1
|
Rai AB, Codi JAK, Suchitha GP, Hemavathi KN, Dagamajalu S, Abhinand CS, Raju R, Prasad TSK. Mapping growth differentiation factor-15 (GDF15)-mediated signaling pathways in cancer: insights into its role across different cancer types. Discov Oncol 2025; 16:386. [PMID: 40128491 PMCID: PMC11933546 DOI: 10.1007/s12672-025-02121-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 03/11/2025] [Indexed: 03/26/2025] Open
Abstract
Growth differentiation factor-15 (GDF15) is a cytokine/growth factor that belongs to the Transforming growth factor-ß (TGF-ß) protein family. The expression of GDF15 is low in most human organs under normal conditions. GDF15 is a stress-responsive cytokine primarily produced by macrophages in response to inflammatory stimuli. The altered expression of GDF15 is associated with many cancers due to the inflammation caused by the disease. GDF15 triggers the activity through its receptor Glial-derived neurotrophic factor-family receptor α-like (GFRAL) and mediates multiple downstream signaling cascades, which are involved in the progression of cancers. Considering the biological importance of GDF15 in different cancers, we applied data mining techniques to systematically compile and analyze the signaling events associated with GDF15 using NetPath criteria. This resulted in constructing a detailed GDF15-mediated signaling pathway map, enhancing our understanding of its molecular mechanisms in cancer. Furthermore, proteins linked to colorectal and breast cancer identified in our pathway map were cross-referenced with established cancer pathway databases to identify unannotated proteins, highlighting gaps in the current annotations. To investigate potential therapeutic strategies, we performed molecular docking simulations and identified Vitisifuran B as a novel inhibitor that could block the GDF15-GFRAL interaction. These findings suggest that Vitisifuran B could effectively modulate GDF15 signaling, offering a promising avenue for cancer therapeutics. This study underscores the power of computational approaches, such as data mining and molecular docking, in enhancing our understanding of GDF15 signaling in cancer and identifying potential inhibitors for therapeutic development.
Collapse
Affiliation(s)
- Akhila Balakrishna Rai
- Center for Systems Biology and Molecular Medicine [An ICMR Collaborating Centre of Excellence 2024 (ICMR-CCoE 2024)], Yenepoya Research Centre, Yenepoya (Deemed to Be University), Mangalore, 575018, India
| | - Jalaluddin Akbar Kandel Codi
- Department of Surgical Oncology, Yenepoya Medical College and Hospital, Yenepoya (Deemed to Be University), Mangalore, 575018, India.
| | - Giridhara Prema Suchitha
- Center for Systems Biology and Molecular Medicine [An ICMR Collaborating Centre of Excellence 2024 (ICMR-CCoE 2024)], Yenepoya Research Centre, Yenepoya (Deemed to Be University), Mangalore, 575018, India
| | - Kadabagere Narayanaswamy Hemavathi
- Center for Systems Biology and Molecular Medicine [An ICMR Collaborating Centre of Excellence 2024 (ICMR-CCoE 2024)], Yenepoya Research Centre, Yenepoya (Deemed to Be University), Mangalore, 575018, India
| | - Shobha Dagamajalu
- Center for Systems Biology and Molecular Medicine [An ICMR Collaborating Centre of Excellence 2024 (ICMR-CCoE 2024)], Yenepoya Research Centre, Yenepoya (Deemed to Be University), Mangalore, 575018, India.
| | - Chandran S Abhinand
- Center for Systems Biology and Molecular Medicine [An ICMR Collaborating Centre of Excellence 2024 (ICMR-CCoE 2024)], Yenepoya Research Centre, Yenepoya (Deemed to Be University), Mangalore, 575018, India
| | - Rajesh Raju
- Center for Systems Biology and Molecular Medicine [An ICMR Collaborating Centre of Excellence 2024 (ICMR-CCoE 2024)], Yenepoya Research Centre, Yenepoya (Deemed to Be University), Mangalore, 575018, India
- Center for Integrative Omics Data Science, Yenepoya (Deemed to Be University), University Road, Deralakatte, Mangalore, 575018, India
| | - Thottethodi Subrahmanya Keshava Prasad
- Center for Systems Biology and Molecular Medicine [An ICMR Collaborating Centre of Excellence 2024 (ICMR-CCoE 2024)], Yenepoya Research Centre, Yenepoya (Deemed to Be University), Mangalore, 575018, India.
| |
Collapse
|
2
|
Gui Y, Qin H, Zhang X, Chen Q, Ye F, Tian G, Yang S, Ye Y, Pan D, Zhou J, Fan X, Wang Y, Zhao L. Glioma-astrocyte connexin43 confers temozolomide resistance through activation of the E2F1/ERCC1 axis. Neuro Oncol 2025; 27:711-726. [PMID: 39514365 PMCID: PMC11889727 DOI: 10.1093/neuonc/noae237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Glioma is the most prevalent and lethal tumor of the central nervous system. Routine treatment with temozolomide (TMZ) would unfortunately result in inevitable recurrence and therapy resistance, severely limiting therapeutic efficacy. Tumor-associated astrocytes (TAAs) are key components of the tumor microenvironment and increasing evidence has demonstrated that aberrant expression of connexin43 (Cx43) was closely associated with glioma progression and TMZ resistance. However, the specific role of Cx43 in mediating TMZ resistance through glioma and astrocyte interactions has not been fully explored. METHODS The expression and prognostic value of Cx43 were evaluated in tumor samples and clinical databases. ShRNA-medicated knockdown and Gfap-Cre Cx43flox/flox gene mouse were used to assess the role and functional significance of Cx43 in vitro and in vivo. Moreover, we performed mass spectrometry analysis, chromatin immunoprecipitation, and other biochemical assays to define the molecular mechanisms by which Cx43 promotes TMZ resistance. RESULTS We confirmed that the upregulation of Cx43 expression between TAAs and glioma cells contributed to TMZ resistance and tumor recurrence. Genetic knockdown or pharmacological inhibition of Cx43 enhanced TMZ-induced cytotoxicity. Mechanistically, elevated Cx43 expression induced β-catenin accumulation at the cell surface of glioma cells, suppressing T-cell factor/lymphoid enhancer-binding factor transcription. This led to impaired miR-205-5p expression and subsequent activation of the E2F1/ERCC1 axis, which eventually led to chemoresistance. CONCLUSIONS Our study reveals a novel regulatory mechanism in which the Cx43/miR-205-5p/E2F1/ERCC1 axis contributes to TMZ resistance in glioma. These findings further highlight the potential of targeting Cx43 as a therapeutic strategy in glioma.
