1
|
Fang F, Zhao M, Meng J, He J, Yang C, Wang C, Wang J, Xie S, Jin X, Shi W. Upregulation of TTYH3 by lncRNA LUCAT1 through interacting with ALYREF facilitates the metastasis in non-small cell lung cancer. Cancer Biol Ther 2025; 26:2464966. [PMID: 39930621 PMCID: PMC11817527 DOI: 10.1080/15384047.2025.2464966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/17/2024] [Accepted: 02/05/2025] [Indexed: 02/14/2025] Open
Abstract
Metastasis is the predominant culprit of cancer-associated mortality in non-small cell lung cancer (NSCLC). Tweety homolog 3 (TTYH3) reportedly functions vitally in the development of diverse cancers, including NSCLC; nevertheless, its role in NSCLC metastasis remains ambiguous. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) and western blot were initially employed to detect TTYH3 expression in NSCLC and normal lung epithelial cells. Subsequently, A549 and NCI-H1650 cells were chosen as NSCLC models in vitro and transfected with short hairpin RNAs (sh-TTYH3, sh-LUCAT1, and sh-ALYREF) or overexpression plasmids (oe-ALYREF and oe-TTYH3). Transwell assays were used for migrative and invasive tests. Epithelial mesenchymal transformation (EMT)-related proteins (E-cadherin, N-cadherin, Vimentin, and Snail) were measured by western blot. A mouse lung metastasis model was built to define the function of TTYH3 in NSCLC metastasis, followed by hematoxylin-eosin staining. RNA pull-down, RNA immunoprecipitation, qRT-PCR, western blot, and actinomycin D assays were adopted to determine the relationships among LUCAT1, ALYREF, and TTYH3. TTYH3 was highly expressed in NSCLC cells relative to normal lung cells. Functionally, TTYH3 knockdown restrained NSCLC migration, invasion, EMT, and metastasis. Mechanistic experiments demonstrated that LUCAT1 bound to ALYREF. After LUCAT1 knockdown, TTYH3 expression and mRNA stability were reduced, which was reversed by ALYREF overexpression. Furthermore, ALYREF overexpression counteracted the inhibitory effects of LUCAT1 knockdown on NSCLC cell migration, invasion, and EMT. TTYH3 overexpression eliminated the suppressive functions of ALYREF downregulation in NSCLC progression. LUCAT1 promotes TTYH3 expression via interacting with ALYREF, thereby facilitating NSCLC migration, invasion, and EMT.
Collapse
Affiliation(s)
- Fang Fang
- Department of OncologyII, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, Guangxi, P. R. China
| | - Mei Zhao
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, Guangxi, P. R. China
| | - Jinming Meng
- Department of Chinese Internal Medicine, Guangxi University of Chinese Medicine, Nanning, Guangxi, P. R. China
| | - Jiaqi He
- Department of Chinese Internal Medicine, Guangxi University of Chinese Medicine, Nanning, Guangxi, P. R. China
| | - Chunlei Yang
- Department of Chinese Internal Medicine, Guangxi University of Chinese Medicine, Nanning, Guangxi, P. R. China
| | - Changhong Wang
- Department of OncologyII, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, Guangxi, P. R. China
| | - Jiaxiao Wang
- Department of OncologyII, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, Guangxi, P. R. China
| | - Sheng Xie
- Preventive Treatment of Disease Center, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, Guangxi, P. R. China
| | - Xiaowei Jin
- Department of Integrated TCM & Western Medicine, Yunnan Cancer Hospital & The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, P. R. China
| | - Wei Shi
- Department of OncologyII, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, Guangxi, P. R. China
| |
Collapse
|
2
|
Fujii Y, Asadi Z, Mehla K. Cathepsins: Emerging targets in the tumor ecosystem to overcome cancers. Semin Cancer Biol 2025; 112:150-166. [PMID: 40228591 DOI: 10.1016/j.semcancer.2025.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 03/13/2025] [Accepted: 04/07/2025] [Indexed: 04/16/2025]
Abstract
Cathepsins, a group of lysosomal peptidases, have traditionally been recognized as tumor facilitators. Recent research, however, highlights their critical role in orchestrating cancer and the tumor microenvironment (TME). Primality, cathepsins degrade extracellular matrix, enabling cancer cells to invade and metastasize, while also promoting vascular endothelial infiltration and subsequent angiogenesis. Additionally, cathepsins boost fibroblast growth, thereby supporting tumor progression. More importantly, cathepsins are pivotal in modulating immune cells within the TME by regulating their recruitment, antigen processing and presentation, differentiation, and cell death, primarily contributing to immune suppression. Given their overexpression in tumors and elevated levels in the circulation of cancer patients, it is crucial to consider the systemic effects of cathepsins. Although the comprehensive role of cathepsins in cancer patients' bodies remains underexplored, they likely influence systemic immunity and inflammation, cellular metabolism, muscle wasting, and distant metastasis through their unique proteolytic functions. Notably, cathepsins also confer resistance to chemoradiotherapy by rewriting the cellular profile within the TME. In this context, promising results are emerging from studies combining cathepsin inhibitors with conventional therapies to suppress tumor development effectively. This review aims to decipher the cathepsin-driven networks within cancer cells and the TME, detailing their contribution to chemoradioresistance by reshaping both micro- and macroenvironments. Furthermore, we explore current and future perspectives on therapies targeting cathepsins' interactions, offering insights into innovative treatment strategies.
Collapse
Affiliation(s)
- Yuki Fujii
- Department of Oncology Science, University of Oklahoma Health Sciences, Oklahoma City, OK 73014, USA
| | - Zahra Asadi
- Department of Oncology Science, University of Oklahoma Health Sciences, Oklahoma City, OK 73014, USA; Department of Pathology, University of Oklahoma Health Sciences, Oklahoma City, OK 73104, USA
| | - Kamiya Mehla
- Department of Oncology Science, University of Oklahoma Health Sciences, Oklahoma City, OK 73014, USA; Department of Microbiology and Immunology, University of Oklahoma Health Sciences, Oklahoma City, OK 73104, USA; Department of Pathology, University of Oklahoma Health Sciences, Oklahoma City, OK 73104, USA.
| |
Collapse
|
3
|
Caviness P, Mulakala BK, Lorenzo OP, Yao T, Lindemann SR, Rosa F, Yeruva L, Chen JR. Microbes Matter: Exploring the Connection Between Infant Gut Microbiota and Bone Development. Calcif Tissue Int 2025; 116:90. [PMID: 40579603 DOI: 10.1007/s00223-025-01395-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Accepted: 05/17/2025] [Indexed: 06/29/2025]
Abstract
Human milk, compared to milk formula, is considered the optimal source of nutrition for infants as it can shape offspring microbiome composition, which is necessary for the production of key biomolecules that aid in development of infant physiological systems. A variety of factors in human milk can influence infant microbiome composition. One such factor is the type of oligosaccharides present, which is determined in part by maternal secretor status and itself determined by expression of fucosyltransferase-2 (FUT2). The aim of this study was to investigate the effects of secretor or non-secretor human milk as well as infant milk formula on infant gut microbiome composition and whether these changes in microbiota impact bone development. Fecal microbiota transfer from infants fed human milk from secretor mothers (SMM) or non-secretor mothers (NSM) as well as those fed infant milk formula (MFM) into 21-day-old germ-free mice were performed. After 35 days, gut microbiome composition and bone development were analyzed using 16S rRNA sequencing and µCT analysis. At the genus level, Phocaeicola and Akkermansia are upregulated for SMM and NSM mice respectively, while family Ruminococcaceae is increased for MFM mice. Percent bone volume (BV/TV) and trabecular number (Tb N) were significantly decreased for MFM mice but unaltered for SMM and NSM mice compared to germ-free controls (GF CTRL). Measurement of bone marrow plasma inflammatory factor levels shows a significant increase in TNF-α and IL-1β for SMM and NSM mice, both potential promoters of osteoclastogenesis under certain conditions, compared to MFM and GF CTRL mice. Data suggests that milk formula feeding may suppress infant bone growth and development by altering gut microbiome composition.
Collapse
Affiliation(s)
- Perry Caviness
- Arkansas Children's Nutrition Center, Little Rock, AR, USA
| | - Bharath K Mulakala
- Microbiome and Metabolism Research Unit (MMRU), Southeast Area, USDA-ARS, Arkansas Children's Nutrition Center, 15 Children's Way, Little Rock, AR, 72202, USA
- Texas A & M, IHA, College Station, TX, USA
| | | | - Tianming Yao
- Whistler Center for Carbohydrate Research, Department of Food Science, Purdue University, West Lafayette, IN, USA
| | - Stephen R Lindemann
- Whistler Center for Carbohydrate Research, Department of Food Science, Purdue University, West Lafayette, IN, USA
| | - Fernanda Rosa
- School of Veterinary Medicine, Texas Tech University, Amarillo, TX, USA
| | - Laxmi Yeruva
- Microbiome and Metabolism Research Unit (MMRU), Southeast Area, USDA-ARS, Arkansas Children's Nutrition Center, 15 Children's Way, Little Rock, AR, 72202, USA.
| | - Jin-Ran Chen
- Arkansas Children's Nutrition Center, Little Rock, AR, USA.
| |
Collapse
|
4
|
Ma L, Lu B, Si Y, Dai L, Tan M, Liu W, Sun D, Shu J, Chen C, Xiang Q, Jiang D, Wei X, Wang WE. Cathepsin K as a key regulator of myocardial fibrosis in dilated cardiomyopathy and a promising therapeutic target. J Biol Chem 2025:110421. [PMID: 40578558 DOI: 10.1016/j.jbc.2025.110421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 06/18/2025] [Accepted: 06/20/2025] [Indexed: 06/29/2025] Open
Abstract
Dilated cardiomyopathy (DCM) is a leading cause of heart failure with a high mortality rate. Cardiac fibrosis plays a critical role in the progression of DCM, yet therapeutic strategies targeting fibrosis remain limited. Therefore, it is essential to investigate the underlying mechanisms of fibrosis in DCM. Our study demonstrates through the integration of weighted gene co-expression network analysis and gene ontology annotation that 35 biological processes, including cytokine production, were significantly associated with fibrosis in DCM. Protein-protein interaction analysis identified 82 crucial genes. The scRNA-seq identified Cathepsin K (CTSK) as primarily expressed in cardiac fibroblasts. Masson's trichrome and immunofluorescence staining revealed that the level of fibrotic tissue in the left ventricle of patients with DCM and the expression of CTSK are higher than those in the normal ventricle. In vitro studies demonstrated that CTSK expression was upregulated in highly proliferative human cardiac fibroblasts (HCFs). PDGF-BB stimulation notably promoted HCF proliferation, an effect that was significantly attenuated by CTSK knockdown. However, CTSK depletion showed no inhibitory impact on TGF-β1-induced transdifferentiation of cardiac fibroblasts into myofibroblasts. Our research indicates that CTSK is a key regulator of myocardial fibrosis in DCM and is a promising therapeutic target.
Collapse
Affiliation(s)
- Lanlan Ma
- Department of Geriatrics, Southwest Hospital, Army Medical University, Chongqing, 400010, China; School of Medicine, Chongqing University, Chongqing, 400044, China
| | - Bingjun Lu
- Department of Geriatrics, Southwest Hospital, Army Medical University, Chongqing, 400010, China
| | - Yueqiao Si
- Department of Geriatrics, Southwest Hospital, Army Medical University, Chongqing, 400010, China; Department of General Practice, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Lingyan Dai
- School of Medicine, Chongqing University, Chongqing, 400044, China
| | - Mingyue Tan
- Department of Geriatrics, Southwest Hospital, Army Medical University, Chongqing, 400010, China
| | - Wujian Liu
- Department of Geriatrics, Southwest Hospital, Army Medical University, Chongqing, 400010, China
| | - Dongdong Sun
- Department of Geriatrics, Southwest Hospital, Army Medical University, Chongqing, 400010, China
| | - Jiangcheng Shu
- Department of Geriatrics, Southwest Hospital, Army Medical University, Chongqing, 400010, China
| | - Cong Chen
- Department of Geriatrics, Southwest Hospital, Army Medical University, Chongqing, 400010, China
| | - Qi Xiang
- Division of Cardiovascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave., Wuhan 430030, China
| | - Dingsheng Jiang
- Division of Cardiovascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave., Wuhan 430030, China
| | - Xiang Wei
- Division of Cardiovascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave., Wuhan 430030, China
| | - Wei Eric Wang
- Department of Geriatrics, Southwest Hospital, Army Medical University, Chongqing, 400010, China; School of Medicine, Chongqing University, Chongqing, 400044, China.
| |
Collapse
|
5
|
Zhang W, Zhang H, Gao Y, Lei J, Suo C. Fungi and cancer: unveiling the complex role of fungal infections in tumor biology and therapeutic resistance. Front Cell Infect Microbiol 2025; 15:1596688. [PMID: 40557321 PMCID: PMC12185418 DOI: 10.3389/fcimb.2025.1596688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Accepted: 05/05/2025] [Indexed: 06/28/2025] Open
Abstract
Cancer remains one of the most significant causes of mortality across the world. Despite remarkable advancements made in early detection, therapeutic strategies, and the advent of immunotherapy in recent years, numerous challenges continue to hinder optimal outcomes. The development and progression of cancer are driven not only by genetic and epigenetic alterations within tumor cells but also by dynamic interactions occurring with the surrounding tumor microenvironment (TME). It is a highly complex milieu composed of tumor cells, non-tumor stromal cells, extracellular matrix components, immune cells, blood vessels, and diverse signaling molecules. Emerging evidence underscores the pivotal role of fungi in influencing cancer biology, including initiation, progression, immune evasion, and the modulation of TME. Fungi, which are omnipresent microorganisms, have traditionally been considered opportunistic pathogens. However, recent research highlights their broader impact on host immunity and their potential contributions to cancer pathogenesis. For instance, in patients with cancer, fungal infections not only exacerbate clinical complications but also create conditions conducive to tumor growth, metastasis, and immune escape by altering the immune microenvironment. In addition, fungal-derived metabolites and their interactions with host immune pathways can significantly modulate the efficacy of immunotherapies. These findings have spurred interest in exploring antifungal strategies as adjunctive approaches in cancer management, positioning antifungal therapy as a burgeoning area of oncological research. This review provides an in-depth exploration of the complex interplay between fungi and cancer. It examines the multifaceted role of fungal infections in tumor biology, the mechanisms through which fungi reshape the TME through immune modulation and their influence on immune-evasion strategies and therapeutic resistance. Furthermore, the potential for integrating antifungal therapies into comprehensive cancer treatment regimens has been highlighted, offering insights into novel avenues for improving patient outcomes.
Collapse
Affiliation(s)
- Wanli Zhang
- College of Life and Health Science, Northeastern University, Shenyang, Liaoning, China
| | - He Zhang
- Department of Laboratory Animal Center, General Hospital of Northern Theater Command, Shenyang, Liaoning, China
| | - Yiru Gao
- College of Life and Health Science, Northeastern University, Shenyang, Liaoning, China
| | - Jianjun Lei
- Department of Laboratory Animal Center, General Hospital of Northern Theater Command, Shenyang, Liaoning, China
| | - Chenhao Suo
- Department of Laboratory Animal Center, General Hospital of Northern Theater Command, Shenyang, Liaoning, China
| |
Collapse
|
6
|
Song Q, Jin Z, Zhang H, Hong K, Zhu B, Yin H, Yu B. Fusobacterium nucleatum-derived 3-indolepropionic acid promotes colorectal cancer progression via aryl hydrocarbon receptor activation in macrophages. Chem Biol Interact 2025; 414:111495. [PMID: 40174685 DOI: 10.1016/j.cbi.2025.111495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 03/15/2025] [Accepted: 03/26/2025] [Indexed: 04/04/2025]
Abstract
An increasing body of research indicates that Fusobacterium nucleatum (F. nucleatum) significantly influences the onset and progression of colorectal cancer (CRC). Our previous study has shown that F. nucleatum exerts pro-tumorigenic effects through aryl hydrocarbon receptor (AhR) activation. However, the role of its microbial metabolites in regulating immune responses remains unclear. Here, we report for the first time that F. nucleatum-derived 3-Indolepropionic acid (IPA) activates AhR in macrophages, driving M2 polarization and tumor-promoting immunosuppression. We discovered that culture supernatant of F. nucleatum (CSF) robustly activates AhR in macrophages. In co-culture systems, CSF upregulated the expression of the M2 marker CD206 and elevated mRNA levels of CD163, TGF-β, IL-10, and VEGF. In a subcutaneous allograft model, CSF induced an elevated number of CD206+ macrophages and decreased presence of CD8+ T cells within the tumor microenvironment, thereby promoting tumor growth. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) revealed IPA as a novel major AhR-activating metabolite in CSF. Strikingly, IPA recapitulated CSF's effects in promoting tumor cell migration and immunosuppression, both in vitro and in vivo. Critically, the AhR inhibitor CH223191 abolished both IPA-mediated M2 polarization and tumor growth. Our study revealed a novel mechanism by which F. nucleatum-derived IPA reprograms macrophages through AhR activation to fuel CRC progression, providing potential therapeutic targets for CRC treatment and prognosis improvement.
