18/2019] [Indexed: 12/12/2022] Open
Abstract
The integrity of the proteome in cardiac myocytes is critical for robust heart function. Proteome integrity in all cells is managed by protein homeostasis or proteostasis, which encompasses processes that maintain the balance of protein synthesis, folding, and degradation in ways that allow cells to adapt to conditions that present a potential challenge to viability (1). While there are processes in various cellular locations in cardiac myocytes that contribute to proteostasis, those in the cytosol, mitochondria and endoplasmic reticulum (ER) have dominant roles in maintaining cardiac contractile function. Cytosolic proteostasis has been reviewed elsewhere (2, 3); accordingly, this review focuses on proteostasis in the ER and mitochondria, and how they might influence each other and, thus, impact heart function in the settings of cardiac physiology and disease.
Collapse
Affiliation(s)
- Adrian Arrieta
- Department of Biology, San Diego State University Heart Institute, San Diego State University, San Diego, CA, United States
| | - Erik A Blackwood
- Department of Biology, San Diego State University Heart Institute, San Diego State University, San Diego, CA, United States
| | - Winston T Stauffer
- Department of Biology, San Diego State University Heart Institute, San Diego State University, San Diego, CA, United States
| | - Christopher C Glembotski
- Department of Biology, San Diego State University Heart Institute, San Diego State University, San Diego, CA, United States
| |
Collapse
|
26
|
Limso C, Ngo JM, Nguyen P, Leal S, Husain A, Sahoo D, Ghosh P, Bhandari D. The Gα-interacting vesicle-associated protein interacts with and promotes cell surface localization of GRP78 during endoplasmic reticulum stress. FEBS Lett 2019; 594:1088-1100. [PMID: 31736058 DOI: 10.1002/1873-3468.13685] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 11/07/2019] [Accepted: 11/12/2019] [Indexed: 12/18/2022]
Abstract
Cell surface translocation of the chaperone glucose-regulated protein 78 kDa (GRP78) is a key event that promotes cancer cell survival during endoplasmic reticulum (ER) stress. Here, we identify Gα-interacting vesicle-associated protein (GIV) - an enhancer of prosurvival signaling during ER stress - as a binding partner of GRP78. We show that GIV and GRP78 interact in an ER stress-dependent manner through their respective carboxyl terminal domains and that GIV aids in the localization of GRP78 to the plasma membrane. Kaplan-Meier analysis of disease-free survival in cancer patients shows poor prognosis for patients with high expression of both GIV and GRP78, further suggesting a vital role for these two proteins in enhancing cancer cell viability.
Collapse
Affiliation(s)
- Clariss Limso
- Department of Chemistry and Biochemistry, California State University Long Beach, CA, USA
| | - Jordan Matthew Ngo
- Department of Chemistry and Biochemistry, California State University Long Beach, CA, USA
| | - Peter Nguyen
- Department of Chemistry and Biochemistry, California State University Long Beach, CA, USA
| | - Stephanie Leal
- Department of Chemistry and Biochemistry, California State University Long Beach, CA, USA
| | - Aida Husain
- Department of Chemistry and Biochemistry, California State University Long Beach, CA, USA
| | - Debashis Sahoo
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA, USA.,Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Pradipta Ghosh
- Department of Medicine, University of California San Diego, La Jolla, CA, USA.,Department of Cellular & Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Deepali Bhandari
- Department of Chemistry and Biochemistry, California State University Long Beach, CA, USA
| |
Collapse
|
27
|
Zhang G, Wang X, Bi X, Li C, Deng Y, Al-Hashimi AA, Luo X, Gillette TG, Austin RC, Wang Y, Wang ZV. GRP78 (Glucose-Regulated Protein of 78 kDa) Promotes Cardiomyocyte Growth Through Activation of GATA4 (GATA-Binding Protein 4). Hypertension 2019; 73:390-398. [PMID: 30580686 DOI: 10.1161/hypertensionaha.118.12084] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The heart manifests hypertrophic growth in response to elevation of afterload pressure. Cardiac myocyte growth involves new protein synthesis and membrane expansion, of which a number of cellular quality control machineries are stimulated to maintain function and homeostasis. The unfolded protein response is potently induced during cardiac hypertrophy to enhance protein-folding capacity and eliminate terminally misfolded proteins. However, whether the unfolded protein response directly regulates cardiac myocyte growth remains to be fully determined. Here, we show that GRP78 (glucose-regulated protein of 78 kDa)-an endoplasmic reticulum-resident chaperone and a critical unfolded protein response regulator-is induced by cardiac hypertrophy. Importantly, overexpression of GRP78 in cardiomyocytes is sufficient to potentiate hypertrophic stimulus-triggered growth. At the in vivo level, TG (transgenic) hearts overexpressing GRP78 mount elevated hypertrophic growth in response to pressure overload. We went further to show that GRP78 increases GATA4 (GATA-binding protein 4) level, which may stimulate Anf (atrial natriuretic factor) expression and promote cardiac hypertrophic growth. Silencing of GATA4 in cultured neonatal rat ventricular myocytes significantly diminishes GRP78-mediated growth response. Our results, therefore, reveal that protein-folding chaperone GRP78 may directly enhance cardiomyocyte growth by stimulating cardiac-specific transcriptional factor GATA4.
