1
|
Ma J, Yang Y, Wang K, Liu J, Feng J, Wang G, Guo S, Fan L. RSK4 promotes the metastasis of clear cell renal cell carcinoma by activating RUNX1-mediated angiogenesis. Cancer Biol Ther 2025; 26:2452025. [PMID: 39797421 PMCID: PMC11730630 DOI: 10.1080/15384047.2025.2452025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/31/2024] [Accepted: 01/07/2025] [Indexed: 01/13/2025] Open
Abstract
Ribosomal S6 protein kinase 4 (RSK4), a member of the serine‒threonine kinase family, plays a vital role in the Ras‒MAPK pathway. This kinase is responsible for managing several cellular activities, including cell growth, proliferation, survival, and mobility. In this study, we observed higher RSK4 protein expression in clear cell renal cell carcinoma (ccRCC) than in normal kidney tissue, and the overexpression of RSK4 might predict poor outcomes for ccRCC patients. Notably, renal cell carcinoma (RCC) is rich in blood vessels; therefore, this study aimed to explore the biological function of RSK4 in ccRCC progression and its specific regulatory mechanism. We analyzed changes in the expression of target genes through transcriptomic and proteomic assessments. We also conducted tube formation assays and VEGF ELISAs to understand the role of RSK4 in angiogenesis. Additionally, we evaluated the regulatory effect of RUNX1 on EPHA2 transcription using a luciferase reporter gene assay and observed that the effect of RUNX1 on activating EPHA2 transcription was negated after the binding site was mutated. Our findings suggested that RSK4 enhanced tube formation by stimulating VEGF secretion. Concurrently, in vivo experiments confirmed that RSK4 expedited RCC metastasis and angiogenesis. This evidence indicates that RSK4 may serve as a new prognostic marker and play a vital role in RCC metastasis.
Collapse
MESH Headings
- Humans
- Carcinoma, Renal Cell/pathology
- Carcinoma, Renal Cell/genetics
- Carcinoma, Renal Cell/metabolism
- Carcinoma, Renal Cell/blood supply
- Ribosomal Protein S6 Kinases, 90-kDa/metabolism
- Ribosomal Protein S6 Kinases, 90-kDa/genetics
- Kidney Neoplasms/pathology
- Kidney Neoplasms/genetics
- Kidney Neoplasms/metabolism
- Kidney Neoplasms/blood supply
- Animals
- Mice
- Neovascularization, Pathologic/metabolism
- Neovascularization, Pathologic/genetics
- Neovascularization, Pathologic/pathology
- Core Binding Factor Alpha 2 Subunit/metabolism
- Core Binding Factor Alpha 2 Subunit/genetics
- Cell Line, Tumor
- Female
- Male
- Gene Expression Regulation, Neoplastic
- Cell Proliferation
- Mice, Nude
- Neoplasm Metastasis
- Angiogenesis
Collapse
Affiliation(s)
- Jing Ma
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital, Air Force Military Medical University, Xi’an, China
| | - Yanru Yang
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital, Air Force Military Medical University, Xi’an, China
| | - Kaijing Wang
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital, Air Force Military Medical University, Xi’an, China
| | - Jin Liu
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital, Air Force Military Medical University, Xi’an, China
| | - Junyi Feng
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital, Air Force Military Medical University, Xi’an, China
- Basic Medical Research Experimental Center, Yan’an University of Medicine, Yan’an, China
| | - Gongcheng Wang
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital, Air Force Military Medical University, Xi’an, China
| | - Shuangping Guo
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital, Air Force Military Medical University, Xi’an, China
| | - Linni Fan
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital, Air Force Military Medical University, Xi’an, China
| |
Collapse
|
2
|
Li Y, Liu X, Dong Y, Zhou Y. Angiogenesis causes and vasculogenic mimicry formation in the context of cancer stem cells. Biochim Biophys Acta Rev Cancer 2025; 1880:189323. [PMID: 40239849 DOI: 10.1016/j.bbcan.2025.189323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 04/10/2025] [Accepted: 04/10/2025] [Indexed: 04/18/2025]
Abstract
Tumor occurrence, development, invasion, and metastasis are regulated by multiple mechanisms. Among these, angiogenesis promotes tumor progression mainly by supplying tumor tissue and providing channels for tumor metastasis. Cancer stem cells (CSCs) are another important factor affecting tumor progression by involving in tumor initiation and development, while remaining insensitive to conventional antitumor treatments. Among treatment strategies for them, owing to the existence of alternative angiogenic pathways or the risk of damaging normal stem cells, the clinical effect is not ideal. Angiogenesis and CSCs may influence each other in this process. Tumor angiogenesis can support CSC self-renewal by providing a suitable microenvironment, whereas CSCs can regulate tumor neovascularization and mediate drug resistance to anti-angiogenic therapy. This review summarized the role of vascular niche formed by angiogenesis in CSC self-renewal and stemness maintenance, and the function of CSCs in endothelial progenitor cell differentiation and pro-angiogenic factor upregulation. We also elucidated the malignant loop between CSCs and angiogenesis promoting tumor progression. Additionally, we summarized and proposed therapeutic targets, including blocking tumor-derived endothelial differentiation, inhibiting pro-angiogenic factor upregulation, and directly targeting endothelial-like cells comprising CSCs. And we analyzed the feasibility of these strategies to identify more effective methods to improve tumor treatment.
Collapse
Affiliation(s)
- Ying Li
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Xiaofang Liu
- Department of Anus and Intestine Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Yaodong Dong
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China.
| | - Yingying Zhou
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China.
| |
Collapse
|
3
|
Zhou C, Zhang Y, Shi SM, Yin D, Li XD, Shi YH, Zhou J, Wang Z, Chen Q. FTO downregulation-mediated m6A modification resulting in enhanced hepatocellular carcinoma invasion. Cell Biosci 2025; 15:58. [PMID: 40316995 PMCID: PMC12049069 DOI: 10.1186/s13578-025-01395-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 12/09/2024] [Indexed: 05/04/2025] Open
Abstract
BACKGROUND Dysregulation of N6-methyladenosine (m6A) modifications has been implicated in various cancers, including hepatocellular carcinoma (HCC). This study aimed to elucidate the role of m6A modifications in HCC prognosis and the molecular mechanisms involved, particularly focusing on the demethylase FTO. METHODS We analyzed m6A expression in a cohort of 323 HCC patients using immunohistochemical (IHC) staining. The expression of m6A-related genes (FTO, ALKBH5, METTL3, METTL14) was evaluated by qRT-PCR in 120 paired HCC tissues. Further, we established HCC cell lines with altered FTO expression to assess its impact on cell proliferation, invasion, and metastasis through various in vitro assays and in vivo orthotopic HCC mouse models. Statistical analyses included Pearson chi-square test, Kaplan-Meier survival analysis, and both univariate and multivariate Cox regression analyses. RESULTS IHC staining revealed elevated m6A levels in HCC tissues compared to adjacent non-tumorous tissues, with 57.3% of HCC patients showing increased m6A expression. High m6A levels were correlated with poorer overall survival (OS) and recurrence-free survival (RFS) rates. FTO, a demethylase, was significantly downregulated in HCC tissues and cell lines, particularly in highly metastatic lines. Overexpression of FTO in HCC cells reduced proliferation, migration, and invasion, whereas FTO knockdown had the opposite effect. In vivo, FTO overexpression decreased tumor growth and metastasis. RNA-Seq analysis identified VEGFA as a key gene downregulated by FTO, implicating its role in angiogenesis and tumor progression. CONCLUSIONS Our findings suggest that elevated m6A levels are associated with poor prognosis in HCC patients. FTO downregulation contributes to aberrant m6A modifications, promoting HCC progression and metastasis. FTO acts as a tumor suppressor by negatively regulating VEGFA expression, highlighting its potential as a therapeutic target for HCC treatment. These results highlight the significance of m6A modifications in HCC and provide a foundation for future research on targeted therapies.
Collapse
Affiliation(s)
- Cheng Zhou
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai, 200032, China
| | - Yong Zhang
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Shi-Ming Shi
- Department of Vascular, Thyroid, and Breast Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province, 524000, China
| | - Dan Yin
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai, 200032, China
- Institute of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Xue-Dong Li
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai, 200032, China
| | - Ying-Hong Shi
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai, 200032, China
| | - Jian Zhou
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai, 200032, China
- Institute of Biomedical Sciences, Fudan University, Shanghai, 200032, China
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, 200032, China
| | - Zheng Wang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai, 200032, China.
| | - Qing Chen
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai, 200032, China.
- Department of Liver Oncology, Zhongshan Hospital (Minhang Meilong), Fudan University (Shanghai Geriatric Medical Center), Shanghai, 201104, China.
| |
Collapse
|
4
|
Li N, Jing Y, Xu L, Wang M. METTL1 Enhances RRP9 mRNA Stability Through m7G Modification to Drive Colorectal Tumorigenesis. Mol Carcinog 2025; 64:858-869. [PMID: 39960239 DOI: 10.1002/mc.23892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/22/2025] [Accepted: 01/24/2025] [Indexed: 04/12/2025]
Abstract
METTL1, a well-established RNA methyltransferase for the N(7)-methylguanosine (m7G) methylation modification, is responsible for human tumorigenesis. Here, we aimed to examine the activity and molecular determinants of METTL1 in colorectal cancer (CRC) development. METTL1 and ribosomal RNA processing 9 (RRP9) mRNA analysis was performed by quantitative PCR. Protein expression was detected by immunoblotting and immunohistochemistry (IHC). Cell sphere formation, invasion, and proliferation were assessed by sphere formation, transwell, and MTT assays, respectively. Cell migration was tested by transwell and wound healing assays. Subcutaneous xenografts were produced to analyze the role in vivo. The influence of METTL1 in m7G methylation and stability of RRP9 mRNA was evaluated by methylated immunoprecipitation (MeRIP) assay and Actinomycin D (Act D) treatment, respectively. METTL1 was highly expressed in CRC tumors and cell lines. METTL1 depletion suppressed CRC cell proliferation, invasiveness, migratory ability, and sphere formation potential in vitro, while increased METTL1 expression had opposite effects. METTL1 positively correlated with RRP9 expression in CRC. Mechanistically, METTL1 promoted RRP9 mRNA stability by mediating its m7G methylation, and METTL1 regulated the PI3K/AKT signaling by RRP9. Increased RRP9 expression partially reversed the suppressive effects of METTL1 depletion on CRC cell phenotypes in vitro. METTL1 depletion impeded the growth of HCT-116 subcutaneous xenografts in vivo by RRP9. Our observations identified METTL1 as a crucial protumorigenic factor to drive growth, metastasis, and stemness of CRC cells through RRP9, offering new targets for combating CRC.
Collapse
Affiliation(s)
- Nan Li
- Department of Gastroenterology, Jilin Province People's Hospital, Changchun, China
| | - Ying Jing
- Department of Gastroenterology, Jilin Province People's Hospital, Changchun, China
| | - Long Xu
- Department of Gastroenterology, Jilin Province People's Hospital, Changchun, China
| | - Maonan Wang
- Department of Abdominal Tumor Surgery, Jilin Cancer Hospital, Changchun, China
| |
Collapse
|
5
|
Lan Z, Xiao Y, Liao Y, Li X, Zhang Y, Wang H, Zhang W. NID2 Affects Prognosis of Glioma via Activating the Akt Signaling Pathway. Int J Mol Sci 2025; 26:3859. [PMID: 40332526 PMCID: PMC12028320 DOI: 10.3390/ijms26083859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 04/14/2025] [Accepted: 04/15/2025] [Indexed: 05/08/2025] Open
Abstract
Nidogen-2 (NID2) is a critical component of the extracellular matrix (ECM), which plays a regulatory role in cell adhesion, migration, differentiation, and survival. Previous studies have shown that NID2 is deregulated in several types of cancer, but its role in glioma is unknown. The present study investigated the prognostic value of NID2 in glioma and its associated molecular pathways and functional roles in malignant progression. The performed analyses included investigating the NID2 expression profile using the Cancer Genome Atlas (TCGA), Chinese Glioma Genome Atlas (CGGA), and tumor tissue microarray. The findings demonstrated that NID2 high expression predicts worse patient survival by both univariable and multivariable analyses. There is a strong correlation between NID2 upregulation and tumor grade. In stably NID2-overexpressed glioma cells, RNA-Seq analysis revealed coactivation of oncogenic functional pathways, including cell proliferation, survival, epithelial-mesenchymal transition, ECM organization, and migration. Overexpression of NID2 in U87MG and T98G cells promoted cell proliferation, migration, and invasion. TUNEL assay showed NID2 overexpression protected cells from apoptosis. Western blotting analysis showed activation of Akt and Bcl-xL in NID2-overexpressed cells. Our results show that NID2 is a promising prognostic marker in glioma.
Collapse
Affiliation(s)
- Zhangzhang Lan
- School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China; (Z.L.); (Y.X.); (Y.L.); (X.L.); (Y.Z.)
| | - Yanlin Xiao
- School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China; (Z.L.); (Y.X.); (Y.L.); (X.L.); (Y.Z.)
| | - Youyou Liao
- School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China; (Z.L.); (Y.X.); (Y.L.); (X.L.); (Y.Z.)
| | - Xuan Li
- School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China; (Z.L.); (Y.X.); (Y.L.); (X.L.); (Y.Z.)
| | - Yi Zhang
- School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China; (Z.L.); (Y.X.); (Y.L.); (X.L.); (Y.Z.)
| | - Huajie Wang
- Department of Neuroscience, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China;
| | - Wenyong Zhang
- School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China; (Z.L.); (Y.X.); (Y.L.); (X.L.); (Y.Z.)
- Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
6
|
Wang Z, Yin M, Zhou R, Li M, Peng J, Wang Z. Kynurenine promotes the immune escape of colorectal cancer cells via NAT10-mediated ac 4C acetylation of PD-L1. Clinics (Sao Paulo) 2025; 80:100658. [PMID: 40245789 PMCID: PMC12020886 DOI: 10.1016/j.clinsp.2025.100658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 03/23/2025] [Accepted: 04/08/2025] [Indexed: 04/19/2025] Open
Abstract
BACKGROUND This study aimed to investigate the role of kynurenine in Colorectal Cancer (CRC) and the underlying mechanism. METHODS Enzyme-linked immunosorbent assay was employed to assess the kynurenine concentration. Flow cytometry was utilized to analyze the percentages of CD3+CD4+ and CD3+CD8+ T-cells. Immunofluorescence was used to measure the expression of Programmed Death-Ligand 1 (PD-L1). RNA modification levels in CRC cells were analyzed using a dot blot assay. The interaction between NAT10 and PD-L1 was assessed via RNA immunoprecipitation, dual-luciferase reporter, and immunofluorescence assays. A xenograft tumor rat model was established. RESULTS Results indicated that kynurenine suppressed T-cell activation and promoted immune escape. Besides, kynurenine promoted N-Acetyltransferase 10 (NAT10)-mediated N4-acetylcytidine (ac4C) modification. Moreover, NAT10 inhibition improved T-cell activation and suppressed immune escape. Mechanically, NAT10 is bound with the mRNA of PD-L1. Rescue experiments showed that PD-L1 inhibitor treatment reversed the suppressed T-cell activation and the promoted immune escape induced by NAT10 overexpression. In vivo, studies indicated that NAT10 deficiency reversed the promoted tumor growth induced by kynurenine treatment. CONCLUSION In conclusion, kynurenine promoted the immune escape of CRC cells via NAT10-mediated ac4C acetylation of PD-L1.
Collapse
Affiliation(s)
- Zaibiao Wang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, PR China; Department of General Surgery, The Affiliated Bozhou Hospital of Anhui Medical University, Bozhou, Anhui, PR China
| | - Manman Yin
- Department of Science and Education, The Affiliated Bozhou Hospital of Anhui Medical University, Bozhou, Anhui, PR China
| | - Ruhang Zhou
- Department of General Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, PR China
| | - Ming Li
- Department of Pathology, The Affiliated Bozhou Hospital of Anhui Medical University, Bozhou, Anhui, PR China
| | - Jie Peng
- Department of General Surgery, The Affiliated Bozhou Hospital of Anhui Medical University, Bozhou, Anhui, PR China
| | - Zhengguang Wang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, PR China.
| |
Collapse
|
7
|
Liu S, Liao S, He J, Zhou Y, He Q. IGF2BP2: an m 6A reader that affects cellular function and disease progression. Cell Mol Biol Lett 2025; 30:43. [PMID: 40205577 PMCID: PMC11983839 DOI: 10.1186/s11658-025-00723-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Accepted: 03/27/2025] [Indexed: 04/11/2025] Open
Abstract
Insulin-like growth factor 2 messenger RNA (mRNA)-binding protein 2 (IGF2BP2) is a widely studied N6-methyladenosine (m6A) modification reader, primarily functioning to recognize and bind to m6A modification sites on the mRNA of downstream target genes, thereby enhancing their stability. Previous studies have suggested that the IGF2BP2-m6A modification plays an essential role in cellular functions and the progression of various diseases. In this review, we focus on summarizing the molecular mechanisms by which IGF2BP2 enhances the mRNA stability of downstream target genes through m6A modification, thereby regulating cell ferroptosis, epithelial-mesenchymal transition (EMT), stemness, angiogenesis, inflammatory responses, and lipid metabolism, ultimately affecting disease progression. Additionally, we update the related research progress on IGF2BP2. This article aims to elucidate the effects of IGF2BP2 on cell ferroptosis, EMT, stemness, angiogenesis, inflammatory responses, and lipid metabolism, providing a new perspective for a comprehensive understanding of the relationship between IGF2BP2 and cell functions such as ferroptosis and EMT, as well as the potential for targeted IGF2BP2 therapy for tumors and other diseases.
