1
|
Xie H, Jiang L, Peng J, Hu H, Han M, Zhao B. Drug-induced pancreatitis: a real-world analysis of the FDA Adverse Event Reporting System and network pharmacology. Front Pharmacol 2025; 16:1564127. [PMID: 40308779 PMCID: PMC12040929 DOI: 10.3389/fphar.2025.1564127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Accepted: 04/04/2025] [Indexed: 05/02/2025] Open
Abstract
Background Drug-induced pancreatitis is a rare disease but frequently reported, owing to the vast number of medications. Aim To summarize potential drugs causing pancreatitis and to speculate on underlying mechanisms. Methods We extracted more than 60,000 reports of pancreatitis submitted to the U.S. Food and Drug Administration Adverse Event Reporting System (January 2004 to March 2023). Data on patient age, sex, weight, time to onset, and outcome (death et al.) were collected. Disproportionality analysis was used in data mining to identify associations between drugs and pancreatitis events. Seven databases, commonly used for network pharmacology analysis, were searched to identify potential targets. Results Of 867 drugs with 3 or more reports, 101 drugs met all criteria using disproportionality analysis and indicated a potential risk of pancreatitis. The risk of 40 drugs had not been previously noted in "UpToDate" database. Patients taking the drugs had a similar sex distribution, were mostly 45-64 years old, and were heavier (median, 88 kg; P < 0.0001). The median time to onset was 199 days (interquartile range, 27-731.5). Ponatinib (16.48%), tigecycline (14.12%) and valproic acid (13.41%) had higher fatality rates. Potential targets related to pancreatitis were identified in 50 of the 101 drugs. Conclusion Clinicians providing the 101 drugs for treatment should stay vigilant to detect pancreatitis early.
Collapse
Affiliation(s)
- Hao Xie
- Department of Pharmacy, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Lin Jiang
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
- Department of Internal Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Junya Peng
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Haoyang Hu
- West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Meifen Han
- Department of Pharmacy, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Bin Zhao
- Department of Pharmacy, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| |
Collapse
|
2
|
Li R, Sun K. Regulation of chondrocyte apoptosis in osteoarthritis by endoplasmic reticulum stress. Cell Stress Chaperones 2024; 29:750-763. [PMID: 39515603 PMCID: PMC11626768 DOI: 10.1016/j.cstres.2024.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/01/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
Osteoarthritis (OA), a common degenerative joint disease, is characterized by the apoptosis of chondrocytes as a primary pathophysiological change, with endoplasmic reticulum stress (ERS) playing a crucial role. It has been demonstrated that an imbalance in endoplasmic reticulum (ER) homeostasis can lead to ERS, activating three cellular adaptive response pathways through the unfolded protein response to restore ER homeostasis. Mild ERS exerts a protective effect on cells, while prolonged ERS that disrupts the self-regulatory balance of the ER activates apoptotic signaling pathways, leading to chondrocyte apoptosis and hastening OA progression. Hence, controlling the ERS signaling pathway and its apoptotic factors has become a critical focus for preventing and treating OA. This review aims to elucidate the key mechanisms of ERS pathway-induced apoptosis, associated targets, and regulatory pathways, offering valuable insights to enhance the mechanistic understanding of OA. It also reviews the mechanisms studied for ERS-related drugs or compounds for the treatment of OA.
Collapse
Affiliation(s)
- Renzhong Li
- Taizhou Hospital of Traditional Chinese Medicine, Taizhou, Jiangsu Province, China; The Second Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, Anhui Province, China
| | - Kui Sun
- The Second Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, Anhui Province, China; Anhui Acupuncture Hospital, Hefei, Anhui Province, China.
| |
Collapse
|
3
|
Shoeibi S, Green E, Wei H, Gou W, Strange C, Wang H. Immortalized mesenchymal stromal cells overexpressing alpha-1 antitrypsin protect acinar cells from apoptotic and ferroptotic cell death. J Cell Mol Med 2024; 28:e70093. [PMID: 39468387 PMCID: PMC11518823 DOI: 10.1111/jcmm.70093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 08/16/2024] [Accepted: 09/03/2024] [Indexed: 10/30/2024] Open
Abstract
Chronic pancreatitis (CP) is a progressive inflammatory disorder that impairs endocrine and exocrine function. Our previous work showed that mesenchymal stem/stromal cells (MSCs) and MSCs overexpressing alpha-1 antitrypsin (AAT-MSCs) could be therapeutic tools for CP. However, primary MSCs are predisposed to undergo senescence during culture expansion, which limits their therapeutic applications. We generated and characterized immortalized human MSCs (iMSCs) and AAT-MSCs (iAAT-MSCs) and tested their protective effect on 2,4,6-Trinitrobenzenesulfonic acid (TNBS)-induced acinar cell death in an in vitro cell culture system. Primary MSCs were immortalized by transduction with simian virus 40 large T antigen (SV40LT), and the resulting iMSC and iAAT-MSC lines were analysed for proliferation, senescence, phenotype and multi-differentiation potential. Subsequently, apoptosis and ferroptosis pathways were investigated by assessing changes before and after TNBS treatment. Coculture of iMSCs and iAAT-MSCs with acinar cell lines inhibited early cell death induced by TNBS, reduced ER stress and reversed TNBS-induced protein reduction at tight junctions. Additionally, iMSCs and iAAT-MSCs exerted such protection by regulating mitochondrial respiration, ATP content and ROS production in TNBS-induced acinar cells. Furthermore, iMSCs and iAAT-MSCs ameliorated TNBS-induced ferroptosis by modulating iron generation and ROS production and regulating the ferritin heavy chain 1 (FTH1)/protein disulfide isomerase (PDI)/glutathione peroxide 4 (GPX4) signalling pathways in acinar cells. These findings identify ferroptosis as an unrecognized mechanism that leads to TNBS-induced cell death and offer mechanistic insights relevant to using stem cell therapy to treat acinar cell death associated with CP.
Collapse
Affiliation(s)
- Sara Shoeibi
- Department of SurgeryMedical University of South CarolinaCharlestonSouth CarolinaUSA
| | - Erica Green
- Department of SurgeryMedical University of South CarolinaCharlestonSouth CarolinaUSA
| | - Hua Wei
- Department of SurgeryMedical University of South CarolinaCharlestonSouth CarolinaUSA
| | - Wenyu Gou
- Department of SurgeryMedical University of South CarolinaCharlestonSouth CarolinaUSA
| | - Charlie Strange
- Department of MedicineMedical University of South CarolinaCharlestonSouth CarolinaUSA
| | - Hongjun Wang
- Department of SurgeryMedical University of South CarolinaCharlestonSouth CarolinaUSA
- Ralph H. Johnson Veterans Affairs Medical CenterCharlestonSouth CarolinaUSA
| |
Collapse
|
4
|
Wang M, Wang Y, Masson E, Wang Y, Yu D, Qian Y, Tang X, Deng S, Hu L, Wang L, Wang L, Rebours V, Cooper DN, Férec C, Li Z, Chen J, Zou W, Liao Z. SEC16A Variants Predispose to Chronic Pancreatitis by Impairing ER-to-Golgi Transport and Inducing ER Stress. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402550. [PMID: 39119875 PMCID: PMC11481239 DOI: 10.1002/advs.202402550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/29/2024] [Indexed: 08/10/2024]
Abstract
Chronic pancreatitis (CP) is a complex disease with genetic and environmental factors at play. Through trio exome sequencing, a de novo SEC16A frameshift variant in a Chinese teenage CP patient is identified. Subsequent targeted next-generation sequencing of the SEC16A gene in 1,061 Chinese CP patients and 1,196 controls reveals a higher allele frequency of rare nonsynonymous SEC16A variants in patients (4.90% vs 2.93%; odds ratio [OR], 1.71; 95% confidence interval [CI], 1.26-2.33). Similar enrichments are noted in a French cohort (OR, 2.74; 95% CI, 1.67-4.50) and in a biobank meta-analysis (OR, 1.16; 95% CI, 1.04-1.31). Notably, Chinese CP patients with SEC16A variants exhibit a median onset age 5 years earlier than those without (40.0 vs 45.0; p = 0.012). Functional studies using three CRISPR/Cas9-edited HEK293T cell lines show that loss-of-function SEC16A variants disrupt coat protein complex II (COPII) formation, impede secretory protein vesicles trafficking, and induce endoplasmic reticulum (ER) stress due to protein overload. Sec16a+/- mice, which demonstrate impaired zymogen secretion and exacerbated ER stress compared to Sec16a+/+, are further generated. In cerulein-stimulated pancreatitis models, Sec16a+/- mice display heightened pancreatic inflammation and fibrosis compared to wild-type mice. These findings implicate a novel pathogenic mechanism predisposing to CP.