Collapse
Affiliation(s)
- Guangyu Zhang
- From the Department of Cardiology, Zhongnan Hospital of Wuhan University, Hubei, China (G.Z., Y.W.).,Division of Cardiology, Department of Internal Medicine (G.Z., X.W., X.B., C.L., X.L., T.G.G., Z.V.W.), University of Texas Southwestern Medical Center, Dallas
| | - Xiaoding Wang
- Division of Cardiology, Department of Internal Medicine (G.Z., X.W., X.B., C.L., X.L., T.G.G., Z.V.W.), University of Texas Southwestern Medical Center, Dallas
| | - Xukun Bi
- Division of Cardiology, Department of Internal Medicine (G.Z., X.W., X.B., C.L., X.L., T.G.G., Z.V.W.), University of Texas Southwestern Medical Center, Dallas.,Department of Cardiology, Biomedical Research (Therapy) Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China (X.B.)
| | - Chao Li
- Division of Cardiology, Department of Internal Medicine (G.Z., X.W., X.B., C.L., X.L., T.G.G., Z.V.W.), University of Texas Southwestern Medical Center, Dallas
| | - Yingfeng Deng
- Department of Internal Medicine, Touchstone Diabetes Center (Y.D.), University of Texas Southwestern Medical Center, Dallas
| | - Ali A Al-Hashimi
- Division of Nephrology, Department of Medicine, McMaster University, The Research Institute of St. Joe's Hamilton and Hamilton Center for Kidney Research, ON, Canada (A.A.A.-H., R.C.A.)
| | - Xiang Luo
- Division of Cardiology, Department of Internal Medicine (G.Z., X.W., X.B., C.L., X.L., T.G.G., Z.V.W.), University of Texas Southwestern Medical Center, Dallas
| | - Thomas G Gillette
- Division of Cardiology, Department of Internal Medicine (G.Z., X.W., X.B., C.L., X.L., T.G.G., Z.V.W.), University of Texas Southwestern Medical Center, Dallas
| | - Richard C Austin
- Division of Nephrology, Department of Medicine, McMaster University, The Research Institute of St. Joe's Hamilton and Hamilton Center for Kidney Research, ON, Canada (A.A.A.-H., R.C.A.)
| | - Yanggan Wang
- From the Department of Cardiology, Zhongnan Hospital of Wuhan University, Hubei, China (G.Z., Y.W.).,Medical Research Institute of Wuhan University, Wuhan University, Hubei, China (Y.W.)
| | - Zhao V Wang
- Division of Cardiology, Department of Internal Medicine (G.Z., X.W., X.B., C.L., X.L., T.G.G., Z.V.W.), University of Texas Southwestern Medical Center, Dallas
| |
Collapse
|
28
|
Yan B, Wang H, Tan Y, Fu W. microRNAs in Cardiovascular Disease: Small Molecules but Big Roles. Curr Top Med Chem 2019; 19:1918-1947. [PMID: 31393249 DOI: 10.2174/1568026619666190808160241] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 06/01/2019] [Accepted: 07/25/2019] [Indexed: 01/01/2023]
Abstract
microRNAs (miRNAs) are an evolutionarily conserved class of small single-stranded noncoding RNAs. The aberrant expression of specific miRNAs has been implicated in the development and progression of diverse cardiovascular diseases. For many decades, miRNA therapeutics has flourished, taking advantage of the fact that miRNAs can modulate gene expression and control cellular phenotypes at the posttranscriptional level. Genetic replacement or knockdown of target miRNAs by chemical molecules, referred to as miRNA mimics or inhibitors, has been used to reverse their abnormal expression as well as their adverse biological effects in vitro and in vivo in an effort to fully implement the therapeutic potential of miRNA-targeting treatment. However, the limitations of the chemical structure and delivery systems are hindering progress towards clinical translation. Here, we focus on the regulatory mechanisms and therapeutic trials of several representative miRNAs in the context of specific cardiovascular diseases; from this basic perspective, we evaluate chemical modifications and delivery vectors of miRNA-based chemical molecules and consider the underlying challenges of miRNA therapeutics as well as the clinical perspectives on their applications.