Collapse
Affiliation(s)
- Qi Song
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, People's Republic of China; Key Laboratory of Hubei Province for Digestive System Diseases, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, People's Republic of China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, People's Republic of China
| | - Zhiliang Jin
- Department of Oncology, The Second Clinical Medical College, Yangtze University, Jingzhou, 434000, Hubei Province, People's Republic of China
| | - Han Zhang
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, People's Republic of China; Key Laboratory of Hubei Province for Digestive System Diseases, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, People's Republic of China
| | - Kunqiao Hong
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, People's Republic of China; Key Laboratory of Hubei Province for Digestive System Diseases, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, People's Republic of China
| | - Beibei Zhu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, People's Republic of China; Key Laboratory of Hubei Province for Digestive System Diseases, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, People's Republic of China
| | - Haisen Yin
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, People's Republic of China.
| | - Baoping Yu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, People's Republic of China.
| |
Collapse
|
7
|
Geltz A, Geltz J, Kasprzak A. Regulation and Function of Tumor-Associated Macrophages (TAMs) in Colorectal Cancer (CRC): The Role of the SRIF System in Macrophage Regulation. Int J Mol Sci 2025; 26:5336. [PMID: 40508145 PMCID: PMC12155148 DOI: 10.3390/ijms26115336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2025] [Revised: 05/16/2025] [Accepted: 05/28/2025] [Indexed: 06/16/2025] Open
Abstract
Colorectal cancer (CRC) remains the leading cause of morbidity and mortality for both men and women worldwide. Tumor-associated macrophages (TAMs) are the most abundant immune cells in the tumor microenvironment (TME) of solid tumors, including CRC. These macrophages are found in the pro-inflammatory M1 and anti-inflammatory M2 forms, with the latter increasingly recognized for its tumor-promoting phenotypes. Many signaling molecules and pathways, including AMPK, EGFR, STAT3/6, mTOR, NF-κB, MAPK/ERK, and HIFs, are involved in regulating TAM polarization. Consequently, researchers are investigating several potential predictive and prognostic markers, and novel TAM-based therapeutic targets, especially in combination therapies for CRC. Macrophages of the gastrointestinal tract, including the normal colon and rectum, produce growth hormone-releasing inhibitory peptide/somatostatin (SRIF/SST) and five SST receptors (SSTRs, SST1-5). While the immunosuppressive function of the SRIF system is primarily known for various tissues, its role within CRC-associated TAMs remains underexplored. This review focuses on the following three aspects of TAMs: first, the role of macrophages in the normal colon and rectum within the broader context of macrophage biology; second, the various bioactive factors and signaling pathways associated with TAM function, along with potential strategies targeting TAMs in CRC; and third, the interaction between the SRIF system and macrophages in both normal tissues and the CRC microenvironment.
Collapse
Affiliation(s)
- Agnieszka Geltz
- Department of Histology and Embryology, Poznan University of Medical Sciences, Swiecicki Street 6, 60-781 Poznan, Poland;
- Doctoral School, Poznan University of Medical Sciences, Bukowska Street 70, 60-812 Poznan, Poland;
| | - Jakub Geltz
- Doctoral School, Poznan University of Medical Sciences, Bukowska Street 70, 60-812 Poznan, Poland;
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, Szpitalna Street 27/33, 60-572 Poznan, Poland
| | - Aldona Kasprzak
- Department of Histology and Embryology, Poznan University of Medical Sciences, Swiecicki Street 6, 60-781 Poznan, Poland;
| |
Collapse
|
8
|
Lahouty M, Fadaee M, Aghaei R, Alizadeh F, Jafari A, Sharifi Y. Gut microbiome and colorectal cancer: From pathogenesis to treatment. Pathol Res Pract 2025; 271:156034. [PMID: 40412026 DOI: 10.1016/j.prp.2025.156034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2025] [Revised: 05/06/2025] [Accepted: 05/21/2025] [Indexed: 05/27/2025]
Abstract
Colorectal cancer (CRC) continues to rank among the most prevalent cancers worldwide. A growing body of research indicates that the microbiome significantly influences the onset, development, and progression of CRC, in addition to affecting the efficacy of various systemic therapies. The composition of the microbiome, shaped by factors such as bacterial strains, geography, ethnicity, gender, and dietary habits, provides essential information for CRC screening, early diagnosis, and the prediction of treatment responses. Modulating the microbiome presents a highly promising medical strategy for improving individual health. This review aims to present a thorough overview of recent research concerning the interplay between host microbiota and CRC, along with its implications for screening and the immune response against tumors in the context of cancer treatment.
Collapse
Affiliation(s)
- Masoud Lahouty
- Pediatric Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Manouchehr Fadaee
- Student Research Committee, Tabriz University of Medical Science, Tabriz, Iran.
| | - Reza Aghaei
- Department of veterinary medicine, Shab.C, Islamic Azad University, Shabestar, Iran
| | - Fatemeh Alizadeh
- Pediatric Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amirmohammad Jafari
- Department of veterinary medicine, Shab.C, Islamic Azad University, Shabestar, Iran
| | - Yaeghob Sharifi
- Department of Microbiology and Virology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
9
|
Yang Y, Li S, To KKW, Zhu S, Wang F, Fu L. Tumor-associated macrophages remodel the suppressive tumor immune microenvironment and targeted therapy for immunotherapy. J Exp Clin Cancer Res 2025; 44:145. [PMID: 40380196 DOI: 10.1186/s13046-025-03377-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Accepted: 03/27/2025] [Indexed: 05/19/2025] Open
Abstract
Despite the significant advances in the development of immune checkpoint inhibitors (ICI), primary and acquired ICI resistance remains the primary impediment to effective cancer immunotherapy. Residing in the tumor microenvironment (TME), tumor-associated macrophages (TAMs) play a pivotal role in tumor progression by regulating diverse signaling pathways. Notably, accumulating evidence has confirmed that TAMs interplay with various cellular components within the TME directly or indirectly to maintain the dynamic balance of the M1/M2 ratio and shape an immunosuppressive TME, consequently conferring immune evasion and immunotherapy tolerance. Detailed investigation of the communication network around TAMs could provide potential molecular targets and optimize ICI therapies. In this review, we systematically summarize the latest advances in understanding the origin and functional plasticity of TAMs, with a focus on the key signaling pathways driving macrophage polarization and the diverse stimuli that regulate this dynamic process. Moreover, we elaborate on the intricate interplay between TAMs and other cellular constituents within the TME, that is driving tumor initiation, progression and immune evasion, exploring novel targets for cancer immunotherapy. We further discuss current challenges and future research directions, emphasizing the need to decode TAM-TME interactions and translate preclinical findings into clinical breakthroughs. In conclusion, while TAM-targeted therapies hold significant promise for enhancing immunotherapy outcomes, addressing key challenges-such as TAM heterogeneity, context-dependent plasticity, and therapeutic resistance-remains critical to achieving optimal clinical efficacy.
Collapse
Affiliation(s)
- Yan Yang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Sijia Li
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Kenneth K W To
- School of Pharmacy, The Chinese University of Hong Kong, Hong Kong, 999077, P.R. China
| | - Shuangli Zhu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Fang Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Liwu Fu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China.
| |
Collapse
|
10
|
Lu Z, Zhou Y, Li C, Abd El-Aty AM, Liu C, Luan X, Wang B, Wang G. Multiomics profiles of genome-wide alterations in H3K27ac in different lung lobes after acute graft- versus-host disease with MSCs treatment. Front Immunol 2025; 16:1570916. [PMID: 40443676 PMCID: PMC12119469 DOI: 10.3389/fimmu.2025.1570916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Accepted: 04/23/2025] [Indexed: 06/02/2025] Open
Abstract
The molecular characteristics of acute graft-versus-host disease (aGVHD) in different lung lobes and the treatment of aGVHD with mesenchymal stem cells are still poorly understood. In addition, despite the important role of acetylation on lysine 27 of histone H3 (H3K27ac) in the inflammatory response, little is known about genome-wide H3K27ac in GVHD and MSC treatment. In this study, we described 55 paired transcriptomes and genome-wide H3K27ac in five lung lobes, with groups designated as follows: control, GVHD, human placenta-derived MSC (hPMSC)-treated, and PBS-treated groups. We observed that inflammatory pathways were upregulated in GVHD but downregulated in hPMSCs. One algorithm was designed to identify the genes implicated in the prevention of GVHD by hPMSCs (the Rein02 gene), shedding light on a gene set with 892 Rein02 genes that are shared by all lobes and enriched in inflammatory pathways such as TNF-α signaling via NF-κb. The genome-wide H3K27ac data revealed lobe-specific patterns in the lobe behind the heart (H) and the left lobe (L) in the control and hPMSC groups, whereas these patterns were confused in the GVHD and PBS groups. Gene set enrichment analysis revealed that the hPMSC-induced variations in genome-wide H3K27ac were concentrated in the L and R3 lobes. The genes showing accordant tendencies (a-DEGs) between the transcriptome and H3K27ac highly overlapped between the a-DEGs and the Rein02 genes when hPMSCs were compared with GVHD. Integrated multiomics analysis suggested that the a-DEGs were predominantly expressed on myeloid (Fam174a, Ifi204, Slc7a11, Chil3, Capza2, Clec5a, and Clec4a2), T and NK cells (Eif3f, Cited2, Crybg1, Ndufs4, and Emb), B cells (Fam174a, Eif3f, and Blnk), and epithelial cells (Alcam, Chmp2b, and Metap2). The subset with high expression levels of these genes tended to present anti-inflammatory effects and reduced cytotoxic activity. Our study may provide new insights into the development of potential therapeutic drugs that target H3K27ac to assist in MSC treatment.
Collapse
Affiliation(s)
- Zixuan Lu
- Department of Immunology, Binzhou Medical University, Yantai, China
| | - Yuming Zhou
- Department of Immunology, Binzhou Medical University, Yantai, China
- Medical Laboratory of the Second School of Clinical Medicine, Binzhou Medical University, Yantai, China
| | - Chengyu Li
- Department of Immunology, Binzhou Medical University, Yantai, China
| | - A. M. Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
- Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum, Türkiye
| | - Chengxia Liu
- Department of Gastroenterology and Institute of Digestive Disease, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Xiying Luan
- Medical Laboratory of the Second School of Clinical Medicine, Binzhou Medical University, Yantai, China
| | - Bin Wang
- Department of Immunology, Binzhou Medical University, Yantai, China
| | - Guoyan Wang
- Department of Immunology, Binzhou Medical University, Yantai, China
- Medical Laboratory of the Second School of Clinical Medicine, Binzhou Medical University, Yantai, China
| |
Collapse
|
11
|
Zhao S, Zhang Y, Meng X, Wang Y, Li Y, Li H, Zhao X, Yang P, Liu S, Yang C. INHBA + macrophages and Pro-inflammatory CAFs are associated with distinctive immunosuppressive tumor microenvironment in submucous Fibrosis-Derived oral squamous cell carcinoma. BMC Cancer 2025; 25:857. [PMID: 40355814 PMCID: PMC12067746 DOI: 10.1186/s12885-025-14261-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Accepted: 05/02/2025] [Indexed: 05/15/2025] Open
Abstract
Transcriptomic and metabolic profiles of tumor cells and stromal cells in oral squamous cell carcinoma (OSCC)-derived from oral submucosal fibrosis (OSF) (ODSCC) have been reported. However, the complex intercellular regulatory network within the tumor immunosuppressive microenvironment (TISME) in ODSCC remains poorly elucidated. Here, we utilized single-cell RNA sequencing (scRNA-seq) and spatial transcriptomics (ST) data from GEO database and multiple immunofluorescence staining (mIF) to reveal distinctive TISME of ODSCC. Results found that compared to OSCC without OSF history (NODSCC), OSCC derived from OSF (ODSCC) showed a significant increase in exhausted CD8+T and Treg cells (Ro/e > 1, p < 0.05) and a decrease in cytotoxic T (CTL) (Ro/e < 1). ODSCC enriched in more Inhibin subunit beta A+ Macrophages (INHBA+Mac) and Proinflammatory Cancer-associated Fibroblast (iCAF) versus NODSCC. INHBA+Mac possessed strongest immune-suppressive functions, evidenced by highest immune checkpoint scores, lowest MHC scores and highest expression of SPP1 among macrophages. Moreover, INHBA+Mac in ODSCC presented stronger immune-suppressive functions than that in NODSCC. iCAF differentially highly expressed INHBA and enriched in immune-related pathways and collagen/ECM pathways across CAF subsets, and possessed stronger immune-suppressive functions, as shown by up-regulated gene expression of TDO2, IDO1 and DUSP4 in ODSCC versus in NODSCC. Furthermore, INHBA expression was higher in ODSCC than in NODSCC (p < 0.01). The classic OSF-inducing molecule arecoline significantly increases the expression of INHBA (p < 0.0001) in vitro experiments stimulating THP-1 cells. ST analysis revealed a close co-location of INHBA+Mac, iCAF and Treg and SpaGene identified INHBA-ACVR1/ACVR2A/ACVR2B interaction regions overlapping with distribution of three types of cells. Collectively, ODSCC shows a more severe TISME and potentially poorer sensitivity to immunotherapy than NODSCC. The increased INHBA+Mac and iCAF in ODSCC are associated with the observed more severe TISME. The upregulated INHBA in ODSCC and its interaction with INHBA-ACVR1/ACVR2A/ACVR2B may mediate the modulation effect of INHBA+ Mac and iCAF on Treg differentiation and functionality.
Collapse
Affiliation(s)
- Simin Zhao
- Department of Oral and Maxillofacial Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Shandong, China
- Research Center for Basic Medical Sciences, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yu Zhang
- Department of Oral and Maxillofacial Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Shandong, China
- Research Center for Basic Medical Sciences, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Xiaoqin Meng
- Department of Oral and Maxillofacial Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Shandong, China
| | - Ye Wang
- Department of Stomatology, Shandong Provincial Hospital, Shandong Provincial Hospital Affiliated to Shandong First Medical University &Department of Stomatology, Shandong University, Jinan, Shandong, China
| | - Yahui Li
- Department of Oral and Maxillofacial Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Shandong, China
| | - Hao Li
- Department of Oral and Maxillofacial Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Shandong, China
| | - Xingyu Zhao
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Shandong, China
- Department of Plastic, Aesthetic, and Burn Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Pishan Yang
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Shandong University, Jinan, Shandong, China
| | - Shaopeng Liu
- Department of Stomatology, Shandong Provincial Hospital, Shandong Provincial Hospital Affiliated to Shandong First Medical University &Department of Stomatology, Shandong University, Jinan, Shandong, China.
| | - Chengzhe Yang
- Department of Oral and Maxillofacial Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China.
| |
Collapse
|
12
|
Fang X, Liu H, Liu J, Du Y, Chi Z, Bian Y, Zhao X, Teng T, Shi B. Isobutyrate Confers Resistance to Inflammatory Bowel Disease through Host-Microbiota Interactions in Pigs. RESEARCH (WASHINGTON, D.C.) 2025; 8:0673. [PMID: 40342298 PMCID: PMC12059313 DOI: 10.34133/research.0673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 03/20/2025] [Accepted: 03/23/2025] [Indexed: 05/11/2025]
Abstract
Supplementation with short-chain fatty acids (SCFAs) is a potential therapeutic approach for inflammatory bowel disease (IBD). However, the therapeutic effects and mechanisms of action of isobutyrate in IBD remain unclear. Clinical data indicate that the fecal levels of isobutyrate are markedly lower in patients with Crohn's disease than in healthy controls. Compared with healthy mice and healthy pigs, mice and pigs with colitis presented significantly lower isobutyrate levels. Furthermore, the level of isobutyrate in pigs was significantly negatively correlated with the disease activity index. We speculate that isobutyrate may play a crucial role in regulating host gut homeostasis. We established a model of dextran sulfate sodium-induced colitis in pigs, which have gastrointestinal structure and function similar to those of humans; we performed multiomic analysis to investigate the therapeutic effects and potential mechanisms of isobutyrate on IBD at both the animal and cellular levels and validated the results. Phenotypically, isobutyrate can significantly alleviate diarrhea, bloody stools, weight loss, and colon shortening caused by colitis in pigs. Mechanistically, isobutyrate can increase the relative abundance of Lactobacillus reuteri, thereby increasing the production of indole-3-lactic acid, regulating aryl hydrocarbon receptor expression and downstream signaling pathways, and regulating Foxp3+ CD4+ T cell recruitment to alleviate colitis. Isobutyrate can directly activate G protein-coupled receptor 109A, promote the expression of Claudin-1, and improve intestinal barrier function. In addition, isobutyrate can increase the production of intestinal SCFAs and 3-hydroxybutyric acid and inhibit the TLR4/MyD88/NF-κB signaling pathway to suppress intestinal inflammation. In conclusion, our findings demonstrate that isobutyrate confers resistance to IBD through host-microbiota interactions, providing a theoretical basis for the use of isobutyrate in alleviating colitis.
