1
|
Wang Z, Xu C, Liu Y, Duan K, Zhu Z, Guan J. Modulation of Osteogenic Differentiation by CYBB in Osteoporotic Models. IUBMB Life 2025; 77:e70023. [PMID: 40317963 DOI: 10.1002/iub.70023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/06/2025] [Accepted: 01/16/2025] [Indexed: 05/07/2025]
Abstract
Osteoporosis (OP) is a prevalent systemic skeletal disease characterized by increased bone fragility and fracture risk. Identifying factors that influence osteogenic differentiation in OP is crucial. We screened genes associated with OP from the Gene Expression Omnibus (GEO) database and constructed a weighted correlation network analysis (WGCNA) to identify hub genes, validating our findings in external and clinical cohorts. Various experiments assessed the proliferation, apoptosis, and osteogenic differentiation abilities of bone marrow mesenchymal stem cells (BMSCs) following CYBB knockdown. We established a postmenopausal OP model in rats through bilateral ovariectomy (OVX) and evaluated OP severity using three-dimensional computed tomography (3D-CT) and H&E staining. Differential gene expression analysis revealed that CYBB was significantly upregulated in OP, with the highest area under the curve (AUC) among differentially expressed genes (DEGs). Notably, CYBB expression in BMSCs decreased over time. Knockdown of CYBB promoted BMSC proliferation and reduced apoptosis, as demonstrated by Alizarin red and ALP staining, which indicated enhanced osteogenic differentiation. Markers such as RUNX1, RUNX2, ALP, secreted phosphoprotein 1 (SPP1), and bone sialoprotein (BSP) were upregulated post-knockdown. In vivo, CYBB knockdown improved bone mineral density (BMD), relative bone volume fraction (BV/TV), and trabecular number (Tb.N). In conclusion, CYBB influences OP progression by modulating bone formation.
Collapse
Affiliation(s)
- Zhaodong Wang
- Department of Orthopedics, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
- Department of Orthopedics, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
- Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical University, Bengbu, Anhui, China
| | - Chen Xu
- Department of Orthopedics, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
- Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical University, Bengbu, Anhui, China
| | - Yajun Liu
- Department of Orthopedics, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
- Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical University, Bengbu, Anhui, China
| | - Keyou Duan
- Department of Orthopedics, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
- Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical University, Bengbu, Anhui, China
| | - Zhonglian Zhu
- Department of Orthopedics, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
- Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical University, Bengbu, Anhui, China
| | - Jianzhong Guan
- Department of Orthopedics, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
- Department of Orthopedics, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
- Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical University, Bengbu, Anhui, China
| |
Collapse
|
2
|
Li Z, Ren K, Chen J, Zhuang Y, Dong S, Wang J, Liu H, Ding J. Bioactive hydrogel formulations for regeneration of pathological bone defects. J Control Release 2025; 380:686-714. [PMID: 39880040 DOI: 10.1016/j.jconrel.2025.01.061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 01/18/2025] [Accepted: 01/21/2025] [Indexed: 01/31/2025]
Abstract
Bone defects caused by osteoporosis, infection, diabetes, post-tumor resection, and nonunion often cause severe pain and markedly increase morbidity and mortality, which remain a significant challenge for orthopedic surgeons. The precise local treatments for these pathological complications are essential to avoid poor or failed bone repair. Hydrogel formulations serve as injectable innovative platforms that overcome microenvironmental obstacles and as delivery systems for controlled release of various bioactive substances to bone defects in a targeted manner. Additionally, hydrogel formulations can be tailored for specific mechanical strengths and degradation profiles by adjusting their physical and chemical properties, which are crucial for prolonged drug retention and effective bone repair. This review summarizes recent advances in bioactive hydrogel formulations as three-dimensional scaffolds that support cell proliferation and differentiation. It also highlights their role as smart drug-delivery systems with capable of continuously releasing antibacterial agents, anti-inflammatory drugs, chemotherapeutic agents, and osteogenesis-related factors to enhance bone regeneration in pathological areas. Furthermore, the limitations of hydrogel formulations in pathological bone repair are discussed, and future development directions are proposed, which is expected to pave the way for the repair of pathological bone defects.
Collapse
Affiliation(s)
- Zuhao Li
- Orthopaedic Medical Center, The Second Hospital of Jilin University, 4026 Yatai Street, Changchun 130041, China
| | - Kaixuan Ren
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China; Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China
| | - Jiajia Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China; The First Outpatient Department, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, 6822 Jinhu Road, Changchun 130021, China
| | - Yaling Zhuang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
| | - Shujun Dong
- The First Outpatient Department, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, 6822 Jinhu Road, Changchun 130021, China
| | - Jincheng Wang
- Orthopaedic Medical Center, The Second Hospital of Jilin University, 4026 Yatai Street, Changchun 130041, China
| | - He Liu
- Orthopaedic Medical Center, The Second Hospital of Jilin University, 4026 Yatai Street, Changchun 130041, China.
| | - Jianxun Ding
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
| |
Collapse
|
3
|
Lin Y, Jiang S, Yao Y, Li H, Jin H, Yang G, Ji B, Li Y. Posttranslational Modification in Bone Homeostasis and Osteoporosis. MedComm (Beijing) 2025; 6:e70159. [PMID: 40170748 PMCID: PMC11959162 DOI: 10.1002/mco2.70159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 02/28/2025] [Accepted: 03/06/2025] [Indexed: 04/03/2025] Open
Abstract
Bone is responsible for providing mechanical protection, attachment sites for muscles, hematopoiesis micssroenvironment, and maintaining balance between calcium and phosphorate. As a highly active and dynamically regulated organ, the balance between formation and resorption of bone is crucial in bone development, damaged bone repair, and mineral homeostasis, while dysregulation in bone remodeling impairs bone structure and strength, leading to deficiency in bone function and skeletal disorder, such as osteoporosis. Osteoporosis refers to compromised bone mass and higher susceptibility of fracture, resulting from several risk factors deteriorating the balanced system between osteoblast-mediated bone formation and osteoclast-mediated bone resorption. This balanced system is strictly regulated by translational modification, such as phosphorylation, methylation, acetylation, ubiquitination, sumoylation, glycosylation, ADP-ribosylation, S-palmitoylation, citrullination, and so on. This review specifically describes the updating researches concerning bone formation and bone resorption mediated by posttranslational modification. We highlight dysregulated posttranslational modification in osteoblast and osteoclast differentiation. We also emphasize involvement of posttranslational modification in osteoporosis development, so as to elucidate the underlying molecular basis of osteoporosis. Then, we point out translational potential of PTMs as therapeutic targets. This review will deepen our understanding between posttranslational modification and osteoporosis, and identify novel targets for clinical treatment and identify future directions.
Collapse
Affiliation(s)
- Yuzhe Lin
- Department of OrthopedicsXiangya HospitalCentral South UniversityChangshaChina
- Xiangya School of Medicine Central South UniversityChangshaChina
| | - Shide Jiang
- The Central Hospital of YongzhouYongzhouChina
| | - Yuming Yao
- Department of OrthopedicsXiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaChina
| | - Hengzhen Li
- Department of OrthopedicsXiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaChina
| | - Hongfu Jin
- Department of OrthopedicsXiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaChina
| | - Guang Yang
- Department of OrthopedicsXiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaChina
| | - Bingzhou Ji
- Department of OrthopedicsXiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaChina
| | - Yusheng Li
- Department of OrthopedicsXiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaChina
| |
Collapse
|
4
|
Zhang J, Bai H, Liu H, Wang X, Xu M, Zhang G, Di Z, Zhao X, Wang J, Ren L. Augmenting osteoporotic osseointegration through a temporal release nanocoating-based reversing dysregulated osteogenic microenvironment. J Orthop Translat 2025. [DOI: 10.1016/j.jot.2025.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/03/2025] Open
|
5
|
Lam W, Yao Y, Tang C, Wang Y, Yuan Q, Peng L. Bifunctional mesoporous HMUiO-66-NH 2 nanoparticles for bone remodeling and ROS scavenging in periodontitis therapy. Biomaterials 2025; 314:122872. [PMID: 39383779 DOI: 10.1016/j.biomaterials.2024.122872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 09/17/2024] [Accepted: 10/01/2024] [Indexed: 10/11/2024]
Abstract
Periodontal bone defects represent an irreversible consequence of periodontitis associated with reactive oxygen species (ROS). However, indiscriminate removal of ROS proves to be counterproductive for tissue repair and insufficient for addressing existing bone defects. In the treatment of periodontitis, it is crucial to rationally alleviate local ROS while simultaneously promoting bone regeneration. In this study, Zr-based large-pore hierarchical mesoporous metal-organic framework (MOF) nanoparticles (NPs) HMUiO-66-NH2 were successfully proposed as bifunctional nanomaterials for bone regeneration and ROS scavenging in periodontitis therapy. HMUiO-66-NH2 NPs demonstrated outstanding biocompatibility both in vitro and in vivo. Significantly, these NPs enhanced the osteogenic differentiation of bone mesenchymal stem cells (BMSCs) under normal and high ROS conditions, upregulating osteogenic gene expression and mitigating oxidative stress. Furthermore, in vivo imaging revealed a gradual degradation of HMUiO-66-NH2 NPs in periodontal tissues. Local injection of HMUiO-66-NH2 effectively reduced bone defects and ROS levels in periodontitis-induced C57BL/6 mice. RNA sequencing highlighted that differentially expressed genes (DEGs) are predominantly involved in bone tissue development, with notable upregulation in Wnt and TGF-β signaling pathways. In conclusion, HMUiO-66-NH2 exhibits dual functionality in alleviating oxidative stress and promoting bone repair, positioning it as an effective strategy against bone resorption in oxidative stress-related periodontitis.
Collapse
Affiliation(s)
- Waishan Lam
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yufei Yao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Sichuan, 610041, China
| | - Chenxi Tang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yue Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral Surgery, West China Hospital of Stomatology, Sichuan University, Sichuan, 610041, China
| | - Quan Yuan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Lin Peng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
6
|
Cai J, Deng Y, Min Z, Li C, Zhao Z, Yi J, Jing D. Unlocking the Epigenetic Symphony: Histone Acetylation Orchestration in Bone Remodeling and Diseases. Stem Cell Rev Rep 2025; 21:291-303. [PMID: 39495465 DOI: 10.1007/s12015-024-10807-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2024] [Indexed: 11/05/2024]
Abstract
Histone acetylation orchestrates a complex symphony of gene expression that controls cellular fate and activities, including the intricate processes of bone remodeling. Despite its proven significance, a systematic illustration of this process has been lacking due to its complexity, impeding clinical application. In this review, we delve into the central regulators of histone acetylation, unveiling their multifaceted roles in modulating bone physiology. We explore both contradictory and overlapping roles among these regulators and assess their potential as therapeutic targets for various bone disorders. Furthermore, we highlight current applications and discuss looming questions for a more effective use of epigenetic therapy in bone diseases, aiming to address gaps in knowledge and clinical practice. By providing a panoramic view of histone acetylation's impact on bone health and disease, this review unveils promising avenues for therapeutic intervention and enhances our understanding of skeletal physiology, crucial for improving therapeutical outcomes and quality of patients' life.
Collapse
Affiliation(s)
- Jingyi Cai
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Yudi Deng
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Ziyang Min
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Chaoyuan Li
- Department of Implantology, School and Hospital of Stomatology, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Tongji University, Shanghai, China
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Jianru Yi
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Dian Jing
- Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China.
| |
Collapse
|
7
|
Zhang J, Liu H, Liu Y, Luo E, Liu S. Unlocking the potential of histone modification in regulating bone metabolism. Biochimie 2024; 227:286-298. [PMID: 39154977 DOI: 10.1016/j.biochi.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/02/2024] [Accepted: 08/02/2024] [Indexed: 08/20/2024]
Abstract
Bone metabolism plays a crucial role in maintaining normal bone tissue homeostasis and function. Imbalances between bone formation and resorption can lead to osteoporosis, osteoarthritis, and other bone diseases. The dynamic and complex process of bone remodeling is driven by various factors, including epigenetics. Histone modification, one of the most important and well-studied components of epigenetic regulation, has emerged as a promising area of research in bone metabolism. Different histone proteins and modification sites exert diverse effects on osteogenesis and osteoclastogenesis. In this review, we summarize recent progress in understanding histone modifications in bone metabolism, including specific modification sites and potential regulatory enzymes. Comprehensive knowledge of histone modifications in bone metabolism could reveal new therapeutic targets and treatment strategies for bone diseases.
Collapse
Affiliation(s)
- Jiayuan Zhang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Hanghang Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yao Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - En Luo
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Shibo Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| |
Collapse
|
8
|
Qu Z, Zhao S, Zhang Y, Wang X, Yan L. Natural Compounds for Bone Remodeling: Targeting osteoblasts and relevant signaling pathways. Biomed Pharmacother 2024; 180:117490. [PMID: 39332184 DOI: 10.1016/j.biopha.2024.117490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 09/10/2024] [Accepted: 09/20/2024] [Indexed: 09/29/2024] Open
Abstract
In the process of bone metabolism and bone remodeling, bone marrow mesenchymal stem cells (BM-MSCs) differentiate into osteoblasts (OBs) under certain conditions to enable the formation of new bone, and normal bone reconstruction and pathological bone alteration are closely related to the differentiation and proliferation functions of OBs. Osteogenic differentiation of BM-MSCs involves multiple signaling pathways, which function individually but interconnect intricately to form a complex signaling regulatory network. Natural compounds have fewer adverse effects than chemically synthesized drugs, optimize bone health, and are more suitable for long-term use. In this paper, we focus on OBs, summarize the current research progress of signaling pathways related to OBs differentiation, and review the molecular mechanisms by which chemically synthesized drugs with potential anti-osteoporosis properties regulate OBs-mediated bone formation.