Collapse
Affiliation(s)
- Min‐Jun Wang
- Department of GastroenterologyShanghai Institute of Pancreatic DiseasesShanghai Key Laboratory of Nautical Medicine and Translation of Drugs and Medical DevicesChanghai HospitalNational Key Laboratory of Immunity and InflammationNaval Medical UniversityShanghai200433China
- Department of Cell BiologyCenter for Stem Cell and MedicineNaval Medical UniversityShanghai200433China
| | - Yuan‐Chen Wang
- Department of GastroenterologyShanghai Institute of Pancreatic DiseasesShanghai Key Laboratory of Nautical Medicine and Translation of Drugs and Medical DevicesChanghai HospitalNational Key Laboratory of Immunity and InflammationNaval Medical UniversityShanghai200433China
| | - Emmanuelle Masson
- InsermEFSUMR 1078GGBUniv BrestBrestF‐29200France
- Service de Génétique Médicale et de Biologie de la ReproductionCHRU BrestBrestF‐29200France
| | - Ya‐Hui Wang
- Department of GastroenterologyShanghai Institute of Pancreatic DiseasesShanghai Key Laboratory of Nautical Medicine and Translation of Drugs and Medical DevicesChanghai HospitalNational Key Laboratory of Immunity and InflammationNaval Medical UniversityShanghai200433China
| | - Dong Yu
- Center for Translational MedicineNaval Medical UniversityShanghai200433China
| | - Yang‐Yang Qian
- Department of GastroenterologyShanghai Institute of Pancreatic DiseasesShanghai Key Laboratory of Nautical Medicine and Translation of Drugs and Medical DevicesChanghai HospitalNational Key Laboratory of Immunity and InflammationNaval Medical UniversityShanghai200433China
| | - Xin‐Ying Tang
- Department of Prevention and Health CareEastern Hepatobiliary Surgery HospitalNaval Medical UniversityShanghai200438China
| | - Shun‐Jiang Deng
- Department of GastroenterologyShanghai Institute of Pancreatic DiseasesShanghai Key Laboratory of Nautical Medicine and Translation of Drugs and Medical DevicesChanghai HospitalNational Key Laboratory of Immunity and InflammationNaval Medical UniversityShanghai200433China
| | - Liang‐Hao Hu
- Department of GastroenterologyShanghai Institute of Pancreatic DiseasesShanghai Key Laboratory of Nautical Medicine and Translation of Drugs and Medical DevicesChanghai HospitalNational Key Laboratory of Immunity and InflammationNaval Medical UniversityShanghai200433China
| | - Lei Wang
- Department of GastroenterologyShanghai Institute of Pancreatic DiseasesShanghai Key Laboratory of Nautical Medicine and Translation of Drugs and Medical DevicesChanghai HospitalNational Key Laboratory of Immunity and InflammationNaval Medical UniversityShanghai200433China
| | - Li‐Juan Wang
- Department of GastroenterologyShanghai Institute of Pancreatic DiseasesShanghai Key Laboratory of Nautical Medicine and Translation of Drugs and Medical DevicesChanghai HospitalNational Key Laboratory of Immunity and InflammationNaval Medical UniversityShanghai200433China
| | - Vinciane Rebours
- Pancreatology and Digestive Oncology DepartmentBeaujon HospitalAPHP – ClichyUniversité Paris CitéParis92110France
| | - David N. Cooper
- Institute of Medical GeneticsSchool of MedicineCardiff UniversityCardiffCF14 4XNUnited Kingdom
| | - Claude Férec
- InsermEFSUMR 1078GGBUniv BrestBrestF‐29200France
| | - Zhao‐Shen Li
- Department of GastroenterologyShanghai Institute of Pancreatic DiseasesShanghai Key Laboratory of Nautical Medicine and Translation of Drugs and Medical DevicesChanghai HospitalNational Key Laboratory of Immunity and InflammationNaval Medical UniversityShanghai200433China
| | | | - Wen‐Bin Zou
- Department of GastroenterologyShanghai Institute of Pancreatic DiseasesShanghai Key Laboratory of Nautical Medicine and Translation of Drugs and Medical DevicesChanghai HospitalNational Key Laboratory of Immunity and InflammationNaval Medical UniversityShanghai200433China
| | - Zhuan Liao
- Department of GastroenterologyShanghai Institute of Pancreatic DiseasesShanghai Key Laboratory of Nautical Medicine and Translation of Drugs and Medical DevicesChanghai HospitalNational Key Laboratory of Immunity and InflammationNaval Medical UniversityShanghai200433China
| |
Collapse
|
5
|
Zhang J, Wu YL, Xu HX, Zhang YB, Ren PY, Xian YF, Lin ZX. Brusatol alleviates pancreatic carcinogenesis via targeting NLRP3 in transgenic Kras tm4Tyj Trp53 tm1Brn Tg (Pdx1-cre/Esr1*) #Dam mice. Biomed Pharmacother 2024; 177:116977. [PMID: 38901203 DOI: 10.1016/j.biopha.2024.116977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/03/2024] [Accepted: 06/15/2024] [Indexed: 06/22/2024] Open
Abstract
BACKGROUND Pancreatic cancer (PanCa), ranked as the 4th leading cause of cancer-related death worldwide, exhibits an dismal 5-year survival rate of less than 5 %. Chronic pancreatitis (CP) is a known major risk factor for PanCa. Brusatol (BRT) possesses a wide range of biological functions, including the inhibition of PanCa proliferation. However, its efficacy in halting the progression from CP to pancreatic carcinogenesis remains unexplored. METHODS We assess the effects of BRT against pancreatic carcinogenesis from CP using an experimentally induced CP model with cerulein, and further evaluate the therapeutic efficacy of BRT on PanCa by employing Krastm4TyjTrp53tm1BrnTg (Pdx1-cre/Esr1*) #Dam/J (KPC) mouse model. RESULTS Our finding demonstrated that BRT mitigated the severity of cerulein-induced pancreatitis, reduced pancreatic fibrosis and decreased the expression of α-smooth muscle actin (α-SMA), which is a biomarker for pancreatic fibrosis. In addition, BRT exerted effects against cerulein-induced pancreatitis via inactivation of NLRP3 inflammasome. Moreover, BRT significantly inhibited tumor growth and impeded cancer progression. CONCLUSIONS The observed effect of BRT on impeding pancreatic carcinogenesis through targeting NLRP3 inflammasome suggests its good potential as a potential agent for treatment of PanCa.
Collapse
Affiliation(s)
- Juan Zhang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, PR China; Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518087, PR China.
| | - Yu-Lin Wu
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, PR China.
| | - Hong-Xi Xu
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, PR China; Shuguang Hosipital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China; School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China.
| | - Yi-Bo Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China.
| | - Pei-Yao Ren
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, PR China.
| | - Yan-Fang Xian
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, PR China; Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518087, PR China.
| | - Zhi-Xiu Lin
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, PR China; Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518087, PR China; Hong Kong Institute of Integrative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, PR China; Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong SAR, PR China.
| |
Collapse
|
6
|
Nauffal V, Klarqvist MDR, Hill MC, Pace DF, Di Achille P, Choi SH, Rämö JT, Pirruccello JP, Singh P, Kany S, Hou C, Ng K, Philippakis AA, Batra P, Lubitz SA, Ellinor PT. Noninvasive assessment of organ-specific and shared pathways in multi-organ fibrosis using T1 mapping. Nat Med 2024; 30:1749-1760. [PMID: 38806679 DOI: 10.1038/s41591-024-03010-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 04/22/2024] [Indexed: 05/30/2024]
Abstract
Fibrotic diseases affect multiple organs and are associated with morbidity and mortality. To examine organ-specific and shared biologic mechanisms that underlie fibrosis in different organs, we developed machine learning models to quantify T1 time, a marker of interstitial fibrosis, in the liver, pancreas, heart and kidney among 43,881 UK Biobank participants who underwent magnetic resonance imaging. In phenome-wide association analyses, we demonstrate the association of increased organ-specific T1 time, reflecting increased interstitial fibrosis, with prevalent diseases across multiple organ systems. In genome-wide association analyses, we identified 27, 18, 11 and 10 independent genetic loci associated with liver, pancreas, myocardial and renal cortex T1 time, respectively. There was a modest genetic correlation between the examined organs. Several loci overlapped across the examined organs implicating genes involved in a myriad of biologic pathways including metal ion transport (SLC39A8, HFE and TMPRSS6), glucose metabolism (PCK2), blood group antigens (ABO and FUT2), immune function (BANK1 and PPP3CA), inflammation (NFKB1) and mitosis (CENPE). Finally, we found that an increasing number of organs with T1 time falling in the top quintile was associated with increased mortality in the population. Individuals with a high burden of fibrosis in ≥3 organs had a 3-fold increase in mortality compared to those with a low burden of fibrosis across all examined organs in multivariable-adjusted analysis (hazard ratio = 3.31, 95% confidence interval 1.77-6.19; P = 1.78 × 10-4). By leveraging machine learning to quantify T1 time across multiple organs at scale, we uncovered new organ-specific and shared biologic pathways underlying fibrosis that may provide therapeutic targets.
