1
|
Masseroni A, Ribeiro M, Becchi A, Saliu F, Granadeiro CM, Villa S, Urani C, Santos MM. Effects of nano- and micro- fibers derived from surgical face masks in Danio rerio. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2025; 283:107349. [PMID: 40188561 DOI: 10.1016/j.aquatox.2025.107349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 03/10/2025] [Accepted: 03/28/2025] [Indexed: 04/08/2025]
Abstract
The massive use of surgical face masks during the COVID-19 pandemic has compounded the challenge of plastic waste. Surgical face masks are made of polypropylene (PP) and tend to release nano- and micro- fibers (NMFs). The present study aims to provide insights into the impacts of NMFs in aquatic organisms by evaluating the effects of PP-NMFs derived from the artificial photodegradation of surgical face masks on the model species Danio rerio (zebrafish). The impact of NMFs on embryonic and larval developmental stages has been evaluated by investigating the effects of low (0.2 mg/L), medium (1 mg/L), and high (5 mg/L) NMF levels. Alterations in apical endpoints and transcriptomic analysis were investigated. After 6 days, a significant reduction in the eye area was observed. The upregulation of genes related to the negative regulation of developmental processes could explain the observed alterations, while the downregulation of genes involved in energy-related metabolic processes suggests an energy stress state. Increased mortality occurred between 9 and 12 days, a period when zebrafish make the transition from endogenous to exogenous feeding, suggesting an impairment in foraging behaviour due to NMF exposure. The presented findings demonstrate that environmental levels of NMFs may pose a hazard to aquatic organisms, suggesting the potential for an ecotoxicological risk associated with the improper disposal of surgical face masks.
Collapse
Affiliation(s)
- A Masseroni
- Department of Earth and Environmental Sciences, DISAT, University of Milano-Bicocca, Piazza della Scienza 1, 20126, Milan, Italy
| | - M Ribeiro
- FCUP - Department of Biology, Faculty of Sciences, University of Porto (U. Porto), 4169-007, Porto, Portugal; CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, Endocrine Disruptors and Emerging Contaminants Group, University of Porto, 4450-208, Matosinhos, Portugal
| | - A Becchi
- Department of Earth and Environmental Sciences, DISAT, University of Milano-Bicocca, Piazza della Scienza 1, 20126, Milan, Italy
| | - F Saliu
- Department of Earth and Environmental Sciences, DISAT, University of Milano-Bicocca, Piazza della Scienza 1, 20126, Milan, Italy
| | - C M Granadeiro
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007, Porto, Portugal
| | - S Villa
- Department of Earth and Environmental Sciences, DISAT, University of Milano-Bicocca, Piazza della Scienza 1, 20126, Milan, Italy
| | - C Urani
- Department of Earth and Environmental Sciences, DISAT, University of Milano-Bicocca, Piazza della Scienza 1, 20126, Milan, Italy; Integrated Models for Prevention and Protection in Environmental and Occupational Health, (MISTRAL) Interuniversity Research Center.
| | - M M Santos
- FCUP - Department of Biology, Faculty of Sciences, University of Porto (U. Porto), 4169-007, Porto, Portugal; CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, Endocrine Disruptors and Emerging Contaminants Group, University of Porto, 4450-208, Matosinhos, Portugal
| |
Collapse
|
2
|
Pollini L, Pettenuzzo I, Tijssen MAJ, Koens LH, De Koning TJ, Leuzzi V, Eggink H. Eye movement disorders in genetic dystonia syndromes: A literature overview. Parkinsonism Relat Disord 2025; 133:107325. [PMID: 39966058 DOI: 10.1016/j.parkreldis.2025.107325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/17/2025] [Accepted: 02/09/2025] [Indexed: 02/20/2025]
Abstract
With the growing possibilities in genetic testing, the number of genetic disorders associated with dystonia has constantly increased over the last few years. Accurate phenotyping is crucial to guide and interpret genetic analyses in the search for an etiological diagnosis. Although eye movements examination has proven a valuable tool in the assessment of patients with inherited movement disorders such as ataxia or parkinsonism, less is known about the association between eye movement disorders and genetic dystonia. This study aimed to summarize the most frequent eye movement disorders in monogenetic forms of dystonia as classified by the Movement Disorders Society (MDS). More than sixty genetic disorders causing dystonia were repeatedly associated with eye movement disorders. Among these, 24 are classified as DYT genes, 22 were classified by MDS as having another prominent movement disorder, and 19 are genetic disorders that manifest with dystonia but are not included in the MDS classification. Six different eye movement disorders have consistently been reported (saccadic slowing and supranuclear gaze palsy, saccadic initiation failure and oculomotor apraxia, saccadic dysmetria, oculogyric crisis, nystagmus and ophthalmoplegia). The phenotypic association of each disorder with monogenic dystonic diseases, as well as the possible underlying pathophysiological mechanisms, is described here. Our findings suggest that eye movement disorders, along with the movement phenotype, may help delineate subgroups of dystonia by reflecting disruptions in specific brain networks. Therefore, eye movement examination is a crucial part of the neurological evaluation, providing valuable insights into patients with inherited forms of dystonia.
Collapse
Affiliation(s)
- Luca Pollini
- Department of Human Neuroscience, Sapienza University of Rome, 00185, Rome, Italy; Expertise Centre Movement Disorders Groningen, University Medical Centre Groningen (UMCG), Groningen, the Netherlands
| | - Ilaria Pettenuzzo
- Department of Medical and Surgical Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy; IRCCS Istituto delle Scienze Neurologiche di Bologna, U.O.C. Neuropsichiatria dell'età pediatrica, Bologna, Italy; Expertise Centre Movement Disorders Groningen, University Medical Centre Groningen (UMCG), Groningen, the Netherlands
| | - Marina A J Tijssen
- Department of Neurology, University of Groningen, University Medical Centre Groningen (UMCG), Groningen, the Netherlands; Expertise Centre Movement Disorders Groningen, University Medical Centre Groningen (UMCG), Groningen, the Netherlands
| | - Lisette H Koens
- Department of Neurology, University of Groningen, University Medical Centre Groningen (UMCG), Groningen, the Netherlands; Expertise Centre Movement Disorders Groningen, University Medical Centre Groningen (UMCG), Groningen, the Netherlands; Department of Neurology and Clinical Neurophysiology, Martini Ziekenhuis, Groningen, the Netherlands
| | - Tom J De Koning
- Expertise Centre Movement Disorders Groningen, University Medical Centre Groningen (UMCG), Groningen, the Netherlands; Pediatrics, department of Clinical Sciences, Lund University, Sweden
| | - Vincenzo Leuzzi
- Department of Human Neuroscience, Sapienza University of Rome, 00185, Rome, Italy
| | - Hendriekje Eggink
- Department of Neurology, University of Groningen, University Medical Centre Groningen (UMCG), Groningen, the Netherlands; Expertise Centre Movement Disorders Groningen, University Medical Centre Groningen (UMCG), Groningen, the Netherlands.
| |
Collapse
|
3
|
Zebene ED, Pucci B, Lombardi R, Medhin HT, Seife E, Di Gennaro E, Budillon A, Woldemichael GB. Serum-Based Proteomic Approach to Identify Clinical Biomarkers of Radiation Exposure. Cancers (Basel) 2025; 17:1010. [PMID: 40149344 PMCID: PMC11940482 DOI: 10.3390/cancers17061010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/25/2025] [Accepted: 03/13/2025] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND Ionizing radiation (IR) exposure poses a significant health risk due to its widespread use in medical diagnostics and therapeutic applications, necessitating rapid and effective biomarkers for assessment. OBJECTIVE The aim of this study is to identify the serum proteomic signature of IR exposure in patients undergoing radiotherapy (RT). METHODS Blood samples were obtained from eighteen patients with head and neck cancer (HNC) and five patients with rectal cancer before and immediately after they underwent curative intensity-modulated radiotherapy (IMRT). The comprehensive serum proteome was analyzed in individual samples using nanoHPLC-MS/MS. RESULTS Forty radiation-modulated proteins (RMPs), 24 upregulated and 16 downregulated, with a fold change ≥1.5 and p-value < 0.05 were identified. About 40% of the RMPs are involved in acute phase response, DNA repair, and inflammation; the key RMPs were ADCY1, HGF, MCEMP1, CHD4, RECQL5, MSH6, and ZNF224. Conclusions: This study identifies a panel of serum proteins that may reflect the radiation response, providing a valuable molecular fingerprint of IR exposure and paving the way for the development of sensitive and specific biomarkers for early detection and clinical management of IR-related injuries.
Collapse
Affiliation(s)
- Emeshaw Damtew Zebene
- Nuclear Medicine Unit, Department of Internal Medicine, College of Health Sciences, Addis Ababa University, Addis Ababa 9086, Ethiopia; (E.D.Z.); (H.T.M.)
- Department of Microbial Cellular and Molecular Biology, College of Natural and Computational Sciences, Addis Ababa University, Addis Ababa 9086, Ethiopia;
| | - Biagio Pucci
- Experimental Pharmacology Unit, Laboratory of Naples and Mercogliano (AV), Istituto Nazionale Tumori—IRCCS—Fondazione G. Pascale, 80131 Naples, Italy; (B.P.); (E.D.G.)
| | - Rita Lombardi
- Experimental Animal Unit, Istituto Nazionale Tumori—IRCCS—Fondazione G. Pascale, 80131 Naples, Italy
| | - Hagos Tesfay Medhin
- Nuclear Medicine Unit, Department of Internal Medicine, College of Health Sciences, Addis Ababa University, Addis Ababa 9086, Ethiopia; (E.D.Z.); (H.T.M.)
| | - Edom Seife
- Radiotherapy Center, College of Health Sciences, Addis Ababa University, Addis Ababa 9086, Ethiopia;
| | - Elena Di Gennaro
- Experimental Pharmacology Unit, Laboratory of Naples and Mercogliano (AV), Istituto Nazionale Tumori—IRCCS—Fondazione G. Pascale, 80131 Naples, Italy; (B.P.); (E.D.G.)
| | - Alfredo Budillon
- Scientific Directorate, Istituto Nazionale Tumori—IRCCS—Fondazione G. Pascale, 80131 Naples, Italy;
| | - Gurja Belay Woldemichael
- Department of Microbial Cellular and Molecular Biology, College of Natural and Computational Sciences, Addis Ababa University, Addis Ababa 9086, Ethiopia;
| |
Collapse
|
4
|
Ng XY, Cao M. Dysfunction of synaptic endocytic trafficking in Parkinson's disease. Neural Regen Res 2024; 19:2649-2660. [PMID: 38595283 PMCID: PMC11168511 DOI: 10.4103/nrr.nrr-d-23-01624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/12/2023] [Accepted: 01/03/2024] [Indexed: 04/11/2024] Open
Abstract
Parkinson's disease is characterized by the selective degeneration of dopamine neurons in the nigrostriatal pathway and dopamine deficiency in the striatum. The precise reasons behind the specific degeneration of these dopamine neurons remain largely elusive. Genetic investigations have identified over 20 causative PARK genes and 90 genomic risk loci associated with both familial and sporadic Parkinson's disease. Notably, several of these genes are linked to the synaptic vesicle recycling process, particularly the clathrin-mediated endocytosis pathway. This suggests that impaired synaptic vesicle recycling might represent an early feature of Parkinson's disease, followed by axonal degeneration and the eventual loss of dopamine cell bodies in the midbrain via a "dying back" mechanism. Recently, several new animal and cellular models with Parkinson's disease-linked mutations affecting the endocytic pathway have been created and extensively characterized. These models faithfully recapitulate certain Parkinson's disease-like features at the animal, circuit, and cellular levels, and exhibit defects in synaptic membrane trafficking, further supporting the findings from human genetics and clinical studies. In this review, we will first summarize the cellular and molecular findings from the models of two Parkinson's disease-linked clathrin uncoating proteins: auxilin (DNAJC6/PARK19) and synaptojanin 1 (SYNJ1/PARK20). The mouse models carrying these two PARK gene mutations phenocopy each other with specific dopamine terminal pathology and display a potent synergistic effect. Subsequently, we will delve into the involvement of several clathrin-mediated endocytosis-related proteins (GAK, endophilin A1, SAC2/INPP5F, synaptotagmin-11), identified as Parkinson's disease risk factors through genome-wide association studies, in Parkinson's disease pathogenesis. We will also explore the direct or indirect roles of some common Parkinson's disease-linked proteins (alpha-synuclein (PARK1/4), Parkin (PARK2), and LRRK2 (PARK8)) in synaptic endocytic trafficking. Additionally, we will discuss the emerging novel functions of these endocytic proteins in downstream membrane traffic pathways, particularly autophagy. Given that synaptic dysfunction is considered as an early event in Parkinson's disease, a deeper understanding of the cellular mechanisms underlying synaptic vesicle endocytic trafficking may unveil novel targets for early diagnosis and the development of interventional therapies for Parkinson's disease. Future research should aim to elucidate why generalized synaptic endocytic dysfunction leads to the selective degeneration of nigrostriatal dopamine neurons in Parkinson's disease.
Collapse
Affiliation(s)
- Xin Yi Ng
- Programme in Neuroscience and Behavioural Disorders, Duke-NUS Medical School, Singapore, Singapore
| | - Mian Cao
- Programme in Neuroscience and Behavioural Disorders, Duke-NUS Medical School, Singapore, Singapore
- Department of Physiology, National University of Singapore, Singapore, Singapore
| |
Collapse
|
5
|
Beenken A, Shen T, Jin G, Ghotra A, Xu K, Nesanir K, Sturley RE, Vijayakumar S, Khan A, Levitman A, Stauber J, Chavez EY, Robbins-Juarez SY, Hao L, Field TB, Erdjument-Bromage H, Neubert TA, Shapiro L, Qiu A, Barasch J. Spns1 is an iron transporter essential for megalin-dependent endocytosis. Am J Physiol Renal Physiol 2024; 327:F775-F787. [PMID: 39265081 PMCID: PMC11563593 DOI: 10.1152/ajprenal.00172.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/27/2024] [Accepted: 09/01/2024] [Indexed: 09/14/2024] Open
Abstract
Proximal tubule endocytosis is essential to produce protein-free urine as well as to regulate system-wide metabolic pathways, such as the activation of Vitamin D. We have determined that the proximal tubule expresses an endolysosomal membrane protein, protein spinster homolog1 (Spns1), which engenders a novel iron conductance that is indispensable during embryonic development. Conditional knockout of Spns1 with a novel Cre-LoxP construct specific to megalin-expressing cells led to the arrest of megalin receptor-mediated endocytosis as well as dextran pinocytosis in proximal tubules. The endocytic defect was accompanied by changes in megalin phosphorylation as well as enlargement of lysosomes, confirming previous findings in Drosophila and Zebrafish. The endocytic defect was also accompanied by iron overload in proximal tubules. Remarkably, iron levels regulated the Spns1 phenotypes because feeding an iron-deficient diet or mating Spns1 knockout with divalent metal transporter1 knockout rescued the phenotypes. Conversely, iron-loading wild-type mice reproduced the endocytic defect. These data demonstrate a reversible, negative feedback for apical endocytosis and raise the possibility that regulation of endocytosis, pinocytosis, megalin activation, and organellar size and function is nutrient-responsive.NEW & NOTEWORTHY Spns1 mediates a novel iron conductance essential during embryogenesis. Spns1 knockout leads to endocytic and lysosomal defects, accompanied by iron overload in the kidney. Reversal of iron overload by restricting dietary iron or by concurrent knockout of the iron transporter, DMT1 rescued the endocytic and organellar defects and reverted markers of iron overload. These data suggest feedback between iron and proximal tubule endocytosis.
