1
|
Yin F, Li P, Liu C, Zheng Y, Yan G, Wang M, Wang Y, Chen X, Yan X, Han J, Sun H, Guan S, Wang X. Spatially resolved multi-omics reveals the renal cortex-metabolic reprogramming of Shenhua Tablet for intervention on IgA nephropathy. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 141:156742. [PMID: 40233505 DOI: 10.1016/j.phymed.2025.156742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 03/26/2025] [Accepted: 04/07/2025] [Indexed: 04/17/2025]
Abstract
BACKGROUND Shenhua tablet (SHT) is a clinically used Chinese patent medicine, which has garnered attention for its effectiveness in treating IgA nephropathy (IgAN). Nevertheless, early researches lacked anatomical and metabolic data, hindering a comprehensive understanding of the therapeutic mechanisms of SHT in spatial contexts. PURPOSE We aimed to explore the molecular mechanism of SHT intervention in IgAN by utilizing spatial multi-omics strategies. STUDY DESIGN We injected Thy-1 into tail vein to induce IgAN rat model and administer SHT. Classical pharmacological parameters were used to evaluate the efficacy of SHT. The distribution of active components of SHT and their regulation for metabolites and upstream genes in the cortex were examined to determine the intervention mechanism of SHT. METHODS After establishing the animal models and administering SHT treatment, Kidney injury were assessed using biochemical indexes and histopathology. Classical and spatial metabolomics were employed to detect metabolites in serum and kidney. Spatial transcriptomics was used to detect mRNA levels in renal sections adjacent to the spatial metabolomics. In addition, mass-spectrometry-imaging and cell experiments were used to explore and verify the active components of SHT. RESULTS SHT reduced inflammation and mesangial cell proliferation, and reversed kidney damage. Mechanically, in renal tubules, SHT regulated glutathione metabolism by reversing the expression of Gclc and Gpx3. It was further found that Pck1 and G6pc1 were increased to inhibit glycolysis. In glomeruli, SHT downregulated Oat and Odc1 and reduced spermidine and l-proline levels to inhibit mesangial cell proliferation. Finally, formononetin, calycosin and curzerenone were identified as the main active components of SHT and showed their distribution in the cortex. CONCLUSIONS SHT ameliorated renal injury by regulating glutathione metabolism, glycolysis, and l-proline metabolism, providing a more comprehensive insight into the molecular mechanisms of SHT intervention in IgAN in a spatial context, and offering new perspectives for the treatment of IgAN.
Collapse
Affiliation(s)
- Fengting Yin
- State key laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Ping Li
- Department of Nephrology, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, Beijing 100853, China
| | - Chang Liu
- State key laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Ying Zheng
- Department of Nephrology, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, Beijing 100853, China
| | - Guangli Yan
- State key laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Mengmeng Wang
- State key laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Yuhang Wang
- State key laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Xiangmei Chen
- Department of Nephrology, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, Beijing 100853, China.
| | - Xiaotong Yan
- State key laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Jinwei Han
- State key laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Hui Sun
- State key laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China.
| | - Shihan Guan
- State key laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Xijun Wang
- State key laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China; Department of Nephrology, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, Beijing 100853, China.
