1
|
Szegő ÉM, Höfs L, Antoniou A, Dinter E, Bernhardt N, Schneider A, Di Monte DA, Falkenburger BH. Intermittent fasting reduces alpha-synuclein pathology and functional decline in a mouse model of Parkinson's disease. Nat Commun 2025; 16:4470. [PMID: 40368903 PMCID: PMC12078643 DOI: 10.1038/s41467-025-59249-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Accepted: 04/16/2025] [Indexed: 05/16/2025] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by dopaminergic neuron degeneration and α-synuclein (aSyn) accumulation. Environmental factors play a significant role in PD progression, highlighting the potential of non-pharmacological interventions. This study investigates the therapeutic effects of intermittent fasting (IF) in an rAAV-aSyn mouse model of PD. IF, initiated four weeks post-induction of aSyn pathology, improved motor function and reduced dopaminergic neuron and axon terminal degeneration. Additionally, IF preserved dopamine levels and synaptic integrity in the striatum. Mechanistically, IF enhanced autophagic activity, promoting phosphorylated-aSyn clearance and reducing its accumulation in insoluble brain fractions. Transcriptome analysis revealed IF-induced modulation of inflammation-related genes and microglial activation. Validation in primary cultures confirmed that autophagy activation and inflammatory modulators (CCL17, IL-36RN) mitigate aSyn pathology. These findings suggest that IF exerts neuroprotective effects, supporting further exploration of IF and IF-mimicking therapies as potential PD treatments.
Collapse
Affiliation(s)
- Éva M Szegő
- Department of Neurology, TU Dresden, Dresden, Germany.
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.
- German Center for Neurodegenerative Diseases (DZNE), Dresden, Germany.
| | - Lennart Höfs
- Department of Neurology, TU Dresden, Dresden, Germany
- German Center for Neurodegenerative Diseases (DZNE), Dresden, Germany
| | - Anna Antoniou
- Department of Old Age Psychiatry and Cognitive Disorders, University Hospital Bonn, University of Bonn, Bonn, Germany
- Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
| | - Elisabeth Dinter
- Department of Neurology, TU Dresden, Dresden, Germany
- German Center for Neurodegenerative Diseases (DZNE), Dresden, Germany
| | - Nadine Bernhardt
- Department of Psychiatry and Psychotherapy, TU Dresden, Dresden, Germany
| | - Anja Schneider
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Old Age Psychiatry and Cognitive Disorders, University Hospital Bonn, University of Bonn, Bonn, Germany
| | | | - Björn H Falkenburger
- Department of Neurology, TU Dresden, Dresden, Germany.
- German Center for Neurodegenerative Diseases (DZNE), Dresden, Germany.
| |
Collapse
|
2
|
Sun S, Sproviero D, Payán-Gómez C, Hoeijmakers JHJ, Maslov AY, Mastroberardino PG, Vijg J. RNA sequence analysis of somatic mutations in aging and Parkinson's Disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.26.645360. [PMID: 40196509 PMCID: PMC11974798 DOI: 10.1101/2025.03.26.645360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Parkinson's Disease (PD) is an age-related neurodegenerative disorder that has been associated with increased DNA damage. To test if PD is associated with increased somatic mutations, we analyzed RNA-seq data in whole blood from 5 visits of the Parkinson's Progression Markers Initiative for clonally amplified somatic variants. Comprehensive analysis of RNA-sequencing data revealed a total of 5,927 somatic variants (2.4 variants per sample on average). Mutation frequencies were significantly elevated in PD subjects as compared to age-matched controls at the time of the last visit. This was confirmed by RNA analysis of substantia nigra. By contrast, the fraction of carriers with clonal hematopoiesis, was significantly reduced in old PD patients as compared to old healthy controls. These results indicate that while the overall mutation rate is higher in PD, specific clonally amplified mutations are protective against PD, as has been found for Alzheimer's Disease.
Collapse
|
3
|
Arnold MR, Cohn GM, Oxe KC, Elliott SN, Moore C, Zhou AM, Laraia PV, Shekoohi S, Brownell D, Sears RC, Woltjer RL, Meshul CK, Witt SN, Larsen DH, Unni VK. Alpha-synuclein regulates nucleolar DNA double-strand break repair in melanoma. SCIENCE ADVANCES 2025; 11:eadq2519. [PMID: 40203113 PMCID: PMC11980859 DOI: 10.1126/sciadv.adq2519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 03/04/2025] [Indexed: 04/11/2025]
Abstract
Although an increased risk of the skin cancer melanoma in people with Parkinson's disease (PD) has been shown in multiple studies, the mechanisms involved are poorly understood, but increased expression of the PD-associated protein alpha-synuclein (αSyn) in melanoma cells may be important. Our previous work suggests that αSyn can facilitate DNA double-strand break (DSB) repair, promoting genomic stability. We now show that αSyn is preferentially enriched within the nucleolus in melanoma, where it colocalizes with DNA damage markers and DSBs. Inducing DSBs specifically within nucleolar ribosomal DNA (rDNA) increases αSyn levels near sites of damage. αSyn knockout increases DNA damage within the nucleolus at baseline, after specific rDNA DSB induction, and prolongs the rate of recovery from this induced damage. αSyn is important downstream of ataxia-telangiectasia-mutated signaling to facilitate MDC1-mediated 53BP1 recruitment to DSBs, reducing micronuclei formation and promoting cellular proliferation, migration, and invasion.
Collapse
Affiliation(s)
- Moriah R. Arnold
- Medical Scientist Training Program, Oregon Health and Science University, Portland, OR, USA
- Department of Neurology and Jungers Center for Neurosciences Research, Oregon Health and Science University, Portland, OR, USA
| | - Gabriel M. Cohn
- Department of Molecular and Medical Genetics, School of Medicine, Oregon Health and Science University, Portland, OR, USA
| | - Kezia Catharina Oxe
- Danish Cancer Institute, Nucleolar Stress and Disease Group, Strandboulevarden 49, 2100 Copenhagen, Denmark
| | - Somarr N. Elliott
- Department of Neurology and Jungers Center for Neurosciences Research, Oregon Health and Science University, Portland, OR, USA
| | - Cynthia Moore
- Research Services, Neurocytology Laboratory, Veterans Affairs Medical Center, Portland, OR, USA
| | - Allison May Zhou
- Department of Neurology and Jungers Center for Neurosciences Research, Oregon Health and Science University, Portland, OR, USA
| | | | - Sahar Shekoohi
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Dillon Brownell
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR, USA
| | - Rosalie C. Sears
- Department of Molecular and Medical Genetics, School of Medicine, Oregon Health and Science University, Portland, OR, USA
- Brenden-Colson Center for Pancreatic Care, Oregon Health & Science University, Portland, OR, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Randall L. Woltjer
- Layton Aging & Alzheimer’s Disease Research Center and Department of Pathology, Oregon Health and Science University, Portland, OR, USA
| | - Charles K. Meshul
- Research Services, Neurocytology Laboratory, Veterans Affairs Medical Center, Portland, OR, USA
- Departments of Behavioral Neuroscience and Pathology, Oregon Health and Science University, Portland, OR, USA
| | - Stephan N. Witt
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
- Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Dorthe H. Larsen
- Danish Cancer Institute, Nucleolar Stress and Disease Group, Strandboulevarden 49, 2100 Copenhagen, Denmark
| | - Vivek K. Unni
- Department of Neurology and Jungers Center for Neurosciences Research, Oregon Health and Science University, Portland, OR, USA
- OHSU Parkinson Center, Oregon Health and Science University, Portland, OR, USA
| |
Collapse
|
4
|
Meesilpavikkai K, Kaikaew K, Zhou Z, Dalm VA, Kaiser FM, Schliehe C, Swagemakers SM, van der Spek PJ, Schrijver B, Vasic P, de Bie M, Bakker M, Milanese C, Mastroberardino PG, Hirankarn N, Suratannon N, IJspeert H, Dik WA, Martin van Hagen P. Novel STAT3 Y360C Gain-of-function Variant Underlies Immune Dysregulation and Aberrancy in Mitochondrial Dynamics. Immune Netw 2025; 25:e18. [PMID: 40342844 PMCID: PMC12056293 DOI: 10.4110/in.2025.25.e18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 03/07/2025] [Accepted: 03/12/2025] [Indexed: 05/11/2025] Open
Abstract
The STAT3 is an important regulator in a wide range of different cell types. Human STAT3 variants are associated with several immune dysregulation diseases. The current study investigated the clinical, genetic, and immunobiological data obtained from a family with novel heterozygous STAT3 variants located at p.Y360C of the DNA binding domain. The clinical manifestations of these patients include autoimmunity, immunodeficiency, and postnatal growth defects. Broad STAT3 regulated cells including patient primary immune cells and HEK293 cells harboring the variant were assessed. Remarkably high levels of STAT3-regulated cytokines were detected in the sera of the patients. STAT3 nuclear binding and STAT3 activity were higher in STAT3-transduced HEK293 cells containing the p.Y360C variant when compared to HEK cells expressing wild type (WT) STAT3. Upon cytokine activation, STAT3 variants inhibited nuclear translocation of the WT STAT3 molecule. We also demonstrated that PBMCs from these patients exhibit significantly higher mitochondrial activity compared to that of healthy controls. The exploration of the effects of STAT3 Y360C variants described in our study provides novel insights into the molecular effects of the STAT3 variant and its role in the pathophysiology of STAT3 gain-of-function syndromes.
Collapse
Affiliation(s)
- Kornvalee Meesilpavikkai
- Laboratory Medical Immunology, Department of Immunology, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
- Division of Clinical Immunology, Department of Internal Medicine, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok10330, Thailand
| | - Kasiphak Kaikaew
- Center of Excellence in Alternative and Complementary Medicine for Gastrointestinal and Liver Diseases, Department of Physiology, Faculty of Medicine, Chulalongkorn University, Bangkok10330, Thailand
| | - Zijun Zhou
- Laboratory Medical Immunology, Department of Immunology, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
- Division of Clinical Immunology, Department of Internal Medicine, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
- Academic Center for Rare Immune Diseases (RIDC), Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Virgil A.S.H. Dalm
- Laboratory Medical Immunology, Department of Immunology, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
- Division of Clinical Immunology, Department of Internal Medicine, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
- Academic Center for Rare Immune Diseases (RIDC), Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Fabian M.P. Kaiser
- Laboratory Medical Immunology, Department of Immunology, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
- Department of Neonatal and Pediatric Intensive Care, Erasmus University Medical Center - Sophia Children’s Hospital, 3015 GD Rotterdam, The Netherlands
| | - Christopher Schliehe
- Department of Immunology, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Sigrid M.A. Swagemakers
- Department of Pathology and Bioinformatics, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Peter J. van der Spek
- Department of Pathology and Bioinformatics, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Benjamin Schrijver
- Laboratory Medical Immunology, Department of Immunology, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
- Academic Center for Rare Immune Diseases (RIDC), Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Pamela Vasic
- Laboratory Medical Immunology, Department of Immunology, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Maaike de Bie
- Laboratory Medical Immunology, Department of Immunology, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Marleen Bakker
- Department of Pulmonary Medicine, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Chiara Milanese
- Department of Molecular Genetics, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Pier G. Mastroberardino
- Department of Molecular Genetics, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Nattiya Hirankarn
- Center of Excellence in Immunology and Immune-mediated Diseases, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok10330, Thailand
| | - Narissara Suratannon
- Division of Allergy and Immunology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok10330, Thailand
| | - Hanna IJspeert
- Laboratory Medical Immunology, Department of Immunology, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Willem A. Dik
- Laboratory Medical Immunology, Department of Immunology, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - P. Martin van Hagen
- Laboratory Medical Immunology, Department of Immunology, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
- Division of Clinical Immunology, Department of Internal Medicine, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
- Academic Center for Rare Immune Diseases (RIDC), Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| |
Collapse
|
5
|
Andarawi S, Vodickova L, Uttarilli A, Hanak P, Vodicka P. Defective DNA repair: a putative nexus linking immunological diseases, neurodegenerative disorders, and cancer. Mutagenesis 2025; 40:4-19. [PMID: 39937585 DOI: 10.1093/mutage/geae029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 01/30/2025] [Indexed: 02/13/2025] Open
Abstract
DNA damage is a common event in cells, resulting from both internal and external factors. The maintenance of genomic integrity is vital for cellular function and physiological processes. The inadequate repair of DNA damage results in the genomic instability, which has been associated with the development and progression of various human diseases. Accumulation of DNA damage can lead to multiple diseases, such as neurodegenerative disorders, cancers, immune deficiencies, infertility, and ageing. This comprehensive review delves the impact of alterations in DNA damage response genes (DDR) and tries to elucidate how and to what extent the same traits modulate diverse major human diseases, such as cancer, neurodegenerative diseases, and immunological disorders. DDR is apparently the trait connecting important complex disorders in humans. However, the pathogenesis of the above disorders and diseases are different and lead to divergent consequences. It is important to discover the switch(es) that direct further the pathogenic process either to proliferative, or degenerative diseases. Our understanding of the influence of DNA damage on diverse human disorders may enable the development of the strategies to prevent, diagnose, and treat these diseases. In our article, we analysed publicly available GWAS summary statistics from the NHGRI-EBI GWAS Catalog and identified 12 009 single-nucleotide polymorphisms (SNPs) associated with cancer. Among these, 119 SNPs were found in DDR pathways, exhibiting significant P-values. Additionally, we identified 44 SNPs linked to various cancer types and neurodegenerative diseases (NDDs), including four located in DDR-related genes: ATM, CUX2, and WNT3. Furthermore, 402 SNPs were associated with both cancer and immunological disorders, with two found in the DDR gene RAD51B. This highlights the versatility of the DDR pathway in multifactorial diseases. However, the specific mechanisms that regulate DDR to initiate distinct pathogenic processes remain to be elucidated.
Collapse
Affiliation(s)
- Safaa Andarawi
- Department of the Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 00 Prague, Czech Republic
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1655/77, 32300 Pilsen, Czech Republic
| | - Ludmila Vodickova
- Department of the Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 00 Prague, Czech Republic
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1655/77, 32300 Pilsen, Czech Republic
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Albertov 4, 128 00 Prague, Czech Republic
| | - Anusha Uttarilli
- Department of the Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 00 Prague, Czech Republic
| | - Petr Hanak
- Department of the Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 00 Prague, Czech Republic
| | - Pavel Vodicka
- Department of the Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 00 Prague, Czech Republic
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1655/77, 32300 Pilsen, Czech Republic
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Albertov 4, 128 00 Prague, Czech Republic
| |
Collapse
|
6
|
Tran VTA, Zhu X, Jamsranjav A, Lee LP, Cho H. Escherichia Coli K1-colibactin meningitis induces microglial NLRP3/IL-18 exacerbating H3K4me3-synucleinopathy in human inflammatory gut-brain axis. Commun Biol 2025; 8:382. [PMID: 40050667 PMCID: PMC11885818 DOI: 10.1038/s42003-025-07787-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 02/19/2025] [Indexed: 03/09/2025] Open
Abstract
Escherichia coli K1 (E. coli K1) meningitis early occurs in the gastrointestinal and causes severe damage to the central nervous system, including lifelong neurological complications in survivors. However, the cellular mechanism by which E. coli K1 may cause neuropathies is not well understood due to the lack of relevant human multi-organ models for studying multifaceted systemic inflammation across the gut-brain axis. Here, we reconstruct a multicellular model of the human gut-brain axis to identify the neuropathogenic mechanism driven by E. coli K1-colibactin meningitis. We observed that E. coli K1-genotoxic colibactin induced intestinal and peripheral interleukin 6, causing the blood-brain barrier injury and endothelial inflammation via the p38/p65 pathways. Serpin-E1 from the damaged cerebral endothelia induces reactive astrocytes to release IFN-γ, which reduces microglial phagocytosis of E. coli K1 and exacerbates detrimental neuroinflammation via NLRP3/IL-18 axis. Microglial IL-18 elevates neuronal reactive oxidative stress that worsens DNA double-strand breaks in E. coli K1-infected neurons, leading to H3K4 trimethylation and phosphorylation of alpha-synuclein. Our findings suggest therapeutic strategies for post-bacterial meningitis treatment to potentially prevent the initiation of synucleinopathy.