Collapse
Affiliation(s)
- Siyi Liu
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Xiangya School of Medicine Central South University/Hunan Cancer Hospital, Changsha, 410013, Hunan, China
- Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, 410011, Hunan, China
| | - Shan Liao
- Department of Pathology, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan, China
| | - Junyu He
- Department of Clinical Laboratory, Brain Hospital of Hunan Province (The Second People's Hospital of Hunan Province), Changsha, 410007, Hunan, People's Republic of China
| | - Yanhong Zhou
- Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, 410011, Hunan, China.
| | - Qian He
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Xiangya School of Medicine Central South University/Hunan Cancer Hospital, Changsha, 410013, Hunan, China.
| |
Collapse
|
8
|
Liu P, Chen Z, Guo Y, He Q, Pan C. Recent advances in small molecule inhibitors of deubiquitinating enzymes. Eur J Med Chem 2025; 287:117324. [PMID: 39908798 DOI: 10.1016/j.ejmech.2025.117324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/24/2024] [Accepted: 01/23/2025] [Indexed: 02/07/2025]
Abstract
Proteins play a pivotal role in maintaining cellular homeostasis. Their degradation primarily orchestrated through the ubiquitin-proteasome system (UPS) and cellular autophagy. Dysfunction of the UPS is associated with various human diseases, including cancer, autoimmune disorders, and neurodegenerative conditions. Consequently, the UPS has emerged as a promising therapeutic target. Deubiquitinases (DUBs) have garnered significant attention as potential targets for therapeutic intervention due to their role in modulating protein stability and function. This review focuses on recent advancements of DUBs, particularly their relevance in the UPS and their potential as drug targets. Notably, inhibitors targeting specific DUBs, such as USP1, USP7, USP14, and USP30 have shown promise in preclinical and clinical studies for cancer therapy. Additionally, DUB inhibitors have been involved in novel therapeutic approaches lately, including as targets for proteolysis-targeting chimeras (PROTACs) or as tools in deubiquitinase-targeting chimeras (DUBTACs).
Collapse
Affiliation(s)
- Pengwei Liu
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, PR China; Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, 310018, PR China
| | - Zhengyang Chen
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, PR China; Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, 310018, PR China
| | - Yiting Guo
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, PR China; Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, 310018, PR China
| | - Qiaojun He
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, PR China; Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, 310018, PR China.
| | - Chenghao Pan
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, PR China; Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, 310018, PR China.
| |
Collapse
|
9
|
Han H, Wen Z, Yang M, Wang C, Ma Y, Chen Q, Jiang D, Xu Y, Fazal A, Jie W, Lv X, Yin T, Lin H, Lu G, Qi J, Yang Y, Xu G. Shikonin Derivative Suppresses Colorectal Cancer Cells Growth via Reactive Oxygen Species-Mediated Mitochondrial Apoptosis and PI3K/AKT Pathway. Chem Biodivers 2025; 22:e202403291. [PMID: 40022742 DOI: 10.1002/cbdv.202403291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/07/2025] [Accepted: 02/10/2025] [Indexed: 03/04/2025]
Abstract
Colorectal cancer (CRC) is one of the deadliest cancers globally, ranking as the third most prevalent and second most lethal malignancy worldwide. The standard treatment for CRC typically involves a combination of surgery, radiotherapy, and chemotherapy. Despite advancements in CRC treatment, the prognosis remains unsatisfactory, primarily due to unclear mechanisms underlying tumorigenesis and the aggression of CRC. The aberrant activation of the PI3K/AKT pathway is frequently implicated in the initiation, progression, and metastasis of CRC. Studies have demonstrated that shikonin (SK) exerts anti-cancer effects. In this study, we evaluated the anti-tumor activities of a series of semi-synthesized SK derivatives against CRC cells. Our findings revealed that the SK derivative (M12) significantly inhibited the proliferation and colony formation of CRC cells, reduced cell migration, and induced apoptosis. Mechanistically, M12 enhanced the production of reactive oxygen species and downregulated the mitochondrial membrane potential, ultimately leading to mitochondrial apoptosis. Furthermore, M12 exhibited anti-CRC effects by modulating the PI3K/AKT signaling pathway and significantly suppressed tumorigenicity without causing notable adverse effects in mice. Therefore, targeting the PI3K/AKT pathway could be a promising treatment for CRC. M12 appears to be a promising candidate for the effective and safe treatment of CRC.
Collapse
Affiliation(s)
- Hongwei Han
- School of Life Sciences and Chemical Engineering, Jiangsu Second Normal University, Nanjing, China
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Zhongling Wen
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Minkai Yang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Changyi Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Yudi Ma
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Qingqing Chen
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Dexing Jiang
- School of Life Sciences and Chemical Engineering, Jiangsu Second Normal University, Nanjing, China
| | - Ye Xu
- School of Life Sciences and Chemical Engineering, Jiangsu Second Normal University, Nanjing, China
| | - Aliya Fazal
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Wencai Jie
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Xiaoran Lv
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Tongming Yin
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Hongyan Lin
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- School of Pharmacy, Changzhou University, Changzhou, China
| | - Guihua Lu
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huaian, China
| | - Jinliang Qi
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Yonghua Yang
- School of Life Sciences and Chemical Engineering, Jiangsu Second Normal University, Nanjing, China
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Guohua Xu
- School of Life Sciences and Chemical Engineering, Jiangsu Second Normal University, Nanjing, China
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, China
| |
Collapse
|
10
|
Wang Y, Qin C, Zhao Y, Zhao B, Li Z, Li T, Zhang X, Wang W. Extracellular vesicles-miR-205-5p inhibits lymphatic metastasis in pancreatic cancer through diffusely downregulating VEGFA. J Cancer 2025; 16:2197-2211. [PMID: 40302796 PMCID: PMC12036096 DOI: 10.7150/jca.110659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Accepted: 03/02/2025] [Indexed: 05/02/2025] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is to become the second leading cause of cancer-related death by 2040. Many factors contribute to this dilemma, including lymphatic metastasis, which is the primary cause of PDAC metastasis. The inhibition of early lymph node metastasis, including the lymphangiogenic process, may be a novel strategy for PDAC treatment. Through miRNA sequencing of plasma extracellular vesicles (EVs) from PDAC patients, for the first time, we identified that plasma EV-miR-205-5p served as a non-invasive biomarker distinguishing lymphatic metastasis status (N0 vs. N2) in PDAC patients. Using tissue microarray and in situ hybridization, we discovered that miR-205-5p was highly expressed in PDAC, but negatively correlated with lymph node metastasis. By in vivo and in vitro experiments, we demonstrated its unique mechanism of action via EV-mediated transfer to human lymphatic endothelial cells (HLECs), leading to systematic downregulation of VEGFA and inhibition of the Akt/Erk pathway, which suppressed lymphangiogenesis. Delivering miR-205-5p via engineered EVs might be a promising strategy to eliminate PDAC lymphatic metastasis and improve prognosis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Weibin Wang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| |
Collapse
|
11
|
Sun X, Cai W, Li H, Gao C, Ma X, Guo Y, Fu D, Xiao D, Zhang Z, Wang Y, Yang S, Feng Y, Zhao T, Hao J. Endothelial-like cancer-associated fibroblasts facilitate pancreatic cancer metastasis via vasculogenic mimicry and paracrine signalling. Gut 2025:gutjnl-2024-333638. [PMID: 40122596 DOI: 10.1136/gutjnl-2024-333638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 03/08/2025] [Indexed: 03/25/2025]
Abstract
BACKGROUND Cancer-associated fibroblasts (CAFs) are highly heterogeneous in the progression of pancreatic ductal adenocarcinoma (PDAC) and vasculogenic mimicry (VM) refers to a phenomenon in which cancer cells adopt endothelial-like characteristics. OBJECTIVE To identify a novel protumoural CAF subtype undertaking VM. DESIGN We used single-cell RNA sequencing and mIHC to identify FAPα+CD144+ endothelial-like CAFs (endoCAFs) and combined prospective and retrospective analyses to assess its clinical outcomes. Tube formation, proliferation and invasion assay were conducted on cell lines, organoids, the orthotopic tumour model and LSL-KrasG12D/+, LSL-Trp53R172H/+ and Pdx1-Cre (KPC) mouse model. Mechanically, we performed cytokine array assays, RNA-sequencing, IP-mass spectrometry, ChIP and luciferase analyses. Importantly, an siRNA delivery nanosystem was developed to precisely target FAPα+CD144+endoCAFs in vivo. RESULTS FAPα+CD144+endoCAFs were present in the tumour microenvironment of PDAC, and patients with a higher CD144+CAFs proportion displayed poor prognosis of PDAC. FAPα+CD144+endoCAFs not only acquired a VM phenotype to provide metastatic conduits but also promoted the proliferation and invasion of tumour cells in situ through paracrine signalling, thereby actively facilitating the metastasis of tumour cells. The CD144-β-catenin-STAT3 signalling axis was activated, and CD144 and downstream secreted cytokines were transcriptionally upregulated to maintain the dual roles of endoCAFs. A CAF-targeting siRNA delivery nanosystem, via loading FAPα and siCD144, was administered to precisely target FAPα+CD144+ endoCAFs, which substantially inhibited their protumoural roles in vivo. CONCLUSION FAPα+CD144+endoCAFs can promote metastasis of PDAC via undertaking VM and paracrine through activation of the CD144-β-catenin-STAT3 signalling axis. CAF-targeting siRNA delivery nanosystem can inhibit tumour progression by precisely targeting FAPα+CD144+endoCAFs.
Collapse
Affiliation(s)
- Xugang Sun
- Pancreas Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key Laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, People's Republic of China
| | - Wenrun Cai
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, People's Republic of China
| | - Haorui Li
- Pancreas Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key Laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, People's Republic of China
| | - Chuntao Gao
- Pancreas Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key Laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, People's Republic of China
| | - Xi Ma
- Pancreas Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key Laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, People's Republic of China
| | - Yu Guo
- Pancreas Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key Laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, People's Republic of China
| | - Danqi Fu
- Pancreas Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key Laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, People's Republic of China
| | - Di Xiao
- Pancreas Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key Laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, People's Republic of China
| | - Zhaoyu Zhang
- Pancreas Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key Laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, People's Republic of China
| | - Yifei Wang
- Pancreas Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key Laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, People's Republic of China
| | - Shengyu Yang
- Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Yukuan Feng
- Pancreas Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key Laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, People's Republic of China
| | - Tiansuo Zhao
- Pancreas Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key Laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, People's Republic of China
| | - Jihui Hao
- Pancreas Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key Laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, People's Republic of China
| |
Collapse
|
12
|
Yang Q, Xiao J, Liu Y, Yang Z, Wang C, Sun J, Wang H, Liu H, Wang X, Ma L, Huang X, Cao Z. METTL3-mediated m6A modifications of NLRP3 accelerate alveolar bone resorption through enhancing macrophage pyroptosis. Cell Signal 2025; 127:111572. [PMID: 39708895 DOI: 10.1016/j.cellsig.2024.111572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 11/26/2024] [Accepted: 12/16/2024] [Indexed: 12/23/2024]
Abstract
Periodontitis (PD) is twice as prevalent in diabetics compared to nondiabetics, and diabetes-associated PD is characterized by increased inflammation and aggravated tissue damage. Pyroptosis has recently been implicated in diabetes-associated PD; however, the underlying mechanisms remain largely unknown, resulting in a lack of effective treatments. In this study, we investigated the role of methyltransferase-like 3 (METTL3) in macrophage pyroptosis and found that it inhibits the osteogenic differentiation of osteoblasts via pyroptotic macrophages in a diabetes-associated periodontitis mouse model. Further analysis and validation revealed that nod-like receptor family pyrin domain-containing 3 (NLRP3) is a target of METTL3, with its mRNA stability regulated through a binding of insulin-like growth factor 2 binding protein 3 (IGF2BP3)-dependent pathway. Additionally, local injection of adeno-associated virus 9 (AAV9) demonstrated that METTL3 deficiency in macrophages significantly ameliorates periodontal inflammation and alveolar bone loss in diabetes-associated PD mice. Collectively, our findings indicate that METTL3-mediated modulation of NLRP3 expression is a crucial factor in macrophage pyroptosis during diabetes-associated PD progression. This suggests that the METTL3/IGF2BP3/NLRP3 axis is a novel and promising target for the improvement of periodental inflammation and alveolar bone loss in diabetes-associated PD.
Collapse
Affiliation(s)
- Qiudong Yang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
| | - Junhong Xiao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
| | - Yuqi Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
| | - Zhengkun Yang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
| | - Chuan Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China; Department of Periodontology, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
| | - Jiahui Sun
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
| | - Huiyi Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
| | - Heyu Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
| | - Xiaoxuan Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China; Department of Periodontology, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
| | - Li Ma
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China; Department of Periodontology, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
| | - Xin Huang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China; Department of Periodontology, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
| | - Zhengguo Cao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China; Department of Periodontology, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
| |
Collapse
|
13
|
Xu C, Zhang S, Lv J, Cao Y, Chen Y, Sun H, Dai S, Zhang B, Zhu M, Liu Y, Gu J. Machine learning identification of a novel vasculogenic mimicry-related signature and FOXM1's role in promoting vasculogenic mimicry in clear cell renal cell carcinoma. Transl Oncol 2025; 53:102312. [PMID: 39904282 PMCID: PMC11847097 DOI: 10.1016/j.tranon.2025.102312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 12/16/2024] [Accepted: 01/30/2025] [Indexed: 02/06/2025] Open
Abstract
BACKGROUND Clear Cell Renal Cell Carcinoma (ccRCC), the predominant subtype of renal cell carcinoma (RCC), ranks among the most common malignancies worldwide. Vasculogenic mimicry (VM) plays a pivotal role in tumor progression, being closely linked with heightened chemoresistance and adverse prognosis in cancer patients. Nonetheless, the broader impact of vasculogenic mimicry-related genes (VRGs) on ccRCC patient prognosis, tumor microenvironment characteristics, and treatment response remains incompletely understood. METHODS Consensus clustering identified VRG-associated subtypes. We developed a machine learning framework integrating 12 algorithms to establish a consistent VM-related signature (VRG_score). The predictive value of VRG_score for ccRCC prognosis and treatment response was assessed. FOXM1's clinical relevance was explored using the UCLCAN database. FOXM1 expression in tumor and adjacent tissues was assessed using Western Blotting, IHC, RNA-seq, and Chip-qPCR methods, and its regulatory mechanism was confirmed. RESULTS We examined VRG mutation and expression patterns in ccRCC at the gene level, identifying two distinct molecular clusters. A consensus VRG_score was formulated using a machine learning computational framework and Cox regression, displaying strong predictive power for prognosis and clinical translation. Additionally, FOXM1 was found to be upregulated in ccRCC, correlating with clinical pathological features and positively regulating PYCR1, thereby activating the PI3K/AKT/mTOR signaling pathway and promoting VM formation. CONCLUSION This study constructed a VM-related signature and revealed that FOXM1 promotes VM formation in renal cell carcinoma through the PYCR1-PI3K/AKT/mTOR signaling axis, serving as a prognostic indicator and potential therapeutic target.