Collapse
Affiliation(s)
- Yanping Gui
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, P.R. China
| | - Hongkun Qin
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, P.R. China
| | - Xinyu Zhang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, P.R. China
| | - Qianqian Chen
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, P.R. China
| | - Fangyu Ye
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, P.R. China
| | - Geng Tian
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, P.R. China
| | - Shihe Yang
- Public Experimental Platform, China Pharmaceutical University, Nanjing, P.R. China
| | - Yuting Ye
- Public Experimental Platform, China Pharmaceutical University, Nanjing, P.R. China
| | - Di Pan
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, P.R. China
| | - Jieying Zhou
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida
| | - Xiangshan Fan
- Department of Pathology, Affiliated Nanjing Drum Tower Hospital of Nanjing University School of Medicine, Nanjing, P.R. China
| | - Yajing Wang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, P.R. China
| | - Li Zhao
- Public Experimental Platform, China Pharmaceutical University, Nanjing, P.R. China
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, P.R. China
| |
Collapse
|
3
|
Zhou Y, Dou L, Wang L, Chen J, Mao R, Zhu L, Liu D, Zheng K. Growth and differentiation factor 15: An emerging therapeutic target for brain diseases. Biosci Trends 2025; 19:72-86. [PMID: 39864834 DOI: 10.5582/bst.2024.01305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Growth and differentiation factor 15 (GDF15), a member of the transforming growth factor-βsuperfamily, is considered a stress response factor and has garnered increasing attention in recent years due to its roles in neurological diseases. Although many studies have suggested that GDF15 expression is elevated in patients with neurodegenerative diseases (NDDs), glioma, and ischemic stroke, the effects of increased GDF15 expression and the potential underlying mechanisms remain unclear. Notably, many experimental studies have shown the multidimensional beneficial effects of GDF15 on NDDs, and GDF15 overexpression is able to rescue NDD-associated pathological changes and phenotypes. In glioma, GDF15 exerts opposite effects, it is both protumorigenic and antitumorigenic. The causes of these conflicting findings are not comprehensively clear, but inhibiting GDF15 is helpful for suppressing tumor progression. GDF15 is also regarded as a biomarker of poor clinical outcomes in ischemic stroke patients, and targeting GDF15 may help prevent this disease. Thus, we systematically reviewed the synthesis, transcriptional regulation, and biological functions of GDF15 and its related signaling pathways within the brain. Furthermore, we explored the potential of GDF15 as a therapeutic target and assessed its clinical applicability in interventions for brain diseases. By integrating the latest research findings, this study provides new insights into the future treatment of neurological diseases.
Collapse
Affiliation(s)
- Yingying Zhou
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lei Dou
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Luyao Wang
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jiajie Chen
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ruxue Mao
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lingqiang Zhu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Dan Liu
- Department of Medical Genetics, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Kai Zheng
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
4
|
Markouli M, Skouras P, Piperi C. Impact of cuproptosis in gliomas pathogenesis with targeting options. Chem Biol Interact 2025; 408:111394. [PMID: 39848557 DOI: 10.1016/j.cbi.2025.111394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/10/2025] [Accepted: 01/20/2025] [Indexed: 01/25/2025]
Abstract
Gliomas constitute the most prevalent primary central nervous system tumors, often characterized by complex metabolic profile, genomic instability, and aggressiveness, leading to frequent relapse and high mortality rates. Traditional treatments are commonly ineffective because of gliomas increased heterogeneity, invasive characteristics and resistance to chemotherapy. Among several pathways affecting cellular homeostasis, cuproptosis has recently emerged as a novel type of programmed cell death, triggered by accumulation of copper ions. Although the precise molecular mechanisms of cuproptosis are not fully elucidated, there is evidence that copper ions can target mitochondrial lipoylated proteins, disrupting the tricarboxylic acid cycle and electron transport chain, thus leading to deregulated mitochondrial metabolism, protein aggregation and cell death. Of importance, altered expression of copper transporters and abnormally high intracellular copper levels have been observed in several cancer types, including gliomas, contributing to tumor growth and metastasis. Furthermore, a range of prognostic models incorporating cuproptosis-related genes and lncRNAs have been proposed and are currently under clinical validation. Drugs modulating cuproptosis or interfering with copper-binding proteins are under development, causing metabolic failure and cell death, thus offering potential new avenues for glioma diagnosis and therapy. In this article, we explore the role of copper metabolism in gliomas and the potential synergistic effects of cuproptosis-based treatments with current therapies, in effective targeting of tumor progression and chemoresistance.
Collapse
Affiliation(s)
- Mariam Markouli
- Department of Medicine, Boston Medical Center, Boston University School of Medicine, Boston, MA, 02118, USA.
| | - Panagiotis Skouras
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527, Athens, Greece.
| | - Christina Piperi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527, Athens, Greece.
| |
Collapse
|
5
|
Huang P, Gao W, Fu C, Wang M, Li Y, Chu B, He A, Li Y, Deng X, Zhang Y, Kong Q, Yuan J, Wang H, Shi Y, Gao D, Qin R, Hunter T, Tian R. Clinical functional proteomics of intercellular signalling in pancreatic cancer. Nature 2025; 637:726-735. [PMID: 39537929 DOI: 10.1038/s41586-024-08225-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 10/15/2024] [Indexed: 11/16/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has an atypical, highly stromal tumour microenvironment (TME) that profoundly contributes to its poor prognosis1. Here, to better understand the intercellular signalling between cancer and stromal cells directly in PDAC tumours, we developed a multidimensional proteomic strategy called TMEPro. We applied TMEPro to profile the glycosylated secreted and plasma membrane proteome of 100 human pancreatic tissue samples to a great depth, define cell type origins and identify potential paracrine cross-talk, especially that mediated through tyrosine phosphorylation. Temporal dynamics during pancreatic tumour progression were investigated in a genetically engineered PDAC mouse model. Functionally, we revealed reciprocal signalling between stromal cells and cancer cells mediated by the stromal PDGFR-PTPN11-FOS signalling axis. Furthermore, we examined the generic shedding mechanism of plasma membrane proteins in PDAC tumours and revealed that matrix-metalloprotease-mediated shedding of the AXL receptor tyrosine kinase ectodomain provides an additional dimension of intercellular signalling regulation in the PDAC TME. Importantly, the level of shed AXL has a potential correlation with lymph node metastasis, and inhibition of AXL shedding and its kinase activity showed a substantial synergistic effect in inhibiting cancer cell growth. In summary, we provide TMEPro, a generically applicable clinical functional proteomic strategy, and a comprehensive resource for better understanding the PDAC TME and facilitating the discovery of new diagnostic and therapeutic targets.
Collapse
Affiliation(s)
- Peiwu Huang
- State Key Laboratory of Medical Proteomics and Shenzhen Key Laboratory of Functional Proteomics, Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, School of Science and Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen, China
| | - Weina Gao
- State Key Laboratory of Medical Proteomics and Shenzhen Key Laboratory of Functional Proteomics, Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, School of Science and Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen, China
| | - Changying Fu
- State Key Laboratory of Medical Proteomics and Shenzhen Key Laboratory of Functional Proteomics, Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, School of Science and Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen, China
| | - Min Wang
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yunguang Li
- Key Laboratory of Multi-Cell Systems, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Bizhu Chu
- State Key Laboratory of Medical Proteomics and Shenzhen Key Laboratory of Functional Proteomics, Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, School of Science and Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen, China
| | - An He
- State Key Laboratory of Medical Proteomics and Shenzhen Key Laboratory of Functional Proteomics, Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, School of Science and Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen, China
| | - Yuan Li
- State Key Laboratory of Medical Proteomics and Shenzhen Key Laboratory of Functional Proteomics, Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, School of Science and Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen, China
| | - Xiaomei Deng
- State Key Laboratory of Medical Proteomics and Shenzhen Key Laboratory of Functional Proteomics, Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, School of Science and Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen, China
| | - Yehan Zhang
- Key Laboratory of Multi-Cell Systems, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Qian Kong
- State Key Laboratory of Medical Proteomics and Shenzhen Key Laboratory of Functional Proteomics, Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, School of Science and Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen, China
| | - Jingxiong Yuan
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hebin Wang
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Shi
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA.
- Bristol Myers Squibb, San Diego, CA, USA.
| | - Dong Gao
- Key Laboratory of Multi-Cell Systems, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China.