Collapse
Affiliation(s)
- Van Thi Ai Tran
- Institute of Biophysics, Sungkyunkwan University, Suwon, South Korea
- Department of Biophysics, Sungkyunkwan University, Suwon, South Korea
| | - Xiaohui Zhu
- Institute of Biophysics, Sungkyunkwan University, Suwon, South Korea
- Department of Biophysics, Sungkyunkwan University, Suwon, South Korea
| | - Ariunzaya Jamsranjav
- Institute of Biophysics, Sungkyunkwan University, Suwon, South Korea
- Department of Biophysics, Sungkyunkwan University, Suwon, South Korea
| | - Luke P Lee
- Institute of Biophysics, Sungkyunkwan University, Suwon, South Korea.
- Department of Biophysics, Sungkyunkwan University, Suwon, South Korea.
- Department of Medicine, Harvard Medical School, Brigham and Women's Hospital, Harvard Institute of Medicine, Harvard University, Boston, MA, USA.
| | - Hansang Cho
- Institute of Biophysics, Sungkyunkwan University, Suwon, South Korea.
- Department of Biophysics, Sungkyunkwan University, Suwon, South Korea.
- Department of Intelligent Healthcare Medicine, Sungkyunkwan University, Suwon, South Korea.
| |
Collapse
|
7
|
Ma Y, Erb ML, Moore DJ. Aging, cellular senescence and Parkinson's disease. JOURNAL OF PARKINSON'S DISEASE 2025; 15:239-254. [PMID: 39973488 DOI: 10.1177/1877718x251316552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Parkinson's disease (PD) is the most common neurodegenerative movement disorder, affecting 1-2% of people over age 65. The risk of developing PD dramatically increases with advanced age, indicating that aging is likely a driving factor in PD neuropathogenesis. Several age-associated biological changes are also hallmarks of PD neuropathology, including mitochondrial dysfunction, oxidative stress, and neuroinflammation. Accumulation of senescent cells is an important feature of aging that contributes to age-related diseases. How age-related cellular senescence affects brain health and whether this phenomenon contributes to neuropathogenesis in PD is not yet fully understood. In this review, we highlight hallmarks of aging, including mitochondrial dysfunction, loss of proteostasis, genomic instability and telomere attrition in relation to well established PD neuropathological pathways. We then discuss the hallmarks of cellular senescence in the context of neuroscience and review studies that directly examine cellular senescence in PD. Studying senescence in PD presents challenges and holds promise for advancing our understanding of disease mechanisms, which could contribute to the development of effective disease-modifying therapeutics. Targeting senescent cells or modulating the senescence-associated secretory phenotype (SASP) in PD requires a comprehensive understanding of the complex relationship between PD pathogenesis and cellular senescence.
Collapse
Affiliation(s)
- Yue Ma
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Madalynn L Erb
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Darren J Moore
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| |
Collapse
|
8
|
Yang JT, Kuo YC, Lee KC, De S, Chen YY. Resveratrol and ceftriaxone encapsulated in hybrid nanoparticles to prevent dopaminergic neurons from degeneration for Parkinson's disease treatment. BIOMATERIALS ADVANCES 2025; 166:214065. [PMID: 39426178 DOI: 10.1016/j.bioadv.2024.214065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/24/2024] [Accepted: 10/08/2024] [Indexed: 10/21/2024]
Abstract
The purpose of this study is to evaluate the influence of phospholipid-polymer nanoparticles (PNPs) on mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) signaling of dopaminergic neurons in degenerated brain. Resveratrol (RES)- and ceftriaxone (CEF)-entrapped PNPs with surface leptin (Lep) and transferrin (Tf) were fabricated to rescue both 1-methyl-4-phenylpyridinium (MPP+)-insulted SH-SY5Y cells and Wistar rats. Based on PNPs, anti-apoptosis of RES and CEF, and targeting of Lep and Tf were investigated. Experimental results revealed that 20-30 % alginic acid (Alg) yielded the maximal particle size, physical stability and entrapment efficiency of CEF, and the minimal release percentage of CEF. Increasing Alg content in PNPs decreased the entrapment efficiency of RES, and facilitated the release of RES. Optimized PNP composition was about 40 % Alg, 15 % phosphatidylserine and 45 % poly-ε-caprolactone. Lep-Tf-PNPs ameliorated brain permeability of RES and CEF without jeopardizing the blood-brain barrier, and promoted the viability of MPP+-insulted SH-SY5Y cells. Immunofluorescence images and western blots of MPP+-insulted SH-SY5Y cells showed that Lep-Tf-RES-CEF-PNPs upregulated dopamine transporter, tyrosine hydroxylase, B-cell lymphoma 2 (Bcl-2), cyclic AMP response element-binding protein and ERK5 expressions, and downregulated Bcl-2-associated X protein (Bax), α-synuclein (α-syn), phosphorylated tau protein (p-tau), c-Jun N-terminal kinase and ERK1/2 expressions. Lep-Tf-RES-CEF-PNPs unveiled a strong capacity to recover Bcl-2, Bax, α-syn and p-tau levels from MPP+ injury in the substantia nigra of rats. Hence, Lep-Tf-RES-CEF-PNPs can retard α-syn fibril formation, prevent tau protein from phosphorylation, and moderate MAPK/ERK and phosphatidylinositol 3-kinase/protein kinase B, and are promising for brain- and neuron-targeted pharmacotherapy to manage Parkinson's disease.
Collapse
Affiliation(s)
- Jen-Tsung Yang
- Department of Neurosurgery, Chang Gung Memorial Hospital, 6, West Sec., Chia-Pu Road, Chia-Yi 61363, Taiwan, ROC; College of Medicine, Chang Gung University, 259, Wenhua 1st Road, Tao-Yuan 33302, Taiwan, ROC
| | - Yung-Chih Kuo
- Department of Chemical Engineering, National Chung Cheng University, Chia-Yi 62102, Taiwan, ROC; Advanced Institute of Manufacturing with High-tech Innovations, National Chung Cheng University, Chia-Yi 62102, Taiwan, ROC.
| | - Kuan-Chun Lee
- Department of Chemical Engineering, National Chung Cheng University, Chia-Yi 62102, Taiwan, ROC
| | - Sourav De
- Department of Chemical Engineering, National Chung Cheng University, Chia-Yi 62102, Taiwan, ROC; Department of Pharmaceutical Technology, Eminent College of Pharmaceutical Technology, Barasat, West Bengal 700126, India
| | - Yu-Yin Chen
- Department of Chemical Engineering, National Chung Cheng University, Chia-Yi 62102, Taiwan, ROC
| |
Collapse
|
9
|
Vasquez V, Kodavati M, Mitra J, Vedula I, Hamilton DJ, Garruto RM, Rao KS, Hegde ML. Mitochondria-targeted oligomeric α-synuclein induces TOM40 degradation and mitochondrial dysfunction in Parkinson's disease and parkinsonism-dementia of Guam. Cell Death Dis 2024; 15:914. [PMID: 39695091 DOI: 10.1038/s41419-024-07258-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 11/15/2024] [Accepted: 11/21/2024] [Indexed: 12/20/2024]
Abstract
Mitochondrial dysfunction is a central aspect of Parkinson's disease (PD) pathology, yet the underlying mechanisms are not fully understood. This study investigates the link between α-Synuclein (α-Syn) pathology and the loss of translocase of the outer mitochondrial membrane 40 (TOM40), unraveling its implications for mitochondrial dysfunctions in neurons. We discovered that TOM40 protein depletion occurs in the brains of patients with Guam Parkinsonism-Dementia (Guam PD) and cultured neurons expressing α-Syn proteinopathy, notably, without corresponding changes in TOM40 mRNA levels. Cultured neurons expressing α-Syn mutants, with or without a mitochondria-targeting signal (MTS) underscores the role of α-Syn's mitochondrial localization in inducing TOM40 degradation. PDe-related etiological factors, such as 6-hydroxydopamine or ROS/metal ions stress, which promotes α-Syn oligomerization, exacerbate TOM40 depletion in PD patient-derived cells with SNCA gene triplication. Although α-Syn interacts with both TOM40 and TOM20 in the outer mitochondrial membrane, degradation is selective for TOM40, which occurs via the ubiquitin-proteasome system (UPS) pathway. Our comprehensive analyses using Seahorse technology, mitochondrial DNA sequencing, and damage assessments, demonstrate that mutant α-Syn-induced TOM40 loss results in mitochondrial dysfunction, characterized by reduced membrane potential, accumulation of mtDNA damage, deletion/insertion mutations, and altered oxygen consumption rates. Notably, ectopic supplementation of TOM40 or reducing pathological forms of α-Syn using ADP-ribosylation inhibitors ameliorate these mitochondrial defects, suggesting potential therapeutic avenues. In conclusion, our findings provide crucial mechanistic insights into how α-Syn accumulation leads to TOM40 degradation and mitochondrial dysfunction, offering insights for targeted interventions to alleviate mitochondrial defects in PD.
Collapse
Affiliation(s)
- Velmarini Vasquez
- Division of DNA Repair Research, Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX, USA
- Neuroscience Center, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología, (INDICASAT AIP), Panama City, Panama
| | - Manohar Kodavati
- Division of DNA Repair Research, Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX, USA
| | - Joy Mitra
- Division of DNA Repair Research, Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX, USA
| | - Indira Vedula
- Center for Bioenergetics, Houston Methodist Research Institute, Houston, TX, USA
| | - Dale J Hamilton
- Center for Bioenergetics, Houston Methodist Research Institute, Houston, TX, USA
- Department of Medicine, Houston Methodist, Weill Cornell Medicine affiliate, Houston, TX, USA
| | - Ralph M Garruto
- Departments of Anthropology and Biological Sciences, Binghamton University, State University of New York, Binghamton, NY, USA
| | - K S Rao
- Department of Biotechnology, KLEF Deemed to be University, Vaddeswaram, India
| | - Muralidhar L Hegde
- Division of DNA Repair Research, Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX, USA.
- Department of Neuroscience, Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
10
|
Rose EP, Osterberg VR, Gorbunova V, Unni VK. Alpha-synuclein modulates the repair of genomic DNA double-strand breaks in a DNA-PK cs-regulated manner. Neurobiol Dis 2024; 201:106675. [PMID: 39306014 PMCID: PMC11556349 DOI: 10.1016/j.nbd.2024.106675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 08/22/2024] [Accepted: 09/18/2024] [Indexed: 09/25/2024] Open
Abstract
α-synuclein (αSyn) is a presynaptic and nuclear protein that aggregates in important neurodegenerative diseases such as Parkinson's Disease (PD), Parkinson's Disease Dementia (PDD) and Lewy Body Dementia (LBD). Our past work suggests that nuclear αSyn may regulate forms of DNA double-strand break (DSB) repair in HAP1 cells after DNA damage induction with the chemotherapeutic agent bleomycin1. Here, we report that genetic deletion of αSyn specifically impairs the non-homologous end-joining (NHEJ) pathway of DSB repair using an extrachromosomal plasmid-based repair assay in HAP1 cells. Notably, induction of a single DSB at a precise genomic location using a CRISPR/Cas9 lentiviral approach also showed the importance of αSyn in regulating NHEJ in HAP1 cells and primary mouse cortical neuron cultures. This modulation of DSB repair is regulated by the activity of the DNA damage response signaling kinase DNA-PKcs, since the effect of αSyn loss-of-function is reversed by DNA-PKcs inhibition. Together, these findings suggest that αSyn plays an important physiologic role in regulating DSB repair in both a transformed cell line and in primary cortical neurons. Loss of this nuclear function may contribute to the neuronal genomic instability detected in PD, PDD and LBD and points to DNA-PKcs as a potential therapeutic target.
Collapse
Affiliation(s)
- Elizabeth P Rose
- Jungers Center for Neurosciences Research, Oregon Health & Science University, Portland, OR 97239, United States of America; Neuroscience Graduate Program, Vollum Institute, Oregon Health & Science University, Portland, OR 97239, United States of America
| | - Valerie R Osterberg
- Jungers Center for Neurosciences Research, Oregon Health & Science University, Portland, OR 97239, United States of America
| | - Vera Gorbunova
- Departments of Biology and Medicine, University of Rochester, Rochester, NY 14620, United States of America
| | - Vivek K Unni
- Jungers Center for Neurosciences Research, Oregon Health & Science University, Portland, OR 97239, United States of America; OHSU Parkinson Center, Department of Neurology, Oregon Health & Science University, Portland, OR 97239, United States of America.
| |
Collapse
|
11
|
Poulidou V, Liampas I, Arnaoutoglou M, Dardiotis E, Siokas V. The Imbalance of Homocysteine, Vitamin B12 and Folic Acid in Parkinson Plus Syndromes: A Review beyond Parkinson Disease. Biomolecules 2024; 14:1213. [PMID: 39456145 PMCID: PMC11506381 DOI: 10.3390/biom14101213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/10/2024] [Accepted: 09/23/2024] [Indexed: 10/28/2024] Open
Abstract
While there is a link between homocysteine (Hcy), B12 and folic acid and neurodegeneration, especially in disorders like Parkinson's and Alzheimer's diseases, its role in Parkinson plus syndromes (PPS) has only been partially investigated. It appears that elevated Hcy, along with an imbalance of its essential vitamin cofactors, are both implicated in the development and progression of parkinsonian syndromes, which represent different disease pathologies, namely alpha-synucleinopathies and tauopathies. Attributing a potential pathogenetic role in hyperhomocysteinemia would be crucial in terms of improving the diagnostic and prognostic accuracy of these syndromes and also for providing a new target for possible therapeutic intervention. The scope of this review is to focus on vitamin imbalance in PPS, with a special emphasis on the role of Hcy, B12 and folic acid in the neurodegenerative process and their implication in the therapeutic approach of these disorders.