Collapse
Affiliation(s)
- Andrew Beenken
- Division of Nephrology, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, United States
| | - Tian Shen
- Division of Nephrology, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, United States
| | - Guangchun Jin
- Division of Nephrology, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, United States
| | - Aryan Ghotra
- Columbia College, Columbia University, New York, New York, United States
| | - Katherine Xu
- Division of Nephrology, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, United States
| | - Kivanc Nesanir
- University of Richmond, Richmond, Virginia, United States
| | - Rachel E Sturley
- Division of Nephrology, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, United States
| | - Soundarapandian Vijayakumar
- Division of Nephrology, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, United States
| | - Atlas Khan
- Division of Nephrology, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, United States
| | - Abraham Levitman
- Albert Einstein College of Medicine, New York, New York, United States
| | - Jacob Stauber
- Albert Einstein College of Medicine, New York, New York, United States
| | - Estefania Y Chavez
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, United States
| | | | - Luke Hao
- Division of Nephrology, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, United States
| | - Thomas B Field
- Department of Mechanical Engineering, University of Vermont, Burlington, Vermont, United States
| | - Hediye Erdjument-Bromage
- Department of Neuroscience and Physiology and Neuroscience Institute, New York University Grossman School of Medicine, New York, New York, United States
| | - Thomas A Neubert
- Department of Neuroscience and Physiology and Neuroscience Institute, New York University Grossman School of Medicine, New York, New York, United States
| | - Lawrence Shapiro
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, New York, United States
- Aaron Diamond AIDS Research Center, Columbia University, New York, New York, United States
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York, United States
| | - Andong Qiu
- Advanced Institute of Translational Medicine, Tongji University, Shanghai, China
| | - Jonathan Barasch
- Division of Nephrology, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, United States
- Department of Pathology and Cell Biology, Columbia University, New York, New York, United States
- Columbia University George M. O'Brien Urology Center, New York, New York, United States
| |
Collapse
|
6
|
Senkevich K, Parlar SC, Chantereault C, Yu E, Ahmad J, Ruskey JA, Asayesh F, Spiegelman D, Waters C, Monchi O, Dauvilliers Y, Dupré N, Miliukhina I, Timofeeva A, Emelyanov A, Pchelina S, Greenbaum L, Hassin-Baer S, Alcalay RN, Gan-Or Z. Are rare heterozygous SYNJ1 variants associated with Parkinson's disease? NPJ Parkinsons Dis 2024; 10:201. [PMID: 39455605 PMCID: PMC11512049 DOI: 10.1038/s41531-024-00809-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 10/02/2024] [Indexed: 10/28/2024] Open
Abstract
Previous studies have established that rare biallelic SYNJ1 mutations cause autosomal recessive parkinsonism and Parkinson's disease (PD). We analyzed 8165 PD cases, 818 early-onset-PD (EOPD, < 50 years) and 70,363 controls. Burden meta-analysis revealed an association between rare nonsynonymous variants and variants with high Combined Annotation-Dependent Depletion score (> 20) in the Sac1 SYNJ1 domain and PD (Pfdr = 0.040). A meta-analysis of EOPD patients demonstrated an association between all rare heterozygous SYNJ1 variants and PD (Pfdr = 0.029).
Collapse
Affiliation(s)
- Konstantin Senkevich
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montreal, Quebec, Canada.
- Department of Neurology and neurosurgery, McGill University, Montréal, QC, Canada.
- Department of Human Genetics, McGill University, Montréal, QC, Canada.
| | - Sitki Cem Parlar
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montreal, Quebec, Canada
- Department of Human Genetics, McGill University, Montréal, QC, Canada
| | - Cloe Chantereault
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montreal, Quebec, Canada
- Department of Human Genetics, McGill University, Montréal, QC, Canada
| | - Eric Yu
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montreal, Quebec, Canada
- Department of Human Genetics, McGill University, Montréal, QC, Canada
| | - Jamil Ahmad
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montreal, Quebec, Canada
- Department of Neurology and neurosurgery, McGill University, Montréal, QC, Canada
| | - Jennifer A Ruskey
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montreal, Quebec, Canada
- Department of Neurology and neurosurgery, McGill University, Montréal, QC, Canada
| | - Farnaz Asayesh
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montreal, Quebec, Canada
- Department of Human Genetics, McGill University, Montréal, QC, Canada
| | - Dan Spiegelman
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montreal, Quebec, Canada
| | - Cheryl Waters
- Department of Neurology, College of Physicians and Surgeons, New York, Columbia City, NY, USA
| | - Oury Monchi
- Department of Neurology and neurosurgery, McGill University, Montréal, QC, Canada
- Département de radiologie, radio-oncologie et médecine nucléaire, Université de Montréal, Montréal, QC, Canada
- Centre de recherche de l'Institut universitaire de gériatrie de Montréal, Montréal, QC, Canada
| | - Yves Dauvilliers
- National Reference Center for Narcolepsy, Sleep Unit, Department of Neurology, Gui-de-Chauliac Hospital, CHU Montpellier, University of Montpellier, Montpellier, France
| | - Nicolas Dupré
- Neuroscience axis, CHU de Québec-Université Laval, Québec, QC, Canada
- Department of Medicine, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | | | - Alla Timofeeva
- First Pavlov State Medical University of St. Petersburg, Saint-Petersburg, Russia
| | - Anton Emelyanov
- First Pavlov State Medical University of St. Petersburg, Saint-Petersburg, Russia
| | - Sofya Pchelina
- First Pavlov State Medical University of St. Petersburg, Saint-Petersburg, Russia
| | - Lior Greenbaum
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- The Danek Gertner Institute of Human Genetics, Sheba Medical Center, Tel Hashomer, Israel
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel Hashomer, Israel
| | - Sharon Hassin-Baer
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel Hashomer, Israel
- The Movement Disorders Institute, Department of Neurology, Sheba Medical Center, Tel Hashomer, Israel
| | - Roy N Alcalay
- Department of Neurology, College of Physicians and Surgeons, New York, Columbia City, NY, USA
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Division of Movement Disorders, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Ziv Gan-Or
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montreal, Quebec, Canada.
- Department of Neurology and neurosurgery, McGill University, Montréal, QC, Canada.
- Department of Human Genetics, McGill University, Montréal, QC, Canada.
| |
Collapse
|
7
|
Leno-Durán E, Arrabal L, Roldán S, Medina I, Alcántara-Domínguez C, García-Cabrera V, Saiz J, Barbas C, Sánchez MJ, Entrala-Bernal C, Fernández-Rosado F, Lorente JA, Gutierrez-Ríos P, Martínez-Gonzalez LJ. Identification of SYNJ1 in a Complex Case of Juvenile Parkinsonism Using a Multiomics Approach. Int J Mol Sci 2024; 25:9754. [PMID: 39273702 PMCID: PMC11396201 DOI: 10.3390/ijms25179754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/30/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024] Open
Abstract
This study aimed to elucidate the genetic causes underlying the juvenile parkinsonism (JP) diagnosed in a girl with several family members diagnosed with spinocerebellar ataxia type 2 (SCA2). To achieve this, whole-exome sequencing, analysis of CAG repeats, RNA sequencing analysis on fibroblasts, and metabolite identification were performed. As a result, a homozygous missense mutation SNP T>C (rs2254562) in synaptojamin 1 (SYNJ1), which has been implicated in the regulation of membrane trafficking in the synaptic vesicles, was identified. Additionally, we observed overexpression of L1 cell adhesion molecule (L1CAM), Cdc37, GPX1, and GPX4 and lower expression of ceruloplasmin in the patient compared to the control. We also found changes in sphingolipid, inositol, and inositol phosphate metabolism. These findings help to clarify the mechanisms of JP and suggest that the etiology of JP in the patient may be multifactorial. This is the first report of the rs2254562 mutation in the SYNJ gene identified in a JP patient with seizures and cognitive impairment.
Collapse
Affiliation(s)
- Ester Leno-Durán
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Granada, 18016 Granada, Spain
| | - Luisa Arrabal
- Pediatric Neurology Department, Hospital Virgen de las Nieves, 18014 Granada, Spain
| | - Susana Roldán
- Pediatric Neurology Department, Hospital Virgen de las Nieves, 18014 Granada, Spain
| | - Inmaculada Medina
- Pediatric Neurology Department, Hospital Virgen de las Nieves, 18014 Granada, Spain
| | - Clara Alcántara-Domínguez
- Centre for Genomics and Oncological Research (GENYO), Pfizer, University of Granada, Andalusian Regional Government, PTS, 18016 Granada, Spain
| | - Victor García-Cabrera
- Centre for Genomics and Oncological Research (GENYO), Pfizer, University of Granada, Andalusian Regional Government, PTS, 18016 Granada, Spain
| | - Jorge Saiz
- Centre for Metabolomics and Bionanalysis (CEMBIO), Chemistry and Biochemistry Department, Pharmacy Faculty, Universidad CEU San Pablo, 28926 Madrid, Spain
| | - Coral Barbas
- Centre for Metabolomics and Bionanalysis (CEMBIO), Chemistry and Biochemistry Department, Pharmacy Faculty, Universidad CEU San Pablo, 28926 Madrid, Spain
| | - Maria José Sánchez
- CIBER Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
- Andalusian School of Public Health (EASP), 18080 Granada, Spain
- Instituto de Investigación Biosanitaria, ibs. GRANADA, 18012 Granada, Spain
| | - Carmen Entrala-Bernal
- Lorgen G.P., PT, Ciencias de la Salud-Business Innovation Centre (BIC), 18016 Granada, Spain
| | | | - Jose Antonio Lorente
- Centre for Genomics and Oncological Research (GENYO), Pfizer, University of Granada, Andalusian Regional Government, PTS, 18016 Granada, Spain
- Laboratory of Genetic Identification, Legal Medicine and Toxicology Department, Faculty of Medicine-PTS, University of Granada, 18016 Granada, Spain
| | | | - Luis Javier Martínez-Gonzalez
- Centre for Genomics and Oncological Research (GENYO), Pfizer, University of Granada, Andalusian Regional Government, PTS, 18016 Granada, Spain
- Department of Biochemistry, Molecular Biology III and Immunology, Faculty of Medicine, University of Granada, 18016 Granada, Spain
| |
Collapse
|
8
|
Cotrin JC, Piergiorge RM, Gonçalves AP, Pereira JS, Gerber AL, de Campos Guimarães AP, de Vasconcelos ATR, Santos-Rebouças CB. Co-occurrence of PRKN and SYNJ1 variants in Early-Onset Parkinson's disease. Metab Brain Dis 2024; 39:915-928. [PMID: 38836947 DOI: 10.1007/s11011-024-01362-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 05/24/2024] [Indexed: 06/06/2024]
Abstract
Parkinson's disease (PD) is the second most prevalent neurodegenerative disease globally, with a fast-growing prevalence. The etiology of PD exhibits a multifactorial complex nature and remains challenging. Herein, we described clinical, molecular, and integrative bioinformatics findings from a Brazilian female affected by Early-Onset PD (EOPD) harboring a recurrent homozygous pathogenic deletion in the parkin RBR E3 ubiquitin protein ligase gene (PRKN; NM_004562.3:c.155delA; p.Asn52Metfs*29; rs754809877), along with a novel heterozygous variant in the synaptojanin 1 gene (SYNJ1; NM_003895.3:c.62G > T; p.Cys21Phe; rs1486511197) found by Whole Exome Sequencing. Uncommon or unreported PRKN-related clinical features in the patient include cognitive decline, auditory and visual hallucinations, REM sleep disorder, and depression, previously observed in SYNJ1-related conditions. Moreover, PRKN interacts with endophilin A1, which is a major binding partner of SYNJ1. This protein plays a pivotal role in regulating the dynamics of synaptic vesicles, particularly in the context of endocytosis and recycling processes. Altogether, our comprehensive analyses underscore a potential synergistic effect between the PRKN and SYNJ1 variants over the pathogenesis of EOPD.
Collapse
Affiliation(s)
- Juliana Cordovil Cotrin
- Department of Genetics, Institute of Biology Roberto Alcantara Gomes, Rio de Janeiro State University, Rua São Francisco Xavier, 524, PHLC - sala 501F, Maracanã, Rio de Janeiro, RJ, 20550-013, Brazil
| | - Rafael Mina Piergiorge
- Department of Genetics, Institute of Biology Roberto Alcantara Gomes, Rio de Janeiro State University, Rua São Francisco Xavier, 524, PHLC - sala 501F, Maracanã, Rio de Janeiro, RJ, 20550-013, Brazil
| | - Andressa Pereira Gonçalves
- Department of Genetics, Institute of Biology Roberto Alcantara Gomes, Rio de Janeiro State University, Rua São Francisco Xavier, 524, PHLC - sala 501F, Maracanã, Rio de Janeiro, RJ, 20550-013, Brazil
| | - João Santos Pereira
- Movement Disorders Section, Neurology Service, Pedro Ernesto University Hospital, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Alexandra Lehmkuhl Gerber
- Bioinformatics Laboratory (LABINFO), National Laboratory for Scientific Computing (LNCC), Petrópolis, Brazil
| | | | | | - Cíntia Barros Santos-Rebouças
- Department of Genetics, Institute of Biology Roberto Alcantara Gomes, Rio de Janeiro State University, Rua São Francisco Xavier, 524, PHLC - sala 501F, Maracanã, Rio de Janeiro, RJ, 20550-013, Brazil.
| |
Collapse
|
9
|
Senkevich K, Parlar SC, Chantereault C, Yu E, Ahmad J, Ruskey JA, Asayesh F, Spiegelman D, Waters C, Monchi O, Dauvilliers Y, Dupré N, Miliukhina I, Timofeeva A, Emelyanov A, Pchelina S, Greenbaum L, Hassin-Baer S, Alcalay RN, Gan-Or Z. Are rare heterozygous SYNJ1 variants associated with Parkinson's disease? MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.29.24307986. [PMID: 38853950 PMCID: PMC11160829 DOI: 10.1101/2024.05.29.24307986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Previous studies have suggested that rare biallelic SYNJ1 mutations may cause autosomal recessive parkinsonism and Parkinson's disease (PD). Our study explored the impact of rare SYNJ1 variants in non-familial settings, including 8,165 PD cases, 818 early-onset PD (EOPD, <50 years) and 70,363 controls. Burden meta-analysis using optimized sequence Kernel association test (SKAT-O) revealed an association between rare nonsynonymous variants in the Sac1 SYNJ1 domain and PD (Pfdr=0.040). Additionally, a meta-analysis focusing on patients with EOPD demonstrated an association between all rare SYNJ1 variants and PD (Pfdr=0.029). Rare SYNJ1 variants may be associated with sporadic PD, and more specifically with EOPD.
Collapse
Affiliation(s)
- Konstantin Senkevich
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montreal, Quebec, Canada
- Department of Neurology and neurosurgery, McGill University, Montréal, QC, Canada, Canada
- Department of Human Genetics, McGill University, Montréal, QC, Canada
| | - Sitki Cem Parlar
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montreal, Quebec, Canada
- Department of Human Genetics, McGill University, Montréal, QC, Canada
| | - Cloe Chantereault
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montreal, Quebec, Canada
- Department of Human Genetics, McGill University, Montréal, QC, Canada
| | - Eric Yu
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montreal, Quebec, Canada
- Department of Human Genetics, McGill University, Montréal, QC, Canada
| | - Jamil Ahmad
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montreal, Quebec, Canada
- Department of Neurology and neurosurgery, McGill University, Montréal, QC, Canada, Canada
| | - Jennifer A. Ruskey
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montreal, Quebec, Canada
- Department of Neurology and neurosurgery, McGill University, Montréal, QC, Canada, Canada
| | - Farnaz Asayesh
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montreal, Quebec, Canada
- Department of Human Genetics, McGill University, Montréal, QC, Canada
| | - Dan Spiegelman
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montreal, Quebec, Canada
| | - Cheryl Waters
- Department of Neurology, College of Physicians and Surgeons, Columbia University Medical Center, NY, USA
| | - Oury Monchi
- Department of Neurology and neurosurgery, McGill University, Montréal, QC, Canada, Canada
- Département de radiologie, radio-oncologie et médecine nucléaire, Université de Montréal, Montréal, QC, Canada
- Centre de recherche de l’Institut universitaire de gériatrie de Montréal, Montréal, QC, Canada
| | - Yves Dauvilliers
- National Reference Center for Narcolepsy, Sleep Unit, Department of Neurology, Guide-Chauliac Hospital, CHU Montpellier, University of Montpellier, Montpellier, France
| | - Nicolas Dupré
- Neuroscience axis, CHU de Québec-Université Laval, Québec, QC, Canada
- Department of Medicine, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | | | - Alla Timofeeva
- First Pavlov State Medical University of St. Petersburg, Saint-Petersburg, Russia
| | - Anton Emelyanov
- First Pavlov State Medical University of St. Petersburg, Saint-Petersburg, Russia
| | - Sofya Pchelina
- First Pavlov State Medical University of St. Petersburg, Saint-Petersburg, Russia
| | - Lior Greenbaum
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- The Danek Gertner Institute of Human Genetics, Sheba Medical Center, Tel Hashomer, Israel
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel Hashomer, Israel
| | - Sharon Hassin-Baer
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel Hashomer, Israel
- The Movement Disorders Institute, Department of Neurology, Sheba Medical Center, Tel Hashomer, Israel
| | - Roy N. Alcalay
- Department of Neurology, College of Physicians and Surgeons, Columbia University Medical Center, NY, USA
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Division of Movement Disorders, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Ziv Gan-Or
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montreal, Quebec, Canada
- Department of Neurology and neurosurgery, McGill University, Montréal, QC, Canada, Canada
- Department of Human Genetics, McGill University, Montréal, QC, Canada
| |
Collapse
|
10
|
Moya-Alvarado G, Valero-Peña X, Aguirre-Soto A, Bustos FJ, Lazo OM, Bronfman FC. PLC-γ-Ca 2+ pathway regulates axonal TrkB endocytosis and is required for long-distance propagation of BDNF signaling. Front Mol Neurosci 2024; 17:1009404. [PMID: 38660384 PMCID: PMC11040097 DOI: 10.3389/fnmol.2024.1009404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 03/25/2024] [Indexed: 04/26/2024] Open
Abstract
Brain-derived neurotrophic factor (BDNF) and its tropomyosin receptor kinase B (TrkB) are important signaling proteins that regulate dendritic growth and maintenance in the central nervous system (CNS). After binding of BDNF, TrkB is endocytosed into endosomes and continues signaling within the cell soma, dendrites, and axon. In previous studies, we showed that BDNF signaling initiated in axons triggers long-distance signaling, inducing dendritic arborization in a CREB-dependent manner in cell bodies, processes that depend on axonal dynein and TrkB activities. The binding of BDNF to TrkB triggers the activation of different signaling pathways, including the ERK, PLC-γ and PI3K-mTOR pathways, to induce dendritic growth and synaptic plasticity. How TrkB downstream pathways regulate long-distance signaling is unclear. Here, we studied the role of PLC-γ-Ca2+ in BDNF-induced long-distance signaling using compartmentalized microfluidic cultures. We found that dendritic branching and CREB phosphorylation induced by axonal BDNF stimulation require the activation of PLC-γ in the axons of cortical neurons. Locally, in axons, BDNF increases PLC-γ phosphorylation and induces intracellular Ca2+ waves in a PLC-γ-dependent manner. In parallel, we observed that BDNF-containing signaling endosomes transport to the cell body was dependent on PLC-γ activity and intracellular Ca2+ stores. Furthermore, the activity of PLC-γ is required for BDNF-dependent TrkB endocytosis, suggesting a role for the TrkB/PLC-γ signaling pathway in axonal signaling endosome formation.