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, China.
| | - Renyi Qin
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Tony Hunter
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Ruijun Tian
- State Key Laboratory of Medical Proteomics and Shenzhen Key Laboratory of Functional Proteomics, Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, School of Science and Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
6
|
Li H, Qi X, He L, Yang H, Ju H. PRMT1 promotes radiotherapy resistance in glioma stem cells by inhibiting ferroptosis. Jpn J Radiol 2025; 43:129-137. [PMID: 39254902 DOI: 10.1007/s11604-024-01651-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 08/27/2024] [Indexed: 09/11/2024]
Abstract
PURPOSE The existence of glioma stem cells (GSCs) in cancer is related to glioma radiotherapy resistance. In this research, the effect of protein arginine methyltransferase 1 (PRMT1) on the radiosensitivity of glioma stem cell (GSC)-like cells, as well as its underlying mechanism, was investigated. METHODS GSCs-like cells were analyzed and identified by flow cytometry. The self-renewal capability was evaluated by sphere-forming assay. The PRMT1 expression level in glioblastoma were analyzed using the Gene Expression Profiling Interactive Analysis database. The mRNA and protein were scrutinized by RT-qPCR and western blot, respectively. The radiosensitivity was evaluated by clonogenic survival assay. Ferroptosis was evaluated by detecting the levels of reactive oxygen species, malondialdehyde, Fe2+, glutathione, and 4-hydroxynonenal. RESULTS U87 and SHG44 cells with GSC-like phenotype (GSC-U87 and GSC-SHG44) displayed strong expression of CD133 and nestin versus the glioma cells. GSC-U87 and GSC-SHG44 possess the self-renewal capability. The level of PRMT1 was higher in glioblastoma tumor tissues than in the normal paracancer tissues. Knockdown of PRMT1 enhanced the radiotherapy sensitivity of GSCs-like cells, which was evidenced by reduced survival fraction in GSC-U87 and GSC-SHG44 underwent sh-PRMT1 transfection. But, this effect was attenuated by Fer-1 (a ferroptosis inhibitor) treatment, accompanied by the abatement of ferroptosis. CONCLUSION PRMT1 promoted radiotherapy resistance in GSCs-like cells by inhibiting ferroptosis.
Collapse
Affiliation(s)
- Hong Li
- Department of Radiation Oncology, Peking University Cancer Hospital (Inner Mongolia Campus) and Affiliated Cancer Hospital of Inner Mongolia Medical University, Huhhot, 010020, Inner Mongolia Autonomous Region, China
| | - Xiaoyan Qi
- Department of Medical Oncology, Peking University Cancer Hospital (Inner Mongolia Campus) and Affiliated Cancer Hospital of Inner Mongolia Medical University, Huhhot, 010020, Inner Mongolia Autonomous Region, China
| | - Lijun He
- Department of Neurosurgery, Affiliated Hospital of Inner Mongolia Medical University, No. 1 Tongdao Street, Huimin District, Hohhot, 010020, Inner Mongolia, China
| | - Hao Yang
- Department of Radiation Oncology, Peking University Cancer Hospital (Inner Mongolia Campus) and Affiliated Cancer Hospital of Inner Mongolia Medical University, Huhhot, 010020, Inner Mongolia Autonomous Region, China
| | - Haitao Ju
- Department of Neurosurgery, Affiliated Hospital of Inner Mongolia Medical University, No. 1 Tongdao Street, Huimin District, Hohhot, 010020, Inner Mongolia, China.
| |
Collapse
|
7
|
Yang R, Qu X, Zhi S, Wang J, Fu J, Tan C, Chen H, Wang X. Exosomes Derived from Meningitic Escherichia coli-Infected Brain Microvascular Endothelial Cells Facilitate Astrocyte Activation. Mol Neurobiol 2024; 61:7195-7210. [PMID: 38372957 DOI: 10.1007/s12035-024-04044-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 02/12/2024] [Indexed: 02/20/2024]
Abstract
Numerous studies have shown that exosomes play a regulatory role in a variety of biological processes as well as in disease development and progression. However, exosome-mediated intercellular communication between brain microvascular endothelial cells (BMECs) and astrocytes during meningitic Escherichia coli (E. coli)-induced neuroinflammation remains largely unknown. Here, by using in vivo and in vitro models, we demonstrate that exosomes derived from meningitic E. coli-infected BMECs can activate the inflammatory response of astrocytes. A label-free quantitation approach coupled with LC-MS/MS was used to compare the exosome proteomic profiles of human BMECs (hBMECs) in response to meningitic E. coli infection. A total of 57 proteins exhibited significant differences in BMEC-derived exosomes during the infection. Among these proteins, growth differentiation factor 15 (GDF15) was significantly increased in BMEC-derived exosomes during the infection, which triggered the Erk1/2 signaling pathway and promoted the activation of astrocytes. The identification and characterization of exosome protein profiles in BMECs during meningitic E. coli infection will contribute to the understanding of the underlying pathogenic mechanisms from the perspective of intercellular communication between BMECs and astrocytes, and provide new insights for future prevention and treatment of E. coli meningitis.
Collapse
Affiliation(s)
- Ruicheng Yang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Xinyi Qu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Shuli Zhi
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Jundan Wang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Jiyang Fu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Wuhan Keqian Biology Co., Ltd., Wuhan, 430070, China
| | - Chen Tan
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, 430070, China
- International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, 430070, China
| | - Huanchun Chen
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, 430070, China
- International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, 430070, China
| | - Xiangru Wang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China.
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, 430070, China.
- International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, 430070, China.
| |
Collapse
|
8
|
Xu X, Zheng Y, Luo L, You Z, Chen H, Wang J, Zhang F, Liu Y, Ke Y. Glioblastoma stem cells deliver ABCB4 transcribed by ATF3 via exosomes conferring glioblastoma resistance to temozolomide. Cell Death Dis 2024; 15:318. [PMID: 38710703 PMCID: PMC11074105 DOI: 10.1038/s41419-024-06695-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 04/13/2024] [Accepted: 04/18/2024] [Indexed: 05/08/2024]
Abstract
Glioblastoma stem cells (GSCs) play a key role in glioblastoma (GBM) resistance to temozolomide (TMZ) chemotherapy. With the increase in research on the tumour microenvironment, exosomes secreted by GSCs have become a new focus in GBM research. However, the molecular mechanism by which GSCs affect drug resistance in GBM cells via exosomes remains unclear. Using bioinformatics analysis, we identified the specific expression of ABCB4 in GSCs. Subsequently, we established GSC cell lines and used ultracentrifugation to extract secreted exosomes. We conducted in vitro and in vivo investigations to validate the promoting effect of ABCB4 and ABCB4-containing exosomes on TMZ resistance. Finally, to identify the transcription factors regulating the transcription of ABCB4, we performed luciferase assays and chromatin immunoprecipitation-quantitative PCR. Our results indicated that ABCB4 is highly expressed in GSCs. Moreover, high expression of ABCB4 promoted the resistance of GSCs to TMZ. Our study found that GSCs can also transmit their highly expressed ABCB4 to differentiated glioma cells (DGCs) through exosomes, leading to high expression of ABCB4 in these cells and promoting their resistance to TMZ. Mechanistic studies have shown that the overexpression of ABCB4 in GSCs is mediated by the transcription factor ATF3. In conclusion, our results indicate that GSCs can confer resistance to TMZ in GBM by transmitting ABCB4, which is transcribed by ATF3, through exosomes. This mechanism may lead to drug resistance and recurrence of GBM. These findings contribute to a deeper understanding of the mechanisms underlying drug resistance in GBM and provide novel insights into its treatment.
Collapse
Affiliation(s)
- Xiangdong Xu
- Department of Neuro-oncological Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, PR China
- The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, PR China
| | - Yaofeng Zheng
- Department of Neuro-oncological Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, PR China
- The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, PR China
| | - Linting Luo
- Department of Neurology, Liwan Central Hospital of Guangzhou, Guangzhou, PR China
| | - Zhongsheng You
- Department of Neuro-oncological Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, PR China
- The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, PR China
| | - Huajian Chen
- Department of Neuro-oncological Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, PR China
- The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, PR China
| | - Jihui Wang
- Department of Neuro-oncological Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, PR China
- The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, PR China
| | - Fabing Zhang
- Department of Neuro-oncological Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, PR China.