Collapse
Affiliation(s)
- Zechao Qu
- Department of Spinal Surgery, Honghui Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Songchuan Zhao
- Department of Spinal Surgery, Honghui Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yong Zhang
- Department of Spinal Surgery, Honghui Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiaohao Wang
- Department of Spinal Surgery, Honghui Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Liang Yan
- Department of Spinal Surgery, Honghui Hospital of Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
9
|
Chen R, Jin Y, Lian R, Yang J, Liao Z, Jin Y, Deng Z, Feng S, Feng Z, Wei Y, Zhang Z, Zhao L. CRIP1 regulates osteogenic differentiation of bone marrow stromal cells and pre-osteoblasts via the Wnt signaling pathway. Biochem Biophys Res Commun 2024; 727:150277. [PMID: 38936225 DOI: 10.1016/j.bbrc.2024.150277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/02/2024] [Accepted: 06/17/2024] [Indexed: 06/29/2024]
Abstract
With the aging of the global demographic, the prevention and treatment of osteoporosis are becoming crucial issues. The gradual loss of self-renewal and osteogenic differentiation capabilities in bone marrow stromal cells (BMSCs) is one of the key factors contributing to osteoporosis. To explore the regulatory mechanisms of BMSCs differentiation, we collected bone marrow cells of femoral heads from patients undergoing total hip arthroplasty for single-cell RNA sequencing analysis. Single-cell RNA sequencing revealed significantly reduced CRIP1 (Cysteine-Rich Intestinal Protein 1) expression and osteogenic capacity in the BMSCs of osteoporosis patients compared to non-osteoporosis group. CRIP1 is a gene that encodes a member of the LIM/double zinc finger protein family, which is involved in the regulation of various cellular processes including cell growth, development, and differentiation. CRIP1 knockdown resulted in decreased alkaline phosphatase activity, mineralization and expression of osteogenic markers, indicating impaired osteogenic differentiation. Conversely, CRIP1 overexpression, both in vitro and in vivo, enhanced osteogenic differentiation and rescued bone mass reduction in ovariectomy-induced osteoporosis mice model. The study further established CRIP1's modulation of osteogenesis through the Wnt signaling pathway, suggesting that targeting CRIP1 could offer a novel approach for osteoporosis treatment by promoting bone formation and preventing bone loss.
Collapse
Affiliation(s)
- Ruge Chen
- Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Yangchen Jin
- Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Ru Lian
- Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Jie Yang
- Department of Chinese Medicine, Chinese People's Liberation Army Air Force Special Medical Center, Beijing, 100142, China
| | - Zheting Liao
- Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Yu Jin
- Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Zhonghao Deng
- Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Shuhao Feng
- Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Zihang Feng
- Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Yiran Wei
- Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Zhongmin Zhang
- Division of Spine Surgery, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China.
| | - Liang Zhao
- Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China.
| |
Collapse
|
10
|
Lei H, Sun J, Dai Z, Wo K, Zhang J, Wang Y, Zhao B, Fan W, Wang J, Shi Y, Yang C, Su B, Luo Z, Wu J, Chen L, Chu Y. Remote coupling of electrical and mechanical cues by diurnal photothermal irradiation synergistically promotes bone regeneration. J Nanobiotechnology 2024; 22:410. [PMID: 38992774 PMCID: PMC11238389 DOI: 10.1186/s12951-024-02671-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 06/25/2024] [Indexed: 07/13/2024] Open
Abstract
Recapitulating the natural extracellular physical microenvironment has emerged as a promising method for tissue regeneration, as multiple physical interventions, including ultrasound, thermal and electrical therapy, have shown great potential. However, simultaneous coupling of multiple physical cues to highly bio-mimick natural characteristics for improved tissue regeneration still remains formidable. Coupling of intrinsic electrical and mechanical cues has been regarded as an effective way to modulate tissue repair. Nevertheless, precise and convenient manipulation on coupling of mechano-electrical signals within extracellular environment to facilitate tissue regeneration remains challengeable. Herein, a photothermal-sensitive piezoelectric membrane was designed for simultaneous integration of electrical and mechanical signals in response to NIR irradiation. The high-performance mechano-electrical coupling under NIR exposure synergistically triggered the promotion of osteogenic differentiation of stem cells and enhances bone defect regeneration by increasing cellular mechanical sensing, attachment, spreading and cytoskeleton remodeling. This study highlights the coupling of mechanical signals and electrical cues for modulation of osteogenesis, and sheds light on alternative bone tissue engineering therapies with multiple integrated physical cues for tissue repair.
Collapse
Affiliation(s)
- Haoqi Lei
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Jiwei Sun
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Zhiyin Dai
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, China
| | - Keqi Wo
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Junyuan Zhang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Yifan Wang
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Baoying Zhao
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Wenjie Fan
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Jinyu Wang
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Yunsong Shi
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Cheng Yang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Bin Su
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zhiqiang Luo
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Junjie Wu
- Department of Orthodontics, School of Stomatology, Air Force Medical University, Xi'An, 710032, China.
| | - Lili Chen
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China.
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China.
| | - Yingying Chu
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, China.
| |
Collapse
|
11
|
Hu L, Chen W, Qian A, Li YP. Wnt/β-catenin signaling components and mechanisms in bone formation, homeostasis, and disease. Bone Res 2024; 12:39. [PMID: 38987555 PMCID: PMC11237130 DOI: 10.1038/s41413-024-00342-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 04/27/2024] [Accepted: 05/12/2024] [Indexed: 07/12/2024] Open
Abstract
Wnts are secreted, lipid-modified proteins that bind to different receptors on the cell surface to activate canonical or non-canonical Wnt signaling pathways, which control various biological processes throughout embryonic development and adult life. Aberrant Wnt signaling pathway underlies a wide range of human disease pathogeneses. In this review, we provide an update of Wnt/β-catenin signaling components and mechanisms in bone formation, homeostasis, and diseases. The Wnt proteins, receptors, activators, inhibitors, and the crosstalk of Wnt signaling pathways with other signaling pathways are summarized and discussed. We mainly review Wnt signaling functions in bone formation, homeostasis, and related diseases, and summarize mouse models carrying genetic modifications of Wnt signaling components. Moreover, the therapeutic strategies for treating bone diseases by targeting Wnt signaling, including the extracellular molecules, cytosol components, and nuclear components of Wnt signaling are reviewed. In summary, this paper reviews our current understanding of the mechanisms by which Wnt signaling regulates bone formation, homeostasis, and the efforts targeting Wnt signaling for treating bone diseases. Finally, the paper evaluates the important questions in Wnt signaling to be further explored based on the progress of new biological analytical technologies.
Collapse
Affiliation(s)
- Lifang Hu
- Laboratory for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Laboratory for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Wei Chen
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, 70112, USA
| | - Airong Qian
- Laboratory for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Laboratory for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China.
| | - Yi-Ping Li
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, 70112, USA.
| |
Collapse
|
12
|
Zhang D, Jin X, Ma X, Qiu Y, Ma W, Dai X, Zhang Z. Tumour necrosis factor α regulates the miR-27a-3p-Sfrp1 axis in a mouse model of osteoporosis. Exp Physiol 2024; 109:1109-1123. [PMID: 38748896 PMCID: PMC11215474 DOI: 10.1113/ep090311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 03/01/2024] [Indexed: 07/02/2024]
Abstract
Osteoporosis is a metabolic bone disease that involves gradual loss of bone density and mass, thus resulting in increased fragility and risk of fracture. Inflammatory cytokines, such as tumour necrosis factor α (TNF-α), inhibit osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs), and several microRNAs are implicated in osteoporosis development. This study aimed to explore the correlation between TNF-α treatment and miR-27a-3p expression in BMSC osteogenesis and further understand their roles in osteoporosis. An osteoporosis animal model was established using ovariectomized (OVX) mice. Compared with Sham mice, the OVX mice had a significantly elevated level of serum TNF-α and decreased level of bone miR-27a-3p, and in vitro TNF-α treatment inhibited miR-27a-3p expression in BMSCs. In addition, miR-27a-3p promoted osteogenic differentiation of mouse BMSCs in vitro, as evidenced by alkaline phosphatase staining and Alizarin Red-S staining, as well as enhanced expression of the osteogenic markers Runx2 and Osterix. Subsequent bioinformatics analysis combined with experimental validation identified secreted frizzled-related protein 1 (Sfrp1) as a downstream target of miR-27a-3p. Sfrp1 overexpression significantly inhibited the osteogenic differentiation of BMSCs in vitro and additional TNF-α treatment augmented this inhibition. Moreover, Sfrp1 overexpression abrogated the promotive effect of miR-27a-3p on the osteogenic differentiation of BMSCs. Furthermore, the miR-27a-3p-Sfrp1 axis was found to exert its regulatory function in BMSC osteogenic differentiation via regulating Wnt3a-β-catenin signalling. In summary, this study revealed that TNF-α regulated a novel miR-27a-3p-Sfrp1 axis in osteogenic differentiation of BMSCs. The data provide new insights into the development of novel therapeutic strategies for osteoporosis.
Collapse
Affiliation(s)
- Dang‐Feng Zhang
- Department of OrthopedicsThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiChina
| | - Xiao‐Na Jin
- Department of NursingXi'an International UniversityXi'anShaanxiChina
| | - Xing Ma
- Department of OrthopedicsThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiChina
| | - Yu‐Sheng Qiu
- Department of OrthopedicsThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiChina
| | - Wei Ma
- Department of OrthopedicsThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiChina
| | - Xing Dai
- Department of OrthopedicsThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiChina
| | - Zhi Zhang
- Department of OrthopedicsThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiChina
| |
Collapse
|
13
|
Fang Y, Barrows D, Dabas Y, Carroll T, Singer S, Tap W, Nacev B. ATRX guards against aberrant differentiation in mesenchymal progenitor cells. Nucleic Acids Res 2024; 52:4950-4968. [PMID: 38477352 PMCID: PMC11109985 DOI: 10.1093/nar/gkae160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/19/2024] [Accepted: 03/05/2024] [Indexed: 03/14/2024] Open
Abstract
Alterations in the tumor suppressor ATRX are recurrently observed in mesenchymal neoplasms. ATRX has multiple epigenetic functions including heterochromatin formation and maintenance and regulation of transcription through modulation of chromatin accessibility. Here, we show in murine mesenchymal progenitor cells (MPCs) that Atrx deficiency aberrantly activated mesenchymal differentiation programs. This includes adipogenic pathways where ATRX loss induced expression of adipogenic transcription factors and enhanced adipogenic differentiation in response to differentiation stimuli. These changes are linked to loss of heterochromatin near mesenchymal lineage genes together with increased chromatin accessibility and gains of active chromatin marks. We additionally observed depletion of H3K9me3 at transposable elements, which are derepressed including near mesenchymal genes where they could serve as regulatory elements. Finally, we demonstrated that loss of ATRX in a mesenchymal malignancy, undifferentiated pleomorphic sarcoma, results in similar epigenetic disruption and de-repression of transposable elements. Together, our results reveal a role for ATRX in maintaining epigenetic states and transcriptional repression in mesenchymal progenitors and tumor cells and in preventing aberrant differentiation in the progenitor context.
Collapse
Affiliation(s)
- Yan Fang
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY10065, USA
- Laboratory of Chromatin Biology and Epigenetics, The Rockefeller University, New York, NY 10065, USA
| | - Douglas Barrows
- Bioinformatics Resource Center, The Rockefeller University, New York, NY10065, USA
| | - Yakshi Dabas
- Laboratory of Chromatin Biology and Epigenetics, The Rockefeller University, New York, NY 10065, USA
| | - Thomas S Carroll
- Bioinformatics Resource Center, The Rockefeller University, New York, NY10065, USA
| | - Sam Singer
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY10065, USA
| | - William D Tap
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY10065, USA
| | - Benjamin A Nacev
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15213, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
| |
Collapse
|
14
|
Zhang Y, Wang Q, Xue H, Guo Y, Wei S, Li F, Gong L, Pan W, Jiang P. Epigenetic Regulation of Autophagy in Bone Metabolism. FUNCTION 2024; 5:zqae004. [PMID: 38486976 PMCID: PMC10935486 DOI: 10.1093/function/zqae004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/18/2024] [Accepted: 01/24/2024] [Indexed: 03/17/2024] Open
Abstract
The skeletal system is crucial for supporting bodily functions, protecting vital organs, facilitating hematopoiesis, and storing essential minerals. Skeletal homeostasis, which includes aspects such as bone density, structural integrity, and regenerative processes, is essential for normal skeletal function. Autophagy, an intricate intracellular mechanism for degrading and recycling cellular components, plays a multifaceted role in bone metabolism. It involves sequestering cellular waste, damaged proteins, and organelles within autophagosomes, which are then degraded and recycled. Autophagy's impact on bone health varies depending on factors such as regulation, cell type, environmental cues, and physiological context. Despite being traditionally considered a cytoplasmic process, autophagy is subject to transcriptional and epigenetic regulation within the nucleus. However, the precise influence of epigenetic regulation, including DNA methylation, histone modifications, and non-coding RNA expression, on cellular fate remains incompletely understood. The interplay between autophagy and epigenetic modifications adds complexity to bone cell regulation. This article provides an in-depth exploration of the intricate interplay between these two regulatory paradigms, with a focus on the epigenetic control of autophagy in bone metabolism. Such an understanding enhances our knowledge of bone metabolism-related disorders and offers insights for the development of targeted therapeutic strategies.
Collapse
Affiliation(s)
- Yazhou Zhang
- Department of Foot and Ankle Surgery, Tengzhou Central People’s Hospital, Tengzhou 277500, China
| | - Qianqian Wang
- Department of Pediatric Intensive Care Unit, Tengzhou Central People’s Hospital, Tengzhou 277500, China
| | - Hongjia Xue
- Department of Computer Science, University College London, London, WC1E 6BT, UK
| | - Yujin Guo
- Institute of Clinical Pharmacy & Pharmacology, Jining First People’s Hospital, Jining 272000, China
| | - Shanshan Wei
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250000, China
- Department of Graduate, Shandong Academy of Medical Sciences, Shandong First Medical University, Jinan 250000, China
| | - Fengfeng Li
- Department of Neurosurgery, Tengzhou Central People’s Hospital, Tengzhou 277500, China
| | - Linqiang Gong
- Department of Gastroenterology, Tengzhou Central People's Hospital, Tengzhou 277500, China
| | - Weiliang Pan
- Department of Foot and Ankle Surgery, Tengzhou Central People’s Hospital, Tengzhou 277500, China
| | - Pei Jiang
- Translational Pharmaceutical Laboratory, Jining First People’s Hospital, Shandong First Medical University, Jining 272000, China
- Institute of Translational Pharmacy, Jining Medical Research Academy, Jining 272000, China
| |
Collapse
|
15
|
Wang C, Chen R, Zhu X, Zhang X, Lian N. DOT1L decelerates the development of osteoporosis by inhibiting SRSF1 transcriptional activity via microRNA-181-mediated KAT2B inhibition. Genomics 2024; 116:110759. [PMID: 38072145 DOI: 10.1016/j.ygeno.2023.110759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 11/15/2023] [Accepted: 12/05/2023] [Indexed: 12/22/2023]
Abstract
OBJECTIVE Our study explored the function of DOT1L in osteoporosis (OP) via the microRNA (miR)-181/KAT2B/SRSF1 axis. METHODS Osteoclast (OC) number was evaluated via TRAP staining, and serum CTXI, PINP, and ALP contents were tested by ELISA. Following identification of bone marrow mesenchymal stem cells (BMSCs), OC differentiation was induced by M-CSF and RANKL, followed by the detection of OC differentiation and the expression of bone resorption-related genes, DOT1L, miR-181, KAT2B, and SRSF1. RESULTS Overexpressed DOT1L or miR-181 stimulated calcified nodule formation and increased alkaline phosphatase activity and osteogenic marker gene expression. KAT2B knockdown enhanced the osteogenic differentiation of BMSCs by reducing SRSF1 acetylation. The enhancement of OC differentiation induced by overexpressed SRSF1 was inhibited by simultaneous DOT1L or miR-181 overexpression. DOT1L suppressed OP development in vivo via the miR-181/KAT2B/SRSF1 axis. CONCLUSION DOT1L overexpression slowed down bone loss and promoted bone formation via the miR-181/KAT2B/SRSF1 axis, thereby alleviating OP development.