Collapse
Affiliation(s)
- Bingqian Yan
- Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Huijing Wang
- Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yao Tan
- Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Wei Fu
- Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.,Department of Pediatric Cardiothoracic Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.,Shanghai Key Laboratory of Tissue Engineering, Shanghai 9th People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China
| |
Collapse
|
29
|
Xu C, Liu CH, Zhang DL. MicroRNA-22 inhibition prevents doxorubicin-induced cardiotoxicity via upregulating SIRT1. Biochem Biophys Res Commun 2019; 521:485-491. [PMID: 31677784 DOI: 10.1016/j.bbrc.2019.10.140] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 10/19/2019] [Indexed: 01/09/2023]
Abstract
Oxidative stress and cardiomyocyte apoptosis contributed to the progression of doxorubicin (Dox)-induced cardiotoxicity. Recent studies identified microRNA-22 (miR-22) as a cardiac- and skeletal muscle-enriched microRNA that functioned as a key regulator in stress-induced cardiac injury. The present study aimed to investigate the role and possible mechanism of miR-22 on Dox-induced oxidative stress and cardiomyocyte apoptosis. Mice were exposed to reduplicative injections of Dox (i.p., 4 mg/kg) weekly for consecutive 4 weeks to generate Dox-induced cardiotoxicity. Herein, we found that miR-22 level was significantly increased in murine hearts subjected to chronic Dox treatment. MiR-22 inhibition attenuated oxidative stress and cardiomyocyte apoptosis in vivo and in vitro, thereby preventing Dox-induced cardiac dysfunction. Mechanistically, we observed that miR-22 directly bound to the 3'-UTR of Sirt1 and caused SIRT1 downregulation. Conversely, miR-22 antagomir upregulated SIRT1 expression and SIRT1 inhibitor abolished the beneficial effects of miR-22 antagomir. In conclusion, miR-22 inhibition prevented oxidative stress and cardiomyocyte apoptosis via upregulating SIRT1 and miR-22 might be a new target for treating Dox-induced cardiotoxicity.
Collapse
Affiliation(s)
- Can Xu
- Department of Cardiology, The First Affiliated Hospital of University of South China, Hengyang, Hunan, 421001, PR China
| | - Chang-Hui Liu
- Department of Cardiology, The First Affiliated Hospital of University of South China, Hengyang, Hunan, 421001, PR China
| | - Da-Li Zhang
- Department of Emergency, The First Affiliated Hospital of University of South China, Hengyang, Hunan, 421001, PR China.