Collapse
Affiliation(s)
- Chao Xu
- Department of Urology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang 050000, PR China
| | - Sujing Zhang
- Department of Nuclear Medicine, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang 050000, PR China
| | - Jingwei Lv
- Hebei Medical University,361 Zhongshan East Road, Shijiazhuang, Hebei 050017, PR China
| | - Yilong Cao
- Department of Urology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang 050000, PR China
| | - Yao Chen
- Department of Urology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang 050000, PR China
| | - Hao Sun
- Department of Urology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang 050000, PR China
| | - Shengtao Dai
- Department of Urology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang 050000, PR China
| | - Bowei Zhang
- Department of Urology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang 050000, PR China
| | - Meng Zhu
- Department of Urology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang 050000, PR China
| | - Yuepeng Liu
- Department of Urology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang 050000, PR China
| | - Junfei Gu
- Department of Urology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang 050000, PR China.
| |
Collapse
|
14
|
Weng J, Shan Y, Chang Q, Cao C, Liu X. Research progress on N 6-Methyladenosine modification in angiogenesis, vasculogenic mimicry, and therapeutic implications in breast cancer. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2025; 195:57-70. [PMID: 39710080 DOI: 10.1016/j.pbiomolbio.2024.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/19/2024] [Accepted: 12/19/2024] [Indexed: 12/24/2024]
Abstract
N6-methyladenosine (m6A) modification is the most common epitranscriptomic modification in eukaryotic RNA and has garnered extensive attention in the context of breast cancer research. The m6A modification significantly impacts tumorigenesis and tumor progression by regulating RNA stability, splicing, translation, and degradation. In this review we summarize recent advances in understanding the roles of m6A modification in the mechanisms underlying angiogenesis and vasculogenic mimicry in breast cancer. We review how m6A modification and associated transcripts influence relevant factors by affecting key factors and signaling pathways, highlighting the interactions among m6A "writers," "erasers," and "readers," and their overall impact on tumor angiogenesis and vasculogenic mimicry, as well as potential new therapeutic targets.
Collapse
Affiliation(s)
- Jiachen Weng
- Translational Medical Innovation Center, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou City, Jiangsu, 215600, China
| | - Yisi Shan
- Translational Medical Innovation Center, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou City, Jiangsu, 215600, China
| | - Qingyu Chang
- Translational Medical Innovation Center, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou City, Jiangsu, 215600, China
| | - Chenyan Cao
- Translational Medical Innovation Center, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou City, Jiangsu, 215600, China
| | - Xuemin Liu
- Translational Medical Innovation Center, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou City, Jiangsu, 215600, China.
| |
Collapse
|
15
|
Shen J, Ding Y. Multifaceted roles of insulin‑like growth factor 2 mRNA binding protein 2 in human cancer (Review). Mol Med Rep 2025; 31:75. [PMID: 39886962 PMCID: PMC11795254 DOI: 10.3892/mmr.2025.13441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 01/07/2024] [Indexed: 02/01/2025] Open
Abstract
Insulin‑like growth factor 2 mRNA binding protein 2 (IGF2BP2) is an RNA binding protein that functions as an N6‑methyladenosine reader. It regulates various biological processes in human cancers by affecting the stability and expression of target RNA transcripts, including coding RNAs and non‑coding RNAs (ncRNAs). Numerous studies have shown that IGF2BP2 expression is aberrantly increased in various types of cancer and plays multifaceted roles in the development and progression of human cancers. In the present review, the clinical importance of IGF2BP2 is summarized and its involvement in the regulation of biological processes, including proliferation, metastasis, chemoresistance, metabolism, tumor immunity, stemness and cell death, in human cancers is discussed. The chemical compounds that have been developed as IGF2BP2 inhibitors are also detailed. As ncRNAs are now important potential therapeutic agents for cancer treatment, the microRNAs that have been reported to directly target and inhibit IGF2BP2 expression in cancers are also described. In summary, by reviewing the latest literature, the present study aimed to highlight the clinical importance and physiological functions of IGF2BP2 in human cancer, with a focus on the great potential of IGF2BP2 as a target for inhibitor development. The present review may inspire new ideas for future studies on IGF2BP2, which may serve as a specific therapeutic target in cancer.
Collapse
Affiliation(s)
- Jianan Shen
- Department of Pathology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210008, P.R. China
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 210009, P.R. China
| | - Youxiang Ding
- Department of Pathology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210008, P.R. China
| |
Collapse
|
16
|
Wang D, Yu X, Yang Y. Investigating SNHG3 as a potential therapeutic approach for HCC stem cells. Gene 2025; 935:149022. [PMID: 39427830 DOI: 10.1016/j.gene.2024.149022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 08/13/2024] [Accepted: 10/17/2024] [Indexed: 10/22/2024]
Abstract
INTRODUCTION Hepatocellular Carcinoma (HCC) is a common malignant tumor worldwide. Long Non-Coding RNA (lncRNA) has gained attention in tumor biology, and this study aims to investigate the role of lncRNA SNHG3 in HCC, specifically in the self-renewal and maintenance of liver cancer stem cells. METHODS The expression of lncRNA SNHG3 was analyzed in HCC and adjacent normal tissue using the TCGA database. The expression levels of SNHG3 in HCC cell lines (Hep3B, HepG2, Huh7) were detected using qRT-PCR and Western blot techniques. Functional assays, including CCK-8, soft agar colony formation, and tumor sphere formation, were performed to evaluate the impact of SNHG3 on HCC stem cell functionality. MeRIP-qPCR was also used to investigate the regulatory role of SNHG3 in m6A modification of ITGA6 mRNA mediated by METTL3. RESULTS The study found that SNHG3 was significantly upregulated in HCC tissue and cell lines compared to normal liver tissue. SNHG3 expression correlated with the pathological stage, metastasis status, and tumor size of liver cancer. Inhibiting SNHG3 reduced proliferation, colony formation, and tumor sphere formation ability in HCC stem cells. SNHG3 also played a role in regulating the m6A modification and expression of ITGA6 through METTL3. CONCLUSION This study emphasizes the upregulation of lncRNA SNHG3 and its role in HCC stem cell self-renewal. SNHG3 may regulate the m6A modification of ITGA6 mRNA through its interaction with METTL3, impacting the function of liver cancer stem cells. These findings support the potential of targeting SNHG3 as a therapeutic approach for HCC.
Collapse
Affiliation(s)
- Dingmao Wang
- Department of Hepatobiliary Surgery, Haikou People's Hospital, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou 570208, PR China
| | - Xiao Yu
- The 2nd Department of Hepatobiliary and Pancreatic Surgery, The Third Xiangya Hospital of Central South University, Changsha 410013, PR China.
| | - Yijun Yang
- Department of Hepatobiliary Surgery, Haikou People's Hospital, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou 570208, PR China.
| |
Collapse
|
17
|
Ji X, Huang Z, Zhou C, Wang Y, Geng D, Zhang G, Kang Y, Cui R, Wang J, Zhang T. Esketamine alleviates depressive-like behavior in neuropathic pain mice through the METTL3-GluA1 pathway. Cell Biol Toxicol 2025; 41:38. [PMID: 39875576 PMCID: PMC11775062 DOI: 10.1007/s10565-024-09975-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 12/21/2024] [Indexed: 01/30/2025]
Abstract
Esketamine, a newly developed antidepressant, is the subject of this research which seeks to explore its impact on depressive symptoms in neuropathic pain mice and the potential molecular mechanisms involved. Through transcriptome sequencing and bioinformatics analysis combined with in vivo studies, it was identified that esketamine markedly boosts the levels of the m6A methyltransferase METTL3 and the AMPA receptor GluA1 subunit. Esketamine activates METTL3, allowing it to bind with GluA1 mRNA, promoting m6A modification, thereby enhancing GluA1 expression at synapses. Through this mechanism, esketamine may reduce depressive-like behavior in neuropathic pain mice, providing new insights into the potential applications of esketamine and novel therapeutic avenues for neuropathic pain and depressive behavior.
Collapse
Affiliation(s)
- Xiaoming Ji
- Laboratory of Neurobiology, Hebei Medical University, Shijiazhuang, 050017, China
- Neuroscience Research Center, Hebei Medical University, Shijiazhuang, 050017, China
| | - Zhimin Huang
- Department of Stomatology, Peoples Hospital, Shizhu Tujia Autonomous County, Chongqing, 409100, China
| | - Chenming Zhou
- Core Facilities and Centers, Hebei Medical University, Shijiazhuang, 050017, China
| | - Yu Wang
- Laboratory of Neurobiology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Dongliang Geng
- Changan Dental Clinic, Xinqidian Dental Medical Services Co., Ltd, Shijiazhuang, 050000, China
| | - Guoliang Zhang
- Neuroscience Research Center, Hebei Medical University, Shijiazhuang, 050017, China
| | - Yunxiao Kang
- Laboratory of Neurobiology, Hebei Medical University, Shijiazhuang, 050017, China
- Neuroscience Research Center, Hebei Medical University, Shijiazhuang, 050017, China
| | - Rui Cui
- Neuroscience Research Center, Hebei Medical University, Shijiazhuang, 050017, China
| | - Jinyang Wang
- Department of Neurology, The Third Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Tianyun Zhang
- Laboratory of Neurobiology, Hebei Medical University, Shijiazhuang, 050017, China.
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Center for Brain Science and Disease, Hebei Medical University, Shijiazhuang, 050017, China.
- Key Laboratory of Vascular Biology of Hebei Province, Hebei Medical University, Shijiazhuang, 050017, China.
- Laboratory of Neurobiology, Hebei Medical University, Zhongshan Donglu No.361, Shijiazhuang, 050017, China.
| |
Collapse
|
18
|
Zhang L, Thalakiriyawa DS, Liu J, Yang S, Wang Y, Dissanayaka WL. Semaphorin-4D signaling in recruiting dental stem cells for vascular stabilization. Stem Cell Res Ther 2025; 16:25. [PMID: 39865283 PMCID: PMC11770943 DOI: 10.1186/s13287-025-04149-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 01/14/2025] [Indexed: 01/28/2025] Open
Abstract
BACKGROUND Achieving a stable vasculature is crucial for tissue regeneration. Endothelial cells initiate vascular morphogenesis, followed by mural cells that stabilize new vessels. This study investigated the in vivo effects of Sema4D-Plexin-B1 signaling on stem cells from human exfoliated deciduous teeth (SHED)-supported angiogenesis, focusing on its mechanism in PDGF-BB secretion. We also explored macrophages as an endogenous source of Sema4D for vascular stabilization. METHODS The in vivo Matrigel plug angiogenesis assay was conducted to examine the impact of Sema4D on vessel formation and stabilization supported by SHED. Knockdown of Plexin-B1 in human umbilical vein endothelial cells (HUVECs) and PDGFR-β inhibitors were utilized to explore the fundamental regulatory mechanisms. Furthermore, the m6A methylation levels of total RNA and the expression of Methyltransferase-like 3 (METTL3) were assessed under conditions of Sema4D treatment in vitro. An ELISA was employed to measure the levels of Sema4D in the supernatants derived from THP-1 cell-mediated macrophages. Additionally, a three-dimensional vasculature-on-a-chip microfluidic device was used to investigate the role of M2c macrophage-derived Sema4D in the stabilization of vascular structures. RESULTS Sema4D induced the formation of a greater number of perfused vessels by HUVECs and enhanced the coverage of these vessels by SM22α-positive SHED (SM22α+SHED). Conversely, the knockdown of the Plexin-B1 receptor in HUVECs or inhibition of PDGFR-β reversed the Sema4D-induced vascular stabilization, thereby confirming the regulatory role of the Plexin-B1/PDGF-BB axis in the recruitment of mural cells mediated by Sema4D. Mechanistically, Sema4D was found to upregulate the expression of methyltransferases, specifically METTL3, and to elevate the level of m6A modification in HUVECs. This modification was determined to be critical for enhancing PDGF-BB secretion, suggesting that Sema4D activates an epigenetic regulatory mechanism. Additionally, we investigated the secretion of Sema4D by various macrophage phenotypes, identifying that M2c macrophages secrete significant levels of Sema4D. This secretion recruited SM22α+SHED as mural cells by inducing endothelial PDGF production on a vasculature-on-a-chip platform, indicating a potential role for macrophages in facilitating vascular stabilization. CONCLUSIONS Sema4D acts on Plexin-B1, inducing METTL3-mediated PDGF-BB secretion to recruit SHED to stabilize vessels. Macrophages could be a key source of Sema4D for vascular stabilization.
Collapse
Affiliation(s)
- Lili Zhang
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510055, Guangdong, China
- Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, Prince Philip Dental Hospital, The University of Hong Kong, 34 Hospital Road, Sai Ying Pun, Hong Kong, Hong Kong SAR
| | - Dineshi Sewvandi Thalakiriyawa
- Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, Prince Philip Dental Hospital, The University of Hong Kong, 34 Hospital Road, Sai Ying Pun, Hong Kong, Hong Kong SAR
| | - Jiawei Liu
- Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, Prince Philip Dental Hospital, The University of Hong Kong, 34 Hospital Road, Sai Ying Pun, Hong Kong, Hong Kong SAR
| | - Shengyan Yang
- Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, Prince Philip Dental Hospital, The University of Hong Kong, 34 Hospital Road, Sai Ying Pun, Hong Kong, Hong Kong SAR
| | - Yan Wang
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510055, Guangdong, China
| | - Waruna Lakmal Dissanayaka
- Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, Prince Philip Dental Hospital, The University of Hong Kong, 34 Hospital Road, Sai Ying Pun, Hong Kong, Hong Kong SAR.
| |
Collapse
|
19
|
Zhang J, Zhang M, Qiu A, Li C, Chen Q, Li J, Zeng Y, Zhu J, Huang JA, Zhang X, Liu Z. N 6-methyladenosine Reader IGF2BP2-modified HMMR Promotes Non-small Cell Lung Cancer Metastasis via Interaction with MAP4K4. Int J Biol Sci 2025; 21:1391-1409. [PMID: 39990663 PMCID: PMC11844294 DOI: 10.7150/ijbs.104097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 01/10/2025] [Indexed: 02/25/2025] Open
Abstract
Globally, lung cancer represents the leading cause of cancer-related mortality, with 85% of cases attributable to non-small cell lung cancer (NSCLC). Metastatic progression remains a major challenge in treating advanced lung cancer, resulting in a dismal five-year survival rate of 20-30%. Hyaluronan mediated motility receptor (HMMR) has been identified as a novel oncogene in NSCLC. However, its exact role and mechanisms in NSCLC and metastasis are yet to be fully understood. Elevated mRNA and protein levels of HMMR were observed in human NSCLC tumors in comparison with normal adjacent tissues. Increased HMMR expression was associated with poorer prognosis, with multivariate Cox regression analysis also identifying it as an independent prognostic factor. HMMR knockdown inhibited tumor cell migration and invasion, while its overexpression enhanced these processes. Mechanistically, HMMR promotes tumor metastasis by binding to mitogen-activated protein kinase kinase kinase kinase 4 (MAP4K4), which activates the p-JNK/p-c-JUN/MMP1 signaling cascade. The effects of HMMR overexpression on metastatic potential and JNK signaling were confirmed by MAP4K4 knockdown or GNE-495 treatment. Additionally, insulin like growth factor 2 mRNA binding protein 2 (IGF2BP2) was found to bind to the N6-methyladenosine (m6A) site of HMMR, increasing mRNA stability and HMMR expression levels. In a mouse model, the MAP4K4 inhibitor GNE-495 successfully suppressed lung metastasis induced by HMMR overexpression. These results offer valuable insights into HMMR's biological functions while suggesting potential avenues for novel treatments.
Collapse
Affiliation(s)
- Jiansheng Zhang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
- The Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng Third People's Hospital, The Affiliated Hospital of Jiangsu Vocational College of Medicine, Yancheng, 224000, China
- Institute of Respiratory Diseases, Soochow University, Suzhou, 215006, China
| | - Mengzhu Zhang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
- Institute of Respiratory Diseases, Soochow University, Suzhou, 215006, China
| | - Aimin Qiu
- The Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng Third People's Hospital, The Affiliated Hospital of Jiangsu Vocational College of Medicine, Yancheng, 224000, China
| | - Chang Li
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
- Institute of Respiratory Diseases, Soochow University, Suzhou, 215006, China
| | - Qiongju Chen
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
- Institute of Respiratory Diseases, Soochow University, Suzhou, 215006, China
| | - Jianjun Li
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
- Institute of Respiratory Diseases, Soochow University, Suzhou, 215006, China
- Suzhou Key Laboratory for Respiratory Diseases, Suzhou, 215006, China
| | - Yuanyuan Zeng
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
- Institute of Respiratory Diseases, Soochow University, Suzhou, 215006, China
- Suzhou Key Laboratory for Respiratory Diseases, Suzhou, 215006, China
| | - Jianjie Zhu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
- Institute of Respiratory Diseases, Soochow University, Suzhou, 215006, China
- Suzhou Key Laboratory for Respiratory Diseases, Suzhou, 215006, China
| | - Jian-an Huang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
- Institute of Respiratory Diseases, Soochow University, Suzhou, 215006, China
- Suzhou Key Laboratory for Respiratory Diseases, Suzhou, 215006, China
| | - Xiuqin Zhang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
- Institute of Respiratory Diseases, Soochow University, Suzhou, 215006, China
| | - Zeyi Liu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
- Institute of Respiratory Diseases, Soochow University, Suzhou, 215006, China
- Suzhou Key Laboratory for Respiratory Diseases, Suzhou, 215006, China
| |
Collapse
|
20
|
Zhou X, Wu Y, Song Y, Wang B, Cai Y, Miao C. Mechanistic and therapeutic insights into the function of N6-methyladenosine in arthritic diseases. Inflamm Res 2025; 74:7. [PMID: 39762508 DOI: 10.1007/s00011-024-01969-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 10/22/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
OBJECTIVE Arthritis is a class of diseases, characterized by joint and surrounding inflammation, accompanied by joint swelling, pain, dysfunction. According to different factors, arthritis can be divided into osteoarthritis, rheumatoid arthritis, ankylosing spondylitis and so on. N6-methyladenosine (m6A) is the most common internal modification of eukaryotic mRNA and is involved in splicing, stabilization, output and degradation of RNA metabolism. This review systematically summarized current insights into the mechanism of m6A in arthritis. METHODS The studies related to the involvement of m6A in the pathogenesis of arthritis reported in PubMed, Google scholar, and other open source literatures were investigated to evaluate the important roles of m6A in arhtritis, and the clinical relevances. RESULTS AND CONCLUSIONS M6A methylation regulators play the roles of writers, erasers, and readers, are crucial for regulating gene expression, and play important roles in many biological processes such as virus replication and cell differentiation. In addition, more and more studies have shown that m6A is closely related to the development of arthritis. As a new therapeutic target for arthritis, m6A has a wide influence on the pathological mechanism of arthritis. However, further research is needed to determine how m6A affects arthritis pathology and its use in target therapy and diagnosis.