Collapse
Affiliation(s)
- Guillermo Moya-Alvarado
- Faculty of Biological Sciences, Pontificia Universidad Catolica de Chile (UC), Santiago, Chile
| | - Xavier Valero-Peña
- NeuroSignaling Laboratory, Institute of Biomedical Sciences (ICB), Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
| | - Alejandro Aguirre-Soto
- NeuroSignaling Laboratory, Institute of Biomedical Sciences (ICB), Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
| | - Fernando J. Bustos
- Constantin-Paton Research Laboratory, Institute of Biomedical Sciences (ICB), Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
| | - Oscar M. Lazo
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Francisca C. Bronfman
- NeuroSignaling Laboratory, Institute of Biomedical Sciences (ICB), Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
| |
Collapse
|
11
|
Asiamah EA, Feng B, Guo R, Yaxing X, Du X, Liu X, Zhang J, Cui H, Ma J. The Contributions of the Endolysosomal Compartment and Autophagy to APOEɛ4 Allele-Mediated Increase in Alzheimer's Disease Risk. J Alzheimers Dis 2024; 97:1007-1031. [PMID: 38306054 DOI: 10.3233/jad-230658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Apolipoprotein E4 (APOE4), although yet-to-be fully understood, increases the risk and lowers the age of onset of Alzheimer's disease (AD), which is the major cause of dementia among elderly individuals. The endosome-lysosome and autophagy pathways, which are necessary for homeostasis in both neurons and glia, are dysregulated even in early AD. Nonetheless, the contributory roles of these pathways to developing AD-related pathologies in APOE4 individuals and models are unclear. Therefore, this review summarizes the dysregulations in the endosome-lysosome and autophagy pathways in APOE4 individuals and non-human models, and how these anomalies contribute to developing AD-relevant pathologies. The available literature suggests that APOE4 causes endosomal enlargement, increases endosomal acidification, impairs endosomal recycling, and downregulates exosome production. APOE4 impairs autophagy initiation and inhibits basal autophagy and autophagy flux. APOE4 promotes lysosome formation and trafficking and causes ApoE to accumulate in lysosomes. APOE4-mediated changes in the endosome, autophagosome and lysosome could promote AD-related features including Aβ accumulation, tau hyperphosphorylation, glial dysfunction, lipid dyshomeostasis, and synaptic defects. ApoE4 protein could mediate APOE4-mediated endosome-lysosome-autophagy changes. ApoE4 impairs vesicle recycling and endosome trafficking, impairs the synthesis of autophagy genes, resists being dissociated from its receptors and degradation, and forms a stable folding intermediate that could disrupt lysosome structure. Drugs such as molecular correctors that target ApoE4 molecular structure and enhance autophagy may ameliorate the endosome-lysosome-autophagy-mediated increase in AD risk in APOE4 individuals.
Collapse
Affiliation(s)
- Ernest Amponsah Asiamah
- Hebei Medical University-Galway University of Ireland Stem Cell Research Center, Hebei Medical University, Hebei, China
- Department of Biomedical Sciences, College of Health and Allied Sciences, University of Cape Coast, PMB UCC, Cape Coast, Ghana
| | - Baofeng Feng
- Hebei Medical University-Galway University of Ireland Stem Cell Research Center, Hebei Medical University, Hebei, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Hebei, China
- Hebei Technology Innovation Center for Stem Cell and Regenerative Medicine, Hebei, China
| | - Ruiyun Guo
- Hebei Medical University-Galway University of Ireland Stem Cell Research Center, Hebei Medical University, Hebei, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Hebei, China
| | - Xu Yaxing
- Hebei Medical University-Galway University of Ireland Stem Cell Research Center, Hebei Medical University, Hebei, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Hebei, China
| | - Xiaofeng Du
- Hebei Medical University-Galway University of Ireland Stem Cell Research Center, Hebei Medical University, Hebei, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Hebei, China
| | - Xin Liu
- Hebei Medical University-Galway University of Ireland Stem Cell Research Center, Hebei Medical University, Hebei, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Hebei, China
| | - Jinyu Zhang
- Hebei Medical University-Galway University of Ireland Stem Cell Research Center, Hebei Medical University, Hebei, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Hebei, China
| | - Huixian Cui
- Hebei Medical University-Galway University of Ireland Stem Cell Research Center, Hebei Medical University, Hebei, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Hebei, China
- Hebei Technology Innovation Center for Stem Cell and Regenerative Medicine, Hebei, China
| | - Jun Ma
- Hebei Medical University-Galway University of Ireland Stem Cell Research Center, Hebei Medical University, Hebei, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Hebei, China
- Hebei Technology Innovation Center for Stem Cell and Regenerative Medicine, Hebei, China
| |
Collapse
|
12
|
Yahya V, Di Fonzo A, Monfrini E. Genetic Evidence for Endolysosomal Dysfunction in Parkinson’s Disease: A Critical Overview. Int J Mol Sci 2023; 24:ijms24076338. [PMID: 37047309 PMCID: PMC10094484 DOI: 10.3390/ijms24076338] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/23/2023] [Accepted: 03/26/2023] [Indexed: 03/30/2023] Open
Abstract
Parkinson’s disease (PD) is the second most common neurodegenerative disorder in the aging population, and no disease-modifying therapy has been approved to date. The pathogenesis of PD has been related to many dysfunctional cellular mechanisms, however, most of its monogenic forms are caused by pathogenic variants in genes involved in endolysosomal function (LRRK2, VPS35, VPS13C, and ATP13A2) and synaptic vesicle trafficking (SNCA, RAB39B, SYNJ1, and DNAJC6). Moreover, an extensive search for PD risk variants revealed strong risk variants in several lysosomal genes (e.g., GBA1, SMPD1, TMEM175, and SCARB2) highlighting the key role of lysosomal dysfunction in PD pathogenesis. Furthermore, large genetic studies revealed that PD status is associated with the overall “lysosomal genetic burden”, namely the cumulative effect of strong and weak risk variants affecting lysosomal genes. In this context, understanding the complex mechanisms of impaired vesicular trafficking and dysfunctional endolysosomes in dopaminergic neurons of PD patients is a fundamental step to identifying precise therapeutic targets and developing effective drugs to modify the neurodegenerative process in PD.
Collapse
Affiliation(s)
- Vidal Yahya
- Dino Ferrari Center, Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy;
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Neurology Unit, 20122 Milan, Italy;
| | - Alessio Di Fonzo
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Neurology Unit, 20122 Milan, Italy;
| | - Edoardo Monfrini
- Dino Ferrari Center, Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy;
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Neurology Unit, 20122 Milan, Italy;
- Correspondence:
| |
Collapse
|
13
|
Pathogenic Aspects and Therapeutic Avenues of Autophagy in Parkinson's Disease. Cells 2023; 12:cells12040621. [PMID: 36831288 PMCID: PMC9954720 DOI: 10.3390/cells12040621] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/07/2023] [Accepted: 02/11/2023] [Indexed: 02/17/2023] Open
Abstract
The progressive aging of the population and the fact that Parkinson's disease currently does not have any curative treatment turn out to be essential issues in the following years, where research has to play a critical role in developing therapy. Understanding this neurodegenerative disorder keeps advancing, proving the discovery of new pathogenesis-related genes through genome-wide association analysis. Furthermore, the understanding of its close link with the disruption of autophagy mechanisms in the last few years permits the elaboration of new animal models mimicking, through multiple pathways, different aspects of autophagic dysregulation, with the presence of pathological hallmarks, in brain regions affected by Parkinson's disease. The synergic advances in these fields permit the elaboration of multiple therapeutic strategies for restoring autophagy activity. This review discusses the features of Parkinson's disease, the autophagy mechanisms and their involvement in pathogenesis, and the current methods to correct this cellular pathway, from the development of animal models to the potentially curative treatments in the preclinical and clinical phase studies, which are the hope for patients who do not currently have any curative treatment.
Collapse
|
14
|
Xicota L, Lagarde J, Eysert F, Grenier-Boley B, Rivals I, Botté A, Forlani S, Landron S, Gautier C, Gabriel C, Bottlaender M, Lambert JC, Chami M, Sarazin M, Potier MC. Modifications of the endosomal compartment in fibroblasts from sporadic Alzheimer's disease patients are associated with cognitive impairment. Transl Psychiatry 2023; 13:54. [PMID: 36788216 PMCID: PMC9929231 DOI: 10.1038/s41398-023-02355-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 01/31/2023] [Accepted: 02/03/2023] [Indexed: 02/16/2023] Open
Abstract
Morphological alterations of the endosomal compartment have been widely described in post-mortem brains from Alzheimer's disease (AD) patients and subjects with Down syndrome (DS) who are at high risk for AD. Immunostaining with antibodies against endosomal markers such as Early Endosome Antigen 1 (EEA1) revealed increased size of EEA1-positive puncta. In DS, peripheral cells such as peripheral blood mononuclear cells (PBMCs) and fibroblasts, share similar phenotype even in the absence of AD. We previously found that PBMCs from AD patients have larger EEA1-positive puncta, correlating with brain amyloid load. Here we analysed the endosomal compartment of fibroblasts from a very well characterised cohort of AD patients (IMABio3) who underwent thorough clinical, imaging and biomarkers assessments. Twenty-one subjects were included (7 AD with mild cognitive impairment (AD-MCI), 7 AD with dementia (AD-D) and 7 controls) who had amyloid-PET at baseline (PiB) and neuropsychological tests at baseline and close to skin biopsy. Fibroblasts isolated from skin biopsies were immunostained with anti-EEA1 antibody and imaged using a spinning disk microscope. Endosomal compartment ultrastructure was also analysed by electron microscopy. All fibroblast lines were genotyped and their AD risk factors identified. Our results show a trend to an increased EEA1-positive puncta volume in fibroblasts from AD-D as compared to controls (p.adj = 0.12) and reveal enhanced endosome area in fibroblasts from AD-MCI and AD-AD versus controls. Larger puncta size correlated with PiB retention in different brain areas and with worse cognitive scores at the time of biopsy as well as faster decline from baseline to the time of biopsy. Finally, we identified three genetic risk factors for AD (ABCA1, COX7C and MYO15A) that were associated with larger EEA1 puncta volume. In conclusion, the endosomal compartment in fibroblasts could be used as cellular peripheral biomarker for both amyloid deposition and cognitive decline in AD patients.
Collapse
Affiliation(s)
- Laura Xicota
- ICM Paris Brain Institute, CNRS UMR7225, INSERM U1127, Sorbonne University, Hôpital de la Pitié-Salpêtrière, 47 Bd de l'Hôpital, 75013, Paris, France.
| | - Julien Lagarde
- grid.414435.30000 0001 2200 9055Department of Neurology of Memory and Language, GHU Paris Psychiatrie & Neurosciences, Hôpital Sainte Anne, F-75014 Paris, France ,grid.508487.60000 0004 7885 7602Université Paris Cité, F-75006 Paris, France ,Université Paris-Saclay, BioMaps, Service Hospitalier Frederic Joliot CEA, CNRS, Inserm, F-91401 Orsay, France
| | - Fanny Eysert
- Institut of Molecular and Cellular Pharmacology, Laboratory of Excellence DistALZ, Université Côte d’Azur, INSERM, CNRS, Sophia-Antipolis, F-06560 Valbonne, France
| | - Benjamin Grenier-Boley
- grid.503422.20000 0001 2242 6780Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RIDAGE– Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, F-59000 Lille, France
| | - Isabelle Rivals
- grid.440907.e0000 0004 1784 3645Equipe de Statistique Appliquée, ESPCI Paris, INSERM, UMRS 1158 Neurophysiologie Respiratoire Expérimentale et Clinique, PSL Research University, Paris, France
| | - Alexandra Botté
- grid.411439.a0000 0001 2150 9058ICM Paris Brain Institute, CNRS UMR7225, INSERM U1127, Sorbonne University, Hôpital de la Pitié-Salpêtrière, 47 Bd de l’Hôpital, 75013 Paris, France
| | - Sylvie Forlani
- grid.411439.a0000 0001 2150 9058ICM DNA and Cell Bank CNRS UMR7225, INSERM U1127, Sorbonne University, Hôpital de la Pitié-Salpêtrière, 47 Bd de l’Hôpital, 75013 Paris, France
| | - Sophie Landron
- Institut de Recherche Servier, 125 Chem. de Ronde, 78290 Croissy sur Seine, France
| | - Clément Gautier
- Institut de Recherche Servier, 125 Chem. de Ronde, 78290 Croissy sur Seine, France
| | - Cecilia Gabriel
- Institut de Recherche Servier, 125 Chem. de Ronde, 78290 Croissy sur Seine, France
| | - Michel Bottlaender
- grid.508487.60000 0004 7885 7602Université Paris Cité, F-75006 Paris, France ,grid.460789.40000 0004 4910 6535CEA, Neurospin, UNIACT, Paris Saclay University, 91191 Gif-sur-Yvette Cedex, France
| | - Jean-Charles Lambert
- grid.503422.20000 0001 2242 6780Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RIDAGE– Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, F-59000 Lille, France
| | - Mounia Chami
- Institut of Molecular and Cellular Pharmacology, Laboratory of Excellence DistALZ, Université Côte d’Azur, INSERM, CNRS, Sophia-Antipolis, F-06560 Valbonne, France
| | - Marie Sarazin
- grid.414435.30000 0001 2200 9055Department of Neurology of Memory and Language, GHU Paris Psychiatrie & Neurosciences, Hôpital Sainte Anne, F-75014 Paris, France ,grid.508487.60000 0004 7885 7602Université Paris Cité, F-75006 Paris, France ,Université Paris-Saclay, BioMaps, Service Hospitalier Frederic Joliot CEA, CNRS, Inserm, F-91401 Orsay, France
| | - Marie-Claude Potier
- ICM Paris Brain Institute, CNRS UMR7225, INSERM U1127, Sorbonne University, Hôpital de la Pitié-Salpêtrière, 47 Bd de l'Hôpital, 75013, Paris, France.
| |
Collapse
|
15
|
Genetics and Molecular Basis of Congenital Heart Defects in Down Syndrome: Role of Extracellular Matrix Regulation. Int J Mol Sci 2023; 24:ijms24032918. [PMID: 36769235 PMCID: PMC9918028 DOI: 10.3390/ijms24032918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 01/28/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Down syndrome (DS), a complex disorder that is caused by the trisomy of chromosome 21 (Hsa21), is a major cause of congenital heart defects (CHD). Interestingly, only about 50% of individuals with Hsa21 trisomy manifest CHD. Here we review the genetic basis of CHD in DS, focusing on genes that regulate extracellular matrix (ECM) organization. The overexpression of Hsa21 genes likely underlies the molecular mechanisms that contribute to CHD, even though the genes responsible for CHD could only be located in a critical region of Hsa21. A role in causing CHD has been attributed not only to protein-coding Hsa21 genes, but also to genes on other chromosomes, as well as miRNAs and lncRNAs. It is likely that the contribution of more than one gene is required, and that the overexpression of Hsa21 genes acts in combination with other genetic events, such as specific mutations or polymorphisms, amplifying their effect. Moreover, a key function in determining alterations in cardiac morphogenesis might be played by ECM. A large number of genes encoding ECM proteins are overexpressed in trisomic human fetal hearts, and many of them appear to be under the control of a Hsa21 gene, the RUNX1 transcription factor.
