1
|
Kim J, Ha J, Song C, Sajjad MA, Kalsoom F, Kwon H, Park J, Park S, Kim K. Sirtuin 2 inhibitor AGK2 exerts antiviral effects by inducing epigenetic suppression of hepatitis B virus covalently closed circular DNA through recruitment of repressive histone lysine methyltransferases and reduction of cccDNA. Front Cell Infect Microbiol 2025; 15:1537929. [PMID: 40270769 PMCID: PMC12014779 DOI: 10.3389/fcimb.2025.1537929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 03/24/2025] [Indexed: 04/25/2025] Open
Abstract
Chronic hepatitis B virus (HBV) infection continues to be a global health concern because current treatments such as interferon-α and nucleos(t)ide analogs cannot fully eliminate the virus due to persistence of covalently closed circular DNA (cccDNA) and integrated HBV DNA. Earlier research suggests that AGK2, a selective SIRT2 inhibitor, suppresses HBV replication by modifying key signaling pathways. This study aimed to further explore the anti-HBV effects of AKG2, particularly its effects on the epigenetic landscape of cccDNA. HBV-transfected and -infected cells were used to assess the impact of AGK2 on viral replication. Changes in SIRT2 expression and α-tubulin acetylation (SDS-PAGE-immunoblotting), core particle formation (native agarose gel electrophoresis and immunoblotting), HBV RNA (northern blotting) and DNA (Southern blotting) synthesis, and cccDNA levels (Southern blotting) were measured. Chromatin immunoprecipitation assays were performed to examine deposition of transcriptionally repressive epigenetic markers on cccDNA. AGK2 reduced expression of SIRT2, increased acetylated α-tubulin levels, and reduced synthesis of HBV RNA and DNA. Importantly, AGK2 also reduced cccDNA levels and increased deposition of repressive histone markers H4K20me1, H3K27me3, and H3K9me3 on cccDNA, mediated by histone lysine methyltransferases such as PR-Set7, EZH2, SETDB1, and SUV39H1. Additionally, there was a reduction in recruitment of RNA polymerase II and acetylated H3 to cccDNA, indicating that AGK2 enhances transcriptional repression. AGK2 suppresses HBV replication through direct antiviral actions, and by epigenetic modulation of cccDNA, indicating that using AGK2 to target SIRT2 and associated epigenetic regulators shows promise as a functional cure for chronic hepatitis B.
Collapse
Affiliation(s)
- Jumi Kim
- Department of Microbiology, Ajou University School of Medicine, Suwon, Republic of Korea
- Department of Biomedical Science, Graduate School of Ajou University, Suwon, Republic of Korea
| | - Jiseon Ha
- Department of Microbiology, Ajou University School of Medicine, Suwon, Republic of Korea
- Department of Biomedical Science, Graduate School of Ajou University, Suwon, Republic of Korea
| | - Chanho Song
- Department of Microbiology, Ajou University School of Medicine, Suwon, Republic of Korea
- Department of Biomedical Science, Graduate School of Ajou University, Suwon, Republic of Korea
| | - Muhammad Azhar Sajjad
- Department of Microbiology, Ajou University School of Medicine, Suwon, Republic of Korea
- Department of Biomedical Science, Graduate School of Ajou University, Suwon, Republic of Korea
| | - Fadia Kalsoom
- Department of Microbiology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Hyeonjoong Kwon
- Department of Microbiology, Ajou University School of Medicine, Suwon, Republic of Korea
- Department of Biomedical Science, Graduate School of Ajou University, Suwon, Republic of Korea