Collapse
Affiliation(s)
- Xinyue Zhou
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, No. 350 Longzihu Road, Xinzhan District, Hefei, 230012, Anhui, China
| | - Yajie Wu
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, No. 350 Longzihu Road, Xinzhan District, Hefei, 230012, Anhui, China
| | - Yingqiu Song
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, No. 350 Longzihu Road, Xinzhan District, Hefei, 230012, Anhui, China
| | - Bing Wang
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, No. 350 Longzihu Road, Xinzhan District, Hefei, 230012, Anhui, China
| | - Yikang Cai
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, No. 350 Longzihu Road, Xinzhan District, Hefei, 230012, Anhui, China
| | - Chenggui Miao
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, No. 350 Longzihu Road, Xinzhan District, Hefei, 230012, Anhui, China.
- Institute of Prevention and Treatment of Rheumatoid Arthritis, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China.
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei, 230012, China.
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, 999077, Hong Kong SAR, China.
| |
Collapse
|
21
|
Yu W, Chen D, Ma L, Lin Y, Zheng J, Li X. EIF4A3-Induced Circ_0059914 Promoted Angiogenesis and EMT of Glioma via the miR-1249/VEGFA Pathway. Mol Neurobiol 2025; 62:973-987. [PMID: 38951469 DOI: 10.1007/s12035-024-04319-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 06/19/2024] [Indexed: 07/03/2024]
Abstract
Gliomas are common brain tumors. Despite extensive research, the 5-year survival rate of glioma remains low. Many studies have reported that circular RNAs (circRNAs) play a role in promoting the malignant progression of glioma; however, the role of circ_0059914 in this process remains unclear. In this study, we aimed to investigate the function and underlying mechanism of circ_0059914 in glioma. Western blotting and qRT-PCR were used to determine the levels of circ_0059914, miR-1249, VEGFA, N-cadherin, vimentin, Snail, and EIF4A3. EDU and colony formation assays were conducted to evaluate cell proliferation. Transwell assays were used to explore cell migration and invasion and tube formation assays were used to analyze angiogenesis. RNA immunoprecipitation (RIP) and dual-luciferase reporter assays were used to explore the relationship between EIF4A3, circ_0059914, miR-1249, and VEGFA. A xenograft tumor assay was performed to determine the role of circ_0059914 in vivo. Circ_0059914 expression was upregulated in gliomas. Knockdown of gliomal circ_0059914 expression reduced the proliferation, migration, invasion, epithelial-mesenchymal transition (EMT), angiogenesis, and growth of glioma cells in vivo. Circ_0059914 sponged miR-1249, and miR-1249 inhibition reversed the circ_0059914 knockdown-mediated effects in glioma cells. VEGFA was found to be a target gene of miR1249; overexpression of VEGFA reversed the effect of miR-1249 up-regulation in glioma. Finally, EIF4A3 increased the expression of circ_0059914. EIF4A3-induced circ_0059914 expression plays a role in promoting glioma via the miR-1249/VEGFA axis.
Collapse
Affiliation(s)
- Wei Yu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, 110004, China
- Liaoning Clinical Medical Research in Nervous Disease, Shenyang, 110004, China
- Key Laboratory of Neuro-Oncology in Liaoning Province, Shenyang, 110004, China
| | - Duo Chen
- Department of Neurosurgery, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, 110004, China
- Liaoning Clinical Medical Research in Nervous Disease, Shenyang, 110004, China
- Key Laboratory of Neuro-Oncology in Liaoning Province, Shenyang, 110004, China
| | - Li Ma
- Department of Neurosurgery, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, 110004, China
- Liaoning Clinical Medical Research in Nervous Disease, Shenyang, 110004, China
- Key Laboratory of Neuro-Oncology in Liaoning Province, Shenyang, 110004, China
| | - Yuancai Lin
- Department of Neurosurgery, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, 110004, China
- Liaoning Clinical Medical Research in Nervous Disease, Shenyang, 110004, China
- Key Laboratory of Neuro-Oncology in Liaoning Province, Shenyang, 110004, China
| | - Jihui Zheng
- Department of Ultrasound, The Fourth Affiliated Hospital of China Medical University, Huanggu District, No.4, Chongshan East Road, Shenyang, 110032, China.
| | - Xinxing Li
- Department of Neurosurgery, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, 110004, China.
- Liaoning Clinical Medical Research in Nervous Disease, Shenyang, 110004, China.
- Key Laboratory of Neuro-Oncology in Liaoning Province, Shenyang, 110004, China.
| |
Collapse
|
22
|
Wu H, Chen S, Li X, Li Y, Shi H, Qing Y, Shi B, Tang Y, Yan Z, Hao Y, Wang D, Liu W. RNA modifications in cancer. MedComm (Beijing) 2025; 6:e70042. [PMID: 39802639 PMCID: PMC11718328 DOI: 10.1002/mco2.70042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 11/12/2024] [Accepted: 11/14/2024] [Indexed: 01/16/2025] Open
Abstract
RNA modifications are emerging as critical cancer regulators that influence tumorigenesis and progression. Key modifications, such as N6-methyladenosine (m6A) and 5-methylcytosine (m5C), are implicated in various cellular processes. These modifications are regulated by proteins that write, erase, and read RNA and modulate RNA stability, splicing, translation, and degradation. Recent studies have highlighted their roles in metabolic reprogramming, signaling pathways, and cell cycle control, which are essential for tumor proliferation and survival. Despite these scientific advances, the precise mechanisms by which RNA modifications affect cancer remain inadequately understood. This review comprehensively examines the role RNA modifications play in cancer proliferation, metastasis, and programmed cell death, including apoptosis, autophagy, and ferroptosis. It explores their effects on epithelial-mesenchymal transition (EMT) and the immune microenvironment, particularly in cancer metastasis. Furthermore, RNA modifications' potential in cancer therapies, including conventional treatments, immunotherapy, and targeted therapies, is discussed. By addressing these aspects, this review aims to bridge current research gaps and underscore the therapeutic potential of targeting RNA modifications to improve cancer treatment strategies and patient outcomes.
Collapse
Affiliation(s)
- Han Wu
- Department of Oral and Maxillofacial SurgeryHospital of StomatologyJilin University, ChangchunJilin provinceChina
- Jilin Provincial Key Laboratory of Tooth Development and Bone RemodelingHospital of StomatologyJilin University, ChangchunJilin provincleChina
| | - Shi Chen
- Department of Oral and Maxillofacial SurgeryHospital of StomatologyJilin University, ChangchunJilin provinceChina
- Jilin Provincial Key Laboratory of Tooth Development and Bone RemodelingHospital of StomatologyJilin University, ChangchunJilin provincleChina
| | - Xiang Li
- Department of Oral and Maxillofacial SurgeryHospital of StomatologyJilin University, ChangchunJilin provinceChina
- Jilin Provincial Key Laboratory of Tooth Development and Bone RemodelingHospital of StomatologyJilin University, ChangchunJilin provincleChina
| | - Yuyang Li
- Department of Oral and Maxillofacial SurgeryHospital of StomatologyJilin University, ChangchunJilin provinceChina
- Jilin Provincial Key Laboratory of Tooth Development and Bone RemodelingHospital of StomatologyJilin University, ChangchunJilin provincleChina
| | - He Shi
- Department of Oral and Maxillofacial SurgeryHospital of StomatologyJilin University, ChangchunJilin provinceChina
- Jilin Provincial Key Laboratory of Tooth Development and Bone RemodelingHospital of StomatologyJilin University, ChangchunJilin provincleChina
| | - Yiwen Qing
- Department of Oral and Maxillofacial SurgeryHospital of StomatologyJilin University, ChangchunJilin provinceChina
- Jilin Provincial Key Laboratory of Tooth Development and Bone RemodelingHospital of StomatologyJilin University, ChangchunJilin provincleChina
| | - Bohe Shi
- Laboratory Animal CenterCollege of Animal ScienceJilin University, ChangchunJilin provinceChina
| | - Yifei Tang
- Laboratory Animal CenterCollege of Animal ScienceJilin University, ChangchunJilin provinceChina
| | - Zhuoyi Yan
- Laboratory Animal CenterCollege of Animal ScienceJilin University, ChangchunJilin provinceChina
| | - Yang Hao
- Laboratory Animal CenterCollege of Animal ScienceJilin University, ChangchunJilin provinceChina
| | - Dongxu Wang
- Laboratory Animal CenterCollege of Animal ScienceJilin University, ChangchunJilin provinceChina
| | - Weiwei Liu
- Department of Oral and Maxillofacial SurgeryHospital of StomatologyJilin University, ChangchunJilin provinceChina
- Jilin Provincial Key Laboratory of Tooth Development and Bone RemodelingHospital of StomatologyJilin University, ChangchunJilin provincleChina
| |
Collapse
|
23
|
Liu B, Li X, Wang S, Jia H, Zhang X, Dong Q, Li J. Wnt5a promotes VM formation by modulating the stemness and EMT progression of prostate cancer cell. Transl Oncol 2025; 51:102155. [PMID: 39488007 PMCID: PMC11565535 DOI: 10.1016/j.tranon.2024.102155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/23/2024] [Accepted: 10/07/2024] [Indexed: 11/04/2024] Open
Abstract
The incidence of prostate cancer (PCa) is increasing annually, making it the leading cause of tumor-related mortality in males. The available treatment options for metastatic PCa are limited. Vasculogenic mimicry (VM), an emerging phenomenon involving aggressive tumor cells, has a significant impact on patient survival. Misregulation of Wnt5a expression is commonly observed during cancer progression. However, there is a lack of comprehensive studies investigating the effects of Wnt5a on tumor VM formation. In this study, we demonstrate that alterations in wnt5a expression, either through gain or loss, have a significant influence on the formation of VM in tumor cells mediated by cell stemness and EMT progression. Further research has demonstrated that Wnt5a regulates the formation of VM through the PI3K/JNK signaling pathway. These experimental findings offer a novel avenue for the clinical management of prostate cancer.
Collapse
Affiliation(s)
- Bide Liu
- Department of Urology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, 830001, China; Laboratory of Urology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, 830001, China
| | - Xun Li
- Department of Urology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, 830001, China; Laboratory of Urology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, 830001, China
| | - Shuheng Wang
- Department of Urology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, 830001, China; Laboratory of Urology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, 830001, China
| | - Hongliang Jia
- Department of Urology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, 830001, China; Laboratory of Urology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, 830001, China
| | - Xiaoan Zhang
- Department of Urology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, 830001, China; Laboratory of Urology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, 830001, China
| | - Qiang Dong
- Department of Urology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, 830001, China; Laboratory of Urology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, 830001, China
| | - Jiuzhi Li
- Department of Urology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, 830001, China; Laboratory of Urology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, 830001, China.
| |
Collapse
|
24
|
Xu M, Guo Y, Wang F, Lin C, Cao D, Yan Y, Chai S, Zhao Y, Deng S, Wei J, Kang X, Liu Y, Zhang Y, Luo L, Liu SL, Liu H. Enterolactone combined with m6A Reader IGF2BP3 inhibits malignant angiogenesis and disease progression in ovarian cancer. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 136:156343. [PMID: 39765033 DOI: 10.1016/j.phymed.2024.156343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 12/09/2024] [Accepted: 12/20/2024] [Indexed: 01/30/2025]
Abstract
BACKGROUND Among all gynecological cancers, ovarian cancer is the leading cause of death. Epithelial ovarian cancer (EOC) accounts for over 85 % of ovarian cancer cases and is characterized by insidious onset, early metastasis, and a high recurrence rate. Alterations in gut microbiota, often as a consequence of chemotherapy, can promote cancer development and exacerbate the disease. The m6A reader IGF2BP3 is a regulator in the occurrence and progression of various tumors and is associated with angiogenesis. Enterolactone (ENL) has demonstrated significant anti-tumor activity against various human cancers, including EOC. However, whether ENL could interact with IGF2BP3 to suppress EOC remains unclear. PURPOSE This study aims to investigate suppressive effects of ENL upon combining with IGF2BP3 on EOC and elucidates the underlying mechanism. METHODS The Cell Counting Kit-8 and crystal violet assays were used to assess tumor cell proliferation. Scratch and Transwell assays were employed to evaluate tumor cell migration, while tube formation assays were utilized to examine angiogenesis. Western blotting was used to measure the expression levels of IGF2BP3, VEGF, PI3K, AKT1, p-PI3K, and p-AKT1. An in vivo xenograft nude mouse model was established, fecal samples were collected, and 16S rDNA sequencing was performed to analyze gut microbiota in association with the suppressive effects of ENL and its interactions with IGF2BP3. RESULTS IGF2BP3 is highly expressed in EOC and is positively correlated with poor survival in EOC patients. ENL reduces IGF2BP3 expression in EOC, thereby inhibiting the IGF2BP3-mediated VEGF/PI3K/AKT signaling pathway and suppressing the proliferation, migration, invasion, and angiogenesis of EOC. Additionally, ENL ameliorates gut microbiome, especially in conjunction with shIGF2BP3. CONCLUSION ENL interacts with IGF2BP3 and suppresses its expression in EOC, leading to the deactivation of the IGF2BP3-mediated VEGF/PI3K/AKT signaling pathway and the subsequent inhibition of angiogenesis. The combination of ENL and shIGF2BP3 demonstrates a synergistic effect on EOC. ENL also ameliorates the gut microbiome, especially in conjunction with shIGF2BP3, to suppress EOC.