Collapse
|
16
|
Conte A, Valente V, Paladino S, Pierantoni GM. HIPK2 in cancer biology and therapy: Recent findings and future perspectives. Cell Signal 2023; 101:110491. [PMID: 36241057 DOI: 10.1016/j.cellsig.2022.110491] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/26/2022] [Accepted: 10/04/2022] [Indexed: 11/06/2022]
Abstract
Homeodomain-interacting protein kinase 2 (HIPK2) is a serine-threonine kinase that phosphorylates and regulates a plethora of transcriptional regulators and chromatin modifiers. The heterogeneity of its interactome allows HIPK2 to modulate several cellular processes and signaling pathways, ultimately regulating cell fate and proliferation. Because of its p53-dependent pro-apoptotic activity and its downregulation in many tumor types, HIPK2 is traditionally considered a bone fide tumor suppressor gene. However, recent findings revealed that the role of HIPK2 in the pathogenesis of cancer is much more complex, ranging from tumor suppressive to oncogenic, strongly depending on the cellular context. Here, we review the very recent data emerged in the last years about the involvement of HIPK2 in cancer biology and therapy, highlighting the various alterations of this kinase (downregulation, upregulation, mutations and/or delocalization) in dependence on the cancer types. In addition, we discuss the recent advancement in the understanding the tumor suppressive and oncogenic functions of HIPK2, its role in establishing the response to cancer therapies, and its regulation by cancer-associated microRNAs. All these data strengthen the idea that HIPK2 is a key player in many types of cancer; therefore, it could represent an important prognostic marker, a factor to predict therapy response, and even a therapeutic target itself.
Collapse
Affiliation(s)
- Andrea Conte
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy.
| | - Valeria Valente
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Simona Paladino
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Giovanna Maria Pierantoni
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy.
| |
Collapse
|
17
|
von Scheibler EN, van Eeghen AM, de Koning TJ, Kuijf ML, Zinkstok JR, Müller AR, van Amelsvoort TA, Boot E. Parkinsonism in Genetic Neurodevelopmental Disorders: A Systematic Review. Mov Disord Clin Pract 2022; 10:17-31. [PMID: 36699000 PMCID: PMC9847320 DOI: 10.1002/mdc3.13577] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/25/2022] [Accepted: 08/16/2022] [Indexed: 01/28/2023] Open
Abstract
Background With advances in clinical genetic testing, associations between genetic neurodevelopmental disorders and parkinsonism are increasingly recognized. In this review, we aimed to provide a comprehensive overview of reports on parkinsonism in genetic neurodevelopmental disorders and summarize findings related to genetic diagnosis, clinical features and proposed disease mechanisms. Methods A systematic literature review was conducted in PubMed and Embase on June 15, 2021. Search terms for parkinsonism and genetic neurodevelopmental disorders, using generic terms and the Human Phenotype Ontology, were combined. Study characteristics and descriptive data were extracted from the articles using a modified version of the Cochrane Consumers and Communication Review Group's data extraction template. The protocol was registered in PROSPERO (CRD42020191035). Results The literature search yielded 208 reports for data-extraction, describing 69 genetic disorders in 422 patients. The five most reported from most to least frequent were: 22q11.2 deletion syndrome, beta-propeller protein-associated neurodegeneration, Down syndrome, cerebrotendinous xanthomatosis, and Rett syndrome. Notable findings were an almost equal male to female ratio, an early median age of motor onset (26 years old) and rigidity being more common than rest tremor. Results of dopaminergic imaging and response to antiparkinsonian medication often supported the neurodegenerative nature of parkinsonism. Moreover, neuropathology results showed neuronal loss in the majority of cases. Proposed disease mechanisms included aberrant mitochondrial function and disruptions in neurotransmitter metabolism, endosomal trafficking, and the autophagic-lysosomal and ubiquitin-proteasome system. Conclusion Parkinsonism has been reported in many GNDs. Findings from this study may provide clues for further research and improve management of patients with GNDs and/or parkinsonism.
Collapse
Affiliation(s)
- Emma N.M.M. von Scheibler
- Advisium'sHeeren Loo ZorggroepAmersfoortThe Netherlands,Department of Psychiatry and NeuropsychologyMaastricht UniversityMaastrichtThe Netherlands
| | - Agnies M. van Eeghen
- Advisium'sHeeren Loo ZorggroepAmersfoortThe Netherlands,Emma Children's HospitalUniversity of AmsterdamAmsterdamThe Netherlands
| | - Tom J. de Koning
- Department of GeneticsUniversity of GroningenGroningenThe Netherlands,Expertise Centre Movement Disorders GroningenUniversity Medical Centre GroningenGroningenThe Netherlands,Pediatrics, Department of Clinical SciencesLund UniversityLundSweden
| | - Mark L. Kuijf
- Department of NeurologyMaastricht University Medical CentreMaastrichtThe Netherlands
| | - Janneke R. Zinkstok
- Department of PsychiatryRadoud University Medical CentreNijmegenThe Netherlands,Karakter child and adolescent psychiatryNijmegenThe Netherlands,Department of Psychiatry and Brain CenterUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Annelieke R. Müller
- Advisium'sHeeren Loo ZorggroepAmersfoortThe Netherlands,Emma Children's HospitalUniversity of AmsterdamAmsterdamThe Netherlands
| | | | - Erik Boot
- Advisium'sHeeren Loo ZorggroepAmersfoortThe Netherlands,Department of Psychiatry and NeuropsychologyMaastricht UniversityMaastrichtThe Netherlands,The Dalglish Family 22q ClinicUniversity Health NetworkTorontoOntarioCanada
| |
Collapse
|
18
|
Riccardi C, D’Aria F, Fasano D, Digilio FA, Carillo MR, Amato J, De Rosa L, Paladino S, Melone MAB, Montesarchio D, Giancola C. Truncated Analogues of a G-Quadruplex-Forming Aptamer Targeting Mutant Huntingtin: Shorter Is Better! Int J Mol Sci 2022; 23:ijms232012412. [PMID: 36293267 PMCID: PMC9604342 DOI: 10.3390/ijms232012412] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/13/2022] [Accepted: 10/13/2022] [Indexed: 11/16/2022] Open
Abstract
Two analogues of the MS3 aptamer, which was previously shown to have an exquisite capability to selectively bind and modulate the activity of mutant huntingtin (mHTT), have been here designed and evaluated in their physicochemical and biological properties. Featured by a distinctive propensity to form complex G-quadruplex structures, including large multimeric aggregates, the original 36-mer MS3 has been truncated to give a 33-mer (here named MS3-33) and a 17-mer (here named MS3-17). A combined use of different techniques (UV, CD, DSC, gel electrophoresis) allowed a detailed physicochemical characterization of these novel G-quadruplex-forming aptamers, tested in vitro on SH-SY5Y cells and in vivo on a Drosophila Huntington’s disease model, in which these shorter MS3-derived oligonucleotides proved to have improved bioactivity in comparison with the parent aptamer.
Collapse
Affiliation(s)
- Claudia Riccardi
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
| | - Federica D’Aria
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy
| | - Dominga Fasano
- Department of Advanced Medical and Surgical Sciences, 2nd Division of Neurology, Center for Rare Diseases and InterUniversity Center for Research in Neurosciences, University of Campania Luigi Vanvitelli, 80131 Naples, Italy
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy
| | - Filomena Anna Digilio
- Research Institute on Terrestrial Ecosystems (IRET), UOS Naples-CNR, 80131 Naples, Italy
| | - Maria Rosaria Carillo
- Department of Experimental Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| | - Jussara Amato
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy
| | - Laura De Rosa
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy
| | - Simona Paladino
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy
| | - Mariarosa Anna Beatrice Melone
- Department of Advanced Medical and Surgical Sciences, 2nd Division of Neurology, Center for Rare Diseases and InterUniversity Center for Research in Neurosciences, University of Campania Luigi Vanvitelli, 80131 Naples, Italy
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Temple University, Philadelphia, PA 19122-6078, USA
| | - Daniela Montesarchio
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
- Correspondence: (D.M.); (C.G.)
| | - Concetta Giancola
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy
- Correspondence: (D.M.); (C.G.)
| |
Collapse
|
19
|
Farrow SL, Schierding W, Gokuladhas S, Golovina E, Fadason T, Cooper AA, O’Sullivan JM. Establishing gene regulatory networks from Parkinson's disease risk loci. Brain 2022; 145:2422-2435. [PMID: 35094046 PMCID: PMC9373962 DOI: 10.1093/brain/awac022] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 12/02/2021] [Accepted: 12/20/2021] [Indexed: 11/25/2022] Open
Abstract
The latest meta-analysis of genome-wide association studies identified 90 independent variants across 78 genomic regions associated with Parkinson's disease, yet the mechanisms by which these variants influence the development of the disease remains largely elusive. To establish the functional gene regulatory networks associated with Parkinson's disease risk variants, we utilized an approach combining spatial (chromosomal conformation capture) and functional (expression quantitative trait loci) data. We identified 518 genes subject to regulation by 76 Parkinson's variants across 49 tissues, whicih encompass 36 peripheral and 13 CNS tissues. Notably, one-third of these genes were regulated via trans-acting mechanisms (distal; risk locus-gene separated by >1 Mb, or on different chromosomes). Of particular interest is the identification of a novel trans-expression quantitative trait loci-gene connection between rs10847864 and SYNJ1 in the adult brain cortex, highlighting a convergence between familial studies and Parkinson's disease genome-wide association studies loci for SYNJ1 (PARK20) for the first time. Furthermore, we identified 16 neurodevelopment-specific expression quantitative trait loci-gene regulatory connections within the foetal cortex, consistent with hypotheses suggesting a neurodevelopmental involvement in the pathogenesis of Parkinson's disease. Through utilizing Louvain clustering we extracted nine significant and highly intraconnected clusters within the entire gene regulatory network. The nine clusters are enriched for specific biological processes and pathways, some of which have not previously been associated with Parkinson's disease. Together, our results not only contribute to an overall understanding of the mechanisms and impact of specific combinations of Parkinson's disease variants, but also highlight the potential impact gene regulatory networks may have when elucidating aetiological subtypes of Parkinson's disease.
Collapse
Affiliation(s)
- Sophie L Farrow
- Liggins Institute, The University of Auckland, Auckland, New Zealand
- The Maurice Wilkins Centre, The University of Auckland, Auckland, New Zealand
| | - William Schierding
- Liggins Institute, The University of Auckland, Auckland, New Zealand
- The Maurice Wilkins Centre, The University of Auckland, Auckland, New Zealand
| | | | - Evgeniia Golovina
- Liggins Institute, The University of Auckland, Auckland, New Zealand
| | - Tayaza Fadason
- Liggins Institute, The University of Auckland, Auckland, New Zealand
- The Maurice Wilkins Centre, The University of Auckland, Auckland, New Zealand
| | - Antony A Cooper
- Australian Parkinson’s Mission, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- St Vincent’s Clinical School, UNSW Sydney, Sydney, New South Wales, Australia
| | - Justin M O’Sullivan
- Liggins Institute, The University of Auckland, Auckland, New Zealand
- The Maurice Wilkins Centre, The University of Auckland, Auckland, New Zealand
- Australian Parkinson’s Mission, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- Brain Research New Zealand, The University of Auckland, Auckland, New Zealand
- MRC Lifecourse Epidemiology Unit, University of Southampton, UK
| |
Collapse
|
20
|
De Rosa L, Fasano D, Zerillo L, Valente V, Izzo A, Mollo N, Amodio G, Polishchuk E, Polishchuk R, Melone MAB, Criscuolo C, Conti A, Nitsch L, Remondelli P, Pierantoni GM, Paladino S. Down Syndrome Fetal Fibroblasts Display Alterations of Endosomal Trafficking Possibly due to SYNJ1 Overexpression. Front Genet 2022; 13:867989. [PMID: 35646085 PMCID: PMC9136301 DOI: 10.3389/fgene.2022.867989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Abstract
Endosomal trafficking is essential for cellular homeostasis. At the crossroads of distinct intracellular pathways, the endolysosomal system is crucial to maintain critical functions and adapt to the environment. Alterations of endosomal compartments were observed in cells from adult individuals with Down syndrome (DS), suggesting that the dysfunction of the endosomal pathway may contribute to the pathogenesis of DS. However, the nature and the degree of impairment, as well as the timing of onset, remain elusive. Here, by applying imaging and biochemical approaches, we demonstrate that the structure and dynamics of early endosomes are altered in DS cells. Furthermore, we found that recycling trafficking is markedly compromised in these cells. Remarkably, our results in 18–20 week-old human fetal fibroblasts indicate that alterations in the endolysosomal pathway are already present early in development. In addition, we show that overexpression of the polyphosphoinositide phosphatase synaptojanin 1 (Synj1) recapitulates the alterations observed in DS cells, suggesting a role for this lipid phosphatase in the pathogenesis of DS, likely already early in disease development. Overall, these data strengthen the link between the endolysosomal pathway and DS, highlighting a dangerous liaison among Synj1, endosomal trafficking and DS.
Collapse
Affiliation(s)
- Laura De Rosa
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Dominga Fasano
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
- Department of Advanced Medical and Surgical Sciences, 2nd Division of Neurology, Center for Rare Diseases, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Lucrezia Zerillo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Valeria Valente
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Antonella Izzo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Nunzia Mollo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Giuseppina Amodio
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana, University of Salerno, Salerno, Italy
| | | | | | - Mariarosa Anna Beatrice Melone
- Department of Advanced Medical and Surgical Sciences, 2nd Division of Neurology, Center for Rare Diseases, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Chiara Criscuolo
- Department of Neuroscience, Reproductive, and Odontostomatological Sciences, University of Naples Federico II, Naples, Italy
| | - Anna Conti
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Lucio Nitsch
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
- Institute of Experimental Endocrinology and Oncology “G. Salvatore,” National Research Council, Naples, Italy
| | - Paolo Remondelli
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana, University of Salerno, Salerno, Italy
| | - Giovanna Maria Pierantoni
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
- *Correspondence: Simona Paladino, ; Giovanna Maria Pierantoni,
| | - Simona Paladino
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
- *Correspondence: Simona Paladino, ; Giovanna Maria Pierantoni,
| |
Collapse
|
21
|
Riccardi C, D’Aria F, Digilio FA, Carillo MR, Amato J, Fasano D, De Rosa L, Paladino S, Melone MAB, Montesarchio D, Giancola C. Fighting the Huntington's Disease with a G-Quadruplex-Forming Aptamer Specifically Binding to Mutant Huntingtin Protein: Biophysical Characterization, In Vitro and In Vivo Studies. Int J Mol Sci 2022; 23:4804. [PMID: 35563194 PMCID: PMC9101412 DOI: 10.3390/ijms23094804] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 04/23/2022] [Accepted: 04/24/2022] [Indexed: 02/07/2023] Open
Abstract
A set of guanine-rich aptamers able to preferentially recognize full-length huntingtin with an expanded polyglutamine tract has been recently identified, showing high efficacy in modulating the functions of the mutated protein in a variety of cell experiments. We here report a detailed biophysical characterization of the best aptamer in the series, named MS3, proved to adopt a stable, parallel G-quadruplex structure and show high nuclease resistance in serum. Confocal microscopy experiments on HeLa and SH-SY5Y cells, as models of non-neuronal and neuronal cells, respectively, showed a rapid, dose-dependent uptake of fluorescein-labelled MS3, demonstrating its effective internalization, even in the absence of transfecting agents, with no general cytotoxicity. Then, using a well-established Drosophila melanogaster model for Huntington's disease, which expresses the mutated form of human huntingtin, a significant improvement in the motor neuronal function in flies fed with MS3 was observed, proving the in vivo efficacy of this aptamer.