Collapse
Affiliation(s)
- Changsheng Wang
- Department of Spinal Surgery, First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, PR China.
| | - Rongsheng Chen
- Department of Spinal Surgery, First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, PR China
| | - Xitian Zhu
- Department of Spinal Surgery, First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, PR China
| | - Xiaobo Zhang
- Department of Spinal Surgery, First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, PR China
| | - Nancheng Lian
- Department of Spinal Surgery, First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, PR China
| |
Collapse
|
16
|
Qiu W, Li Z, Su Z, Cao L, Li L, Chen X, Zhang W, Li Y. Kaempferol prevents aseptic loosening via enhance the Wnt/β-catenin signaling pathway in vitro and in vivo. Eur J Med Res 2023; 28:505. [PMID: 37946300 PMCID: PMC10634165 DOI: 10.1186/s40001-023-01469-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 10/23/2023] [Indexed: 11/12/2023] Open
Abstract
Kaempferol has demonstrated notable positive effects on the osteogenic differentiation of mesenchymal stem cells (MSC) and osteoblasts. A substantial body of research has emphasized the role of dislodged titanium particles in aseptic loosening following joint replacement surgery. This study predominantly investigates the suppressive influence of Kaempferol on osteolysis induced by titanium (Ti) alloy particles. In vitro investigations disclosed that Kaempferol effectively enhanced mineralization and alkaline phosphatase (ALP) activity in bone-marrow mesenchymal stem cells exposed to Ti particles. In addition, we conducted a comprehensive analysis of osteogenic differentiation microarray data_sets (GSE37676, GSE79814, and GSE114474) to identify differentially expressed genes. Significantly, Kaempferol upregulated the expression of critical osteogenic markers, including Runt-related transcription factor 2 (Runx2), osteocalcin (OCN), osterix/Sp-7, and β-catenin. In vivo experiments, including H&E staining and Immunohistochemistry, provided compelling evidence that Kaempferol exerted a robust inhibitory effect on periprosthetic osteolysis in mice, with particularly pronounced results at higher doses. Moreover, it elevated the expression levels of osteogenic factors and Wnt/β-catenin signaling components. These findings collectively indicate that Kaempferol mitigates the hindrance to osteogenesis posed by titanium particles by activating the Runx2 and Wnt/β-catenin signaling pathways. This research lays a solid foundation for the prospective utilization of Kaempferol in the management of aseptic loosening following arthroplasty, offering promising therapeutic potential.
Collapse
Affiliation(s)
- Wenkui Qiu
- Department of Orthopedics, Kaifeng Central Hospital, Kaifeng, 475000, Henan, People's Republic of China
| | - Zhenghui Li
- Department of Neurosurgery, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
| | - Zhenyan Su
- Department of Orthopedics, Kaifeng Central Hospital, Kaifeng, 475000, Henan, People's Republic of China
| | - Lichao Cao
- Department of Orthopedics, Kaifeng Central Hospital, Kaifeng, 475000, Henan, People's Republic of China
| | - Lei Li
- Department of Orthopedics, Kaifeng Central Hospital, Kaifeng, 475000, Henan, People's Republic of China
| | - Xi Chen
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, 91054, Erlangen, Germany
| | - Wanhong Zhang
- Department of Neurosurgery, Kaifeng Central Hospital, Kaifeng, 475000, Henan, People's Republic of China
| | - Yanqing Li
- Department of Orthopedics, Kaifeng Central Hospital, Kaifeng, 475000, Henan, People's Republic of China.
- School of Life Sciences, Henan University, Kaifeng, 475000, Henan, People's Republic of China.
| |
Collapse
|
17
|
Sun Y, Zhang H, Qiu T, Liao L, Su X. Epigenetic regulation of mesenchymal stem cell aging through histone modifications. Genes Dis 2023; 10:2443-2456. [PMID: 37554203 PMCID: PMC10404871 DOI: 10.1016/j.gendis.2022.10.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/18/2022] [Accepted: 10/23/2022] [Indexed: 12/12/2022] Open
Abstract
Stem cell senescence and exhaustion, a hallmark of aging, lead to declines in tissue repair and regeneration in aged individuals. Emerging evidence has revealed that epigenetic regulation plays critical roles in the self-renew, lineage-commitment, survival, and function of stem cells. Moreover, epigenetic alterations are considered important drivers of stem cell dysfunction during aging. In this review, we focused on current knowledge of the histone modifications in the aging of mesenchymal stem cells (MSCs). The aberrant epigenetic modifications on histones, including methylation and acetylation, have been found in aging MSCs. By disturbing the expression of specific genes, these epigenetic modifications affect the self-renew, survival, and differentiation of MSCs. A set of epigenetic enzymes that write or erase these modifications are critical in regulating the aging of MSCs. Furthermore, we discussed the rejuvenation strategies based on epigenetics to prevent stem cell aging and/or rejuvenate senescent MSCs.
Collapse
Affiliation(s)
| | | | - Tao Qiu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Pediatrics & Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Li Liao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Pediatrics & Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xiaoxia Su
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Pediatrics & Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
18
|
Wang R, Wang Y, Niu Y, He D, Jin S, Li Z, Zhu L, Chen L, Wu X, Ding C, Wu T, Shi X, Zhang H, Li C, Wang X, Xie Z, Li W, Liu Y. Deep Learning-Predicted Dihydroartemisinin Rescues Osteoporosis by Maintaining Mesenchymal Stem Cell Stemness through Activating Histone 3 Lys 9 Acetylation. ACS CENTRAL SCIENCE 2023; 9:1927-1943. [PMID: 37901168 PMCID: PMC10604014 DOI: 10.1021/acscentsci.3c00794] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Indexed: 10/31/2023]
Abstract
Maintaining the stemness of bone marrow mesenchymal stem cells (BMMSCs) is crucial for bone homeostasis and regeneration. However, in vitro expansion and bone diseases impair BMMSC stemness, limiting its functionality in bone tissue engineering. Using a deep learning-based efficacy prediction system and bone tissue sequencing, we identify a natural small-molecule compound, dihydroartemisinin (DHA), that maintains BMMSC stemness and enhances bone regeneration. During long-term in vitro expansion, DHA preserves BMMSC stemness characteristics, including its self-renewal ability and unbiased differentiation. In an osteoporosis mouse model, oral administration of DHA restores the femur trabecular structure, bone density, and BMMSC stemness in situ. Mechanistically, DHA maintains BMMSC stemness by promoting histone 3 lysine 9 acetylation via GCN5 activation both in vivo and in vitro. Furthermore, the bone-targeted delivery of DHA by mesoporous silica nanoparticles improves its therapeutic efficacy in osteoporosis. Collectively, DHA could be a promising therapeutic agent for treating osteoporosis by maintaining BMMSC stemness.
Collapse
Affiliation(s)
- Ruoxi Wang
- Laboratory
of Biomimetic Nanomaterials, Department of Orthodontics & National
Center for Stomatology & National Clinical Research Center for
Oral Diseases & National Engineering Laboratory for Digital and
Material Technology of Stomatology & Beijing Key Laboratory of
Digital Stomatology & Research Center of Engineering and Technology
for Computerized Dentistry Ministry of Health & NMPA Key Laboratory
for Dental Materials & Translational Research Center for Orocraniofacial
Stem Cells and Systemic Health, Peking University
School and Hospital for Stomatology, Beijing 100081, China
| | - Yu Wang
- Laboratory
of Biomimetic Nanomaterials, Department of Orthodontics & National
Center for Stomatology & National Clinical Research Center for
Oral Diseases & National Engineering Laboratory for Digital and
Material Technology of Stomatology & Beijing Key Laboratory of
Digital Stomatology & Research Center of Engineering and Technology
for Computerized Dentistry Ministry of Health & NMPA Key Laboratory
for Dental Materials & Translational Research Center for Orocraniofacial
Stem Cells and Systemic Health, Peking University
School and Hospital for Stomatology, Beijing 100081, China
| | - Yuting Niu
- Central
Laboratory, National Center for Stomatology & National Clinical
Research Center for Oral Diseases & National Engineering Laboratory
for Digital and Material Technology of Stomatology & Beijing Key
Laboratory of Digital Stomatology & Research Center of Engineering
and Technology for Computerized Dentistry Ministry of Health &
NMPA Key Laboratory for Dental Materials & Translational Research
Center for Orocraniofacial Stem Cells and Systemic Health, Central
Laboratory, Peking University School and
Hospital for Stomatology, Beijing 100081, China
| | - Danqing He
- Laboratory
of Biomimetic Nanomaterials, Department of Orthodontics & National
Center for Stomatology & National Clinical Research Center for
Oral Diseases & National Engineering Laboratory for Digital and
Material Technology of Stomatology & Beijing Key Laboratory of
Digital Stomatology & Research Center of Engineering and Technology
for Computerized Dentistry Ministry of Health & NMPA Key Laboratory
for Dental Materials & Translational Research Center for Orocraniofacial
Stem Cells and Systemic Health, Peking University
School and Hospital for Stomatology, Beijing 100081, China
| | - Shanshan Jin
- Laboratory
of Biomimetic Nanomaterials, Department of Orthodontics & National
Center for Stomatology & National Clinical Research Center for
Oral Diseases & National Engineering Laboratory for Digital and
Material Technology of Stomatology & Beijing Key Laboratory of
Digital Stomatology & Research Center of Engineering and Technology
for Computerized Dentistry Ministry of Health & NMPA Key Laboratory
for Dental Materials & Translational Research Center for Orocraniofacial
Stem Cells and Systemic Health, Peking University
School and Hospital for Stomatology, Beijing 100081, China
| | - Zixin Li
- Laboratory
of Biomimetic Nanomaterials, Department of Orthodontics & National
Center for Stomatology & National Clinical Research Center for
Oral Diseases & National Engineering Laboratory for Digital and
Material Technology of Stomatology & Beijing Key Laboratory of
Digital Stomatology & Research Center of Engineering and Technology
for Computerized Dentistry Ministry of Health & NMPA Key Laboratory
for Dental Materials & Translational Research Center for Orocraniofacial
Stem Cells and Systemic Health, Peking University
School and Hospital for Stomatology, Beijing 100081, China
| | - Lisha Zhu
- Laboratory
of Biomimetic Nanomaterials, Department of Orthodontics & National
Center for Stomatology & National Clinical Research Center for
Oral Diseases & National Engineering Laboratory for Digital and
Material Technology of Stomatology & Beijing Key Laboratory of
Digital Stomatology & Research Center of Engineering and Technology
for Computerized Dentistry Ministry of Health & NMPA Key Laboratory
for Dental Materials & Translational Research Center for Orocraniofacial
Stem Cells and Systemic Health, Peking University
School and Hospital for Stomatology, Beijing 100081, China
| | - Liyuan Chen
- Laboratory
of Biomimetic Nanomaterials, Department of Orthodontics & National
Center for Stomatology & National Clinical Research Center for
Oral Diseases & National Engineering Laboratory for Digital and
Material Technology of Stomatology & Beijing Key Laboratory of
Digital Stomatology & Research Center of Engineering and Technology
for Computerized Dentistry Ministry of Health & NMPA Key Laboratory
for Dental Materials & Translational Research Center for Orocraniofacial
Stem Cells and Systemic Health, Peking University
School and Hospital for Stomatology, Beijing 100081, China
| | - Xiaolan Wu
- Laboratory
of Biomimetic Nanomaterials, Department of Orthodontics & National
Center for Stomatology & National Clinical Research Center for
Oral Diseases & National Engineering Laboratory for Digital and
Material Technology of Stomatology & Beijing Key Laboratory of
Digital Stomatology & Research Center of Engineering and Technology
for Computerized Dentistry Ministry of Health & NMPA Key Laboratory
for Dental Materials & Translational Research Center for Orocraniofacial
Stem Cells and Systemic Health, Peking University
School and Hospital for Stomatology, Beijing 100081, China
| | - Chengye Ding
- Laboratory
of Biomimetic Nanomaterials, Department of Orthodontics & National
Center for Stomatology & National Clinical Research Center for
Oral Diseases & National Engineering Laboratory for Digital and
Material Technology of Stomatology & Beijing Key Laboratory of
Digital Stomatology & Research Center of Engineering and Technology
for Computerized Dentistry Ministry of Health & NMPA Key Laboratory
for Dental Materials & Translational Research Center for Orocraniofacial
Stem Cells and Systemic Health, Peking University
School and Hospital for Stomatology, Beijing 100081, China
| | - Tianhao Wu
- Laboratory
of Biomimetic Nanomaterials, Department of Orthodontics & National
Center for Stomatology & National Clinical Research Center for
Oral Diseases & National Engineering Laboratory for Digital and
Material Technology of Stomatology & Beijing Key Laboratory of
Digital Stomatology & Research Center of Engineering and Technology
for Computerized Dentistry Ministry of Health & NMPA Key Laboratory
for Dental Materials & Translational Research Center for Orocraniofacial
Stem Cells and Systemic Health, Peking University
School and Hospital for Stomatology, Beijing 100081, China
| | - Xinmeng Shi
- Laboratory
of Biomimetic Nanomaterials, Department of Orthodontics & National
Center for Stomatology & National Clinical Research Center for
Oral Diseases & National Engineering Laboratory for Digital and
Material Technology of Stomatology & Beijing Key Laboratory of
Digital Stomatology & Research Center of Engineering and Technology
for Computerized Dentistry Ministry of Health & NMPA Key Laboratory
for Dental Materials & Translational Research Center for Orocraniofacial
Stem Cells and Systemic Health, Peking University
School and Hospital for Stomatology, Beijing 100081, China
| | - He Zhang
- Laboratory
of Biomimetic Nanomaterials, Department of Orthodontics & National
Center for Stomatology & National Clinical Research Center for
Oral Diseases & National Engineering Laboratory for Digital and
Material Technology of Stomatology & Beijing Key Laboratory of
Digital Stomatology & Research Center of Engineering and Technology
for Computerized Dentistry Ministry of Health & NMPA Key Laboratory
for Dental Materials & Translational Research Center for Orocraniofacial
Stem Cells and Systemic Health, Peking University
School and Hospital for Stomatology, Beijing 100081, China
| | - Chang Li
- Laboratory
of Biomimetic Nanomaterials, Department of Orthodontics & National
Center for Stomatology & National Clinical Research Center for
Oral Diseases & National Engineering Laboratory for Digital and
Material Technology of Stomatology & Beijing Key Laboratory of
Digital Stomatology & Research Center of Engineering and Technology
for Computerized Dentistry Ministry of Health & NMPA Key Laboratory
for Dental Materials & Translational Research Center for Orocraniofacial
Stem Cells and Systemic Health, Peking University
School and Hospital for Stomatology, Beijing 100081, China
| | - Xin Wang
- Peking
University International Cancer Institute, Health Science Center, Peking University, Beijing 100083, China
| | - Zhengwei Xie
- Peking
University International Cancer Institute, Health Science Center, Peking University, Beijing 100083, China
| | - Weiran Li
- Laboratory
of Biomimetic Nanomaterials, Department of Orthodontics & National
Center for Stomatology & National Clinical Research Center for
Oral Diseases & National Engineering Laboratory for Digital and
Material Technology of Stomatology & Beijing Key Laboratory of
Digital Stomatology & Research Center of Engineering and Technology
for Computerized Dentistry Ministry of Health & NMPA Key Laboratory
for Dental Materials & Translational Research Center for Orocraniofacial
Stem Cells and Systemic Health, Peking University
School and Hospital for Stomatology, Beijing 100081, China
| | - Yan Liu
- Laboratory
of Biomimetic Nanomaterials, Department of Orthodontics & National
Center for Stomatology & National Clinical Research Center for
Oral Diseases & National Engineering Laboratory for Digital and
Material Technology of Stomatology & Beijing Key Laboratory of
Digital Stomatology & Research Center of Engineering and Technology
for Computerized Dentistry Ministry of Health & NMPA Key Laboratory
for Dental Materials & Translational Research Center for Orocraniofacial
Stem Cells and Systemic Health, Peking University
School and Hospital for Stomatology, Beijing 100081, China
| |
Collapse
|
19
|
Qian D, Chen Y, Qiu X, Zhu B, Zhang L, Yan Y, Chen Y. Hyperin up-regulates miR-7031-5P to promote osteogenic differentiation of MC3T3-E1 cells. Histol Histopathol 2023; 38:1219-1229. [PMID: 36633331 DOI: 10.14670/hh-18-579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
OBJECTIVE To investigate the effects of Hyperin (Hyp) on osteogenic differentiation of MC3T3-E1 cells. METHODS Differentially expressed miRNA was screened by miRNA Microarray. miR-7031-5P overexpression and knockdown MC3T3-E1 cell models were constructed by transfecting miR-7031-5P mimics and inhibitor. Alizarin red staining (ARS) assay was used to observe the formation of mineralized nodules in MC3T3-E1 cells. ALP activity was detected by using ALP detection kit. Western blot assay was used to examine the changes in osteogenic differentiation-related proteins. The relationship between miR-7031-5P and Wnt7a was revealed by dual luciferase report experiments. RESULTS We found that miR-7031-5P was up-regulated in MC3T3-E1 cells after Hyp treatment. The results indicated that compared with the untreated group, Hyp promoted the formation of mineralized nodules and the alkaline phosphatase (ALP) activity of MC3T3-E1 cells via overexpressing miR-7031-5P. Besides, elevated miR-7031-5P increased OPN, COL1A1, and Runx2 mRNA expression. More importantly, Wnt7a was identified as the downstream target gene of miR-7031-5P promoting osteogenic differentiation of MC3T3-E1 cells. CONCLUSIONS Hyp up-regulated miR-7031-5P to promote osteogenic differentiation of MC3T3-E1 cells by targeting Wnt7a.