| |
Collapse
|
30
|
Kiouptsi K, Finger S, Garlapati VS, Knorr M, Brandt M, Walter U, Wenzel P, Reinhardt C. Hypoxia evokes increased PDI and PDIA6 expression in the infarcted myocardium of ex-germ-free and conventionally raised mice. Biol Open 2019; 8:bio.038851. [PMID: 30498015 PMCID: PMC6361221 DOI: 10.1242/bio.038851] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The prototypic protein disulfide isomerase (PDI), encoded by the P4HB gene, has been described as a survival factor in ischemic cardiomyopathy. However, the role of protein disulfide isomerase associated 6 (PDIA6) under hypoxic conditions in the myocardium remains enigmatic, and it is unknown whether the gut microbiota influences the expression of PDI and PDIA6 under conditions of acute myocardial infarction. Here, we revealed that, in addition to the prototypic PDI, the PDI family member PDIA6, a regulator of the unfolded protein response, is upregulated in the mouse cardiomyocyte cell line HL-1 when cultured under hypoxia. In vivo, in the left anterior descending artery (LAD) ligation mouse model of acute myocardial infarction, similar to PDI, PDIA6 protein expression was enhanced in the infarcted area (LAD+) relative to uninfarcted sham tissue or the neighbouring area at risk (LAD–) of C57BL/6J mice. Interestingly, we found that ex-germ-free (ex-GF) mice subjected to the LAD ligation model for 24 h had a reduced ejection fraction compared with their conventionally raised (CONV-R) SPF controls. Furthermore, the LAD+ area in the infarcted heart of ex-GF mice showed reduced PDIA6 expression relative to CONV-R controls, suggesting that the presence of a gut microbiota enhanced LAD ligation-triggered PDIA6 expression. Collectively, our results demonstrate that PDIA6 is upregulated in cardiomyocytes as a consequence of hypoxia. In the LAD mouse model, PDIA6 was also increased in the infarcted area under in vivo conditions, but this increase was suppressed in ex-GF mice relative to CONV-R controls. This article has an associated First Person interview with the first author of the paper. Summary: We identified PDIA6 as a hypoxia-induced element of the unfolded protein response in cardiomyocytes and infarcted mouse hearts. PDIA6 expression and ejection fractions were reduced in infarcted ex-germ-free mouse hearts.
Collapse
Affiliation(s)
- Klytaimnistra Kiouptsi
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Stefanie Finger
- Center for Cardiology, Cardiology I, University Medical Center Mainz, 55131 Mainz, Germany
| | - Venkata S Garlapati
- Center for Cardiology, Cardiology I, University Medical Center Mainz, 55131 Mainz, Germany
| | - Maike Knorr
- Center for Cardiology, Cardiology I, University Medical Center Mainz, 55131 Mainz, Germany
| | - Moritz Brandt
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany.,Center for Cardiology, Cardiology I, University Medical Center Mainz, 55131 Mainz, Germany.,German Center for Cardiovascular Research (DZHK), University Medical Center Mainz, Partner Site RheinMain, 55131 Mainz, Germany
| | - Ulrich Walter
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany.,German Center for Cardiovascular Research (DZHK), University Medical Center Mainz, Partner Site RheinMain, 55131 Mainz, Germany
| | - Philip Wenzel
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany.,Center for Cardiology, Cardiology I, University Medical Center Mainz, 55131 Mainz, Germany.,German Center for Cardiovascular Research (DZHK), University Medical Center Mainz, Partner Site RheinMain, 55131 Mainz, Germany
| | - Christoph Reinhardt
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany .,German Center for Cardiovascular Research (DZHK), University Medical Center Mainz, Partner Site RheinMain, 55131 Mainz, Germany
| |
Collapse
|
31
|
Zhang G, Wang X, Gillette TG, Deng Y, Wang ZV. Unfolded Protein Response as a Therapeutic Target in Cardiovascular Disease. Curr Top Med Chem 2019; 19:1902-1917. [PMID: 31109279 PMCID: PMC7024549 DOI: 10.2174/1568026619666190521093049] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 04/09/2019] [Accepted: 05/02/2019] [Indexed: 12/15/2022]
Abstract
Cardiovascular disease is the leading cause of death worldwide. Despite overwhelming socioeconomic impact and mounting clinical needs, our understanding of the underlying pathophysiology remains incomplete. Multiple forms of cardiovascular disease involve an acute or chronic disturbance in cardiac myocytes, which may lead to potent activation of the Unfolded Protein Response (UPR), a cellular adaptive reaction to accommodate protein-folding stress. Accumulation of unfolded or misfolded proteins in the Endoplasmic Reticulum (ER) elicits three signaling branches of the UPR, which otherwise remain quiescent. This ER stress response then transiently suppresses global protein translation, augments production of protein-folding chaperones, and enhances ER-associated protein degradation, with an aim to restore cellular homeostasis. Ample evidence has established that the UPR is strongly induced in heart disease. Recently, the mechanisms of action and multiple pharmacological means to favorably modulate the UPR are emerging to curb the initiation and progression of cardiovascular disease. Here, we review the current understanding of the UPR in cardiovascular disease and discuss existing therapeutic explorations and future directions.
Collapse
Affiliation(s)
- Guangyu Zhang
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Xiaoding Wang
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Thomas G. Gillette
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Yingfeng Deng
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Zhao V. Wang
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| |
Collapse
|