- The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, PR China.
| | - Yang Liu
- Department of Neuro-oncological Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, PR China.
- The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, PR China.
| | - Yiquan Ke
- Department of Neuro-oncological Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, PR China.
- The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, PR China.
| |
Collapse
|
9
|
Zhu J, Bao Z, Hu Z, Wu S, Tian C, Zhou Y, Ding Z, Tan X. Myricetin alleviates diabetic cardiomyopathy by regulating gut microbiota and their metabolites. Nutr Diabetes 2024; 14:10. [PMID: 38472186 PMCID: PMC10933338 DOI: 10.1038/s41387-024-00268-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 02/07/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND The gut microbiota is involved in the pathogenesis of diabetic cardiomyopathy (DCM). Myricetin protects cardiac function in DCM. However, the low bioavailability of myricetin fails to explain its pharmacological mechanisms thoroughly. Research has shown that myricetin has a positive effect on the gut microbiota. We hypothesize that myricetin improves the development of DCM via regulating gut microbiota. METHODS DCM mice were induced with streptozotocin and fed a high-fat diet, and then treated with myricetin by gavage and high-fat diet for 16 weeks. Indexes related to gut microbiota composition, cardiac structure, cardiac function, intestinal barrier function, and inflammation were detected. Moreover, the gut contents were transplanted to DCM mice, and the effect of fecal microbiota transplantation (FMT) on DCM mice was assessed. RESULTS Myricetin could improve cardiac function in DCM mice by decreasing cardiomyocyte hypertrophy and interstitial fibrosis. The composition of gut microbiota, especially for short-chain fatty acid-producing bacteria involving Roseburia, Faecalibaculum, and Bifidobacterium, was more abundant by myricetin treatment in DCM mice. Myricetin increased occludin expression and the number of goblet cells in DCM mice. Compared with DCM mice unfed with gut content, the cardiac function, number of goblet cells, and expression of occludin in DCM mice fed by gut contents were elevated, while cardiomyocyte hypertrophy and TLR4/MyD88 pathway-related proteins were decreased. CONCLUSIONS Myricetin can prevent DCM development by increasing the abundance of beneficial gut microbiota and restoring the gut barrier function.
Collapse
Affiliation(s)
- Jinxiu Zhu
- Institute of Clinical Electrocardiology, the First Affiliated Hospital of Shantou University Medical College, 515041, Shantou, Guangdong, China
- Longgang Maternity and Child Institute of Shantou University Medical College (Longgang District Maternity & Child Healthcare Hospital of Shenzhen City), 518172, Shenzhen, Guangdong, China
| | - Zhijun Bao
- Institute of Clinical Electrocardiology, the First Affiliated Hospital of Shantou University Medical College, 515041, Shantou, Guangdong, China
| | - Zuoqi Hu
- Institute of Clinical Electrocardiology, the First Affiliated Hospital of Shantou University Medical College, 515041, Shantou, Guangdong, China
| | - Shenglin Wu
- Institute of Clinical Electrocardiology, the First Affiliated Hospital of Shantou University Medical College, 515041, Shantou, Guangdong, China
- Department of Cardiology, the First Affiliated Hospital of Shantou University Medical College, 515041, Shantou, Guangdong, China
| | - Cuihong Tian
- Department of Cardiology, the First Affiliated Hospital of Shantou University Medical College, 515041, Shantou, Guangdong, China
| | - Yueran Zhou
- Institute of Clinical Electrocardiology, the First Affiliated Hospital of Shantou University Medical College, 515041, Shantou, Guangdong, China
| | - Zipeng Ding
- Institute of Clinical Electrocardiology, the First Affiliated Hospital of Shantou University Medical College, 515041, Shantou, Guangdong, China
- Department of Cardiology, the First Affiliated Hospital of Shantou University Medical College, 515041, Shantou, Guangdong, China
| | - Xuerui Tan
- Department of Cardiology, the First Affiliated Hospital of Shantou University Medical College, 515041, Shantou, Guangdong, China.
- Clinical Research Center, the First Affiliated Hospital of Shantou University Medical College, 515041, Shantou, Guangdong, China.
| |
Collapse
|
10
|
Gui Y, Qian X, Ding Y, Chen Q, Fangyu Ye, Ye Y, Hou Y, Yu J, Zhao L. c-Fos regulated by TMPO/ERK axis promotes 5-FU resistance via inducing NANOG transcription in colon cancer. Cell Death Dis 2024; 15:61. [PMID: 38233377 PMCID: PMC10794174 DOI: 10.1038/s41419-024-06451-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 01/19/2024]
Abstract
Acquired drug resistance is one of the most common limitations for the clinical response of colon cancer to 5-Fluorouracil (5-FU)-based chemotherapy. The relevant molecular mechanisms might be diversity, but still not be elucidated clearly. In this study, we aimed to investigate the potential mechanisms of c-Fos, a subfamily of activator protein-1, in 5-FU chemoresistance. We determined that phosphorylated c-Fos promoted colon cancer cells resistance to 5-FU by facilitating the cancer stemness. Mechanically, 5-FU treatment induced autolysosome-dependent degradation of TMPO, which subsequently triggered ERK-mediated phosphorylation of c-Fos. Additionally, c-Fos was found to bind to the promoter of NANOG and phosphorylation of c-Fos at Ser 374 was required for its regulation of NANOG expression. NANOG ablation impaired c-Fos/p-c-Fos induced 5-FU resistance and stemness. Taken together, these findings revealed that TMPO-mediated phosphorylation of c-Fos conferred 5-FU resistance by regulating NANOG expression and promoting cell stemness in colon cancer cells. c-Fos could be as a therapeutic target for colon cancer.
Collapse
Affiliation(s)
- Yanping Gui
- Public Experimental Platform, China Pharmaceutical University, Nanjing, 211198, China
| | - Xiaoping Qian
- Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, 215153, China
| | - Youxiang Ding
- Department of Pathology, Nanjing Drum Tower Hospital, Affiliated to Medical College of Nanjing University, Nanjing, 210008, China
| | - Qianqian Chen
- Public Experimental Platform, China Pharmaceutical University, Nanjing, 211198, China
| | - Fangyu Ye
- Public Experimental Platform, China Pharmaceutical University, Nanjing, 211198, China
| | - Yuting Ye
- Public Experimental Platform, China Pharmaceutical University, Nanjing, 211198, China
| | - Yingjian Hou
- Public Experimental Platform, China Pharmaceutical University, Nanjing, 211198, China
| | - Jun Yu
- Jiangsu Cancer Hospital, Nanjing, 210009, China
| | - Li Zhao
- Public Experimental Platform, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
11
|
Bentaberry-Rosa A, Nicaise Y, Delmas C, Gouazé-Andersson V, Cohen-Jonathan-Moyal E, Seva C. Overexpression of Growth Differentiation Factor 15 in Glioblastoma Stem Cells Promotes Their Radioresistance. Cancers (Basel) 2023; 16:27. [PMID: 38201456 PMCID: PMC10778311 DOI: 10.3390/cancers16010027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
GSCs play an important role in GBM recurrence. Understanding the resistance mechanisms in these cells is therefore crucial for radiation therapy optimization. In this study, using patient-derived GSCs, we demonstrate that GDF15, a cytokine belonging to the TGF-β superfamily, is regulated by irradiation (IR) and the transcription factor WWTR1/TAZ. Blocking WWTR1/TAZ using specific siRNAs significantly reduces GDF15 basal expression and reverses the upregulation of this cytokine induced by IR. Furthermore, we demonstrate that GDF15 plays an important role in GSC radioresistance. Targeting GDF15 expression by siRNA in GSCs expressing high levels of GDF15 sensitizes the cells to IR. In addition, we also found that GDF15 expression is critical for GSC spheroid formation, as GDF15 knockdown significantly reduces the number of GSC neurospheres. This study suggests that GDF15 targeting in combination with radiotherapy may be a feasible approach in patients with GBM.