Collapse
Affiliation(s)
| | | | - Junling Liu
- College of Animal Science and Technology,
Northeast Agricultural University, Harbin 150030, People’s Republic of China
| | - Yongqing Du
- College of Animal Science and Technology,
Northeast Agricultural University, Harbin 150030, People’s Republic of China
| | - Zihan Chi
- College of Animal Science and Technology,
Northeast Agricultural University, Harbin 150030, People’s Republic of China
| | - Yiqi Bian
- College of Animal Science and Technology,
Northeast Agricultural University, Harbin 150030, People’s Republic of China
| | - Xuan Zhao
- College of Animal Science and Technology,
Northeast Agricultural University, Harbin 150030, People’s Republic of China
| | - Teng Teng
- College of Animal Science and Technology,
Northeast Agricultural University, Harbin 150030, People’s Republic of China
| | - Baoming Shi
- College of Animal Science and Technology,
Northeast Agricultural University, Harbin 150030, People’s Republic of China
| |
Collapse
|
13
|
Zhang R, Zhang X, Lau HCH, Yu J. Gut microbiota in cancer initiation, development and therapy. SCIENCE CHINA. LIFE SCIENCES 2025; 68:1283-1308. [PMID: 39821827 DOI: 10.1007/s11427-024-2831-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 12/12/2024] [Indexed: 01/19/2025]
Abstract
Cancer has long been associated with genetic and environmental factors, but recent studies reveal the important role of gut microbiota in its initiation and progression. Around 13% of cancers are linked to infectious agents, highlighting the need to identify the specific microorganisms involved. Gut microbiota can either promote or inhibit cancer growth by influencing oncogenic signaling pathways and altering immune responses. Dysbiosis can lead to cancer, while certain probiotics and their metabolites may help reestablish micro-ecological balance and improve anti-tumor immune responses. Research into targeted approaches that enhance therapy with probiotics is promising. However, the effects of probiotics in humans are complex and not yet fully understood. Additionally, methods to counteract harmful bacteria are still in development. Early clinical trials also indicate that modifying gut microbiota may help manage side effects of cancer treatments. Ongoing research is crucial to understand better how gut microbiota can be used to improve cancer prevention and treatment outcomes.
Collapse
Affiliation(s)
- Ruyi Zhang
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Xiang Zhang
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Harry Cheuk Hay Lau
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Jun Yu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
14
|
Cheng M, Liu J, Liang Y, Xu J, Ma L, Liang J. Tissue-Resident Memory T Cells in Tumor Immunity and Immunotherapy of Digestive System Tumors. Immunol Invest 2025; 54:435-456. [PMID: 39840686 DOI: 10.1080/08820139.2024.2447780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
BACKGROUND Tissue-resident memory T (TRM) cells possess unique abilities to migrate, establish themselves in tissues, and monitor peripheral tissues without circulating. They are crucial in providing long-lasting and local immune protection against surface infections. TRMs demonstrate distinct phenotypic and functional characteristics compared to central memory T (Tcm) cells and effector memory T (Tem) cells. METHODS We reviewed a large number of literature to explore the physiological and functional roles of tissue-resident memory T cells, as well as the link between TRM cells and the development and prognosis of digestive tract tumors. We also investigated the association between TRM cells, intestinal flora, and metabolites. RESULTS Recent studies have implicated TRMs in the immune response against tumors, making them a potential target for cancer therapy. However, research specifically focused on gastrointestinal tumors is limited. CONCLUSION This review aims to compile and assess the most recent data on the role of TRM cells in gastrointestinal tumor immunity. Additionally, it explores recent advancements in immunotherapy and investigates how TRMs may influence intestinal flora and metabolites.
Collapse
Affiliation(s)
- Min Cheng
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Lung Cancer Institute, Jinan, China
| | - Jie Liu
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Lung Cancer Institute, Jinan, China
- School of Clinical Medicine, Shandong Second Medical University, Weifang, China
| | - Yue Liang
- Department of Breast Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of General Surgery (Breast Surgery), The First Affiliated Hospital of Shandong First Medical University (Shandong Provincial Qianfoshan Hospital), Jinan, China
| | - Jiamei Xu
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Lung Cancer Institute, Jinan, China
| | - Lin Ma
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Lung Cancer Institute, Jinan, China
| | - Jing Liang
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Lung Cancer Institute, Jinan, China
| |
Collapse
|
15
|
Nobels A, van Marcke C, Jordan BF, Van Hul M, Cani PD. The gut microbiome and cancer: from tumorigenesis to therapy. Nat Metab 2025; 7:895-917. [PMID: 40329009 DOI: 10.1038/s42255-025-01287-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 03/20/2025] [Indexed: 05/08/2025]
Abstract
The gut microbiome has a crucial role in cancer development and therapy through its interactions with the immune system and tumour microenvironment. Although evidence links gut microbiota composition to cancer progression, its precise role in modulating treatment responses remains unclear. In this Review, we summarize current knowledge on the gut microbiome's involvement in cancer, covering its role in tumour initiation and progression, interactions with chemotherapy, radiotherapy and targeted therapies, and its influence on cancer immunotherapy. We discuss the impact of microbial metabolites on immune responses, the relationship between specific bacterial species and treatment outcomes, and potential microbiota-based therapeutic strategies, including dietary interventions, probiotics and faecal microbiota transplantation. Understanding these complex microbiota-immune interactions is critical for optimizing cancer therapies. Future research should focus on defining microbial signatures associated with treatment success and developing targeted microbiome modulation strategies to enhance patient outcomes.
Collapse
Affiliation(s)
- Amandine Nobels
- UCLouvain, Université catholique de Louvain, Louvain Drug Research Institute (LDRI), Metabolism and Nutrition Research Group (MNUT), Brussels, Belgium
- UCLouvain, Université catholique de Louvain, Institut de Recherche Expérimentale et Clinique (IREC), Pole of Medical Imaging, Radiotherapy and Oncology (MIRO), Brussels, Belgium
| | - Cédric van Marcke
- UCLouvain, Université catholique de Louvain, Institut de Recherche Expérimentale et Clinique (IREC), Pole of Medical Imaging, Radiotherapy and Oncology (MIRO), Brussels, Belgium
- Department of Medical Oncology, King Albert II Cancer Institute, Cliniques Universitaires Saint-Luc, Brussels, Belgium
- Breast Clinic, King Albert II Cancer Institute, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Bénédicte F Jordan
- UCLouvain, Université catholique de Louvain, Biomedical Magnetic Resonance group (REMA), Louvain Drug Research Institute (LDRI), Brussels, Belgium
| | - Matthias Van Hul
- UCLouvain, Université catholique de Louvain, Louvain Drug Research Institute (LDRI), Metabolism and Nutrition Research Group (MNUT), Brussels, Belgium.
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), WELBIO department, WEL Research Institute, Wavre, Belgium.
| | - Patrice D Cani
- UCLouvain, Université catholique de Louvain, Louvain Drug Research Institute (LDRI), Metabolism and Nutrition Research Group (MNUT), Brussels, Belgium.
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), WELBIO department, WEL Research Institute, Wavre, Belgium.
- UCLouvain, Université catholique de Louvain, Institute of Experimental and Clinical Research (IREC), Brussels, Belgium.
| |
Collapse
|
16
|
Ionescu VA, Diaconu CC, Gheorghe G, Mihai MM, Diaconu CC, Bostan M, Bleotu C. Gut Microbiota and Colorectal Cancer: A Balance Between Risk and Protection. Int J Mol Sci 2025; 26:3733. [PMID: 40332367 PMCID: PMC12028331 DOI: 10.3390/ijms26083733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2025] [Revised: 04/11/2025] [Accepted: 04/14/2025] [Indexed: 05/08/2025] Open
Abstract
The gut microbiome, a complex community of microorganisms residing in the intestinal tract, plays a dual role in colorectal cancer (CRC) development, acting both as a contributing risk factor and as a protective element. This review explores the mechanisms by which gut microbiota contribute to CRC, emphasizing inflammation, oxidative stress, immune evasion, and the production of genotoxins and microbial metabolites. Fusobacterium nucleatum, Escherichia coli (pks+), and Bacteroides fragilis promote tumorigenesis by inducing chronic inflammation, generating reactive oxygen species, and producing virulence factors that damage host DNA. These microorganisms can also evade the antitumor immune response by suppressing cytotoxic T cell activity and increasing regulatory T cell populations. Additionally, microbial-derived metabolites such as secondary bile acids and trimethylamine-N-oxide (TMAO) have been linked to carcinogenic processes. Conversely, protective microbiota, including Lactobacillus, Bifidobacterium, and Faecalibacterium prausnitzii, contribute to intestinal homeostasis by producing short-chain fatty acids (SCFAs) like butyrate, which exhibit anti-inflammatory and anti-carcinogenic properties. These beneficial microbes enhance gut barrier integrity, modulate immune responses, and inhibit tumor cell proliferation. Understanding the dynamic interplay between pathogenic and protective microbiota is essential for developing microbiome-based interventions, such as probiotics, prebiotics, and fecal microbiota transplantation, to prevent or treat CRC. Future research should focus on identifying microbial biomarkers for early CRC detection and exploring personalized microbiome-targeted therapies. A deeper understanding of host-microbiota interactions may lead to innovative strategies for CRC management and improved patient outcomes.
Collapse
Affiliation(s)
- Vlad Alexandru Ionescu
- Faculty of Medicine, University of Medicine and Pharmacy Carol Davila Bucharest, 050474 Bucharest, Romania; (V.A.I.); (G.G.); (M.-M.M.)
- Internal Medicine Department, Clinical Emergency Hospital of Bucharest, 105402 Bucharest, Romania
| | - Camelia Cristina Diaconu
- Faculty of Medicine, University of Medicine and Pharmacy Carol Davila Bucharest, 050474 Bucharest, Romania; (V.A.I.); (G.G.); (M.-M.M.)
- Internal Medicine Department, Clinical Emergency Hospital of Bucharest, 105402 Bucharest, Romania
- Academy of Romanian Scientists, 050085 Bucharest, Romania;
| | - Gina Gheorghe
- Faculty of Medicine, University of Medicine and Pharmacy Carol Davila Bucharest, 050474 Bucharest, Romania; (V.A.I.); (G.G.); (M.-M.M.)
- Internal Medicine Department, Clinical Emergency Hospital of Bucharest, 105402 Bucharest, Romania
| | - Mara-Madalina Mihai
- Faculty of Medicine, University of Medicine and Pharmacy Carol Davila Bucharest, 050474 Bucharest, Romania; (V.A.I.); (G.G.); (M.-M.M.)
- Department of Oncologic Dermathology, “Elias” University Emergency Hospital, 010024 Bucharest, Romania
| | - Carmen Cristina Diaconu
- Stefan S. Nicolau Institute of Virology, Romanian Academy, 030304 Bucharest, Romania; (C.C.D.); (M.B.)
| | - Marinela Bostan
- Stefan S. Nicolau Institute of Virology, Romanian Academy, 030304 Bucharest, Romania; (C.C.D.); (M.B.)
- Department of Immunology, “Victor Babes” National Institute of Pathology, 050096 Bucharest, Romania
| | - Coralia Bleotu
- Academy of Romanian Scientists, 050085 Bucharest, Romania;
- Stefan S. Nicolau Institute of Virology, Romanian Academy, 030304 Bucharest, Romania; (C.C.D.); (M.B.)
- Research Institute of the University of Bucharest (ICUB), University of Bucharest, 060023 Bucharest, Romania
| |
Collapse
|
17
|
Tao M, Xue M, Zhou D, Zhang L, Hou X, Zhu X, Feng S, Yan H, Qian X, Wei L, Zong C, Yang X, Zhang L. Lipopolysaccharide Induces Resistance to CAR-T Cell Therapy of Colorectal Cancer Cells through TGF-β-Mediated Stemness Enhancement. Mol Pharm 2025; 22:1790-1803. [PMID: 40116228 DOI: 10.1021/acs.molpharmaceut.4c00264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2025]
Abstract
Chimeric antigen receptor-T (CAR-T) cell therapy is a cellular immunotherapy that has emerged in recent years, and increasing studies showed that therapeutic resistance to CAR-T cell therapy presents in colorectal cancer patients. Lipopolysaccharide (LPS), a component of the cell wall of Gram-negative bacteria, is known to preserve a high concentration in the colon. Whether LPS is a contributing factor to the development of resistance in colorectal cancer cells against CAR-T cell therapy remains unclear. For in vivo experiments, colorectal cancer cells COLO205 were pretreated with LPS for 24 h and then were injected into nude mice through the tail vein, followed by CAR-T cells transplantation one day later. Later, the number of tumors in the lung tissues of the mice was observed. The in vitro experiments were performed on COLO205 cells, which were treated with LPS for 24 h. The effect of LPS on the stemness of COLO205 and SW620 cells was observed by using the colony formation assay and spheroidization experiments. The effect of LPS on the expression of stemness-related genes, including CD44, SOX2, and NANOG, was observed by qRT-PCR assay, Western blotting assay, and immunofluorescence staining. Inhibitors of TGF-β and the MYD88 inhibitor were used to study the mechanisms by which LPS induces the stemness enhancement and resistance to CAR-T cell therapy of COLO205 cells. The correlation between MYD88 and TGFB1, as well as the correlation between TGFB1 and stemness-related genes was analyzed using the TCGA database. Both the in vivo assay of nude mice and the in vitro assay showed that LPS pretreatment could induce resistance to CAR-T cell therapy of colorectal cancer cells. LPS could enhance COLO205 and SW620 cells stemness presented by upregulation of CD44, SOX2, and NANOG. The reverse interfering assay using the TGF-β inhibitor indicated that the autosecretion of TGF-β induced by LPS played a critical role in the stemness enhancement of colorectal cancer cells. The TCGA database analysis revealed a strong positive correlation between MYD88 and TGFB1. Additionally, TGFB1 has been found to upregulate the expression of genes associated with stemness. Further mechanism studies showed that the TLR4/MYD88 pathway medicates LPS-induced TGF-β expression. Our results suggested that LPS-induced resistance to CAR-T cell therapy of colorectal cancer cells through stemness enhancement. TLR4/MYD88 signal pathway-dependent TGF-β expression was involved in stemness enhancement and CAR-T cell therapy resistance. In conclusion, our findings help us to understand the underlying mechanisms of CAR-T cell therapy resistance and indicate that inhibitors of TGF-β and MYD88 are promising targeting candidates to promote a therapeutic effect of CAR-T cell therapy in colorectal cancer in the clinic.