| |
Collapse
|
2
|
Évora A, Garcia G, Rubi A, De Vitis E, Matos AT, Vaz AR, Gervaso F, Gigli G, Polini A, Brites D. Exosomes enriched with miR-124-3p show therapeutic potential in a new microfluidic triculture model that recapitulates neuron-glia crosstalk in Alzheimer's disease. Front Pharmacol 2025; 16:1474012. [PMID: 40144670 PMCID: PMC11936931 DOI: 10.3389/fphar.2025.1474012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 01/03/2025] [Indexed: 03/28/2025] Open
Abstract
Background Alzheimer's disease (AD), a complex neurodegenerative disease associated with ageing, is the leading cause of dementia. Few people with early AD are eligible for the novel Food and Drug Administration (FDA)-approved drug treatments. Accordingly, new tools and early diagnosis markers are required to predict subtypes, individual stages, and the most suitable personalized treatment. We previously demonstrated that the regulation of microRNA (miR)-124 is crucial for proper neuronal function and microglia reshaping in human AD cell models. Objective The aim of this study was to develop an efficient miR-124-3p-loaded exosome strategy and validate its therapeutic potential in using a multi-compartment microfluidic device of neuron-glia that recapitulates age-AD pathological features. Methods and results Using cortical microglia from mouse pups, separated from glial mixed cultures and maintained for 2 days in vitro (stressed microglia), we tested the effects of SH-SY5Y-derived exosomes loaded with miR-124-3p mimic either by their direct transfection with Exo-Fect™ (ET124) or by their isolation from the secretome of miR-124 transfected cells (CT124). ET124 revealed better delivery effciency and higher potent effects in improving the stressed microglia status than CT124. Tricultures of human SH-SY5Y neuroblastoma cells (SH-WT) were established in the presence of the human microglia cell line (HMC3) and immortalized human astrocytes (IM-HA) in tricompartmentalized microfluidic devices. Replacement of SH-WT cells with those transfected with APP695 (SH-SWE) in the tricultures and addition of low doses of hydrogen peroxide were used to simulate late-onset AD. The system mimicked AD-associated neurodegeneration and neuroinflammation processes. Notably, ET124 exhibited neuroprotective properties across the three cell types in the AD model by preventing neuronal apoptosis and neurite deficits, redirecting microglial profiles towards a steady state, and attenuating the inflammatory and miRNA fingerprints associated with astrocyte reactivity. Conclusion To the best of our knowledge, this is the first study supporting the neuro- and immunoprotective properties of miR-124-engineered exosomes in a microfluidic triculture platform, recapitulating age-related susceptibility to AD. Our system offers potential to develop personalized medicines in AD patient subtypes.
Collapse
Affiliation(s)
- Artemizia Évora
- Neuroinflammation, Signaling and Neuroregeneration, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Gonçalo Garcia
- Neuroinflammation, Signaling and Neuroregeneration, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Ana Rubi
- Neuroinflammation, Signaling and Neuroregeneration, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Eleonora De Vitis
- Institute of Nanotechnology, National Research Council (CNR Nanotec), Lecce, Italy
| | - Ana Teresa Matos
- Neuroinflammation, Signaling and Neuroregeneration, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Ana Rita Vaz
- Neuroinflammation, Signaling and Neuroregeneration, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Francesca Gervaso
- Institute of Nanotechnology, National Research Council (CNR Nanotec), Lecce, Italy
| | - Giuseppe Gigli
- Institute of Nanotechnology, National Research Council (CNR Nanotec), Lecce, Italy
- Dipartimento di Medicina Sperimentale, Università Del Salento, Lecce, Italy
| | - Alessandro Polini
- Institute of Nanotechnology, National Research Council (CNR Nanotec), Lecce, Italy
| | - Dora Brites
- Neuroinflammation, Signaling and Neuroregeneration, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
3
|
Husain I, Shah H, Jordan CZ, Natesh NR, Fay OK, Chen Y, Privratsky JR, Kitai H, Souma T, Varghese S, Howell DN, Thorp EB, Luo X. Targeting allograft inflammatory factor 1 reprograms kidney macrophages to enhance repair. J Clin Invest 2025; 135:e185146. [PMID: 39836477 PMCID: PMC11870741 DOI: 10.1172/jci185146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 01/08/2025] [Indexed: 01/23/2025] Open
Abstract
The role of macrophages (MΦs) remains incompletely understood in kidney injury and repair. The plasticity of MΦs offers an opportunity to polarize them toward mediating injury resolution in both native and transplanted kidneys undergoing ischemia and/or rejection. Here, we show that infiltrating kidney MΦs augmented their own allograft inflammatory factor 1 (AIF-1) expression after injury. Aif1 genetic deletion led to MΦ polarization toward a reparative phenotype while halting the development of kidney fibrosis. The enhanced repair was mediated by higher levels of antiinflammatory and proregenerative markers, leading to a reduction in cell death and an increase in proliferation of kidney tubular epithelial cells after ischemia followed by reperfusion injury (I/RI). Adoptive transfer of Aif1-/- MΦs into Aif1+/+ mice conferred protection against I/RI. Conversely, depletion of MΦs reversed the tissue-reparative effects in Aif1-/- mice. We further demonstrated increased expression of AIF-1 in human kidney biopsies from native kidneys with acute kidney injury or chronic kidney disease, as well as in biopsies from kidney allografts undergoing acute or chronic rejection. We conclude that AIF-1 is a MΦ marker of renal inflammation, and its targeting uncouples MΦ reparative functions from profibrotic functions. Thus, therapies inhibiting AIF-1 when ischemic injury is inevitable have the potential to reduce the global burden of kidney disease.