| | - Jaewoo Park
- Department of Microbiology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Sun Park
- Department of Microbiology, Ajou University School of Medicine, Suwon, Republic of Korea
- Department of Biomedical Science, Graduate School of Ajou University, Suwon, Republic of Korea
| | - Kyongmin Kim
- Department of Microbiology, Ajou University School of Medicine, Suwon, Republic of Korea
- Department of Biomedical Science, Graduate School of Ajou University, Suwon, Republic of Korea
| |
Collapse
|
2
|
Gérardin P, Medina-Santos R, Le Clerc S, Bruneau L, Maillot A, Labib T, Rahmouni M, Spadoni JL, Meyniel JP, Cornet C, Lefebvre C, El Jahrani N, Savara J, Mathew MJ, Fontaine C, Payet C, Ah-You N, Chabert C, Mussard C, Porcherat S, Medjane S, Noirel J, Marimoutou C, Hocini H, Zagury JF. Transcriptomic analysis of chronic chikungunya in the Reunionese CHIKGene cohort uncovers a shift in gene expression more than 10 years after infection. Travel Med Infect Dis 2025; 65:102825. [PMID: 39999933 DOI: 10.1016/j.tmaid.2025.102825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 02/20/2025] [Accepted: 02/20/2025] [Indexed: 02/27/2025]
Abstract
AIM In 2005-2006, a chikungunya epidemic of unprecedented magnitude hit Reunion Island, which raised a public health concern through the substantial proportions of long-lasting manifestations. To understand the pathophysiology underlying chronic chikungunya (CC), we designed the CHIKGene cohort study and collected blood samples from 133 subjects diagnosed with CC and from 86 control individuals that had recovered within 3 months, 12-to-15 years after exposure. METHODS We conducted bulk RNAseq analysis on peripheral blood mononuclear cells to find differentially expressed genes (DEGs), gene set enrichment analysis (GSEA) and gene ontologies to uncover top-level enriched terms associated with DEGs, and weighted gene correlation network analysis (WGCNA) to elucidate underlying cellular processes. RESULTS Among 1549 DEGs, gene expression analysis identified 10 top genes including NR4A2 and TRIM58 (upregulated in CC), IGHG3 and IGHV3-49 (downregulated in CC) linked to immune regulation, OSBP2 (upregulated in CC) and SEMA6B (downregulated in CC) linked to neuronal homeostasis and axon guidance, respectively. GSEA and WGCNA unveiled cellular processes such as "Metabolism of RNA" and "Cell Cycle". CONCLUSIONS This study uncovers a shift in gene expression of CC subjects. IGHG3 and IGHV3-49 gene shut-offs spotlight the importance of neutralizing antibodies against chikungunya virus in the progression to chronic disease. Human diseases associations highlight connections to rheumatoid arthritis, nervous and cardiac systems. GSEA and WGCNA bounce the hypotheses of a persistent viral reservoir or an increased susceptibility to RNA viral pathogens with new onset infections. Together, our findings might offer potential targets for therapeutic options aimed at alleviating chronic chikungunya.
Collapse
Affiliation(s)
- Patrick Gérardin
- Clinical Investigation Center, INSERM CIC1410, Centre Hospitalier Universitaire de La Réunion, Saint-Pierre, Réunion, France; Platform for Clinical and Translational Research, Centre Hospitalier Universitaire de La Réunion, Saint-Pierre, Réunion, France.
| | - Raissa Medina-Santos
- Laboratoire Génomique, Bioinformatique et Chimie Moléculaire, EA7528, Conservatoire National des Arts et Métiers, HESAM Université, Paris, France.