Collapse
Affiliation(s)
- Dongchen Qian
- Department of Orthopedic, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, PR China
- Department of Orthopedic, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, PR China
| | - Yueyue Chen
- Department of Immunology and Rheumatology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, PR China
| | - Xusheng Qiu
- Department of Orthopedic, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjin, PR China
| | - Baohua Zhu
- Department of Orthopedic, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, PR China
| | - Lin Zhang
- Department of Orthopedic, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, PR China
| | - Yifeng Yan
- Department of Orthopedic, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, PR China
| | - Yixin Chen
- Department of Orthopedic, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjin, PR China.
| |
Collapse
|
20
|
Zhou G, Yan X, Chen Z, Zeng X, Wu F. ASPN Synergizes with HAPLN1 to Inhibit the Osteogenic Differentiation of Bone Marrow Mesenchymal Stromal Cells and Extracellular Matrix Mineralization of Osteoblasts. Orthop Surg 2023; 15:2423-2434. [PMID: 37427673 PMCID: PMC10475675 DOI: 10.1111/os.13803] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 07/11/2023] Open
Abstract
OBJECTIVE Bone marrow mesenchymal stromal cells (BMSCs) are major sources of osteogenic precursor cells in bone remodeling, which directly participate in osteoporosis (OP) progression. However, the involved specific mechanisms of BMSCs in OP warrant mass investigations. Initially, our bioinformatics analysis uncovered the prominent up-regulation of Asporin (ASPN) and proteoglycan link protein 1 (HAPLN1) in osteoblasts (OBs) of OP patients and their possible protein interaction. Hence, this study aimed to explore the effects of ASPN and HAPLN1 on osteogenic differentiation of BMSCs, extracellular matrix (ECM) mineralization of OBs, and osteoclastogenesis, hoping to offer research basis for OP treatment. METHODS GSE156508 dataset was used for analysis and screening to acquire the differentially expressed genes in OBs of OP patients, followed by the predicative analysis via STRING. OP mouse models were induced by ovariectomy (OVX), and ASPN and HAPLN1 expression was determined. BMSCs and bone marrow macrophages (BMMs) were isolated from OVX mice and induced for osteogenic differentiation and osteoclastogenesis, respectively. After knockdown experiments, we assessed adipogenic differentiation and osteogenic differentiation in BMSCs. Osteogenic (OPN, OCN, and COL1A1) and osteoclast (Nfatc1 and c-Fos) marker protein expression was determined. The binding of ASPN to HAPLN1 was analyzed. RESULTS High expression of ASPN and HAPLN1 and their protein interaction were observed in OBs of OP patients via bioinformatics and in bone tissues of OVX mice. ASPN interacted with HAPLN1 in BMSCs of OVX mice. ASPN/HAPLN1 knockdown increased ALP, OPN, OCN, and COL1A1 protein expression and ECM mineralization in BMSCs while decreasing Nfatc1 and c-Fos expression in BMMs. These effects were aggravated by the simultaneous knockdown of ASPN and HAPLN1. CONCLUSION Our results indicate that ASPN synergises with HAPLN1 to suppress the osteogenic differentiation of BMSCs and ECM mineralization of OBs and promote the osteoclastogenesis in OP.
Collapse
Affiliation(s)
- Guohui Zhou
- Department of OrthopaedicsFirst People's Hospital of FuzhouFuzhouChina
| | - Xinmin Yan
- Department of OrthopaedicsFirst People's Hospital of FuzhouFuzhouChina
| | - Zhenfei Chen
- Hospital‐Acquired Infection Control DepartmentFirst People's Hospital of FuzhouFuzhouChina
| | - Xing Zeng
- Department of OrthopaedicsFirst People's Hospital of FuzhouFuzhouChina
| | - Fangqian Wu
- Department of Spine SurgeryFirst People's Hospital of FuzhouFuzhouChina
| |
Collapse
|
21
|
Xiao HT, Jin J, Zheng ZG. Emerging role of GCN5 in human diseases and its therapeutic potential. Biomed Pharmacother 2023; 165:114835. [PMID: 37352700 DOI: 10.1016/j.biopha.2023.114835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/18/2023] [Accepted: 05/02/2023] [Indexed: 06/25/2023] Open
Abstract
As the first histone acetyltransferase to be cloned and identified in yeast, general control non-depressible 5 (GCN5) plays a crucial role in epigenetic and chromatin modifications. It has been extensively studied for its essential role in regulating and causing various diseases. There is mounting evidence to suggest that GCN5 plays an emerging role in human diseases and its therapeutic potential is promising. In this paper, we begin by providing an introduction GCN5 including its structure, catalytic mechanism, and regulation, followed by a review of the current research progress on the role of GCN5 in regulating various diseases, such as cancer, diabetes, osteoporosis. Thus, we delve into the various aspects of GCN5 inhibitors, including their types, characteristics, means of discovery, activities, and limitations from a medicinal chemistry perspective. Our analysis highlights the importance of identifying and creating inhibitors that are both highly selective and effective inhibitors, for the future development of novel therapeutic agents aimed at treating GCN5-related diseases.
Collapse
Affiliation(s)
- Hai-Tao Xiao
- State Key Laboratory of Natural Medicines, Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 210009 Nanjing, Jiangsu, China
| | - Jing Jin
- State Key Laboratory of Natural Medicines, Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 210009 Nanjing, Jiangsu, China
| | - Zu-Guo Zheng
- State Key Laboratory of Natural Medicines, Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 210009 Nanjing, Jiangsu, China.
| |
Collapse
|
22
|
Fang Y, Barrows D, Dabas Y, Carroll TS, Tap WD, Nacev BA. ATRX guards against aberrant differentiation in mesenchymal progenitor cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.08.552433. [PMID: 37609273 PMCID: PMC10441338 DOI: 10.1101/2023.08.08.552433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Alterations in the tumor suppressor ATRX are recurrently observed in several cancer types including sarcomas, which are mesenchymal neoplasms. ATRX has multiple epigenetic functions including heterochromatin formation and maintenance and regulation of transcription through modulation of chromatin accessibility. Here, we show in murine mesenchymal progenitor cells (MPCs) that Atrx deficiency aberrantly activated mesenchymal differentiation programs. This includes adipogenic pathways where ATRX loss induced expression of adipogenic transcription factors (Pparγ and Cebpα) and enhanced adipogenic differentiation in response to differentiation stimuli. These changes are linked to loss of heterochromatin near mesenchymal lineage genes together with increased chromatin accessibility and gains of active chromatin marks at putative enhancer elements and promoters. Finally, we observed depletion of H3K9me3 at transposable elements, which are derepressed including near mesenchymal genes where they could serve as regulatory elements. Our results demonstrate that ATRX functions to buffer against differentiation in mesenchymal progenitor cells, which has implications for understanding ATRX loss of function in sarcomas.
Collapse
Affiliation(s)
- Yan Fang
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY10065
- Laboratory of Chromatin Biology and Epigenetics, The Rockefeller University, New York, NY10065
| | - Douglas Barrows
- Bioinformatics Resource Center, The Rockefeller University, New York, NY10065
| | - Yakshi Dabas
- Laboratory of Chromatin Biology and Epigenetics, The Rockefeller University, New York, NY10065
| | - Thomas S Carroll
- Bioinformatics Resource Center, The Rockefeller University, New York, NY10065
| | - William D. Tap
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY10065
| | - Benjamin A. Nacev
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15213
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213
| |
Collapse
|
23
|
Huerta CT, Ortiz YY, Liu ZJ, Velazquez OC. Methods and Limitations of Augmenting Mesenchymal Stem Cells for Therapeutic Applications. Adv Wound Care (New Rochelle) 2023; 12:467-481. [PMID: 36301919 PMCID: PMC10254976 DOI: 10.1089/wound.2022.0107] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/27/2022] [Indexed: 11/13/2022] Open
Abstract
Significance: Given their capacity for self-renewal, multilineage differentiation, and immunomodulatory potential, mesenchymal stem cells (MSCs) represent a promising modality of clinical therapy for both regenerative medicine and immune diseases. In this study, we review the key approaches and popular methods utilized to boost potency and modify functions of MSCs for clinical purposes as well as their associated limitations. Recent Advances: Several major domains of cell modification strategies are currently employed by investigators to overcome these deficits and augment the therapeutic potential of MSCs. Priming MSCs with soluble factors or pharmacologic agents as well as manipulating oxygen availability in culture have been demonstrated to be effective biochemical methods to augment MSC potential. Distinct genetic and epigenetic methods have emerged in recent years to modify the genetic expression of target proteins and factors thereby modulating MSCs capacity for differentiation, migration, and proliferation. Physical methods utilizing three-dimensional culture methods and alternative cell delivery systems and scaffolds can be used to recapitulate the native MSC niche and augment their engraftment and viability for in vivo models. Critical Issues: Unmodified MSCs have demonstrated only modest benefits in many preclinical and clinical studies due to issues with cell engraftment, viability, heterogeneity, and immunocompatibility between donor and recipient. Furthermore, unmodified MSCs can have low inherent therapeutic potential for which intensive research over the past few decades has been dedicated to improving cell functionality and potency.
Collapse
Affiliation(s)
- Carlos Theodore Huerta
- DeWitt Daughtry Family Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Yulexi Y. Ortiz
- DeWitt Daughtry Family Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Zhao-Jun Liu
- DeWitt Daughtry Family Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
- Vascular Biology Institute, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Omaida C. Velazquez
- DeWitt Daughtry Family Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
- Vascular Biology Institute, University of Miami Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
24
|
Yalaev BI, Khusainova RI. Epigenetic regulation of bone remodeling and its role in the pathogenesis of primary osteoporosis. Vavilovskii Zhurnal Genet Selektsii 2023; 27:401-410. [PMID: 37465189 PMCID: PMC10350859 DOI: 10.18699/vjgb-23-48] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/02/2022] [Accepted: 12/02/2022] [Indexed: 07/20/2023] Open
Abstract
Discovery of molecular mechanisms of primary osteoporosis development is fundamental to understand the pathogenesis of musculoskeletal diseases in general and for identifying key links in the genetic and epigenetic regulation of bone remodelling genes. The number of identified molecular genetic markers for osteoporosis is increasing but there is a need to describe their functional interactions. These interactions have been determined to be associated with the control of expression of a number of transcription factors and the differentiation of mesenchymal stem cells through the pathway of osteoblastogenesis or adipogenesis, and monocytic precursors through the pathway of osteoclastogenesis. The results of epigenetic studies have significantly increased the understanding of the role of post-translational modifications of histones, DNA methylation and RNA interference in the osteoporosis pathogenesis and in bone remodelling. However, the knowledge should be systematised and generalised according to the results of research on the role of epigenetic modifiers in the development of osteoporosis, and the influence of each epigenetic mechanism on the individual links of bone remodelling during ontogenesis of humans in general, including the elderly, should be described. Understanding which mechanisms and systems are involved in the development of this nosology is of interest for the development of targeted therapies, as the possibility of using microRNAs to regulate genes is now being considered. Systematisation of these data is important to investigate the differences in epigenetic marker arrays by race and ethnicity. The review article analyses references to relevant reviews and original articles, classifies information on current advances in the study of epigenetic mechanisms in osteoporosis and reviews the results of studies of epigenetic mechanisms on individual links of bone remodelling.