Collapse
Affiliation(s)
- Irma Husain
- Division of Nephrology, Department of Medicine, and
- Duke Transplant Center, Duke University School of Medicine, Durham, North Carolina, USA
| | - Holly Shah
- Division of Nephrology, Department of Medicine, and
| | | | - Naveen R. Natesh
- Department of Biomedical Engineering, Duke University Pratt School of Engineering, Durham, North Carolina, USA
| | | | | | | | - Hiroki Kitai
- Division of Nephrology, Department of Medicine, and
| | | | - Shyni Varghese
- Department of Biomedical Engineering, Duke University Pratt School of Engineering, Durham, North Carolina, USA
- Department of Mechanical Engineering and Materials Science, and
- Department of Orthopaedic Surgery, Duke University, Durham, North Carolina, USA
| | | | - Edward B. Thorp
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Xunrong Luo
- Division of Nephrology, Department of Medicine, and
- Duke Transplant Center, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
4
|
Shahror RA, Shosha E, Morris C, Wild M, Mu S, Csanyi G, Boerma M, Rusch NJ, Fouda AY. Deletion of myeloid HDAC3 promotes efferocytosis to ameliorate retinal ischemic injury. J Neuroinflammation 2024; 21:170. [PMID: 38997746 PMCID: PMC11241909 DOI: 10.1186/s12974-024-03159-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 06/24/2024] [Indexed: 07/14/2024] Open
Abstract
Ischemia-induced retinopathy is a hallmark finding of common visual disorders including diabetic retinopathy (DR) and central retinal artery and vein occlusions. Treatments for ischemic retinopathies fail to improve clinical outcomes and the design of new therapies will depend on understanding the underlying disease mechanisms. Histone deacetylases (HDACs) are an enzyme class that removes acetyl groups from histone and non-histone proteins, thereby regulating gene expression and protein function. HDACs have been implicated in retinal neurovascular injury in preclinical studies in which nonspecific HDAC inhibitors mitigated retinal injury. Histone deacetylase 3 (HDAC3) is a class I histone deacetylase isoform that plays a central role in the macrophage inflammatory response. We recently reported that myeloid cells upregulate HDAC3 in a mouse model of retinal ischemia-reperfusion (IR) injury. However, whether this cellular event is an essential contributor to retinal IR injury is unknown. In this study, we explored the role of myeloid HDAC3 in ischemia-induced retinal neurovascular injury by subjecting myeloid-specific HDAC3 knockout (M-HDAC3 KO) and floxed control mice to retinal IR. The M-HDAC3 KO mice were protected from retinal IR injury as shown by the preservation of inner retinal neurons, vascular integrity, and retinal thickness. Electroretinography confirmed that this neurovascular protection translated to improved retinal function. The retinas of M-HDAC3 KO mice also showed less proliferation and infiltration of myeloid cells after injury. Interestingly, myeloid cells lacking HDAC3 more avidly engulfed apoptotic cells in vitro and after retinal IR injury in vivo compared to wild-type myeloid cells, suggesting that HDAC3 hinders the reparative phagocytosis of dead cells, a process known as efferocytosis. Further mechanistic studies indicated that although HDAC3 KO macrophages upregulate the reparative enzyme arginase 1 (A1) that enhances efferocytosis, the inhibitory effect of HDAC3 on efferocytosis is not solely dependent on A1. Finally, treatment of wild-type mice with the HDAC3 inhibitor RGFP966 ameliorated the retinal neurodegeneration and thinning caused by IR injury. Collectively, our data show that HDAC3 deletion enhances macrophage-mediated efferocytosis and protects against retinal IR injury, suggesting that inhibiting myeloid HDAC3 holds promise as a novel therapeutic strategy for preserving retinal integrity after ischemic insult.