Collapse
Affiliation(s)
- Alexandre Bentaberry-Rosa
- Centre de Recherche en Cancérologie de Toulouse (CRCT), INSERM U1037, Université Toulouse III Paul Sabatier, ERL5294 CNRS, 31062 Toulouse, France; (A.B.-R.); (Y.N.); (C.D.); (V.G.-A.); (E.C.-J.-M.)
- IUCT-Oncopole, 31100 Toulouse, France
| | - Yvan Nicaise
- Centre de Recherche en Cancérologie de Toulouse (CRCT), INSERM U1037, Université Toulouse III Paul Sabatier, ERL5294 CNRS, 31062 Toulouse, France; (A.B.-R.); (Y.N.); (C.D.); (V.G.-A.); (E.C.-J.-M.)
| | - Caroline Delmas
- Centre de Recherche en Cancérologie de Toulouse (CRCT), INSERM U1037, Université Toulouse III Paul Sabatier, ERL5294 CNRS, 31062 Toulouse, France; (A.B.-R.); (Y.N.); (C.D.); (V.G.-A.); (E.C.-J.-M.)
- IUCT-Oncopole, 31100 Toulouse, France
| | - Valérie Gouazé-Andersson
- Centre de Recherche en Cancérologie de Toulouse (CRCT), INSERM U1037, Université Toulouse III Paul Sabatier, ERL5294 CNRS, 31062 Toulouse, France; (A.B.-R.); (Y.N.); (C.D.); (V.G.-A.); (E.C.-J.-M.)
- IUCT-Oncopole, 31100 Toulouse, France
| | - Elizabeth Cohen-Jonathan-Moyal
- Centre de Recherche en Cancérologie de Toulouse (CRCT), INSERM U1037, Université Toulouse III Paul Sabatier, ERL5294 CNRS, 31062 Toulouse, France; (A.B.-R.); (Y.N.); (C.D.); (V.G.-A.); (E.C.-J.-M.)
- IUCT-Oncopole, 31100 Toulouse, France
| | - Catherine Seva
- Centre de Recherche en Cancérologie de Toulouse (CRCT), INSERM U1037, Université Toulouse III Paul Sabatier, ERL5294 CNRS, 31062 Toulouse, France; (A.B.-R.); (Y.N.); (C.D.); (V.G.-A.); (E.C.-J.-M.)
| |
Collapse
|
12
|
Wu Y, Mao M, Wang LJ. Integrated clustering signature of genomic heterogeneity, stemness and tumor microenvironment predicts glioma prognosis and immunotherapy response. Aging (Albany NY) 2023; 15:9086-9104. [PMID: 37698534 PMCID: PMC10522363 DOI: 10.18632/aging.205018] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/21/2023] [Indexed: 09/13/2023]
Abstract
BACKGROUND Glioma is the most frequent primary tumor of the central nervous system. The high heterogeneity of glioma tumors enables them to adapt to challenging environments, leading to resistance to treatment. Therefore, to detect the driving factors and improve the prognosis of glioma, it is essential to have a comprehensive understanding of the genomic heterogeneity, stemness, and immune microenvironment of glioma. METHODS We classified gliomas into various subtypes based on stemness, genomic heterogeneity, and immune microenvironment consensus clustering analysis. We identified risk hub genes linked to heterogeneous characteristics using WGCNA, LASSO, and multivariate Cox regression analysis and utilized them to create an effective risk model. RESULTS We thoroughly investigated the genomic heterogeneity, stemness, and immune microenvironment of glioma and identified the risk hub genes RAB42, SH2D4A, and GDF15 based on the TCGA dataset. We developed a risk model utilizing these genes that can reliably predict the prognosis of glioma patients. The risk signature showed a positive correlation with T cell exhaustion and increased infiltration of immunosuppressive cells, and a negative correlation with the response to immunotherapy. Moreover, we discovered that SH2D4A, one of the risk hub genes, could stimulate the migration and proliferation of glioma cells. CONCLUSIONS This study identified risk hub genes and established a risk model by analyzing the genomic heterogeneity, stemness, and immune microenvironment of glioma. Our findings will facilitate the diagnosis and prediction of glioma prognosis and may lead to potential treatment strategies for glioma.
Collapse
Affiliation(s)
- Yangyang Wu
- Advanced Medical Research Center of Zhengzhou University, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou 450007, China
| | - Meng Mao
- Advanced Medical Research Center of Zhengzhou University, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou 450007, China
- Department of Anesthesiology and Perioperative Medicine, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou 450007, China
- Research of Trauma Center, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou 450007, China
| | - Lin-Jian Wang
- Advanced Medical Research Center of Zhengzhou University, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou 450007, China
- Research of Trauma Center, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou 450007, China
- Department of Neurosurgery, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou 450007, China
| |
Collapse
|
13
|
Maimaiti Y, Cheng H, Guo Z, Yu X, Tuohuti A, Li G. Correlation between serum GDF-15 level and pulmonary vascular morphological changes and prognosis in patients with pulmonary arterial hypertension. Front Cardiovasc Med 2023; 10:1085122. [PMID: 37288264 PMCID: PMC10241999 DOI: 10.3389/fcvm.2023.1085122] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 04/12/2023] [Indexed: 06/09/2023] Open
Abstract
Objective To investigate how serum GDF-15 concentration affects pulmonary artery hemodynamics and pulmonary vascular morphological changes in patients with pulmonary arterial hypertension. Methods A total of 45 patients admitted to our hospital from December 2017 to December 2019, were selected for the study. Pulmonary vascular hemodynamics and pulmonary vascular morphology were detected by RHC and IVUS. Serum GDF-15 levels were detected by enzyme-linked immunosorbent assay (ELISA). Based on the concentration of GDF-15, the patients were divided into two groups-the normal GDF-15 group (GDF-15 <1,200 pg/ml, 12 cases) and the elevated GDF-15 group (GDF-15 ≥1,200 pg/ml, 33 cases). A statistical analysis was performed to compare the effects of normal blood GDF-15 levels and high serum GDF-15 levels on hemodynamics and pulmonary vascular morphology in each group of patients. Results The average levels of RVP, sPAP, dPAP, mPAP, and PVR in patients with elevated GDF-15 levels were higher than those in patients with normal GDF-15 levels. The difference between the two groups was statistically significant (P < 0.05). The average levels of Vd, elastic modulus, stiffness index β, lesion length, and PAV in the normal GDF-15 group were lower than those in the elevated GDF-15 group. The average levels of compliance, distensibility, and minimum l umen area were higher than those in the elevated GDF-15 group. The difference between the two groups was statistically significant (P < 0.05). The survival analysis results showed that the 1-year survival rate of patients with normal GDF-15 levels and elevated GDF-15 levels was 100% and 87.9%, respectively, and that the 3-year survival rate of patients with normal GDF-15 levels and elevated GDF-15 levels was 91.7% and 78.8%, respectively. The survival rates of the two groups were compared by the Kaplan Meier method, and the difference was not statistically significant (P > 0.05). Conclusion Patients with pulmonary arterial hypertension with elevated GDF-15 levels have higher pulmonary arterial pressure, higher pulmonary vascular resistance, and more serious pulmonary vascular lesions, which are potentially more harmful. There was no statistically significant difference in survival rates among patients with different serum GDF-15 levels.