Collapse
Affiliation(s)
- Min Tao
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei 230601, China
- Clinical Research Unit, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Mengmeng Xue
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei 230601, China
- Clinical Research Unit, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Daoyu Zhou
- Clinical Research Unit, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Luyao Zhang
- Clinical Research Unit, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Xiaojuan Hou
- Tumor Immunology and Gene Therapy Center, National Center for Liver Cancer, Naval Medical University, Shanghai 201805, China
| | - Xinyu Zhu
- Clinical Research Unit, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Shiyao Feng
- Anhui Medical University, Hefei 230032, China
| | - Haixin Yan
- Department of Urology, The Second Hospital of Anhui Medical University, Hefei 230601, China
| | - Xiaofeng Qian
- Shanghai Putuo District Liqun Hospital, Shanghai 200061, China
| | - Lixin Wei
- Tumor Immunology and Gene Therapy Center, National Center for Liver Cancer, Naval Medical University, Shanghai 201805, China
| | - Chen Zong
- Tumor Immunology and Gene Therapy Center, National Center for Liver Cancer, Naval Medical University, Shanghai 201805, China
| | - Xue Yang
- Tumor Immunology and Gene Therapy Center, National Center for Liver Cancer, Naval Medical University, Shanghai 201805, China
| | - Li Zhang
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei 230601, China
- Clinical Research Unit, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| |
Collapse
|
18
|
Li M, Liu Q, Xie S, Weng D, He J, Yang X, Liu Y, You J, Liao J, Wang P, Lu X, Zhao J. Transformable Tumor Microenvironment-Responsive Oxygen Vacancy-Rich MnO 2@Hydroxyapatite Nanospheres for Highly Efficient Cancer Sonodynamic Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2414162. [PMID: 39960349 PMCID: PMC11984894 DOI: 10.1002/advs.202414162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 12/31/2024] [Indexed: 04/12/2025]
Abstract
Despite the promise of sonodynamic therapy (SDT)-mediated immunotherapy, the anticancer efficacy of current sonosensitizers is greatly limited by the immunosuppressive tumor microenvironment (TME) and their inability to selectively respond to it. Herein, oxygen vacancy-rich MnO2@hydroxyapatite (Ca10(PO4)6(OH)2) core-shell nanospheres (denoted as Ov-MO@CPO) as an advanced TME-responsive sonosensitizer for sonodynamic immunotherapy is demonstrated. The Ov-MO@CPO maintains its structural integrity under neutral conditions but dissolves the pH-sensitive hydroxyapatite shell under acidic TME to release active oxygen vacancy-rich MnO2 core, which reinvigorates H2O2 consumption and hypoxia alleviation due to its catalase-like activity. Furthermore, the introduced oxygen vacancies optimize the electronic structure of Ov-MO@CPO, with active electronic states near the Fermi level and higher d-band center. It results in accelerated electron-hole pair separation and lower catalytic energy barriers to boost ultrasound (US)-initiated ROS production. These multimodal synergistic effects effectively reverse the immunosuppressive tumor microenvironment, inhibiting tumor growth and metastasis in 4T1 tumor-bearing mice. No evident toxic effects are observed in normal mouse tissues. Additionally, when combined with an immune checkpoint inhibitor, Ov-MO@CPO-mediated SDT further improves the effectiveness of immunotherapy. This work affords a new avenue for developing TME-dependent sonosensitizers for SDT-mediated immunotherapy.
Collapse
Affiliation(s)
- Minxing Li
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerCollaborative Innovation Center for Cancer Medicine, Department of BiotherapySun Yat‐Sen University Cancer CenterGuangzhou510060P. R. China
| | - Qiyu Liu
- The Key Lab of Low‐carbon Chem & Energy Conservation of Guangdong ProvinceSchool of ChemistrySun Yat‐Sen UniversityGuangzhou510275P. R. China
| | - Songzuo Xie
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerCollaborative Innovation Center for Cancer Medicine, Department of BiotherapySun Yat‐Sen University Cancer CenterGuangzhou510060P. R. China
| | - Desheng Weng
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerCollaborative Innovation Center for Cancer Medicine, Department of BiotherapySun Yat‐Sen University Cancer CenterGuangzhou510060P. R. China
| | - Jinjun He
- The Key Lab of Low‐carbon Chem & Energy Conservation of Guangdong ProvinceSchool of ChemistrySun Yat‐Sen UniversityGuangzhou510275P. R. China
| | - Xinyi Yang
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerCollaborative Innovation Center for Cancer Medicine, Department of BiotherapySun Yat‐Sen University Cancer CenterGuangzhou510060P. R. China
| | - Yuanyuan Liu
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerCollaborative Innovation Center for Cancer Medicine, Department of BiotherapySun Yat‐Sen University Cancer CenterGuangzhou510060P. R. China
| | - Jinqi You
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerCollaborative Innovation Center for Cancer Medicine, Department of BiotherapySun Yat‐Sen University Cancer CenterGuangzhou510060P. R. China
| | - Jinghao Liao
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerCollaborative Innovation Center for Cancer Medicine, Department of BiotherapySun Yat‐Sen University Cancer CenterGuangzhou510060P. R. China
| | - Peng Wang
- Department of Emergency MedicineSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120P. R. China
| | - Xihong Lu
- The Key Lab of Low‐carbon Chem & Energy Conservation of Guangdong ProvinceSchool of ChemistrySun Yat‐Sen UniversityGuangzhou510275P. R. China
| | - Jingjing Zhao
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerCollaborative Innovation Center for Cancer Medicine, Department of BiotherapySun Yat‐Sen University Cancer CenterGuangzhou510060P. R. China
| |
Collapse
|
19
|
Zhu Q, Liu D, Liu H, Pan X, Shi Y, Guo J, Tong N, Chen J, Zeng H. Appraising the causal role of cathepsins in genitourinary carcinoma: a two-sample mendelian randomization and prospective study based on 36,225 individuals. Discov Oncol 2025; 16:435. [PMID: 40163277 PMCID: PMC11958880 DOI: 10.1007/s12672-025-02219-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 03/24/2025] [Indexed: 04/02/2025] Open
Abstract
BACKGROUND Cathepsin family proteases play an important role in the carcinogenesis of genitourinary carcinomas. However, the causality between serum cathepsin levels and genitourinary carcinomas remains uninvestigated. METHODS In this study, we conducted a two-sample Mendelian Randomization (MR) analysis exploring the causal association between different types of cathepsins and genitourinary carcinomas. Univariate, bidirectional and multivariate MR analyses were conducted based on the genome-wide association studies. Moreover, linkage disequilibrium score regression (LDSC) analysis, colocalization and transcriptomic analysis were also performed. 36,225 Individual data from UK biobank was utilized for further validation. RESULTS Our findings revealed seven causal associations following univariate analysis, in which five correlations were further validated in multivariate analysis. Cathepsin S (CTSS) was positively associated with papillary renal cell carcinoma (pRCC) [IVW: OR (95%CI) 1.444 (1.103-1.890), p: 8*10-3], and LDSC analysis indicated a genetic correlation between CTSS and pRCC [rg (SE): 0.559 (0.225); p: 0.013]. Other causal correlations included cathepsin B (CTSB), positively associated with testicular non-seminoma, and cathepsin L2 (CTSL2/CTSV), negatively associated with overall kidney cancer and pRCC. Transcriptomic analysis further validated the findings from MR analysis. In the UK biobank, CTSL2 was found to be negatively associated with the risk of cancer of the kidney [HR (95%CI) 0.567 (0.368, 0.873), p: 0.01]. CONCLUSIONS Cathepsins played an important role in urogenital carcinogenesis. Further large-scale studies are warranted for extended validation.
Collapse
Grants
- NSFC 82203110, 82172785, and 81974398 National Natural Science Foundation of China
- ZYJC21020 1.3.5 project for disciplines of excellence, West China Hospital, Sichuan University
- ZYGD22004 1.3.5 project for disciplines of excellence, West China Hospital, Sichuan University
- 2021YFS0119 Science and Technology Support Program of Sichuan Province
- 2022-I2M-C&T-B-098 Clinical and Translational Medicine Research Project, Chinese Academy of Medical Sciences
- X-J-2020-016 Bethune Foundation, Oncology Basic Research Program
- mnzl202002 Bethune Foundation, Urological Oncology Special Research Fund
- mnzl202007 Bethune Foundation, Urological Oncology Special Research Fund
Collapse
Affiliation(s)
- Qiyu Zhu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, No. 37, Guoxue Alley, Chengdu, 610041, People's Republic of China
| | - Dingbang Liu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, No. 37, Guoxue Alley, Chengdu, 610041, People's Republic of China
- West China School of Medicine, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Haoyang Liu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, No. 37, Guoxue Alley, Chengdu, 610041, People's Republic of China
| | - Xiaohui Pan
- Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, No. 37, Guoxue Alley, Chengdu, 610041, Sichuan, People's Republic of China
| | - Yifu Shi
- West China School of Medicine, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Jingjing Guo
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, No. 37, Guoxue Alley, Chengdu, 610041, People's Republic of China
| | - Nanwei Tong
- Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, No. 37, Guoxue Alley, Chengdu, 610041, Sichuan, People's Republic of China.
| | - Junru Chen
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, No. 37, Guoxue Alley, Chengdu, 610041, People's Republic of China.
| | - Hao Zeng
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, No. 37, Guoxue Alley, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
20
|
Sulekha Suresh D, Jain T, Dudeja V, Iyer S, Dudeja V. From Microbiome to Malignancy: Unveiling the Gut Microbiome Dynamics in Pancreatic Carcinogenesis. Int J Mol Sci 2025; 26:3112. [PMID: 40243755 PMCID: PMC11988718 DOI: 10.3390/ijms26073112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 03/01/2025] [Accepted: 03/22/2025] [Indexed: 04/18/2025] Open
Abstract
Pancreatic cancer is a major cause of cancer-associated mortality globally, characterized by a poor prognosis and limited therapeutic response. The current approach for treating pancreatic cancer involves locoregional control with surgical resection and systemic therapy in the form of cytotoxic chemotherapy. However, despite standard-of-care treatment, the outcomes remain dismal. Emerging evidence suggests that the gut microbiota plays a significant role in pancreatic carcinogenesis through dysbiosis, chronic inflammation and immune modulation. Dysbiosis-driven alterations in the gut microbiota composition can disrupt intestinal homeostasis, promote systemic inflammation and create a tumor-permissive microenvironment in the pancreas. Moreover, the gut microbiota modulates the efficacy of systemic therapies, including chemotherapy and immunotherapy, by impacting drug metabolism and shaping the tumor immune landscape. This review is mainly focused on exploring the intricate interplay between the gut microbiota and pancreatic cancer, and also highlighting its dual role in carcinogenesis and the therapeutic response.
Collapse
Affiliation(s)
| | | | | | | | - Vikas Dudeja
- Division of Surgical Oncology, Department of Surgery, The University of Alabama at Birmingham, BDB 573 1808 7th Avenue South, Birmingham, AL 35294, USA; (D.S.S.); (T.J.); (V.D.); (S.I.)
| |
Collapse
|
21
|
Qi F, Meng K, Zhao X, Lv J, Huang L, Fan X, Feng Z. Targeting gut microbiota: a potential therapeutic approach for tumor microenvironment in glioma. Front Neurol 2025; 16:1549465. [PMID: 40183013 PMCID: PMC11965986 DOI: 10.3389/fneur.2025.1549465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Accepted: 03/03/2025] [Indexed: 04/05/2025] Open
Abstract
Glioma, being one of the malignant tumors with the highest mortality rate globally, has an unclear pathogenesis, and the existing treatment effects still have certain limitations. The tumor microenvironment (TME) plays an important role in the occurrence, development, and recurrence of glioma. As one of the important regulatory factors of TME, the gut microbiota can regulate the progression of glioma not only by interacting with the brain through the brain-gut axis but also by influencing the tumor immune microenvironment (TIME) and inflammatory microenvironment. Recent studies have identified the gut microbiota and TME as potential therapeutic targets for glioma. This paper aims to summarize the role of the gut microbiota in TME, the association between them and glioma, and the potential of developing new intervention measures by targeting the gut microbiota. Understanding the involvement process of the gut microbiota in glioma may pave the way for the development of effective treatment methods that can regulate TME and prevent disease progression.
Collapse
Affiliation(s)
- Fan Qi
- College of Integrated Traditional and Western Medicine, Shaanxi University of Chinese Medicine, Shaanxi, China
| | - Kaiqiang Meng
- College of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Shaanxi, China
| | - Xiaoping Zhao
- Neurosurgery Department of the Encephalopathy Hospital, Affiliated Hospital of Shaanxi University of Chinese Medicine, Shaanxi, China
| | - Jing Lv
- College of Integrated Traditional and Western Medicine, Shaanxi University of Chinese Medicine, Shaanxi, China
| | - Lan Huang
- College of Integrated Traditional and Western Medicine, Shaanxi University of Chinese Medicine, Shaanxi, China
| | - Xiaoxuan Fan
- College of Integrated Traditional and Western Medicine, Shaanxi University of Chinese Medicine, Shaanxi, China
| | - Zhaoqun Feng
- Neurosurgery Department of the Encephalopathy Hospital, Affiliated Hospital of Shaanxi University of Chinese Medicine, Shaanxi, China
| |
Collapse
|
22
|
Lin L, Zhang D. Unveiling the microbial influence: bacteria's dual role in tumor metastasis. Front Oncol 2025; 15:1524887. [PMID: 40161368 PMCID: PMC11949808 DOI: 10.3389/fonc.2025.1524887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 02/28/2025] [Indexed: 04/02/2025] Open
Abstract
As cancer research advances, the intricate relationship between the microbiome and cancer is gaining heightened recognition, especially concerning tumor metastasis, where bacterial involvement becomes increasingly complex. This review seeks to systematically examine the dual roles of bacteria in the tumor metastasis process, encompassing both mechanisms that facilitate metastasis and the inhibitory effects exerted by specific microorganisms. We explore the mechanisms through which bacteria influence tumor cell migration by inducing chronic inflammation, evading host immune responses, and remodeling the ECM. Moreover, the immunomodulatory potential of probiotics and genetically engineered bacteria offers promising prospects for the prevention and treatment of tumor metastasis. This article elucidates the complexity and emerging frontiers of bacterial involvement in tumor metastasis by examining the clinical significance of bacteria as potential biomarkers and evaluating the effects of antibiotic usage on the metastatic process. We posit that comprehending the biological characteristics and clinical significance of bacteria, as a critical component of the tumor microenvironment, will offer innovative strategies and theoretical foundations for cancer treatment. Furthermore, this article explores future research directions, including the application of microbiome technologies and bacteria-based therapeutic strategies, thereby offering a valuable perspective for the development of novel anti-cancer approaches.
Collapse
Affiliation(s)
| | - Dongyan Zhang
- Department of Precision Biomedical Key Laboratory, Department of Stomatology, Liaocheng People’s Hospital, Shandong Provincial Key Medical and Health Laboratory of Precision Medicine for Aging Intervention and Active Health, Liaocheng, China
| |
Collapse
|
23
|
Liao Y, Chen X, Xu H, Zhi Y, Zhuo X, Yu J, Zhao L. N6-methyladenosine RNA modified BAIAP2L2 facilitates extracellular vesicles-mediated chemoresistance transmission in gastric cancer. J Transl Med 2025; 23:320. [PMID: 40082986 PMCID: PMC11905699 DOI: 10.1186/s12967-025-06340-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 03/01/2025] [Indexed: 03/16/2025] Open
Abstract
BACKGROUND Extracellular vesicles (EVs) produced in the tumor microenvironment in response to chemotherapy promote chemotherapy-resistant phenotypes. However, the role of EVs proteins induced by gastric cancer (GC) cell chemotherapy in regulating chemotherapy resistance remains unclear. METHODS Immunohistochemistry was used to verify the relationship between brain-specific angiogenesis inhibitor 1-associated protein-2-like protein 2 (BAIAP2L2) expression and chemotherapy resistance in advanced GC. The relationship between BAIAP2L2 and chemotherapy resistance was verified using a subcutaneous tumor model in nude mice. Transmission electron microscopy, nanoparticle tracking analysis, and western blotting were performed to detect purified EVs. Tandem mass tag (TMT) analysis was used to detect differential labels. The interaction between YTH domain-containing family protein1 (YTHDF1) and BAIAP2L2 in GC cells was confirmed by RIP-qPCR analysis using a YTHDF1-specific antibody. RESULTS We found that BAIAP2L2 was associated with chemotherapy resistance to GC in clinical samples and was increased in chemotherapy-resistant GC cells. Mechanistically, BAIAP2L2 promotes the transfer of chemotherapy resistance from resistant GC cells to sensitive cells through EVs proteins, such as ANXA4. Furthermore, ANXA4 promoted platinum-based chemical resistance in GC by mediating autophagy. Interestingly, YTHDF1 facilitates the translation of BAIAP2L2 and ANXA4 through m6A modifications. CONCLUSIONS Our findings reveal the key role of BAIAP2L2 as a potential prognostic marker and therapeutic target for chemotherapy resistance in GC.