Collapse
Affiliation(s)
- Victor Nauffal
- Cardiovascular Division, Brigham and Women's Hospital, Boston, MA, USA
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Matthew C Hill
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Danielle F Pace
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Data Sciences Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Paolo Di Achille
- Data Sciences Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Seung Hoan Choi
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Joel T Rämö
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - James P Pirruccello
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiology Division, Massachusetts General Hospital, Boston, MA, USA
- Division of Cardiology, University of California, San Francisco, San Francisco, CA, USA
| | - Pulkit Singh
- Data Sciences Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Shinwan Kany
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Cardiology, University Heart and Vascular Center Hamburg-Eppendorf, Hamburg, Germany
| | - Cody Hou
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Kenney Ng
- Center for Computational Health, IBM Research, Cambridge, MA, USA
| | - Anthony A Philippakis
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Data Sciences Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Eric and Wendy Schmidt Center, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Puneet Batra
- Data Sciences Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Steven A Lubitz
- Demoulas Center for Cardiac Arrhythmias, Massachusetts General Hospital, Boston, MA, USA
| | - Patrick T Ellinor
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Demoulas Center for Cardiac Arrhythmias, Massachusetts General Hospital, Boston, MA, USA.
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
7
|
Lei Y, Yu H, Ding S, Liu H, Liu C, Fu R. Molecular mechanism of ATF6 in unfolded protein response and its role in disease. Heliyon 2024; 10:e25937. [PMID: 38434326 PMCID: PMC10907738 DOI: 10.1016/j.heliyon.2024.e25937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/04/2024] [Accepted: 02/05/2024] [Indexed: 03/05/2024] Open
Abstract
Activating transcription factor 6 (ATF6), an important signaling molecule in unfolded protein response (UPR), plays a role in the pathogenesis of several diseases, including diseases such as congenital retinal disease, liver fibrosis and ankylosing spondylitis. After endoplasmic reticulum stress (ERS), ATF6 is activated after separation from binding immunoglobulin protein (GRP78/BiP) in the endoplasmic reticulum (ER) and transported to the Golgi apparatus to be hydrolyzed by site 1 and site 2 proteases into ATF6 fragments, which localize to the nucleus and regulate the transcription and expression of ERS-related genes. In these diseases, ERS leads to the activation of UPR, which ultimately lead to the occurrence and development of diseases by regulating the physiological state of cells through the ATF6 signaling pathway. Here, we discuss the evidence for the pathogenic importance of ATF6 signaling in different diseases and discuss preclinical results.
Collapse
Affiliation(s)
| | | | - Shaoxue Ding
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, People's Republic of China
| | - Hui Liu
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, People's Republic of China
| | - Chunyan Liu
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, People's Republic of China
| | - Rong Fu
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, People's Republic of China
| |
Collapse
|
8
|
Shoeibi S, Green E, Wei H, Gou W, Strange C, Wang H. Immortalized Mesenchymal Stromal Cells Overexpressing Alpha-1 Antitrypsin Protect Acinar Cells from Apoptotic and Ferroptotic Cell Death. RESEARCH SQUARE 2023:rs.3.rs-2961444. [PMID: 37609340 PMCID: PMC10441457 DOI: 10.21203/rs.3.rs-2961444/v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Chronic pancreatitis (CP) is a progressive inflammatory disorder that impairs endocrine and exocrine function. Our previous work suggests that mesenchymal stem/stromal cells (MSCs) and MSCs overexpressing alpha-1 antitrypsin (AAT-MSCs) could be therapeutic tools for CP treatment in mouse models. However, primary MSCs have a predisposition to undergo senescence during culture expansion which limits their therapeutic applications. Here we generated and characterized immortalized human MSCs (iMSCs) and AAT-MSCs (iAAT-MSCs) and tested their protective effect on 2,4,6-Trinitrobenzenesulfonic acid (TNBS) -induced acinar cell death in an in vitro cell culture system. Primary MSCs were immortalized by transduction with simian virus 40 large T antigen (SV40LT), and the resulting iMSC and iAAT-MSC lines were analyzed for proliferation, senescence, phenotype, and multi-differentiation potential. Subsequently, the impact of these cells on TNBS-induced cell death was measured and compared. Both apoptosis and ferroptosis pathways were investigated by assessing changes of critical factors before and after cell treatment. Coculture of iMSCs and iAAT-MSCs with acinar cell lines inhibited early apoptosis induced by TNBS, reduced ER stress, and reversed TNBS-induced protein reduction at tight junctions. Additionally, iMSCs and iAAT-MSCs exerted such protection by regulating mitochondrial respiration, ATP content, and ROS production in TNBS-induced acinar cells. Furthermore, iMSCs and iAAT-MSCs ameliorated ferroptosis by regulating the ferritin heavy chain 1 (FTH1)/protein disulfide isomerase (PDI)/glutathione peroxide 4 (GPX4) signaling pathways and by modulating ROS function and iron generation in acinar cells. These findings identified ferroptosis as one of the mechanisms that leads to TNBS-induced cell death and offer mechanistic insights relevant to using stem cell therapy for the treatment of CP.
Collapse
Affiliation(s)
| | | | | | - Wenyu Gou
- Medical University of South Carolina
| | | | | |
Collapse
|
9
|
Shimosegawa T. Between early and established chronic pancreatitis: A proposal of "acinar-ductal hybrid mechanism". Pancreatology 2022; 22:831-837. [PMID: 36163223 DOI: 10.1016/j.pan.2022.09.239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/15/2022] [Indexed: 12/11/2022]
Abstract
BACKGROUND/OBJECTIVES The recently proposed "new mechanistic definition of chronic pancreatitis (CP)" categorized early CP as a reversible condition. However, there is no clear explanation regarding the pathological condition of early CP, the reason for the development of the disease in only a small portion of the patients with risk factors, and the mechanism for transition from a reversible pathological condition to an irreversible one. METHODS Based on the available information, a mechanism that could provide answers to the queries associated with CP was proposed. RESULTS Acinar-ductal coordination is very important for the physiological secretion of pancreatic juice. Inflammation originating from acinar cells undermines the function of proximal ducts and leads to a vicious cycle of sustained inflammation by increasing the viscosity and decreasing the alkalinity of pancreatic juice. Persistent elevation of ductal pressure due to stagnation of pancreatic juice caused by protein plugs, stones, or fibrous scar of ducts converts the reversible pathological condition of early CP to an irreversible one. Diagnostic criteria for early CP proposed by Japanese researchers have enabled to the recognition of patients showing a progression from early to established CP. However, most patients diagnosed with early CP do not experience progression of the disease, suggesting the inadequate specificity of the criteria. CONCLUSION The "acinar-ductal hybrid mechanism" may explain the pathological condition and progression of early CP. To diagnose early CP more accurately, it is essential to discover specific biomarkers that can discriminate "early CP" from "acute pancreatitis (AP)/recurrent acute pancreatitis (RAP)" and "established CP." Therapeutic intervention in clinical practices through various new approaches is expected to improve the prognosis of patients with CP.