Collapse
Affiliation(s)
- Claudia Riccardi
- Department of Chemical Sciences, University of Naples Federico II, 80126 Napoli, Italy;
| | - Federica D’Aria
- Department of Pharmacy, University of Naples Federico II, 80131 Napoli, Italy; (F.D.); (J.A.)
| | - Filomena Anna Digilio
- Research Institute on Terrestrial Ecosystems (IRET), UOS Naples-CNR, 80131 Napoli, Italy; (F.A.D.); (M.R.C.)
| | - Maria Rosaria Carillo
- Research Institute on Terrestrial Ecosystems (IRET), UOS Naples-CNR, 80131 Napoli, Italy; (F.A.D.); (M.R.C.)
- Department of Experimental Medicine, University of Campania Luigi Vanvitelli, 80138 Napoli, Italy
| | - Jussara Amato
- Department of Pharmacy, University of Naples Federico II, 80131 Napoli, Italy; (F.D.); (J.A.)
| | - Dominga Fasano
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Napoli, Italy; (D.F.); (L.D.R.); (S.P.)
- Center for Rare Diseases and Inter University Center for Research in Neurosciences, Department of Advanced Medical and Surgical Sciences, 2nd Division of Neurology, University of Campania Luigi Vanvitelli, 80131 Napoli, Italy;
| | - Laura De Rosa
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Napoli, Italy; (D.F.); (L.D.R.); (S.P.)
| | - Simona Paladino
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Napoli, Italy; (D.F.); (L.D.R.); (S.P.)
| | - Mariarosa Anna Beatrice Melone
- Center for Rare Diseases and Inter University Center for Research in Neurosciences, Department of Advanced Medical and Surgical Sciences, 2nd Division of Neurology, University of Campania Luigi Vanvitelli, 80131 Napoli, Italy;
- Center for Biotechnology, Sbarro Institute for Cancer Research and Molecular Medicine, Temple University, Philadelphia, PA 19122, USA
| | - Daniela Montesarchio
- Department of Chemical Sciences, University of Naples Federico II, 80126 Napoli, Italy;
| | - Concetta Giancola
- Department of Pharmacy, University of Naples Federico II, 80131 Napoli, Italy; (F.D.); (J.A.)
| |
Collapse
|
22
|
Monogenic Parkinson’s Disease: Genotype, Phenotype, Pathophysiology, and Genetic Testing. Genes (Basel) 2022; 13:genes13030471. [PMID: 35328025 PMCID: PMC8950888 DOI: 10.3390/genes13030471] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/24/2022] [Accepted: 03/02/2022] [Indexed: 02/07/2023] Open
Abstract
Parkinson’s disease may be caused by a single pathogenic variant (monogenic) in 5–10% of cases, but investigation of these disorders provides valuable pathophysiological insights. In this review, we discuss each genetic form with a focus on genotype, phenotype, pathophysiology, and the geographic and ethnic distribution. Well-established Parkinson’s disease genes include autosomal dominant forms (SNCA, LRRK2, and VPS35) and autosomal recessive forms (PRKN, PINK1 and DJ1). Furthermore, mutations in the GBA gene are a key risk factor for Parkinson’s disease, and there have been major developments for X-linked dystonia parkinsonism. Moreover, atypical or complex parkinsonism may be due to mutations in genes such as ATP13A2, DCTN1, DNAJC6, FBXO7, PLA2G6, and SYNJ1. Furthermore, numerous genes have recently been implicated in Parkinson’s disease, such as CHCHD2, LRP10, TMEM230, UQCRC1, and VPS13C. Additionally, we discuss the role of heterozygous mutations in autosomal recessive genes, the effect of having mutations in two Parkinson’s disease genes, the outcome of deep brain stimulation, and the role of genetic testing. We highlight that monogenic Parkinson’s disease is influenced by ethnicity and geographical differences, reinforcing the need for global efforts to pool large numbers of patients and identify novel candidate genes.
Collapse
|
23
|
Xue F, Gao L, Chen T, Chen H, Zhang H, Wang T, Han Z, Gao S, Wang L, Hu Y, Tang J, Huang L, Liu G, Zhang Y. Parkinson's Disease rs117896735 Variant Regulates INPP5F Expression in Brain Tissues and Increases Risk of Alzheimer's Disease. J Alzheimers Dis 2022; 89:67-77. [PMID: 35848021 DOI: 10.3233/jad-220086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Both INPP5D and INPP5F are members of INPP5 family. INPP5F rs117896735 variant was associated with Parkinson's disease (PD) risk, and INPP5D was an Alzheimer's disease (AD) risk gene. However, it remains unclear about the roles of INPP5F rs117896735 variant in AD. OBJECTIVE We aim to investigate the roles of rs117896735 in AD. METHODS First, we conducted a candidate variant study to evaluate the association of rs117896735 variant with AD risk using the large-scale AD GWAS dataset. Second, we conducted a gene expression analysis of INPP5F to investigate the expression difference of INPP5F in different human tissues using two large-scale gene expression datasets. Third, we conducted an expression quantitative trait loci analysis to evaluate whether rs117896735 variant regulate the expression of INPP5F. Fourth, we explore the potentially differential expression of INPP5F in AD and control using multiple AD-control gene expression datasets in human brain tissues and whole blood. RESULTS We found that 1) rs117896735 A allele was associated with the increased risk of AD with OR = 1.15, 95% CI 1.005-1.315, p = 0.042; 2) rs117896735 A allele could increase INPP5F expression in multiple human tissues; 3) INPP5F showed different expression in different human tissues, especially in brain tissues; 4) INPP5F showed significant expression dysregulation in AD compared with controls in human brain tissues. CONCLUSION Conclusion: We demonstrate that PD rs117896735 variant could regulate INPP5F expression in brain tissues and increase the risk of AD. These finding may provide important information about the role of rs117896735 in AD.
Collapse
Affiliation(s)
- Feng Xue
- Department of Neurosurgery, Tianjin Hospital of ITCWM Nan Kai Hospital, Tianjin, China
| | - Luyan Gao
- Department of Neurology, Tianjin Fourth Central Hospital, The Fourth Central Hospital Affiliated to Nankai University, The Fourth Central Clinical College of Tianjin Medical University, Tianjin, China
| | - TingTing Chen
- Department of Oncology, Tianjin Hospital of ITCWM Nan Kai Hospital, Tianjin, China
| | - Hongyuan Chen
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Haihua Zhang
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Tao Wang
- Chinese Institute for Brain Research, Beijing, China
| | - Zhifa Han
- School of Medicine, School of Pharmaceutical Sciences, THU-PKU Center for Life Sciences, Tsinghua University, Beijing, China
| | - Shan Gao
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Longcai Wang
- Department of Anesthesiology, The Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Yang Hu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Jiangwei Tang
- Department of Neurology, Tianjin Fourth Central Hospital, The Fourth Central Hospital Affiliated to Nankai University, The Fourth Central Clinical College of Tianjin Medical University, Tianjin, China
| | - Lei Huang
- Department of Neurology, Tianjin Fourth Central Hospital, The Fourth Central Hospital Affiliated to Nankai University, The Fourth Central Clinical College of Tianjin Medical University, Tianjin, China
| | - Guiyou Liu
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
- Beijing Key Laboratory of Hypoxia Translational Medicine, National Engineering Laboratory of Internet Medical Diagnosis and Treatment Technology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yan Zhang
- Department of Pathology, The Affiliated Hospital of Weifang Medical University, Weifang, China
| |
Collapse
|
24
|
Choudhry H, Aggarwal M, Pan PY. Mini-review: Synaptojanin 1 and its implications in membrane trafficking. Neurosci Lett 2021; 765:136288. [PMID: 34637856 PMCID: PMC8572151 DOI: 10.1016/j.neulet.2021.136288] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 10/03/2021] [Accepted: 10/05/2021] [Indexed: 12/04/2022]
Abstract
This mini-review aims to summarize a growing body of literature on synaptojanin 1 (Synj1), a phosphoinositide phosphatase that was initially known to have a prominent role in synaptic vesicle recycling. Synj1 is coded by the SYNJ1 gene, whose mutations and variants are associated with an increasing number of neurological disorders. To better understand the mechanistic role of Synj1 in disease pathogenesis, we review details of phosphoinositide signaling pathways and the reported involvement of Synj1 in membrane trafficking with a specific focus on Parkinson’s disease (PD). Recent studies have tremendously advanced our understanding of Synj1 protein structure and function while broadening our view of how Synj1 regulates synaptic membrane trafficking and endosomal trafficking in various organisms and cell types. A growing body of evidence points to inefficient membrane trafficking as key pathogenic mechanisms in neurodegenerative diseases associated with abnormal Synj1 expression. Despite significant progress made in the field, the mechanism by which Synj1 connects to trafficking, signaling, and pathogenesis is lacking and remains to be addressed.
Collapse
Affiliation(s)
- Hassaam Choudhry
- Dept. of Neuroscience and Cell Biology, Rutgers, Robert Wood Johnson Medical School, 675 Hoes Lane West, Piscataway, NJ 08854, USA
| | - Meha Aggarwal
- Dept. of Neuroscience and Cell Biology, Rutgers, Robert Wood Johnson Medical School, 675 Hoes Lane West, Piscataway, NJ 08854, USA
| | - Ping-Yue Pan
- Dept. of Neuroscience and Cell Biology, Rutgers, Robert Wood Johnson Medical School, 675 Hoes Lane West, Piscataway, NJ 08854, USA.
| |
Collapse
|
25
|
Dopaminergic Axons: Key Recitalists in Parkinson's Disease. Neurochem Res 2021; 47:234-248. [PMID: 34637100 DOI: 10.1007/s11064-021-03464-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 10/03/2021] [Accepted: 10/05/2021] [Indexed: 12/20/2022]
Abstract
Parkinson's disease (PD) is associated with dopamine depletion in the striatum owing to the selective and progressive loss of the nigrostriatal dopaminergic neurons, which results in motor dysfunction and secondary clinical manifestations. The dopamine level in the striatum is preserved because of the innervation of the substantia nigra (SN) dopaminergic neurons into it. Therefore, protection of the SN neurons is crucial for maintaining the dopamine level in the striatum and for ensuring the desired motor coordination. Several strategies have been devised to protect the degenerating dopaminergic neurons or to restore the dopamine levels for treating PD. Most of the methods focus exclusively on preventing cell body death in the neurons. Although advances have been made in understanding the disease, the search for disease-modifying drugs is an ongoing process. The present review describes the evidence from studies involving patients with PD as well as PD models that axon terminals are highly vulnerable to exogenous and endogenous insults and degenerate at the early stage of the disease. Impairment of mitochondrial dynamics, Ca2+ homeostasis, axonal transport, and loss of plasticity of axon terminals appear before the neuronal degeneration in PD. Furthermore, distortion of synaptic morphology and reduction of postsynaptic dendritic spines are the neuropathological hallmarks of early-stage disease. Thus, the review proposes a shift in focus from discerning the mechanism of neuronal cell body loss and targeting it to an entirely different approach of preventing axonal degeneration. The review also suggests appropriate strategies to prevent the loss of synaptic terminals, which could induce regrowth of the axon and its auxiliary fibers and might offer relief from the symptomatic features of PD.
Collapse
|
26
|
Teixeira M, Sheta R, Idi W, Oueslati A. Alpha-Synuclein and the Endolysosomal System in Parkinson's Disease: Guilty by Association. Biomolecules 2021; 11:biom11091333. [PMID: 34572546 PMCID: PMC8472725 DOI: 10.3390/biom11091333] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/06/2021] [Accepted: 09/06/2021] [Indexed: 12/13/2022] Open
Abstract
Abnormal accumulation of the protein α- synuclein (α-syn) into proteinaceous inclusions called Lewy bodies (LB) is the neuropathological hallmark of Parkinson's disease (PD) and related disorders. Interestingly, a growing body of evidence suggests that LB are also composed of other cellular components such as cellular membrane fragments and vesicular structures, suggesting that dysfunction of the endolysosomal system might also play a role in LB formation and neuronal degeneration. Yet the link between α-syn aggregation and the endolysosomal system disruption is not fully elucidated. In this review, we discuss the potential interaction between α-syn and the endolysosomal system and its impact on PD pathogenesis. We propose that the accumulation of monomeric and aggregated α-syn disrupt vesicles trafficking, docking, and recycling, leading to the impairment of the endolysosomal system, notably the autophagy-lysosomal degradation pathway. Reciprocally, PD-linked mutations in key endosomal/lysosomal machinery genes (LRRK2, GBA, ATP13A2) also contribute to increasing α-syn aggregation and LB formation. Altogether, these observations suggest a potential synergistic role of α-syn and the endolysosomal system in PD pathogenesis and represent a viable target for the development of disease-modifying treatment for PD and related disorders.
Collapse
Affiliation(s)
- Maxime Teixeira
- CHU de Québec Research Center, Axe Neurosciences, Quebec City, QC G1V 4G2, Canada; (M.T.); (R.S.); (W.I.)
- Department of Molecular Medicine, Faculty of Medicine, Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Razan Sheta
- CHU de Québec Research Center, Axe Neurosciences, Quebec City, QC G1V 4G2, Canada; (M.T.); (R.S.); (W.I.)
- Department of Molecular Medicine, Faculty of Medicine, Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Walid Idi
- CHU de Québec Research Center, Axe Neurosciences, Quebec City, QC G1V 4G2, Canada; (M.T.); (R.S.); (W.I.)
- Department of Molecular Medicine, Faculty of Medicine, Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Abid Oueslati
- CHU de Québec Research Center, Axe Neurosciences, Quebec City, QC G1V 4G2, Canada; (M.T.); (R.S.); (W.I.)
- Department of Molecular Medicine, Faculty of Medicine, Université Laval, Quebec City, QC G1V 0A6, Canada
- Correspondence:
| |
Collapse
|
27
|
Pan PY, Zhu J, Rizvi A, Zhu X, Tanaka H, Dreyfus CF. Synaptojanin1 deficiency upregulates basal autophagosome formation in astrocytes. J Biol Chem 2021; 297:100873. [PMID: 34126070 PMCID: PMC8258991 DOI: 10.1016/j.jbc.2021.100873] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/02/2021] [Accepted: 06/10/2021] [Indexed: 01/07/2023] Open
Abstract
Macroautophagy dysregulation is implicated in multiple neurological disorders, such as Parkinson's disease. While autophagy pathways are heavily researched in heterologous cells and neurons, regulation of autophagy in the astrocyte, the most abundant cell type in the mammalian brain, is less well understood. Missense mutations in the Synj1 gene encoding Synaptojanin1 (Synj1), a neuron-enriched lipid phosphatase, have been linked to Parkinsonism with seizures. Our previous study showed that the Synj1 haploinsufficient (Synj1+/−) mouse exhibits age-dependent autophagy impairment in multiple brain regions. Here, we used cultured astrocytes from Synj1-deficient mice to investigate its role in astrocyte autophagy. We report that Synj1 is expressed in low levels in astrocytes and represses basal autophagosome formation. We demonstrate using cellular imaging that Synj1-deficient astrocytes exhibit hyperactive autophagosome formation, represented by an increase in the size and number of GFP-microtubule-associated protein 1A/1B-light chain 3 structures. Interestingly, Synj1 deficiency is also associated with an impairment in stress-induced autophagy clearance. We show, for the first time, that the Parkinsonism-associated R839C mutation impacts autophagy in astrocytes. The impact of this mutation on the phosphatase function of Synj1 resulted in elevated basal autophagosome formation that mimics Synj1 deletion. We found that the membrane expression of the astrocyte-specific glucose transporter GluT-1 was reduced in Synj1-deficient astrocytes. Consistently, AMP-activated protein kinase activity was elevated, suggesting altered glucose sensing in Synj1-deficient astrocytes. Expressing exogenous GluT-1 in Synj1-deficient astrocytes reversed the autophagy impairment, supporting a role for Synj1 in regulating astrocyte autophagy via disrupting glucose-sensing pathways. Thus, our work suggests a novel mechanism for Synj1-related Parkinsonism involving astrocyte dysfunction.