Collapse
Affiliation(s)
- Vasiliki Poulidou
- First Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, Stilponos Kyriakidi 1, 54636 Thessaloniki, Greece;
| | - Ioannis Liampas
- Department of Neurology, University Hospital of Larissa, School of Medicine, University of Thessaly, 41100 Larissa, Greece; (I.L.); (E.D.)
| | - Marianthi Arnaoutoglou
- Department of Clinical Neurophysiology, School of Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, Stilponos Kyriakidi 1, 54636 Thessaloniki, Greece;
| | - Efthimios Dardiotis
- Department of Neurology, University Hospital of Larissa, School of Medicine, University of Thessaly, 41100 Larissa, Greece; (I.L.); (E.D.)
| | - Vasileios Siokas
- Department of Neurology, University Hospital of Larissa, School of Medicine, University of Thessaly, 41100 Larissa, Greece; (I.L.); (E.D.)
| |
Collapse
|
12
|
Pradhan S, Bush K, Zhang N, Pandita RK, Tsai CL, Smith C, Pandlebury DF, Gaikwad S, Leonard F, Nie L, Tao A, Russell W, Yuan S, Choudhary S, Ramos KS, Elferink C, Wairkar YP, Tainer JA, Thompson LM, Pandita TK, Sarkar PS. Chromatin remodeler BRG1 recruits huntingtin to repair DNA double-strand breaks in neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.19.613927. [PMID: 39345557 PMCID: PMC11429940 DOI: 10.1101/2024.09.19.613927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Persistent DNA double-strand breaks (DSBs) are enigmatically implicated in neurodegenerative diseases including Huntington's disease (HD), the inherited late-onset disorder caused by CAG repeat elongations in Huntingtin (HTT). Here we combine biochemistry, computation and molecular cell biology to unveil a mechanism whereby HTT coordinates a Transcription-Coupled Non-Homologous End-Joining (TC-NHEJ) complex. HTT joins TC-NHEJ proteins PNKP, Ku70/80, and XRCC4 with chromatin remodeler Brahma-related Gene 1 (BRG1) to resolve transcription-associated DSBs in brain. HTT recruitment to DSBs in transcriptionally active gene- rich regions is BRG1-dependent while efficient TC-NHEJ protein recruitment is HTT-dependent. Notably, mHTT compromises TC-NHEJ interactions and repair activity, promoting DSB accumulation in HD tissues. Importantly, HTT or PNKP overexpression restores TC-NHEJ in a Drosophila HD model dramatically improving genome integrity, motor defects, and lifespan. Collective results uncover HTT stimulation of DSB repair by organizing a TC-NHEJ complex that is impaired by mHTT thereby implicating dysregulation of transcription-coupled DSB repair in mHTT pathophysiology. Highlights BRG1 recruits HTT and NHEJ components to transcriptionally active DSBs.HTT joins BRG1 and PNKP to efficiently repair transcription related DSBs in brain.Mutant HTT impairs the functional integrity of TC-NHEJ complex for DSB repair.HTT expression improves DSB repair, genome integrity and phenotypes in HD flies.
Collapse
|
13
|
Gąssowska-Dobrowolska M, Olech-Kochańczyk G, Culmsee C, Adamczyk A. Novel Insights into Parkin-Mediated Mitochondrial Dysfunction and "Mito-Inflammation" in α-Synuclein Toxicity. The Role of the cGAS-STING Signalling Pathway. J Inflamm Res 2024; 17:4549-4574. [PMID: 39011416 PMCID: PMC11249072 DOI: 10.2147/jir.s468609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/22/2024] [Indexed: 07/17/2024] Open
Abstract
The prevalence of age-related neurodegenerative diseases, such as Parkinson's disease (PD) and related disorders continues to grow worldwide. Increasing evidence links intracellular inclusions of misfolded alpha-synuclein (α-syn) aggregates, so-called Lewy bodies (LB) and Lewy neuritis, to the progressive pathology of PD and other synucleinopathies. Our previous findings established that α-syn oligomers induce S-nitrosylation and deregulation of the E3-ubiquitin ligase Parkin, leading to mitochondrial disturbances in neuronal cells. The accumulation of damaged mitochondria as a consequence, together with the release of mitochondrial-derived damage-associated molecular patterns (mtDAMPs) could activate the innate immune response and induce neuroinflammation ("mito-inflammation"), eventually accelerating neurodegeneration. However, the molecular pathways that transmit pro-inflammatory signals from damaged mitochondria are not well understood. One of the proposed pathways could be the cyclic GMP-AMP synthase (cGAS) - stimulator of interferon genes (STING) (cGAS-STING) pathway, which plays a pivotal role in modulating the innate immune response. It has recently been suggested that cGAS-STING deregulation may contribute to the development of various pathological conditions. Especially, its excessive engagement may lead to neuroinflammation and appear to be essential for the development of neurodegenerative brain diseases, including PD. However, the precise molecular mechanisms underlying cGAS-STING pathway activation in PD and other synucleinopathies are not fully understood. This review focuses on linking mitochondrial dysfunction to neuroinflammation in these disorders, particularly emphasizing the role of the cGAS-STING signaling. We propose the cGAS-STING pathway as a critical driver of inflammation in α-syn-dependent neurodegeneration and hypothesize that cGAS-STING-driven "mito-inflammation" may be one of the key mechanisms promoting the neurodegeneration in PD. Understanding the molecular mechanisms of α-syn-induced cGAS-STING-associated "mito-inflammation" in PD and related synucleinopathies may contribute to the identification of new targets for the treatment of these disorders.
Collapse
Affiliation(s)
| | - Gabriela Olech-Kochańczyk
- Department of Cellular Signalling, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Carsten Culmsee
- Institute of Pharmacology and Clinical Pharmacy, University of Marburg, Marburg, Germany
- Center for Mind Brain and Behavior - CMBB, University of Marburg, Marburg, Germany
| | - Agata Adamczyk
- Department of Cellular Signalling, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
14
|
Ahmed A, Kato N, Gautier J. Replication-Independent ICL Repair: From Chemotherapy to Cell Homeostasis. J Mol Biol 2024; 436:168618. [PMID: 38763228 PMCID: PMC11227339 DOI: 10.1016/j.jmb.2024.168618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/03/2024] [Accepted: 05/15/2024] [Indexed: 05/21/2024]
Abstract
Interstrand crosslinks (ICLs) are a type of covalent lesion that can prevent transcription and replication by inhibiting DNA strand separation and instead trigger cell death. ICL inducing compounds are commonly used as chemotherapies due to their effectiveness in inhibiting cell proliferation. Naturally occurring crosslinking agents formed from metabolic processes can also pose a challenge to genome stability especially in slowly or non-dividing cells. Cells maintain a variety of ICL repair mechanisms to cope with this stressor within and outside the S phase of the cell cycle. Here, we discuss the mechanisms of various replication-independent ICL repair pathways and how crosslink repair efficiency is tied to aging and disease.
Collapse
Affiliation(s)
- Arooba Ahmed
- Institute for Cancer Genetics, Columbia University Vagelos, College of Physicians and Surgeons, New York, NY, USA
| | - Niyo Kato
- Institute for Cancer Genetics, Columbia University Vagelos, College of Physicians and Surgeons, New York, NY, USA
| | - Jean Gautier
- Institute for Cancer Genetics, Columbia University Vagelos, College of Physicians and Surgeons, New York, NY, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Vagelos, College of Physicians and Surgeons, New York, NY, USA; Department of Genetics and Development, Columbia University Vagelos, College of Physicians and Surgeons, New York, NY, USA.
| |
Collapse
|
15
|
Currim F, Tanwar R, Brown-Leung JM, Paranjape N, Liu J, Sanders LH, Doorn JA, Cannon JR. Selective dopaminergic neurotoxicity modulated by inherent cell-type specific neurobiology. Neurotoxicology 2024; 103:266-287. [PMID: 38964509 PMCID: PMC11288778 DOI: 10.1016/j.neuro.2024.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/06/2024]
Abstract
Parkinson's disease (PD) is a debilitating neurodegenerative disease affecting millions of individuals worldwide. Hallmark features of PD pathology are the formation of Lewy bodies in neuromelanin-containing dopaminergic (DAergic) neurons of the substantia nigra pars compacta (SNpc), and the subsequent irreversible death of these neurons. Although genetic risk factors have been identified, around 90 % of PD cases are sporadic and likely caused by environmental exposures and gene-environment interaction. Mechanistic studies have identified a variety of chemical PD risk factors. PD neuropathology occurs throughout the brain and peripheral nervous system, but it is the loss of DAergic neurons in the SNpc that produce many of the cardinal motor symptoms. Toxicology studies have found specifically the DAergic neuron population of the SNpc exhibit heightened sensitivity to highly variable chemical insults (both in terms of chemical structure and mechanism of neurotoxic action). Thus, it has become clear that the inherent neurobiology of nigral DAergic neurons likely underlies much of this neurotoxic response to broad insults. This review focuses on inherent neurobiology of nigral DAergic neurons and how such neurobiology impacts the primary mechanism of neurotoxicity. While interactions with a variety of other cell types are important in disease pathogenesis, understanding how inherent DAergic biology contributes to selective sensitivity and primary mechanisms of neurotoxicity is critical to advancing the field. Specifically, key biological features of DAergic neurons that increase neurotoxicant susceptibility.
Collapse
Affiliation(s)
- Fatema Currim
- School of Health Sciences, Purdue University, West Lafayette, IN 47901, USA; Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47901, USA
| | - Reeya Tanwar
- School of Health Sciences, Purdue University, West Lafayette, IN 47901, USA; Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47901, USA
| | - Josephine M Brown-Leung
- School of Health Sciences, Purdue University, West Lafayette, IN 47901, USA; Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47901, USA
| | - Neha Paranjape
- Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA
| | - Jennifer Liu
- Departments of Neurology and Pathology, Duke University School of Medicine, Durham, NC 27710, USA; Duke Center for Neurodegeneration and Neurotherapeutics, Duke University School of Medicine, Durham, NC 27710, USA
| | - Laurie H Sanders
- Departments of Neurology and Pathology, Duke University School of Medicine, Durham, NC 27710, USA; Duke Center for Neurodegeneration and Neurotherapeutics, Duke University School of Medicine, Durham, NC 27710, USA
| | - Jonathan A Doorn
- Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA
| | - Jason R Cannon
- School of Health Sciences, Purdue University, West Lafayette, IN 47901, USA; Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47901, USA.
| |
Collapse
|
16
|
Hedlich-Dwyer J, Allard JS, Mulgrave VE, Kisby GE, Raber J, Gassman NR. Novel Techniques for Mapping DNA Damage and Repair in the Brain. Int J Mol Sci 2024; 25:7021. [PMID: 39000135 PMCID: PMC11241736 DOI: 10.3390/ijms25137021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/22/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
DNA damage in the brain is influenced by endogenous processes and metabolism along with exogenous exposures. Accumulation of DNA damage in the brain can contribute to various neurological disorders, including neurodegenerative diseases and neuropsychiatric disorders. Traditional methods for assessing DNA damage in the brain, such as immunohistochemistry and mass spectrometry, have provided valuable insights but are limited by their inability to map specific DNA adducts and regional distributions within the brain or genome. Recent advancements in DNA damage detection methods offer new opportunities to address these limitations and further our understanding of DNA damage and repair in the brain. Here, we review emerging techniques offering more precise and sensitive ways to detect and quantify DNA lesions in the brain or neural cells. We highlight the advancements and applications of these techniques and discuss their potential for determining the role of DNA damage in neurological disease.
Collapse
Affiliation(s)
- Jenna Hedlich-Dwyer
- Department of Pharmacology and Toxicology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Joanne S Allard
- Department of Physiology & Biophysics, Howard University College of Medicine, Washington, DC 20059, USA
| | - Veronica E Mulgrave
- Department of Physiology & Biophysics, Howard University College of Medicine, Washington, DC 20059, USA
| | - Glen E Kisby
- Department of Biomedical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Lebanon, OR 97355, USA
| | - Jacob Raber
- Department of Behavioral Neuroscience, Neurology, and Radiation Medicine, Division of Neuroscience, ONPRC, Oregon Health & Science University, Portland, OR 97239, USA
| | - Natalie R Gassman
- Department of Pharmacology and Toxicology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
17
|
Mansuri S, Jain A, Singh R, Rawat S, Mondal D, Raychaudhuri S. Widespread nuclear lamina injuries defeat proteostatic purposes of α-synuclein amyloid inclusions. J Cell Sci 2024; 137:jcs261935. [PMID: 38477372 DOI: 10.1242/jcs.261935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 03/03/2024] [Indexed: 03/14/2024] Open
Abstract
Biogenesis of inclusion bodies (IBs) facilitates protein quality control (PQC). Canonical aggresomes execute degradation of misfolded proteins while non-degradable amyloids sequester into insoluble protein deposits. Lewy bodies (LBs) are filamentous amyloid inclusions of α-synuclein, but PQC benefits and drawbacks associated with LB-like IBs remain underexplored. Here, we report that crosstalk between filamentous LB-like IBs and aggresome-like IBs of α-synuclein (Syn-aggresomes) buffer the load, aggregation state, and turnover of the amyloidogenic protein in mouse primary neurons and HEK293T cells. Filamentous LB-like IBs possess unorthodox PQC capacities of self-quarantining α-synuclein amyloids and being degradable upon receding fresh amyloidogenesis. Syn-aggresomes equilibrate biogenesis of filamentous LB-like IBs by facilitating spontaneous degradation of α-synuclein and conditional turnover of disintegrated α-synuclein amyloids. Thus, both types of IB primarily contribute to PQC. Incidentally, the overgrown perinuclear LB-like IBs become degenerative once these are misidentified by BICD2, a cargo-adapter for the cytosolic motor-protein dynein. Microscopy indicates that microtubules surrounding the perinuclear filamentous inclusions are also distorted, misbalancing the cytoskeleton-nucleoskeleton tension leading to widespread lamina injuries. Together, nucleocytoplasmic mixing, DNA damage, and deregulated transcription of stress chaperones defeat the proteostatic purposes of the filamentous amyloids of α-synuclein.
Collapse
Affiliation(s)
- Shemin Mansuri
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, India
| | - Aanchal Jain
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Richa Singh
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, India
| | - Shivali Rawat
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, India
| | - Debodyuti Mondal
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, India
| | - Swasti Raychaudhuri
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
18
|
Rose EP, Osterberg VR, Banga JS, Gorbunova V, Unni VK. Alpha-synuclein regulates the repair of genomic DNA double-strand breaks in a DNA-PK cs-dependent manner. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.29.582819. [PMID: 38496612 PMCID: PMC10942394 DOI: 10.1101/2024.02.29.582819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
α-synuclein (αSyn) is a presynaptic and nuclear protein that aggregates in important neurodegenerative diseases such as Parkinson's Disease (PD), Parkinson's Disease Dementia (PDD) and Lewy Body Dementia (LBD). Our past work suggests that nuclear αSyn may regulate forms of DNA double-strand break (DSB) repair in HAP1 cells after DNA damage induction with the chemotherapeutic agent bleomycin1. Here, we report that genetic deletion of αSyn specifically impairs the non-homologous end-joining (NHEJ) pathway of DSB repair using an extrachromosomal plasmid-based repair assay in HAP1 cells. Importantly, induction of a single DSB at a precise genomic location using a CRISPR/Cas9 lentiviral approach also showed the importance of αSyn in regulating NHEJ in HAP1 cells and primary mouse cortical neuron cultures. This modulation of DSB repair is dependent on the activity of the DNA damage response signaling kinase DNA-PKcs, since the effect of αSyn loss-of-function is reversed by DNA-PKcs inhibition. Using in vivo multiphoton imaging in mouse cortex after induction of αSyn pathology, we find an increase in longitudinal cell survival of inclusion-bearing neurons after Polo-like kinase (PLK) inhibition, which is associated with an increase in the amount of aggregated αSyn within inclusions. Together, these findings suggest that αSyn plays an important physiologic role in regulating DSB repair in both a transformed cell line and in primary cortical neurons. Loss of this nuclear function may contribute to the neuronal genomic instability detected in PD, PDD and DLB and points to DNA-PKcs and PLK as potential therapeutic targets.