Collapse
Affiliation(s)
- Mengzhi Xu
- Genomics Research Center (Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, State-Province Key Laboratory of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China; National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD) College of Pharmacy, Harbin Medical University, Harbin, 150081, China; Harbin Medical University-University of Calgary Cumming School of Medicine Centre for Infection and Genomics, Harbin Medical University, Harbin, 150081, China
| | - Yi Guo
- Genomics Research Center (Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, State-Province Key Laboratory of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China; National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD) College of Pharmacy, Harbin Medical University, Harbin, 150081, China; Harbin Medical University-University of Calgary Cumming School of Medicine Centre for Infection and Genomics, Harbin Medical University, Harbin, 150081, China
| | - Fengge Wang
- College of Life Science, Northeast Forestry University, Harbin, Heilongjiang, 150040, PR China
| | - Caiji Lin
- Genomics Research Center (Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, State-Province Key Laboratory of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China; National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD) College of Pharmacy, Harbin Medical University, Harbin, 150081, China; Harbin Medical University-University of Calgary Cumming School of Medicine Centre for Infection and Genomics, Harbin Medical University, Harbin, 150081, China; The Second Affiliated Hospital of Hainan Medical University, Haikou, 570100, China
| | - Danli Cao
- Genomics Research Center (Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, State-Province Key Laboratory of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China; National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD) College of Pharmacy, Harbin Medical University, Harbin, 150081, China; Harbin Medical University-University of Calgary Cumming School of Medicine Centre for Infection and Genomics, Harbin Medical University, Harbin, 150081, China
| | - Yu Yan
- Genomics Research Center (Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, State-Province Key Laboratory of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China; National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD) College of Pharmacy, Harbin Medical University, Harbin, 150081, China; Harbin Medical University-University of Calgary Cumming School of Medicine Centre for Infection and Genomics, Harbin Medical University, Harbin, 150081, China
| | - Shuhui Chai
- Genomics Research Center (Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, State-Province Key Laboratory of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China; National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD) College of Pharmacy, Harbin Medical University, Harbin, 150081, China; Harbin Medical University-University of Calgary Cumming School of Medicine Centre for Infection and Genomics, Harbin Medical University, Harbin, 150081, China
| | - Yufan Zhao
- Genomics Research Center (Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, State-Province Key Laboratory of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China; National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD) College of Pharmacy, Harbin Medical University, Harbin, 150081, China; Harbin Medical University-University of Calgary Cumming School of Medicine Centre for Infection and Genomics, Harbin Medical University, Harbin, 150081, China
| | - Shimenghui Deng
- Genomics Research Center (Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, State-Province Key Laboratory of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China; National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD) College of Pharmacy, Harbin Medical University, Harbin, 150081, China; Harbin Medical University-University of Calgary Cumming School of Medicine Centre for Infection and Genomics, Harbin Medical University, Harbin, 150081, China
| | - Jiayu Wei
- Genomics Research Center (Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, State-Province Key Laboratory of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China; National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD) College of Pharmacy, Harbin Medical University, Harbin, 150081, China; Harbin Medical University-University of Calgary Cumming School of Medicine Centre for Infection and Genomics, Harbin Medical University, Harbin, 150081, China
| | - Xin Kang
- Genomics Research Center (Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, State-Province Key Laboratory of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China; National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD) College of Pharmacy, Harbin Medical University, Harbin, 150081, China; Harbin Medical University-University of Calgary Cumming School of Medicine Centre for Infection and Genomics, Harbin Medical University, Harbin, 150081, China
| | - Yuhan Liu
- Genomics Research Center (Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, State-Province Key Laboratory of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China; National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD) College of Pharmacy, Harbin Medical University, Harbin, 150081, China; Harbin Medical University-University of Calgary Cumming School of Medicine Centre for Infection and Genomics, Harbin Medical University, Harbin, 150081, China
| | - Yinuo Zhang
- Genomics Research Center (Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, State-Province Key Laboratory of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China; National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD) College of Pharmacy, Harbin Medical University, Harbin, 150081, China; Harbin Medical University-University of Calgary Cumming School of Medicine Centre for Infection and Genomics, Harbin Medical University, Harbin, 150081, China
| | - Lingjie Luo
- Genomics Research Center (Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, State-Province Key Laboratory of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China; National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD) College of Pharmacy, Harbin Medical University, Harbin, 150081, China; Harbin Medical University-University of Calgary Cumming School of Medicine Centre for Infection and Genomics, Harbin Medical University, Harbin, 150081, China
| | - Shu-Lin Liu
- Genomics Research Center (Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, State-Province Key Laboratory of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China; National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD) College of Pharmacy, Harbin Medical University, Harbin, 150081, China; Harbin Medical University-University of Calgary Cumming School of Medicine Centre for Infection and Genomics, Harbin Medical University, Harbin, 150081, China; Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, T2N 4N1, Canada.
| | - Huidi Liu
- Genomics Research Center (Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, State-Province Key Laboratory of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China; National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD) College of Pharmacy, Harbin Medical University, Harbin, 150081, China; Harbin Medical University-University of Calgary Cumming School of Medicine Centre for Infection and Genomics, Harbin Medical University, Harbin, 150081, China; Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, T2N 4N1, Canada.
| |
Collapse
|
25
|
Hu G, Guo H, Lu L, Zhang Z, Tang Y, Zuo J, Wang X. Unveiling esophageal cancer treatment mechanisms: network pharmacology and molecular docking of Physcion. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:557-568. [PMID: 39023545 DOI: 10.1007/s00210-024-03283-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/02/2024] [Indexed: 07/20/2024]
Abstract
This study investigates the effects of Physcion on esophageal cancer and its possible mechanisms of action. Potential Physcion targets were identified using databases. Transcriptomic data from 17 esophageal cancer and adjacent tissues were analyzed to find differentially expressed genes, intersecting with potential targets to select 16 key genes. Their expression and distribution were evaluated in patient sequencing data. Diagnostic potential was assessed through differential gene expression and ROC curves. Pathway enrichment analysis was performed using KEGG, and molecular docking simulations were conducted to assess Physcion's binding affinity to key genes. In vitro assays complemented these findings. A total of 161 drug targets were identified, narrowing down to 16 pivotal genes. Expression patterns were examined across cell populations, and enrichment analysis showed significant PI3K/AKT pathway involvement. Molecular docking indicated strong binding of Physcion to HSP90AA1 and MMP2. In vitro assays confirmed Physcion's dose- and time-dependent impact on esophageal cancer cells, with significant DAPI staining effects. Physcion shows promise as a therapeutic agent for esophageal cancer. The study supports its potential for clinical development and future research in esophageal cancer treatment.
Collapse
Affiliation(s)
- Guangbing Hu
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, Sichuan, China
| | - Haiyang Guo
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, Sichuan, China
| | - Liuyi Lu
- Department of Clinical Medicine, North Sichuan Medical College, Nanchong, 637000, Sichuan, China
| | - ZongYao Zhang
- Department of General Surgery, The First Affiliated Hospital of Anhui University of Science and Technology, No. 203 Huai Bin Road, Tian Jia'an District, Huainan, 232007, China
| | - Yong Tang
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, Sichuan, China
| | - Ji Zuo
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, Sichuan, China
| | - Xianfei Wang
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, Sichuan, China.
- Digestive Endoscopy Center, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, Sichuan, China.
| |
Collapse
|
26
|
Geng H, Zheng F, Sun W, Huang S, Wang Z, Yang K, Wang C, Tian C, Xu C, Zhai G, Zhao M, Hou S, Song A, Zhang Y, Zhao Q. Effect and mechanism of novel HDAC inhibitor ZDLT-1 in colorectal cancer by regulating apoptosis and inflammation. Int Immunopharmacol 2024; 143:113333. [PMID: 39383785 DOI: 10.1016/j.intimp.2024.113333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/17/2024] [Accepted: 10/04/2024] [Indexed: 10/11/2024]
Abstract
BACKGROUND Histone deacetylase (HDAC) is a potential target for Colorectal Cancer (CRC) molecular target therapy, dehydroharmine derivative ZDLT-1 was designed to inhibit CRC cell proliferation by inhibiting HDAC target. This study aimed to explore the effect of ZDLT-1 could induce apoptosis in CRC in vitro and in vivo, and determine the mechanism of ZDLT-1. METHODS First, MTT assay, colony formation, wound healing, Transwell assay, Hoechst33342 staining and Annexin V-FITC/PI double staining assay were used to investigate the in vitro effect of ZDLT-1. Second, the toxicity and the anti-tumor effect of ZDLT-1 by subcutaneous tumorigenesis assay were used to determine the in vivo effect of ZDLT-1. In terms of mechanism, we evaluated the effect of ZDLT-1 on HDAC downstream proteins such as HIF-1α, NF-κB, Cleaved-Caspase-3/9, GSDMD and acetylated histone by immunofluorescence and Western blot assessments. RESULTS This study confirmed that ZDLT-1 had anti-tumor activity by inhibiting cell proliferation in vitro and solid tumor growth in vivo. Furthermore, ZDLT-1 can inhibit CRC cell invasion, migration and apoptosis in vitro. Moreover, ZDLT-1 can promote the expression of apoptosis proteins in HIF-1α/Caspase-3/Caspase-9 pathway and inhibit the expression of tumor-related immune proteins mainly in NF-κB/GSDMD/GSDME pathway. CONCLUSION ZDLT-1 as HDAC inhibitor could suppresses CRC cell growth in vivo and in vitro by triggering HIF-1α/Caspase-3/Caspase-9 pathway in promoting apoptosis, and triggering NF-κB/GSDMD/GSDME pathway in inhibiting tumor inflammation. Our results propose dehydroharmine derivative ZDLT-1 as a promising therapeutic small molecular agent for CRC.
Collapse
Affiliation(s)
- Hefeng Geng
- Teaching Hospital of Shenyang Pharmaceutical University, General Hospital of Northern Theater Command, 100016 Shenyang City, Liaoning Province, PR China; Department of Clinical Pharmacy, Shenyang Pharmaceutical University, Shenyang City, Liaoning Province, PR China.
| | - Fangyuan Zheng
- Teaching Hospital of Shenyang Pharmaceutical University, General Hospital of Northern Theater Command, 100016 Shenyang City, Liaoning Province, PR China; Department of Clinical Pharmacy, Shenyang Pharmaceutical University, Shenyang City, Liaoning Province, PR China.
| | - Wentao Sun
- Department of Clinical Pharmacy, Shenyang Pharmaceutical University, Shenyang City, Liaoning Province, PR China.
| | - Shuoqi Huang
- Department of Clinical Pharmacy, Shenyang Pharmaceutical University, Shenyang City, Liaoning Province, PR China; Pharmacy Department, Tianjin Hospital, Tianjin, PR China.
| | - Zhiya Wang
- Teaching Hospital of Shenyang Pharmaceutical University, General Hospital of Northern Theater Command, 100016 Shenyang City, Liaoning Province, PR China; Department of Clinical Pharmacy, Shenyang Pharmaceutical University, Shenyang City, Liaoning Province, PR China.
| | - Kaisi Yang
- Teaching Hospital of Shenyang Pharmaceutical University, General Hospital of Northern Theater Command, 100016 Shenyang City, Liaoning Province, PR China; Department of Clinical Pharmacy, Shenyang Pharmaceutical University, Shenyang City, Liaoning Province, PR China.
| | - Chengkang Wang
- Teaching Hospital of Shenyang Pharmaceutical University, General Hospital of Northern Theater Command, 100016 Shenyang City, Liaoning Province, PR China; Department of Clinical Pharmacy, Shenyang Pharmaceutical University, Shenyang City, Liaoning Province, PR China.
| | - Caizhi Tian
- Department of Clinical Pharmacy, Shenyang Pharmaceutical University, Shenyang City, Liaoning Province, PR China.
| | - Chang Xu
- Teaching Hospital of Shenyang Pharmaceutical University, General Hospital of Northern Theater Command, 100016 Shenyang City, Liaoning Province, PR China; Department of Clinical Pharmacy, Shenyang Pharmaceutical University, Shenyang City, Liaoning Province, PR China.
| | - Guanchao Zhai
- Department of Clinical Pharmacy, Shenyang Pharmaceutical University, Shenyang City, Liaoning Province, PR China.
| | - Mingyi Zhao
- Department of Clinical Pharmacy, Shenyang Pharmaceutical University, Shenyang City, Liaoning Province, PR China.
| | - Shanbo Hou
- Luoxin Pharmaceuticals Group Stock Co., Ltd., Linyi, PR China.
| | - Aigang Song
- Luoxin Pharmaceuticals Group Stock Co., Ltd., Linyi, PR China.
| | - Yingshi Zhang
- Teaching Hospital of Shenyang Pharmaceutical University, General Hospital of Northern Theater Command, 100016 Shenyang City, Liaoning Province, PR China; Department of Clinical Pharmacy, Shenyang Pharmaceutical University, Shenyang City, Liaoning Province, PR China.
| | - Qingchun Zhao
- Teaching Hospital of Shenyang Pharmaceutical University, General Hospital of Northern Theater Command, 100016 Shenyang City, Liaoning Province, PR China; Department of Clinical Pharmacy, Shenyang Pharmaceutical University, Shenyang City, Liaoning Province, PR China.
| |
Collapse
|
27
|
Huang C, Zhang X, Wu SX, Chang Q, Zheng ZK, Xu J. METTL3, m6A modification, and EGR1: interplay affecting myocardial I/R injury outcomes. Cell Biol Toxicol 2024; 41:7. [PMID: 39707117 PMCID: PMC11662061 DOI: 10.1007/s10565-024-09937-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 10/16/2024] [Indexed: 12/23/2024]
Abstract
The occurrence of severe myocardial ischemia/reperfusion (I/R) injury is associated with the clinical application of reestablishment technique for heart disease, and understanding its underlying mechanisms is currently an urgent issue. Prior investigations have demonstrated the potential enhancement of MIRI through EGR1 suppression, although the precise underlying regulatory pathways require further elucidation. The core focus of this investigation is to examine the molecular pathways through EGR1 regulates mitophagy-mediated myocardial cell pyroptosis and its impact on MIRI. Cardiomyocyte hypoxia/reoxygenation (H/R) injury models and mouse models of myocardial I/R injury were used to investigate the involvement of EGR1 in regulating mitophagy-mediated myocardial cell pyroptosis in myocardial I/R injury. The research outcomes demonstrated that under H/R conditions, EGR1 expression was upregulated and inhibited the JAK2/STAT3 pathway, leading to enhanced mitophagy and disrupted mitochondrial fusion/fission dynamics, ultimately resulting in myocardial cell pyroptosis. Further research revealed that the upregulation of EGR1 expression was mediated by methyltransferase like 3 (METTL3)-mediated m6A modification of EGR1 mRNA and depended on the binding of insulin like growth factor 2 mrna binding protein 2 (IGF2BP2) to the N6-methyladenosine (m6A) modification site to enhance mRNA stability. In vivo animal experiments confirmed that METTL3 upregulated EGR1 expression through IGF2BP2 and suppressed activation of the janus kinase 2 (JAK2) /signal transducer and activator of transcription 3 (STAT3) pathway, thereby inhibiting mitophagy, disrupting mitochondrial dynamics, promoting myocardial cell pyroptosis, and exacerbating I/R injury.
Collapse
Affiliation(s)
- Chen Huang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Xun Zhang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Shi-Xiong Wu
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Qing Chang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Zhi-Kun Zheng
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Jing Xu
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China.
| |
Collapse
|
28
|
Qian L, Ji Z, Mei L, Zhao J. IGF2BP2 promotes lung adenocarcinoma progression by regulating LOX1 and tumor-associated neutrophils. Immunol Res 2024; 73:16. [PMID: 39688738 DOI: 10.1007/s12026-024-09563-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 11/07/2024] [Indexed: 12/18/2024]
Abstract
Lung adenocarcinoma (LUAD) is the common form of lung cancer and is prone to distant metastasis. IGF2BP2, an m6A modification regulator, is upregulated in lung cancer tissue, but its specific role within the LUAD tumor microenvironment (TME) is unknown. We explored the role of IGF2BP2 in the progression of LUAD. IGF2BP2 expression in LUAD patient specimens and controls was evaluated through bioinformatics, Western blot, and immunohistochemistry. LUAD subcutaneous and orthotopic xenograft tumor models were established, alongside a co-culture system of tumor-associated neutrophils (TANs) and A549 cells. Functional assays assessed IGF2BP2's role under treatment with JX5, an IGF2BP2 inhibitor. Mechanistic assays explored the interaction between IGF2BP2 and LOX1 in 293T cells. IGF2BP2 was significantly upregulated in LUAD tissues, with higher expression levels predicting worse prognosis for patients (p < 0.001). In subcutaneous and orthotopic xenograft models, treatment with JX5, an IGF2BP2 inhibitor, reduced tumor size, volume, and weight (p < 0.001). JX5 also significantly reduced the concentrations of pro-inflammatory cytokines in peripheral blood (p < 0.01 and p < 0.001). Flow cytometry analysis indicated JX5 reduced CD11b+Ly6G+/CD45+ cells (TANs) in the TME (p < 0.001). Mechanistically, JX5 downregulated LOX1 expression in vivo, and co-culture experiments further demonstrated that IGF2BP2 promotes LUAD progression through LOX1-mediated regulation of TAN activity (p < 0.01 and p < 0.001). Overexpression of LOX1 reversed the inhibitory effects of JX5 on TAN infiltration, tumor cell viability, and apoptosis (p < 0.01 and p < 0.001). Additionally, RNA immunoprecipitation revealed that IGF2BP2 binds to LOX1 mRNA at its m6A modification site, stabilizing LOX1 and enhancing its function in the TME. Knockdown of IGF2BP2 accelerated LOX1 mRNA degradation, confirming its role in maintaining LOX1 stability (p < 0.01 and p < 0.001). IGF2BP2 recognizes and stabilizes LOX1 through m6A modification, contributing to TAN-mediated LUAD progression. Overall, these findings offer new insights into LUAD progression and demonstrate that IGF2BP2 is a key regulator that promotes tumor advancement, highlighting the IGF2BP2-LOX1 axis as a potential therapeutic target for LUAD.