Collapse
Affiliation(s)
- Yuhan Liao
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Pathology &, Guangdong Province Key Laboratory of Molecular Tumor Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xinhua Chen
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hao Xu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Pathology &, Guangdong Province Key Laboratory of Molecular Tumor Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yunfei Zhi
- Department of Gastroenterology, Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, Beijing, China
| | - Xinghua Zhuo
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Pathology &, Guangdong Province Key Laboratory of Molecular Tumor Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jiang Yu
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Liang Zhao
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
- Department of Pathology &, Guangdong Province Key Laboratory of Molecular Tumor Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.
| |
Collapse
|
24
|
Liu QL, Zhou H, Wang Z, Chen Y. Exploring the role of gut microbiota in colorectal liver metastasis through the gut-liver axis. Front Cell Dev Biol 2025; 13:1563184. [PMID: 40181829 PMCID: PMC11965903 DOI: 10.3389/fcell.2025.1563184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Accepted: 02/26/2025] [Indexed: 04/05/2025] Open
Abstract
Colorectal liver metastasis (CRLM) represents a major therapeutic challenge in colorectal cancer (CRC), with complex interactions between the gut microbiota and the liver tumor microenvironment (TME) playing a crucial role in disease progression via the gut-liver axis. The gut barrier serves as a gatekeeper, regulating microbial translocation, which influences liver colonization and metastasis. Through the gut-liver axis, the microbiota actively shapes the TME, where specific microbial species and their metabolites exert dual roles in immune modulation. The immunologically "cold" nature of the liver, combined with the influence of the gut microbiota on liver immunity, complicates effective immunotherapy. However, microbiota-targeted interventions present promising strategies to enhance immunotherapy outcomes by modulating the gut-liver axis. Overall, this review highlights the emerging evidence on the role of the gut microbiota in CRLM and provides insights into the molecular mechanisms driving the dynamic interactions within the gut-liver axis.
Collapse
Affiliation(s)
- Qiu-Luo Liu
- Colorectal Cancer Center, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
- Institute of Digestive Surgery, Institute of General Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Huijie Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Health Management Center, General Practice Center, West China Hospital, Sichuan University, Chengdu, China
| | - Ziqiang Wang
- Colorectal Cancer Center, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yan Chen
- Department of Gastrointestinal Surgery, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
25
|
Shah H, Patel P, Nath A, Shah U, Sarkar R. Role of human microbiota in facilitating the metastatic journey of cancer cells. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-03957-8. [PMID: 40072555 DOI: 10.1007/s00210-025-03957-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 02/18/2025] [Indexed: 03/14/2025]
Abstract
Cancer continues to be the leading cause of mortality worldwide, with metastasis being the primary contributor to cancer-related deaths. Despite significant advancements in cancer therapies, metastasis remains a major challenge in effective cancer management. Metastasis, the process by which cancer cells spread from the primary tumor to distant organs, is a complex phenomenon influenced by multiple factors, including the human microbiota. The human body encompasses various microorganisms, comprising bacteria, viruses, fungi, and protozoa, collectively known as microbiota. In fact, the microbiota is more abundant than human cells, and its disruption, leading to an imbalance in host-microbiota interactions (dysbiosis), has been linked to various diseases, including cancer. Among all microbiota, bacteria are one of the key contributors to cancer progression. Bacteria and bacteria-derived components such as secondary metabolites, QSPs, and toxins play a pivotal role in the metastatic progression of cancers. This review explores the intricate relationship between the human microbiota and cancer progression, focusing on different bacterial species which have been implicated in tumorigenesis, immune evasion, and metastasis. The present review explores the role of the human microbiome, specifically of bacteria in promoting metastasis in different types of cancers, demonstrating its ability to impact both the spread of tumors and their underlying mechanisms. This review also highlights the therapeutic potential and challenges of microbiome-based interventions in combating metastatic cancers. By addressing these challenges and by integrating microbiome-targeted strategies into clinical cancer treatment could represent a transformative approach in the fight against metastasis.
Collapse
Affiliation(s)
- Himisa Shah
- B. D. Patel Institute of Paramedical Sciences, Charotar University of Science and Technology, CHARUSAT Campus, Changa, 388421, Gujarat, India
| | - Princy Patel
- B. D. Patel Institute of Paramedical Sciences, Charotar University of Science and Technology, CHARUSAT Campus, Changa, 388421, Gujarat, India
| | - Abhay Nath
- Devang Patel Institute of Advanced Technology and Research, Charotar University of Science and Technology, CHARUSAT Campus, Anand, 388421, Gujarat, India
| | - Umang Shah
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT Campus, Anand, 388421, Gujarat, India
| | - Ruma Sarkar
- B. D. Patel Institute of Paramedical Sciences, Charotar University of Science and Technology, CHARUSAT Campus, Changa, 388421, Gujarat, India.
| |
Collapse
|
26
|
Qiao S, Li X, Yang S, Hua H, Mao C, Lu W. Investigating the PI3K/AKT/mTOR axis in Buzhong Yiqi Decoction's anti-colorectal cancer activity. Sci Rep 2025; 15:8238. [PMID: 40065054 PMCID: PMC11893811 DOI: 10.1038/s41598-025-89018-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Accepted: 02/03/2025] [Indexed: 03/14/2025] Open
Abstract
Buzhong Yiqi Decoction (BZYQD) is a traditional Chinese medicine renowned for its anti-colorectal cancer (CRC) properties. However, the bioactive components and mechanisms of BZYQD against CRC remain unknown. In this study, LC-MS was used to analyze the chemical composition of BZYQD. Next, the network pharmacology and molecular docking was used to investigate the core components and targets of BZYQD against CRC. Finally, we experimentally validated the potential mechanism of BZYQD against CRC through in vitro studies. Our results identified 26 chemical components in the BZYQD; 75 "hithubs" targets were screened by network pharmacology, and mainly involving pathways such as including pathways in cancer, P13K-Akt signaling pathway, proteoglycans in cancer, kaposi sarcoma-associated herpesvirus, and lipid and atherosclerosis signaling pathways. Based on the number of "hithubs" targets in the key pathways, the two most critical targets including AKT1 and PIK3CA were selected. The component-target network results indicated that astragaloside IV, gancaonin A, quercetin, poricoic acid A, and licoisoflavanone are key anti-CRC components in BZYQD. Molecular docking showed a strong binding affinity between these components and targets. The phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) signaling pathway emerged as the primary target of BZYQD. Further in vitro studies confirmed that BZYQD's anti-CRC activity is mediated through the PI3K/AKT/mTOR axis and influences macrophage polarization. BZYQD exerts its therapeutic effects on CRC through multiple components, targets, and pathways. Our study elucidates the effective components and molecular mechanisms of BZYQD in CRC treatment and provides preliminary validation through molecular docking and experimental studies.
Collapse
Affiliation(s)
- Song Qiao
- Department of Oncology and Hematology, Xijing 986 Hospital, No. 269 Youyi East Road, Beilin District, Xi'an, 710054, Shaanxi, China
| | - Xiaolong Li
- Radiotherapy 1 Ward, Shaanxi Provincial Cancer Hospital, No. 309, Yanta West Road, Yanta District, Xi'an, Shaanxi, China
| | - Shangzhen Yang
- Department of Oncology and Hematology, Xijing 986 Hospital, No. 269 Youyi East Road, Beilin District, Xi'an, 710054, Shaanxi, China
| | - Hua Hua
- Department of Oncology and Hematology, Xijing 986 Hospital, No. 269 Youyi East Road, Beilin District, Xi'an, 710054, Shaanxi, China
| | - Chengtao Mao
- Department of Oncology and Hematology, Xijing 986 Hospital, No. 269 Youyi East Road, Beilin District, Xi'an, 710054, Shaanxi, China
| | - Wanling Lu
- Department of Oncology and Hematology, Xijing 986 Hospital, No. 269 Youyi East Road, Beilin District, Xi'an, 710054, Shaanxi, China.
| |
Collapse
|
27
|
Wang X, Zhu Z. Unraveling the causal relationship and underlying mechanisms between cathepsins on liver cancer: findings from mendelian randomization and bioinformatics analysis. Discov Oncol 2025; 16:277. [PMID: 40053224 DOI: 10.1007/s12672-025-02030-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 03/03/2025] [Indexed: 03/10/2025] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA) are two major types of primary liver cancer (PLC). Earlier research has indicated a potential link between cathepsins and liver cancer. Nonetheless, there have been limited clinical trials examining the connection between cathepsins and PLC. Therefore, we conducted a two-sample Mendelian randomization (MR) study to evaluate the causal relationship between cathepsins and PLC. METHODS Data from genome-wide association studies (GWAS) focusing on cathepsins was collected. Additionally, summary data for GCST90018803 (Hepatic bile duct cancer, HBDC), and GCST90018858 (related to hepatic cancer, HC), were employed in the discovery and validation phases of the study, respectively. The inverse variance weighted (IVW) method was served as the primary analytical method in our Mendelian randomization (MR) study, supplemented by the MR-Egger, weighted median, simple mode, and weighted mode methods. To assess heterogeneity and pleiotropy, we conducted the MR-Egger intercept test, Cochran's Q test, as well as the MR-Pleiotropy RESidual Sum and Outlier (MR-PRESSO) analysis, along with the leave-one-out analysis. After that, bioinformatic analysis based on the Gene Expression Omnibus (GEO) databases were utilized, Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional enrichment analysis were utilized for exploring the underlying mechanisms. Additionally, protein-protein docking was employed to confirm the interaction between related proteins. RESULTS The results showed that cathepsin F (CTSF), was causally associated with HBDC. CTSF decrease the risk of HBDC (OR = 0.826, 95% CI 0.711-0.959, P = 0.012). CTSF may play protective roles in patients with HBDC. No heterogeneity or pleiotropy was observed. Additionally, the expression of CTSF genes is lower in patients with HBDC, GO and KEGG functional enrichment analysis revealed CTSF were mainly related to cell cycle, and P53 pathway in HBDC. Docking results showed that CTSF had good binding ability with MDM2, the most well-established negative regulator of p53. CONCLUSION This study provided new evidence of the relationship between CTSF and HBDC, suggesting that CTSF plays an inhibition role in HBDC progression. CTSF could be a novel and effective way to for HDBC treatment.
Collapse
Affiliation(s)
- Xiaoxue Wang
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zexin Zhu
- Department of Surgical Oncology, the Comprehensive Breast Care Center, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
28
|
Zhao Y, He Y, Xiao Z, Xin L, Deng M, Yao M, Huang G. circEIF3I Promotes Colorectal Cancer Metastasis by Regulating the miR-328-3p/NCAPH Axis. Mol Carcinog 2025; 64:450-462. [PMID: 39620395 DOI: 10.1002/mc.23860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 11/05/2024] [Accepted: 11/11/2024] [Indexed: 02/13/2025]
Abstract
Colorectal cancer (CRC) is the most common gastrointestinal malignancy, with its recurrence and metastasis significantly affecting patient survival. Circular RNAs (circRNAs), a novel class of noncoding RNAs, have emerged as crucial contributors to CRC pathogenesis. However, the role of circEIF3I in CRC metastasis remains unclear. Quantitative real-time polymerase chain reaction (qRT-PCR) was applied to assess circEIF3I, microRNA (miR)-328-3p, and NCAPH expression. CRC cell migration and invasion were determined via Transwell assays. Western blot analysis was utilized to define the protein expression of epithelial-mesenchymal transition (EMT) markers and NCAPH. Xenograft tumor was established for exploration into the function of circEIF3I in CRC metastasis to the liver and lung. The binding between miR-328-3p and circEIF3I or NCAPH was predicted through ENCORI or TargetScan platform and ascertained through dual-luciferase reporter assays. circEIF3I and NCAPH expression were found to be elevated in CRC tissues and cells, while miR-328-3p was downregulated. Functionally, circEIF3I knockdown inhibited CRC cell migration, invasion, EMT, and tumor metastasis. Mechanistic analyses revealed that circEIF3I can target miR-328-3p, while NCAPH was targeted by miR-328-3p. Furthermore, circEIF3I facilitated NCAPH expression in CRC cells by sequestering miR-328-3p. Notably, miR-328-3p inhibitor or NCAPH overexpression negated the effects of circEIF3I knockdown on preventing CRC progression in vitro. Taken together, circEIF3I elevated NCAPH expression by sponging miR-328-3p, thereby promoting CRC metastasis. These findings suggest that the circEIF3I/miR-328-3p/NCAPH axis represents a novel therapeutic target for CRC.
Collapse
Affiliation(s)
- Yali Zhao
- Department of Pathology, Shenzhen Longgang Central Hospital, Guangdong Province, Shenzhen, P. R. China
| | - Yan He
- Department of Pathology, Shenzhen Longgang Central Hospital, Guangdong Province, Shenzhen, P. R. China
| | - Zhiyuan Xiao
- Department of Pathology, Shenzhen People's Hospital, Guangdong Province, Shenzhen, P. R. China
| | - Le Xin
- Department of Pathology, Shenzhen Longgang Central Hospital, Guangdong Province, Shenzhen, P. R. China
| | - Mingjing Deng
- Department of Pathology, Shenzhen Longgang Central Hospital, Guangdong Province, Shenzhen, P. R. China
| | - Mingxia Yao
- Department of Pathology, Shenzhen Longgang Central Hospital, Guangdong Province, Shenzhen, P. R. China
| | - Guan Huang
- Department of Pathology, Shenzhen Longgang Central Hospital, Guangdong Province, Shenzhen, P. R. China
| |
Collapse
|
29
|
Tan H, Cai M, Wang J, Yu T, Xia H, Zhao H, Zhang X. Harnessing Macrophages in Cancer Therapy: from Immune Modulators to Therapeutic Targets. Int J Biol Sci 2025; 21:2235-2257. [PMID: 40083710 PMCID: PMC11900799 DOI: 10.7150/ijbs.106275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Accepted: 02/14/2025] [Indexed: 03/16/2025] Open
Abstract
Macrophages, as the predominant phagocytes, play an essential role in pathogens defense and tissue homeostasis maintenance. In the context of cancer, tumor-associated macrophages (TAMs) have evolved into cunning actors involved in angiogenesis, cancer cell proliferation and metastasis, as well as the construction of immunosuppressive microenvironment. Once properly activated, macrophages can kill tumor cells directly through phagocytosis or attack tumor cells indirectly by stimulating innate and adaptive immunity. Thus, the prospect of targeting TAMs has sparked significant interest and emerged as a promising strategy in immunotherapy. In this review, we summarize the diverse roles and underlying mechanisms of TAMs in cancer development and immunity and highlight the TAM-based therapeutic strategies such as inhibiting macrophage recruitment, inhibiting the differentiation reprogramming of TAMs, blocking phagocytotic checkpoints, inducing trained macrophages, as well as the potential of engineered CAR-armed macrophages in cancer therapy.
Collapse
Affiliation(s)
- Huabing Tan
- Department of Infectious Diseases, Hepatology Institute, Renmin Hospital, Shiyan Key Laboratory of Virology, Hubei University of Medicine, Shiyan, Hubei Province, China
- General internal medicine, Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Meihe Cai
- Department of Traditional Chinese Medicine, Zhushan Renmin Hospital, Zhushan, 442200, China
| | | | - Tao Yu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Houjun Xia
- Center for Cancer Immunology, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Huanbin Zhao
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Present: Division of Pharmaceutical Sciences, Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Xiaoyu Zhang
- Department of Gastrointestinal Surgery, Huai'an Second People's Hospital, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, China
| |
Collapse
|
30
|
Khizar H, Ali K, Wang J. From silent partners to potential therapeutic targets: macrophages in colorectal cancer. Cancer Immunol Immunother 2025; 74:121. [PMID: 39998578 PMCID: PMC11861851 DOI: 10.1007/s00262-025-03965-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 01/30/2025] [Indexed: 02/27/2025]
Abstract
Cancer cells grow and survive in the tumor microenvironment, which is a complicated process. As a key part of how colorectal cancer (CRC) progresses, tumor-associated macrophages (TAMs) exhibit a double role. Through angiogenesis, this TAM can promote the growth of cancers. Although being able to modify and adjust immune cells is a great advantage, these cells can also exhibit anti-cancer properties including direct killing of cancer cells, presenting antigens, and aiding T cell-mediated responses. The delicate regulatory mechanisms between the immune system and tumors are composed of a complex network of pathways regulated by several factors including hypoxia, metabolic reprogramming, cytokine/chemokine signaling, and cell interactions. Decoding and figuring out these complex systems become significant in building targeted treatment programs. Targeting TAMs in CRC involves disrupting chemokine signaling or adhesion molecules, reprogramming them to an anti-tumor phenotype using TLR agonists, CD40 agonists, or metabolic modulation, and selectively removing TAM subsets that promote tumor growth. Multi-drug resistance, the absence of an accurate biomarker, and drug non-specificity are also major problems. Combining macrophage-targeted therapies with chemotherapy and immunotherapy may revolutionize treatment. Macrophage studies will advance with new technology and multi-omics methodologies to help us understand CRC and build specific and efficient treatments.
Collapse
Affiliation(s)
- Hayat Khizar
- Department of Surgery, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Kamran Ali
- Department of Surgery, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Jianwei Wang
- Department of Surgery, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China.