| | - Sigrid Le Clerc
- Laboratoire Génomique, Bioinformatique et Chimie Moléculaire, EA7528, Conservatoire National des Arts et Métiers, HESAM Université, Paris, France
| | - Léa Bruneau
- Clinical Investigation Center, INSERM CIC1410, Centre Hospitalier Universitaire de La Réunion, Saint-Pierre, Réunion, France; Department of Public Health and Research Support, Centre Hospitalier Universitaire de La Réunion, Saint-Denis, Réunion, France
| | - Adrien Maillot
- Department of Public Health and Research Support, Centre Hospitalier Universitaire de La Réunion, Saint-Denis, Réunion, France
| | - Taoufik Labib
- Laboratoire Génomique, Bioinformatique et Chimie Moléculaire, EA7528, Conservatoire National des Arts et Métiers, HESAM Université, Paris, France
| | - Myriam Rahmouni
- Laboratoire Génomique, Bioinformatique et Chimie Moléculaire, EA7528, Conservatoire National des Arts et Métiers, HESAM Université, Paris, France
| | - Jean-Louis Spadoni
- Laboratoire Génomique, Bioinformatique et Chimie Moléculaire, EA7528, Conservatoire National des Arts et Métiers, HESAM Université, Paris, France
| | | | - Clémence Cornet
- Laboratoire Génomique, Bioinformatique et Chimie Moléculaire, EA7528, Conservatoire National des Arts et Métiers, HESAM Université, Paris, France; AdvanThink, Saint-Aubin, France
| | - Cécile Lefebvre
- INSERM U955, Equipe 16, Vaccine Research Institute, AP-HP, Groupe Henri Mondor Albert Chenevrier, Créteil, France
| | - Nora El Jahrani
- INSERM U955, Equipe 16, Vaccine Research Institute, AP-HP, Groupe Henri Mondor Albert Chenevrier, Créteil, France
| | - Jakub Savara
- École d'Ingénieurs Généraliste du Numérique, EFREI, Paris, France; Department of Immunology, Palacky University and University Hospital Olomouc, Czech Republic; Department of Computer Science, VSB-Technical University of Ostrava, Ostrava, Czech Republic
| | - Mano Joseph Mathew
- Laboratoire Génomique, Bioinformatique et Chimie Moléculaire, EA7528, Conservatoire National des Arts et Métiers, HESAM Université, Paris, France; École d'Ingénieurs Généraliste du Numérique, EFREI, Paris, France
| | - Christine Fontaine
- Biological Resources Center (CRB), Centre Hospitalier Universitaire de La Réunion, Saint-Pierre, Réunion, Saint-Denis, France
| | - Christine Payet
- Biological Resources Center (CRB), Centre Hospitalier Universitaire de La Réunion, Saint-Pierre, Réunion, Saint-Denis, France
| | - Nathalie Ah-You
- Biological Resources Center (CRB), Centre Hospitalier Universitaire de La Réunion, Saint-Pierre, Réunion, Saint-Denis, France
| | - Cécile Chabert
- Biological Resources Center (CRB), Centre Hospitalier Universitaire de La Réunion, Saint-Pierre, Réunion, Saint-Denis, France
| | - Corinne Mussard
- Clinical Investigation Center, INSERM CIC1410, Centre Hospitalier Universitaire de La Réunion, Saint-Pierre, Réunion, France
| | - Sylvaine Porcherat
- Clinical Investigation Center, INSERM CIC1410, Centre Hospitalier Universitaire de La Réunion, Saint-Pierre, Réunion, France
| | - Samir Medjane
- Direction of Clinical Research and Innovation (DRCI), Centre Hospitalier Universitaire de La Réunion, Saint-Pierre, Réunion, France
| | - Josselin Noirel
- Laboratoire Génomique, Bioinformatique et Chimie Moléculaire, EA7528, Conservatoire National des Arts et Métiers, HESAM Université, Paris, France
| | - Catherine Marimoutou
- Clinical Investigation Center, INSERM CIC1410, Centre Hospitalier Universitaire de La Réunion, Saint-Pierre, Réunion, France; Department of Public Health and Research Support, Centre Hospitalier Universitaire de La Réunion, Saint-Denis, Réunion, France
| | - Hakim Hocini
- INSERM U955, Equipe 16, Vaccine Research Institute, AP-HP, Groupe Henri Mondor Albert Chenevrier, Créteil, France
| | - Jean-François Zagury
- Laboratoire Génomique, Bioinformatique et Chimie Moléculaire, EA7528, Conservatoire National des Arts et Métiers, HESAM Université, Paris, France.