Collapse
Affiliation(s)
- Tooru Shimosegawa
- Department of Gastroenterology, South-Miyagi Medical Center, 38-1 Aza-nishi, Ohgawara, Shibata-gun, Miyagi, 989-1253, Japan; Department of Gastroenterology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aobaku, Sendai, Miyagi, 980-8574, Japan.
| |
Collapse
|
10
|
Yang WJ, Cao RC, Xiao W, Zhang XL, Xu H, Wang M, Zhou ZT, Chen HJ, Xu J, Chen XM, Zeng JL, Li SJ, Luo M, Han YJ, Yang XB, Feng GD, Lu YH, Ni YY, Wu CG, Bai JJ, Yuan ZQ, Jin J, Zhang GW. Acinar ATP8b1/LPC pathway promotes macrophage efferocytosis and clearance of inflammation during chronic pancreatitis development. Cell Death Dis 2022; 13:893. [PMID: 36273194 PMCID: PMC9588032 DOI: 10.1038/s41419-022-05322-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 09/23/2022] [Accepted: 10/05/2022] [Indexed: 11/04/2022]
Abstract
Noninflammatory clearance of dying cells by professional phagocytes, termed efferocytosis, is fundamental in both homeostasis and inflammatory fibrosis disease but has not been confirmed to occur in chronic pancreatitis (CP). Here, we investigated whether efferocytosis constitutes a novel regulatory target in CP and its mechanisms. PRSS1 transgenic (PRSS1Tg) mice were treated with caerulein to mimic CP development. Phospholipid metabolite profiling and epigenetic assays were performed with PRSS1Tg CP models. The potential functions of Atp8b1 in CP model were clarified using Atp8b1-overexpressing adeno-associated virus, immunofluorescence, enzyme-linked immunosorbent assay(ELISA), and lipid metabolomic approaches. ATAC-seq combined with RNA-seq was then used to identify transcription factors binding to the Atp8b1 promoter, and ChIP-qPCR and luciferase assays were used to confirm that the identified transcription factor bound to the Atp8b1 promoter, and to identify the specific binding site. Flow cytometry was performed to analyze the proportion of pancreatic macrophages. Decreased efferocytosis with aggravated inflammation was identified in CP. The lysophosphatidylcholine (LPC) pathway was the most obviously dysregulated phospholipid pathway, and LPC and Atp8b1 expression gradually decreased during CP development. H3K27me3 ChIP-seq showed that increased Atp8b1 promoter methylation led to transcriptional inhibition. Atp8b1 complementation substantially increased the LPC concentration and improved CP outcomes. Bhlha15 was identified as a transcription factor that binds to the Atp8b1 promoter and regulates phospholipid metabolism. Our study indicates that the acinar Atp8b1/LPC pathway acts as an important "find-me" signal for macrophages and plays a protective role in CP, with Atp8b1 transcription promoted by the acinar cell-specific transcription factor Bhlha15. Bhlha15, Atp8b1, and LPC could be clinically translated into valuable therapeutic targets to overcome the limitations of current CP therapies.
Collapse
Affiliation(s)
- Wan-jun Yang
- grid.284723.80000 0000 8877 7471Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Rong-chang Cao
- grid.284723.80000 0000 8877 7471Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wang Xiao
- grid.284723.80000 0000 8877 7471Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiao-lou Zhang
- grid.284723.80000 0000 8877 7471Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hao Xu
- grid.284723.80000 0000 8877 7471Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Meng Wang
- grid.284723.80000 0000 8877 7471Nanfang PET Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhi-tao Zhou
- grid.284723.80000 0000 8877 7471Department of the Electronic Microscope Room, Central Laboratory, Southern Medical University, Guangzhou, China
| | - Huo-ji Chen
- grid.284723.80000 0000 8877 7471School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Jia Xu
- grid.284723.80000 0000 8877 7471Department of Pathophysiology, Southern Medical University, Guangzhou, China
| | - Xue-mei Chen
- grid.284723.80000 0000 8877 7471Department of Occupational Health and Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Jun-ling Zeng
- grid.284723.80000 0000 8877 7471Laboratory Animal Research Center of Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shu-ji Li
- grid.284723.80000 0000 8877 7471Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou, China
| | - Min Luo
- grid.284723.80000 0000 8877 7471Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yan-jiang Han
- grid.284723.80000 0000 8877 7471Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiao-bing Yang
- grid.284723.80000 0000 8877 7471Division of Nephrology, Nanfang Hospital, Southern Medical University, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Institute, Guangzhou, China
| | - Guo-dong Feng
- grid.284723.80000 0000 8877 7471Southern Medical University, Guangzhou, China
| | - Yu-heng Lu
- grid.284723.80000 0000 8877 7471Southern Medical University, Guangzhou, China
| | - Yuan-yuan Ni
- grid.284723.80000 0000 8877 7471Southern Medical University, Guangzhou, China
| | - Chan-gui Wu
- grid.284723.80000 0000 8877 7471Southern Medical University, Guangzhou, China
| | - Jun-jie Bai
- grid.284723.80000 0000 8877 7471Southern Medical University, Guangzhou, China
| | - Zi-qi Yuan
- grid.284723.80000 0000 8877 7471Southern Medical University, Guangzhou, China
| | - Jin Jin
- grid.284723.80000 0000 8877 7471Department of Gynaecology and Obstetrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Guo-wei Zhang
- grid.284723.80000 0000 8877 7471Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
11
|
Ge L, Wang T, Shi D, Geng Y, Fan H, Zhang R, Zhang Y, Zhao J, Li S, Li Y, Shi H, Song G, Pan J, Wang L, Han J. ATF6α contributes to rheumatoid arthritis by inducing inflammatory cytokine production and apoptosis resistance. Front Immunol 2022; 13:965708. [PMID: 36300114 PMCID: PMC9590309 DOI: 10.3389/fimmu.2022.965708] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 09/12/2022] [Indexed: 12/02/2022] Open
Abstract
Objective The contribution of activating transcription factor 6α (ATF6α) in rheumatoid arthritis (RA) pathogenesis, especially on fibroblast-like synoviocytes (FLSs), has been suggested by its sensitivity to inflammatory stimulus. However, the exact role and therapeutic potential of ATF6α in RA remains to be fully elucidated. Methods ATF6α expression was determined in joint tissues and FLS, and gain-of-function and loss-of-function analyses were applied to evaluate the biological roles of ATF6α in RA FLSs. A murine collagen-induced arthritis (CIA) model, combining both gene deletion of ATF6α and treatment with the ATF6α inhibitor Ceapin-A7, was employed. Joint inflammation, tissue destruction, circulating levels of inflammatory cytokines were assessed in CIA mice. Transcriptome sequencing analysis (RNASeq), molecular biology, and biochemical approaches were performed to identify target genes of ATF6α. Results ATF6α expression was significantly increased in synovium of RA patients and in synovium of mice subjected to CIA. ATF6α silencing or inhibition repressed RA FLSs viability and cytokine production but induced the apoptosis. CIA-model mice with ATF6α deficiency displayed decreased arthritic progression, leading to profound reductions in clinical and proinflammatory markers in the joints. Pharmacological treatment of mice with Ceapin-A7 reduced arthritis severity in CIA models. RNA-sequencing of wild-type and knockdown of ATF6α in RA FLSs revealed a transcriptional program that promotes inflammation and suppresses apoptosis, and subsequent experiments identified Baculoviral IAP Repeat Containing 3 (BIRC3) as the direct target for ATF6α. Conclusion This study highlights the pathogenic role of ATF6α-BIRC3 axis in RA and identifies a novel pathway for new therapies against RA.