Collapse
Affiliation(s)
- Rami A Shahror
- Department of Pharmacology and Toxicology College of Medicine, University of Arkansas for Medical Sciences (UAMS), 4301 West Markham Street, Slot 611, BIOMED-1, B306, Little Rock, Office, AR, 72205, USA
| | - Esraa Shosha
- Department of Pharmacology and Toxicology College of Medicine, University of Arkansas for Medical Sciences (UAMS), 4301 West Markham Street, Slot 611, BIOMED-1, B306, Little Rock, Office, AR, 72205, USA
- Clinical Pharmacy Department, Cairo University, Cairo, Egypt
| | - Carol Morris
- Department of Pharmacology and Toxicology College of Medicine, University of Arkansas for Medical Sciences (UAMS), 4301 West Markham Street, Slot 611, BIOMED-1, B306, Little Rock, Office, AR, 72205, USA
| | - Melissa Wild
- Department of Pharmacology and Toxicology College of Medicine, University of Arkansas for Medical Sciences (UAMS), 4301 West Markham Street, Slot 611, BIOMED-1, B306, Little Rock, Office, AR, 72205, USA
| | - Shengyu Mu
- Department of Pharmacology and Toxicology College of Medicine, University of Arkansas for Medical Sciences (UAMS), 4301 West Markham Street, Slot 611, BIOMED-1, B306, Little Rock, Office, AR, 72205, USA
| | - Gabor Csanyi
- Department of Pharmacology and Vascular Biology Center, Augusta University, Augusta, GA, USA
| | - Marjan Boerma
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Nancy J Rusch
- Department of Pharmacology and Toxicology College of Medicine, University of Arkansas for Medical Sciences (UAMS), 4301 West Markham Street, Slot 611, BIOMED-1, B306, Little Rock, Office, AR, 72205, USA
| | - Abdelrahman Y Fouda
- Department of Pharmacology and Toxicology College of Medicine, University of Arkansas for Medical Sciences (UAMS), 4301 West Markham Street, Slot 611, BIOMED-1, B306, Little Rock, Office, AR, 72205, USA.
- Clinical Pharmacy Department, Cairo University, Cairo, Egypt.
| |
Collapse
|
5
|
Malany K, Li X, Vogel CFA, Ehrlich AK. Mechanisms underlying aryl hydrocarbon receptor-driven divergent macrophage function. Toxicol Sci 2024; 200:1-10. [PMID: 38603630 PMCID: PMC11199922 DOI: 10.1093/toxsci/kfae050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024] Open
Abstract
Macrophages play an essential role in the innate immune system by differentiating into functionally diverse subsets in order to fight infection, repair damaged tissues, and regulate inappropriate immune responses. This functional diversity stems from their ability to adapt and respond to signals in the environment, which is in part mediated through aryl hydrocarbon receptor (AHR)-signaling. AHR, an environmental sensor, can be activated by various ligands, ranging from environmental contaminants to microbially derived tryptophan metabolites. This review discusses what is currently known about how AHR-signaling influences macrophage differentiation, polarization, and function. By discussing studies that are both consistent and divergent, our goal is to highlight the need for future research on the mechanisms by which AHR acts as an immunological switch in macrophages. Ultimately, understanding the contexts in which AHR-signaling promotes and/or inhibits differentiation, proinflammatory functions, and immunoregulatory functions, will help uncover functional predictions of immunotoxicity following exposure to environmental chemicals as well as better design AHR-targeted immunotherapies.