Collapse
Affiliation(s)
- Ping-Yue Pan
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey, USA.
| | - Justin Zhu
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey, USA
| | - Asma Rizvi
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey, USA
| | - Xinyu Zhu
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey, USA
| | - Hikari Tanaka
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey, USA
| | - Cheryl F Dreyfus
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey, USA
| |
Collapse
|
28
|
Cejas RB, Tamaño-Blanco M, Blanco JG. Analysis of the intracellular traffic of IgG in the context of Down syndrome (trisomy 21). Sci Rep 2021; 11:10981. [PMID: 34040082 PMCID: PMC8155081 DOI: 10.1038/s41598-021-90469-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 05/10/2021] [Indexed: 12/21/2022] Open
Abstract
Persons with Down syndrome (DS, trisomy 21) have widespread cellular protein trafficking defects. There is a paucity of data describing the intracellular transport of IgG in the context of endosomal-lysosomal alterations linked to trisomy 21. In this study, we analyzed the intracellular traffic of IgG mediated by the human neonatal Fc receptor (FcRn) in fibroblast cell lines with trisomy 21. Intracellular IgG trafficking studies in live cells showed that fibroblasts with trisomy 21 exhibit higher proportion of IgG in lysosomes (~ 10% increase), decreased IgG content in intracellular vesicles (~ 9% decrease), and a trend towards decreased IgG recycling (~ 55% decrease) in comparison to diploid cells. Amyloid-beta precursor protein (APP) overexpression in diploid fibroblasts replicated the increase in IgG sorting to the degradative pathway observed in cells with trisomy 21. The impact of APP on the expression of FCGRT (alpha chain component of FcRn) was investigated by APP knock down and overexpression of the APP protein. APP knock down increased the expression of FCGRT mRNA by ~ 60% in both diploid and trisomic cells. Overexpression of APP in diploid fibroblasts and HepG2 cells resulted in a decrease in FCGRT and FcRn expression. Our results indicate that the intracellular traffic of IgG is altered in cells with trisomy 21. This study lays the foundation for future investigations into the role of FcRn in the context of DS.
Collapse
Affiliation(s)
- R B Cejas
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, 470 Pharmacy Building, Buffalo, NY, 14214-8033, USA
| | - M Tamaño-Blanco
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, 470 Pharmacy Building, Buffalo, NY, 14214-8033, USA
| | - J G Blanco
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, 470 Pharmacy Building, Buffalo, NY, 14214-8033, USA.
| |
Collapse
|
29
|
Amodio G, Pagliara V, Moltedo O, Remondelli P. Structural and Functional Significance of the Endoplasmic Reticulum Unfolded Protein Response Transducers and Chaperones at the Mitochondria-ER Contacts: A Cancer Perspective. Front Cell Dev Biol 2021; 9:641194. [PMID: 33842465 PMCID: PMC8033034 DOI: 10.3389/fcell.2021.641194] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 02/22/2021] [Indexed: 01/15/2023] Open
Abstract
In the last decades, the endoplasmic reticulum (ER) has emerged as a key coordinator of cellular homeostasis, thanks to its physical interconnection to almost all intracellular organelles. In particular, an intense and mutual crosstalk between the ER and mitochondria occurs at the mitochondria–ER contacts (MERCs). MERCs ensure a fine-tuned regulation of fundamental cellular processes, involving cell fate decision, mitochondria dynamics, metabolism, and proteostasis, which plays a pivotal role in the tumorigenesis and therapeutic response of cancer cells. Intriguingly, recent studies have shown that different components of the unfolded protein response (UPR) machinery, including PERK, IRE1α, and ER chaperones, localize at MERCs. These proteins appear to exhibit multifaceted roles that expand beyond protein folding and UPR transduction and are often related to the control of calcium fluxes to the mitochondria, thus acquiring relevance to cell survival and death. In this review, we highlight the novel functions played by PERK, IRE1α, and ER chaperones at MERCs focusing on their impact on tumor development.
Collapse
Affiliation(s)
- Giuseppina Amodio
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana," University of Salerno, Baronissi, Italy
| | - Valentina Pagliara
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana," University of Salerno, Baronissi, Italy
| | - Ornella Moltedo
- Department of Pharmacy, University of Salerno, Fisciano, Italy
| | - Paolo Remondelli
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana," University of Salerno, Baronissi, Italy
| |
Collapse
|
30
|
Zou L, Zhang X, Xiong M, Meng L, Tian Y, Pan L, Yuan X, Chen G, Wang Z, Bu L, Yao Z, Zhang Z, Ye K, Zhang Z. Asparagine endopeptidase cleaves synaptojanin 1 and triggers synaptic dysfunction in Parkinson's disease. Neurobiol Dis 2021; 154:105326. [PMID: 33677035 DOI: 10.1016/j.nbd.2021.105326] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 02/02/2021] [Accepted: 03/02/2021] [Indexed: 10/22/2022] Open
Abstract
Parkinson's disease (PD) is one of the most common neurodegenerative diseases, which is characterized by the loss of dopaminergic neurons in the nigrostriatal pathway. Synaptic dysfunction impairs dopamine turnover and contributes to the degeneration of dopaminergic neurons. However, the molecular mechanisms underlying synaptic dysfunction and dopaminergic neuronal vulnerability in PD are not clear. Here, we report that synaptojanin 1 (SYNJ1), a polyphosphoinositide phosphatase concentrated at nerve terminals, is a substrate of a cysteine proteinase, asparagine endopeptidase (AEP). SYNJ1 is cleaved by the cysteine proteinase AEP at N599 in the brains of PD patients. AEP-mediated cleavage of SYNJ1 disrupts neuronal phosphoinositide homeostasis and causes synaptic dysfunction. Overexpression of the AEP-generated fragments of SYNJ1 triggers synaptic dysfunction and the degeneration of dopaminergic neurons, inducing motor defects in the α-synuclein transgenic mice. Blockage of AEP-mediated cleavage of SYJN1 alleviates the pathological and behavioral defects in a mouse model of PD. Our results demonstrate that the fragmentation of SYNJ1 by AEP mediates synaptic dysfunction and dopaminergic neuronal degeneration in PD.
Collapse
Affiliation(s)
- Li Zou
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Xingyu Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Min Xiong
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Lanxia Meng
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Ye Tian
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Lina Pan
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Xin Yuan
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Guiqin Chen
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Zhihao Wang
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Lihong Bu
- PET-CT/MRI Center, Faculty of Radiology and Nuclear Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Zhaohui Yao
- Department of Geriatrics, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Zhaohui Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Keqiang Ye
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Zhentao Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| |
Collapse
|
31
|
Advancing Personalized Medicine in Common Forms of Parkinson's Disease through Genetics: Current Therapeutics and the Future of Individualized Management. J Pers Med 2021; 11:jpm11030169. [PMID: 33804504 PMCID: PMC7998972 DOI: 10.3390/jpm11030169] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/16/2021] [Accepted: 02/19/2021] [Indexed: 02/07/2023] Open
Abstract
Parkinson’s disease (PD) is a condition with heterogeneous clinical manifestations that vary in age at onset, rate of progression, disease course, severity, motor and non-motor symptoms, and a variable response to antiparkinsonian drugs. It is considered that there are multiple PD etiological subtypes, some of which could be predicted by genetics. The characterization and prediction of these distinct molecular entities provides a growing opportunity to use individualized management and personalized therapies. Dissecting the genetic architecture of PD is a critical step in identifying therapeutic targets, and genetics represents a step forward to sub-categorize and predict PD risk and progression. A better understanding and separation of genetic subtypes has immediate implications in clinical trial design by unraveling the different flavors of clinical presentation and development. Personalized medicine is a nascent area of research and represents a paramount challenge in the treatment and cure of PD. This manuscript summarizes the current state of precision medicine in the PD field and discusses how genetics has become the engine to gain insights into disease during our constant effort to develop potential etiological based interventions.
Collapse
|
32
|
Rapa SF, Magliocca G, Pepe G, Amodio G, Autore G, Campiglia P, Marzocco S. Protective Effect of Pomegranate on Oxidative Stress and Inflammatory Response Induced by 5-Fluorouracil in Human Keratinocytes. Antioxidants (Basel) 2021; 10:203. [PMID: 33573363 PMCID: PMC7911112 DOI: 10.3390/antiox10020203] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/25/2021] [Accepted: 01/28/2021] [Indexed: 12/11/2022] Open
Abstract
5-Fluorouracil (5-FU) is a pyrimidine analogue used as an antineoplastic agent to treat multiple solid tumors. Despite its use and efficacy, it also has important side effects in healthy cells, including skin reactions, related to its pro-oxidant and pro-inflammatory potential. Although there are numerous remedies for chemotherapy-induced skin reactions, the efficacy of these treatments remains limited. In this study we focused on the effects of pomegranate (Punica granatum L.) juice extract (PPJE) on the oxidative and inflammatory state in 5-FU-treated human skin keratinocytes (HaCaT). The obtained results showed that PPJE significantly inhibited reactive oxygen species release and increased the cellular antioxidant response, as indicated by the increased expression of cytoprotective enzymes, such as heme oxygenase-1 and NAD(P)H dehydrogenase [quinone] 1. In these experimental conditions, PPJE also inhibited nitrotyrosine formation and 5-FU-induced inflammatory response, as indicated by the reduced cytokine level release. Moreover, PPJE inhibited nuclear translocation of p65-NF-κB, a key factor regulating the inflammatory response. In 5-FU-treated HaCaT cells PPJE also inhibited apoptosis and promoted wound repair. These results suggest a potential use of PPJE as an adjuvant in the treatment of the oxidative and inflammatory state that characterizes chemotherapy-induced skin side effects.
Collapse
Affiliation(s)
- Shara Francesca Rapa
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy; (S.F.R.); (G.M.); (G.P.); (G.A.); (P.C.)
| | - Giorgia Magliocca
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy; (S.F.R.); (G.M.); (G.P.); (G.A.); (P.C.)
| | - Giacomo Pepe
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy; (S.F.R.); (G.M.); (G.P.); (G.A.); (P.C.)
| | - Giuseppina Amodio
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Via Salvador Allende, 84081 Baronissi, SA, Italy;
| | - Giuseppina Autore
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy; (S.F.R.); (G.M.); (G.P.); (G.A.); (P.C.)
| | - Pietro Campiglia
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy; (S.F.R.); (G.M.); (G.P.); (G.A.); (P.C.)
| | - Stefania Marzocco
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy; (S.F.R.); (G.M.); (G.P.); (G.A.); (P.C.)
| |
Collapse
|
33
|
Ando K, Houben S, Homa M, de Fisenne MA, Potier MC, Erneux C, Brion JP, Leroy K. Alzheimer's Disease: Tau Pathology and Dysfunction of Endocytosis. Front Mol Neurosci 2021; 13:583755. [PMID: 33551742 PMCID: PMC7862548 DOI: 10.3389/fnmol.2020.583755] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 12/22/2020] [Indexed: 11/21/2022] Open
Affiliation(s)
- Kunie Ando
- Laboratory of Histology, Neuroanatomy and Neuropathology, Faculty of Medicine, Université Libre de Bruxelles, ULB Neuroscience Institute, Brussels, Belgium
| | - Sarah Houben
- Laboratory of Histology, Neuroanatomy and Neuropathology, Faculty of Medicine, Université Libre de Bruxelles, ULB Neuroscience Institute, Brussels, Belgium
| | - Mégane Homa
- Laboratory of Histology, Neuroanatomy and Neuropathology, Faculty of Medicine, Université Libre de Bruxelles, ULB Neuroscience Institute, Brussels, Belgium
| | - Marie-Ange de Fisenne
- Laboratory of Histology, Neuroanatomy and Neuropathology, Faculty of Medicine, Université Libre de Bruxelles, ULB Neuroscience Institute, Brussels, Belgium
| | - Marie-Claude Potier
- ICM Institut du Cerveau et de la Moelle épinière, CNRS UMR7225, INSERM U1127, UPMC, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Christophe Erneux
- Institut de Recherche Interdisciplinaire en Biologie Humaine et moléculaire (IRIBHM), Université Libre de Bruxelles, Brussels, Belgium
| | - Jean-Pierre Brion
- Laboratory of Histology, Neuroanatomy and Neuropathology, Faculty of Medicine, Université Libre de Bruxelles, ULB Neuroscience Institute, Brussels, Belgium
| | - Karelle Leroy
- Laboratory of Histology, Neuroanatomy and Neuropathology, Faculty of Medicine, Université Libre de Bruxelles, ULB Neuroscience Institute, Brussels, Belgium
| |
Collapse
|
34
|
Gao Y, Nicolson T. Temporal Vestibular Deficits in synaptojanin 1 ( synj1) Mutants. Front Mol Neurosci 2021; 13:604189. [PMID: 33584199 PMCID: PMC7874208 DOI: 10.3389/fnmol.2020.604189] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 10/26/2020] [Indexed: 01/10/2023] Open
Abstract
The lipid phosphatase synaptojanin 1 (synj1) is required for the disassembly of clathrin coats on endocytic compartments. In neurons such activity is necessary for the recycling of endocytosed membrane into synaptic vesicles. Mutations in zebrafish synj1 have been shown to disrupt the activity of ribbon synapses in sensory hair cells. After prolonged mechanical stimulation of hair cells, both phase locking of afferent nerve activity and the recovery of spontaneous release of synaptic vesicles are diminished in synj1 mutants. Presumably as a behavioral consequence of these synaptic deficits, synj1 mutants are unable to maintain an upright posture. To probe vestibular function with respect to postural control in synj1 mutants, we developed a method for assessing the vestibulospinal reflex (VSR) in larvae. We elicited the VSR by rotating the head and recorded tail movements. As expected, the VSR is completely absent in pcdh15a and lhfpl5a mutants that lack inner ear function. Conversely, lhfpl5b mutants, which have a selective loss of function of the lateral line organ, have normal VSRs, suggesting that the hair cells of this organ do not contribute to this reflex. In contrast to mechanotransduction mutants, the synj1 mutant produces normal tail movements during the initial cycles of rotation of the head. Both the amplitude and temporal aspects of the response are unchanged. However, after several rotations, the VSR in synj1 mutants was strongly diminished or absent. Mutant synj1 larvae are able to recover, but the time required for the reappearance of the VSR after prolonged stimulation is dramatically increased in synj1 mutants. Collectively, the data demonstrate a behavioral correlate of the synaptic defects caused by the loss of synj1 function. Our results suggest that defects in synaptic vesicle recycling give rise to fatigue of ribbons synapses and possibly other synapses of the VS circuit, leading to the loss of postural control.
Collapse
Affiliation(s)
- Yan Gao
- Department of Otolaryngology, Stanford University, Stanford, CA, United States
| | - Teresa Nicolson
- Department of Otolaryngology, Stanford University, Stanford, CA, United States
| |
Collapse
|
35
|
Gao X, Huang Z, Feng C, Guan C, Li R, Xie H, Chen J, Li M, Que R, Deng B, Cao P, Li M, Lu J, Huang Y, Li M, Yang W, Yang X, Wen C, Liang X, Yang Q, Chao YX, Chan LL, Yenari MA, Jin K, Chaudhuri KR, Zhang J, Tan EK, Wang Q. Multimodal analysis of gene expression from postmortem brains and blood identifies synaptic vesicle trafficking genes to be associated with Parkinson's disease. Brief Bioinform 2020; 22:5932213. [PMID: 33079984 DOI: 10.1093/bib/bbaa244] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/23/2020] [Accepted: 09/01/2020] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVE We aimed to identify key susceptibility gene targets in multiple datasets generated from postmortem brains and blood of Parkinson's disease (PD) patients and healthy controls (HC). METHODS We performed a multitiered analysis to integrate the gene expression data using multiple-gene chips from 244 human postmortem tissues. We identified hub node genes in the highly PD-related consensus module by constructing protein-protein interaction (PPI) networks. Next, we validated the top four interacting genes in 238 subjects (90 sporadic PD, 125 HC and 23 Parkinson's Plus Syndrome (PPS)). Utilizing multinomial logistic regression analysis (MLRA) and receiver operating characteristic (ROC), we analyzed the risk factors and diagnostic power for discriminating PD from HC and PPS. RESULTS We identified 1333 genes that were significantly different between PD and HCs based on seven microarray datasets. The identified MEturquoise module is related to synaptic vesicle trafficking (SVT) dysfunction in PD (P < 0.05), and PPI analysis revealed that SVT genes PPP2CA, SYNJ1, NSF and PPP3CB were the top four hub node genes in MEturquoise (P < 0.001). The levels of these four genes in PD postmortem brains were lower than those in HC brains. We found lower blood levels of PPP2CA, SYNJ1 and NSF in PD compared with HC, and lower SYNJ1 in PD compared with PPS (P < 0.05). SYNJ1, negatively correlated to PD severity, displayed an excellent power to discriminating PD from HC and PPS. CONCLUSIONS This study highlights that SVT genes, especially SYNJ1, may be promising markers in discriminating PD from HCs and PPS.