Collapse
Affiliation(s)
- Long Qian
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, No. 899 Pinghai Road, Suzhou, 215006, Jiangsu, China
- Department of Thoracic Surgery, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, 223300, China
| | - Zhuqing Ji
- Department of Medical Oncology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China
- Department of Medical Oncology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, 223300, China
| | - Lingyun Mei
- Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China
| | - Jun Zhao
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, No. 899 Pinghai Road, Suzhou, 215006, Jiangsu, China.
| |
Collapse
|
29
|
Wang B, Yu RZ, Zhang XY, Ren Y, Zhen YW, Han L. Polo-like kinase 4 accelerates glioma malignant progression and vasculogenic mimicry by phosphorylating EphA2. Cancer Lett 2024; 611:217397. [PMID: 39694224 DOI: 10.1016/j.canlet.2024.217397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 12/10/2024] [Accepted: 12/14/2024] [Indexed: 12/20/2024]
Abstract
Vasculogenic mimicry (VM), which involved the formation of vascular-like structures by highly invasive tumor cells, had been identified as one of the mechanisms contributing to resistance against anti-angiogenic therapy in patients with glioblastoma (GBM). Therefore, inhibition of VM formation may serve as an effective therapeutic strategy against angiogenesis resistance. Polo-like kinase 4 (PLK4), a protein kinase, had been linked to the progression of glioblastoma and was associated with an unfavorable prognosis. The integration of proteomics and phosphoproteomics revealed that PLK4 directly activated the PI3K-Akt and MAPK signaling cascades by phosphorylating the Ser901 and Ser897 of EphA2. In addition, EphA2 Ser901 phosphorylating catalyzed by PLK4 significantly enhanced the phosphorylation of its own Ser897 site, which is a hallmark of EphA2 activation. The PI3K-Akt signaling was intricately associated with the progression of VM. Thus, PLK4 influenced malignant progression and VM formation via stimulation of the EphA2 signal transduction. Moreover, the expression level of PLK4 protein positively correlated with the level of EphA2 phosphorylation in glioma tissues. These results highlighted the crucial significance of PLK4 phosphorylating EphA2 in the malignant progression and VM formation in GBM.
Collapse
Affiliation(s)
- Bo Wang
- Tianjin Neurological Institute, Key Laboratory of Post-Neuro Injury, Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Run-Ze Yu
- Tianjin Neurological Institute, Key Laboratory of Post-Neuro Injury, Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Xiao-Yang Zhang
- Tianjin Neurological Institute, Key Laboratory of Post-Neuro Injury, Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Yu Ren
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China.
| | - Ying-Wei Zhen
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China.
| | - Lei Han
- Tianjin Neurological Institute, Key Laboratory of Post-Neuro Injury, Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| |
Collapse
|
30
|
Wang LJ, Wu Y, Xie S, Lian H. Insulin like growth factor 2 mRNA binding protein 2 regulates vascular development in cerebral arteriovenous malformations. Front Neurol 2024; 15:1483016. [PMID: 39722688 PMCID: PMC11668662 DOI: 10.3389/fneur.2024.1483016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 11/27/2024] [Indexed: 12/28/2024] Open
Abstract
Background Cerebral arteriovenous malformations (AVMs) are intricate vascular anomalies that disrupt normal cerebral blood flow, potentially leading to severe neurological complications. Although the pathology of AVMs is not fully understood, epigenetic mechanisms have been implicated in their formation. Methods Transcriptional differences between cerebral AVMs and normal tissues were analyzed using RNA sequencing (RNA-seq), identifying IGF2BP2 as a key differentially expressed gene. Comprehensive bioinformatics analysis, integrating multi-omics data such as RNA-seq and methylated RNA immunoprecipitation sequencing (MeRIP-seq), was employed to identify the downstream target gene of IGF2BP2. The roles of specific genes in vascular development were assessed using endothelial cell cultures and zebrafish models. Results Our analysis of RNA-seq data from cerebral AVMs and normal tissues identified IGF2BP2, a key N6-methyladenosine (m6A) reader, as significantly downregulated in cerebral AVMs. Functional studies showed that IGF2BP2 knockdown resulted in abnormal angiogenesis in endothelial cells and disrupted vascular development in zebrafish models. Mechanistically, IGF2BP2 regulates LGALS8 expression by modulating mRNA stability through m6A modification, and LGALS8 deficiency severely impairs angiogenesis in vitro and leads to cerebrovascular dysplasia in vivo. Conclusion Our findings suggest that IGF2BP2, via m6A-dependent regulation of LGALS8, is crucial for vascular development and presents potential targets for therapeutic intervention in cerebral AVMs.
Collapse
Affiliation(s)
- Lin-jian Wang
- Department of Neurosurgery, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
- Institute of Trauma and Metabolism, Zhengzhou University, Zhengzhou, China
- Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou, China
| | - Yangyang Wu
- Department of Neurosurgery, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
- Institute of Trauma and Metabolism, Zhengzhou University, Zhengzhou, China
- Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou, China
| | - Sha Xie
- School of Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Hongkai Lian
- Department of Neurosurgery, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
- Institute of Trauma and Metabolism, Zhengzhou University, Zhengzhou, China
- Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou, China
| |
Collapse
|
31
|
Qin L, Zeng X, Qiu X, Chen X, Liu S. The role of N6-methyladenosine modification in tumor angiogenesis. Front Oncol 2024; 14:1467850. [PMID: 39691597 PMCID: PMC11649548 DOI: 10.3389/fonc.2024.1467850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 11/11/2024] [Indexed: 12/19/2024] Open
Abstract
Tumor angiogenesis is a characteristics of malignant cancer progression that facilitates cancer cell growth, diffusion and metastasis, and has an indispensable role in cancer development. N6-methyladenosine (m6A) is among the most prevalent internal modifications in eukaryotic RNAs, and has considerable influence on RNA metabolism, including its transcription, splicing, localization, translation, recognition, and degradation. The m6A modification is generated by m6A methyltransferases ("writers"), removed by m6A demethylases ("erasers"), and recognized by m6A-binding proteins ("readers"). There is accumulating evidence that abnormal m6A modification is involved in the pathogenesis of multiple diseases, including cancers, and promotes cancer occurrence, development, and progression through its considerable impact on oncoprotein expression. Furthermore, increasing studies have demonstrated that m6A modification can influence angiogenesis in cancers through multiple pathways to regulate malignant processes. In this review, we elaborate the role of m6A modification in tumor angiogenesis-related molecules and pathways in detail, providing insights into the interactions between m6A and tumor angiogenesis. Moreover, we describe how targeting m6A modification in combination with anti-angiogenesis drugs is expected to be a promising anti-tumor treatment strategy, with potential value for addressing the challenge of drug resistance.
Collapse
Affiliation(s)
| | | | | | | | - Shiquan Liu
- Department of Gastroenterology, The Second Affiliated Hospital of Guangxi Medical
University, Nanning, Guangxi, China
| |
Collapse
|
32
|
Li J, Ding X, Yan W, Liu K, Ye W, Wang H, Wang L. Tumor-Derived Immunoglobulin-Like Transcript 4 Promotes Postoperative Relapse via Inducing Vasculogenic Mimicry through MAPK/ERK Signaling in Hepatocellular Carcinoma. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:2398-2411. [PMID: 39233275 DOI: 10.1016/j.ajpath.2024.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/22/2024] [Accepted: 08/16/2024] [Indexed: 09/06/2024]
Abstract
The efficacy of conventional anti-angiogenesis drugs is usually low in treating hepatocellular carcinoma (HCC). Therefore, there is an urgent need to find new precise therapeutic targets and to develop more effective drugs for the treatment of HCC. Vasculogenic mimicry (VM) is different from classic endothelium-dependent angiogenesis and is associated with a poor prognosis in patients with malignant tumor. However, the mechanism underlying VM is complex and not fully defined. Ig-like transcript (ILT)-4, as a negative regulator of immune response, is expressed in many solid tumors. However, whether and how ILT4 regulates VM remains unclear. This study found VM enriched in HCC tissues, especially in tissues from patients with relapse within 5 years after surgery. Similarly, ILT4 expression level was also higher in HCC tissues from patients with relapse within 5 years after surgery. Linear regression analysis revealed a positive correlation between the expression of ILT4 and VM density. Furthermore, overexpression/knockdown of ILT4 expression upregulated/down-regulated VM-related marker, three-dimensional tube formation, and migration and invasion in HCC cell lines in vitro. In mechanistic studies, ILT4 promoted VM formation via mitogen-activated protein kinase (MAPK)/ERK signaling. This study provides a rationale and mechanism for ILT4-mediated postoperative relapse via inducing VM in HCC. The related molecular pathways can be used as novel therapeutic targets for the inhibition of HCC angiogenesis and postoperative relapse.
Collapse
MESH Headings
- Humans
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/blood supply
- Carcinoma, Hepatocellular/genetics
- Liver Neoplasms/pathology
- Liver Neoplasms/metabolism
- Liver Neoplasms/blood supply
- Liver Neoplasms/genetics
- Neovascularization, Pathologic/metabolism
- Neovascularization, Pathologic/pathology
- Neoplasm Recurrence, Local/pathology
- Neoplasm Recurrence, Local/metabolism
- MAP Kinase Signaling System
- Male
- Female
- Middle Aged
- Receptors, Immunologic/metabolism
- Gene Expression Regulation, Neoplastic
- Cell Movement
- Cell Line, Tumor
- Membrane Glycoproteins
Collapse
Affiliation(s)
- Jiayan Li
- Clinical Research Center, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| | - Xiaofeng Ding
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Wanping Yan
- Department of Infectious Disease, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| | - Ke Liu
- Department of Infectious Disease, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| | - Wei Ye
- Department of Infectious Disease, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| | - Huali Wang
- General Family Medicine, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China.
| | - Lili Wang
- Clinical Research Center, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China.
| |
Collapse
|
33
|
Wang G, Xiao H, Liang Z, Feng Y, Wang L, Feng Y, Guo F, Zhang L. Molecular characteristics and prognostic role of EPHA2 in human tumors via pan-cancer analysis. Medicine (Baltimore) 2024; 103:e40741. [PMID: 39612413 PMCID: PMC11608714 DOI: 10.1097/md.0000000000040741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 11/11/2024] [Indexed: 12/01/2024] Open
Abstract
The tyrosine kinase ephrin type-A receptor 2 (EPHA2) was remarkably elevated expressed in various tumors and plays a crucial role in cancer tumorigenesis and progression, while pan-cancer analyses are currently lacking. This study was designed to analyze the expression status and prognostic significance of EPHA2 in pan-cancer. By mining The Cancer Genome Atlas data, we performed a comprehensive and systematic characterization of EPHA2 across >10,000 samples of 33 types of cancer. EPHA2 expressions were substantially different in most of the normal control and tumor tissues, and it was considerably associated with the prognosis of tumor patients. EPHA2 gene modifications in malignant tumors were mainly missense mutations. There was a significant correlation between EPHA2 expression and cancer-associated fibroblasts in most The Cancer Genome Atlas cancers. Furthermore, functional enrichment analysis showed that the biological role of EPHA2 in tumors was mainly involved in some noticeably pro-oncogenic pathways, such as the Ras signaling pathway, PI3K-Akt signaling pathway, ErbB signaling pathway, MAPK signaling pathway, etc. This study provided the first pan-cancer analyses of EPHA2 in various tumors, and EPHA2 was potentially involved in many cancer types and can be developed as candidates for cancer diagnosis, prognosis, and therapeutic biomarkers. In addition, EPHA2 seemed to be a key modulator of the tumor immune microenvironment and might be a potential biomarker in predicting the immunotherapeutic efficacy for cancer patients.
Collapse
Affiliation(s)
- Guoqiang Wang
- Department of Oncology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Hui Xiao
- Department of Burns and Plastic Surgery, Central Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Zhipan Liang
- Department of Thoracic Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Yuxin Feng
- Department of Oncology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Liyu Wang
- Department of Oncology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Ying Feng
- Department of Oncology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Fen Guo
- Department of Oncology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Luyao Zhang
- Department of Oncology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| |
Collapse
|
34
|
Luan Y, Jia R, Chai P, Fan X. m 6A and beyond: RNA modifications shaping angiogenesis. Trends Mol Med 2024:S1471-4914(24)00302-2. [PMID: 39609142 DOI: 10.1016/j.molmed.2024.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/22/2024] [Accepted: 11/04/2024] [Indexed: 11/30/2024]
Abstract
RNA modifications are crucial post-transcriptional processes that significantly influence gene expression, RNA stability, nuclear transport, and translational capacity. Angiogenesis, the formation of new blood vessels, is a physiological process that is dysregulated in many pathological conditions, including ocular diseases, immune disorders, and cancer. In this review, we compile the current understanding of the intricate relationship between various RNA modifications and angiogenic mechanisms, spotlighting emerging evidence that underscore their pivotal regulatory roles in both physiological and pathological angiogenesis. Furthermore, we delve into recent advances in innovative therapeutic approaches that target RNA modifications to modulate angiogenesis, offering insights into their potential as novel treatment modalities.
Collapse
Affiliation(s)
- Yu Luan
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Renbing Jia
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China.
| | - Peiwei Chai
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China.
| | - Xianqun Fan
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China.
| |
Collapse
|
35
|
Li D, Hu S, Ye J, Zhai C, Liu J, Wang Z, Zhou X, Chen L, Zhou F. The Emerging Role of IGF2BP2 in Cancer Therapy Resistance: From Molecular Mechanism to Future Potential. Int J Mol Sci 2024; 25:12150. [PMID: 39596216 PMCID: PMC11595103 DOI: 10.3390/ijms252212150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/04/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024] Open
Abstract
Tumor resistance is one of the primary reasons for cancer treatment failure, significantly limiting the options and efficacy of cancer therapies. Therefore, overcoming resistance has become a critical factor in improving cancer treatment outcomes. IGF2BP2, as a reader of m6A methylation, plays a pivotal role in the post-transcriptional regulation of RNA through the methylation of m6A sites. It not only contributes to cancer initiation and progression but also plays a key role in tumor drug resistance. This review provides a comprehensive summary of the mechanisms by which IGF2BP2 contributes to therapy resistance, with the aim of improving the efficacy of chemotherapy in cancer treatment. Advancing research in this area is crucial for developing more effective therapies that could significantly improve the quality of life for cancer patients.
Collapse
Affiliation(s)
- Die Li
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China; (D.L.); (S.H.); (J.Y.); (C.Z.); (J.L.); (Z.W.); (X.Z.)
| | - Shiqi Hu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China; (D.L.); (S.H.); (J.Y.); (C.Z.); (J.L.); (Z.W.); (X.Z.)
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200433, China
| | - Jiarong Ye
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China; (D.L.); (S.H.); (J.Y.); (C.Z.); (J.L.); (Z.W.); (X.Z.)
| | - Chaojie Zhai
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China; (D.L.); (S.H.); (J.Y.); (C.Z.); (J.L.); (Z.W.); (X.Z.)
| | - Jipeng Liu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China; (D.L.); (S.H.); (J.Y.); (C.Z.); (J.L.); (Z.W.); (X.Z.)
| | - Zuao Wang
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China; (D.L.); (S.H.); (J.Y.); (C.Z.); (J.L.); (Z.W.); (X.Z.)
| | - Xinchi Zhou
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China; (D.L.); (S.H.); (J.Y.); (C.Z.); (J.L.); (Z.W.); (X.Z.)
| | - Leifeng Chen
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
- Medical Center for Cardiovascular Diseases, Neurological Diseases and Tumors of Jiangxi Province, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Fan Zhou
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China; (D.L.); (S.H.); (J.Y.); (C.Z.); (J.L.); (Z.W.); (X.Z.)
| |
Collapse
|
36
|
Wang H, Tang R, Jiang L, Jia Y. The role of PIK3CA gene mutations in colorectal cancer and the selection of treatment strategies. Front Pharmacol 2024; 15:1494802. [PMID: 39555098 PMCID: PMC11565213 DOI: 10.3389/fphar.2024.1494802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 10/21/2024] [Indexed: 11/19/2024] Open
Abstract
PIK3CA gene encodes the p110α catalytic subunit of PI3K, which regulates the PI3K/AKT/mTOR signaling pathway. PIK3CA gene mutation is one of the most common mutations in colorectal cancer (CRC), affecting about 15%-20% of CRC patients. PIK3CA gene mutation leads to the persistent activation of the PI3K/AKT/mTOR signaling pathway, which promotes the proliferation, invasion, metastasis, and drug resistance of CRC. This article provides a summary of the key detection methods for PIK3CA gene mutation, and provides an introduction to the existing colorectal cancer treatments and their practical applications in the clinic. Besides, this article summarizes the role and mechanism of PIK3CA gene mutation in the occurrence and development of CRC. It also explores the relationship between PIK3CA gene mutation and the clinical features and prognosis of CRC. This article focuses on the influence and mechanism of PIK3CA gene mutation on the targeted therapy and immunotherapy of CRC, and discusses the potential value and future direction of PIK3CA gene mutation in the personalized therapy of CRC. We aim to provide new perspectives and ideas for the precise diagnosis and treatment of CRC.