Collapse
Affiliation(s)
- Elizabeth P. Rose
- Jungers Center for Neurosciences Research, Oregon Health & Science University, Portland, OR 97239
- Neuroscience Graduate Program, Vollum Institute, Oregon Health & Science University, Portland, OR 97239
| | - Valerie R. Osterberg
- Jungers Center for Neurosciences Research, Oregon Health & Science University, Portland, OR 97239
| | - Jovin S. Banga
- Jungers Center for Neurosciences Research, Oregon Health & Science University, Portland, OR 97239
| | - Vera Gorbunova
- Departments of Biology and Medicine, University of Rochester, Rochester, NY, 14620
| | - Vivek K. Unni
- Jungers Center for Neurosciences Research, Oregon Health & Science University, Portland, OR 97239
- OHSU Parkinson Center, Department of Neurology, Oregon Health & Science University, Portland, OR 97239
| |
Collapse
|
19
|
Hegde M, Vasquez V, Kodavati M, Mitra J, Vendula I, Hamilton D, Garruto R, Rao KS. Mitochondria-Targeted Oligomeric α-Synuclein Induces TOM40 Degradation and Mitochondrial Dysfunction in Parkinson's Disease and Parkinsonism-Dementia of Guam. RESEARCH SQUARE 2024:rs.3.rs-3970470. [PMID: 38464024 PMCID: PMC10925433 DOI: 10.21203/rs.3.rs-3970470/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Mitochondrial dysfunction is a central aspect of Parkinson's disease (PD) pathology, yet the underlying mechanisms are not fully understood. This study investigates the link between α-Synuclein (α-Syn) pathology and the loss of translocase of the outer mitochondrial membrane 40 (TOM40), unraveling its implications for mitochondrial dysfunctions in neurons. We discovered that TOM40 protein depletion occurs in the brains of patients with Guam Parkinsonism Dementia (Guam PD) and cultured neurons expressing α-Syn proteinopathy, notably, without corresponding changes in TOM40 mRNA levels. Cultured neurons expressing α-Syn mutants, with or without a mitochondria-targeting signal (MTS) underscore the role of α-Syn's mitochondrial localization in inducing TOM40 degradation. Parkinson's Disease related etiological factors, such as 6-hydroxy dopamine or ROS/metal ions stress, which promote α-Syn oligomerization, exacerbate TOM40 depletion in PD patient-derived cells with SNCA gene triplication. Although α-Syn interacts with both TOM40 and TOM20 in the outer mitochondrial membrane, degradation is selective for TOM40, which occurs via the ubiquitin-proteasome system (UPS) pathway. Our comprehensive analyses using Seahorse technology, mitochondrial DNA sequencing, and damage assessments, demonstrate that mutant α-Syn-induced TOM40 loss results in mitochondrial dysfunction, characterized by reduced membrane potential, accumulation of mtDNA damage, deletion/insertion mutations, and altered oxygen consumption rates. Notably, ectopic supplementation of TOM40 or reducing pathological forms of α-Syn using ADP-ribosylation inhibitors ameliorate these mitochondrial defects, suggesting potential therapeutic avenues. In conclusion, our findings provide crucial mechanistic insights into how α-Syn accumulation leads to TOM40 degradation and mitochondrial dysfunction, offering insights for targeted interventions to alleviate mitochondrial defects in PD.
Collapse
Affiliation(s)
| | | | | | - Joy Mitra
- Houston Methodist Research Institute
| | | | - Dale Hamilton
- Center for Bioenergetics, Houston Methodist Research Institute
| | | | | |
Collapse
|
20
|
Arnold MR, Cohn GM, Oxe KC, Elliott SN, Moore C, Laraia PV, Shekoohi S, Brownell D, Meshul CK, Witt SN, Larsen DH, Unni VK. Alpha-synuclein regulates nucleolar DNA double-strand break repair in melanoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.13.575526. [PMID: 38260370 PMCID: PMC10802588 DOI: 10.1101/2024.01.13.575526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Although an increased risk of the skin cancer melanoma in people with Parkinson's Disease (PD) has been shown in multiple studies, the mechanisms involved are poorly understood, but increased expression of the PD-associated protein alpha-synuclein (αSyn) in melanoma cells may be important. Our previous work suggests that αSyn can facilitate DNA double-strand break (DSB) repair, promoting genomic stability. We now show that αSyn is preferentially enriched within the nucleolus in the SK-MEL28 melanoma cell line, where it colocalizes with DNA damage markers and DSBs. Inducing DSBs specifically within nucleolar ribosomal DNA (rDNA) increases αSyn levels near sites of damage. αSyn knockout increases DNA damage within the nucleolus at baseline, after specific rDNA DSB induction, and prolongs the rate of recovery from this induced damage. αSyn is important downstream of ATM signaling to facilitate 53BP1 recruitment to DSBs, reducing micronuclei formation and promoting cellular proliferation, migration, and invasion.
Collapse
Affiliation(s)
- Moriah R. Arnold
- Medical Scientist Training Program, Oregon Health and Science University, Portland, OR, USA
- Department of Neurology and Jungers Center for Neurosciences Research, Oregon Health and Science University, Portland, OR, USA
| | - Gabriel M. Cohn
- Department of Molecular and Medical Genetics, School of Medicine, Oregon Health and Science University, Portland, OR, USA
| | - Kezia Catharina Oxe
- Danish Cancer Institute, Nucleolar Stress and Disease Group, Strandboulevarden 49, 2100 Copenhagen, Denmark
| | - Somarr N. Elliott
- Department of Neurology and Jungers Center for Neurosciences Research, Oregon Health and Science University, Portland, OR, USA
| | - Cynthia Moore
- Research Services, Neurocytology Laboratory, Veterans Affairs Medical Center, Portland, OR, USA
| | | | - Sahar Shekoohi
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Dillon Brownell
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR, USA
| | - Charles K. Meshul
- Research Services, Neurocytology Laboratory, Veterans Affairs Medical Center, Portland, OR, USA
- Departments of Behavioral Neuroscience and Pathology, Oregon Health and Science University, Portland, OR, USA
| | - Stephan N. Witt
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Dorthe H. Larsen
- Danish Cancer Institute, Nucleolar Stress and Disease Group, Strandboulevarden 49, 2100 Copenhagen, Denmark
| | - Vivek K. Unni
- Department of Neurology and Jungers Center for Neurosciences Research, Oregon Health and Science University, Portland, OR, USA
- OHSU Parkinson’s Center, Oregon Health and Science University, Portland, OR, USA
| |
Collapse
|
21
|
Weber MA, Kerr G, Thangavel R, Conlon MM, Gumusoglu SB, Gupta K, Abdelmotilib HA, Halhouli O, Zhang Q, Geerling JC, Narayanan NS, Aldridge GM. Alpha-Synuclein Pre-Formed Fibrils Injected into Prefrontal Cortex Primarily Spread to Cortical and Subcortical Structures. JOURNAL OF PARKINSON'S DISEASE 2024; 14:81-94. [PMID: 38189765 PMCID: PMC10836574 DOI: 10.3233/jpd-230129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/13/2023] [Indexed: 01/09/2024]
Abstract
BACKGROUND Parkinson's disease dementia (PDD) and dementia with Lewy bodies (DLB) are characterized by diffuse spread of alpha-synuclein (α-syn) throughout the brain. Patients with PDD and DLB have a neuropsychological pattern of deficits that include executive dysfunction, such as abnormalities in planning, timing, working memory, and behavioral flexibility. The prefrontal cortex (PFC) plays a major role in normal executive function and often develops α-syn aggregates in DLB and PDD. OBJECTIVE To investigate the long-term behavioral and cognitive consequences of α-syn pathology in the cortex and characterize pathological spread of α-syn. METHODS We injected human α-syn pre-formed fibrils into the PFC of wild-type male mice. We then assessed the behavioral and cognitive effects between 12- and 21-months post-injection and characterized the spread of pathological α-syn in cortical, subcortical, and brainstem regions. RESULTS We report that PFC PFFs: 1) induced α-syn aggregation in multiple cortical and subcortical regions with sparse aggregation in midbrain and brainstem nuclei; 2) did not affect interval timing or spatial learning acquisition but did mildly alter behavioral flexibility as measured by intraday reversal learning; and 3) increased open field exploration. CONCLUSIONS This model of cortical-dominant pathology aids in our understanding of how local α-syn aggregation might impact some symptoms in PDD and DLB.
Collapse
Affiliation(s)
- Matthew A. Weber
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Gemma Kerr
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Ramasamy Thangavel
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Mackenzie M. Conlon
- Medical Scientist Training Program, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Serena B. Gumusoglu
- Department of Obstetrics and Gynecology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA
| | - Kalpana Gupta
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Hisham A. Abdelmotilib
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Oday Halhouli
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Qiang Zhang
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Joel C. Geerling
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA
| | - Nandakumar S. Narayanan
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA
| | - Georgina M. Aldridge
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
22
|
Basu S, Song M, Adams L, Jeong I, Je G, Guhathakurta S, Jiang J, Boparai N, Dai W, Cardozo-Pelaez F, Tatulian SA, Han KY, Elliott J, Baum J, McLean PJ, Dickson DW, Kim YS. Transcriptional mutagenesis of α-synuclein caused by DNA oxidation in Parkinson's disease pathogenesis. Acta Neuropathol 2023; 146:685-705. [PMID: 37740734 PMCID: PMC10564827 DOI: 10.1007/s00401-023-02632-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 09/09/2023] [Accepted: 09/10/2023] [Indexed: 09/25/2023]
Abstract
Oxidative stress plays an essential role in the development of Parkinson's disease (PD). 8-oxo-7,8-dihydroguanine (8-oxodG, oxidized guanine) is the most abundant oxidative stress-mediated DNA lesion. However, its contributing role in underlying PD pathogenesis remains unknown. In this study, we hypothesized that 8-oxodG can generate novel α-synuclein (α-SYN) mutants with altered pathologic aggregation through a phenomenon called transcriptional mutagenesis (TM). We observed a significantly higher accumulation of 8-oxodG in the midbrain genomic DNA from PD patients compared to age-matched controls, both globally and region specifically to α-SYN. In-silico analysis predicted that forty-three amino acid positions can contribute to TM-derived α-SYN mutation. Here, we report a significantly higher load of TM-derived α-SYN mutants from the midbrain of PD patients compared to controls using a sensitive PCR-based technique. We found a novel Serine42Tyrosine (S42Y) α-SYN as the most frequently detected TM mutant, which incidentally had the highest predicted aggregation score amongst all TM variants. Immunohistochemistry of midbrain sections from PD patients using a newly characterized antibody for S42Y identified S42Y-laden Lewy bodies (LB). We further demonstrated that the S42Y TM variant significantly accelerates WT α-SYN aggregation by cell and recombinant protein-based assays. Cryo-electron tomography revealed that S42Y exhibits considerable conformational heterogeneity compared to WT fibrils. Moreover, S42Y exhibited higher neurotoxicity compared to WT α-SYN as shown in mouse primary cortical cultures and AAV-mediated overexpression in the substantia nigra of C57BL/6 J mice. To our knowledge, this is the first report describing the possible contribution of TM-generated mutations of α-SYN to LB formation and PD pathogenesis.
Collapse
Affiliation(s)
- Sambuddha Basu
- Burnett School of Biomedical Sciences, UCF College of Medicine, University of Central Florida, Orlando, FL, 32827, USA
| | - Minkyung Song
- Department of Neurology, Robert Wood Johnson Medical School, Institute for Neurological Therapeutics at Rutgers, Rutgers Biomedical and Health Sciences, 683 Hoes Lane West, Piscataway, NJ, 08854, USA
| | - Levi Adams
- Department of Neurology, Robert Wood Johnson Medical School, Institute for Neurological Therapeutics at Rutgers, Rutgers Biomedical and Health Sciences, 683 Hoes Lane West, Piscataway, NJ, 08854, USA
| | - Inhye Jeong
- Department of Neurology, Robert Wood Johnson Medical School, Institute for Neurological Therapeutics at Rutgers, Rutgers Biomedical and Health Sciences, 683 Hoes Lane West, Piscataway, NJ, 08854, USA
| | - Goun Je
- Burnett School of Biomedical Sciences, UCF College of Medicine, University of Central Florida, Orlando, FL, 32827, USA
| | - Subhrangshu Guhathakurta
- Burnett School of Biomedical Sciences, UCF College of Medicine, University of Central Florida, Orlando, FL, 32827, USA
| | - Jennifer Jiang
- Department of Cell Biology and Neuroscience, Institute for Quantitative Biomedicine, Rutgers University, Piscataway, NJ, 08854, USA
| | - Nikpreet Boparai
- Department of Cell Biology and Neuroscience, Institute for Quantitative Biomedicine, Rutgers University, Piscataway, NJ, 08854, USA
| | - Wei Dai
- Department of Cell Biology and Neuroscience, Institute for Quantitative Biomedicine, Rutgers University, Piscataway, NJ, 08854, USA
| | - Fernando Cardozo-Pelaez
- Center for Environmental Health Sciences, University of Montana, Missoula, MT, 59812, USA
- Center for Structural and Functional Neurosciences, University of Montana, Missoula, MT, 59812, USA
| | - Suren A Tatulian
- Department of Physics, University of Central Florida, Orlando, FL, 32816, USA
| | - Kyu Young Han
- CREOL, The College of Optics and Photonics, University of Central Florida, Orlando, FL, USA
| | - Jordan Elliott
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ, 08854, USA
| | - Jean Baum
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ, 08854, USA
| | - Pamela J McLean
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Rd, Jacksonville, FL, 32224, USA
| | - Dennis W Dickson
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Rd, Jacksonville, FL, 32224, USA
| | - Yoon-Seong Kim
- Department of Neurology, Robert Wood Johnson Medical School, Institute for Neurological Therapeutics at Rutgers, Rutgers Biomedical and Health Sciences, 683 Hoes Lane West, Piscataway, NJ, 08854, USA.