Collapse
Affiliation(s)
- Luna Ge
- Department of Rheumatology and Autoimmunology, The First Affiliated Hospital of Shandong First Medical University, Ji’nan, China
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Ji’nan, China
| | - Ting Wang
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Ji’nan, China
| | - Dandan Shi
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Ji’nan, China
| | - Yun Geng
- Shandong First Medical University & Shandong Academy of Medical Sciences, Ji’nan, China
| | - Huancai Fan
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Ji’nan, China
| | - Ruojia Zhang
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Ji’nan, China
| | - Yuang Zhang
- Department of Rheumatology and Autoimmunology, The First Affiliated Hospital of Shandong First Medical University, Ji’nan, China
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Ji’nan, China
| | - Jianli Zhao
- Department of Orthopedic Surgery, The First Affiliated Hospital of Shandong First Medical University, Ji’nan, China
| | - Shufeng Li
- Department of Orthopedic Surgery, The First Affiliated Hospital of Shandong First Medical University, Ji’nan, China
| | - Yi Li
- Department of Orthopedic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University (Shandong Provincial Hospital), Jinan, China
| | - Haojun Shi
- The Second Clinical Medical College, Henan University of Chinese Medicine, Zhengzhou, China
| | - Guanhua Song
- Institute of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji’nan, China
| | - Jihong Pan
- Department of Rheumatology and Autoimmunology, The First Affiliated Hospital of Shandong First Medical University, Ji’nan, China
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Ji’nan, China
| | - Lin Wang
- Department of Rheumatology and Autoimmunology, The First Affiliated Hospital of Shandong First Medical University, Ji’nan, China
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Ji’nan, China
- *Correspondence: Lin Wang, ; Jinxiang Han,
| | - Jinxiang Han
- Department of Rheumatology and Autoimmunology, The First Affiliated Hospital of Shandong First Medical University, Ji’nan, China
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Ji’nan, China
- *Correspondence: Lin Wang, ; Jinxiang Han,
| |
Collapse
|
12
|
Cao RC, Yang WJ, Xiao W, Zhou L, Tan JH, Wang M, Zhou ZT, Chen HJ, Xu J, Chen XM, Jin YC, Lin JY, Zeng JL, Li SJ, Luo M, Hu GD, Jin J, Yang XB, Huo D, Zhou J, Zhang GW. St13 protects against disordered acinar cell arachidonic acid pathway in chronic pancreatitis. J Transl Med 2022; 20:218. [PMID: 35562743 PMCID: PMC9103046 DOI: 10.1186/s12967-022-03413-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/24/2022] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Early diagnosis and treatment of chronic pancreatitis (CP) are limited. In this study, St13, a co-chaperone protein, was investigated whether it constituted a novel regulatory target in CP. Meanwhile, we evaluated the value of micro-PET/CT in the early diagnosis of CP. METHODS Data from healthy control individuals and patients with alcoholic CP (ACP) or non-ACP (nACP) were analysed. PRSS1 transgenic mice (PRSS1Tg) were treated with ethanol or caerulein to mimic the development of ACP or nACP, respectively. Pancreatic lipid metabolite profiling was performed in human and PRSS1Tg model mice. The potential functions of St13 were investigated by crossing PRSS1Tg mice with St13-/- mice via immunoprecipitation and lipid metabolomics. Micro-PET/CT was performed to evaluate pancreatic morphology and fibrosis in CP model. RESULTS The arachidonic acid (AA) pathway ranked the most commonly dysregulated lipid pathway in ACP and nACP in human and mice. Knockout of St13 exacerbated fatty replacement and fibrosis in CP model. Sdf2l1 was identified as a binding partner of St13 as it stabilizes the IRE1α-XBP1s signalling pathway, which regulates COX-2, an important component in AA metabolism. Micro-PET/CT with 68Ga-FAPI-04 was useful for evaluating pancreatic morphology and fibrosis in CP model mice 2 weeks after modelling. CONCLUSION St13 is functionally activated in acinar cells and protects against the cellular characteristics of CP by binding Sdf2l1, regulating AA pathway. 68Ga-FAPI-04 PET/CT may be a very valuable approach for the early diagnosis of CP. These findings thus provide novel insights into both diagnosis and treatment of CP.
Collapse
Affiliation(s)
- Rong-chang Cao
- grid.284723.80000 0000 8877 7471Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, No. 1838, North Guangzhou Avenue, Guangzhou, 510515 People’s Republic of China
| | - Wan-jun Yang
- grid.284723.80000 0000 8877 7471Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, No. 1838, North Guangzhou Avenue, Guangzhou, 510515 People’s Republic of China
| | - Wang Xiao
- grid.284723.80000 0000 8877 7471Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, No. 1838, North Guangzhou Avenue, Guangzhou, 510515 People’s Republic of China
| | - Lei Zhou
- grid.284723.80000 0000 8877 7471Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, No. 1838, North Guangzhou Avenue, Guangzhou, 510515 People’s Republic of China
| | - Jie-hui Tan
- grid.284723.80000 0000 8877 7471Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, No. 1838, North Guangzhou Avenue, Guangzhou, 510515 People’s Republic of China
| | - Meng Wang
- grid.284723.80000 0000 8877 7471Nanfang PET Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515 China
| | - Zhi-tao Zhou
- grid.284723.80000 0000 8877 7471Department of the Electronic Microscope Room, Central Laboratory, Southern Medical University, Guangzhou, 510515 China
| | - Huo-ji Chen
- grid.284723.80000 0000 8877 7471School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515 China
| | - Jia Xu
- grid.284723.80000 0000 8877 7471Department of Pathophysiology, Southern Medical University, Guangzhou, 510515 China
| | - Xue-mei Chen
- grid.284723.80000 0000 8877 7471Department of Occupational Health and Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515 China
| | - Yang-chen Jin
- grid.284723.80000 0000 8877 7471The First Clinical Medical College, Southern Medical University, Guangzhou, 510515 China
| | - Jia-yu Lin
- grid.284723.80000 0000 8877 7471The First Clinical Medical College, Southern Medical University, Guangzhou, 510515 China
| | - Jun-ling Zeng
- grid.284723.80000 0000 8877 7471Laboratory Animal Research Center of Nanfang Hospital, Southern Medical University, Guangzhou, 510515 China
| | - Shu-ji Li
- grid.284723.80000 0000 8877 7471Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou, 510515 China
| | - Min Luo
- grid.284723.80000 0000 8877 7471Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515 China
| | - Guo-dong Hu
- grid.284723.80000 0000 8877 7471Department of Respiratory and Crit Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515 China
| | - Jin Jin
- grid.284723.80000 0000 8877 7471Department of Gynaecology and Obstetrics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515 China
| | - Xiao-bing Yang
- grid.416466.70000 0004 1757 959XDivision of Nephrology, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangdong Institute, Guangzhou, 510515 China
| | - Da Huo
- grid.412631.3Department of Plastic Surgery, The First Teaching Hospital, Xinjiang Medical University, Urumqi, 830054 China
| | - Jie Zhou
- grid.284723.80000 0000 8877 7471Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, No. 1838, North Guangzhou Avenue, Guangzhou, 510515 People’s Republic of China
| | - Guo-wei Zhang
- grid.284723.80000 0000 8877 7471Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, No. 1838, North Guangzhou Avenue, Guangzhou, 510515 People’s Republic of China
| |
Collapse
|
13
|
Xiao W, Cao RC, Yang WJ, Tan JH, Liu RQ, Kan HP, Zhou L, Zhang N, Chen ZY, Chen XM, Xu J, Zhang GW, Shen P. Roles and Clinical Significances of ATF6, EMC6, and APAF1 in Prognosis of Pancreatic Cancer. Front Genet 2022; 12:730847. [PMID: 35222510 PMCID: PMC8873166 DOI: 10.3389/fgene.2021.730847] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 12/14/2021] [Indexed: 01/14/2023] Open
Abstract
Background: Pancreatic cancer (PC) is prevalent among malignant tumors with poor prognosis and lacks efficient therapeutic strategies. Endoplasmic reticulum (ER) stress and apoptosis are associated with chronic inflammation and cancer progression. However, the prognostic value of ER stress-related, and apoptosis-related genes in PC remains to be further elucidated. Our study aimed at confirming the prognostic values of the ER stress-related genes, ATF6, EMC6, XBP1, and CHOP, and the apoptosis-related gene, APAF1, in PC patients. Methods: Gene Expression Profiling Interactive Analysis 2 (GEPIA2) was used to evaluate prognosis value of ATF6, EMC6, XBP1, CHOP, and APAF1 in PC. Clinical data from 69 PC patients were retrospectively analyzed. Immunohistochemistry, Western blotting, and qRT-PCR were used for the assessment of gene or protein expression. The cell counting kit-8 (CCK-8) and the Transwell invasion assays were, respectively, used for the assessment of the proliferative and invasive abilities of PC cells. The prognostic values of ATF6, XBP1, CHOP, EMC6, and APAF1 in PC patients were evaluated using Kaplan–Meier and Cox regression analyses. Results: XBP1 and CHOP expressions were not associated with PC recurrence-free survival (RFS), overall survival (OS) and disease-specific survival (DSS). ATF6 upregulation and EMC6 and APAF1 downregulations significantly correlated with the poor RFS, OS, and DSS of PC patients. ATF6 promoted PC cell proliferation and invasion, while EMC6 and APAF1 inhibited these events. Conclusion: ATF6 upregulation and EMC6 and APAF1 downregulations may be valid indicators of poor prognosis of PC patients. Moreover, ATF6, EMC6, and APAF1 may constitute potential therapeutic targets in PC patients.