Collapse
Affiliation(s)
- Haitao Wang
- The School of Clinical Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Rui Tang
- Chengdu Anorectal Hospital, Chengdu, China
| | - Ling Jiang
- Chengdu Anorectal Hospital, Chengdu, China
| | - Yingtian Jia
- Department of Anorectal, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| |
Collapse
|
37
|
Mo A, Wang H. WTAP-mediated m6A modification regulates NLRP3/Caspase-1/GSDMD to inhibit pyroptosis and exacerbate colorectal cancer. Biomark Med 2024; 18:945-955. [PMID: 39469841 PMCID: PMC11633406 DOI: 10.1080/17520363.2024.2416886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 10/11/2024] [Indexed: 10/30/2024] Open
Abstract
Aim: Wilms' tumor 1-associating protein (WTAP), plays a part in colorectal cancer (CRC) progression. However, it is not yet known how WTAP affects cancer progression by influencing leukocyte rich repeat containing proteins (NLR) - family members 3 (NLRP3) - related inflammasomes.Materials & methods: We first validated the expression of WTAP in CRC at the tissue and cellular levels. Subsequently, by transfecting si-NC and si-WTAP into cells, we verified functions of WTAP in proliferation, invasion, migration and apoptosis of CRC cells. Finally, we analyzed the N6-methyladenosine (m6A) modification of NLRP3 by WTAP using methylated RNA immunoprecipitation (MeRIP)-qPCR technology, confirming that WTAP mediated the repression of NLRP3 inflammasome and the malignant progression of tumor cells.Results: WTAP was substantially upregulated in CRC tissues and cells. WTAP reinforced the migration, proliferation and invasion ability of CRC cells, and repressed apoptosis. Mechanistically, WTAP mediated the m6A modification of NLRP3, which suppressed the expression of NLRP3 and dampened the NLRP3/Caspase-1/GSDMD axis activation as well as pyroptosis, thereby facilitating the malignant progression of CRC.Conclusion: WTAP mediates m6A modification to modulate the repression of the NLRP3/Caspase-1/GSDMD axis in pyroptosis, reinforcing the malignant progression of CRC.
Collapse
Affiliation(s)
- Anwei Mo
- Department of Oncology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou City, Hainan, 570311, China
| | - Huaiwen Wang
- Department of Anorectal Surgery, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou City, Hainan, 570311, China
| |
Collapse
|
38
|
Wu S, Liu K, Cui Y, Zhou B, Zhao H, Xiao X, Zhou Q, Ma D, Li X. N6-methyladenosine dynamics in placental development and trophoblast functions, and its potential role in placental diseases. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167290. [PMID: 38866113 DOI: 10.1016/j.bbadis.2024.167290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 06/02/2024] [Accepted: 06/06/2024] [Indexed: 06/14/2024]
Abstract
N6-methyladenosine (m6A) is the most abundant modification controlling RNA metabolism and cellular functions, but its roles in placental development are still poorly understood. Here, we characterized the synchronization of m6A modifications and placental functions by mapping the m6A methylome in human placentas (n = 3, each trimester), revealing that the dynamic patterns of m6A were associated with gene expression homeostasis and different biological pathways in placental development. Then, we generated trophoblast-specific knockout mice of Wtap, a critical component of methyltransferase complex, and demonstrated that Wtap was essential for trophoblast proliferation, placentation and perinatal growth. Further in vitro experiments which includes cell viability assays and series molecular binding assays demonstrated that WTAP-m6A-IGF2BP3 axis regulated the RNA stability and translation of Anillin (ANLN) and VEGFA, promoting trophoblast proliferation and secretion. Dysregulation of this regulatory axis was observed in placentas from pregnancies with fetal growth restriction (FGR) or preeclampsia, revealing the pathogenic effects of imbalanced m6A modifications. Therefore, our findings provide novel insights into the functions and regulatory mechanisms of m6A modifications in placental development and placental-related gestational diseases.
Collapse
Affiliation(s)
- Suwen Wu
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Ketong Liu
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Yutong Cui
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Bingyan Zhou
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Clinical Center of Hirschsprung's Disease and Allied Disorders, Wuhan, China
| | - Huanqiang Zhao
- Shenzhen Maternity and Children Health Care Hospital, Shenzhen, China
| | - Xirong Xiao
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Qiongjie Zhou
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China.
| | - Duan Ma
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China.
| | - Xiaotian Li
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China; Shenzhen Maternity and Children Health Care Hospital, Shenzhen, China.
| |
Collapse
|
39
|
Liu A, Liu C. In vitro and in vivo antineoplastic activities of solamargine in colorectal cancer through the suppression of PI3K/AKT pathway. Histol Histopathol 2024; 39:1317-1328. [PMID: 38357981 DOI: 10.14670/hh-18-717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
PURPOSE Previous research has demonstrated the efficacy of SM in inhibiting tumor growth in various cancer types. The objective of this study was to examine the antineoplastic effects and molecular mechanisms of Solamargine (SM) in colorectal cancer. METHODS Colorectal cancer (CRC) cells were treated with different concentrations of SM to evaluate the anticancer concentration for further experimental measurements. Additionally, the antitumor efficacy of SM was assessed in a subcutaneously implanted tumor model of colorectal cancer. RNA-seq and bioinformatics analyses were employed to identify differentially expressed genes (DEGs) and elucidate the underlying molecular mechanisms in LoVo cells. Subsequently, the specific mechanism of SM-mediated anti-tumor activities was analyzed by protein expression methods. RESULTS The results of in vitro assays demonstrated that SM exhibits significant inhibitory effects on cell proliferation, clone formation, and invasion, while also promoting apoptosis in SW48 and LoVo cells. In a mouse xenograft tumor model, intragastric administration of SM at doses of 5 or 10 mg/kg effectively suppressed tumor volume and weight, and induced cell apoptosis in vivo. SM treatment also down-regulated PCNA and Cyclin E protein expression, contributing to the regulation of apoptosis. Further analysis using RNA-seq, bioinformatics, and experimental measurements revealed that SM treatment upregulates PTEN expression, while significantly reducing the phosphorylation levels of Akt and mTOR in LoVo cells. CONCLUSION Our study provides further evidence to support the notion that SM primarily induces apoptosis in colorectal cancer cells through the inhibition of the PI3K/Akt signaling pathway. Additionally, our investigation demonstrated the favorable safety profile of SM in a mouse model of colorectal cancer, thereby suggesting its potential as a promising therapeutic approach for the management of CRC.
Collapse
Affiliation(s)
- Aihua Liu
- Department of Pathology, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning Province, China
| | - Chunying Liu
- Department of Pathology, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning Province, China.
| |
Collapse
|
40
|
Zhang L, Mao Z, Yin K, Wang S. Review of METTL3 in colorectal cancer: From mechanisms to the therapeutic potential. Int J Biol Macromol 2024; 277:134212. [PMID: 39069066 DOI: 10.1016/j.ijbiomac.2024.134212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 07/10/2024] [Accepted: 07/25/2024] [Indexed: 07/30/2024]
Abstract
N6-methyladenosine (m6A), the most abundant modification in mRNAs, affects the fate of the modified RNAs at the post-transcriptional level and participants in various biological and pathological processes. Increasing evidence shows that m6A modification plays a role in the progression of many malignancies, including colorectal cancer (CRC). As the only catalytic subunit in methyltransferase complex, methyltransferase-like 3 (METTL3) is essential to the performance of m6A modification. It has been found that METTL3 is associated with the prognosis of CRC and significantly influences various aspects of CRC, such as cell proliferation, invasion, migration, metastasis, metabolism, tumor microcirculation, tumor microenvironment, and drug resistance. The relationship between METTL3 and gut-microbiota is also involved into the progression of CRC. Furthermore, METTL3 might be a viable target for CRC treatment to prolong survival. In this review, we comprehensively summarize the function of METTL3 in CRC and the underlying molecular mechanisms. We aim to deepen understanding and offer new ideas for diagnostic biomarkers and therapeutic targets for colorectal cancer.
Collapse
Affiliation(s)
- Lexuan Zhang
- Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China; Department of Immunology, Jiangsu Key Laboratory for Laboratory Medicine, Jiangsu University School of Medicine, Zhenjiang, China
| | - Zhenwei Mao
- Department of Laboratory Medicine, Affiliated People's Hospital, Jiangsu University, Zhenjiang, China.
| | - Kai Yin
- Department of General Surgery, Affiliated Hospital, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Shengjun Wang
- Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China; Department of Immunology, Jiangsu Key Laboratory for Laboratory Medicine, Jiangsu University School of Medicine, Zhenjiang, China.
| |
Collapse
|
41
|
Chen Y, Zhou Z, Chen Y, Chen D. Reading the m 6A-encoded epitranscriptomic information in development and diseases. Cell Biosci 2024; 14:124. [PMID: 39342406 PMCID: PMC11439334 DOI: 10.1186/s13578-024-01293-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 08/19/2024] [Indexed: 10/01/2024] Open
Abstract
N6-methyladenosine (m6A) represents the most prevalent internal and reversible modification on RNAs. Different cell types display their unique m6A profiles, which are determined by the functions of m6A writers and erasers. M6A modifications lead to different outcomes such as decay, stabilization, or transport of the RNAs. The m6A-encoded epigenetic information is interpreted by m6A readers and their interacting proteins. M6A readers are essential for different biological processes, and the defects in m6A readers have been discovered in diverse diseases. Here, we review the latest advances in the roles of m6A readers in development and diseases. These recent studies not only highlight the importance of m6A readers in regulating cell fate transitions, but also point to the potential application of drugs targeting m6A readers in diseases.
Collapse
Affiliation(s)
- Yunbing Chen
- Center for Reproductive Medicine of The Second Affiliated Hospital, Center for Regeneration and Cell Therapy of Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China
| | - Ziyu Zhou
- Center for Reproductive Medicine of The Second Affiliated Hospital, Center for Regeneration and Cell Therapy of Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China
| | - Yanxi Chen
- Center for Reproductive Medicine of The Second Affiliated Hospital, Center for Regeneration and Cell Therapy of Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China
| | - Di Chen
- Center for Reproductive Medicine of The Second Affiliated Hospital, Center for Regeneration and Cell Therapy of Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China.
- State Key Laboratory of Biobased Transportation Fuel Technology, Haining, Zhejiang, 314400, China.
| |
Collapse
|
42
|
Liang X, Ma X, Luan F, Gong J, Zhao S, Pan Y, Liu Y, Liu L, Huang J, An Y, Hu S, Yang J, Dong D. Identification of new subtypes of breast cancer based on vasculogenic mimicry related genes and a new model for predicting the prognosis of breast cancer. Heliyon 2024; 10:e36565. [PMID: 39263085 PMCID: PMC11387377 DOI: 10.1016/j.heliyon.2024.e36565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 09/13/2024] Open
Abstract
Breast cancer is a malignant tumor that poses a serious threat to women's health, and vasculogenic mimicry (VM) is strongly associated with bad prognosis in breast cancer. However, the relationship between VM and immune infiltration in breast cancer and the underlying mechanisms have not been fully studied. On the basis of the Cancer Genome Atlas (TCGA), Fudan University Shanghai Cancer Center (FUSCC) database, GSCALite database, and gene set enrichment analysis (GSEA) datasets, we investigated the potential involvement of VM-related genes in the development and progression of breast cancer. We analyzed the differential expression, mutation status, methylation status, drug sensitivity, tumor mutation burden (TMB), microsatellite instability (MSI), immune checkpoints, tumor microenvironment (TME), and immune cell infiltration levels associated with VM-related genes in breast cancer. We created two VM subclusters out of breast cancer patients using consensus clustering, and discovered that patients in Cluster 1 had better survival outcomes compared to those in Cluster 2. The infiltration levels of T cells CD4 memory resting and T cells CD8 were higher in Cluster 1, indicating an immune-active state in this cluster. Additionally, we selected three prognostic genes (LAMC2, PIK3CA, and TFPI2) using Lasso, univariate, and multivariate Cox regression and constructed a risk model, which was validated in an external dataset. The prognosis of patients is strongly correlated with aberrant expression of VM-related genes, which advances our knowledge of the tumor immune milieu and enables us to identify previously unidentified breast cancer subtypes. This could direct more potent immunotherapy approaches.
Collapse
Affiliation(s)
- Xiao Liang
- Cancer Center, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
| | - Xinyue Ma
- Cancer Center, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
| | - Feiyang Luan
- Cancer Center, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
| | - Jin Gong
- Cancer Center, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
| | - Shidi Zhao
- Cancer Center, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
| | - Yiwen Pan
- Cancer Center, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
| | - Yijia Liu
- Cancer Center, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
| | - Lijuan Liu
- Cancer Center, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
| | - Jing Huang
- Cancer Center, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
| | - Yiyang An
- Cancer Center, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
| | - Sirui Hu
- Cancer Center, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
| | - Jin Yang
- Cancer Center, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
| | - Danfeng Dong
- Cancer Center, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
| |
Collapse
|
43
|
Zhang YK, Shi R, Meng RY, Lin SL, Zheng M. Erythropoietin-induced hepatocyte receptor A2 regulates effect of pyroptosis on gastrointestinal colorectal cancer occurrence and metastasis resistance. World J Gastrointest Oncol 2024; 16:3781-3797. [PMID: 39350985 PMCID: PMC11438782 DOI: 10.4251/wjgo.v16.i9.3781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/30/2024] [Accepted: 07/24/2024] [Indexed: 09/09/2024] Open
Abstract
Erythropoietin-induced hepatocyte receptor A2 (EphA2) is a receptor tyrosine kinase that plays a key role in the development and progression of a variety of tumors. This article reviews the expression of EphA2 in gastrointestinal (GI) colorectal cancer (CRC) and its regulation of pyroptosis. Pyroptosis is a form of programmed cell death that plays an important role in tumor suppression. Studies have shown that EphA2 regulates pyrodeath through various signaling pathways, affecting the occurrence, development and metastasis of GI CRC. The overexpression of EphA2 is closely related to the aggressiveness and metastasis of GI CRC, and the inhibition of EphA2 can induce pyrodeath and improve the sensitivity of cancer cells to treatment. In addition, EphA2 regulates intercellular communication and the microenvironment through interactions with other cytokines and receptors, further influencing cancer progression. The role of EphA2 in GI CRC and its underlying mechanisms provide us with new perspectives and potential therapeutic targets, which have important implications for future cancer treatment.
Collapse
Affiliation(s)
- Yu-Kun Zhang
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan 250014, Shandong Province, China
| | - Ran Shi
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan 250014, Shandong Province, China
| | - Ruo-Yu Meng
- Department of Minimally Invasive Comprehensive Treatment of Cancer, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong Province, China
| | - Shui-Li Lin
- Department of Ana and Intestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Mei Zheng
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan 250014, Shandong Province, China
| |
Collapse
|
44
|
Dai F, Zhang Y, Deng Z, Zhang J, Wang R, Chen J, Yang D, Mao S, Liu H, Cheng Y, Hu M. IGF2BP3 participates in the pathogenesis of recurrent spontaneous abortion by regulating ferroptosis. J Reprod Immunol 2024; 165:104271. [PMID: 39054220 DOI: 10.1016/j.jri.2024.104271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 05/19/2024] [Accepted: 05/28/2024] [Indexed: 07/27/2024]
Abstract
The aberrant invasive capability of trophoblast cells is widely acknowledged as a primary mechanism underlying RSA. Recently, IGF2BP3 has been implicated in various cancers due to its influence on cellular invasion and migration. However, whether IGF2BP3 involve in the occurrence of RSA and the specific functions it assumes in the development of RSA remain elusive. In our study, we firstly collected villous tissues from RSA and those with normal pregnancies individuals to performed Protein sequencing and then detected the expression of IGF2BP3 through Western blot, qRT-PCR and immunohistochemistry. Secondly, we analyzed the single-cell data (GSE214607) to assess the expression of IGF2BP3 in invasive EVT trophoblasts. Thirdly, we utilized lentivirus technology to establish HTR-8/SVneo cell lines with stable IGF2BP3 knockdown and RNA-seq analysis was employed to investigate the GO functional pathway enrichment of IGF2BP3. Meanwhile, the effect of IGF2BP3 knockdown on trophoblast cells apoptosis, migration, and ferroptosis was evaluated through functional experiments. Additionally, LPS-induced abortion animal model was constructed to evaluate IGF2BP3 expression in placental tissues. A significant downregulation of IGF2BP3 was observed in the villous tissues of RSA patient, a finding corroborated by subsequent single cell sequencing results. Furthermore, it suggested that IGF2BP3 may be involved in the migration and apoptotic processes of trophoblast cells. Mechanistic research indicated that IGF2BP3 knockdown could compromise GPX4 mRNA stability, leading to the promotion of ferroptosis. Finally, our investigation observed the down-regulation of IGF2BP3 expression in placental villous tissues of an LPS-induced abortion animal model. Our findings revealed that IGF2BP3 was downregulated in the villous tissues of RSA patients. Mechanically, down-regulation of IGF2BP3 may induce RSA by promoting GPX4-mediated ferroptosis and inhibiting trophoblast invasion and migration. Our study may provide new targets and research directions for the pathogenesis of RSA.