| |
Collapse
|
3
|
Wang Y, Zhu Z, Deng L, Cheng KK, Guo F, Lin G, Raftery D, Dong J. Multiscale Synergy Networks Offer Insights into Disease and Comorbidity Mechanisms. Anal Chem 2025; 97:3633-3642. [PMID: 39908457 DOI: 10.1021/acs.analchem.4c06133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2025]
Abstract
Complex diseases involve extensive metabolic interactions within intricate biological networks. Consequently, it is advantageous to analyze metabolic phenotype data through metabolite interactions rather than focus on individual metabolites in isolation. In this article, we propose a novel analysis strategy called SynNet, which constructs multiscale synergy networks associated with specific metabolic phenotypes, offering new perspectives on the metabolic response mechanisms of diseases, including the mechanisms underlying disease comorbidity. The SynNet strategy begins with the construction of a metabolite-level synergy network (m-SynNet). This network is based on the definition and identification of significant metabolite pair interactions that distinguish disease phenotypes. Subsequently, a pathway synergy effect is defined by mapping these synergistic metabolite pairs onto the predefined metabolic pathways and performing a hypergeometric test to assess the probability of these pairs affecting a given pathway pair. The resulting significant pathway pairs identified form a pathway-level synergy network (p-SynNet). Both m-SynNet and p-SynNet offer complementary insights into disease mechanisms that go beyond conventional metabolomics analysis. For example, nodes with high connectivity in m-/p-SynNet suggest a strong correlation with the phenotype, while shared pathways across different phenotypes offer clues about the mechanisms of disease comorbidity. We applied the SynNet strategy to two real-world metabolomic data sets of disease comorbidity and identified key pathways associated with disease comorbidity from the p-SynNet. The candidate pathways are supported by the existing literature. Thus, the SynNet strategy may represent an alternative approach for metabolomic data analysis, providing novel insights into disease mechanisms and comorbidity.
Collapse
Affiliation(s)
- Yongpei Wang
- Department of Electronic Science, National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen 361005, China
| | - Zeyu Zhu
- Department of Electronic Science, National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen 361005, China
| | - Lingli Deng
- Department of Information Engineering, East China University of Technology, Nanchang 330013, China
| | - Kian-Kai Cheng
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Johor Bahru, Johor 81310, Malaysia
| | - Fanjing Guo
- Department of Electronic Science, National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen 361005, China
| | - Genjin Lin
- Department of Electronic Science, National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen 361005, China
| | - Daniel Raftery
- Northwest Metabolomics Research Center, University of Washington, Seattle, Washington 98109, United States
| | - Jiyang Dong
- Department of Electronic Science, National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen 361005, China
| |
Collapse
|
4
|
Lin K, Qiu R, Wu S, Zeng Y, Chen T, Xun Z, Lin N, Liu C, Ou Q, Fu Y. Multiomics Analyses Reveal that Fatty Acid Metabolism and TCA Cycle Contribute to the Achievement of Functional Cure in Chronic Hepatitis B. J Proteome Res 2025; 24:268-281. [PMID: 39655723 DOI: 10.1021/acs.jproteome.4c00747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Peg-IFNα is one of the current therapeutic strategies for Hepatitis B virus (HBV) seroclearance. Nevertheless, the underlying mechanisms are not yet adequately understood. The objective of this study was to explore the potential mechanisms using multiomics approach. For the first time, we revealed the transcriptomic, proteomic, and metabolomic characterizations of Peg-IFNα-induced HBsAg seroclearance. We found that Peg-IFNα caused significant changes during the treatment. Patients who achieved HBsAg seroclearance were characterized as having decreased transcriptional activity of genes involved in fatty acid metabolism and the glycolysis/gluconeogenesis pathway, with up-regulated expression of fatty acid degradation-related proteins. Consistently, mitochondrial TCA cycle metabolites, including citric, isocitric, and malic acids, were significantly elevated in patients who achieved HBsAg seroclearance. We also observed up-regulated transcriptional activity of NK cell-mediated cytotoxicity, positive regulation of B cell activation, immunoglobulin production, and T cell receptor complex in functional-cured patients. Conversely, the metabolites associated with unsaturated fatty acid biosynthesis were increased in HBsAg persistent patients, and the transcriptional activity of immunoglobulin production and T cell receptor complex was down-regulated after 48 weeks of Peg-IFNα treatment. Our findings provided valuable resources to better understand the process of HBsAg seroclearance and shed new light on the pathways to facilitate higher functional cure rates for CHB.