Collapse
Affiliation(s)
- Wang Xiao
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Rong-Chang Cao
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wan-Jun Yang
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jie-Hui Tan
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ruo-Qi Liu
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - He-Ping Kan
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lei Zhou
- Department of Hepoctobiliary Pancreatic Surgery, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Na Zhang
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhi-Ye Chen
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xue-Mei Chen
- Department of Occupational Health and Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Jia Xu
- Department of Pathophysiology, Southern Medical University, Guangzhou, China
| | - Guo-Wei Zhang
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Guo-Wei Zhang, ; Peng Shen,
| | - Peng Shen
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Guo-Wei Zhang, ; Peng Shen,
| |
Collapse
|
14
|
Li H, Wen W, Luo J. Targeting Endoplasmic Reticulum Stress as an Effective Treatment for Alcoholic Pancreatitis. Biomedicines 2022; 10:biomedicines10010108. [PMID: 35052788 PMCID: PMC8773075 DOI: 10.3390/biomedicines10010108] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/28/2021] [Accepted: 12/30/2021] [Indexed: 02/04/2023] Open
Abstract
Pancreatitis and alcoholic pancreatitis are serious health concerns with an urgent need for effective treatment strategies. Alcohol is a known etiological factor for pancreatitis, including acute pancreatitis (AP) and chronic pancreatitis (CP). Excessive alcohol consumption induces many pathological stress responses; of particular note is endoplasmic reticulum (ER) stress and adaptive unfolded protein response (UPR). ER stress results from the accumulation of unfolded/misfolded protein in the ER and is implicated in the pathogenesis of alcoholic pancreatitis. Here, we summarize the possible mechanisms by which ER stress contributes to alcoholic pancreatitis. We also discuss potential approaches targeting ER stress and UPR in developing novel therapeutic strategies for the disease.
Collapse
Affiliation(s)
- Hui Li
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; (H.L.); (W.W.)
| | - Wen Wen
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; (H.L.); (W.W.)
| | - Jia Luo
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; (H.L.); (W.W.)
- Iowa City VA Health Care System, Iowa City, IA 52246, USA
- Correspondence: ; Tel.: +1-319-335-2256
| |
Collapse
|
15
|
Deficiency of β-arrestin2 alleviates apoptosis through GRP78-ATF6-CHOP signaling pathway in primary Sjögren's syndrome. Int Immunopharmacol 2021; 101:108281. [PMID: 34710848 DOI: 10.1016/j.intimp.2021.108281] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/15/2021] [Accepted: 10/16/2021] [Indexed: 11/22/2022]
Abstract
The etiology of primary Sjögren's syndrome (pSS) remains unknown, and there is no ideal drug for the specific treatment of pSS. β-arrestin2 is a key protein that mediates desensitization and internalization of G protein-coupled receptors (GPCRs) and it participates in inflammatory and immune responses that have been found to mediate apoptosis in autoimmune disease. In this study, we established an experimental Sjögren's syndrome (ESS) mouse model to elucidate the molecular mechanisms of β-arrestin2 in pSS. First, excessive activation of β-arrestin2 and GRP78-ATF6-CHOP apoptosis signaling were detected in specimens from pSS patients. In vivo, we found that inhibition of GRP78-ATF6-CHOP apoptosis signaling improved ESS symptoms, and the targeted deletion of β-arrestin2 significantly increased saliva flow, alleviated salivary gland indices, and improved tissue integrity in the ESS model by downregulating GRP78-ATF6-CHOP apoptosis signaling. In vitro, we used IFNα to stimulate human salivary gland epithelial cells (HSGECs), and the results showed that IFNα activated GRP78-ATF6-CHOP apoptosis signaling, decreased cell viability, and induced apoptosis, which were negatively regulated by the ERS inhibitor 4-PBA. In addition, β-arrestin2 depletion downregulated GRP78-ATF6-CHOP apoptosis signaling to alleviate cell apoptosis, and the effect depended on the interaction between GRP78 and β-arrestin2. In summary, our results suggest that excessive activation of GRP78-ATF6-CHOP apoptosis signaling is involved in the pathogenesis of pSS and that β-arrestin2 encourages inflammation-induced epithelial apoptosis through GRP78-ATF6-CHOP apoptosis signaling. This research further clarified the underlying role of β-arrestin2 and provided an experimental foundation for β-arrestin2 depletion in the treatment of the human autoimmune disorder pSS.
Collapse
|
16
|
Sheng LP, Han CQ, Nie C, Xu T, Zhang K, Li XJ, Xie XR, Lin R, Ding Z. Identification of potential serum exosomal microRNAs involved in acinar-ductal metaplasia that is a precursor of pancreatic cancer associated with chronic pancreatitis. Medicine (Baltimore) 2021; 100:e25753. [PMID: 33950960 PMCID: PMC8104147 DOI: 10.1097/md.0000000000025753] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 01/10/2021] [Accepted: 04/08/2021] [Indexed: 01/04/2023] Open
Abstract
BACKGROUNDS Due to difficulty in early diagnosis of chronic pancreatitis (CP), it is urgent to find novel biomarkers to detect CP. Exosomal microRNAs (Exo-miRNAs) located in the serum may be potential diagnostic and therapeutic targets for CP. OBJECTIVE To identify differentially expressed Exo-miRNAs (DE-Exo-miRNAs) in the serum of CP patients, we performed a bioinformatics analysis. METHODS The dataset GSE128508 was downloaded from the Gene Expression Omnibus (GEO) database. The analysis was carried out using BRB-ArrayTools and significance analysis of microarrays (SAM). The target genes of DE-S-Exo-miRNAs were predicted by miRWalk databases. Further gene ontology (GO) term and Kyoto Encyclopedia of Genomes (KEGG) pathway analyses were performed with plug-in ClueGO in Cytoscape software 3.7.0. Subsequently, the interaction regulatory network between encoded proteins of target genes was performed with the Search Tool for the Retrieval of Interacting Genes (STRING) database and analyzed using plug-in Molecular Complex Detection (MCODE) and cytoHubba in Cytoscape software 3.7.0. RESULTS We identified 227 DE-Exo-miRNAs in the serum. Further analysis using the miRWalk database identified 5164 target genes of these miRNAs. The protein-protein interaction (PPI) regulatory network of 1912 potential target genes for hub 10 up-regulated miRNAs with high degrees and one down-regulated miRNAs were constructed using the STRING database and Cytoscape software. The functional analysis using Cytoscape software tool highlighted that target genes involved in pancreatic cancer. Acinar-ductal metaplasia (ADM) in the inflammatory environment of CP is a precursor of pancreatic cancer. Subsequently, we constructed a network of target genes associated with ADM and their miRNAs. CONCLUSIONS Exo-miRNAs in the serum as well as their target genes may be promising targets for the early diagnosis and treatment of CP. In addition, we identified potential Exo-miRNAs involved in ADM that is a precursor of pancreatic cancer associated with CP.
Collapse
|
17
|
Gao Y, Hou L, Wang Y, Zhang Y, Zhang S, Li Y, Jiang Y, Zhu C, Sun T, Duan G, Yuan D. Comparison of Pancreatic Damage in Rats for Two Methods of Paraquat Administration. Front Pharmacol 2021; 12:611433. [PMID: 33967752 PMCID: PMC8099104 DOI: 10.3389/fphar.2021.611433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 02/01/2021] [Indexed: 01/09/2023] Open
Abstract
It is noted that elevated serum amylase levels suggesting pancreatic damage has an association with prognosis in PQ patients. This study aimed to determine whether PQ can cause pancreatic damage. The two conventional models (intragastric infusion (iG) and intraperitoneal injection (iP)) may exhibit different effects on the pancreas depending on whether or not they pass through the digestive tract. In this study, the rats were divided into four groups: the intragastric infusion group (PQ-iG, n = 45), intraperitoneal injection group (PQ-iP, n = 53), normal control group 1 (NC-iG, n = 6) and normal control group 2 (NC-iP, n = 6). Pancreatic damage was compared between groups using serum amylase activity assay, hematoxylin and eosin (H&E) staining, TUNEL assay, and transmission electron microscopy (TEM). Serum amylase levels in group PQ-iG were significantly higher than in group PQ-iP (p < 0.05). Examination of the H&E sections showed damage to the pancreas. Both experimental groups were displayed inflammatory infiltration within 9 h of PQ treatment. After 9 h, patchy necrosis was observed in group PQ-iP, when inflammatory infiltration was still the dominant pathology. Necrosis appeared and gradually worsened in group PQ-iG, in which necrosis was the dominant pathology. The TUNEL assay showed significantly higher numbers of apoptotic cells in the pancreas of PQ-groups than in the control NC- groups (p < 0.05). TEM showed expansive endoplasmic reticulum lumens and mitochondria swelling in the pancreas of the PQ-groups. It is concluded that both methods of modeling could cause pancreatic damage and the type and degree of damage would change over time. Note that pancreatic damage in group PQ-iG was more severe than that in group PQ-iP. Therefore, clinical practitioners should pay close attention to pancreatic damage caused by PQ, especially when the route of PQ administration was oral.