Collapse
Affiliation(s)
- B I Yalaev
- Institute of Biochemistry and Genetics - Subdivision of the Ufa Federal Research Center of the Russian Academy of Sciences, Ufa, Russia Saint Petersburg State University, St. Petersburg, Russia
| | - R I Khusainova
- Institute of Biochemistry and Genetics - Subdivision of the Ufa Federal Research Center of the Russian Academy of Sciences, Ufa, Russia Saint Petersburg State University, St. Petersburg, Russia Ufa University of Science and Technology, Ufa, Russia
| |
Collapse
|
25
|
Li Y, Hu M, Xie J, Li S, Dai L. Dysregulation of histone modifications in bone marrow mesenchymal stem cells during skeletal ageing: roles and therapeutic prospects. Stem Cell Res Ther 2023; 14:166. [PMID: 37357311 DOI: 10.1186/s13287-023-03393-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 05/31/2023] [Indexed: 06/27/2023] Open
Abstract
Age-associated bone diseases such as osteoporosis (OP) are common in the elderly due to skeletal ageing. The process of skeletal ageing can be accelerated by reduced proliferation and osteogenesis of bone marrow mesenchymal stem cells (BM-MSCs). Senescence of BM-MSCs is a main driver of age-associated bone diseases, and the fate of BM-MSCs is tightly regulated by histone modifications, such as methylation and acetylation. Dysregulation of histone modifications in BM-MSCs may activate the genes related to the pathogenesis of skeletal ageing and age-associated bone diseases. Here we summarize the histone methylation and acetylation marks and their regulatory enzymes that affect BM-MSC self-renewal, differentiation and senescence. This review not only describes the critical roles of histone marks in modulating BM-MSC functions, but also underlines the potential of epigenetic enzymes as targets for treating age-associated bone diseases. In the future, more effective therapeutic approaches based on these epigenetic targets will be developed and will benefit elderly individuals with bone diseases, such as OP.
Collapse
Affiliation(s)
- Yujue Li
- General Practice Ward/International Medical Center Ward, General Practice Medical Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Mingxing Hu
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jinwei Xie
- Department of Orthopedics Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Shuangqing Li
- General Practice Ward/International Medical Center Ward, General Practice Medical Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Lunzhi Dai
- General Practice Ward/International Medical Center Ward, General Practice Medical Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China.
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
26
|
Xu X, Zhang H, Li Y, Liu F, Jing Z, Ren M, Chen T, Fu Y, Wu Y, Ji P, Yang S. Chromatin remodeling and nucleoskeleton synergistically control osteogenic differentiation in different matrix stiffnesses. Mater Today Bio 2023; 20:100661. [PMID: 37229211 PMCID: PMC10205488 DOI: 10.1016/j.mtbio.2023.100661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/22/2023] [Accepted: 05/05/2023] [Indexed: 05/27/2023] Open
Abstract
Matrix stiffness plays an important role in determining cell differentiation. The expression of cell differentiation-associated genes can be regulated by chromatin remodeling-mediated DNA accessibility. However, the effect of matrix stiffness on DNA accessibility and its significance for cell differentiation have not been investigated. In this study, gelatin methacryloyl (GelMA) hydrogels with different degrees of substitution were used to simulate soft, medium, and stiff matrices, and it was found that a stiff matrix promoted osteogenic differentiation of MC3T3-E1 cells by activating the Wnt pathway. In the soft matrix, the acetylation level of histones in cells was decreased, and chromatin condensed into a closed conformation, affecting the activation of β-catenin target genes (Axin2, c-Myc). Histone deacetylase inhibitor (TSA) was used to decondense chromatin. However, there was no significant increase in the expression of β-catenin target genes and the osteogenic protein Runx2. Further studies revealed that β-catenin was restricted to the cytoplasm due to the downregulation of lamin A/C in the soft matrix. Overexpression of lamin A/C and concomitant treatment of cells with TSA successfully activated β-catenin/Wnt signaling in cells in the soft matrix. The results of this innovative study revealed that matrix stiffness regulates cell osteogenic differentiation through multiple pathways, which involve complex interactions between transcription factors, epigenetic modifications of histones, and the nucleoskeleton. This trio is critical for the future design of bionic extracellular matrix biomaterials.
Collapse
Affiliation(s)
- Xinxin Xu
- College of Stomatology, Chongqing Medical University, PR China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, PR China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, PR China
| | - He Zhang
- College of Stomatology, Chongqing Medical University, PR China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, PR China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, PR China
| | - Yuzhou Li
- College of Stomatology, Chongqing Medical University, PR China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, PR China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, PR China
| | - Fengyi Liu
- College of Stomatology, Chongqing Medical University, PR China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, PR China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, PR China
| | - Zheng Jing
- College of Stomatology, Chongqing Medical University, PR China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, PR China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, PR China
| | - Mingxing Ren
- College of Stomatology, Chongqing Medical University, PR China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, PR China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, PR China
| | - Tao Chen
- College of Stomatology, Chongqing Medical University, PR China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, PR China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, PR China
| | - Yiru Fu
- College of Stomatology, Chongqing Medical University, PR China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, PR China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, PR China
| | - Yanqiu Wu
- College of Stomatology, Chongqing Medical University, PR China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, PR China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, PR China
| | - Ping Ji
- College of Stomatology, Chongqing Medical University, PR China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, PR China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, PR China
| | - Sheng Yang
- College of Stomatology, Chongqing Medical University, PR China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, PR China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, PR China
| |
Collapse
|
27
|
Chen Y, Sun Y, Xue X, Ma H. Comprehensive analysis of epigenetics mechanisms in osteoporosis. Front Genet 2023; 14:1153585. [PMID: 37056287 PMCID: PMC10087084 DOI: 10.3389/fgene.2023.1153585] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 03/10/2023] [Indexed: 03/30/2023] Open
Abstract
Epigenetic modification pertains to the alteration of genetic-expression, which could be transferred to the next generations, without any alteration in the fundamental DNA sequence. Epigenetic modification could include various processes such as DNA methylation, histone alteration, non-coding RNAs (ncRNAs), and chromatin adjustment are among its primary operations. Osteoporosis is a metabolic disorder that bones become more fragile due to the decrease in mineral density, which could result in a higher risk of fracturing. Recently, as the investigation of the causal pathology of osteoporosis has been progressed, remarkable improvement has been made in epigenetic research. Recent literatures have illustrated that epigenetics is estimated to be one of the most contributing factors to the emergence and progression of osteoporosis. This dissertation primarily focuses on indicating the research progresses of epigenetic mechanisms and also the regulation of bone metabolism and the pathogenesis of osteoporosis in light of the significance of epigenetic mechanisms. In addition, it aims to provide new intelligence for the treatment of diseases related to bone metabolism.
Collapse
Affiliation(s)
- Yuzhu Chen
- The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yumiao Sun
- The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Xiangyu Xue
- Harbin Medical University, Harbin, Heilongjiang, China
| | - Huanzhi Ma
- Department of Orthopedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- *Correspondence: Huanzhi Ma,
| |
Collapse
|
28
|
Zhang Y, Zhou L, Fu Q, Liu Z. ANKRD1 activates the Wnt signaling pathway by modulating CAV3 expression and thus promotes BMSC osteogenic differentiation and bone formation in ovariectomized mice. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166693. [PMID: 36958710 DOI: 10.1016/j.bbadis.2023.166693] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 02/16/2023] [Accepted: 03/15/2023] [Indexed: 03/25/2023]
Abstract
Bone marrow-derived mesenchymal stem cells (BMSCs) are considered promising materials for treating bone diseases such as osteoporosis (OP). This research explored the functions and molecular mechanism of ankyrin repeat domain 1 (ANKRD1) in BMSC osteogenesis. An OP model in mice was established by bilateral ovariectomy. Manipulation of ANKRD1 expression in BMSCs or femurs was achieved by lentivirus infection. Increased ANKRD1 expression was observed in BMSCs during osteogenic induction. Silencing of ANKRD1 impaired the osteogenesis of BMSCs, as shown by the decreased alkaline phosphatase (ALP) activity, osteogenic gene (Runx2, Col1a1, Bglap, and Spp1) expression, and mineralized formation. ANKRD1-mediated promotion of osteogenesis was also reproduced in mouse MC3T3-E1 preosteoblastic cells. Activation of Wnt/β-catenin signaling, a well-known osteogenic stimulus, was also impaired in ANKRD1-silenced BMSCs. Overexpression of ANKRD1 resulted in the opposite effects on osteogenesis and Wnt/β-catenin signaling. Mechanistic studies revealed that ANKRD1 modulated caveolin-3 (CAV3) expression by reducing CAV3 ubiquitination, and the knockdown of CAV3 impaired the functions of ANKRD1. Additionally, a very low level of ANKRD1 was observed in the BMSCs from OP mice. Rescue of ANKRD1 significantly restored osteogenic differentiation and Wnt signaling activation in BMSCs from ovariectomized mice. The results of micro-CT, H&E staining, and IHC staining showed that ANKRD1 also promoted bone formation and Wnt activation and ameliorated pathological alterations in the femurs of OP mice. Collectively, this study demonstrated that ANKRD1 plays an important role in regulating the osteogenic differentiation of BMSCs and is a promising target for the treatment of OP and other bone diseases.
Collapse
Affiliation(s)
- Yiqi Zhang
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China
| | - Long Zhou
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China
| | - Qin Fu
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China
| | - Ziyun Liu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China.
| |
Collapse
|
29
|
Wang J, Shang P. Static magnetic field: A potential tool of controlling stem cells fates for stem cell therapy in osteoporosis. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023; 178:91-102. [PMID: 36596343 DOI: 10.1016/j.pbiomolbio.2022.12.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 12/10/2022] [Accepted: 12/29/2022] [Indexed: 01/01/2023]
Abstract
Osteoporosis is a kind of bone diseases characterized by dynamic imbalance of bone formation and bone absorption, which is prone to fracture, and seriously endangers human health. At present, there is a lack of highly effective drugs for it, and the existing measures all have some side effects. In recent years, mesenchymal stem cell therapy has brought a certain hope for osteoporosis, while shortcomings such as homing difficulty and unstable therapeutic effects limit its application widely. Therefore, it is extremely urgent to find effective and reliable means/drugs for adjuvant stem cell therapy or develop new research techniques. It has been reported that static magnetic fields(SMFs) has a certain alleviating and therapeutic effect on varieties of bone diseases, also promotes the proliferation and osteogenic differentiation of mesenchymal stem cells derived from different tissues to a certain extent. Basing on the above background, this article focuses on the key words "static/constant magnetic field, mesenchymal stem cell, osteoporosis", combined literature and relevant contents were studied to look forward that SMFs has unique advantages in the treatment of osteoporosis with mesenchymal stem cells, which can be used as an application tool to promote the progress of stem cell therapy in clinical application.
Collapse
Affiliation(s)
- Jianping Wang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China; Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Peng Shang
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, 518057, China; School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China; Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China.
| |
Collapse
|
30
|
Chen Q, Sinha KM, de Crombrugghe B, Krahe R. Osteoblast-Specific Overexpression of Nucleolar Protein NO66/RIOX1 in Mouse Embryos Leads to Osteoporosis in Adult Mice. J Osteoporos 2023; 2023:8998556. [PMID: 36660551 PMCID: PMC9845042 DOI: 10.1155/2023/8998556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/13/2022] [Accepted: 12/20/2022] [Indexed: 01/12/2023] Open
Abstract
In previous study, we showed that nucleolar protein 66 (NO66) is a chromatin modifier and negatively regulates Osterix activity as well as mesenchymal progenitor differentiation. Genetic ablation of the NO66 (RIOX1) gene in cells of the Prx1-expressing mesenchymal lineage leads to acceleration of osteochondrogenic differentiation and a larger skeleton in adult mice, whereas mesenchyme-specific overexpression of NO66 inhibits osteochondrogenesis resulting in dwarfism and osteopenia. However, the impact of NO66 overexpression in cells of the osteoblast lineage in vivo remains largely undefined. Here, we generated osteoblast-specific transgenic mice overexpressing a FLAG-tagged NO66 transgene driven by the 2.3 kB alpha-1type I collagen (Col1a1) promoter. We found that overexpression of NO66 in cells of the osteoblast lineage did not cause overt defects in developmental bones but led to osteoporosis in the long bones of adult mice. This includes decreased bone volume (BV), bone volume density (bone volume/total volume, BV/TV), and bone mineral density (BMD) in cancellous compartment of long bones, along with the accumulation of fatty droplets in bone marrow. Ex vivo culture of the bone marrow mesenchymal stem/stromal cells (BMSCs) from adult Col1a1-NO66 transgenic mice showed an increase in adipogenesis and a decrease in osteogenesis. Taken together, these data demonstrate a crucial role for NO66 in adult bone formation and homeostasis. Our Col1a1-NO66 transgenic mice provide a novel animal model for the mechanistic and therapeutic study of NO66 in osteoporosis.