Collapse
Affiliation(s)
- Yasenjiang Maimaiti
- Gerontology Center, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Hui Cheng
- Department of Cardiology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Zitong Guo
- Department of Cardiology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Xiaolin Yu
- Department of Cardiology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Adilijiang Tuohuti
- Department of Cardiology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Guoqing Li
- Department of Cardiology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| |
Collapse
|
14
|
Chen AT, Xiao Y, Tang X, Baqri M, Gao X, Reschke M, Sheu WC, Long G, Zhou Y, Deng G, Zhang S, Deng Y, Bai Z, Kim D, Huttner A, Kunes R, Günel M, Moliterno J, Saltzman WM, Fan R, Zhou J. Cross-platform analysis reveals cellular and molecular landscape of glioblastoma invasion. Neuro Oncol 2023; 25:482-494. [PMID: 35901838 PMCID: PMC10013636 DOI: 10.1093/neuonc/noac186] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Improved treatment of glioblastoma (GBM) needs to address tumor invasion, a hallmark of the disease that remains poorly understood. In this study, we profiled GBM invasion through integrative analysis of histological and single-cell RNA sequencing (scRNA-seq) data from 10 patients. METHODS Human histology samples, patient-derived xenograft mouse histology samples, and scRNA-seq data were collected from 10 GBM patients. Tumor invasion was characterized and quantified at the phenotypic level using hematoxylin and eosin and Ki-67 histology stains. Crystallin alpha B (CRYAB) and CD44 were identified as regulators of tumor invasion from scRNA-seq transcriptomic data and validated in vitro, in vivo, and in a mouse GBM resection model. RESULTS At the cellular level, we found that invasive GBM are less dense and proliferative than their non-invasive counterparts. At the molecular level, we identified unique transcriptomic features that significantly contribute to GBM invasion. Specifically, we found that CRYAB significantly contributes to postoperative recurrence and is highly co-expressed with CD44 in invasive GBM samples. CONCLUSIONS Collectively, our analysis identifies differentially expressed features between invasive and nodular GBM, and describes a novel relationship between CRYAB and CD44 that contributes to tumor invasiveness, establishing a cellular and molecular landscape of GBM invasion.
Collapse
Affiliation(s)
| | | | | | - Mehdi Baqri
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Xingchun Gao
- Department of Neurosurgery, Yale University, New Haven, CT, USA
| | - Melanie Reschke
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Wendy C Sheu
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Gretchen Long
- Department of Neurosurgery, Yale University, New Haven, CT, USA
| | - Yu Zhou
- Department of Neurosurgery, Yale University, New Haven, CT, USA
| | - Gang Deng
- Department of Neurosurgery, Yale University, New Haven, CT, USA
| | - Shenqi Zhang
- Department of Neurosurgery, Yale University, New Haven, CT, USA
| | - Yanxiang Deng
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Zhiliang Bai
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Dongjoo Kim
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Anita Huttner
- Department of Pathology, Yale University, New Haven, CT, USA
| | - Russell Kunes
- Department of Statistics, Columbia University, New York, NY, USA
| | - Murat Günel
- Department of Neurosurgery, Yale University, New Haven, CT, USA
| | | | - W Mark Saltzman
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Rong Fan
- Corresponding Authors: Rong Fan, PhD, Department of Biomedical Engineering, Yale University, 55 Prospect Street, New Haven, CT 06511, USA (); Jiangbing Zhou, PhD, Department of Neurosurgery, Yale University, 310 Cedar Street, New Haven, CT 06510, USA ()
| | - Jiangbing Zhou
- Corresponding Authors: Rong Fan, PhD, Department of Biomedical Engineering, Yale University, 55 Prospect Street, New Haven, CT 06511, USA (); Jiangbing Zhou, PhD, Department of Neurosurgery, Yale University, 310 Cedar Street, New Haven, CT 06510, USA ()
| |
Collapse
|
15
|
Joo M, Kim D, Lee MW, Lee HJ, Kim JM. GDF15 Promotes Cell Growth, Migration, and Invasion in Gastric Cancer by Inducing STAT3 Activation. Int J Mol Sci 2023; 24:2925. [PMID: 36769245 PMCID: PMC9917887 DOI: 10.3390/ijms24032925] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/25/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023] Open
Abstract
Growth differentiation factor 15 (GDF15) has been reported to play an important role in cancer and is secreted and involved in the progression of various cancers, including ovarian cancer, prostate cancer, and thyroid cancer. Nevertheless, the functional mechanism of GDF15 in gastric cancer is still unclear. Immunohistochemical staining was performed to estimate the expression of GDF15 in 178 gastric cancer tissues. The biological role and action mechanism of GDF15 were investigated by examining the effect of GDF15 knockdown in AGS and SNU216 gastric cancer cells. Here, we report that the high expression of GDF15 was associated with invasion depth (p = 0.002), nodal involvement (p = 0.003), stage III/IV (p = 0.01), lymphatic invasion (p = 0.05), and tumor size (p = 0.049), which are related to poor survival in gastric cancer patients. GDF15 knockdown induced G0/G1 cell cycle arrest and remarkably inhibited cell proliferation and reduced cell motility, migration, and invasion compared to the control. GDF15 knockdown inhibited the epithelial-mesenchymal transition by regulating the STAT3 phosphorylation signaling pathways. Taken together, our results indicate that GDF15 expression is associated with aggressive gastric cancer by promoting STAT3 phosphorylation, suggesting that the GDF15-STAT3 signaling axis is a potential therapeutic target against gastric cancer progression.
Collapse
Affiliation(s)
- Mina Joo
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Donghyun Kim
- Department of Pathology, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Myung-Won Lee
- Department of Internal Medicine, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Hyo Jin Lee
- Department of Internal Medicine, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
- Infection Control Convergence Research Center, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Jin-Man Kim
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
- Department of Pathology, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
- Department of Internal Medicine, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| |
Collapse
|
16
|
A Cuproptosis Activation Scoring model predicts neoplasm-immunity interactions and personalized treatments in glioma. Comput Biol Med 2022; 148:105924. [PMID: 35964468 DOI: 10.1016/j.compbiomed.2022.105924] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 07/21/2022] [Accepted: 07/30/2022] [Indexed: 02/07/2023]
Abstract
Gliomas are malignant tumors in the central nervous system. Cuproptosis is a newly discovered cell death mechanism targeting lipoylated tricarboxylic acid cycle proteins. Previous studies have found that cuproptosis participates in tumor progression, but its role in gliomas is still elusive. Here, we systematically explored the bulk-tumor and single-cell transcriptome data to reveal its role in gliomas. The cuproptosis activity score (CuAS) was constructed based on cuproptosis-related genes, and machine learning techniques validated the score stability. High CuAS gliomas were more likely to have a poor prognosis and an aggressive mesenchymal (MES) subtype. Subsequently, the SCENIC algorithm predicted 20 CuAS-related transcription factors (TFs) in gliomas. Function enrichment and microenvironment analyses found that CuAS was associated with tumor immune infiltration. Accordingly, intercellular communications between neoplasm and immunity were explored by the R package "Cellchat". Five signaling pathways and 8 ligand-receptor pairs including ICAM1, ITGAX, ITGB2, ANXA1-FRR1, and the like, were identified to suggest how cuproptosis activity connected neoplastic and immune cells. Critically, 13 potential drugs targeting high CuAs gliomas were predicted according to the CTRP and PRISM databases, including oligomycin A, dihydroartemisinin, and others. Taken together, cuproptosis is involved in glioma aggressiveness, neoplasm-immune interactions, and may be used to assist in drug selection.