Collapse
Affiliation(s)
- Yanxia Gao
- Emergency Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Linlin Hou
- Emergency Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yibo Wang
- Emergency Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yan Zhang
- Emergency Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shoutao Zhang
- Henan Key Laboratory of Bioactive Macromolecules, School of Life Sciences, Zhengzhou, China
| | - Yi Li
- Emergency Department, Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, Beijing, China
| | - Yanan Jiang
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Changju Zhu
- Emergency Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Tongwen Sun
- Emergency Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Guoyu Duan
- Emergency Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ding Yuan
- Emergency Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
18
|
Uncovering the Pharmacology of Xiaochaihu Decoction in the Treatment of Acute Pancreatitis Based on the Network Pharmacology. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6621682. [PMID: 33824873 PMCID: PMC8007340 DOI: 10.1155/2021/6621682] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 02/05/2021] [Accepted: 03/03/2021] [Indexed: 12/31/2022]
Abstract
Background Xiaochaihu decoction (XD) has demonstrated the pharmacodynamics on acute pancreatitis. This study was aimed at investigating the material and molecular basis of Xiaochaihu decoction. Methods Firstly, compounds of seven herbs containing XD were collected from the TCMSP, ETCM, and BATMAN-TCM databases, and the putative targets of pancreatitis were obtained from the OMIM, TTD, and GeneCards databases. Then, the PPI network was constructed according to the matching results between XD potential targets and pancreatic neoplasm targets. Furthermore, enrichment analysis on GO and KEGG by DAVID utilized bioinformatics resources. Finally, molecular docking was performed to simulate the interaction between the active compound of XD and putative targets. In an in vitro experiment, AR42J cells were induced by LPS and then treated with Quercetin (25, 50, and 100 μM) or XCHD. The IL-6, TNF-α, and IL-1β levels were detected by ELISA kit, MAPK3 and TP53 mRNA expressions were measured by qRT-PCR, and the proteins of MAPK3 and TP53 expressions were measured by WB. Results A total of 196 active ingredients and 91 putative targets were selected. The PPI network analysis demonstrated that Quercetin was the candidate agent and MAPK3, IL-6, and TP53 were the potential targets for the XD treatment of acute pancreatitis. The KEGG analysis revealed that pathways in cancers, TNF signaling way, and MAPK signaling way might play an important role in pancreatitis therapy. And molecular docking results showed that Quercetin combined well with MAPK3, IL-6, and TP53. An in vitro experiment indicated that XCHD and Quercetin inhibited the IL-6, TNF-α, and IL-1β levels and MAPK3 and TP53. Conclusion This study illustrated that XCHD and Quercetin contained in XD played an important role in the treatment of acute pancreatitis by acting on the key genes of MPAK3, IL-6, and TP53 which were associated with inflammation and apoptosis.
Collapse
|
19
|
Tan JH, Cao RC, Zhou L, Zhou ZT, Chen HJ, Xu J, Chen XM, Jin YC, Lin JY, Qi ZC, Zeng JL, Li SJ, Luo M, Hu GD, Jin J, Zhang GW. EMC6 regulates acinar apoptosis via APAF1 in acute and chronic pancreatitis. Cell Death Dis 2020; 11:966. [PMID: 33177505 PMCID: PMC7658364 DOI: 10.1038/s41419-020-03177-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 10/24/2020] [Accepted: 10/27/2020] [Indexed: 02/07/2023]
Abstract
Treatment of acute pancreatitis (AP) and chronic pancreatitis (CP) remains problematic due to a lack of knowledge about disease-specific regulatory targets and mechanisms. The purpose of this study was to screen proteins related to endoplasmic reticulum (ER) stress and apoptosis pathways that may play a role in pancreatitis. Human pancreatic tissues including AP, CP, and healthy volunteers were collected during surgery. Humanized PRSS1 (protease serine 1) transgenic (PRSS1Tg) mice were constructed and treated with caerulein to mimic the development of human AP and CP. Potential regulatory proteins in pancreatitis were identified by proteomic screen using pancreatic tissues of PRSS1Tg AP mice. Adenoviral shRNA-mediated knockdown of identified proteins, followed by functional assays was performed to validate their roles. Functional analyses included transmission electron microscopy for ultrastructural analysis; qRT-PCR, western blotting, co-immunoprecipitation, immunohistochemistry, and immunofluorescence for assessment of gene or protein expression, and TUNEL assays for assessment of acinar cell apoptosis. Humanized PRSS1Tg mice could mimic the development of human pancreatic inflammatory diseases. EMC6 and APAF1 were identified as potential regulatory molecules in AP and CP models by proteomic analysis. Both EMC6 and APAF1 regulated apoptosis and inflammatory injury in pancreatic inflammatory diseases. Moreover, APAF1 was regulated by EMC6, induced apoptosis to injure acinar cells and promoted inflammation. In the progression of pancreatitis, EMC6 was activated and then upregulated APAF1 to induce acinar cell apoptosis and inflammatory injury. These findings suggest that EMC6 may be a new therapeutic target for the treatment of pancreatic inflammatory diseases.
Collapse
Affiliation(s)
- Jie-Hui Tan
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Rong-Chang Cao
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lei Zhou
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhi-Tao Zhou
- Department of the Electronic Microscope Room, Central Laboratory, Southern Medical University, Guangzhou, China
| | - Huo-Ji Chen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Jia Xu
- Department of Pathophysiology, Southern Medical University, Guangzhou, China
| | - Xue-Mei Chen
- Department of Occupational Health and Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Yang-Chen Jin
- The First Clinical Medical College, Southern Medical University, Guangzhou, China
| | - Jia-Yu Lin
- The First Clinical Medical College, Southern Medical University, Guangzhou, China
| | - Zhao-Chang Qi
- The First Clinical Medical College, Southern Medical University, Guangzhou, China
| | - Jun-Ling Zeng
- Laboratory Animal Research Center of Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shu-Ji Li
- Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou, China
| | - Min Luo
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Guo-Dong Hu
- Department of Respiratory and Crit Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jin Jin
- Department of Gynaecology and Obstetrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Guo-Wei Zhang
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
20
|
Zhou L, Tan JH, Zhou WY, Xu J, Ren SJ, Lin ZY, Chen XM, Zhang GW. P53 Activated by ER Stress Aggravates Caerulein-Induced Acute Pancreatitis Progression by Inducing Acinar Cell Apoptosis. Dig Dis Sci 2020; 65:3211-3222. [PMID: 31974911 DOI: 10.1007/s10620-020-06052-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 01/06/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND AND AIMS Acute pancreatitis (AP) is a severe pancreatic disorder that remains associated with high mortality due to a lack of effective drugs and management strategies. This study aimed to investigate the molecular pathogenic mechanisms of AP involving p53 and endoplasmic reticulum (ER) stress pathways. METHODS Expression of PRSS1 and p53 in human AP tissues was detected by immunohistochemistry and Western blotting. AP was induced with caerulein in humanized PRSS1 transgenic mice, and its severity was verified by histological imaging, evaluation of edema, serum amylase, and trypsin activity assays. A transferase-mediated d-UTP nick end-labeling assay was performed to evaluate acinar cell apoptosis associated with AP. The expression of ER stress genes was assessed by quantitative RT-PCR (qRT-PCR) and Western blotting. RESULTS PRSS1 and p53 were highly expressed in human AP tissues. Expression of human PRSS1 in caerulein-treated mice induced significant acinar cell apoptosis and AP progression. P53 knockout significantly suppressed AP progression in humanized PRSS1 transgenic mice. The ER stress pathway was activated by PRSS1 and mediated the progression of AP in mouse pancreatic tissues. Application of a p53 inhibitor effectively ameliorated caerulein-induced AP in PRSS1 transgenic mice, while a p53 activator promoted the progression of AP. CONCLUSION P53, which was activated by the ER stress pathway, promoted the progression of AP in mice expressing PRSS1 by inducing acinar cell apoptosis.