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, 2nd Affiliated Hospital, Zhejiang University School of Medicine, Jiefang Road 88th, Hangzhou, 310009, China.
| |
Collapse
|
31
|
Li D, Lan X, Xu L, Zhou S, Luo H, Zhang X, Yu W, Yang Y, Fang X. Influence of gut microbial metabolites on tumor immunotherapy: mechanisms and potential natural products. Front Immunol 2025; 16:1552010. [PMID: 40066456 PMCID: PMC11891355 DOI: 10.3389/fimmu.2025.1552010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Accepted: 02/06/2025] [Indexed: 05/13/2025] Open
Abstract
In recent years, tumor immunotherapy has made significant breakthroughs in the treatment of malignant tumors. However, individual differences in efficacy have been observed in clinical practice. There is increasing evidence that gut microbial metabolites influence the efficacy of distal tumor immunotherapy via the gut-liver axis, the gut-brain axis and the gut-breast axis, a process that may involve modulating the expression of immune cells and cytokines in the tumor microenvironment (TME). In this review, we systematically explore the relationship between gut microbial metabolites and tumor immunotherapy, and examine the corresponding natural products and their mechanisms of action. The in-depth exploration of this research area will provide new ideas and strategies to enhance the efficacy of tumor immunotherapy and mitigate adverse effects.
Collapse
Affiliation(s)
- Dongyang Li
- Changchun University of Chinese Medicine, Changchun, China
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Xintian Lan
- Changchun University of Chinese Medicine, Changchun, China
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Linyi Xu
- Changchun University of Chinese Medicine, Changchun, China
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Shuo Zhou
- Changchun University of Chinese Medicine, Changchun, China
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Haoming Luo
- Changchun University of Chinese Medicine, Changchun, China
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Xiaoying Zhang
- Department of Clinical Pharmacy, The First Hospital of Jilin University, Changchun, China
| | - Wenbo Yu
- Changchun University of Chinese Medicine, Changchun, China
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Yonggang Yang
- Changchun University of Chinese Medicine, Changchun, China
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Xiaoxue Fang
- Changchun University of Chinese Medicine, Changchun, China
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
32
|
Li R, He J, Liu C, Jiang Z, Qin J, Liang K, Ji Z, Zhao L. PBRM1 deficiency enhances PD1 immunotherapeutic sensitivity via chromosomal accessibility in colorectal cancer. Theranostics 2025; 15:3316-3331. [PMID: 40093909 PMCID: PMC11905143 DOI: 10.7150/thno.100793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 02/09/2025] [Indexed: 03/19/2025] Open
Abstract
Rationale: Tumor cell epigenetics, especially chromosome accessibility, has been reported to be closely related to the tumor immune landscape and immunotherapy. However, the exact mechanism remains unknown. Methods: Whole-exome sequencing was used to analyze 13 colorectal tumor samples treated with PD1 immunotherapy. The assays for transposase-accessible chromatin using sequencing (ATAC-seq) and RNA sequencing were used to detect tumor cells' chromosome accessibility status and screen regulatory pathways. Results: Polybromo-1 (PBRM1) was one of the 12 genes with the highest frequency of somatic mutations associated with immunotherapy sensitivity. PBRM1/Pbrm1 deficiency in colorectal cancer promoted PD-1 immunotherapy sensitivity and chemotaxis of CD8+ T and NK cells in the microenvironment in vivo and in vitro. ATAC sequencing revealed that deletion of Pbrm1, a critical component of the SWI/SNF complex, increased chromosomal accessibility in tumor cells and triggered the release of cytokines, such as CCL5 and CXCL10, by activating the NF-κB signaling pathway. Application of ACBL1, a PROC inhibitor of PBRM1, in BALB/C mice or colorectal patient-derived tumor organoids (PDTOs) significantly promoted the sensitivity to PD1 antibody immunotherapy. Conclusions: Our study established that PBRM1/Pbrm1 deficiency was positively correlated with PD1 immunotherapeutic sensitivity in colorectal cancer. The underlying molecular mechanisms involved regulation of chromosome accessibility, activation of the NF-κB signaling pathway, and immune cell infiltration in the microenvironment. These findings identify potential molecular targets for enhancing immunotherapy for colorectal cancer.
Collapse
Affiliation(s)
- Rui Li
- Department of Pathology, Shunde Hospital of Southern Medical University, Foshan, China
- Department of Pathology & Guangdong Province Key Laboratory of Molecular Tumor Pathology, Basic Medical College, Southern Medical University, Guangzhou, China
| | - Jie He
- Department of Pathology & Guangdong Province Key Laboratory of Molecular Tumor Pathology, Basic Medical College, Southern Medical University, Guangzhou, China
| | - Chaoqun Liu
- Department of Pathology & Guangdong Province Key Laboratory of Molecular Tumor Pathology, Basic Medical College, Southern Medical University, Guangzhou, China
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zesheng Jiang
- General Surgery Center, Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jiasheng Qin
- General Surgery Center, Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Kun Liang
- Department of Pathology & Guangdong Province Key Laboratory of Molecular Tumor Pathology, Basic Medical College, Southern Medical University, Guangzhou, China
| | - Zhuocheng Ji
- General Surgery Center, Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Liang Zhao
- Department of Pathology, Shunde Hospital of Southern Medical University, Foshan, China
- Department of Pathology & Guangdong Province Key Laboratory of Molecular Tumor Pathology, Basic Medical College, Southern Medical University, Guangzhou, China
| |
Collapse
|
33
|
Yuan Q, Jia L, Yang J, Li W. The role of macrophages in liver metastasis: mechanisms and therapeutic prospects. Front Immunol 2025; 16:1542197. [PMID: 40034694 PMCID: PMC11872939 DOI: 10.3389/fimmu.2025.1542197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 01/21/2025] [Indexed: 03/05/2025] Open
Abstract
Metastasis is a hallmark of advanced cancer, and the liver is a common site for secondary metastasis of many tumor cells, including colorectal, pancreatic, gastric, and prostate cancers. Macrophages in the tumor microenvironment (TME) promote tumor cell metastasis through various mechanisms, including angiogenesis and immunosuppression, and play a unique role in the development of liver metastasis. Macrophages are affected by a variety of factors. Under conditions of hypoxia and increased acidity in the TME, more factors are now found to promote the polarization of macrophages to the M2 type, including exosomes and amino acids. M2-type macrophages promote tumor cell angiogenesis through a variety of mechanisms, including the secretion of factors such as VEGF, IL-1β, and TGF-β1. M2-type macrophages are subjected to multiple regulatory mechanisms. They also interact with various cells within the tumor microenvironment to co-regulate certain conditions, including the creation of an immunosuppressive microenvironment. This interaction promotes tumor cell metastasis, drug resistance, and immune escape. Based on the advent of single-cell sequencing technology, further insights into macrophage subpopulations in the tumor microenvironment may help in exploring new therapeutic targets in the future. In this paper, we will focus on how macrophages affect the TME, how tumor cells and macrophages as well as other immune cells interact with each other, and further investigate the mechanisms involved in liver metastasis of tumor cells and their potential as therapeutic targets.
Collapse
Affiliation(s)
| | | | | | - Wei Li
- *Correspondence: Jiahua Yang, ; Wei Li,
| |
Collapse
|
34
|
Chi S, Ma J, Ding Y, Lu Z, Zhou Z, Wang M, Li G, Chen Y. Integrated multi-omics analysis identifies a machine learning-derived signature for predicting prognosis and therapeutic vulnerability in clear cell renal cell carcinoma. Life Sci 2025; 363:123396. [PMID: 39809381 DOI: 10.1016/j.lfs.2025.123396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 01/02/2025] [Accepted: 01/10/2025] [Indexed: 01/16/2025]
Abstract
AIMS Clear cell renal cell carcinoma (ccRCC) shows considerable variation within and between tumors, presents varying treatment responses among patients, possibly due to molecular distinctions. This study utilized a multi-center and multi-omics analysis to establish and validate a prognosis and treatment vulnerability signature (PTVS) capable of effectively predicting patient prognosis and drug responsiveness. MATERIALS AND METHODS To address this complexity, we constructed an integrative multi-omics analysis using 10 clustering algorithms on ccRCC patient data. Afterwards, we applied bootstrapping in univariate Cox regression and the Boruta algorithm to pinpoint clinically relevant genes. Based on this, we developed a robust PTVS using seven machine learning algorithms. KEY FINDINGS Our analysis revealed two distinct ccRCC subtypes with differential prognostic implications, notably identifying subtype 2 with poorer outcomes. Patients in the low PTVS group exhibited superior prognosis statistics and an augmented sensitivity to immunotherapy, features consistent with a 'hot tumor' phenotype. Conversely, individuals within the high PTVS group exhibited diminished prognosis statistic and restricted advantages from immunotherapy. Importantly, the PTVS holds future potential as a notable biomarker for guiding personalized treatment strategies, with four prospective targets (CTSK, XDH, PKMYT1, and EGLN2) indicating therapeutic promise in patients scoring high on PTVS. SIGNIFICANCE The integrative analysis of multi-omics data profoundly enhances the molecular stratification of ccRCC, underscoring far-reaching impact of such comprehensive profiling on its therapeutic strategies.
Collapse
Affiliation(s)
- Shengqiang Chi
- Research Center for Data Hub and Security, Zhejiang Laboratory, Hangzhou 311121, China; Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China; The Engineering Research Center of EMR and Intelligent Expert System, Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou 310027, China
| | - Jing Ma
- Research Center for Data Hub and Security, Zhejiang Laboratory, Hangzhou 311121, China
| | - Yiming Ding
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Zeyi Lu
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Zhenwei Zhou
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Mingchao Wang
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Gonghui Li
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Yuanlei Chen
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China.
| |
Collapse
|
35
|
Kim J, Seki E. Inflammation and Immunity in Liver Neoplasms: Implications for Future Therapeutic Strategies. Mol Cancer Ther 2025; 24:188-199. [PMID: 39365846 PMCID: PMC11794036 DOI: 10.1158/1535-7163.mct-23-0726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/28/2024] [Accepted: 08/09/2024] [Indexed: 10/06/2024]
Abstract
Over the past two decades, the "hallmarks of cancer" have revolutionized cancer research and highlighted the crucial roles of inflammation and immunity. Protumorigenic inflammation promotes cancer development along with inhibition of antitumor immunity, shaping the tumor microenvironment (TME) toward a tumor-permissive state and further enhancing the malignant potential of cancer cells. This immunosuppressive TME allows tumors to evade immunosurveillance. Thus, understanding the complex interplay between tumors and the immune system within the TME has become pivotal, especially with the advent of immunotherapy. Although immunotherapy has achieved notable success in many malignancies, primary liver cancer, particularly hepatocellular carcinoma, presents unique challenges. The hepatic immunosuppressive environment poses obstacles to the effectiveness of immunotherapy, along with high mortality rates and limited treatment options for patients with liver cancer. In this review, we discuss current understanding of the complex immune-mediated mechanisms underlying liver neoplasms, focusing on hepatocellular carcinoma and liver metastases. We describe the molecular and cellular heterogeneity within the TME, highlighting how this presents unique challenges and opportunities for immunotherapy in liver cancers. By unraveling the immune landscape of liver neoplasms, this review aims to contribute to the development of more effective therapeutic interventions, ultimately improving clinical outcomes for patients with liver cancer.
Collapse
Affiliation(s)
- Jieun Kim
- Karsh Division of Gastroenterology Hepatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Ekihiro Seki
- Karsh Division of Gastroenterology Hepatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| |
Collapse
|
36
|
Zhang X, Kong C, Chen K, Liu J. Colonization of stenotrophomonas and its associated microbiome between paired primary colorectal cancers and their lung metastatic tumors (experimental studies). Int J Surg 2025; 111:2291-2295. [PMID: 39693485 DOI: 10.1097/js9.0000000000002121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 10/08/2024] [Indexed: 12/20/2024]
Abstract
The role of gut microbiome in colorectal cancer (CRC) lung metastases is still unclear. Herein, we collected primary colorectal tumors, matched lung metastasis, and adjacent normal colon from seven patients for 16S rRNA sequencing to evaluate microbiome signature in distant site metastasis and analyze prognosis. Fecal samples from 19 non-metastases CRC patients and 11 CRC lung metastases patients were analyzed for validation. Our efforts led to a discovery of comprehensive microbiome in CRC lung metastatic tumors, characterized by a decreased microbial diversity and an increase bacterial interaction between gram-negative bacteria Stenotrophomonas and Brevundimonas . The primary-metastatic tumor pairs harbored highly similar microbial composition in both genus and species level, especially the high level of Stenotrophomonas maltophilia . Correspondingly, the S. maltophilia levels were positively associated with poor prognosis and cancer progression. Our work highlights the great potential of S. maltophilia and its associated microbiome as biomarkers in pathogenesis and prognosis of CRC lung metastases.
Collapse
Affiliation(s)
- Xiaolan Zhang
- Department of Endoscopy, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Cheng Kong
- Department of Endoscopy, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ke Chen
- Department of Endoscopy, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jianqiang Liu
- Department of Endoscopy, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
37
|
Zhang X, Li B, Lan T, Chiari C, Ye X, Wang K, Chen J. The role of interleukin-17 in inflammation-related cancers. Front Immunol 2025; 15:1479505. [PMID: 39906741 PMCID: PMC11790576 DOI: 10.3389/fimmu.2024.1479505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 12/27/2024] [Indexed: 02/06/2025] Open
Abstract
Emerging evidence indicates a correlation between inflammation and the development and progression of cancer. Among the various inflammatory signals, interleukin-17 (IL-17) family cytokines serve as a critical link between inflammation and cancer. IL-17 is a highly versatile pro-inflammatory cytokine that plays a pivotal role in host defense, tissue repair, the pathogenesis of inflammatory diseases, and cancer progression. During the early stages of tumorigenesis, IL-17 signaling directly promotes the proliferation of tumor cells. Conversely, IL-17 has been shown to exhibit antitumor immunity in several models of grafted subcutaneous tumors. Additionally, dynamic changes in the microbiome can influence the secretion of IL-17, thereby affecting tumor development. The specific role of IL-17 is contingent upon its functional classification, spatiotemporal characteristics, and the stage of tumor development. In this review, we introduce the fundamental biology of IL-17 and the expression profile of its receptors in cancer, while also reviewing and discussing recent advancements regarding the pleiotropic effects and mechanisms of IL-17 in inflammation-related cancers. Furthermore, we supplement our discussion with insights into the mechanisms by which IL-17 impacts cancer progression through interactions with the microbiota, and we explore the implications of IL-17 in cancer therapy. This comprehensive analysis aims to enhance our understanding of IL-17 and its potential role in cancer treatment.
Collapse
Affiliation(s)
- Xingru Zhang
- The Eighth Clinical Medical College of Guangzhou University of Chinese Medicine, Foshan Hospital of Traditional Chinese Medicine, Foshan, Guangdong, China
- Department of Pharmacology, School of Life Sciences and Biopharmaceutical Science, Shenyang Pharmaceutical University, Shenyang, China
| | - Bangjie Li
- The Eighth Clinical Medical College of Guangzhou University of Chinese Medicine, Foshan Hospital of Traditional Chinese Medicine, Foshan, Guangdong, China
| | - Tian Lan
- The Eighth Clinical Medical College of Guangzhou University of Chinese Medicine, Foshan Hospital of Traditional Chinese Medicine, Foshan, Guangdong, China
- Department of Pharmacology, School of Life Sciences and Biopharmaceutical Science, Shenyang Pharmaceutical University, Shenyang, China
| | - Conner Chiari
- Department of Immunology, School of Medicine, University of Connecticut Health Center, Farmington, CT, United States
| | - Xiaoyang Ye
- College of Engineering, Northeastern University, Seattle, WA, United States
| | - Kepeng Wang
- Department of Immunology, School of Medicine, University of Connecticut Health Center, Farmington, CT, United States
| | - Ju Chen
- The Eighth Clinical Medical College of Guangzhou University of Chinese Medicine, Foshan Hospital of Traditional Chinese Medicine, Foshan, Guangdong, China
| |
Collapse
|
38
|
An Y, Zhao F, Jia H, Meng S, Zhang Z, Li S, Zhao J. Inhibition of programmed cell death by melanoma cell subpopulations reveals mechanisms of melanoma metastasis and potential therapeutic targets. Discov Oncol 2025; 16:62. [PMID: 39832036 PMCID: PMC11747064 DOI: 10.1007/s12672-025-01789-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 01/08/2025] [Indexed: 01/22/2025] Open
Abstract
Melanoma is an aggressive type of skin cancer that arises from melanocytes, the cells responsible for producing skin pigment. In contrast to non-melanoma skin cancers like basal cell carcinoma and squamous cell carcinoma, melanoma is more invasive. Melanoma was distinguished by its rapid progression, high metastatic potential, and significant resistance to conventional therapies. Although it accounted for a small proportion of skin cancer cases, melanoma accounts for the majority of deaths caused by skin cancer due to its ability to invade deep tissues, adapt to diverse microenvironments, and evade immune responses. These unique features highlighted the challenges of treating melanoma and underscored the importance of advanced tools, such as single-cell sequencing, to unravel its biology and develop personalized therapeutic strategies. Thus, we conducted a single-cell analysis of the cellular composition within melanoma tumor tissues and further subdivided melanoma cells into subpopulations. Through analyzing metabolic pathways, stemness genes, and transcription factors (TFs) among cells in different phases (G1, G2/M, and S) as well as between primary and metastatic foci cells, we investigated the specific mechanisms underlying melanoma metastasis. We also revisited the cellular stemness and temporal trajectories of melanoma cell subpopulations, identifying the core subpopulation as C0 SOD3 + Melanoma cells. Our findings revealed a close relationship between the pivotal C0 SOD3 + Melanoma cells subpopulation and oxidative pathways in metastatic tumor tissues. Additionally, we analyzed prognostically relevant differentially expressed genes (DEGs) within the C0 SOD3 + Melanoma cells subpopulation and built a predictive model associated with melanoma outcomes. We selected the gene IGF1 with the highest coefficient (coef) value for further analysis, and experimentally validated its essential function in the proliferation and invasive metastasis of melanoma. In immune infiltration analysis, we discovered the critical roles played by M1/M2 macrophages in melanoma progression and immune evasion. Furthermore, the development and progression of malignant melanoma were closely associated with various forms of programmed cell death (PCD), including apoptosis, autophagic cell death, ferroptosis, and pyroptosis. Melanoma cells often resisted cell death mechanisms, maintaining their growth by inhibiting apoptosis and evading autophagic cell death. Meanwhile, the induction of ferroptosis and pyroptosis was thought to trigger immune responses that helped suppress melanoma dissemination. A deeper understanding of the relationship between melanoma and PCD pathways provided a critical foundation for developing novel targeted therapies, with the potential to enhance melanoma treatment efficacy. These findings contributed to the development of novel prognostic models for melanoma and shed light on research directions concerning melanoma metastasis mechanisms and therapeutic targets.