Collapse
|
17
|
The Molecular Basis and Therapeutic Potential of Leukemia Inhibitory Factor in Cancer Cachexia. Cancers (Basel) 2022; 14:cancers14122955. [PMID: 35740622 PMCID: PMC9221449 DOI: 10.3390/cancers14122955] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/01/2022] [Accepted: 06/11/2022] [Indexed: 02/06/2023] Open
Abstract
Simple Summary The mechanism of cancer cachexia is linked to a variety of factors, and inflammatory factors are thought to play a key role. We summarize the main roles of LIF in the development of cancer cachexia, including promoting fat loss, inducing skeletal muscle atrophy and causing anorexia nervosa. The main aim of this review is to increase the understanding of the effects of LIF in cachexia and to provide new insights into the treatment of cancer cachexia. Abstract Cachexia is a chronic metabolic syndrome that is characterized by sustained weight and muscle mass loss and anorexia. Cachexia can be secondary to a variety of diseases and affects the prognosis of patients significantly. The increase in inflammatory cytokines in plasma is deeply related to the occurrence of cachexia. As a member of the IL-6 cytokine family, leukemia inhibitory factor (LIF) exerts multiple biological functions. LIF is over-expressed in the cancer cells and stromal cells of various tumors, promoting the malignant development of tumors via the autocrine and paracrine systems. Intriguingly, increasing studies have confirmed that LIF contributes to the progression of cachexia, especially in patients with metastatic tumors. This review combines all of the evidence to summarize the mechanism of LIF-induced cachexia from the following four aspects: (i) LIF and cancer-associated cachexia, (ii) LIF and alterations of adipose tissue in cachexia, (iii) LIF and anorexia nervosa in cachexia, and (iv) LIF and muscle atrophy in cachexia. Considering the complex mechanisms in cachexia, we also focus on the interactions between LIF and other key cytokines in cachexia and existing therapeutics targeting LIF.
Collapse
|
18
|
Sengupta S, Mondal M, Prasasvi KR, Mukherjee A, Magod P, Urbach S, Friedmann-Morvinski D, Marin P, Somasundaram K. Differentiated glioma cell-derived Fibromodulin activates Integrin-dependent Notch signaling in endothelial cells to promote tumor angiogenesis and growth. eLife 2022; 11:78972. [PMID: 35642785 PMCID: PMC9259034 DOI: 10.7554/elife.78972] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/29/2022] [Indexed: 11/13/2022] Open
Abstract
Cancer stem cells (CSCs) alone can initiate and maintain tumors, but the function of non-cancer stem cells (non-CSCs) that form the tumor bulk remains poorly understood. Proteomic analysis showed a higher abundance of the extracellular matrix small leucine-rich proteoglycan fibromodulin (FMOD) in the conditioned medium of differentiated glioma cells (DGCs), the equivalent of glioma non-CSCs, compared to that of glioma stem-like cells (GSCs). DGCs silenced for FMOD fail to cooperate with co-implanted GSCs to promote tumor growth. FMOD downregulation neither affects GSC growth and differentiation nor DGC growth and reprogramming in vitro. DGC-secreted FMOD promotes angiogenesis by activating integrin-dependent Notch signaling in endothelial cells. Furthermore, conditional silencing of FMOD in newly generated DGCs in vivo inhibits the growth of GSC-initiated tumors due to poorly developed vasculature and increases mouse survival. Collectively, these findings demonstrate that DGC-secreted FMOD promotes glioma tumor angiogenesis and growth through paracrine signaling in endothelial cells and identifies a DGC-produced protein as a potential therapeutic target in glioma.
Collapse
Affiliation(s)
- Shreoshi Sengupta
- Department of Microbiology and Cell Biology, Indian Institute of Science Bangalore, Bangalore, India
| | - Mainak Mondal
- Department of Microbiology and Cell Biology, Indian Institute of Science Bangalore, Bangalore, India
| | - Kaval Reddy Prasasvi
- Department of Microbiology and Cell Biology, Indian Institute of Science Bangalore, Bangalore, India
| | - Arani Mukherjee
- Department of Microbiology and Cell Biology, Indian Institute of Science Bangalore, Bangalore, India
| | - Prerna Magod
- School of Neurobiology, Biochemistry and Biophysics, Tel Aviv University, Tel Aviv, Israel
| | - Serge Urbach
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | | | - Philippe Marin
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Kumaravel Somasundaram
- Department of Microbiology and Cell Biology, Indian Institute of Science Bangalore, Bangalore, India
| |
Collapse
|
19
|
Zhu S, Yang N, Niu C, Wang W, Wang X, Bai J, Qiao Y, Deng S, Guan Y, Chen J. The miR-145–MMP1 axis is a critical regulator for imiquimod-induced cancer stemness and chemoresistance. Pharmacol Res 2022; 179:106196. [DOI: 10.1016/j.phrs.2022.106196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/10/2022] [Accepted: 03/25/2022] [Indexed: 11/28/2022]
|
20
|
Lv SQ, Fu Z, Yang L, Li QR, Zhu J, Gai QJ, Mao M, He J, Qin Y, Yao XX, Lan X, Wang YX, Lu HM, Xiang Y, Zhang ZX, Huang GH, Yang W, Kang P, Sun Z, Shi Y, Yao XH, Bian XW, Wang Y. Comprehensive omics analyses profile genesets related with tumor heterogeneity of multifocal glioblastomas and reveal LIF/CCL2 as biomarkers for mesenchymal subtype. Theranostics 2022; 12:459-473. [PMID: 34987659 PMCID: PMC8690928 DOI: 10.7150/thno.65739] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 10/27/2021] [Indexed: 01/22/2023] Open
Abstract
Rationale: Around 10%-20% patients with glioblastoma (GBM) are diagnosed with more than one tumor lesions or multifocal GBM (mGBM). However, the understanding on genetic, DNA methylomic, and transcriptomic characteristics of mGBM is still limited. Methods: In this study, we collected nine tumor foci from three mGBM patients followed by whole genome sequencing, whole genome bisulfite sequencing, RNA sequencing, and immunohistochemistry. The data were further examined using public GBM databases and GBM cell line. Results: Analysis on genetic data confirmed common features of GBM, including gain of chr.7 and loss of chr.10, loss of critical tumor suppressors, high frequency of PDGFA and EGFR amplification. Through profiling DNA methylome of individual tumor foci, we found that promoter methylation status of genes involved in detection of chemical stimulus, immune response, and Hippo/YAP1 pathway was significantly changed in mGBM. Although both CNV and promoter methylation alteration were involved in heterogeneity of different tumor foci from same patients, more CNV events than promoter hypomethylation events were shared by different tumor foci, implying CNV were relatively earlier than promoter methylation alteration during evolution of different tumor foci from same mGBM. Moreover, different tumor foci from same mGBM assumed different molecular subtypes and mesenchymal subtype was prevalent in mGBM, which might explain the worse prognosis of mGBM than single GBM. Interestingly, we noticed that LIF and CCL2 was tightly correlated with mesenchymal subtype tumor focus in mGBM and predicted poor survival of GBM patients. Treatment with LIF and CCL2 produced mesenchymal-like transcriptome in GBM cells. Conclusions: Together, our work herein comprehensively profiled multi-omics features of mGBM and emphasized that components of extracellular microenvironment, such as LIF and CCL2, contributed to the evolution and prognosis of tumor foci in mGBM patients.