Collapse
Affiliation(s)
- Qin Chen
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Krishna M. Sinha
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Benoit de Crombrugghe
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ralf Krahe
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
31
|
Zhu Z, Wang Y. miR-218-5p-Modified Bone Marrow Mesenchymal Stem Cells Mediate the Healing Effect of EphrinB2-EphB4 Signals on Alveolar Bone Defect. J BIOMATER TISS ENG 2023. [DOI: 10.1166/jbt.2023.3230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Abnormally expressed miR-218-5p involves in alveolar bone defect. We intend to investigate whether miR-218-5p-modified bone marrow mesenchymal stem cells (BMSCs) mediates the healing effects of EphrinB2-EphB4 signals on the alveolar bone defect. Fifty germ-free rats (6-month-old) were
utilized in this study. The grouping was set up as follows: blank group, model group, miR-218-5p group, EphrinB2-EphB4 antagonist group, and positive control group (10 rats in each group). HE staining was employed to quantify bone resorption lacunae number. And the following indicators were
monitored: miR-218-5p expression, differentiation status of osteoblasts, concentrations of TNF-α/IL-10/ IL-8, and EphrinB2 and EphB4 expression. As shown in HE staining, massive infiltration of inflammatory cells was denoted at the alveolar bone defective sites in rats from model
group. However, infiltration of inflammatory cells in lesions was moderate in rats from EphrinB2-EphB4 antagonist group and positive control group, which was accompanied by formation of small bone islands. Furthermore, lesser infiltration of inflammatory cells was denoted at the alveolar bone
defective sites in rats from the miR-218-5p group, which also exhibited a larger number of newly formed bone trabeculae growing toward the center of lesions. On the 3rd day of culture, absorption lacunae were rare in the model group, while remaining undetectable in other groups. On the 7th
day of culture, bone resorption lacunae number in samples from model group was significantly higher in comparison with that in other groups. Meanwhile, it was reduced significantly in miR-218-5p group. However, it was increased in EphrinB2-EphB4 antagonist group and positive control group
(P <0.05). An elevation of the intracellular miR-218-5p level was denoted in the modified BMSCs in comparison with those unmodified BMSCs (P < 0.05). In comparison with blank group, other groups exhibited significantly elevated ALP levels, among which model group showed
highest level. However, decline of ALP levels was denoted in positive control group, EphrinB2-EphB4 antagonist group and miR-218-5p group, with lowest ALP level in miR-218-5p group (P <0.05). Except blank group, rats in other groups exhibited a significant elevation of TNF-α,
IL-10 and IL-8 in the serum, among which those in the model group displayed the most remarkable increase of these cytokines. Rats in miR-218-5p group, EphrinB2-EphB4 antagonist group and positive control group exhibited significantly reduced levels of IL-8, IL-10 and TNF-α in
the serum, with miR-218-5p group showing lowest levels (P < 0.05). In comparison with the blank group, other groups showed significantly enhanced protein expression of EphrinB2 and EphB4, among which the model group displayed the most remarkable enrichment of these proteins. In comparison
with the model group, samples from the miR-218-5p group, EphrinB2-EphB4 antagonist group and positive control group exhibited significantly weakened expression of EphrinB2 and EphB4, among which the miR-218-5p group displayed the most remarkable decrease of these proteins (P <0.05).
miR-218-5p-modified BMSCs can modulate the EphrinB2-EphB4 signal transduction pathway to produce two-way transmission, which included their inhibition of the osteoclast generation and their enhancement of the osteoclast differentiation. In this way, they aided in alleviating inflammatory response
in alveolar bone defective lesions, thereby accelerating the healing process of alveolar bone defect. The function of miR-218-5p-modified BMSCs is mainly achieved in the healing process of the alveolar bone defect.
Collapse
Affiliation(s)
- Zufeng Zhu
- Department of Stomatology, Xiaoshan Traditional Chinese Medicine Hospital, Hangzhou, Zhejiang, 311201, China
| | - Yanhong Wang
- Department of Stomatology, Xiaoshan Traditional Chinese Medicine Hospital, Hangzhou, Zhejiang, 311201, China
| |
Collapse
|
32
|
Wang Z, Wen S, Zhong M, Yang Z, Xiong W, Zhang K, Yang S, Li H, Guo S. Epigenetics: Novel crucial approach for osteogenesis of mesenchymal stem cells. J Tissue Eng 2023; 14:20417314231175364. [PMID: 37342486 PMCID: PMC10278427 DOI: 10.1177/20417314231175364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 04/26/2023] [Indexed: 06/23/2023] Open
Abstract
Bone has a robust regenerative potential, but its capacity to repair critical-sized bone defects is limited. In recent years, stem cells have attracted significant interest for their potential in tissue engineering. Applying mesenchymal stem cells (MSCs) for enhancing bone regeneration is a promising therapeutic strategy. However, maintaining optimal cell efficacy or viability of MSCs is limited by several factors. Epigenetic modification can cause changes in gene expression levels without changing its sequence, mainly including nucleic acids methylation, histone modification, and non-coding RNAs. This modification is believed to be one of the determinants of MSCs fate and differentiation. Understanding the epigenetic modification of MSCs can improve the activity and function of stem cells. This review summarizes recent advances in the epigenetic mechanisms of MSCs differentiation into osteoblast lineages. We expound that epigenetic modification of MSCs can be harnessed to treat bone defects and promote bone regeneration, providing potential therapeutic targets for bone-related diseases.
Collapse
Affiliation(s)
- Zhaohua Wang
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Si Wen
- Department of Nephrology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - Meiqi Zhong
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Ziming Yang
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Wei Xiong
- Department of Plastic Surgery, The First Hospital of Shihezi University School of Medicine, Shihezi, China
| | - Kuo Zhang
- College of Humanities and Social Sciences, Dalian Medical University, Dalian, Liaoning Province, China
| | - Shude Yang
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Huizheng Li
- Department of Otorhinolaryngology & Head and Neck Surgery, Dalian Friendship Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - Shu Guo
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| |
Collapse
|
33
|
Wang X, Yu F, Ye L. Epigenetic control of mesenchymal stem cells orchestrates bone regeneration. Front Endocrinol (Lausanne) 2023; 14:1126787. [PMID: 36950693 PMCID: PMC10025550 DOI: 10.3389/fendo.2023.1126787] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 02/17/2023] [Indexed: 03/08/2023] Open
Abstract
Recent studies have revealed the vital role of MSCs in bone regeneration. In both self-healing bone regeneration processes and biomaterial-induced healing of bone defects beyond the critical size, MSCs show several functions, including osteogenic differentiation and thus providing seed cells. However, adverse factors such as drug intake and body senescence can significantly affect the functions of MSCs in bone regeneration. Currently, several modalities have been developed to regulate MSCs' phenotype and promote the bone regeneration process. Epigenetic regulation has received much attention because of its heritable nature. Indeed, epigenetic regulation of MSCs is involved in the pathogenesis of a variety of disorders of bone metabolism. Moreover, studies using epigenetic regulation to treat diseases are also being reported. At the same time, the effects of epigenetic regulation on MSCs are yet to be fully understood. This review focuses on recent advances in the effects of epigenetic regulation on osteogenic differentiation, proliferation, and cellular senescence in MSCs. We intend to illustrate how epigenetic regulation of MSCs orchestrates the process of bone regeneration.
Collapse
Affiliation(s)
- Xiaofeng Wang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Fanyuan Yu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- *Correspondence: Fanyuan Yu, ; Ling Ye,
| | - Ling Ye
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- *Correspondence: Fanyuan Yu, ; Ling Ye,
| |
Collapse
|
34
|
Liu D, Tang W, Han C, Nie S. Advances in Polygonatum sibiricum polysaccharides: Extraction, purification, structure, biosynthesis, and bioactivity. Front Nutr 2022; 9:1074671. [PMID: 36545471 PMCID: PMC9760828 DOI: 10.3389/fnut.2022.1074671] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 11/14/2022] [Indexed: 12/11/2022] Open
Abstract
Polygonatum sibiricum has been used as food and medicine for thousands of years, and P. sibiricum polysaccharides (PSPs) have become the hot research spot due to their various health-promoting functions. Numerous studies have shown that PSPs possess huge potential in the application of functional food and medicine fields. However, the research status and features of the preparation process, molecular structure, and bioactivities of PSPs are unclear. Therefore, this review makes a comprehensive summary and proposes new insights and guidelines for the extraction, purification, structural features, biosynthesis, and multiple bioactivities of PSPs. Notably, it is concluded that PSPs mainly contain several types of polysaccharides, including fructan, pectin, galactomannan, glucomannans, arabinogalactan, and galactan, and multiple bioactivates, including osteogenic activity, anti-obesity, anti-diabetes, anti-depression, antioxidant, antiglycation, and protective effect against neurotoxicity and gut microbiota regulating activity. This review contributes to the structure-function study and resource utilization of P. sibiricum and its polysaccharides in food fields.
Collapse
Affiliation(s)
- Dan Liu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou, China
| | - Wei Tang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China,*Correspondence: Wei Tang
| | - Chao Han
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou, China
| | - Shaoping Nie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, China,Shaoping Nie
| |
Collapse
|
35
|
Cook CV, Islam MA, Smith BJ, Versypt ANF. Mathematical modeling of the effects of Wnt-10b on bone metabolism. AIChE J 2022; 68:e17809. [PMID: 36567819 PMCID: PMC9788157 DOI: 10.1002/aic.17809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 06/14/2022] [Indexed: 12/30/2022]
Abstract
Bone health is determined by factors including bone metabolism or remodeling. Wnt-10b alters osteoblastogenesis through pre-osteoblast proliferation and differentiation and osteoblast apoptosis rate, which collectively lead to the increase of bone density. To model this, we adapted a previously published model of bone remodeling. The resulting model for the bone compartment includes differential equations for active osteoclasts, pre-osteoblasts, osteoblasts, osteocytes, and the amount of bone present at the remodeling site. Our alterations to the original model consist of extending it past a single remodeling cycle and implementing a direct relationship to Wnt-10b. Four new parameters were estimated and validated using normalized data from mice. The model connects Wnt-10b to bone metabolism and predicts the change in trabecular bone volume caused by a change in Wnt-10b input. We find that this model predicts the expected increase in pre-osteoblasts and osteoblasts while also pointing to a decrease in osteoclasts when Wnt-10b is increased.
Collapse
Affiliation(s)
- Carley V. Cook
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
- School of Chemical Engineering, Oklahoma State University, Stillwater, OK 74078, USA
| | - Mohammad Aminul Islam
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
- School of Chemical Engineering, Oklahoma State University, Stillwater, OK 74078, USA
| | - Brenda J. Smith
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Ashlee N. Ford Versypt
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
- School of Chemical Engineering, Oklahoma State University, Stillwater, OK 74078, USA
- Institute for Computational and Data Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| |
Collapse
|
36
|
Wang R, Wang Y, Zai W, Xu N. Bibliometric and visual analysis of mesenchymal stem cells in the treatment of osteoporosis based on CiteSpace software. Medicine (Baltimore) 2022; 101:e31859. [PMID: 36401376 PMCID: PMC9678533 DOI: 10.1097/md.0000000000031859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND The focus of research in the treatment of osteoporosis (OP) has evolved from promoting bone formation and inhibiting bone resorption to current stem cell therapy. Due to their multipotent differentiation properties, mesenchymal stem cells (MSCs) can repair degenerated bones through transplantation, and have become a new method for the treatment of OP. METHODS Relevant literatures included in the Web of Science database core collection database from 2012 to 2021 were retrieved. CiteSpace software was used to analyze the cooperative relationship among authors, journals, institutions, and countries, and to analyze the co-citation situation of the literature. And performed co-occurrence analysis, cluster analysis and burst analysis of keywords, draw visual maps and analyzed the results. RESULTS A total of 2100 papers were included, and the number of papers published from 2012 to 2021 was on the rise. A total of 484 authors were included, and 176 authors published more than 3 papers. The high-yield authors were mainly represented by YAN JIN and BO GAO. A total of 99 journals were included, and the journal with the most publications was J BONE MINER RES. A total of 787 institutions were included, and the institution with the largest number of publications was Shanghai Jiao Tong University. A total of 65 countries were included. The country with the largest number of publications was China, and the United States had the highest centrality. The co-citation analysis of the literature found 2 articles with high citation frequency and high centrality. The main research direction was the mechanism of MSCs in the treatment of osteoporosis. A total of 133 keywords were included, and the hot keywords were osteogenic differentiation, expression, proliferation, bone marrow, etc. CONCLUSIONS The research hotspots in this field mainly focused on the mechanism of bone regeneration, proliferation and osteogenic differentiation of bone marrow MSCs, and the expression of osteogenic-related genes. The future research trends in this field are predicted to be the mechanism of action of microRNA and long non-coding RNA on MSCs and their relationship with OP, the mechanism of MSCs adipogenic and osteogenic differentiation, and tissue engineering scaffolds applications.
Collapse
Affiliation(s)
- Runfang Wang
- Medical School of Rehabilitation, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yueying Wang
- Medical School of Rehabilitation, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Weiyi Zai
- Medical School of Rehabilitation, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ning Xu
- Medical School of Rehabilitation, Shandong University of Traditional Chinese Medicine, Jinan, China
- *Correspondence: Ning Xu, Medical School of Rehabilitation, Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province 250355, China (e-mail: )
| |
Collapse
|
37
|
Wang Q, Xia Q, Meng M, Li Y, Tang Z, Zeng X, Chen H, Shu J, Xv X, Chen J, Lu J, Wang H, Ye Z, Song B, Dong Q. miR-153-3p inhibits osteogenic differentiation of BMSCs by down-regulating the expression of RUNX2 in a high glucose environment. Am J Transl Res 2022; 14:7027-7039. [PMID: 36398274 PMCID: PMC9641434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 08/07/2022] [Indexed: 06/16/2023]
Abstract
To study the effect of miR-153-3p on the osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) in a high glucose environment and its potential mechanism. The results showed that high glucose inhibited the osteogenic differentiation of BMSCs, and the expression of miR-153-3p increased during osteogenic differentiation. Further experiments found that in BMSCs induced by high glucose, overexpression of miR-153-3p inhibited the osteogenic differentiation of BMSCs, and the expressions of osteogenesis-related genes bone sialoprotein, Collagen I and alkaline phosphatase were down-regulated, while silencing of miR-153-3p alleviated the inhibition effect. The dual-luciferase reporter gene assay confirmed that the 3'-untranslated region (3'-UTR) of runt related transcription factor 2 (RUNX2) had a targeted binding site with miR-153-3p and a negative regulatory effect. Molecular studies further confirmed that miR-153-3p inhibited the osteogenic differentiation of BMSCs by targeting the 3'-UTR of RUNX2. In conclusion, our study found that as one key regulator of high glucose affecting the osteogenic differentiation of BMSCs, miR-153-3p may play a negative regulatory role by inhibiting the expression of RUNX2.