Collapse
Affiliation(s)
- Xiaoya Gao
- Department of Neurology, Zhujiang Hospital, Southern Medical University, China
| | - Zifeng Huang
- Department of Neurology, Zhujiang Hospital of Southern Medical University, China
| | - Cailing Feng
- Department of Neurology, Zhujiang Hospital of Southern Medical University, China
| | - Chaohao Guan
- Department of Neurology, Zhujiang Hospital of Southern Medical University, China
| | - Ruidong Li
- Genetics, Genomics, and Bioinformatics Program, Department of Botany and Plant Sciences of University of California, USA
| | - Haiting Xie
- Department of Neurology of Zhujiang Hospital of Southern Medical University, China
| | - Jian Chen
- Department of Neurology of Zhujiang Hospital of Southern Medical University, China
| | - Mingchun Li
- Department of Neurology of Zhujiang Hospital of Southern Medical University, China
| | - Rongfang Que
- Department of Neurology, Zhujiang Hospital of Southern Medical University, China
| | - Bin Deng
- Department of Neurology of Zhujiang Hospital of Southern Medical University, China
| | - Peihua Cao
- Clinical Research Centre of Zhujiang Hospital of Southern Medical University, China
| | - Mengyan Li
- Department of Neurology of First Municipal Hospital of Guangzhou, China
| | - Jianjun Lu
- Laboratory for Neuromodulation of Guangdong Second Provincial General Hospital, China
| | - Yihong Huang
- Department of Neurology of Fifth Affiliated Hospital of Southern Medical University, China
| | - Minzi Li
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guanghzou, China
| | - Weihong Yang
- Department of Neurology, Zhujiang Hospital of Southern Medical University, China
| | - Xiaohua Yang
- Department of Neurology, Zhujiang Hospital of Southern Medical University, China
| | - Chunyan Wen
- Department of Neurology, Zhujiang Hospital of Southern Medical University, China
| | - Xiaomei Liang
- Department of Neurology, Zhujiang Hospital of Southern Medical University, China
| | - Qin Yang
- Department of Neurology of Zhujiang Hospital of Southern Medical University, China
| | - Yin-Xia Chao
- Department of Neurology of National Neuroscience Institute, Singapore General Hospital, Duke-NUS Medical School
| | - Ling-Ling Chan
- Department of Neurology of National Neuroscience Institute, Singapore General Hospital, Duke-NUS Medical School
| | | | - Kunlin Jin
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - K Ray Chaudhuri
- International Parkinson Foundation Centre of Excellence at Kings College Hospital and research director at Kings College Hospital, and Kings College, Denmark Hill, London, SE5 9RS UK
| | - Jing Zhang
- Department of Pathology, University of Washington School of Medicine (USA)
| | - Eng-King Tan
- Department of Neurology, National Neuroscience Institute, Singapore General Hospital, and a professor in the Duke-NUS Medical School, Singapore
| | - Qing Wang
- Head of Department of Neurology, Zhujiang Hospital, Southern Medical University, China
| |
Collapse
|
36
|
Abstract
Parkinson’s Disease (PD) is a complex neurodegenerative disorder that mainly results due to the loss of dopaminergic neurons in the substantia nigra of the midbrain. It is well known that dopamine is synthesized in substantia nigra and is transported to the striatumvianigrostriatal tract. Besides the sporadic forms of PD, there are also familial cases of PD and number of genes (both autosomal dominant as well as recessive) are responsible for PD. There is no permanent cure for PD and to date, L-dopa therapy is considered to be the best option besides having dopamine agonists. In the present review, we have described the genes responsible for PD, the role of dopamine, and treatment strategies adopted for controlling the progression of PD in humans.
Collapse
|
37
|
Pagliara V, Donadio G, De Tommasi N, Amodio G, Remondelli P, Moltedo O, Dal Piaz F. Bioactive Ent-Kaurane Diterpenes Oridonin and Irudonin Prevent Cancer Cells Migration by Interacting with the Actin Cytoskeleton Controller Ezrin. Int J Mol Sci 2020; 21:E7186. [PMID: 33003361 PMCID: PMC7582544 DOI: 10.3390/ijms21197186] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/21/2020] [Accepted: 09/25/2020] [Indexed: 02/07/2023] Open
Abstract
The ent-kaurane diterpene oridonin was reported to inhibit cell migration and invasion in several experimental models. However, the process by which this molecule exerts its anti-metastatic action has not been yet elucidated. In this article, we have investigated the anti-metastatic activity of Oridonin and of one homolog, Irudonin, with the aim to shed light on the molecular mechanisms underlying the biological activity of these ent-kaurane diterpenes. Cell-based experiments revealed that both compounds are able to affect differentiation and cytoskeleton organization in mouse differentiating myoblasts, but also to impair migration, invasion and colony formation ability of two different metastatic cell lines. Using a compound-centric proteomic approach, we identified some potential targets of the two bioactive compounds among cytoskeletal proteins. Among them, Ezrin, a protein involved in the actin cytoskeleton organization, was further investigated. Our results confirmed the pivotal role of Ezrin in regulating cell migration and invasion, and indicate this protein as a potential target for new anti-cancer therapeutic approaches. The interesting activity profile, the good selectivity towards cancer cells, and the lower toxicity with respect to Oridonin, all suggest that Irudonin is a very promising anti-metastatic agent.
Collapse
Affiliation(s)
- Valentina Pagliara
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Via Salvador Allende, 84081 Baronissi, Italy; (V.P.); (G.A.); (P.R.)
| | - Giuliana Donadio
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 84084 Fisciano, Italy; (G.D.); (N.D.T.)
| | - Nunziatina De Tommasi
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 84084 Fisciano, Italy; (G.D.); (N.D.T.)
| | - Giuseppina Amodio
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Via Salvador Allende, 84081 Baronissi, Italy; (V.P.); (G.A.); (P.R.)
| | - Paolo Remondelli
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Via Salvador Allende, 84081 Baronissi, Italy; (V.P.); (G.A.); (P.R.)
| | - Ornella Moltedo
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 84084 Fisciano, Italy; (G.D.); (N.D.T.)
| | - Fabrizio Dal Piaz
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Via Salvador Allende, 84081 Baronissi, Italy; (V.P.); (G.A.); (P.R.)
| |
Collapse
|
38
|
O’Sullivan MJ, Lindsay AJ. The Endosomal Recycling Pathway-At the Crossroads of the Cell. Int J Mol Sci 2020; 21:ijms21176074. [PMID: 32842549 PMCID: PMC7503921 DOI: 10.3390/ijms21176074] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 08/17/2020] [Accepted: 08/21/2020] [Indexed: 12/14/2022] Open
Abstract
The endosomal recycling pathway lies at the heart of the membrane trafficking machinery in the cell. It plays a central role in determining the composition of the plasma membrane and is thus critical for normal cellular homeostasis. However, defective endosomal recycling has been linked to a wide range of diseases, including cancer and some of the most common neurological disorders. It is also frequently subverted by many diverse human pathogens in order to successfully infect cells. Despite its importance, endosomal recycling remains relatively understudied in comparison to the endocytic and secretory transport pathways. A greater understanding of the molecular mechanisms that support transport through the endosomal recycling pathway will provide deeper insights into the pathophysiology of disease and will likely identify new approaches for their detection and treatment. This review will provide an overview of the normal physiological role of the endosomal recycling pathway, describe the consequences when it malfunctions, and discuss potential strategies for modulating its activity.
Collapse
|
39
|
Abstract
Parkinson's disease (PD) is a leading cause of neurodegeneration that is defined by the selective loss of dopaminergic neurons and the accumulation of protein aggregates called Lewy bodies (LBs). The unequivocal identification of Mendelian inherited mutations in 13 genes in PD has provided transforming insights into the pathogenesis of this disease. The mechanistic analysis of several PD genes, including α-synuclein (α-syn), leucine-rich repeat kinase 2 (LRRK2), PTEN-induced kinase 1 (PINK1), and Parkin, has revealed central roles for protein aggregation, mitochondrial damage, and defects in endolysosomal trafficking in PD neurodegeneration. In this review, we outline recent advances in our understanding of these gene pathways with a focus on the emergent role of Rab (Ras analog in brain) GTPases and vesicular trafficking as a common mechanism that underpins how mutations in PD genes lead to neuronal loss. These advances have led to previously distinct genes such as vacuolar protein-sorting-associated protein 35 (VPS35) and LRRK2 being implicated in a common signaling pathway. A greater understanding of these common nodes of vesicular trafficking will be crucial for linking other PD genes and improving patient stratification in clinical trials underway against α-syn and LRRK2 targets.
Collapse
Affiliation(s)
- Pawan Kishor Singh
- MRC Protein Phosphorylation and Ubiquitylation Unit, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom;
| | - Miratul M K Muqit
- MRC Protein Phosphorylation and Ubiquitylation Unit, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom;
| |
Collapse
|
40
|
Di Marino D, Bruno A, Grimaldi M, Scrima M, Stillitano I, Amodio G, Della Sala G, Romagnoli A, De Santis A, Moltedo O, Remondelli P, Boccia G, D'Errico G, D'Ursi AM, Limongelli V. Binding of the Anti-FIV Peptide C8 to Differently Charged Membrane Models: From First Docking to Membrane Tubulation. Front Chem 2020; 8:493. [PMID: 32676493 PMCID: PMC7333769 DOI: 10.3389/fchem.2020.00493] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 05/13/2020] [Indexed: 12/11/2022] Open
Abstract
Gp36 is the virus envelope glycoproteins catalyzing the fusion of the feline immunodeficiency virus with the host cells. The peptide C8 is a tryptophan-rich peptide corresponding to the fragment 770W-I777 of gp36 exerting antiviral activity by binding the membrane cell and inhibiting the virus entry. Several factors, including the membrane surface charge, regulate the binding of C8 to the lipid membrane. Based on the evidence that imperceptible variation of membrane charge may induce a dramatic effect in several critical biological events, in the present work we investigate the effect induced by systematic variation of charge in phospholipid bilayers on the aptitude of C8 to interact with lipid membranes, the tendency of C8 to assume specific conformational states and the re-organization of the lipid bilayer upon the interaction with C8. Accordingly, employing a bottom-up multiscale protocol, including CD, NMR, ESR spectroscopy, atomistic molecular dynamics simulations, and confocal microscopy, we studied C8 in six membrane models composed of different ratios of zwitterionic/negatively charged phospholipids. Our data show that charge content modulates C8-membrane binding with significant effects on the peptide conformations. C8 in micelle solution or in SUV formed by DPC or DOPC zwitterionic phospholipids assumes regular β-turn structures that are progressively destabilized as the concentration of negatively charged SDS or DOPG phospholipids exceed 40%. Interaction of C8 with zwitterionic membrane surface is mediated by Trp1 and Trp4 that are deepened in the membrane, forming H-bonds and cation-π interactions with the DOPC polar heads. Additional stabilizing salt bridge interactions involve Glu2 and Asp3. MD and ESR data show that the C8-membrane affinity increases as the concentration of zwitterionic phospholipid increases. In the lipid membrane characterized by an excess of zwitterionic phospholipids, C8 is adsorbed at the membrane interface, inducing a stiffening of the outer region of the DOPC bilayer. However, the bound of C8 significantly perturbs the whole organization of lipid bilayer resulting in membrane remodeling. These events, measurable as a variation of the bilayer thickness, are the onset mechanism of the membrane fusion and vesicle tubulation observed in confocal microscopy by imaging zwitterionic MLVs in the presence of C8 peptide.
Collapse
Affiliation(s)
- Daniele Di Marino
- Department of Life and Environmental Sciences, New York-Marche Structural Biology Center (NY-MaSBiC), Polytechnic University of Marche, Ancona, Italy
| | - Agostino Bruno
- Department of Pharmacy, University of Naples "Federico II", Naples, Italy
| | | | - Mario Scrima
- Department of Pharmacy, University of Salerno, Fisciano, Italy
| | | | - Giuseppina Amodio
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, Italy
| | - Grazia Della Sala
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - Alice Romagnoli
- Department of Life and Environmental Sciences, New York-Marche Structural Biology Center (NY-MaSBiC), Polytechnic University of Marche, Ancona, Italy
| | - Augusta De Santis
- Department of Chemical Science, University of Naples Federico II, Naples, Italy
| | - Ornella Moltedo
- Department of Pharmacy, University of Salerno, Fisciano, Italy
| | - Paolo Remondelli
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, Italy
| | - Giovanni Boccia
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, Italy
| | - Gerardino D'Errico
- Department of Chemical Science, University of Naples Federico II, Naples, Italy
| | | | - Vittorio Limongelli
- Department of Pharmacy, University of Naples "Federico II", Naples, Italy.,Faculty of Biomedical Sciences, Institute of Computational Science, Università della Svizzera italiana (USI), Lugano, Switzerland
| |
Collapse
|
41
|
Criscuolo D, Avolio R, Calice G, Laezza C, Paladino S, Navarra G, Maddalena F, Crispo F, Pagano C, Bifulco M, Landriscina M, Matassa DS, Esposito F. Cholesterol Homeostasis Modulates Platinum Sensitivity in Human Ovarian Cancer. Cells 2020; 9:cells9040828. [PMID: 32235572 PMCID: PMC7226826 DOI: 10.3390/cells9040828] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/19/2020] [Accepted: 03/23/2020] [Indexed: 12/19/2022] Open
Abstract
Despite initial chemotherapy response, ovarian cancer is the deadliest gynecologic cancer, due to frequent relapse and onset of drug resistance. To date, there is no affordable diagnostic/prognostic biomarker for early detection of the disease. However, it has been recently shown that high grade serous ovarian cancers show peculiar oxidative metabolism, which is in turn responsible for inflammatory response and drug resistance. The molecular chaperone TRAP1 plays pivotal roles in such metabolic adaptations, due to the involvement in the regulation of mitochondrial respiration. Here, we show that platinum-resistant ovarian cancer cells also show reduced cholesterol biosynthesis, and mostly rely on the uptake of exogenous cholesterol for their needs. Expression of FDPS and OSC, enzymes involved in cholesterol synthesis, are decreased both in drug-resistant cells and upon TRAP1 silencing, whereas the expression of LDL receptor, the main mediator of extracellular cholesterol uptake, is increased. Strikingly, treatment with statins to inhibit cholesterol synthesis reduces cisplatin-induced apoptosis, whereas silencing of LIPG, an enzyme involved in lipid metabolism, or withdrawal of lipids from the culture medium, increases sensitivity to the drug. These results suggest caveats for the use of statins in ovarian cancer patients and highlights the importance of lipid metabolism in ovarian cancer treatment.
Collapse
Affiliation(s)
- Daniela Criscuolo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (D.C.); (S.P.); (G.N.); (C.P.); (M.B.)
| | - Rosario Avolio
- CRG - Centre for Genomic Regulation, 08003 Barcelona, Spain;
| | - Giovanni Calice
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, 85028 Rionero in Vulture, Italy; (G.C.); (F.M.); (F.C.); (M.L.)
| | - Chiara Laezza
- Institute Experimental Endocrinology and Oncology “Gaetano Salvatore”, National Research Council (IEOS-CNR), 80131 Naples, Italy;
| | - Simona Paladino
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (D.C.); (S.P.); (G.N.); (C.P.); (M.B.)
| | - Giovanna Navarra
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (D.C.); (S.P.); (G.N.); (C.P.); (M.B.)
| | - Francesca Maddalena
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, 85028 Rionero in Vulture, Italy; (G.C.); (F.M.); (F.C.); (M.L.)
| | - Fabiana Crispo
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, 85028 Rionero in Vulture, Italy; (G.C.); (F.M.); (F.C.); (M.L.)
| | - Cristina Pagano
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (D.C.); (S.P.); (G.N.); (C.P.); (M.B.)
| | - Maurizio Bifulco
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (D.C.); (S.P.); (G.N.); (C.P.); (M.B.)
| | - Matteo Landriscina
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, 85028 Rionero in Vulture, Italy; (G.C.); (F.M.); (F.C.); (M.L.)
- Medical Oncology Unit, Department of Medical and Surgical Sciences, University of Foggia, 7100 Foggia, Italy
| | - Danilo Swann Matassa
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (D.C.); (S.P.); (G.N.); (C.P.); (M.B.)
- Correspondence: (D.S.M.); (F.E.)
| | - Franca Esposito
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (D.C.); (S.P.); (G.N.); (C.P.); (M.B.)