Collapse
Affiliation(s)
- Kun Lin
- Department of Laboratory Medicine, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
- Fujian Key Laboratory of Laboratory Medicine, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
- Department of Laboratory Medicine, the Affiliated Hospital of Putian University, Putian University, Putian 351100, China
| | - Rongxian Qiu
- Department of Infectious Diseases, the Affiliated Hospital of Putian University, Putian University, Putian 351100, China
| | - Songhang Wu
- Department of Laboratory Medicine, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
- Fujian Key Laboratory of Laboratory Medicine, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
| | - Yongbin Zeng
- Department of Laboratory Medicine, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
- Fujian Key Laboratory of Laboratory Medicine, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
| | - Tianbin Chen
- Department of Laboratory Medicine, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
- Fujian Key Laboratory of Laboratory Medicine, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
| | - Zhen Xun
- Department of Laboratory Medicine, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
- Fujian Key Laboratory of Laboratory Medicine, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
| | - Ni Lin
- School of Medical Technology and Engineering, Fujian Medical University, Fuzhou 350005, China
| | - Can Liu
- Department of Laboratory Medicine, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
- Fujian Key Laboratory of Laboratory Medicine, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
| | - Qishui Ou
- Department of Laboratory Medicine, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
- Fujian Key Laboratory of Laboratory Medicine, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
| | - Ya Fu
- Department of Laboratory Medicine, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
- Fujian Key Laboratory of Laboratory Medicine, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
| |
Collapse
|
5
|
Zhang T, Yang J, Gao H, Wu Y, Zhao X, Zhao H, Xie X, Yang L, Li Y, Wu Q. Progress of Infection and Replication Systems of Hepatitis B Virus. ACS Pharmacol Transl Sci 2024; 7:1711-1721. [PMID: 38898948 PMCID: PMC11184603 DOI: 10.1021/acsptsci.4c00147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 05/06/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024]
Abstract
Despite the long-standing availability of effective prophylaxis, chronic hepatitis B virus (HBV) infection remains a formidable public health threat. Antiviral treatments can limit viral propagation, but prolonged therapy is necessary to control HBV replication. Robust in vitro models of HBV infection are indispensable prerequisites for elucidating viral pathogenesis, delineating virus-host interplay and developing novel therapeutic, preventative countermeasures. Buoyed by advances in molecular techniques and tissue culture systems, investigators have engineered numerous in vitro models of the HBV life cycle. However, all current platforms harbor limitations in the recapitulation of natural infection. In this article, we comprehensively review the HBV life cycle, provide an overview of existing in vitro HBV infection and replication systems, and succinctly present the benefits and caveats in each model with the primary objective of constructing refined experimental models that closely mimic native viral infection and offering robust support for the ambitious "elimination of hepatitis by 2030" initiative.