- Burnett School of Biomedical Sciences, UCF College of Medicine, University of Central Florida, Orlando, FL, 32827, USA.
| |
Collapse
|
23
|
Hu ML, Pan YR, Yong YY, Liu Y, Yu L, Qin DL, Qiao G, Law BYK, Wu JM, Zhou XG, Wu AG. Poly (ADP-ribose) polymerase 1 and neurodegenerative diseases: Past, present, and future. Ageing Res Rev 2023; 91:102078. [PMID: 37758006 DOI: 10.1016/j.arr.2023.102078] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 08/30/2023] [Accepted: 09/22/2023] [Indexed: 09/29/2023]
Abstract
Poly (ADP-ribose) polymerase 1 (PARP1) is a first responder that recognizes DNA damage and facilitates its repair. Neurodegenerative diseases, characterized by progressive neuron loss driven by various risk factors, including DNA damage, have increasingly shed light on the pivotal involvement of PARP1. During the early phases of neurodegenerative diseases, PARP1 experiences controlled activation to swiftly address mild DNA damage, thereby contributing to maintain brain homeostasis. However, in late stages, exacerbated PARP1 activation precipitated by severe DNA damage exacerbates the disease condition. Consequently, inhibition of PARP1 overactivation emerges as a promising therapeutic approach for neurodegenerative diseases. In this review, we comprehensively synthesize and explore the multifaceted role of PARP1 in neurodegenerative diseases, with a particular emphasis on its over-activation in the aggregation of misfolded proteins, dysfunction of the autophagy-lysosome pathway, mitochondrial dysfunction, neuroinflammation, and blood-brain barrier (BBB) injury. Additionally, we encapsulate the therapeutic applications and limitations intrinsic of PARP1 inhibitors, mainly including limited specificity, intricate pathway dynamics, constrained clinical translation, and the heterogeneity of patient cohorts. We also explore and discuss the potential synergistic implementation of these inhibitors alongside other agents targeting DNA damage cascades within neurodegenerative diseases. Simultaneously, we propose several recommendations for the utilization of PARP1 inhibitors within the realm of neurodegenerative disorders, encompassing factors like the disease-specific roles of PARP1, combinatorial therapeutic strategies, and personalized medical interventions. Lastly, the encompassing review presents a forward-looking perspective along with strategic recommendations that could guide future research endeavors in this field.
Collapse
Affiliation(s)
- Meng-Ling Hu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Yi-Ru Pan
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Yuan-Yuan Yong
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Yi Liu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Lu Yu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Da-Lian Qin
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Gan Qiao
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Betty Yuen-Kwan Law
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China
| | - Jian-Ming Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China.
| | - Xiao-Gang Zhou
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China.
| | - An-Guo Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China.
| |
Collapse
|
24
|
Geng Y, Long X, Zhang Y, Wang Y, You G, Guo W, Zhuang G, Zhang Y, Cheng X, Yuan Z, Zan J. FTO-targeted siRNA delivery by MSC-derived exosomes synergistically alleviates dopaminergic neuronal death in Parkinson's disease via m6A-dependent regulation of ATM mRNA. J Transl Med 2023; 21:652. [PMID: 37737187 PMCID: PMC10515429 DOI: 10.1186/s12967-023-04461-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/21/2023] [Indexed: 09/23/2023] Open
Abstract
BACKGROUND Parkinson's disease (PD), characterized by the progressive loss of dopaminergic neurons in the substantia nigra and striatum of brain, seriously threatens human health, and is still lack of effective treatment. Dysregulation of N6-methyladenosine (m6A) modification has been implicated in PD pathogenesis. However, how m6A modification regulates dopaminergic neuronal death in PD remains elusive. Mesenchymal stem cell-derived exosomes (MSC-Exo) have been shown to be effective for treating central nervous disorders. We thus propose that the m6A demethylase FTO-targeted siRNAs (si-FTO) may be encapsulated in MSC-Exo (Exo-siFTO) as a synergistic therapy against dopaminergic neuronal death in PD. METHODS In this study, the effect of m6A demethylase FTO on dopaminergic neuronal death was evaluated both in vivo and in vitro using a MPTP-treated mice model and a MPP + -induced MN9D cellular model, respectively. The mechanism through which FTO influences dopaminergic neuronal death in PD was investigated with qRT-PCR, western blot, immumohistochemical staining, immunofluorescent staining and flow cytometry. The therapeutic roles of MSC-Exo containing si-FTO were examined in PD models in vivo and in vitro. RESULTS The total m6A level was significantly decreased and FTO expression was increased in PD models in vivo and in vitro. FTO was found to promote the expression of cellular death-related factor ataxia telangiectasia mutated (ATM) via m6A-dependent stabilization of ATM mRNA in dopaminergic neurons. Knockdown of FTO by si-FTO concomitantly suppressed upregulation of α-Synuclein (α-Syn) and downregulation of tyrosine hydroxylase (TH), and alleviated neuronal death in PD models. Moreover, MSC-Exo were utilized to successfully deliver si-FTO to the striatum of animal brain, resulting in the significant suppression of α-Syn expression and dopaminergic neuronal death, and recovery of TH expression in the brain of PD mice. CONCLUSIONS MSC-Exo delivery of si-FTO synergistically alleviates dopaminergic neuronal death in PD via m6A-dependent regulation of ATM mRNA.
Collapse
Affiliation(s)
- Yan Geng
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
| | - Xinyi Long
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yuting Zhang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yupeng Wang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
| | - Guoxing You
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
| | - Wenjie Guo
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
| | - Gaoming Zhuang
- Department of Radiology, Guangzhou Panyu Central Hospital, Guangzhou, 511400, China
| | - Yuanyuan Zhang
- The affiliated TCM Hospital of Guangzhou Medical University, Guangzhou, 510130, China.
| | - Xiao Cheng
- State Key Laboratory of Dampness, Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.
- Provincial Key Laboratory of Research on Emergency in TCM, Guangzhou, China.
- Department of Neurology, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, 510120, China.
| | - Zhengqiang Yuan
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China.
| | - Jie Zan
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
25
|
Redhya M, Sathesh Kumar K. Refining PD classification through ensemble bionic machine learning architecture with adaptive threshold based image denoising. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2023.104870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
26
|
Wong ET, Rosenberg H, Dawood O, Hertan L, Vega RA, Anderson M, Uhlmann EJ. Lewy body disease as a potential negative outcome modifier of glioblastoma treatment: a case report. BMC Neurol 2023; 23:257. [PMID: 37403078 DOI: 10.1186/s12883-023-03313-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/16/2023] [Indexed: 07/06/2023] Open
Abstract
BACKGROUND Elderly patients with glioblastoma are particularly susceptible to the adverse effects of ionizing radiation to the brain. This population also has an increasing prevalence of dementia in the successive seventh, eighth and nineth decade of life, and dementia with Lewy bodies is characterized by pathologic α-synucleins, proteins that take part in neuronal DNA damage repair. CASE PRESENTATION We report a 77-year-old man, with a history of coronary artery disease and mild cognitive impairment, who experienced subacute behavioral changes over 3 months with wording-finding difficulty, memory loss, confusion, perseveration, and irritable mood. Neuroimaging studies disclosed a 2.5 × 2.4 × 2.7 cm cystic enhancing mass with central necrosis in the left temporal lobe of the brain. Gross total resection of the tumor revealed IDH-1 wild-type glioblastoma. After treatment with radiation and temozolomide chemotherapy, his cognitive status deteriorated rapidly, and he died from unexpected sudden death 2 months after radiation. Autopsy of his brain revealed (i) tumor cells with atypical nuclei and small lymphocytes, (ii) neuronal cytoplasmic inclusions and Lewy bodies that were positive for α-synuclein in the midbrain, pons, amygdala, putamen and globus pallidus, and (iii) no amyloid plaques and only rare neurofibrillary tangles near the hippocampi. CONCLUSIONS This patient most likely had pre-clinical limbic subtype of dementia with Lewy bodies prior to his diagnosis of glioblastoma. The radiation and temozolomide that was used to treat his tumor may have accelerated neuronal damage due to induction of DNA breakage when his brain was already compromised by pathologic α-synucleins. α-Synucleinopathy could be a negative outcome modifier in glioblastoma patients.
Collapse
Affiliation(s)
- Eric T Wong
- Brain Tumor Center & Neuro-Oncology Unit, Department of Neurology, Beth Israel Deaconess Medical Center, 330 Brookline Ave, Boston, 02215, United States.
- Department of Neurology, Medicine (Division of Hematology/Oncology), Neurosurgery & Radiation Oncology, Rhode Island Hospital, 593 Eddy St, Providence, 02903, United States.
| | - Harry Rosenberg
- Division of Neuropathology, Department of Pathology, Beth Israel Deaconess Medical Center, 330 Brookline Ave, Boston, 02215, United States
| | - Olivia Dawood
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, 330 Brookline Ave, Boston, 02215, United States
| | - Lauren Hertan
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, 330 Brookline Ave, Boston, 02215, United States
| | - Rafael A Vega
- Division of Neurosurgery, Department of Surgery, Beth Israel Deaconess Medical Center, 330 Brookline Ave, Boston, 02215, United States
| | - Matthew Anderson
- Division of Neuropathology, Department of Pathology, Beth Israel Deaconess Medical Center, 330 Brookline Ave, Boston, 02215, United States
- Present Address: Regeneron Pharmaceutical Company, 777 Old Saw Mill Rive Road, Tarrytown, NY, 10591, United States
| | - Erik J Uhlmann
- Brain Tumor Center & Neuro-Oncology Unit, Department of Neurology, Beth Israel Deaconess Medical Center, 330 Brookline Ave, Boston, 02215, United States
| |
Collapse
|
27
|
Lu Y, Gao X, Nan Y, Mohammed SA, Fu J, Wang T, Wang C, Yuan C, Lu F, Liu S. Acanthopanax senticosus Harms improves Parkinson's disease by regulating gut microbial structure and metabolic disorders. Heliyon 2023; 9:e18045. [PMID: 37496895 PMCID: PMC10366437 DOI: 10.1016/j.heliyon.2023.e18045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 07/28/2023] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease, with an increasing prevalence as the population ages, posing a serious threat to human health, but the pathogenesis remains uncertain. Acanthopanax senticosus (Rupr. et Maxim.) Harms (ASH) (aqueous ethanol extract), a Chinese herbal medicine, provides obvious and noticeable therapeutic effects on PD. To further investigate the ASH's mechanism of action in treating PD, the structural and functional gut microbiota, as well as intestinal metabolite before and after ASH intervention in the PD mice model, were examined utilizing metagenomics and fecal metabolomics analysis. α-syn transgenic mice were randomly divided into a model and ASH groups, with C57BL/6 mice as a control. The ASH group was gavaged with ASH (45.5 mg/kg/d for 20d). The time of pole climbing and autonomous activity were used to assess motor ability. The gut microbiota's structure, composition, and function were evaluated using Illumina sequencing. Fecal metabolites were identified using UHPLC-MS/MS to construct intestinal metabolites. The findings of this experiment demonstrate that ASH may reduce the climbing time of PD model mice while increasing the number of autonomous movements. The results of metagenomics analysis revealed that ASH could up-regulated Firmicutes and down-regulated Actinobacteria at the phylum level, while Clostridium was up-regulated and Akkermansia was down-regulated at the genus level; it could also recall 49 species from the phylum Firmicutes, Actinobacteria, and Tenericutes. Simultaneously, metabolomics analysis revealed that alpha-Linolenic acid metabolism might be a key metabolic pathway for ASH to impact in PD. Furthermore, metagenomics function analysis and metabolic pathway enrichment analysis revealed that ASH might influence unsaturated fatty acid synthesis and purine metabolism pathways. These metabolic pathways are connected to ALA, Palmitic acid, Adenine, and 16 species of Firmicutes, Actinobacteria, and Tenericutes. Finally, these results indicate that ASH may alleviate the movement disorder of the PD model, which may be connected to the regulation of gut microbiota structure and function as well as the modulation of metabolic disorders by ASH.
Collapse
Affiliation(s)
- Yi Lu
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Xin Gao
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Yang Nan
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Shadi A.D. Mohammed
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
- School of Pharmacy, Lebanese International University, 18644, Sana’a, Yemen
| | - Jiaqi Fu
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Tianyu Wang
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Chongzhi Wang
- Tang Center for Herbal Medicine Research, and Department of Anesthesia and Critical Care, University of Chicago, Chicago, USA
| | - Chunsu Yuan
- Tang Center for Herbal Medicine Research, and Department of Anesthesia and Critical Care, University of Chicago, Chicago, USA
| | - Fang Lu
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Shumin Liu
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| |
Collapse
|
28
|
Martinez-Banaclocha MA. Targeting the Cysteine Redox Proteome in Parkinson's Disease: The Role of Glutathione Precursors and Beyond. Antioxidants (Basel) 2023; 12:1373. [PMID: 37507913 PMCID: PMC10376658 DOI: 10.3390/antiox12071373] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 06/22/2023] [Accepted: 06/28/2023] [Indexed: 07/30/2023] Open
Abstract
Encouraging recent data on the molecular pathways underlying aging have identified variants and expansions of genes associated with DNA replication and repair, telomere and stem cell maintenance, regulation of the redox microenvironment, and intercellular communication. In addition, cell rejuvenation requires silencing some transcription factors and the activation of pluripotency, indicating that hidden molecular networks must integrate and synchronize all these cellular mechanisms. Therefore, in addition to gene sequence expansions and variations associated with senescence, the optimization of transcriptional regulation and protein crosstalk is essential. The protein cysteinome is crucial in cellular regulation and plays unexpected roles in the aging of complex organisms, which show cumulative somatic mutations, telomere attrition, epigenetic modifications, and oxidative dysregulation, culminating in cellular senescence. The cysteine thiol groups are highly redox-active, allowing high functional versatility as structural disulfides, redox-active disulfides, active-site nucleophiles, proton donors, and metal ligands to participate in multiple regulatory sites in proteins. Also, antioxidant systems control diverse cellular functions, including the transcription machinery, which partially depends on the catalytically active cysteines that can reduce disulfide bonds in numerous target proteins, driving their biological integration. Since we have previously proposed a fundamental role of cysteine-mediated redox deregulation in neurodegeneration, we suggest that cellular rejuvenation of the cysteine redox proteome using GSH precursors, like N-acetyl-cysteine, is an underestimated multitarget therapeutic approach that would be particularly beneficial in Parkinson's disease.
Collapse
|
29
|
Weber MA, Kerr G, Thangavel R, Conlon MM, Abdelmotilib HA, Halhouli O, Zhang Q, Geerling JC, Narayanan NS, Aldridge GM. Alpha-synuclein pre-formed fibrils injected into prefrontal cortex primarily spread to cortical and subcortical structures and lead to isolated behavioral symptoms. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.31.526365. [PMID: 36778400 PMCID: PMC9915664 DOI: 10.1101/2023.01.31.526365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Parkinson's disease dementia (PDD) and dementia with Lewy bodies (DLB) are characterized by diffuse spread of alpha-synuclein (α-syn) throughout the brain. Patients with PDD and DLB have a neuropsychological pattern of deficits that include executive dysfunction, such as abnormalities in planning, timing, working memory, and behavioral flexibility. The prefrontal cortex (PFC) plays a major role in normal executive function and often develops α-syn aggregates in DLB and PDD. To investigate the consequences of α-syn pathology in the cortex, we injected human α-syn pre-formed fibrils into the PFC of wildtype mice. We report that PFC PFFs: 1) induced α-syn aggregation in multiple cortical and subcortical regions with sparse aggregation in midbrain and brainstem nuclei; 2) did not affect interval timing or spatial learning acquisition but did mildly alter behavioral flexibility as measured by intraday reversal learning; 3) increased open field exploration; and 4) did not affect susceptibility to an inflammatory challenge. This model of cortical-dominant pathology aids in our understanding of how local α-syn aggregation might impact some symptoms in PDD and DLB.