Collapse
Affiliation(s)
- Fangfang Dai
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, People's Republic of China
| | - Yuwei Zhang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, People's Republic of China; Department of Gynaecology and Reproductive Medicine, University Medical Centre Utrecht, Heidelberglaan 100, Utrecht 3584 CX, the Netherlands
| | - Zhimin Deng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, People's Republic of China
| | - Jie Zhang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, People's Republic of China
| | - Ruiqi Wang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, People's Republic of China
| | - Jing Chen
- Caidian District People's Hospital of Wuhan, Wuhan, Hubei 430100, People's Republic of China
| | - Dongyong Yang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, People's Republic of China
| | - Sisi Mao
- The First Clinical College of Wuhan University, Wuhan, Hubei 430100, People's Republic of China
| | - Hua Liu
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, People's Republic of China.
| | - Yanxiang Cheng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, People's Republic of China.
| | - Min Hu
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, People's Republic of China.
| |
Collapse
|
45
|
Zhao L, Li Q, Zhou T, Liu X, Guo J, Fang Q, Cao X, Geng Q, Yu Y, Zhang S, Deng T, Wang X, Jiao Y, Zhang M, Liu H, Tan H, Xiao C. Role of N6-methyladenosine in tumor neovascularization. Cell Death Dis 2024; 15:563. [PMID: 39098905 PMCID: PMC11298539 DOI: 10.1038/s41419-024-06931-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 07/14/2024] [Accepted: 07/22/2024] [Indexed: 08/06/2024]
Abstract
Tumor neovascularization is essential for the growth, invasion, and metastasis of tumors. Recent studies have highlighted the significant role of N6-methyladenosine (m6A) modification in regulating these processes. This review explores the mechanisms by which m6A influences tumor neovascularization, focusing on its impact on angiogenesis and vasculogenic mimicry (VM). We discuss the roles of m6A writers, erasers, and readers in modulating the stability and translation of angiogenic factors like vascular endothelial growth factor (VEGF), and their involvement in key signaling pathways such as PI3K/AKT, MAPK, and Hippo. Additionally, we outline the role of m6A in vascular-immune crosstalk. Finally, we discuss the current development of m6A inhibitors and their potential applications, along with the contribution of m6A to anti-angiogenic therapy resistance. Highlighting the therapeutic potential of targeting m6A regulators, this review provides novel insights into anti-angiogenic strategies and underscores the need for further research to fully exploit m6A modulation in cancer treatment. By understanding the intricate role of m6A in tumor neovascularization, we can develop more effective therapeutic approaches to inhibit tumor growth and overcome treatment resistance. Targeting m6A offers a novel approach to interfere with the tumor's ability to manipulate its microenvironment, enhancing the efficacy of existing treatments and providing new avenues for combating cancer progression.
Collapse
Affiliation(s)
- Lu Zhao
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China
- China-Japan Friendship Hospital, Capital Medical University, Beijing, China
| | - Qinshan Li
- Institute of Precision Medicine of Guizhou Province, Department of Obstetrics and Gynecology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550004, China
- Department of Clinical Biochemistry, School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, Guizhou, 550004, China
| | - Tongliang Zhou
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Xuan Liu
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Jing Guo
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Qing Fang
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Xiaoxue Cao
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Qishun Geng
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Yang Yu
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Songjie Zhang
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Tingting Deng
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Xing Wang
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China
- China-Japan Friendship Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China
| | - Yi Jiao
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China
- China-Japan Friendship Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China
| | - Mengxiao Zhang
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Honglin Liu
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China.
- China-Japan Friendship Hospital, Capital Medical University, Beijing, China.
| | - Haidong Tan
- Department of Hepatobiliary Surgery, China-Japan Friendship Hospital, Beijing, 100029, China.
| | - Cheng Xiao
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China.
- China-Japan Friendship Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
46
|
Li Y, Fei H, Xiao Z, Lu X, Zhang H, Liu M. Comprehensive analysis of EphA2 in pan-cancer: A prognostic biomarker associated with cancer immunity. Clin Exp Pharmacol Physiol 2024; 51:e13902. [PMID: 38886133 DOI: 10.1111/1440-1681.13902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/02/2024] [Accepted: 05/14/2024] [Indexed: 06/20/2024]
Abstract
BACKGROUND Several studies have reported a significant relationship between Ephrin receptor A2 (EphA2) and malignant progression in numerous cancers. However, there is a lack of comprehensive pan-cancer analysis on the prognostic value, mutation status, methylation landscape, and potential immunological function of EphA2. METHOD Using The Cancer Genome Atlas, Genotype Tissue Expression Database and GEO data, we analysed the differences in EphA2 expression between normal and tumour tissues and the effects of EphA2 on the prognosis of different tumours. Furthermore, using GSCALite, cBioPortal, TISDB, ULCLAN and TIMER 2.0 databases or platforms, we comprehensively analysed the potential oncogenic mechanisms or manifestations of EphA2 in 33 different tumour types, including tumour mutation status, DNA methylation status and immune cell infiltration. The correlation of EphA2 with immune checkpoints, tumour mutational burden, DNA microsatellite instability and DNA repair genes was also calculated. Finally, the effects of EphA2 inhibitors on the proliferation of human glioma and lung cancer cells were verified in cellular experiments. RESULTS EphA2 is differentially expressed in different tumours, and patients with overexpression have poorer overall survival. In addition, gene mutations, gene copy number variation and DNA/RNA methylation of EphA2 have been identified in various tumours. Moreover, EphA2 is positively associated with immune infiltration involving macrophages and CD8+ T cells. Further, EphA2 mRNA expression is significantly associated with immune checkpoint in various cancers, especially programmed death-ligand 1. Finally, the EphA2 inhibitor ALW-II-41-27 shows potent anti-tumour activity. CONCLUSION Our first pan-cancer study of EphA2 provides insight into the prognostic and immunological roles of EphA2 in different tumours, suggesting that EphA2 might be a potential biomarker for poor prognosis and immune infiltration in cancer.
Collapse
Affiliation(s)
- Yuchun Li
- Shenzhen Key Laboratory of Systems Medicine for inflammatory diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-sen University, Shenzhen, China
- Clinical Technology Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hanxiao Fei
- Shenzhen Key Laboratory of Systems Medicine for inflammatory diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-sen University, Shenzhen, China
| | - Zhiwen Xiao
- Department of Otolaryngology Head and Neck Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiuxia Lu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Hua Zhang
- Shenzhen Key Laboratory of Systems Medicine for inflammatory diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-sen University, Shenzhen, China
| | - Mengmeng Liu
- Department of Oncology, The Second Affiliated Hospital, Nanchang University, Nanchang, China
| |
Collapse
|
47
|
Esmaeili N, Bakheet A, Tse W, Liu S, Han X. Interaction of the intestinal cytokines-JAKs-STAT3 and 5 axes with RNA N6-methyladenosine to promote chronic inflammation-induced colorectal cancer. Front Oncol 2024; 14:1352845. [PMID: 39136000 PMCID: PMC11317299 DOI: 10.3389/fonc.2024.1352845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 06/25/2024] [Indexed: 08/15/2024] Open
Abstract
Colorectal cancer (CRC) is one of the most common cancers, with a high mortality rate worldwide. Mounting evidence indicates that mRNA modifications are crucial in RNA metabolism, transcription, processing, splicing, degradation, and translation. Studies show that N6-methyladenosine (m6A) is mammalians' most common epi-transcriptomic modification. It has been demonstrated that m6A is involved in cancer formation, progression, invasion, and metastasis, suggesting it could be a potential biomarker for CRC diagnosis and developing therapeutics. Cytokines, growth factors, and hormones function in JAK/STAT3/5 signaling pathway, and they could regulate the intestinal response to infection, inflammation, and tumorigenesis. Reports show that the JAK/STAT3/5 pathway is involved in CRC development. However, the underlying mechanism is still unclear. Signal Transducer and Activator of Transcription 3/5 (STAT3, STAT5) can act as oncogenes or tumor suppressors in the context of tissue types. Also, epigenetic modifications and mutations could alter the balance between pro-oncogenic and tumor suppressor activities of the STAT3/5 signaling pathway. Thus, exploring the interaction of cytokines-JAKs-STAT3 and/or STAT5 with mRNA m6A is of great interest. This review provides a comprehensive overview of the characteristics and functions of m6A and JAKs-STAT3/5 and their relationship with gastrointestinal (GI) cancers.
Collapse
Affiliation(s)
- Nardana Esmaeili
- Division of Hematology and Oncology, Department of Medicine, MetroHealth Medical Center (MHMC), Case Western Reserve University (CWRU) School of Medicine, Cleveland, OH, United States
- Division of Cancer Biology, Department of Medicine, MetroHealth Medical Center (MHMC), Case Western Reserve University (CWRU) School of Medicine, Cleveland, OH, United States
| | - Ahmed Bakheet
- Division of Hematology and Oncology, Department of Medicine, MetroHealth Medical Center (MHMC), Case Western Reserve University (CWRU) School of Medicine, Cleveland, OH, United States
- Division of Cancer Biology, Department of Medicine, MetroHealth Medical Center (MHMC), Case Western Reserve University (CWRU) School of Medicine, Cleveland, OH, United States
| | - William Tse
- Division of Hematology and Oncology, Department of Medicine, MetroHealth Medical Center (MHMC), Case Western Reserve University (CWRU) School of Medicine, Cleveland, OH, United States
| | - Shujun Liu
- Division of Hematology and Oncology, Department of Medicine, MetroHealth Medical Center (MHMC), Case Western Reserve University (CWRU) School of Medicine, Cleveland, OH, United States
| | - Xiaonan Han
- Division of Hematology and Oncology, Department of Medicine, MetroHealth Medical Center (MHMC), Case Western Reserve University (CWRU) School of Medicine, Cleveland, OH, United States
- Division of Cancer Biology, Department of Medicine, MetroHealth Medical Center (MHMC), Case Western Reserve University (CWRU) School of Medicine, Cleveland, OH, United States
- Cancer Genomics and Epigenomics Program, Case Comprehensive Cancer Center, Case Western Reserve University (CWRU), Cleveland, OH, United States
| |
Collapse
|
48
|
Han X, Zhu Y, Ke J, Zhai Y, Huang M, Zhang X, He H, Zhang X, Zhao X, Guo K, Li X, Han Z, Zhang Y. Progression of m 6A in the tumor microenvironment: hypoxia, immune and metabolic reprogramming. Cell Death Discov 2024; 10:331. [PMID: 39033180 PMCID: PMC11271487 DOI: 10.1038/s41420-024-02092-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 07/03/2024] [Accepted: 07/05/2024] [Indexed: 07/23/2024] Open
Abstract
Recently, N6-methyladenosine (m6A) has aroused widespread discussion in the scientific community as a mode of RNA modification. m6A comprises writers, erasers, and readers, which regulates RNA production, nuclear export, and translation and is very important for human health. A large number of studies have found that the regulation of m6A is closely related to the occurrence and invasion of tumors, while the homeostasis and function of the tumor microenvironment (TME) determine the occurrence and development of tumors to some extent. TME is composed of a variety of immune cells (T cells, B cells, etc.) and nonimmune cells (tumor-associated mesenchymal stem cells (TA-MSCs), cancer-associated fibroblasts (CAFs), etc.). Current studies suggest that m6A is involved in regulating the function of various cells in the TME, thereby affecting tumor progression. In this manuscript, we present the composition of m6A and TME, the relationship between m6A methylation and characteristic changes in TME, the role of m6A methylation in TME, and potential therapeutic strategies to provide new perspectives for better treatment of tumors in clinical work.
Collapse
Affiliation(s)
- Xuan Han
- First Clinical College of Changzhi Medical College, Changzhi, China
| | - Yu Zhu
- Linfen Central Hospital, Linfen, China
| | - Juan Ke
- Linfen Central Hospital, Linfen, China
| | | | - Min Huang
- Linfen Central Hospital, Linfen, China
| | - Xin Zhang
- Linfen Central Hospital, Linfen, China
| | | | | | | | | | | | - Zhongyu Han
- School of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | | |
Collapse
|
49
|
Chen K, Li WD, Li XQ. The role of m6A in angiogenesis and vascular diseases. iScience 2024; 27:110082. [PMID: 39055919 PMCID: PMC11269316 DOI: 10.1016/j.isci.2024.110082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024] Open
Abstract
Angiogenesis, whether physiological or pathological, plays a pivotal role in various physiological and disease conditions. This intricate process relies on a complex and meticulously orchestrated signal transduction network that connects endothelial cells, their associated parietal cells (VSMCs and pericytes), and various other cell types, including immune cells. Given the significance of m6A and its connection to angiogenesis and vascular disease, researchers must adopt a comprehensive and ongoing approach to their investigations. This study aims to ascertain whether a common key mechanism of m6A exists in angiogenesis and vascular diseases and to elucidate the potential application of m6A in treating vascular diseases.
Collapse
Affiliation(s)
- Ke Chen
- Department of Vascular Surgery, The Drum Tower Hospital Affiliated to Medical School of Nanjing University, Nanjing, China
| | - Wen-Dong Li
- Department of Vascular Surgery, The Drum Tower Hospital Affiliated to Medical School of Nanjing University, Nanjing, China
| | - Xiao-Qiang Li
- Department of Vascular Surgery, The Drum Tower Hospital Affiliated to Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
50
|
Wang Q, Huang Y, Jiang M, Tang Y, Wang Q, Bai L, Yu C, Yang X, Ding K, Wang W, Bai J, Chen Y. The demethylase ALKBH5 mediates ZKSCAN3 expression through the m 6A modification to activate VEGFA transcription and thus participates in MNNG-induced gastric cancer progression. JOURNAL OF HAZARDOUS MATERIALS 2024; 473:134690. [PMID: 38781857 DOI: 10.1016/j.jhazmat.2024.134690] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/04/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024]
Abstract
N-Nitroso compounds (NOCs) are recognized as important factors that promote gastric cancer development, but the specific effects and potential mechanisms by which NOC exposure promotes gastric cancer are still poorly understood. In this study, we explored the effects and potential molecular mechanisms of NOCs on the promotion of gastric cancer using methylnitronitrosoguanidine (MNNG), a classical direct carcinogen of NOC. The results of in vivo and in vitro experiments showed that chronic and low-concentration MNNG exposure significantly promoted the malignant progression of tumors, including cell migration, cell invasion, vasculogenic mimicry (VM) formation, cell spheroid formation, stem cell-like marker expression, and gastric cancer growth and metastasis. Mechanistically, we revealed that demethylase ALKBH5 regulated the level of the N6‑methyladenosine (m6A) modification in the 3'UTR and CDS region of the ZKSCAN3 mRNA to promote ZKSCAN3 expression, mediated the binding of ZKSCAN3 to the VEGFA promoter region to regulate VEGFA transcription, and participated in MNNG-induced gastric cancer cell migration, invasion, VM formation, cell spheroid formation, stem cell-like marker expression and ultimately gastric cancer progression. In addition, our study revealed that ALKBH5-ZKSCAN3-VEGFA signaling was significantly activated during MNNG-induced gastric carcinogenesis, and further studies in gastric cancer patients showed that ALKBH5, ZKSCAN3, and VEGFA expression were upregulated in cancers compared with paired gastric mucosal tissues, that ALKBH5, ZKSCAN3, and VEGFA could serve as important biomarkers for determining patient prognosis, and that the molecular combination showed greater prognostic value. These findings provide a theoretical basis for developing gastric cancer interventions for NOCs and for determining gastric cancer progression.
Collapse
Affiliation(s)
- Qing Wang
- School of Public Health, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China; Key Laboratory of Human Genetics and Environmental Medicine, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Yefei Huang
- School of Public Health, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China; Key Laboratory of Human Genetics and Environmental Medicine, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Min Jiang
- School of Public Health, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China; Key Laboratory of Human Genetics and Environmental Medicine, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Yu Tang
- School of Public Health, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China; Key Laboratory of Human Genetics and Environmental Medicine, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Qinzhi Wang
- School of Public Health, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China; Key Laboratory of Human Genetics and Environmental Medicine, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Longlong Bai
- School of Public Health, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China; Key Laboratory of Human Genetics and Environmental Medicine, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Chenglong Yu
- School of Public Health, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China; Key Laboratory of Human Genetics and Environmental Medicine, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Xinyue Yang
- School of Public Health, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China; Key Laboratory of Human Genetics and Environmental Medicine, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Kun Ding
- School of Public Health, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China; Key Laboratory of Human Genetics and Environmental Medicine, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Weimin Wang
- Department of Oncology, Yixing Hospital Affiliated to Medical College of Yangzhou University, Yixing 214200, Jiangsu, China.
| | - Jin Bai
- Cancer Institute, Xuzhou Medical University̥, 84 West Huaihai Road, Xuzhou 221002, Jiangsu Province, China.
| | - Yansu Chen
- School of Public Health, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China; Key Laboratory of Human Genetics and Environmental Medicine, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China.
| |
Collapse
|