Collapse
Affiliation(s)
- Tiantian Zhang
- National
Health Commission Science and Technology Innovation Platform for Nutrition
and Safety of Microbial Food, Guangdong Provincial Key Laboratory
of Microbial Safety and Health, State Key Laboratory of Applied Microbiology
Southern China, Institute of Microbiology,
Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Juan Yang
- National
Health Commission Science and Technology Innovation Platform for Nutrition
and Safety of Microbial Food, Guangdong Provincial Key Laboratory
of Microbial Safety and Health, State Key Laboratory of Applied Microbiology
Southern China, Institute of Microbiology,
Guangdong Academy of Sciences, Guangzhou 510070, China
| | - He Gao
- National
Health Commission Science and Technology Innovation Platform for Nutrition
and Safety of Microbial Food, Guangdong Provincial Key Laboratory
of Microbial Safety and Health, State Key Laboratory of Applied Microbiology
Southern China, Institute of Microbiology,
Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Yuwei Wu
- National
Health Commission Science and Technology Innovation Platform for Nutrition
and Safety of Microbial Food, Guangdong Provincial Key Laboratory
of Microbial Safety and Health, State Key Laboratory of Applied Microbiology
Southern China, Institute of Microbiology,
Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Xinyu Zhao
- National
Health Commission Science and Technology Innovation Platform for Nutrition
and Safety of Microbial Food, Guangdong Provincial Key Laboratory
of Microbial Safety and Health, State Key Laboratory of Applied Microbiology
Southern China, Institute of Microbiology,
Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Hui Zhao
- National
Health Commission Science and Technology Innovation Platform for Nutrition
and Safety of Microbial Food, Guangdong Provincial Key Laboratory
of Microbial Safety and Health, State Key Laboratory of Applied Microbiology
Southern China, Institute of Microbiology,
Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Xinqiang Xie
- National
Health Commission Science and Technology Innovation Platform for Nutrition
and Safety of Microbial Food, Guangdong Provincial Key Laboratory
of Microbial Safety and Health, State Key Laboratory of Applied Microbiology
Southern China, Institute of Microbiology,
Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Lingshuang Yang
- National
Health Commission Science and Technology Innovation Platform for Nutrition
and Safety of Microbial Food, Guangdong Provincial Key Laboratory
of Microbial Safety and Health, State Key Laboratory of Applied Microbiology
Southern China, Institute of Microbiology,
Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Ying Li
- National
Health Commission Science and Technology Innovation Platform for Nutrition
and Safety of Microbial Food, Guangdong Provincial Key Laboratory
of Microbial Safety and Health, State Key Laboratory of Applied Microbiology
Southern China, Institute of Microbiology,
Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Qingping Wu
- National
Health Commission Science and Technology Innovation Platform for Nutrition
and Safety of Microbial Food, Guangdong Provincial Key Laboratory
of Microbial Safety and Health, State Key Laboratory of Applied Microbiology
Southern China, Institute of Microbiology,
Guangdong Academy of Sciences, Guangzhou 510070, China
| |
Collapse
|
6
|
Chen M, Tan J, Jin Z, Jiang T, Wu J, Yu X. Research progress on Sirtuins (SIRTs) family modulators. Biomed Pharmacother 2024; 174:116481. [PMID: 38522239 DOI: 10.1016/j.biopha.2024.116481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/15/2024] [Accepted: 03/19/2024] [Indexed: 03/26/2024] Open
Abstract
Sirtuins (SIRTs) represent a class of nicotinamide adenine dinucleotide (NAD+)-dependent protein deacetylases that exert a crucial role in cellular signal transduction and various biological processes. The mammalian sirtuins family encompasses SIRT1 to SIRT7, exhibiting therapeutic potential in counteracting cellular aging, modulating metabolism, responding to oxidative stress, inhibiting tumors, and improving cellular microenvironment. These enzymes are intricately linked to the occurrence and treatment of diverse pathological conditions, including cancer, autoimmune diseases, and cardiovascular disorders. Given the significance of histone modification in gene expression and chromatin structure, maintaining the equilibrium of the sirtuins family is imperative for disease prevention and health restoration. Mounting evidence suggests that modulators of SIRTs play a crucial role in treating various diseases and maintaining physiological balance. This review delves into the molecular structure and regulatory functions of the sirtuins family, reviews the classification and historical evolution of SIRTs modulators, offers a systematic overview of existing SIRTs modulation strategies, and elucidates the regulatory mechanisms of SIRTs modulators (agonists and inhibitors) and their clinical applications. The article concludes by summarizing the challenges encountered in SIRTs modulator research and offering insights into future research directions.