Collapse
Affiliation(s)
- Matthew A. Weber
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City
| | - Gemma Kerr
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City
| | - Ramasamy Thangavel
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City
| | - Mackenzie M. Conlon
- Medical Scientist Training Program, Carver College of Medicine, University of Iowa, Iowa City
| | | | - Oday Halhouli
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City
| | - Qiang Zhang
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City
| | - Joel C. Geerling
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City
| | | | - Georgina M. Aldridge
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City
| |
Collapse
|
30
|
Wang ZX, Liu Y, Li YL, Wei Q, Lin RR, Kang R, Ruan Y, Lin ZH, Xue NJ, Zhang BR, Pu JL. Nuclear DJ-1 Regulates DNA Damage Repair via the Regulation of PARP1 Activity. Int J Mol Sci 2023; 24:ijms24108651. [PMID: 37239999 DOI: 10.3390/ijms24108651] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/03/2023] [Accepted: 04/06/2023] [Indexed: 05/28/2023] Open
Abstract
DNA damage and defective DNA repair are extensively linked to neurodegeneration in Parkinson's disease (PD), but the underlying molecular mechanisms remain poorly understood. Here, we determined that the PD-associated protein DJ-1 plays an essential role in modulating DNA double-strand break (DSB) repair. Specifically, DJ-1 is a DNA damage response (DDR) protein that can be recruited to DNA damage sites, where it promotes DSB repair through both homologous recombination and nonhomologous end joining. Mechanistically, DJ-1 interacts directly with PARP1, a nuclear enzyme essential for genomic stability, and stimulates its enzymatic activity during DNA repair. Importantly, cells from PD patients with the DJ-1 mutation also have defective PARP1 activity and impaired repair of DSBs. In summary, our findings uncover a novel function of nuclear DJ-1 in DNA repair and genome stability maintenance, and suggest that defective DNA repair may contribute to the pathogenesis of PD linked to DJ-1 mutations.
Collapse
Affiliation(s)
- Zhong-Xuan Wang
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Yi Liu
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Yao-Lin Li
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Qiao Wei
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Rong-Rong Lin
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Ruiqing Kang
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Yang Ruan
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Zhi-Hao Lin
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Nai-Jia Xue
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Bao-Rong Zhang
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Jia-Li Pu
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| |
Collapse
|
31
|
Shadfar S, Parakh S, Jamali MS, Atkin JD. Redox dysregulation as a driver for DNA damage and its relationship to neurodegenerative diseases. Transl Neurodegener 2023; 12:18. [PMID: 37055865 PMCID: PMC10103468 DOI: 10.1186/s40035-023-00350-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/16/2023] [Indexed: 04/15/2023] Open
Abstract
Redox homeostasis refers to the balance between the production of reactive oxygen species (ROS) as well as reactive nitrogen species (RNS), and their elimination by antioxidants. It is linked to all important cellular activities and oxidative stress is a result of imbalance between pro-oxidants and antioxidant species. Oxidative stress perturbs many cellular activities, including processes that maintain the integrity of DNA. Nucleic acids are highly reactive and therefore particularly susceptible to damage. The DNA damage response detects and repairs these DNA lesions. Efficient DNA repair processes are therefore essential for maintaining cellular viability, but they decline considerably during aging. DNA damage and deficiencies in DNA repair are increasingly described in age-related neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis and Huntington's disease. Furthermore, oxidative stress has long been associated with these conditions. Moreover, both redox dysregulation and DNA damage increase significantly during aging, which is the biggest risk factor for neurodegenerative diseases. However, the links between redox dysfunction and DNA damage, and their joint contributions to pathophysiology in these conditions, are only just emerging. This review will discuss these associations and address the increasing evidence for redox dysregulation as an important and major source of DNA damage in neurodegenerative disorders. Understanding these connections may facilitate a better understanding of disease mechanisms, and ultimately lead to the design of better therapeutic strategies based on preventing both redox dysregulation and DNA damage.
Collapse
Affiliation(s)
- Sina Shadfar
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Macquarie University, Sydney, NSW, 2109, Australia.
| | - Sonam Parakh
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Macquarie University, Sydney, NSW, 2109, Australia
| | - Md Shafi Jamali
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Macquarie University, Sydney, NSW, 2109, Australia
| | - Julie D Atkin
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Macquarie University, Sydney, NSW, 2109, Australia.
- La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Melbourne, VIC, 3086, Australia.
| |
Collapse
|
32
|
Wang ZX, Li YL, Pu JL, Zhang BR. DNA Damage-Mediated Neurotoxicity in Parkinson’s Disease. Int J Mol Sci 2023; 24:ijms24076313. [PMID: 37047285 PMCID: PMC10093980 DOI: 10.3390/ijms24076313] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Parkinson’s disease (PD) is the second most common neurodegenerative disease around the world; however, its pathogenesis remains unclear so far. Recent advances have shown that DNA damage and repair deficiency play an important role in the pathophysiology of PD. There is growing evidence suggesting that DNA damage is involved in the propagation of cellular damage in PD, leading to neuropathology under different conditions. Here, we reviewed the current work on DNA damage repair in PD. First, we outlined the evidence and causes of DNA damage in PD. Second, we described the potential pathways by which DNA damage mediates neurotoxicity in PD and discussed the precise mechanisms that drive these processes by DNA damage. In addition, we looked ahead to the potential interventions targeting DNA damage and repair. Finally, based on the current status of research, key problems that need to be addressed in future research were proposed.
Collapse
Affiliation(s)
| | | | - Jia-Li Pu
- Correspondence: (J.-L.P.); (B.-R.Z.); Tel./Fax: +86-571-87784752 (J.-L.P. & B.-R.Z.)
| | - Bao-Rong Zhang
- Correspondence: (J.-L.P.); (B.-R.Z.); Tel./Fax: +86-571-87784752 (J.-L.P. & B.-R.Z.)
| |
Collapse
|
33
|
Ma C, Liu Y, Li S, Ma C, Huang J, Wen S, Yang S, Wang B. Microglial cGAS drives neuroinflammation in the MPTP mouse models of Parkinson's disease. CNS Neurosci Ther 2023. [PMID: 36914567 DOI: 10.1111/cns.14157] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/22/2023] [Accepted: 02/22/2023] [Indexed: 03/16/2023] Open
Abstract
BACKGROUND Neuroinflammation has been widely accepted as a cause of the degenerative process. Increasing interest has been devoted to developing intervening therapeutics for preventing neuroinflammation in Parkinson's disease (PD). It is well known that virus infections, including DNA viruses, are associated with an increased risk of PD. In addition, damaged or dying dopaminergic neurons can release dsDNA during PD progression. However, the role of cGAS, a cytosolic dsDNA sensor, in PD progression remains unclear. METHODS Adult male wild-type mice and age-matched male cGAS knockout (cGas-/- ) mice were treated with MPTP to induce neurotoxic PD model, and then behavioral tests, immunohistochemistry, and ELISA were conducted to compare disease phenotype. Chimeric mice were reconstituted to explore the effects of cGAS deficiency in peripheral immune cells or CNS resident cells on MPTP-induced toxicity. RNA sequencing was used to dissect the mechanistic role of microglial cGAS in MPTP-induced toxicity. cGAS inhibitor administration was conducted to study whether GAS may serve as a therapeutic target. RESULTS We observed that the cGAS-STING pathway was activated during neuroinflammation in MPTP mouse models of PD. cGAS deficiency in microglia, but not peripheral immune cells, controlled neuroinflammation and neurotoxicity induced by MPTP. Mechanistically, microglial cGAS ablation alleviated the neuronal dysfunction and inflammatory response in astrocytes and microglia by inhibiting antiviral inflammatory signaling. Additionally, the administration of cGAS inhibitors conferred the mice neuroprotection during MPTP exposure. CONCLUSIONS Collectively, these findings demonstrate microglial cGAS promote neuroinflammation and neurodegeneration during the progression of MPTP-induced PD mouse models and suggest cGAS may serve as a therapeutic target for PD patients. LIMITATIONS OF THE STUDY Although we demonstrated that cGAS promotes the progression of MPTP-induced PD, this study has limitations. We identified that cGAS in microglia accelerate disease progression of PD by using bone marrow chimeric experiments and analyzing cGAS expression in CNS cells, but evidence would be more straightforward if conditional knockout mice were used. This study contributed to the knowledge of the role of the cGAS pathway in PD pathogenesis; nevertheless, trying more PD animal models in the future will help us to understand the disease progression deeper and explore possible treatments.
Collapse
Affiliation(s)
- Chunmei Ma
- Department of Immunology, State Key Laboratory of Reproductive Medicine, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Gusu School, Nanjing Medical University, Nanjing, China
| | - Ying Liu
- Department of Pharmacology, Nanjing University of Chinese Medicine, Nanjing, China
| | - Sheng Li
- Department of Immunology, State Key Laboratory of Reproductive Medicine, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Gusu School, Nanjing Medical University, Nanjing, China.,Department of Laboratory Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Chanyuan Ma
- Department of Immunology, State Key Laboratory of Reproductive Medicine, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Gusu School, Nanjing Medical University, Nanjing, China
| | - Jiajia Huang
- Department of Pharmacology, Nanjing University of Chinese Medicine, Nanjing, China
| | - Shuang Wen
- Department of Immunology, State Key Laboratory of Reproductive Medicine, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Gusu School, Nanjing Medical University, Nanjing, China
| | - Shuo Yang
- Department of Immunology, State Key Laboratory of Reproductive Medicine, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Gusu School, Nanjing Medical University, Nanjing, China
| | - Bingwei Wang
- Department of Pharmacology, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
34
|
Agborbesong E, Zhou JX, Li LX, Harris PC, Calvet JP, Li X. Prdx5 regulates DNA damage response through autophagy-dependent Sirt2-p53 axis. Hum Mol Genet 2023; 32:567-579. [PMID: 36067023 PMCID: PMC9896474 DOI: 10.1093/hmg/ddac218] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/15/2022] [Accepted: 08/26/2022] [Indexed: 02/07/2023] Open
Abstract
DNA damage response (DDR) is an important signaling-transduction network that promotes the repair of DNA lesions which can induce and/or support diseases. However, the mechanisms involved in its regulation are not fully understood. Recent studies suggest that the peroxiredoxin 5 (Prdx5) enzyme, which detoxifies reactive oxygen species, is associated to genomic instability and signal transduction. Its role in the regulation of DDR, however, is not well characterized. In this study, we demonstrate a role of Prdx5 in the regulation of the DDR signaling pathway. Knockdown of Prdx5 resulted in DNA damage manifested by the induction of phosphorylated histone H2AX (γ-H2AX) and p53-binding protein 1 (53BP1). We show that Prdx5 regulates DDR through (1) polo-like kinase 1 (Plk1) mediated phosphorylation of ataxia telangiectasia mutated (ATM) kinase to further trigger downstream mediators Chek1 and Chek2; (2) the increase of the acetylation of p53 at lysine 382, stabilizing p53 in the nucleus and enhancing transcription and (3) the induction of autophagy, which regulates the recycling of molecules involved in DDR. We identified Sirt2 as a novel deacetylase of p53 at lysine 382, and Sirt2 regulated the acetylation status of p53 at lysine 382 in a Prdx5-dependent manner. Furthermore, we found that exogenous expression of Prdx5 decreased DNA damage and the activation of ATM in Pkd1 mutant renal epithelial cells, suggesting that Prdx5 may play a protective role from DNA damage in cystic renal epithelial cells. This study identified a novel mechanism of Prdx5 in the regulation of DDR through the ATM/p53/Sirt2 signaling cascade.
Collapse
Affiliation(s)
- Ewud Agborbesong
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Julie X Zhou
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Linda X Li
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Peter C Harris
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - James P Calvet
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Xiaogang Li
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
35
|
Tian Y, Chen R, Su Z. HMGB1 is a Potential and Challenging Therapeutic Target for Parkinson's Disease. Cell Mol Neurobiol 2023; 43:47-58. [PMID: 34797463 PMCID: PMC11415213 DOI: 10.1007/s10571-021-01170-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 11/14/2021] [Indexed: 01/07/2023]
Abstract
Parkinson's disease (PD) is one of the most common degenerative diseases of the human nervous system and has a wide range of serious impacts on human health and quality of life. Recently, research targeting high mobility group box 1 (HMGB1) in PD has emerged, and a variety of laboratory methods for inhibiting HMGB1 have achieved good results to a certain extent. However, given that HMGB1 undergoes a variety of intracellular modifications and three different forms of extracellular redox, the possible roles of these forms in PD are likely to be different. General inhibition of all forms of HMGB1 is obviously not ideal and has become one of the biggest obstacles in the clinical application of targeting HMGB1. In this review, pure mechanistic research of HMGB1 and in vivo research targeting HMGB1 were combined, the effects of HMGB1 on neurons and immune cell responses in PD are discussed in detail, and the problems that need to be focused on in the future are addressed.
Collapse
Affiliation(s)
- Yu Tian
- International Genome Center, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Rong Chen
- International Genome Center, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Zhaoliang Su
- International Genome Center, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China.
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
36
|
Zeng F, Parker K, Zhan Y, Miller M, Zhu MY. Upregulated DNA Damage-Linked Biomarkers in Parkinson's Disease Model Mice. ASN Neuro 2023; 15:17590914231152099. [PMID: 36683340 PMCID: PMC9880594 DOI: 10.1177/17590914231152099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 12/31/2022] [Accepted: 01/03/2023] [Indexed: 01/24/2023] Open
Abstract
SUMMARY STATEMENT The present study examined expression of DNA damage markers in VMAT2 Lo PD model mice. The results demonstrate there is a significant increase in these DNA damage markers mostly in the brain regions of 18- and 23-month-old model mice, indicating oxidative stress-induced DNA lesion is an important pathologic feature of this mouse model.