Collapse
|
21
|
Semina SE, Alejo LH, Chopra S, Kansara NS, Kastrati I, Sartorius CA, Frasor J. Identification of a novel ER-NFĸB-driven stem-like cell population associated with relapse of ER+ breast tumors. Breast Cancer Res 2022; 24:88. [PMID: 36482488 PMCID: PMC9733334 DOI: 10.1186/s13058-022-01585-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 11/30/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Up to 40% of patients with estrogen receptor-positive (ER+) breast cancer experience relapse. This can be attributed to breast cancer stem cells (BCSCs), which are known to be involved in therapy resistance, relapse, and metastasis. Therefore, there is an urgent need to identify genes/pathways that drive stem-like cell properties in ER+ breast tumors. METHODS Using single-cell RNA sequencing and various bioinformatics approaches, we identified a unique stem-like population and established its clinical relevance. With follow-up studies, we validated our bioinformatics findings and confirmed the role of ER and NFĸB in the promotion of stem-like properties in breast cancer cell lines and patient-derived models. RESULTS We identified a novel quiescent stem-like cell population that is driven by ER and NFĸB in multiple ER+ breast cancer models. Moreover, we found that a gene signature derived from this stem-like population is expressed in primary ER+ breast tumors, endocrine therapy-resistant and metastatic cell populations and predictive of poor patient outcome. CONCLUSIONS These findings indicate a novel role for ER and NFĸB crosstalk in BCSCs biology and understanding the mechanism by which these pathways promote stem properties can be exploited to improve outcomes for ER+ breast cancer patients at risk of relapse.
Collapse
Affiliation(s)
- Svetlana E. Semina
- grid.185648.60000 0001 2175 0319Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, 909 S Wolcott Avenue (MC 901), 2040 COMRB, Chicago, IL 60612 USA
| | - Luis H. Alejo
- grid.185648.60000 0001 2175 0319Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, 909 S Wolcott Avenue (MC 901), 2040 COMRB, Chicago, IL 60612 USA
| | - Shivani Chopra
- grid.185648.60000 0001 2175 0319Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, 909 S Wolcott Avenue (MC 901), 2040 COMRB, Chicago, IL 60612 USA
| | - Nidhi S. Kansara
- grid.185648.60000 0001 2175 0319Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, 909 S Wolcott Avenue (MC 901), 2040 COMRB, Chicago, IL 60612 USA
| | - Irida Kastrati
- grid.185648.60000 0001 2175 0319Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, 909 S Wolcott Avenue (MC 901), 2040 COMRB, Chicago, IL 60612 USA ,grid.164971.c0000 0001 1089 6558Present Address: Department of Cancer Biology, Loyola University Chicago, Maywood, IL 60153 USA
| | - Carol A. Sartorius
- grid.430503.10000 0001 0703 675XDepartment of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045 USA
| | - Jonna Frasor
- grid.185648.60000 0001 2175 0319Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, 909 S Wolcott Avenue (MC 901), 2040 COMRB, Chicago, IL 60612 USA
| |
Collapse
|
22
|
Jiang WW, Zhang ZZ, He PP, Jiang LP, Chen JZ, Zhang XT, Hu M, Zhang YK, Ouyang XP. Emerging roles of growth differentiation factor-15 in brain disorders (Review). Exp Ther Med 2021; 22:1270. [PMID: 34594407 PMCID: PMC8456456 DOI: 10.3892/etm.2021.10705] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 08/06/2021] [Indexed: 12/14/2022] Open
Abstract
Brain disorders, such as Alzheimer's and Parkinson's disease and cerebral stroke, are an important contributor to mortality and disability worldwide, where their pathogenesis is currently a topic of intense research. The mechanisms underlying the development of brain disorders are complex and vary widely, including aberrant protein aggregation, ischemic cell necrosis and neuronal dysfunction. Previous studies have found that the expression and function of growth differentiation factor-15 (GDF15) is closely associated with the incidence of brain disorders. GDF15 is a member of the TGFβ superfamily, which is a dimer-structured stress-response protein. The expression of GDF15 is regulated by a number of proteins upstream, including p53, early growth response-1, non-coding RNAs and hormones. In particular, GDF15 has been reported to serve an important role in regulating angiogenesis, apoptosis, lipid metabolism and inflammation. For example, GDF15 can promote angiogenesis by promoting the proliferation of human umbilical vein endothelial cells, apoptosis of prostate cancer cells and fat metabolism in fasted mice, and GDF15 can decrease the inflammatory response of lipopolysaccharide-treated mice. The present article reviews the structure and biosynthesis of GDF15, in addition to the possible roles of GDF15 in Alzheimer's disease, cerebral stroke and Parkinson's disease. The purpose of the present review is to summarize the mechanism underlying the role of GDF15 in various brain disorders, which hopes to provide evidence and guide the prevention and treatment of these debilitating conditions.
Collapse
Affiliation(s)
- Wei-Wei Jiang
- Department of Physiology, Institute of Neuroscience Research, Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Zi-Zhen Zhang
- Department of Medical Humanities, School of Medicine, Hunan Polytechnic of Environment and Biology, Hengyang, Hunan 421001, P.R. China
| | - Ping-Ping He
- Hunan Province Cooperative Innovation Centre for Molecular Target New Drug Study, Nursing School, University of South China, Hengyang, Hunan 421001, P.R. China.,Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Li-Ping Jiang
- Department of Physiology, Institute of Neuroscience Research, Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, P.R. China.,Department of Critical Care Medicine, Hunan Taihe Hospital, Changsha, Hunan 410004, P.R. China
| | - Jin-Zhi Chen
- Department of Physiology, Institute of Neuroscience Research, Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Xing-Ting Zhang
- Department of Physiology, Institute of Neuroscience Research, Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Mi Hu
- Department of Physiology, Institute of Neuroscience Research, Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Yang-Kai Zhang
- Department of Physiology, Institute of Neuroscience Research, Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Xin-Ping Ouyang
- Department of Physiology, Institute of Neuroscience Research, Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, P.R. China.,Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan 421001, P.R. China
| |
Collapse
|
23
|
Wei J, Gilboa E, Calin GA, Heimberger AB. Immune Modulatory Short Noncoding RNAs Targeting the Glioblastoma Microenvironment. Front Oncol 2021; 11:682129. [PMID: 34532286 PMCID: PMC8438301 DOI: 10.3389/fonc.2021.682129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 08/11/2021] [Indexed: 12/22/2022] Open
Abstract
Glioblastomas are heterogeneous and have a poor prognosis. Glioblastoma cells interact with their neighbors to form a tumor-permissive and immunosuppressive microenvironment. Short noncoding RNAs are relevant mediators of the dynamic crosstalk among cancer, stromal, and immune cells in establishing the glioblastoma microenvironment. In addition to the ease of combinatorial strategies that are capable of multimodal modulation for both reversing immune suppression and enhancing antitumor immunity, their small size provides an opportunity to overcome the limitations of blood-brain-barrier (BBB) permeability. To enhance glioblastoma delivery, these RNAs have been conjugated with various molecules or packed within delivery vehicles for enhanced tissue-specific delivery and increased payload. Here, we focus on the role of RNA therapeutics by appraising which types of nucleotides are most effective in immune modulation, lead therapeutic candidates, and clarify how to optimize delivery of the therapeutic RNAs and their conjugates specifically to the glioblastoma microenvironment.
Collapse
Affiliation(s)
- Jun Wei
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Eli Gilboa
- Department of Microbiology & Immunology, Dodson Interdisciplinary Immunotherapy Institute, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, United States
| | - George A Calin
- Departments of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Amy B Heimberger
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|