Collapse
Affiliation(s)
- Mingkai Chen
- Wujin Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu, China; School of Medicine Jiangsu University, Zhenjiang, Jiangsu, China
| | - Junfei Tan
- School of Medicine Jiangsu University, Zhenjiang, Jiangsu, China
| | - Zihan Jin
- Changzhou Second People's Hospital Affiliated to Nanjing Medical University, Changzhou City, China
| | - Tingting Jiang
- Wujin Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu, China
| | - Jiabiao Wu
- Wujin Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu, China
| | - Xiaolong Yu
- Wujin Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu, China; The Wujin Clinical College of Xuzhou Medical University, Changzhou, Jiangsu, China.
| |
Collapse
|
7
|
Piracha ZZ, Saeed U, Piracha IE, Noor S, Noor E. Decoding the multifaceted interventions between human sirtuin 2 and dynamic hepatitis B viral proteins to confirm their roles in HBV replication. Front Cell Infect Microbiol 2024; 13:1234903. [PMID: 38239506 PMCID: PMC10794644 DOI: 10.3389/fcimb.2023.1234903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 11/27/2023] [Indexed: 01/22/2024] Open
Abstract
The human sirtuin 2 gene (SIRT2) encodes a full-length Sirt2 protein (i.e., the Sirt2 isoform 1), which primarily functions as a cytoplasmic α-tubulin deacetylase, and which promotes the growth of hepatocellular carcinoma (HCC). Hepatitis B virus (HBV) replication itself, or HBV X (HBx) protein-mediated transcriptional transactivation, enhances Sirt2.1 expression; therefore, Sirt2.1 itself is capable of positively increasing HBV transcription and replication. Sirt2.1 is linked to liver fibrosis and epithelial-to-mesenchymal transition and, consequently, augments the risk of HCC. The Sirt2.1 protein enhances the HBV replication cycle by activating the AKT/glycogen synthase kinase 3 beta (GSK3β)/β-catenin pathway. It also activates the transcription of the viral enhancer I/HBx promoter (EnI/Xp) and enhancer II/HBc promoter (EnII/Cp) by targeting the transcription factor p53. The Sirt2 isoform 2 (Sirt2.2) is mainly localized in the cytoplasm, and the N-terminus is shorter by 37 amino acids than that of Sirt2.1. Despite the truncation of the N-terminal region, Sirt2.2 is still capable of enhancing HBV replication and activating the AKT/GSK3β/β-catenin signaling pathway. The Sirt2 isoform 5 (Sirt2.5) is primarily localized to the nucleus, it lacks a nuclear export signal (NES), and the catalytic domain (CD) is truncated. Upon HBV replication, expression of the Sirt2 isoforms is also enhanced, which further upregulates the HBV replication, and, therefore, supports the vicious cycle of viral replication and progression of the disease. Sirt2 diversely affects HBV replication such that its isoform 1 intensely augments HBV replication and isoform 2 (despite of the truncated N-terminal region) moderately enhances HBV replication. Isoform 5, on the other hand, tends to protect the cell (for smooth long-term continued viral replication) from HBV-induced extreme damage or death via a discrete set of regulatory mechanisms impeding viral mRNAs, the hepatitis B core/capsid protein (HBc), core particles, replicative intermediate (RI) DNAs, and covalently closed circular DNA (cccDNA) levels, and, consequently, limiting HBV replication. In contrast to Sirt2.1 and Sirt 2.2, the Sirt2.5-mediated HBV replication is independent of the AKT/GSK3β/β-catenin signaling cascade. Sirt2.5 is recruited more at cccDNA than the recruitment of Sirt2.1 onto the cccDNA. This recruitment causes the deposition of more histone lysine methyltransferases (HKMTs), including SETDB1, SUV39H1, EZH2, and PR-Set7, along with the respective corresponding transcriptional repressive markers such as H3K9me3, H3K27me3, and H4K20me1 onto the HBV cccDNA. In HBV-replicating cells, Sirt2.5 can also make complexes with PR-Set7 and SETDB1. In addition, Sirt2.5 has the ability to turn off transcription from cccDNA through epigenetic modification via either direct or indirect interaction with HKMTs.