Collapse
Affiliation(s)
- Fei Zeng
- Department of Neurology, Renmin Hospital of the Wuhan University,
Wuhan, China
- Departments of Biomedical Sciences, Quillen College of Medicine, East Tennessee State
University, Johnson City, TN, USA
| | - Karsten Parker
- Departments of Biomedical Sciences, Quillen College of Medicine, East Tennessee State
University, Johnson City, TN, USA
| | - Yanqiang Zhan
- Department of Neurology, Renmin Hospital of the Wuhan University,
Wuhan, China
- Departments of Biomedical Sciences, Quillen College of Medicine, East Tennessee State
University, Johnson City, TN, USA
| | - Matthew Miller
- Departments of Biomedical Sciences, Quillen College of Medicine, East Tennessee State
University, Johnson City, TN, USA
| | - Meng-Yang Zhu
- Departments of Biomedical Sciences, Quillen College of Medicine, East Tennessee State
University, Johnson City, TN, USA
| |
Collapse
|
37
|
Pan Y, Zong Q, Li G, Wu Z, Du T, Huang Z, Zhang Y, Ma K. Nuclear localization of alpha-synuclein affects the cognitive and motor behavior of mice by inducing DNA damage and abnormal cell cycle of hippocampal neurons. Front Mol Neurosci 2022; 15:1015881. [PMID: 36438187 PMCID: PMC9684191 DOI: 10.3389/fnmol.2022.1015881] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/24/2022] [Indexed: 01/21/2024] Open
Abstract
Nuclear accumulation of alpha-synuclein (α-syn) in neurons can promote neurotoxicity, which is considered the key factor in the pathogenesis of synucleinopathy. The damage to hippocampus neurons driven by α-syn pathology is also the potential cause of memory impairment in Parkinson's disease (PD) patients. In this study, we examined the role of α-syn nuclear translocation in the cognition and motor ability of mice by overexpressing α-syn in cell nuclei in the hippocampus. The results showed that the overexpression of α-syn in nuclei was able to cause significant pathological accumulation of α-syn in the hippocampus, and quickly lead to memory and motor impairments in mice. It might be that nuclear overexpression of α-syn may cause DNA damage of hippocampal neurons, thereby leading to activation and abnormal blocking of cell cycle, and further inducing apoptosis of hippocampal neurons and inflammatory reaction. Meanwhile, the inflammatory reaction further aggravated DNA damage and formed a vicious circle. Therefore, the excessive nuclear translocation of α-syn in hippocampal neurons may be one of the main reasons for cognitive decline in mice.
Collapse
Affiliation(s)
| | | | | | | | | | - Zhangqiong Huang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Ying Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Kaili Ma
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| |
Collapse
|
38
|
Aditi, McKinnon PJ. Genome integrity and inflammation in the nervous system. DNA Repair (Amst) 2022; 119:103406. [PMID: 36148701 PMCID: PMC9844216 DOI: 10.1016/j.dnarep.2022.103406] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/10/2022] [Accepted: 09/12/2022] [Indexed: 01/19/2023]
Abstract
Preservation of genomic integrity is crucial for nervous system development and function. DNA repair deficiency results in several human diseases that are characterized by both neurodegeneration and neuroinflammation. Recent research has highlighted a role for compromised genomic integrity as a key factor driving neuropathology and triggering innate immune signaling to cause inflammation. Here we review the mechanisms by which DNA damage engages innate immune signaling and how this may promote neurological disease. We also consider the contributions of different neural cell types towards DNA damage-driven neuroinflammation. A deeper knowledge of genome maintenance mechanisms that prevent aberrant immune activation in neural cells will guide future therapies to ameliorate neurological disease.
Collapse
Affiliation(s)
- Aditi
- Center for Pediatric Neurological Disease Research, St. Jude Pediatric Translational Neuroscience Initiative, Dept. Cell & Mol. Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Peter J McKinnon
- Center for Pediatric Neurological Disease Research, St. Jude Pediatric Translational Neuroscience Initiative, Dept. Cell & Mol. Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
39
|
Li YL, Wang ZX, Ying CZ, Zhang BR, Pu JL. Decoding the Role of Familial Parkinson's Disease-Related Genes in DNA Damage and Repair. Aging Dis 2022; 13:1405-1412. [PMID: 36186134 PMCID: PMC9466978 DOI: 10.14336/ad.2022.0216] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 02/16/2022] [Indexed: 11/01/2022] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disease characterized by the degeneration of midbrain substantia nigra pars compacta dopaminergic neurons and the formation of Lewy bodies. Over the years, researchers have gained extensive knowledge about dopaminergic neuron degeneration from the perspective of the environmental and disease-causing genetic factors; however, there is still no disease-modifying therapy. Aging has long been recognized as a major risk factor for PD; however, little is known about how aging contributes to the disease development. Genome instability is the main driving force behind aging, and has been poorly studied in patients with PD. Here, we summarize the evidence for nuclear DNA damage in PD. We also discuss the molecular mechanisms of nuclear DNA damage and repair in PD, especially from the perspective of familial PD-related mutant genes. Understanding the significance of DNA damage and repair may provide new potential intervention targets for treating PD.
Collapse
Affiliation(s)
- Yao-Lin Li
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China
| | - Zhong-Xuan Wang
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China
| | - Chang-Zhou Ying
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China
| | - Bao-Rong Zhang
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China
| | - Jia-Li Pu
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China
| |
Collapse
|
40
|
Savu DI, Moisoi N. Mitochondria - Nucleus communication in neurodegenerative disease. Who talks first, who talks louder? BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2022; 1863:148588. [PMID: 35780856 DOI: 10.1016/j.bbabio.2022.148588] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 06/09/2022] [Accepted: 06/24/2022] [Indexed: 06/15/2023]
Abstract
Mitochondria - nuclear coadaptation has been central to eukaryotic evolution. The dynamic dialogue between the two compartments within the context of multiorganellar interactions is critical for maintaining cellular homeostasis and directing the balance survival-death in case of cellular stress. The conceptualisation of mitochondria - nucleus communication has so far been focused on the communication from the mitochondria under stress to the nucleus and the consequent signalling responses, as well as from the nucleus to mitochondria in the context of DNA damage and repair. During ageing processes this dialogue may be better viewed as an integrated bidirectional 'talk' with feedback loops that expand beyond these two organelles depending on physiological cues. Here we explore the current views on mitochondria - nucleus dialogue and its role in maintaining cellular health with a focus on brain cells and neurodegenerative disease. Thus, we detail the transcriptional responses initiated by mitochondrial dysfunction in order to protect itself and the general cellular homeostasis. Additionally, we are reviewing the knowledge of the stress pathways initiated by DNA damage which affect mitochondria homeostasis and we add the information provided by the study of combined mitochondrial and genotoxic damage. Finally, we reflect on how each organelle may take the lead in this dialogue in an ageing context where both compartments undergo accumulation of stress and damage and where, perhaps, even the communications' mechanisms may suffer interruptions.
Collapse
Affiliation(s)
- Diana Iulia Savu
- Department of Life and Environmental Physics, Horia Hulubei National Institute of Physics and Nuclear Engineering, Reactorului 30, P.O. Box MG-6, Magurele 077125, Romania
| | - Nicoleta Moisoi
- Leicester School of Pharmacy, Leicester Institute for Pharmaceutical Innovation, Faculty of Health Sciences, De Montfort University, The Gateway, Hawthorn Building 1.03, LE1 9BH Leicester, UK.
| |
Collapse
|
41
|
Beserra-Filho JIA, Maria-Macêdo A, Silva-Martins S, Custódio-Silva AC, Soares-Silva B, Silva SP, Lambertucci RH, de Souza Araújo AA, Lucchese AM, Quintans-Júnior LJ, Santos JR, Silva RH, Ribeiro AM. Lippia grata essential oil complexed with β-cyclodextrin ameliorates biochemical and behavioral deficits in an animal model of progressive parkinsonism. Metab Brain Dis 2022; 37:2331-2347. [PMID: 35779151 DOI: 10.1007/s11011-022-01032-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 06/13/2022] [Indexed: 10/17/2022]
Abstract
Parkinson's disease (PD) is identified by the loss of dopaminergic neurons in the Substantia Nigra pars compacta (SNpc), and is correlated to aggregates of proteins such as α-synuclein, Lewy's bodies. Although the PD etiology remains poorly understood, evidence suggests a main role of oxidative stress on this process. Lippia grata Schauer, known as "alecrim-do-mato", "alecrim-de-vaqueiro", "alecrim-da-chapada", is a native bush from tropical areas mainly distributed throughout the Central and South America. This plant species is commonly used in traditional medicine for relief of pain and inflammation conditions, and that has proven antioxidant effects. We evaluated the effects of essential oil of the L. grata after its complexed with β-cyclodextrin (LIP) on PD animal model induced by reserpine (RES). Behavioral assessments were performed across the treatment. Upon completion the treatment, the animals were euthanized, afterwards their brains were isolated and processed for immunohistochemical and oxidative stress analysis. The LIP treatment delayed the onset of the behavior of catalepsy, decreased the number of oral movements and prevented the memory impairment on the novel object recognition task. In addition, the treatment with LIP protected against dopaminergic depletion in the SNpc and dorsal striatum (STRd), and decreased the α-syn immunoreactivity in the SNpc and hippocampus (HIP). Moreover, there was reduction of the oxidative stability index. These findings demonstrated that the LIP treatment has neuroprotective effect in a progressive parkinsonism model, suggesting that LIP could be an important source for novel treatment approaches in PD.
Collapse
Affiliation(s)
- Jose Ivo A Beserra-Filho
- Departament of Biosciences, Universidade Federal de São Paulo, Santos, São Paulo, Brazil
- Department of Pharmacology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Amanda Maria-Macêdo
- Departament of Biosciences, Universidade Federal de São Paulo, Santos, São Paulo, Brazil
| | - Suellen Silva-Martins
- Departament of Biosciences, Universidade Federal de São Paulo, Santos, São Paulo, Brazil
| | | | - Beatriz Soares-Silva
- Departament of Biosciences, Universidade Federal de São Paulo, Santos, São Paulo, Brazil
| | - Sara Pereira Silva
- Departament of Biosciences, Universidade Federal de São Paulo, Santos, São Paulo, Brazil
| | | | | | - Angélica Maria Lucchese
- Graduate Programm in Biotechnology, Universidade Estadual de Feira de Santana, Feira de Santana, Bahia, Brazil
| | | | - José Ronaldo Santos
- Department of Biosciences, Universidade Federal de Sergipe, Itabaiana, Sergipe, Brazil
| | - Regina H Silva
- Department of Pharmacology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Alessandra M Ribeiro
- Departament of Biosciences, Universidade Federal de São Paulo, Santos, São Paulo, Brazil.
| |
Collapse
|
42
|
Miner KM, Jamenis AS, Bhatia TN, Clark RN, Rajasundaram D, Sauvaigo S, Mason DM, Posimo JM, Abraham N, DeMarco BA, Hu X, Stetler RA, Chen J, Sanders LH, Luk KC, Leak RK. α-synucleinopathy exerts sex-dimorphic effects on the multipurpose DNA repair/redox protein APE1 in mice and humans. Prog Neurobiol 2022; 216:102307. [PMID: 35710046 PMCID: PMC9514220 DOI: 10.1016/j.pneurobio.2022.102307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 04/05/2022] [Accepted: 06/10/2022] [Indexed: 11/16/2022]
Abstract
Lewy body disorders are characterized by oxidative damage to DNA and inclusions rich in aggregated forms of α-synuclein. Among other roles, apurinic/apyrimidinic endonuclease 1 (APE1) repairs oxidative DNA damage, and APE1 polymorphisms have been linked to cases of Lewy body disorders. However, the link between APE1 and α-synuclein is unexplored. We report that knockdown or inhibition of APE1 amplified inclusion formation in primary hippocampal cultures challenged with preformed α-synuclein fibrils. Fibril infusions into the mouse olfactory bulb/anterior olfactory nucleus (OB/AON) elicited a modest decrease in APE1 expression in the brains of male mice but an increase in females. Similarly, men with Lewy body disorders displayed lower APE1 expression in the OB and amygdala compared to women. Preformed fibril infusions of the mouse OB/AON induced more robust base excision repair of DNA lesions in females than males. No fibril-mediated loss of APE1 expression was observed in male mice when the antioxidant N-acetylcysteine was added to their diet. These findings reveal a potential sex-biased link between α-synucleinopathy and APE1 in mice and humans. Further studies are warranted to determine how this multifunctional protein modifies α-synuclein inclusions and, conversely, how α-synucleinopathy and biological sex interact to modify APE1.
Collapse
Affiliation(s)
- Kristin M Miner
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282, USA
| | - Anuj S Jamenis
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282, USA
| | - Tarun N Bhatia
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282, USA
| | - Rachel N Clark
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282, USA
| | - Dhivyaa Rajasundaram
- Department of Pediatrics, Rangos Research Center, UPMC Children's Hospital of Pittsburgh, PA 15224, USA
| | | | - Daniel M Mason
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282, USA
| | - Jessica M Posimo
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282, USA
| | - Nevil Abraham
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282, USA
| | - Brett A DeMarco
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282, USA
| | - Xiaoming Hu
- Department of Neurology, University of Pittsburgh, PA 15213, USA
| | - R Anne Stetler
- Department of Neurology, University of Pittsburgh, PA 15213, USA
| | - Jun Chen
- Department of Neurology, University of Pittsburgh, PA 15213, USA
| | - Laurie H Sanders
- Department of Neurology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Kelvin C Luk
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19147, USA
| | - Rehana K Leak
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282, USA.
| |
Collapse
|
43
|
Shadfar S, Khanal S, Bohara G, Kim G, Sadigh-Eteghad S, Ghavami S, Choi H, Choi DY. Methanolic Extract of Boswellia serrata Gum Protects the Nigral Dopaminergic Neurons from Rotenone-Induced Neurotoxicity. Mol Neurobiol 2022; 59:5874-5890. [PMID: 35804280 PMCID: PMC9395310 DOI: 10.1007/s12035-022-02943-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 06/28/2022] [Indexed: 11/05/2022]
Abstract
Boswellia serrata gum is a natural product that showed beneficial effects on neurodegenerative diseases in recent studies. In this study, we investigated the effects of Boswellia serrata resin on rotenone-induced dopaminergic neurotoxicity. Firstly, we attempted to see if the resin can induce AMP-activated protein kinase (AMPK) signaling pathway which has been known to have broad neuroprotective effects. Boswellia increased AMPK phosphorylation and reduced phosphorylation of mammalian target of rapamycin (p-mTOR) and α-synuclein (p-α-synuclein) in the striatum while increased the expression level of Beclin1, a marker for autophagy and brain-derived neurotrophic factor. Next, we examined the neuroprotective effects of the Boswellia extract in the rotenone-injected mice. The results showed that Boswellia evidently attenuated the loss of the nigrostriatal dopaminergic neurons and microglial activation caused by rotenone. Moreover, Boswellia ameliorated rotenone-induced decrease in the striatal dopamine and impairment in motor function. Accumulation of α-synuclein meditated by rotenone was significantly ameliorated by Boswellia. Also, we showed that β-boswellic acid, the active constituents of Boswellia serrata gum, induced AMPK phosphorylation and attenuated α-synuclein phosphorylation in SHSY5 cells. These results suggest that Boswellia protected the dopaminergic neurons from rotenone neurotoxicity via activation of the AMPK pathway which might be associated with attenuation of α-synuclein aggregation and neuroinflammation. Further investigations are warranted to identify specific molecules in Boswellia which are responsible for the neuroprotection.
Collapse
Affiliation(s)
- Sina Shadfar
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, 2121 NSW, Australia.