- Correspondence: (D.S.M.); (F.E.)
| |
Collapse
|
42
|
NMR Structure of the FIV gp36 C-Terminal Heptad Repeat and Membrane-Proximal External Region. Int J Mol Sci 2020; 21:ijms21062037. [PMID: 32188158 PMCID: PMC7139756 DOI: 10.3390/ijms21062037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 03/10/2020] [Accepted: 03/13/2020] [Indexed: 12/13/2022] Open
Abstract
Feline immunodeficiency virus (FIV), a lentivirus causing an immunodeficiency syndrome in cats, represents a relevant model of pre-screening therapies for human immunodeficiency virus (HIV). The envelope glycoproteins gp36 in FIV and gp41 in HIV mediate the fusion of the virus with the host cell membrane. They have a common structural framework in the C-terminal region that includes a Trp-rich membrane-proximal external region (MPER) and a C-terminal heptad repeat (CHR). MPER is essential for the correct positioning of gp36 on the lipid membrane, whereas CHR is essential for the stabilization of the low-energy six-helical bundle (6HB) that is necessary for the fusion of the virus envelope with the cell membrane. Conformational data for gp36 are missing, and several aspects of the MPER structure of different lentiviruses are still debated. In the present work, we report the structural investigation of a gp36 construct that includes the MPER and part of the CHR domain (737-786gp36 CHR–MPER). Using 2D and 3D homo and heteronuclear NMR spectra on 15N and 13C double-labelled samples, we solved the NMR structure in micelles composed of dodecyl phosphocholine (DPC) and sodium dodecyl sulfate (SDS) 90/10 M: M. The structure of 737-786gp36 CHR–MPER is characterized by a helix–turn–helix motif, with a regular α-helix and a moderately flexible 310 helix, characterizing the CHR and the MPER domains, respectively. The two helices are linked by a flexible loop regulating their orientation at a ~43° angle. We investigated the positioning of 737-786gp36 CHR–MPER on the lipid membrane using spin label-enhanced NMR and ESR spectroscopies. On a different scale, using confocal microscopy imaging, we studied the effect of 737-786gp36 CHR–MPER on 1,2-dioleoyl-sn-glycero-3-phosphocholine/1,2-dioleoyl-sn-glycero-3-phospho-(1’-rac-glycerol) (DOPC/DOPG) multilamellar vesicles (MLVs). This effect results in membrane budding and tubulation that is reminiscent of a membrane-plasticizing role that is typical of MPER domains during the event in which the virus envelope merges with the host cell membrane.
Collapse
|
43
|
Malik BR, Maddison DC, Smith GA, Peters OM. Autophagic and endo-lysosomal dysfunction in neurodegenerative disease. Mol Brain 2019; 12:100. [PMID: 31783880 PMCID: PMC6884906 DOI: 10.1186/s13041-019-0504-x] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 10/01/2019] [Indexed: 12/11/2022] Open
Abstract
Due to their post-mitotic state, metabolic demands and often large polarised morphology, the function and survival of neurons is dependent on an efficient cellular waste clearance system both for generation of materials for metabolic processes and removal of toxic components. It is not surprising therefore that deficits in protein clearance can tip the balance between neuronal health and death. Here we discuss how autophagy and lysosome-mediated degradation pathways are disrupted in several neurological disorders. Both genetic and cell biological evidence show the diversity and complexity of vesicular clearance dysregulation in cells, and together may ultimately suggest a unified mechanism for neuronal demise in degenerative conditions. Causative and risk-associated mutations in Alzheimer's disease, Frontotemporal Dementia, Amyotrophic Lateral Sclerosis, Parkinson's disease, Huntington's disease and others have given the field a unique mechanistic insight into protein clearance processes in neurons. Through their broad implication in neurodegenerative diseases, molecules involved in these genetic pathways, in particular those involved in autophagy, are emerging as appealing therapeutic targets for intervention in neurodegeneration.
Collapse
Affiliation(s)
- Bilal R Malik
- UK Dementia Research Institute at Cardiff University, Cardiff, Wales, UK
- School of Biosciences, Cardiff University, Cardiff, Wales, UK
| | - Daniel C Maddison
- UK Dementia Research Institute at Cardiff University, Cardiff, Wales, UK
- School of Medicine, Cardiff University, Cardiff, Wales, UK
| | - Gaynor A Smith
- UK Dementia Research Institute at Cardiff University, Cardiff, Wales, UK.
- School of Medicine, Cardiff University, Cardiff, Wales, UK.
| | - Owen M Peters
- UK Dementia Research Institute at Cardiff University, Cardiff, Wales, UK.
- School of Biosciences, Cardiff University, Cardiff, Wales, UK.
| |
Collapse
|
44
|
Autophagic- and Lysosomal-Related Biomarkers for Parkinson's Disease: Lights and Shadows. Cells 2019; 8:cells8111317. [PMID: 31731485 PMCID: PMC6912814 DOI: 10.3390/cells8111317] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 10/21/2019] [Accepted: 10/22/2019] [Indexed: 02/06/2023] Open
Abstract
Parkinson’s disease (PD) is a neurodegenerative disorder that currently affects 1% of the population over the age of 60 years, for which no disease-modifying treatments exist. This lack of effective treatments is related to the advanced stage of neurodegeneration existing at the time of diagnosis. Thus, the identification of early stage biomarkers is crucial. Biomarker discovery is often guided by the underlying molecular mechanisms leading to the pathology. One of the central pathways deregulated during PD, supported both by genetic and functional studies, is the autophagy-lysosomal pathway. Hence, this review presents different studies on the expression and activity of autophagic and lysosomal proteins, and their functional consequences, performed in peripheral human biospecimens. Although most biomarkers are inconsistent between studies, some of them, namely HSC70 levels in sporadic PD patients, and cathepsin D levels and glucocerebrosidase activity in PD patients carrying GBA mutations, seem to be consistent. Hence, evidence exists that the impairment of the autophagy-lysosomal pathway underlying PD pathophysiology can be detected in peripheral biosamples and further tested as potential biomarkers. However, longitudinal, stratified, and standardized analyses are needed to confirm their clinical validity and utility.
Collapse
|
45
|
Moltedo O, Remondelli P, Amodio G. The Mitochondria-Endoplasmic Reticulum Contacts and Their Critical Role in Aging and Age-Associated Diseases. Front Cell Dev Biol 2019; 7:172. [PMID: 31497601 PMCID: PMC6712070 DOI: 10.3389/fcell.2019.00172] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 08/07/2019] [Indexed: 02/03/2023] Open
Abstract
The recent discovery of interconnections between the endoplasmic reticulum (ER) membrane and those of almost all the cell compartments is providing novel perspectives for the understanding of the molecular events underlying cellular mechanisms in both physiological and pathological conditions. In particular, growing evidence strongly supports the idea that the molecular interactions occurring between ER and mitochondrial membranes, referred as the mitochondria (MT)-ER contacts (MERCs), may play a crucial role in aging and in the development of age-associated diseases. As emerged in the last decade, MERCs behave as signaling hubs composed by structural components that act as critical players in different age-associated disorders, such as neurodegenerative diseases and motor disorders, cancer, metabolic syndrome, as well as cardiovascular diseases. Age-associated disorders often derive from mitochondrial or ER dysfunction as consequences of oxidative stress, mitochondrial DNA mutations, accumulation of misfolded proteins, and defective organelle turnover. In this review, we discuss the recent advances associating MERCs to aging in the context of ER-MT crosstalk regulating redox signaling, ER-to MT lipid transfer, mitochondrial dynamics, and autophagy.
Collapse
Affiliation(s)
- Ornella Moltedo
- Department of Pharmacy, University of Salerno, Fisciano, Italy
| | - Paolo Remondelli
- Department of Medicine, Surgery and Dentistry, "Scuola Medica Salernitana," University of Salerno, Baronissi, Italy
| | - Giuseppina Amodio
- Department of Medicine, Surgery and Dentistry, "Scuola Medica Salernitana," University of Salerno, Baronissi, Italy
| |
Collapse
|
46
|
Volpatti JR, Al-Maawali A, Smith L, Al-Hashim A, Brill JA, Dowling JJ. The expanding spectrum of neurological disorders of phosphoinositide metabolism. Dis Model Mech 2019; 12:12/8/dmm038174. [PMID: 31413155 PMCID: PMC6737944 DOI: 10.1242/dmm.038174] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Phosphoinositides (PIPs) are a ubiquitous group of seven low-abundance phospholipids that play a crucial role in defining localized membrane properties and that regulate myriad cellular processes, including cytoskeletal remodeling, cell signaling cascades, ion channel activity and membrane traffic. PIP homeostasis is tightly regulated by numerous inositol kinases and phosphatases, which phosphorylate and dephosphorylate distinct PIP species. The importance of these phospholipids, and of the enzymes that regulate them, is increasingly being recognized, with the identification of human neurological disorders that are caused by mutations in PIP-modulating enzymes. Genetic disorders of PIP metabolism include forms of epilepsy, neurodegenerative disease, brain malformation syndromes, peripheral neuropathy and congenital myopathy. In this Review, we provide an overview of PIP function and regulation, delineate the disorders associated with mutations in genes that modulate or utilize PIPs, and discuss what is understood about gene function and disease pathogenesis as established through animal models of these diseases. Summary: This Review highlights the intersection between phosphoinositides and the enzymes that regulate their metabolism, which together are crucial regulators of myriad cellular processes and neurological disorders.
Collapse
Affiliation(s)
- Jonathan R Volpatti
- Division of Neurology and Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Almundher Al-Maawali
- Division of Neurology and Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada.,Department of Genetics, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat 123, Oman
| | - Lindsay Smith
- Division of Neurology and Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Aqeela Al-Hashim
- Division of Neurology and Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada.,Department of Neuroscience, King Fahad Medical City, Riyadh 11525, Saudi Arabia
| | - Julie A Brill
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada.,Program in Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - James J Dowling
- Division of Neurology and Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada .,Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
47
|
Amodio G, Moltedo O, Fasano D, Zerillo L, Oliveti M, Di Pietro P, Faraonio R, Barone P, Pellecchia MT, De Rosa A, De Michele G, Polishchuk E, Polishchuk R, Bonifati V, Nitsch L, Pierantoni GM, Renna M, Criscuolo C, Paladino S, Remondelli P. PERK-Mediated Unfolded Protein Response Activation and Oxidative Stress in PARK20 Fibroblasts. Front Neurosci 2019; 13:673. [PMID: 31316342 PMCID: PMC6610533 DOI: 10.3389/fnins.2019.00673] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 06/12/2019] [Indexed: 12/20/2022] Open
Abstract
PARK20, an early onset autosomal recessive parkinsonism is due to mutations in the phosphatidylinositol-phosphatase Synaptojanin 1 (Synj1). We have recently shown that the early endosomal compartments are profoundly altered in PARK20 fibroblasts as well as the endosomal trafficking. Here, we report that PARK20 fibroblasts also display a drastic alteration of the architecture and function of the early secretory compartments. Our results show that the exit machinery from the Endoplasmic Reticulum (ER) and the ER-to-Golgi trafficking are markedly compromised in patient cells. As a consequence, PARK20 fibroblasts accumulate large amounts of cargo proteins within the ER, leading to the induction of ER stress. Interestingly, this stressful state is coupled to the activation of the PERK/eIF2α/ATF4/CHOP pathway of the Unfolded Protein Response (UPR). In addition, PARK20 fibroblasts reveal upregulation of oxidative stress markers and total ROS production with concomitant alteration of the morphology of the mitochondrial network. Interestingly, treatment of PARK20 cells with GSK2606414 (GSK), a specific inhibitor of PERK activity, restores the level of ROS, signaling a direct correlation between ER stress and the induction of oxidative stress in the PARK20 cells. All together, these findings suggest that dysfunction of early secretory pathway might contribute to the pathogenesis of the disease.
Collapse
Affiliation(s)
- Giuseppina Amodio
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Salerno, Italy
| | - Ornella Moltedo
- Department of Pharmacy, University of Salerno, Salerno, Italy
| | - Dominga Fasano
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Lucrezia Zerillo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Marco Oliveti
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Salerno, Italy
| | - Paola Di Pietro
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Salerno, Italy
| | - Raffaella Faraonio
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Paolo Barone
- Section of Neuroscience, Department of Medicine, Surgery and Dentistry, University of Salerno, Salerno, Italy
| | - Maria Teresa Pellecchia
- Section of Neuroscience, Department of Medicine, Surgery and Dentistry, University of Salerno, Salerno, Italy
| | - Anna De Rosa
- Department of Neuroscience, Reproductive, and Odontostomatological Sciences, University of Naples Federico II, Naples, Italy
| | - Giuseppe De Michele
- Department of Neuroscience, Reproductive, and Odontostomatological Sciences, University of Naples Federico II, Naples, Italy
| | | | | | | | - Lucio Nitsch
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Giovanna Maria Pierantoni
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Maurizio Renna
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Chiara Criscuolo
- Department of Neuroscience, Reproductive, and Odontostomatological Sciences, University of Naples Federico II, Naples, Italy
| | - Simona Paladino
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Paolo Remondelli
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Salerno, Italy
| |
Collapse
|
48
|
Caiazza C, D'Agostino M, Passaro F, Faicchia D, Mallardo M, Paladino S, Pierantoni GM, Tramontano D. Effects of Long-Term Citrate Treatment in the PC3 Prostate Cancer Cell Line. Int J Mol Sci 2019; 20:ijms20112613. [PMID: 31141937 PMCID: PMC6600328 DOI: 10.3390/ijms20112613] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/22/2019] [Accepted: 05/23/2019] [Indexed: 01/18/2023] Open
Abstract
Acute administration of a high level of extracellular citrate displays an anti-proliferative effect on both in vitro and in vivo models. However, the long-term effect of citrate treatment has not been investigated yet. Here, we address this question in PC3 cells, a prostate-cancer-derived cell line. Acute administration of high levels of extracellular citrate impaired cell adhesion and inhibited the proliferation of PC3 cells, but surviving cells adapted to grow in the chronic presence of 20 mM citrate. Citrate-resistant PC3 cells are significantly less glycolytic than control cells. Moreover, they overexpress short-form, citrate-insensitive phosphofructokinase 1 (PFK1) together with full-length PFK1. In addition, they show traits of mesenchymal-epithelial transition: an increase in E-cadherin and a decrease in vimentin. In comparison with PC3 cells, citrate-resistant cells display morphological changes that involve both microtubule and microfilament organization. This was accompanied by changes in homeostasis and the organization of intracellular organelles. Thus, the mitochondrial network appears fragmented, the Golgi complex is scattered, and the lysosomal compartment is enlarged. Interestingly, citrate-resistant cells produce less total ROS but accumulate more mitochondrial ROS than control cells. Consistently, in citrate-resistant cells, the autophagic pathway is upregulated, possibly sustaining their survival. In conclusion, chronic administration of citrate might select resistant cells, which could jeopardize the benefits of citrate anticancer treatment.
Collapse
Affiliation(s)
- Carmen Caiazza
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy.
| | - Massimo D'Agostino
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy.
| | - Fabiana Passaro
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy.
| | - Deriggio Faicchia
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy.
| | - Massimo Mallardo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy.
| | - Simona Paladino
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy.
| | - Giovanna Maria Pierantoni
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy.
| | - Donatella Tramontano
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy.
| |
Collapse
|
49
|
Structural basis of antiviral activity of peptides from MPER of FIV gp36. PLoS One 2018; 13:e0204042. [PMID: 30240422 PMCID: PMC6150481 DOI: 10.1371/journal.pone.0204042] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 09/01/2018] [Indexed: 01/11/2023] Open
Abstract
Feline immunodeficiency virus (FIV) is a naturally occurring Lentivirus causing acquired immunodeficiency syndrome in felines. It is considered a useful non-primate model to study HIV infection, and to test anti-HIV vaccine. Similarly to HIV, FIV enters cells via a mechanism involving a surface glycoprotein named gp36. C8 is a short synthetic peptide corresponding to the residues 770WEDWVGWI777 of gp36 membrane proximal external region (MPER). It elicits antiviral activity by inhibiting the fusion of the FIV and host cell membrane. C8 is endowed with evident membrane binding property, inducing alteration of the phospholipid bilayer and membrane fusion. The presence and the position of tryptophan residues in C8 are important for antiviral activity: the C8 derivative C6a, obtained by truncating the N-terminal 770WE771 residues, exhibits conserved antiviral activity, while the C8 derivative C6b, derived from the truncation of the C-terminal 776WI777, is nearly inactive. To elucidate the structural factors that induce the different activity profiles of C6a and C6b, in spite of their similarity, we investigated the structural behaviour of the two peptides in membrane mimicking environments. Conformational data on the short peptides C6a and C6b, matched to those of their parent peptide C8, allow describing a pharmacophore model of antiviral fusion inhibitors. This includes the essential structural motifs to design new simplified molecules overcoming the pharmacokinetic and high cost limitations affecting the antiviral entry inhibitors that currently are in therapy.
Collapse
|