Collapse
Affiliation(s)
- Yuepeng An
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Fu Zhao
- Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Hongling Jia
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250014, Shandong, China
| | - Siyu Meng
- Northeast International Hospital, Shenyang, 110180, China
| | - Ziwei Zhang
- Department of Plastic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| | - Shuxiao Li
- Department of Burns and Plastic Reconstructive Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, Guangxi Province, China.
- Life Science and Clinical Medicine Research Center, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, Guangxi Province, China.
| | - Jiusi Zhao
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, 150040, China.
| |
Collapse
|
39
|
Liu H, Wang P, Li J, Zhao J, Mu Y, Gu W. Role of Cathepsin K in bone invasion of pituitary adenomas: A dual mechanism involving cell proliferation and osteoclastogenesis. Cancer Lett 2025; 611:217443. [PMID: 39755363 DOI: 10.1016/j.canlet.2025.217443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 12/26/2024] [Accepted: 01/01/2025] [Indexed: 01/06/2025]
Abstract
This study aimed to investigate the regulation and underlying mechanism of Cathepsin K (CTSK) in bone-invasive pituitary adenomas (BIPAs). A total of 1437 patients with pituitary adenomas were included and followed up. RNA sequencing, immunohistochemistry, and qRT-PCR were used to analyze CTSK expression. The effects of CTSK on cellular proliferation, bone matrix degradation, and osteoclast differentiation were determined by gain/loss of function experiments in vitro and in vivo. The exploration of signaling pathways was determined through molecular biology experiments. Here, we reported a significant fraction (∼10 %) of pituitary adenoma patients developed bone invasion, which was correlated with tumor recurrence. Patients with BIPAs had shorter recurrence-free survival. CTSK expression was increased in BIPA patients and was strongly associated with a worse prognosis. Increased CTSK expression enhanced pituitary adenoma cell proliferation through the activation of the mammalian target of rapamycin (mTOR) signaling pathway and promoted bone invasion by increasing osteoclast differentiation both in vitro and in vivo. Treatment with the CTSK inhibitor odanacatib effectively inhibited pituitary adenoma cell proliferation and bone invasion in these models. Additionally, CTSK facilitated osteoclast differentiation by promoting RANKL expression in MC3T3-E1 cells via interaction with TLR4. Based on these findings, we conclude that CTSK has the potential to become a novel predictive biomarker and therapeutic target for BIPAs.
Collapse
Affiliation(s)
- Hongyan Liu
- Department of Endocrinology, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China; Research Center of Clinical Epidemiology, Peking University Third Hospital, Beijing, 100191, China
| | - Peng Wang
- Department of Neurosurgery, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Jie Li
- Department of Pathology, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Jian Zhao
- Department of Endocrinology, The 908th Hospital of Chinese PLA Joint Logistic Support Force, Nanchang, China
| | - Yiming Mu
- Department of Endocrinology, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China.
| | - Weijun Gu
- Department of Endocrinology, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
40
|
Kumar S, Sharma V, Yadav S. TLR4 Targeting: A Promising Therapeutic Approach Across Multiple Human Diseases. Curr Protein Pept Sci 2025; 26:241-258. [PMID: 39722483 DOI: 10.2174/0113892037324425241018061548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/31/2024] [Accepted: 09/23/2024] [Indexed: 12/28/2024]
Abstract
TLR4 stands at the forefront of innate immune responses, recognizing various pathogen- associated molecular patterns and endogenous ligands, thus serving as a pivotal mediator in the immune system's defense against infections and tissue damage. Beyond its canonical role in infection, emerging evidence highlights TLR4's involvement in numerous non-infectious human diseases, ranging from metabolic disorders to neurodegenerative conditions and cancer. Targeting TLR4 signaling pathways presents a promising therapeutic approach with broad applicability across these diverse pathological states. In metabolic disorders such as obesity and diabetes, dysregulated TLR4 activation contributes to chronic low-grade inflammation and insulin resistance, driving disease progression. In cardiovascular diseases, TLR4 signaling promotes vascular inflammation and atherogenesis, implicating its potential as a therapeutic target to mitigate cardiovascular risk. Neurodegenerative disorders, including Alzheimer's and Parkinson's diseases, exhibit aberrant TLR4 activation linked to neuroinflammation and neuronal damage, suggesting TLR4 modulation as a strategy to attenuate neurodegeneration. Additionally, in cancer, TLR4 signaling within the tumor microenvironment promotes tumor progression, metastasis, and immune evasion, underscoring its relevance as a target for anticancer therapy. Advances in understanding TLR4 signaling cascades and their contributions to disease pathogenesis have spurred the development of various pharmacological agents targeting TLR4. These agents range from small molecule inhibitors to monoclonal antibodies, with some undergoing preclinical and clinical evaluations. Furthermore, strategies involving TLR4 modulation through dietary interventions and microbiota manipulation offer additional avenues for therapeutic exploration. Hence, targeting TLR4 holds significant promise as a therapeutic strategy across a spectrum of human diseases, offering the potential to modulate inflammation, restore immune homeostasis, and impede disease progression.
Collapse
Affiliation(s)
- Sakshi Kumar
- Department of Pharmacy, Galgotias College, Greater Noida, Uttar Pradesh, 201310, India
| | - Vikram Sharma
- Department of Pharmacy, Galgotias College, Greater Noida, Uttar Pradesh, 201310, India
| | - Shikha Yadav
- School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, 201310, India
| |
Collapse
|
41
|
Chen Y, Tang Z, Tang Z, Fu L, Liang G, Zhang Y, Tao C, Wang B. Identification of core immune-related genes CTSK, C3, and IFITM1 for diagnosing Helicobacter pylori infection-associated gastric cancer through transcriptomic analysis. Int J Biol Macromol 2025; 287:138645. [PMID: 39667460 DOI: 10.1016/j.ijbiomac.2024.138645] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/28/2024] [Accepted: 12/09/2024] [Indexed: 12/14/2024]
Abstract
OBJECTIVES To identify diagnostic genes and mechanisms linking Helicobacter pylori (H. pylori) infection to gastric cancer. METHODS Gene expression profiles from GEO were analyzed using differential expression gene (DEG) analysis, weighted gene co-expression network analysis (WGCNA), and functional enrichment. A random forest (RF) model assessed immune-related diagnostic genes, examining their expression, diagnostic performance, prognostic value, and immune cell relationships. Expression patterns of core genes were evaluated with single-cell RNA sequencing (scRNA-seq), and a regulatory network involving miRNA, mRNA, and transcription factors was built. RESULTS We identified 75 genes and developed an RF model including 15 immune-related genes, notably CTSK, NR4A3, C3, and IFITM1. Except for NR4A3, these genes showed higher expression in datasets, confirmed by in vitro tests. Their diagnostic performance had an AUC > 0.7, enhancing to >0.85 in a multi-gene model. Survival analysis linked gene upregulation to poorer prognosis, and scRNA-seq and immune cell infiltration analysis underscored their roles in immune dysregulation and pathogenicity in H. pylori-related gastric cancer. CONCLUSIONS CTSK, C3, and IFITM1 are crucial in H. pylori-related gastric cancer, forming a robust diagnostic model and guiding future diagnostic and therapeutic research.
Collapse
Affiliation(s)
- Yuzuo Chen
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhihui Tang
- Department of Microbiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Zhuoyun Tang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lifa Fu
- Department of Microbiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Ge Liang
- Department of Microbiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Yanrong Zhang
- Department of Microbiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Chuanmin Tao
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Baoning Wang
- Department of Microbiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
42
|
Zhao K, Sun Y, Zhong S, Luo JL. The multifaceted roles of cathepsins in immune and inflammatory responses: implications for cancer therapy, autoimmune diseases, and infectious diseases. Biomark Res 2024; 12:165. [PMID: 39736788 DOI: 10.1186/s40364-024-00711-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 12/19/2024] [Indexed: 01/01/2025] Open
Abstract
The cathepsin family comprises lysosomal proteases that play essential roles in various physiological processes, including protein degradation, antigen presentation, apoptosis, and tissue remodeling. Dysregulation of cathepsin activity has been linked to a variety of pathological conditions, such as cancer, autoimmune diseases, and neurodegenerative disorders. Understanding the functions of cathepsins is crucial for gaining insights into their roles in both health and disease, as well as for developing targeted therapeutic approaches. Emerging research underscores the significant involvement of cathepsins in immune cells, particularly T cells, macrophages, dendritic cells, and neutrophils, as well as their contribution to immune-related diseases. In this review, we systematically examine the impact of cathepsins on the immune system and their mechanistic roles in cancer, infectious diseases, autoimmune and neurodegenerative disorders, with the goal of identifying novel therapeutic strategies for these conditions.
Collapse
Affiliation(s)
- Kexin Zhao
- The Cancer Research Institute and the Second Affiliated Hospital, Hengyang Medical School, University of South China (USC), Hengyang, Hunan, 421001, China
- MOE Key Lab of Rare Pediatric Diseases, Hengyang Medical School, USC, Hengyang, Hunan, 421001, China
| | - Yangqing Sun
- Department of Oncology, Hunan Provincial People's Hospital, Changsha, Hunan, 410005, China
| | - Shangwei Zhong
- The Cancer Research Institute and the Second Affiliated Hospital, Hengyang Medical School, University of South China (USC), Hengyang, Hunan, 421001, China
- MOE Key Lab of Rare Pediatric Diseases, Hengyang Medical School, USC, Hengyang, Hunan, 421001, China
| | - Jun-Li Luo
- The Cancer Research Institute and the Second Affiliated Hospital, Hengyang Medical School, University of South China (USC), Hengyang, Hunan, 421001, China.
- MOE Key Lab of Rare Pediatric Diseases, Hengyang Medical School, USC, Hengyang, Hunan, 421001, China.
- National Health Commission Key Laboratory of Birth Defect Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, USC, Hengyang, Hunan, 410008, China.
- Hunan Provincial Key Laboratory of Basic and Clinical Pharmacological Research of Gastrointestinal Cancer, USC, Hengyang, Hunan, 421001, China.
| |
Collapse
|
43
|
Ye C, Liu X, Liu Z, Pan C, Zhang X, Zhao Z, Sun H. Fusobacterium nucleatum in tumors: from tumorigenesis to tumor metastasis and tumor resistance. Cancer Biol Ther 2024; 25:2306676. [PMID: 38289287 PMCID: PMC10829845 DOI: 10.1080/15384047.2024.2306676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 01/13/2024] [Indexed: 02/01/2024] Open
Abstract
Fusobacterium nucleatum, an anaerobic Gram-negative bacterium primarily residing in the oral cavity, has garnered significant attention for its emerging role in cancer progression and prognosis. While extensive research has revealed mechanistic links between Fusobacterium nucleatum and colorectal cancer, a comprehensive review spanning its presence and metastatic implications in cancers beyond colorectal origin is conspicuously absent. This paper broadens our perspective from colorectal cancer to various malignancies associated with Fusobacterium nucleatum, including oral, pancreatic, esophageal, breast, and gastric cancers. Our central focus is to unravel the mechanisms governing Fusobacterium nucleatum colonization, initiation, and promotion of metastasis across diverse cancer types. Additionally, we explore Fusobacterium nucleatum's adverse impacts on cancer therapies, particularly within the domains of immunotherapy and chemotherapy. Furthermore, this paper underscores the clinical research significance of Fusobacterium nucleatum as a potential tumor biomarker and therapeutic target, offering a novel outlook on its applicability in cancer detection and prognostic assessment.
Collapse
Affiliation(s)
- Chun Ye
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Xiao Liu
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Zilun Liu
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Chuxuan Pan
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Xiaowei Zhang
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Zhanyi Zhao
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Haitao Sun
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Department of Laboratory Medicine, Central People’s Hospital of Ji’an, Shanghai East Hospital of Ji’an, Ji’an, China
| |
Collapse
|
44
|
Xu Y, Cai Q, Zhao C, Zhang W, Xu X, Lin H, Lin Y, Chen D, Lin S, Jia P, Wang M, Zhang L, Lin W. Gegen Qinlian Decoction Attenuates Colitis-Associated Colorectal Cancer via Suppressing TLR4 Signaling Pathway Based on Network Pharmacology and In Vivo/In Vitro Experimental Validation. Pharmaceuticals (Basel) 2024; 18:12. [PMID: 39861077 PMCID: PMC11768880 DOI: 10.3390/ph18010012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 11/29/2024] [Accepted: 12/13/2024] [Indexed: 01/27/2025] Open
Abstract
Background: Gegen Qinlian Decoction (GQD), is used for intestinal disorders like ulcerative colitis, irritable bowel syndrome, and colorectal cancer. But the precise mechanisms underlying its anti-inflammatory and anti-tumor effects are not fully elucidated. Methods: Use network pharmacology to identify targets and pathways of GQD. In vivo (azoxymethane/dextran sodium sulfate (AOM/DSS)-induced colitis-associated colorectal cancer (CAC) mouse model) and in vitro (lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages) experiments were conducted to explore GQD's anti-inflammatory and anti-tumor effects. We monitored mouse body weight and disease activity index (DAI), and evaluated colon cancer tissues using hematoxylin and eosin staining. Expression of Ki67 and F4/80 was determined by immunohistochemistry analysis. The protein levels of TLR4 signaling pathway were assessed by western blotting analysis. Enzyme-linked immunosorbent assay measured IL-1β, IL-6, and TNF-α levels. Immunofluorescence (IF) staining visualized NF-κB and IRF3 translocation. Results: There were 18, 9, 24 and 77 active ingredients in the four herbs of GQD, respectively, targeting 435, 156, 485 and 691 genes. Through data platform analysis, it was concluded that there were 1104 target genes of GQD and 2022 target genes of CAC. Moreover, there were 99 intersecting genes between GQD and CAC. The core targets of GQD contained NFKB1, IL1B, IL6, TLR4, and TNF, and GQD reduced inflammation by inhibiting the TLR4 signaling pathway. In vivo experiment, GQD increased mouse body weight, lowered DAI scores, while also alleviating histopathological changes in the colon and decreasing the expressions of Ki67 and F4/80 in the AOM/DSS-induced mice. GQD reduced IL-1β, IL-6, and TNF-α levels in the serum and downregulated TLR4, MyD88, and phosphorylation of IκBα, P65, and IRF3 in the colon tissue from AOM/DSS-induced mice. In vitro, GQD suppressed pro-inflammatory cytokines and TLR4 signaling pathway in the LPS-induced RAW264.7 cells, and combined with TAK242, it further reduced the phosphorylation of IκBα, P65. Conclusions: GQD mitigated CAC by inhibiting the TLR4 signaling pathway, offering a potential therapeutic approach for CAC management.