- College of Pharmacy, Yeungnam University, 280 Daehak Avenue, Gyeongsan, Gyeongbuk, 38541, Republic of Korea.
| | - Shristi Khanal
- College of Pharmacy, Yeungnam University, 280 Daehak Avenue, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - Ganesh Bohara
- College of Pharmacy, Yeungnam University, 280 Daehak Avenue, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - Geumjin Kim
- College of Pharmacy, Yeungnam University, 280 Daehak Avenue, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - Saeed Sadigh-Eteghad
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB, R3E 0V9, Canada
- Research Institutes of Oncology and Hematology, Cancer Care Manitoba-University of Manitoba, Winnipeg, MB, R3E 0V9, Canada
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, 7134845794, Iran
- Faculty of Medicine, Katowice School of Technology, 40-555, Katowice, Poland
| | - Hyukjae Choi
- College of Pharmacy, Yeungnam University, 280 Daehak Avenue, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - Dong-Young Choi
- College of Pharmacy, Yeungnam University, 280 Daehak Avenue, Gyeongsan, Gyeongbuk, 38541, Republic of Korea.
| |
Collapse
|
44
|
Wu Z, Xia C, Zhang C, Tang D, Liu F, Ou Y, Gao J, Yi H, Yang D, Ma K. Adeno-associated virus-delivered alpha synuclein inhibits bladder cancer growth via the p53/p21 signaling pathway. Cancer Gene Ther 2022; 29:1193-1206. [PMID: 35064206 DOI: 10.1038/s41417-022-00425-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 10/18/2021] [Accepted: 12/15/2021] [Indexed: 11/09/2022]
Abstract
Alpha-synuclein (α-syn), encoded by the SNCA gene, is a major participant in the pathophysiology of Parkinson's disease (PD). Its functions have been reported to be related to apoptosis induction, the elevation of oxidative stress, mitochondrial homeostasis, cell-cycle aberrations, and DNA-related interactions. Evidence obtained in recent studies suggests a possible link between α-syn and cancer development. Bladder cancer (BCa) is the second most common genitourinary malignancy, with the population of survivors of BCa increasing worldwide. In this study, we show that α-syn expression was significantly downregulated in BCa. In vitro and in vivo experiments showed that α-syn could significantly inhibit BCa cell proliferation by arresting the cell cycle in the S phase via upregulation of p53 expression mediated by DNA damages. Further experiments showed that overexpression of α-syn delivered by adeno-associated viruses (AAVs) exerted inhibitory effects on the growth of BCa tumors. These findings indicate that αα-syn is a functional tumor suppressor that can inhibit the proliferation of BCa cells by activating the p53/p21 signaling pathway. Our present study provides insights into the roles of α-syn in BCa and suggests that α-syn may be a novel therapeutic target for the treatment of BCa.
Collapse
Affiliation(s)
- Zhengcun Wu
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 650118, Kunming, China
| | - Chengxing Xia
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, 650101, Kunming, China
| | - Chao Zhang
- Oncology Department, The First People's hospital of Qujing, 655000, Qujing, China
| | - Donghong Tang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 650118, Kunming, China
| | - Feineng Liu
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, 650101, Kunming, China
| | - Yitian Ou
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, 650101, Kunming, China
| | - Jiahong Gao
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 650118, Kunming, China
| | - Hongkun Yi
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 650118, Kunming, China
| | - Delin Yang
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, 650101, Kunming, China.
| | - Kaili Ma
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 650118, Kunming, China.
- Medical Primate Research Center & Neuroscience Center, Chinese Academy of Medical Sciences, 100005, Beijing, China.
- Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Diseases, 650118, Kunming, China.
| |
Collapse
|
45
|
Song MK, Adams L, Lee JH, Kim YS. NXP031 prevents dopaminergic neuronal loss and oxidative damage in the AAV-WT-α-synuclein mouse model of Parkinson’s disease. PLoS One 2022; 17:e0272085. [PMID: 35901090 PMCID: PMC9333296 DOI: 10.1371/journal.pone.0272085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 07/12/2022] [Indexed: 11/18/2022] Open
Abstract
Parkinson’s disease (PD) is a neurodegenerative disease characterized by inclusions of aggregated α-synuclein (α-Syn). Oxidative stress plays a critical role in nigrostriatal degeneration and is responsible for α-Syn aggregation in PD. Vitamin C or ascorbic acid acts as an effective antioxidant to prevent free radical damage. However, vitamin C is easily oxidized and often loses its physiological activity, limiting its therapeutic potential. The objective of this study was to evaluate whether NXP031, a new compound we developed consisting of Aptamin C and Vitamin C, is neuroprotective against α-synucleinopathy. To model α-Syn induced PD, we stereotactically injected AAV particles overexpressing human α-Syn into the substantia nigra (SN) of mice. One week after AAV injection, NXP031 was administered via oral gavage every day for eight weeks. We found that oral administration of NXP031 ameliorated motor deficits measured by the rotarod test and prevented the loss of nigral dopaminergic neurons caused by WT-α-Syn overexpression in the SN. Also, NXP031 blocked the propagation of aggregated α-Syn into the hippocampus by alleviating oxidative stress. These results indicate that NXP031 can be a potential therapeutic for PD.
Collapse
Affiliation(s)
- Min Kyung Song
- Robert Wood Johnson Medical School Institute for Neurological Therapeutics and Department of Neurology, Rutgers Biomedical and Health Sciences, Piscataway, NJ, United States of America
- Burnett School of Biomedical Sciences, UCF College of Medicine, University of Central Florida, Orlando, FL, United States of America
| | - Levi Adams
- Robert Wood Johnson Medical School Institute for Neurological Therapeutics and Department of Neurology, Rutgers Biomedical and Health Sciences, Piscataway, NJ, United States of America
- Burnett School of Biomedical Sciences, UCF College of Medicine, University of Central Florida, Orlando, FL, United States of America
| | - Joo Hee Lee
- College of Nursing Science, Kyung Hee University, Seoul, Republic of Korea
| | - Yoon-Seong Kim
- Robert Wood Johnson Medical School Institute for Neurological Therapeutics and Department of Neurology, Rutgers Biomedical and Health Sciences, Piscataway, NJ, United States of America
- Burnett School of Biomedical Sciences, UCF College of Medicine, University of Central Florida, Orlando, FL, United States of America
- Nexmos Co Ltd, Yongin-Si, Gyeonggi-Do, Republic of Korea
- * E-mail:
| |
Collapse
|
46
|
Qin N, Geng A, Xue R. Activated or Impaired: An Overview of DNA Repair in Neurodegenerative Diseases. Aging Dis 2022; 13:987-1004. [PMID: 35855336 PMCID: PMC9286913 DOI: 10.14336/ad.2021.1212] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/08/2021] [Indexed: 11/06/2022] Open
Abstract
As the population ages, age-related neurodegenerative diseases have become a major challenge in health science. Currently, the pathology of neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and Huntington's disease, is still not fully understood. Remarkably, emerging evidence indicates a role of genomic DNA damage and repair in various neurodegenerative disorders. Here, we summarized the current understanding of the function of DNA damage repair, especially base excision repair and double strand break repair pathways, in a variety of neurodegenerative diseases. We concluded that exacerbation of DNA lesions is found in almost all types of neurodegenerative diseases, whereas the activities of different DNA repair pathways demonstrate distinct trends, depending on disease type and even brain region. Specifically, key enzymes involved in base excision repair are likely impaired in Alzheimer's disease and amyotrophic lateral sclerosis but activated in Parkinson's disease, while nonhomologous end joining is likely downregulated in most types of neurodegenerative diseases. Hence, impairment of nonhomologous end joining is likely a common etiology for most neurodegenerative diseases, while defects in base excision repair are likely involved in the pathology of Alzheimer's disease and amyotrophic lateral sclerosis but are Parkinson's disease, based on current findings. Although there are still discrepancies and further studies are required to completely elucidate the exact roles of DNA repair in neurodegeneration, the current studies summarized here provide crucial insights into the pathology of neurodegenerative diseases and may reveal novel drug targets for corresponding neurodegenerative diseases.
Collapse
Affiliation(s)
- Nan Qin
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Anke Geng
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Renhao Xue
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| |
Collapse
|
47
|
Li X, Cao G, Liu X, Tang TS, Guo C, Liu H. Polymerases and DNA Repair in Neurons: Implications in Neuronal Survival and Neurodegenerative Diseases. Front Cell Neurosci 2022; 16:852002. [PMID: 35846567 PMCID: PMC9279898 DOI: 10.3389/fncel.2022.852002] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 05/23/2022] [Indexed: 12/22/2022] Open
Abstract
Most of the neurodegenerative diseases and aging are associated with reactive oxygen species (ROS) or other intracellular damaging agents that challenge the genome integrity of the neurons. As most of the mature neurons stay in G0/G1 phase, replication-uncoupled DNA repair pathways including BER, NER, SSBR, and NHEJ, are pivotal, efficient, and economic mechanisms to maintain genomic stability without reactivating cell cycle. In these progresses, polymerases are prominent, not only because they are responsible for both sensing and repairing damages, but also for their more diversified roles depending on the cell cycle phase and damage types. In this review, we summarized recent knowledge on the structural and biochemical properties of distinct polymerases, including DNA and RNA polymerases, which are known to be expressed and active in nervous system; the biological relevance of these polymerases and their interactors with neuronal degeneration would be most graphically illustrated by the neurological abnormalities observed in patients with hereditary diseases associated with defects in DNA repair; furthermore, the vicious cycle of the trinucleotide repeat (TNR) and impaired DNA repair pathway is also discussed. Unraveling the mechanisms and contextual basis of the role of the polymerases in DNA damage response and repair will promote our understanding about how long-lived postmitotic cells cope with DNA lesions, and why disrupted DNA repair contributes to disease origin, despite the diversity of mutations in genes. This knowledge may lead to new insight into the development of targeted intervention for neurodegenerative diseases.
Collapse
Affiliation(s)
- Xiaoling Li
- Nano-Biotechnology Key Lab of Hebei Province, Yanshan University, Qinhuangdao, China
- State Key Laboratory of Membrane Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
- Xiaoling Li
| | - Guanghui Cao
- Nano-Biotechnology Key Lab of Hebei Province, Yanshan University, Qinhuangdao, China
| | - Xiaokang Liu
- Nano-Biotechnology Key Lab of Hebei Province, Yanshan University, Qinhuangdao, China
| | - Tie-Shan Tang
- State Key Laboratory of Membrane Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Caixia Guo
- Beijing Institute of Genomics, University of Chinese Academy of Sciences, Chinese Academy of Sciences/China National Center for Bioinformation, Beijing, China
- *Correspondence: Caixia Guo
| | - Hongmei Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- Hongmei Liu
| |
Collapse
|
48
|
Welch G, Tsai LH. Mechanisms of DNA damage-mediated neurotoxicity in neurodegenerative disease. EMBO Rep 2022; 23:e54217. [PMID: 35499251 PMCID: PMC9171412 DOI: 10.15252/embr.202154217] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 03/18/2022] [Accepted: 04/19/2022] [Indexed: 12/26/2022] Open
Abstract
Neurons are highly susceptible to DNA damage accumulation due to their large energy requirements, elevated transcriptional activity, and long lifespan. While newer research has shown that DNA breaks and mutations may facilitate neuron diversity during development and neuronal function throughout life, a wealth of evidence indicates deficient DNA damage repair underlies many neurological disorders, especially age-associated neurodegenerative diseases. Recently, efforts to clarify the molecular link between DNA damage and neurodegeneration have improved our understanding of how the genomic location of DNA damage and defunct repair proteins impact neuron health. Additionally, work establishing a role for senescence in the aging and diseased brain reveals DNA damage may play a central role in neuroinflammation associated with neurodegenerative disease.
Collapse
Affiliation(s)
- Gwyneth Welch
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Li-Huei Tsai
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
49
|
El-Saadi MW, Tian X, Grames M, Ren M, Keys K, Li H, Knott E, Yin H, Huang S, Lu XH. Tracing brain genotoxic stress in Parkinson's disease with a novel single-cell genetic sensor. SCIENCE ADVANCES 2022; 8:eabd1700. [PMID: 35427151 PMCID: PMC9012470 DOI: 10.1126/sciadv.abd1700] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 03/01/2022] [Indexed: 05/06/2023]
Abstract
To develop an in vivo tool to probe brain genotoxic stress, we designed a viral proxy as a single-cell genetic sensor termed PRISM that harnesses the instability of recombinant adeno-associated virus genome processing and a hypermutable repeat sequence-dependent reporter. PRISM exploits the virus-host interaction to probe persistent neuronal DNA damage and overactive DNA damage response. A Parkinson's disease (PD)-associated environmental toxicant, paraquat (PQ), inflicted neuronal genotoxic stress sensitively detected by PRISM. The most affected cell type in PD, dopaminergic (DA) neurons in substantia nigra, was distinguished by a high level of genotoxic stress following PQ exposure. Human alpha-synuclein proteotoxicity and propagation also triggered genotoxic stress in nigral DA neurons in a transgenic mouse model. Genotoxic stress is a prominent feature in PD patient brains. Our results reveal that PD-associated etiological factors precipitated brain genotoxic stress and detail a useful tool for probing the pathogenic significance in aging and neurodegenerative disorders.
Collapse
Affiliation(s)
- Madison Wynne El-Saadi
- Department of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health, Shreveport, Shreveport, LA 71103, USA
| | - Xinli Tian
- Department of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health, Shreveport, Shreveport, LA 71103, USA
| | - Mychal Grames
- Department of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health, Shreveport, Shreveport, LA 71103, USA
| | - Michael Ren
- Department of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health, Shreveport, Shreveport, LA 71103, USA
| | - Kelsea Keys
- Department of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health, Shreveport, Shreveport, LA 71103, USA
| | - Hanna Li
- Department of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health, Shreveport, Shreveport, LA 71103, USA
| | - Erika Knott
- Department of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health, Shreveport, Shreveport, LA 71103, USA
| | - Hong Yin
- Feist-Weiller Cancer Center and Department of Medicine, Louisiana State University Health, Shreveport, Shreveport, LA 71103, USA
| | - Shile Huang
- Department of Biochemistry and Molecular Biology, Louisiana State University Health, Shreveport, Shreveport, LA 71103, USA
| | - Xiao-Hong Lu
- Department of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health, Shreveport, Shreveport, LA 71103, USA
| |
Collapse
|
50
|
Genome Integrity and Neurological Disease. Int J Mol Sci 2022; 23:ijms23084142. [PMID: 35456958 PMCID: PMC9025063 DOI: 10.3390/ijms23084142] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/02/2022] [Accepted: 04/05/2022] [Indexed: 02/06/2023] Open
Abstract
Neurological complications directly impact the lives of hundreds of millions of people worldwide. While the precise molecular mechanisms that underlie neuronal cell loss remain under debate, evidence indicates that the accumulation of genomic DNA damage and consequent cellular responses can promote apoptosis and neurodegenerative disease. This idea is supported by the fact that individuals who harbor pathogenic mutations in DNA damage response genes experience profound neuropathological manifestations. The review article here provides a general overview of the nervous system, the threats to DNA stability, and the mechanisms that protect genomic integrity while highlighting the connections of DNA repair defects to neurological disease. The information presented should serve as a prelude to the Special Issue “Genome Stability and Neurological Disease”, where experts discuss the role of DNA repair in preserving central nervous system function in greater depth.
Collapse
|