Collapse
Affiliation(s)
- Qinying Wang
- School of Stomatology, Guizhou Medical UniversityGuiyang 550004, Guizhou Province, China
- Department of Prosthodontics, Stomatological Hospital of Guizhou Medical UniversityGuiyang 550004, Guizhou Province, China
| | - Qian Xia
- School of Stomatology, Guizhou Medical UniversityGuiyang 550004, Guizhou Province, China
- Department of Preventive and Pediatric Dentistry, Stomatological Hospital of Guizhou Medical UniversityGuiyang 550004, Guizhou Province, China
| | - Maohua Meng
- School of Stomatology, Guizhou Medical UniversityGuiyang 550004, Guizhou Province, China
- Department of Prosthodontics, Stomatological Hospital of Guizhou Medical UniversityGuiyang 550004, Guizhou Province, China
| | - Ying Li
- School of Stomatology, Guizhou Medical UniversityGuiyang 550004, Guizhou Province, China
- Department of Prosthodontics, Stomatological Hospital of Guizhou Medical UniversityGuiyang 550004, Guizhou Province, China
| | - Zhenglong Tang
- School of Stomatology, Guizhou Medical UniversityGuiyang 550004, Guizhou Province, China
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital of Guizhou Medical UniversityGuiyang 550004, Guizhou Province, China
| | - Xiao Zeng
- School of Stomatology, Guizhou Medical UniversityGuiyang 550004, Guizhou Province, China
- Department of Prosthodontics, Stomatological Hospital of Guizhou Medical UniversityGuiyang 550004, Guizhou Province, China
| | - Helin Chen
- School of Stomatology, Guizhou Medical UniversityGuiyang 550004, Guizhou Province, China
- Department of Prosthodontics, Stomatological Hospital of Guizhou Medical UniversityGuiyang 550004, Guizhou Province, China
| | - Jiayu Shu
- School of Stomatology, Guizhou Medical UniversityGuiyang 550004, Guizhou Province, China
- Department of Prosthodontics, Stomatological Hospital of Guizhou Medical UniversityGuiyang 550004, Guizhou Province, China
| | - Xingxing Xv
- School of Stomatology, Guizhou Medical UniversityGuiyang 550004, Guizhou Province, China
- Department of Prosthodontics, Stomatological Hospital of Guizhou Medical UniversityGuiyang 550004, Guizhou Province, China
| | - Jingqiao Chen
- School of Stomatology, Guizhou Medical UniversityGuiyang 550004, Guizhou Province, China
- Department of Prosthodontics, Stomatological Hospital of Guizhou Medical UniversityGuiyang 550004, Guizhou Province, China
| | - Jing Lu
- School of Stomatology, Guizhou Medical UniversityGuiyang 550004, Guizhou Province, China
- Department of Prosthodontics, Stomatological Hospital of Guizhou Medical UniversityGuiyang 550004, Guizhou Province, China
| | - Huan Wang
- School of Stomatology, Guizhou Medical UniversityGuiyang 550004, Guizhou Province, China
- Department of Prosthodontics, Stomatological Hospital of Guizhou Medical UniversityGuiyang 550004, Guizhou Province, China
| | - Zhaoyang Ye
- Clinical Research Center, The Affiliated Hospital of Guizhou Medical UniversityGuiyang 550004, Guizhou Province, China
| | - Bin Song
- Department of Prosthodontics, Guizhou Provincial People’s HospitalGuiyang 550003, Guizhou Province, China
| | - Qiang Dong
- School of Stomatology, Guizhou Medical UniversityGuiyang 550004, Guizhou Province, China
- Department of Prosthodontics, Stomatological Hospital of Guizhou Medical UniversityGuiyang 550004, Guizhou Province, China
| |
Collapse
|
38
|
Elsayyad NME, Gomaa I, Salem MA, Amer R, El-Laithy HM. Efficient lung-targeted delivery of risedronate sodium/vitamin D3 conjugated PAMAM-G5 dendrimers for managing osteoporosis: Pharmacodynamics, molecular pathways and metabolomics considerations. Life Sci 2022; 309:121001. [PMID: 36174709 DOI: 10.1016/j.lfs.2022.121001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/18/2022] [Accepted: 09/22/2022] [Indexed: 10/31/2022]
Abstract
AIMS This study aims at formulating combined delivery of Risedronate sodium (RIS) and Vitamin D3 (VITD3) for augmented therapeutic outcome against osteoporosis (OP) using deep lung targeted PAMAM-G5-NH2 dendrimers to minimize RIS gastrointestinal side effects and enhance both drugs bioavailability through absorption from the alveoli directly to the blood. METHODS RIS-PAMAM-G5-NH2, VITD3-PAMAM-G5-NH2, and RIS/VITD3-PAMAM-G5-NH2 were prepared and evaluated in vitro for particle size (PS), zeta potential (ZP), %loading efficiency (%LE), morphology and FTIR. The efficacy of the RIS/VITD3-PAMAM-G5-NH2 compared to oral RIS was evaluated in OP-induced rats by comparing serum calcium, phosphorus, and computed bone mineral density (BMD) pre- and post-treatment. Additionally, a comprehensive metabolomics and molecular pathways approach was applied to find serum potential biomarkers for diagnosis and to evaluate the efficacy of inhaled RIS/VITD3-PAMAM-G5-NH2. KEY FINDINGS RIS/VITD3-PAMAM-G5-NH2 was successfully prepared with a %LE of 92.4 ± 6.7 % (RIS) and 83.2 ± 4.4 % (VIT-D3) and a PS of 252.8 ± 34.1 adequate deep lung delivery. RIS/VITD3-PAMAM-G5-NH2 inhalation therapy was able to restore serum calcium, phosphorus, and BMD close to normal levels after 21 days of treatment in OP-induced rats. The WNT-signalling pathway and changes in the metabolite levels recovered to approximately normal levels upon treatment. Moreover, histone acetylation of the WNT-1 gene and miR-148a-3p interference proved to play a role in the regulation of the WNT-signalling pathway during OP progression and treatment. SIGNIFICANCE Pulmonary delivery of RIS/VITD3-PAMAM-G5-NH2 offers superior treatment for OP treatment compared to the oral route. Molecular and Metabolic pathways offer a key indicator of OP diagnosis and progression.
Collapse
Affiliation(s)
- Nihal Mohamed Elmahdy Elsayyad
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA) University, 6th of October, Giza 12451, Egypt.
| | - Iman Gomaa
- Department of Biological Sciences, Faculty of Science, Galala University (GU), New Galala City 43511, Egypt
| | - Mohamed A Salem
- Department of Pharmacognosy and Natural Products, Faculty of Pharmacy, Menoufia University, Gamal Abd El Nasr st., Shibin Elkom, 32511 Menoufia, Egypt
| | - Reham Amer
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA) University, 6th of October, Giza 12451, Egypt; Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Al-Azhar University, Youssef Abbas St. of Mostafa Elnahas, 6th District, Nasr City, Cairo 11751, Egypt
| | - Hanan M El-Laithy
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA) University, 6th of October, Giza 12451, Egypt; Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr El-Aini street, Cairo 11562, Egypt
| |
Collapse
|
39
|
Guo S, Ai F, Li Y. Protective Effect of Rho-Associated Protein Kinase (ROCK) Activated by Bone Marrow Mesenchymal Stem Cells on Bone Strength and Osteoblasts in Rats with Osteoporosis. J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.3119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This study assesses BMSCs’ effect on bone strength and osteoblast activity in rats with osteoporosis. 40 SD female rats were assigned into normal (A) group, model (B) group, puerarin (C) group, and BMSCs (D) group followed by analysis of bone strength by small animal bone strength
analyzer and the expression of ROCK1 protein in tibia by immunohistochemistry. The bone strength of group B was lower than group A (P < 0.05), and higher in groups C and D than group B (P < 0.05) with further higher in group D than group C (P < 0.05). Group A
showed obvious mesh cancellous bone trabecular bone and continuity, compact structure, and group B cells appeared loose and irregular distribution, parts cancellous bone trabeculae decrease and part of the fracture, and arranged in sparse irregular distribution. The decrease of trabecular
bone in group C and D is not more obvious than group B and the morphology in group D got better improved than in group C. Group B showed lower proliferation of osteoblasts and ALP activity than group A (P < 0.05) and the proliferation and ALP activity in groups C and D was increased
significantly compared with group B (P < 0.05). ROCK1 expression was significantly lower in group B than group A (P < 0.05) higher in groups C and D than group B (P < 0.05). Bone marrow mesenchymal stem cells (BMSCs) can effectively increase the bone strength
and activity of osteoblasts in rats with osteoporosis, and promote the activation of ROCK signal.
Collapse
Affiliation(s)
- Songhua Guo
- Department of Orthopedics, Huzhou First People’s Hospital, First Affiliated Hospital of Huzhou Teachers College, Huzhou, Zhejiang, 313000, China
| | - Fenfen Ai
- Chaoyang Aishan Street Community Health Service Center, Huzhou, Zhejiang, 313000, China
| | - Yonggang Li
- Department of Orthopedics, Pingliang Traditional Chinese Medicine Hospital, Pingliang, Gansu, 744000, China
| |
Collapse
|
40
|
Wang F, Guo J, Wang S, Wang Y, Chen J, Hu Y, Zhang H, Xu K, Wei Y, Cao L, Chen X, Jing Y, Su J. B-cell lymphoma-3 controls mesenchymal stem cell commitment and senescence during skeletal aging. Clin Transl Med 2022; 12:e955. [PMID: 35804493 PMCID: PMC9270574 DOI: 10.1002/ctm2.955] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Fuxiao Wang
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Jiawei Guo
- Department of Orthopedics Trauma, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Sicheng Wang
- Institute of Translational Medicine, Shanghai University, Shanghai, China.,Department of Orthopedics, Shanghai Zhongye Hospital, Shanghai, China
| | - Yili Wang
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Jiao Chen
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Yan Hu
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Hao Zhang
- Department of Orthopedics Trauma, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Ke Xu
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Yan Wei
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Liehu Cao
- Department of Orthopedics, Shanghai Baoshan Luodian Hospital, Baoshan District, Shanghai, China
| | - Xiao Chen
- Department of Orthopedics Trauma, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yingying Jing
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Jiacan Su
- Institute of Translational Medicine, Shanghai University, Shanghai, China.,Department of Orthopedics Trauma, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
41
|
Epigenetic therapy targeting bone marrow mesenchymal stem cells for age-related bone diseases. Stem Cell Res Ther 2022; 13:201. [PMID: 35578312 PMCID: PMC9109405 DOI: 10.1186/s13287-022-02852-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/14/2022] [Indexed: 02/08/2023] Open
Abstract
As global aging accelerates, the prevention and treatment of age-related bone diseases are becoming a critical issue. In the process of senescence, bone marrow mesenchymal stem cells (BMSCs) gradually lose the capability of self-renewal and functional differentiation, resulting in impairment of bone tissue regeneration and disorder of bone tissue homeostasis. Alteration in epigenetic modification is an essential factor of BMSC dysfunction during aging. Its transferability and reversibility provide the possibility to combat BMSC aging by reversing age-related modifications. Emerging evidence demonstrates that epigenetic therapy based on aberrant epigenetic modifications could alleviate the senescence and dysfunction of stem cells. This review summarizes potential therapeutic targets for BMSC aging, introduces some potential approaches to alleviating BMSC aging, and analyzes its prospect in the clinical application of age-related bone diseases.
Collapse
|
42
|
Wu T, Tang H, Yang J, Yao Z, Bai L, Xie Y, Li Q, Xiao J. METTL3-m 6 A methylase regulates the osteogenic potential of bone marrow mesenchymal stem cells in osteoporotic rats via the Wnt signalling pathway. Cell Prolif 2022; 55:e13234. [PMID: 35470497 PMCID: PMC9136513 DOI: 10.1111/cpr.13234] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/30/2022] [Accepted: 04/01/2022] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVES Bone marrow mesenchymal stem cells (BMSCs) hold a high osteogenic differentiation potential, but the mechanisms that control the osteogenic ability of BMSCs from osteoporosis (OP-BMSCs) need further research. The purpose of this experiment is to discuss the osteogenic effect of Mettl3 on OP-BMSCs and explore new therapeutic target that can enhance the bone formation ability of OP-BMSCs. MATERIALS AND METHODS The bilateral ovariectomy (OVX) method was used to establish the SD rat OP model. Dot blots were used to reveal the different methylation levels of BMSCs and OP-BMSCs. Lentiviral-mediated overexpression of Mettl3 was applied in OP-BMSCs. QPCR and WB detected the molecular changes of osteogenic-related factors and Wnt signalling pathway in vitro experiment. The staining of calcium nodules and alkaline phosphatase detected the osteogenic ability of OP-BMSCs. Micro-CT and histological examination evaluated the osteogenesis of Mettl3 in OP rats in vivo. RESULTS The OP rat model was successfully established by OVX. Methylation levels and osteogenic potential of OP-BMSCs were decreased in OP-BMSCs. In vitro experiment, overexpression of Mettl3 could upregulate the osteogenic-related factors and activate the Wnt signalling pathway in OP-BMSCs. However, osteogenesis of OP-BMSCs was weakened by treatment with the canonical Wnt inhibitor Dickkopf-1. Micro-CT showed that the Mettl3(+) group had an increased amount of new bone formation at 8 weeks. Moreover, the results of histological staining were the same as the micro-CT results. CONCLUSIONS Taken together, the methylation levels and osteogenic potential of OP-BMSCs were decreased in OP-BMSCs. In vitro and in vivo studies, overexpression of Mettl3 could partially rescue the decreased bone formation ability of OP-BMSCs by the canonical Wnt signalling pathway. Therefore, Mettl3 may be a key targeted gene for bone generation and therapy of bone defects in OP patients.