Collapse
Affiliation(s)
- Keegan Malany
- Department of Environmental Toxicology, University of California, Davis, California, USA
| | - Xiaohan Li
- Center for Health and the Environment, University of California, Davis, California, USA
| | - Christoph F A Vogel
- Department of Environmental Toxicology, University of California, Davis, California, USA
- Center for Health and the Environment, University of California, Davis, California, USA
| | - Allison K Ehrlich
- Department of Environmental Toxicology, University of California, Davis, California, USA
| |
Collapse
|
6
|
Zhang Y, Li J, Zhao Y, Huang Y, Shi Z, Wang H, Cao H, Wang C, Wang Y, Chen D, Chen S, Meng S, Wang Y, Zhu Y, Jiang Y, Gong Y, Gao Y. Arresting the bad seed: HDAC3 regulates proliferation of different microglia after ischemic stroke. SCIENCE ADVANCES 2024; 10:eade6900. [PMID: 38446877 PMCID: PMC10917353 DOI: 10.1126/sciadv.ade6900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 01/30/2024] [Indexed: 03/08/2024]
Abstract
The accumulation of self-renewed polarized microglia in the penumbra is a critical neuroinflammatory process after ischemic stroke, leading to secondary demyelination and neuronal loss. Although known to regulate tumor cell proliferation and neuroinflammation, HDAC3's role in microgliosis and microglial polarization remains unclear. We demonstrated that microglial HDAC3 knockout (HDAC3-miKO) ameliorated poststroke long-term functional and histological outcomes. RNA-seq analysis revealed mitosis as the primary process affected in HDAC3-deficent microglia following stroke. Notably, HDAC3-miKO specifically inhibited proliferation of proinflammatory microglia without affecting anti-inflammatory microglia, preventing microglial transition to a proinflammatory state. Moreover, ATAC-seq showed that HDAC3-miKO induced closing of accessible regions enriched with PU.1 motifs. Overexpressing microglial PU.1 via an AAV approach reversed HDAC3-miKO-induced proliferation inhibition and protective effects on ischemic stroke, indicating PU.1 as a downstream molecule that mediates HDAC3's effects on stroke. These findings uncovered that HDAC3/PU.1 axis, which mediated differential proliferation-related reprogramming in different microglia populations, drove poststroke inflammatory state transition, and contributed to pathophysiology of ischemic stroke.
Collapse
Affiliation(s)
| | | | | | - Yichen Huang
- Department of Critical Care Medicine of Huashan Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Ziyu Shi
- Department of Critical Care Medicine of Huashan Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Hailian Wang
- Department of Critical Care Medicine of Huashan Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Hui Cao
- Department of Critical Care Medicine of Huashan Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Chenran Wang
- Department of Critical Care Medicine of Huashan Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Yana Wang
- Department of Critical Care Medicine of Huashan Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Di Chen
- Department of Critical Care Medicine of Huashan Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Shuning Chen
- Department of Critical Care Medicine of Huashan Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Shan Meng
- Department of Critical Care Medicine of Huashan Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Yangfan Wang
- Department of Critical Care Medicine of Huashan Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Yueyan Zhu
- Department of Critical Care Medicine of Huashan Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Yan Jiang
- Department of Critical Care Medicine of Huashan Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Ye Gong
- Corresponding author. (Y.Gao); (Y.Gong)
| | | |
Collapse
|