Collapse
Affiliation(s)
- Yaoyao Xu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China; (Y.X.); (Q.C.); (C.Z.); (W.Z.); (X.X.); (H.L.); (Y.L.); (S.L.); (P.J.); (M.W.)
| | - Qiaoyan Cai
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China; (Y.X.); (Q.C.); (C.Z.); (W.Z.); (X.X.); (H.L.); (Y.L.); (S.L.); (P.J.); (M.W.)
- College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Chunyu Zhao
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China; (Y.X.); (Q.C.); (C.Z.); (W.Z.); (X.X.); (H.L.); (Y.L.); (S.L.); (P.J.); (M.W.)
| | - Weixiang Zhang
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China; (Y.X.); (Q.C.); (C.Z.); (W.Z.); (X.X.); (H.L.); (Y.L.); (S.L.); (P.J.); (M.W.)
| | - Xinting Xu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China; (Y.X.); (Q.C.); (C.Z.); (W.Z.); (X.X.); (H.L.); (Y.L.); (S.L.); (P.J.); (M.W.)
| | - Haowei Lin
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China; (Y.X.); (Q.C.); (C.Z.); (W.Z.); (X.X.); (H.L.); (Y.L.); (S.L.); (P.J.); (M.W.)
| | - Yuxing Lin
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China; (Y.X.); (Q.C.); (C.Z.); (W.Z.); (X.X.); (H.L.); (Y.L.); (S.L.); (P.J.); (M.W.)
| | - Daxin Chen
- Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China;
| | - Shan Lin
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China; (Y.X.); (Q.C.); (C.Z.); (W.Z.); (X.X.); (H.L.); (Y.L.); (S.L.); (P.J.); (M.W.)
- College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Peizhi Jia
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China; (Y.X.); (Q.C.); (C.Z.); (W.Z.); (X.X.); (H.L.); (Y.L.); (S.L.); (P.J.); (M.W.)
| | - Meiling Wang
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China; (Y.X.); (Q.C.); (C.Z.); (W.Z.); (X.X.); (H.L.); (Y.L.); (S.L.); (P.J.); (M.W.)
| | - Ling Zhang
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China; (Y.X.); (Q.C.); (C.Z.); (W.Z.); (X.X.); (H.L.); (Y.L.); (S.L.); (P.J.); (M.W.)
- College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Wei Lin
- Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China;
| |
Collapse
|
45
|
Bahrami A, Khalaji A, Bahri Najafi M, Sadati S, Raisi A, Abolhassani A, Eshraghi R, Khaksary Mahabady M, Rahimian N, Mirzaei H. NF-κB pathway and angiogenesis: insights into colorectal cancer development and therapeutic targets. Eur J Med Res 2024; 29:610. [PMID: 39702532 DOI: 10.1186/s40001-024-02168-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 11/21/2024] [Indexed: 12/21/2024] Open
Abstract
Colorectal cancer (CRC) is currently ranked as the third most common type of cancer, contributing significantly to mortality and morbidity worldwide. Epigenetic and genetic changes occurred during CRC progression resulted in the cell proliferation, cancer progression, angiogenesis, and invasion. Angiogenesis is one of the crucial steps during cancer progression required for the delivery of essential nutrients to cancer cells and removes metabolic waste. During angiogenesis, different molecules are secreted from tumoral cells to trigger vascular formation including epidermal growth factor and the vascular endothelial growth factor (VEGF). The production and regulation of the secretion of these molecules are modulated by different subcellular pathways such as NF-κB. NF-κB is involved in regulation of different homeostatic pathways including apoptosis, cell proliferation, inflammation, differentiation, tumor migration, and angiogenesis. Investigation of different aspects of this pathway and its role in angiogenesis could provide a comprehensive overview about the underlying mechanisms and could be used for development of further therapeutic targets. In this review of literature, we comprehensively reviewed the current understanding and potential of NF-κB-related angiogenesis in CRC. Moreover, we explored the treatments that are based on the NF-κB pathway.
Collapse
Affiliation(s)
- Ashkan Bahrami
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Amirreza Khalaji
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Majed Bahri Najafi
- Applied Physiology Research Center, Cardiovascular Research Institute, Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sina Sadati
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Arash Raisi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | | | - Reza Eshraghi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran.
| | - Mahmood Khaksary Mahabady
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| | - Neda Rahimian
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences (IUMS), Tehran, Iran.
- Department of Internal Medicine, School of Medicine, Firoozgar Hospital, Iran University of Medical Sciences, Tehran, Iran.
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
46
|
Yang Y, Cui H, Li D, Chen L, Liu Y, Zhou C, Li L, Feng M, Chen X, Cao Y, Gao Y. S100A8 promotes tumor progression by inducing phenotypic polarization of microglia through the TLR4/IL-10 signaling pathway in glioma. JOURNAL OF THE NATIONAL CANCER CENTER 2024; 4:369-381. [PMID: 39735438 PMCID: PMC11674433 DOI: 10.1016/j.jncc.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 07/11/2024] [Accepted: 07/14/2024] [Indexed: 12/31/2024] Open
Abstract
Background S100A8 is a member of the S100 protein family and plays a pivotal role in regulating inflammation and tumor progression. This study aimed to comprehensively assess the expression patterns and functional roles of S100A8 in glioma progression. Methods Glioma tissues were collected from 98 patients who underwent surgical treatment at Fudan University Shanghai Cancer Center. S100A8 expression in glioma tissues was analyzed using immunohistochemistry (IHC) to establish its correlation with clinicopathological features in patients. The expression and prognostic effect of S100A8 in glioma were analyzed using TCGA and CGGA public databases. Then, we investigated the role of S100A8 in glioma through a series of in vivo and in vitro experiments including Transwell, wound healing, CCK8, and intracranial tumor models. Subsequently, bioinformatics analysis, single-cell sequencing and coimmunoprecipitation (Co-IP) were used to explore the underlying mechanism. Results S100A8 was upregulated in gliomas compared to paracancerous tissues, and this phenotype was significantly correlated with poor prognosis. Subgroup analysis showed that S100A8 expression was higher in the high-grade glioma (HGG) group than that in the low-grade glioma (LGG) group. S100A8 overexpression in glioma cell lines promoted cell proliferation, migration and invasion, while silencing S100A8 reversed these effects. In vivo experiments showed that S100A8 knockdown can significantly reduce the tumor burden of glioma cells. Notably, S100A8 was observed to stimulate microglial M2 polarization by interacting with TLR4, which subsequently induced NF-κB signaling and IL-10 secretion within the tumor microenvironment. Conclusions S100A8 promotes tumor progression by inducing phenotypic polarization of microglia through the TLR4/IL-10 signaling pathway in glioma. It might represent a therapeutic target for further basic research or clinical management of glioma.
Collapse
Affiliation(s)
- Yuechao Yang
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Huanhuan Cui
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Deheng Li
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lei Chen
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yi Liu
- School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Changshuai Zhou
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Liangdong Li
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Mingtao Feng
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xin Chen
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yiqun Cao
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yang Gao
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
47
|
Lu Y, Xie X, Luo L. Ferroptosis crosstalk in anti-tumor immunotherapy: molecular mechanisms, tumor microenvironment, application prospects. Apoptosis 2024; 29:1914-1943. [PMID: 39008197 DOI: 10.1007/s10495-024-01997-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2024] [Indexed: 07/16/2024]
Abstract
Immunotherapies for cancer, specifically immune checkpoint inhibition (ICI), have shown potential in reactivating the body's immune response against tumors. However, there are challenges to overcome in addressing drug resistance and improving the effectiveness of these treatments. Recent research has highlighted the relationship between ferroptosis and the immune system within immune cells and the tumor microenvironment (TME), suggesting that combining targeted ferroptosis with immunotherapy could enhance anti-tumor effects. This review explores the potential of using immunotherapy to target ferroptosis either alone or in conjunction with other therapies like immune checkpoint blockade (ICB) therapy, radiotherapy, and nanomedicine synergistic treatments. It also delves into the roles of different immune cell types in promoting anti-tumor immune responses through ferroptosis. Together, these findings provide a comprehensive understanding of synergistic immunotherapy focused on ferroptosis and offer innovative strategies for cancer treatment.
Collapse
Affiliation(s)
- Yining Lu
- The First Clinical College, Guangdong Medical University, Zhanjiang, 524023, Guangdong, China
| | - Xiaoting Xie
- The First Clinical College, Guangdong Medical University, Zhanjiang, 524023, Guangdong, China
| | - Lianxiang Luo
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, Guangdong, 524023, China.
| |
Collapse
|
48
|
Yang H. Gut Microbiota, Circulating Metabolites and Risk of Endometriosis: A Two-Step Mendelian Randomization Study. Pol J Microbiol 2024; 73:491-503. [PMID: 39670637 PMCID: PMC11639408 DOI: 10.33073/pjm-2024-041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 09/19/2024] [Indexed: 12/14/2024] Open
Abstract
Epidemiological studies and animal models have suggested a possible link between gut microbiota (GM), circulating metabolites, and endometriosis (EMs) pathogenesis. However, whether these associations are causal or merely due to confounding factors remains unclear. We conducted a two-sample and two-step Mendelian randomization (MR) study to elucidate the potential causal relationship between GM and EMs, and the mediating role of circulating metabolites. Our MR analysis revealed that higher abundances of class Negativicutes, and order Selenomonadales, as well as genera Dialister, Enterorhabdus, Eubacterium xylanophilum group, Methanobrevibacter were associated with an increased risk of EMs (Odds Ratio (OR) range: 1.0019-1.0037). Conversely, higher abundances of genera Coprococcus 1 and Senegalimassilia were linked to reduced risk of EMs (OR range: 0.9964-0.9967). Additionally, elevated levels of circulating metabolites such as 1-eicosatrienoyl-glycerophosphocholine and 1-oleoylglycerophosphocholine were found to be associated with heightened risk of EMs (OR range: 2.21-3.16), while higher concentrations of 3-phenylpropionate and dihomo-linolenate were protective (OR range: 0.285-0.535). Two-step MR analysis indicated that specific microbial taxa, notably genus Enterorhabdus and order Selenomonadales, might function as mediators linking circulating metabolites to the risk of EMs. Our findings suggest a probable causal relationship between GM, circulating metabolites, and EMs, indicating that GM may mediate the influence of circulating metabolites on the pathophysiology of EMs. These results offer new leads for future mechanistic studies and could inform clinical translational research.
Collapse
Affiliation(s)
- Hua Yang
- Department of Gynecology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| |
Collapse
|
49
|
Yuan L, Qin Q, Yao Y, Chen L, Liu H, Du X, Ji M, Wu X, Wang W, Qin Q, Xiang Y, Qing B, Qu X, Yang M, Qin X, Xia Z, Liu C. Increased expression of cathepsin C in airway epithelia exacerbates airway remodeling in asthma. JCI Insight 2024; 9:e181219. [PMID: 39436705 PMCID: PMC11601913 DOI: 10.1172/jci.insight.181219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 10/08/2024] [Indexed: 10/25/2024] Open
Abstract
Airway remodeling is a critical factor determining the pathogenesis and treatment sensitivity of severe asthma (SA) or uncontrolled asthma (UA). The activation of epithelial-mesenchymal trophic units (EMTUs) regulated by airway epithelial cells (AECs) has been proven to induce airway remodeling directly. However, the triggers for EMTU activation and the underlying mechanism of airway remodeling are not fully elucidated. Here, we screened the differentially expressed gene cathepsin C (CTSC; also known as dipeptidyl peptidase 1 [DPP-1]) in epithelia of patients with SA and UA using RNA-sequencing data and further verified the increased expression of CTSC in induced sputum of patients with asthma, which was positively correlated with severity and airway remodeling. Moreover, direct instillation of exogenous CTSC induced airway remodeling. Genetic inhibition of CTSC suppressed EMTU activation and airway remodeling in two asthma models with airway remodeling. Mechanistically, increased secretion of CTSC from AECs induced EMTU activation through the p38-mediated pathway, further inducing airway remodeling. Meanwhile, inhibition of CTSC also reduced the infiltration of inflammatory cells and the production of inflammatory factors in the lungs of asthmatic mice. Consequently, targeting CTSC with compound AZD7986 protected against airway inflammation, EMTU activation, and remodeling in the asthma model. Based on the dual effects of CTSC on airway inflammation and remodeling, CTSC is a potential biomarker and therapeutic target for SA or UA.
Collapse
Affiliation(s)
- Lin Yuan
- Department of Physiology, School of Basic Medicine Science
- Basic and Clinical Research Laboratory of Major Respiratory Diseases, and
| | - Qingwu Qin
- Department of Pulmonary and Critical Care Medicine, Second Xiangya Hospital, Central South University, Changsha, China
| | - Ye Yao
- Department of Physiology, School of Basic Medicine Science
- Basic and Clinical Research Laboratory of Major Respiratory Diseases, and
| | - Long Chen
- Department of Physiology, School of Basic Medicine Science
- Basic and Clinical Research Laboratory of Major Respiratory Diseases, and
- Functional Center, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Huijun Liu
- Department of Physiology, School of Basic Medicine Science
- Basic and Clinical Research Laboratory of Major Respiratory Diseases, and
| | - Xizi Du
- Department of Physiology, School of Basic Medicine Science
- Basic and Clinical Research Laboratory of Major Respiratory Diseases, and
| | - Ming Ji
- Department of Physiology, School of Basic Medicine Science
- Basic and Clinical Research Laboratory of Major Respiratory Diseases, and
| | - Xinyu Wu
- Department of Physiology, School of Basic Medicine Science
- Basic and Clinical Research Laboratory of Major Respiratory Diseases, and
| | - Weijie Wang
- Department of Physiology, School of Basic Medicine Science
- Basic and Clinical Research Laboratory of Major Respiratory Diseases, and
| | - Qiuyan Qin
- Department of Physiology, School of Basic Medicine Science
- Basic and Clinical Research Laboratory of Major Respiratory Diseases, and
| | - Yang Xiang
- Department of Physiology, School of Basic Medicine Science
- Basic and Clinical Research Laboratory of Major Respiratory Diseases, and
| | - Bei Qing
- Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiangping Qu
- Department of Physiology, School of Basic Medicine Science
- Basic and Clinical Research Laboratory of Major Respiratory Diseases, and
| | - Ming Yang
- Centre for Asthma and Respiratory Disease, School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle and Hunter Medical Research Institute, Callaghan, New South Wales, Australia
| | - Xiaoqun Qin
- Department of Physiology, School of Basic Medicine Science
- Basic and Clinical Research Laboratory of Major Respiratory Diseases, and
| | - Zhenkun Xia
- Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Chi Liu
- Department of Physiology, School of Basic Medicine Science
- Basic and Clinical Research Laboratory of Major Respiratory Diseases, and
| |
Collapse
|
50
|
Yuan W, Zhang J, Chen H, Zhuang Y, Zhou H, Li W, Qiu W, Zhou H. Natural compounds modulate the mechanism of action of tumour-associated macrophages against colorectal cancer: a review. J Cancer Res Clin Oncol 2024; 150:502. [PMID: 39546016 PMCID: PMC11568041 DOI: 10.1007/s00432-024-06022-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 10/28/2024] [Indexed: 11/17/2024]
Abstract
Colorectal cancer (CRC) exhibits a substantial morbidity and mortality rate, with its aetiology and pathogenesis remain elusive. It holds significant importance within the tumour microenvironment (TME) and exerts a crucial regulatory influence on tumorigenesis, progression, and metastasis. TAMs possess the capability to foster CRC pathogenesis, proliferation, invasion, and metastasis, as well as angiogenesis, immune evasion, and tumour resistance. Furthermore, TAMs can mediate the prognosis of CRC. In this paper, we review the mechanisms by which natural compounds target TAMs to exert anti-CRC effects from the perspective of the promotional effects of TAMs on CRC, mainly regulating the polarization of TAMs, reducing the infiltration and recruitment of TAMs, enhancing the phagocytosis of macrophages, and regulating the signalling pathways and cytokines, and discuss the potential value and therapeutic strategies of natural compounds-targeting the TAMs pathway in CRC clinical treatment.
Collapse
Affiliation(s)
- Weichen Yuan
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine in Prevention and Treatment of Tumor, The First Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Jiexiang Zhang
- Urology Centre, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Surgery of Integrated Traditional Chinese and Western Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Haibin Chen
- Science and Technology Department, Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yupei Zhuang
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine in Prevention and Treatment of Tumor, The First Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Hongli Zhou
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wenting Li
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine in Prevention and Treatment of Tumor, The First Clinical College of Nanjing University of Chinese Medicine, Nanjing, China.
| | - Wenli Qiu
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.
| | - Hongguang Zhou
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine in Prevention and Treatment of Tumor, The First Clinical College of Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|