Collapse
Affiliation(s)
- Tianli Wu
- Department of Oral ImplantologyThe Affiliated Stomatological Hospital of Southwest Medical UniversityLuzhouChina
- Department of Oral and Maxillofacial SurgeryThe Affiliated Hospital of Southwest Medical UniversityLuzhouChina
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and RegenerationThe Affiliated Stomatological Hospital of Southwest Medical UniversityLuzhouChina
| | - Hui Tang
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and RegenerationThe Affiliated Stomatological Hospital of Southwest Medical UniversityLuzhouChina
| | - Jianghua Yang
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and RegenerationThe Affiliated Stomatological Hospital of Southwest Medical UniversityLuzhouChina
- Department of Medical Technology, Faculty of Associated Medical SciencesChiang Mai UniversityChiang MaiThailand
| | - Zhihao Yao
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and RegenerationThe Affiliated Stomatological Hospital of Southwest Medical UniversityLuzhouChina
| | - Long Bai
- Department of Oral ImplantologyThe Affiliated Stomatological Hospital of Southwest Medical UniversityLuzhouChina
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and RegenerationThe Affiliated Stomatological Hospital of Southwest Medical UniversityLuzhouChina
| | - Yuping Xie
- Department of Oral ImplantologyThe Affiliated Stomatological Hospital of Southwest Medical UniversityLuzhouChina
| | - Qing Li
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and RegenerationThe Affiliated Stomatological Hospital of Southwest Medical UniversityLuzhouChina
| | - Jingang Xiao
- Department of Oral ImplantologyThe Affiliated Stomatological Hospital of Southwest Medical UniversityLuzhouChina
- Department of Oral and Maxillofacial SurgeryThe Affiliated Hospital of Southwest Medical UniversityLuzhouChina
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and RegenerationThe Affiliated Stomatological Hospital of Southwest Medical UniversityLuzhouChina
| |
Collapse
|
43
|
Ferroptosis - A new target of osteoporosis. Exp Gerontol 2022; 165:111836. [DOI: 10.1016/j.exger.2022.111836] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/04/2022] [Accepted: 05/15/2022] [Indexed: 11/21/2022]
|
44
|
Fateh ST, Fateh ST, Shekari F, Mahdavi M, Aref AR, Salehi-Najafabadi A. The Effects of Sesquiterpene Lactones on the Differentiation of Human or Animal Cells Cultured In-Vitro: A Critical Systematic Review. Front Pharmacol 2022; 13:862446. [PMID: 35444549 PMCID: PMC9014292 DOI: 10.3389/fphar.2022.862446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/08/2022] [Indexed: 12/03/2022] Open
Abstract
Cellular differentiation is pivotal in health and disease. Interfering with the process of differentiation, such as inhibiting the differentiation of adipocytes and inducing the differentiation of cancer cells, is considered a therapeutic approach. Sesquiterpene lactones, primarily found in plants, have been attracted attention as differentiating/dedifferentiating agents tested on various human or animal cells. However, a consensus on sesquiterpene lactones’ effects and their mechanism of action is required. In this sense, through a systematic review, we have investigated the differentiating/dedifferentiating effects of sesquiterpene lactones on human or animal cells. 13 different cell lines originated from humans, mice, and rats, in addition to the effects of a total of 21 sesquiterpene lactones, were evaluated in the included studies. These components had either inducing, inhibiting, or no effect on the cells, mediating their effects through JAK-STAT, PI3K-Akt, mitogen-activated protein kinases, NFκB, PPARγ pathways. Although nearly all inducing and inhibiting effects were attributed to cancerous and normal cells, respectively, this is likely a result of a biased study design. Few studies reported negative results along with others, and no study was found reporting only negative results. As a result, not only are the effects and mechanism of action of sesquiterpene lactones not vivid but our knowledge and decisions are also misconducted. Moreover, there is a significant knowledge gap regarding the type of evaluated cells, other sesquiterpene lactones, and the involved signaling pathways. In conclusion, sesquiterpene lactones possess significant effects on differentiation status, leading to potentially efficient therapy of obesity, osteoporosis, and cancer. However, reporting negative results and further investigations on other cells, sesquiterpene lactones, and signaling pathways are highly suggested to pave the path of sesquiterpene lactones to the clinic more consciously.
Collapse
Affiliation(s)
- Sepand Tehrani Fateh
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Faezeh Shekari
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Majid Mahdavi
- Department of Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States.,Translational Sciences, Xsphera Biosciences Inc., Boston, MA, United States
| | - Amir Salehi-Najafabadi
- Department of Microbiology, School of Biology, University College of Science, University of Tehran, Tehran, Iran.,Research Center for New Technologies in Life Science Engineering, University of Tehran, Tehran, Iran
| |
Collapse
|
45
|
Lu Z, Han K. SMAD4 transcriptionally activates GCN5 to inhibit apoptosis and promote osteogenic differentiation in dexamethasone-induced human bone marrow mesenchymal stem cells. Steroids 2022; 179:108969. [PMID: 35122789 DOI: 10.1016/j.steroids.2022.108969] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/30/2021] [Accepted: 01/22/2022] [Indexed: 11/24/2022]
Abstract
BACKGROUND Steroid-induced osteonecrosis of the femoral head (SONFH) is a serious complication caused by long-term or excessive use of glucocorticoids (GCs). General control non-derepressible 5 (GCN5) has been reported to be lowly expressed in bone tissue. Therefore, this paper attempts to investigate the role of GCN5 in SONFH and identify the potential regulatory mechanism. EXPERIMENTAL DESIGN Following human bone mesenchymal stem cells (hBMSCs) being stimulated with dexamethasone (Dex), GCN5 expression was detected using RT-qPCR and western blotting. Then, GCN5 was overexpressed and cell viability was assessed by cell counting kit and lactate dehydrogenase kit. Cell apoptosis was determined with terminal deoxynucleotidyl transferase dUTPnickendlabeling (TUNEL) and the expression of apoptosis-related proteins was evaluated using western blotting. Alkaline phosphatase (ALP) staining and alizarin red staining were adopted for the analysis of osteogenic differentiation. Additionally, the relationship between small mothers against decapentaplegic protein 4 (SMAD4) and GCN5 was predicted by hTFtarget website and verified by luciferase reporter- and chromatin immunoprecipitation (ChIP) assays. Subsequently, SMAD4 was silenced to determine cell viability, apoptosis and osteogenic differentiation in Dex-induced hBMSCs with GCN5 upregulation. RESULTS GCN5 expressed lower in hBMSCs exposed to Dex. GCN5 overexpression elevated cell viability, attenuated apoptosis and promoted osteogenic differentiation of hBMSCs. Additionally, SMAD4 transcriptionally activated GCN5 and upregulated GCN5 expression. While SMAD4 knockdown reversed the protective effects of GCN5 overexpression on Dex-induced cell viability loss, apoptosis increase and osteogenic differentiation inhibition in hBMSCs. CONCLUSIONS SMAD4 transcriptionally activated GCN5 to inhibit apoptosis and promote osteogenic differentiation in Dex-induced hBMSCs.
Collapse
Affiliation(s)
- Zhihua Lu
- Medical School, Yangzhou Polytechnic College, Yangzhou, Jiangsu 225009, China
| | - Kuijing Han
- Department of Orthopedics, Northern Jiangsu People's Hospital, Yangzhou, Jiangsu 225001, China; Clinical Medical College of Yangzhou University, Yangzhou, Jiangsu 225001, China
| |
Collapse
|
46
|
Abstract
Osteoporosis, characterised by low bone mass, poor bone structure, and an increased risk of fracture, is a major public health problem. There is increasing evidence that the influence of the environment on gene expression, through epigenetic processes, contributes to variation in BMD and fracture risk across the lifecourse. Such epigenetic processes include DNA methylation, histone and chromatin modifications and non-coding RNAs. Examples of associations with phenotype include DNA methylation in utero linked to maternal vitamin D status, and to methylation of target genes such as OPG and RANKL being associated with osteoporosis in later life. Epigenome-wide association studies and multi-omics technologies have further revealed susceptibility loci, and histone acetyltransferases, deacetylases and methylases are being considered as therapeutic targets. This review encompasses recent advances in our understanding of epigenetic mechanisms in the regulation of bone mass and osteoporosis development, and outlines possible diagnostic and prognostic biomarker applications.
Collapse
Affiliation(s)
| | | | - Cyrus Cooper
- MRC Lifecourse Epidemiology Centre, University of Southampton, UK; NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK; NIHR Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Nicholas C Harvey
- MRC Lifecourse Epidemiology Centre, University of Southampton, UK; NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK.
| |
Collapse
|
47
|
Teng JW, Bian SS, Kong P, Chen YG. Icariin triggers osteogenic differentiation of bone marrow stem cells by up-regulating miR-335–5p. Exp Cell Res 2022; 414:113085. [DOI: 10.1016/j.yexcr.2022.113085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 02/22/2022] [Accepted: 02/26/2022] [Indexed: 11/15/2022]
|
48
|
Li YQ, Wang LC, Li AX, Huang W, Song Y, Wang W. LINC00958/miR-627 signal axis regulates the proliferation, migration, and invasion of thyroid papillary carcinoma cells by TRIM44. Kaohsiung J Med Sci 2022; 38:415-424. [PMID: 35199939 DOI: 10.1002/kjm2.12502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 10/13/2021] [Accepted: 12/27/2021] [Indexed: 12/15/2022] Open
Abstract
Papillary thyroid cancer (PTC) has attracted much attention due to its high morbidity and severe metastasis. Long noncoding RNA ENST00000504230 (LncRNA ENST00000504230, known as LINC00958) was overexpressed in many cancers and associated with cancer development. However, its underlying mechanism in PTC remains unclear. PTC tissues and corresponding adjacent tissues were collected for measuring the expression of LINC00958 and miR-627. MiR-627 and TRIM44 expressions were measured in in vitro cultured PTC cell lines (B-cpap and IHH4 cells) transfected with sh-LINC00958 or miR-627 mimic using RT-qPCR and western blot. Cell proliferation, migration, and invasion were measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) and Transwell assays, respectively. Dual-luciferase reporter assay was performed to evaluate the target association between miR-627 and TRIM44. LINC00958 was up-regulated in PTC tissues and cells, while the expression of miR-627 was lowly expressed. Knockdown of LINC00958 inhibited the proliferation, migration, and invasion by elevating miR-627 expression in PTC cells. TRIM44 was confirmed as a target of miR-627. Overexpression of miR-627 in PTC inhibited the proliferation, migration, and invasion by down-regulating the expression of TRIM44. LINC00958 promoted proliferation, migration, and invasion in PTC by down-regulating miR-627 and activating TRIM44, indicating the potential therapeutic effect of LINC00958 on PTC.
Collapse
Affiliation(s)
- Ya-Qiong Li
- Department of Thyroid and Breast and Vascular Surgery, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei Province, P.R. China
| | - Ling-Cheng Wang
- Department of Thyroid and Breast and Vascular Surgery, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei Province, P.R. China
| | - Ai-Xia Li
- Department of Otolaryngology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei Province, P.R. China
| | - Wei Huang
- Department of Thyroid and Breast and Vascular Surgery, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei Province, P.R. China
| | - Ying Song
- Department of Oncology, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei Province, P.R. China
| | - Wei Wang
- Department of Hepatobiliary Pancreatic Surgery, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei Province, P.R. China
| |
Collapse
|
49
|
Bei J, Zhu S, Du M, Hu Z, Tang Z, Chen C, Yang K, Zhong Y, Zhu X, Li W, Hu Z. Integrative analysis of multiomics data identified acetylation as key variable of excessive energy metabolism in hyperthyroidism-induced osteoporosis rats. J Proteomics 2022; 252:104451. [PMID: 34883266 DOI: 10.1016/j.jprot.2021.104451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 11/21/2021] [Accepted: 11/22/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND Results from the previous experiment have demonstrated bone loss and excess metabolism in Hyperthyroidism-induced rats. Thus, an underlying relationship between metabolism and bone loss was speculated. In addition, previous studies have shown the influence of acetylation on metabolism in tissues and diseases. The hypothesis from this case study suggests that excessive metabolism is induced by acetylation of vital metabolism enzymes. RESULTS In the case study, a HYP-induced osteoporosis rat model was used and the glucose metabolite was tested through the acetylation of proteins by the mass spectrometer. The results showed that pivotal enzymes of Glycolysis-Tricarboxylic acid cycle-Oxidative phosphorylation were acetylated along with upregulated metabolites. With all acetyly-lysine sites of related enzymes listed, the results in this study showed that bone loss in HYP rats was accompanied by the upregulation of CREB-binding protein (Crebbp, CBP). Furthermore, it is also indicated that CBP has a close relationship with the enhancement of LDHA which promotes glucose metabolism. CONCLUSIONS Acetylation is highly correlated with excessive energy metabolism in HYP-induced osteoporotic rats, where a representation relationship between CBP and LDHA is demonstrated. SIGNIFICANCE Hyperthyroidism may lead to osteoporosis. Our study found an interesting phenomenon of hyperthyroidism induced-osteoporosis is that osteoporosis is accompanied by excessive glucose metabolism. In this process, some molecular mechanisms are still unclear. This study indicates a high degree of acetylation of metabolic enzymes, which may be closely related to excessive glucose metabolism. The relationship between CBP and LDHA was also investigated in this study, which showed that CBP and LDHA had some extent interaction. Glucose metabolism and acetylation maybe all associated with hyperthyroidism induced-osteoporosis. This data provides new insights into the molecular mechanisms of hyperthyroidism induced-osteoporosis.
Collapse
Affiliation(s)
- Jiaxin Bei
- Department of Infectious Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shaoping Zhu
- Institute of Laboratory Animal Center, Guangdong Medical University, Zhanjiang, China
| | - Minqun Du
- Guangdong Women and Children's Hospital, Guangzhou, China
| | - Zhihui Hu
- Department of Endocrinology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Zheng Tang
- Department of Endocrinology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Cailing Chen
- Department of Endocrinology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Kevin Yang
- Department of Cardiology, Sun Yat-sen University, Guangzhou, China
| | - Ying Zhong
- Department of Endocrinology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Xianhong Zhu
- Department of Endocrinology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wangen Li
- Department of Endocrinology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Zhuoqing Hu
- Department of Endocrinology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
50
|
Ye J, Xiao J, Wang J, Ma Y, Zhang Y, Zhang Q, Zhang Z, Yin H. The Interaction Between Intracellular Energy Metabolism and Signaling Pathways During Osteogenesis. Front Mol Biosci 2022; 8:807487. [PMID: 35155568 PMCID: PMC8832142 DOI: 10.3389/fmolb.2021.807487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/20/2021] [Indexed: 11/28/2022] Open
Abstract
Osteoblasts primarily mediate bone formation, maintain bone structure, and regulate bone mineralization, which plays an important role in bone remodeling. In the past decades, the roles of cytokines, signaling proteins, and transcription factors in osteoblasts have been widely studied. However, whether the energy metabolism of cells can be regulated by these factors to affect the differentiation and functioning of osteoblasts has not been explored in depth. In addition, the signaling and energy metabolism pathways are not independent but closely connected. Although energy metabolism is mediated by signaling pathways, some intermediates of energy metabolism can participate in protein post-translational modification. The content of intermediates, such as acetyl coenzyme A (acetyl CoA) and uridine diphosphate N-acetylglucosamine (UDP-N-acetylglucosamine), determines the degree of acetylation and glycosylation in terms of the availability of energy-producing substrates. The utilization of intracellular metabolic resources and cell survival, proliferation, and differentiation are all related to the integration of metabolic and signaling pathways. In this paper, the interaction between the energy metabolism pathway and osteogenic signaling pathway in osteoblasts and bone marrow mesenchymal stem cells (BMSCs) will be discussed.
Collapse
Affiliation(s)
- Jiapeng Ye
- Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Nanjing University of Traditional Chinese Medicine, Nanjing, China
| | - Jirimutu Xiao
- Mongolian Medicine College, Inner Mongolia Medical University, Hohhot, China
| | - Jianwei Wang
- Department of Orthopedics and Traumatology, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, China
- *Correspondence: Jianwei Wang, ; Heng Yin,
| | - Yong Ma
- Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Nanjing University of Traditional Chinese Medicine, Nanjing, China
| | - Yafeng Zhang
- Department of Orthopedics and Traumatology, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, China
| | - Qiang Zhang
- Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Nanjing University of Traditional Chinese Medicine, Nanjing, China
| | - Zongrui Zhang
- Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Nanjing University of Traditional Chinese Medicine, Nanjing, China
| | - Heng Yin
- Department of Orthopedics and Traumatology, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, China
- *Correspondence: Jianwei Wang, ; Heng Yin,
| |
Collapse
|