Collapse
Affiliation(s)
- Lei Zhou
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, No. 1838, North Guangzhou Avenue, Guangzhou, 510515, People's Republic of China
| | - Jie-Hui Tan
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, No. 1838, North Guangzhou Avenue, Guangzhou, 510515, People's Republic of China
| | - Wan-Yan Zhou
- Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jia Xu
- Department of Pathophysiology, Southern Medical University, Guangzhou, China
| | - Shi-Jing Ren
- Department of Endocrinology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhen-Yu Lin
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, No. 1838, North Guangzhou Avenue, Guangzhou, 510515, People's Republic of China
| | - Xue-Mei Chen
- Department of Occupational Health and Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Guo-Wei Zhang
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, No. 1838, North Guangzhou Avenue, Guangzhou, 510515, People's Republic of China.
| |
Collapse
|
21
|
Bai HL, Kang CM, Sun ZQ, Li XH, Dai XY, Huang RY, Zhao JJ, Bei YR, Huang XZ, Lu ZF, Wu SG, Lu JB, Ping BH, Wang Q, Hu YW. TTDA inhibited apoptosis by regulating the p53-Bax/Bcl2 axis in glioma. Exp Neurol 2020; 331:113380. [PMID: 32540359 DOI: 10.1016/j.expneurol.2020.113380] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/18/2020] [Accepted: 06/09/2020] [Indexed: 12/16/2022]
Abstract
The trichothiodystrophy group A protein (TTDA) functions in nucleotide excision repair and basal transcription. TTDA plays a role in cancers and serves as a prognostic and predictive factor in high-grade serous ovarian cancer; however, its role in human glioma remains unknown. Here, we found that TTDA was overexpressed in glioma tissues. In vitro experiments revealed that TTDA overexpression inhibited apoptosis of glioma cells and promoted cell growth, whereas knockdown of TTDA had the opposite effect. Increased TTDA expression significantly decreased the Bax/Bcl2 ratio and the level of cleaved-caspase3. TTDA interacted with the p53 gene at the -1959 bp and -1530 bp region and regulated its transcription, leading to inhibition of the p53-Bax/Bcl2 mitochondrial apoptosis pathway in glioma cells. These results indicate that TTDA is an upstream regulator of p53-mediated apoptosis and acts as an oncogene, suggesting its value as a potential molecular target for the diagnosis and treatment of glioma.
Collapse
Affiliation(s)
- Huan-Lan Bai
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Chun-Min Kang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - Zhen-Qing Sun
- Department of neurosurgery Ward 6, Guangdong 999 Brain Hospital, Guangzhou 510510, China
| | - Xue-Heng Li
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Xiao-Yan Dai
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China.
| | - Rui-Ying Huang
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Jing-Jing Zhao
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Yan-Rou Bei
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Xian-Zhang Huang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - Zhi-Feng Lu
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Shao-Guo Wu
- Department of Clinical Laboratory, Guangzhou Twelfth People's Hospital, Guangzhou 510420, China
| | - Jing-Bo Lu
- Department of Vascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Bao-Hong Ping
- Hui Qiao Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Qian Wang
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China; Laboratory Medicine Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, China.
| | - Yan-Wei Hu
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China; Department of Clinical Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510000, China.
| |
Collapse
|
22
|
Tan JH, Cao RC, Zhou L, Zhou ZT, Chen HJ, Xu J, Chen XM, Jin YC, Lin JY, Zeng JL, Li SJ, Luo M, Hu GD, Yang XB, Jin J, Zhang GW. ATF6 aggravates acinar cell apoptosis and injury by regulating p53/AIFM2 transcription in Severe Acute Pancreatitis. Theranostics 2020; 10:8298-8314. [PMID: 32724472 PMCID: PMC7381726 DOI: 10.7150/thno.46934] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 05/22/2020] [Indexed: 02/06/2023] Open
Abstract
Background: There is no curative therapy for severe acute pancreatitis (SAP) due to poor understanding of its molecular mechanisms. Endoplasmic reticulum (ER) stress is involved in SAP and increased expression of ATF6 has been detected in SAP patients. Here, we aimed to investigate the role of ATF6 in a preclinical SAP mouse model and characterize its regulatory mechanism. Methods: Pancreatic tissues of healthy and SAP patients were collected during surgery. Humanized PRSS1 transgenic mice were treated with caerulein to mimic the SAP development, which was crossed to an ATF6 knockout mouse line, and pancreatic tissues from the resulting pups were screened by proteomics. Adenovirus-mediated delivery to the pancreas of SAP mice was used for shRNA-based knockdown or overexpression. The potential functions and mechanisms of ATF6 were clarified by immunofluorescence, immunoelectron microscopy, Western blotting, qRT-PCR, ChIP-qPCR and luciferase reporter assay. Results: Increased expression of ATF6 was associated with elevated apoptosis, ER and mitochondrial disorder in pancreatic tissues from SAP patients and PRSS1 mice. Knockout of ATF6 in SAP mice attenuated acinar injury, apoptosis and ER disorder. AIFM2, known as a p53 target gene, was identified as a downstream regulatory partner of ATF6, whose expression was increased in SAP. Functionally, AIFM2 could reestablish the pathological disorder in SAP tissues in the absence of ATF6. p53 expression was also increased in SAP mice, which was downregulated by ATF6 knockout. p53 knockout significantly suppressed acinar apoptosis and injury in SAP model. Mechanistically, ATF6 promoted AIFM2 transcription by binding to p53 and AIFM2 promoters. Conclusion: These results reveal that ATF6/p53/AIFM2 pathway plays a critical role in acinar apoptosis during SAP progression, highlighting novel therapeutic target molecules for SAP.
Collapse
Affiliation(s)
- Jie-Hui Tan
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Rong-Chang Cao
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lei Zhou
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhi-Tao Zhou
- Department of the Electronic Microscope Room, Central Laboratory, Southern Medical University, Guangzhou, China
| | - Huo-Ji Chen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Jia Xu
- Department of Pathophysiology, Southern Medical University, Guangzhou, China
| | - Xue-Mei Chen
- Department of Occupational Health and Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Yang-Chen Jin
- The First Clinical Medical College, Southern Medical University, Guangzhou, China
| | - Jia-Yu Lin
- The First Clinical Medical College, Southern Medical University, Guangzhou, China
| | - Jun-Ling Zeng
- Laboratory Animal Research Center of Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shu-Ji Li
- Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou, China
| | - Min Luo
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Guo-Dong Hu
- Department of Respiratory and Crit Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiao-Bing Yang
- Division of Nephrology, Nanfang Hospital, Southern Medical University, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Institute, Guangzhou, China
| | - Jin Jin
- Department of Gynaecology and Obstetrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Guo-Wei Zhang
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
23
|
Ambroxol Improves Neuronal Survival and Reduces White Matter Damage through Suppressing Endoplasmic Reticulum Stress in Microglia after Intracerebral Hemorrhage. BIOMED RESEARCH INTERNATIONAL 2020; 2020:8131286. [PMID: 32309438 PMCID: PMC7142346 DOI: 10.1155/2020/8131286] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/23/2020] [Accepted: 02/28/2020] [Indexed: 12/31/2022]
Abstract
Intracerebral hemorrhage (ICH) has been becoming a serious public health problem. Pneumonia, occurring in 43% of all ICH patients, is a common complication heavily influencing outcome and accounting for more than 1/3 of the overall mortality in patients with ICH. Ambroxol may be an effective additional treatment for ICH patients with pneumonia. But its effect and potential mechanism on functional recovery post-ICH still remain elusive. In the present study, the results indicated that 35 mg/kg and 70 mg/kg ambroxol facilitated neuronal survival and reduced white matter fiber bundle damage due to mitigating microglial activation and reducing proinflammatory cytokine accumulation in mice with ICH. The possible mechanism might be due to suppressing endoplasmic reticulum stress involving the IRE1α/TRAF2 signaling pathway, which paves a new path for the treatment of ICH and opens a new window for the use of ambroxol in clinical practice.
Collapse
|