Collapse
Affiliation(s)
- Zahra Zahid Piracha
- Department of Medical Research, International Center of Medical Sciences Research (ICMSR), Islamabad, Pakistan
| | - Umar Saeed
- Clinical and Biomedical Research Centre (CBRC) and Multidisciplinary Lab (MDL), Foundation University School of Health Sciences (FUSH), Foundation University, Islamabad, Pakistan
| | - Irfan Ellahi Piracha
- Atta ur Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Seneen Noor
- Department of Medical Research, International Center of Medical Sciences Research (ICMSR), Islamabad, Pakistan
| | - Elyeen Noor
- Department of Medical Research, International Center of Medical Sciences Research (ICMSR), Islamabad, Pakistan
| |
Collapse
|
8
|
Wang H, Zhang J. The glucose metabolic reprogramming in hepatitis B virus infection and hepatitis B virus associated diseases. J Gastroenterol Hepatol 2023; 38:1886-1891. [PMID: 37654246 DOI: 10.1111/jgh.16340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 08/01/2023] [Accepted: 08/14/2023] [Indexed: 09/02/2023]
Abstract
Hepatitis B virus (HBV) infection is closely related to viral hepatitis, liver cirrhosis, and hepatocellular carcinoma. HBV infection can reprogram metabolism processes of the host cells including glucose metabolism. The aberrant glucose metabolism may aid in viral infection and immune escape and may contribute to liver associated pathology. In this review, we discussed the interplay between HBV infection and glucose metabolism, which may provide new insights into HBV infection and pathology, novel intervention targets for HBV-related diseases.
Collapse
Affiliation(s)
- Hangle Wang
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Ministry of Health (Peking University), Peking University Health Science Center, Beijing, China
| | - Jun Zhang
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Ministry of Health (Peking University), Peking University Health Science Center, Beijing, China
| |
Collapse
|
9
|
Jansens RJ, Olarerin-George A, Verhamme R, Mirza A, Jaffrey S, Favoreel HW. Alphaherpesvirus-mediated remodeling of the cellular transcriptome results in depletion of m6A-containing transcripts. iScience 2023; 26:107310. [PMID: 37575180 PMCID: PMC10415716 DOI: 10.1016/j.isci.2023.107310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 06/04/2023] [Accepted: 07/04/2023] [Indexed: 08/15/2023] Open
Abstract
The mechanisms by which viruses regulate host mRNAs during infection are still poorly understood. Several host transcripts that encode proteins that contribute to the anti-viral response contain the N6-methyladenosine nucleotide (m6A). In this study, we investigated if and how viruses from different (sub) families specifically affect m6A-containing host transcripts. Systematic analysis of host transcriptomes after infection with diverse types of viruses showed that m6A-methylated transcripts are selectively downregulated during infection with Sendai virus, African swine fever virus and the alphaherpesviruses herpes simplex virus 1 (HSV-1) and pseudorabies virus (PRV). Focusing on PRV and HSV-1, we found that downregulation of m6A-methylated transcripts depends on the YTHDF family of m6A-binding proteins, and correlates with localization of these proteins to enlarged P-bodies. Knockdown of YTHDF proteins in primary cells reduced PRV protein expression and increased expression of antiviral interferon-stimulated genes, suggesting that virus-induced depletion of host m6A-containing transcripts constitutes an immune evasion strategy.
Collapse
Affiliation(s)
- Robert J.J. Jansens
- Department of Translational Physiology, Infectiology and Public Health
- Department of Pharmacology, Weill Medical College, Cornell University, New York NY 10021, USA
| | - Anthony Olarerin-George
- Department of Pharmacology, Weill Medical College, Cornell University, New York NY 10021, USA
| | - Ruth Verhamme
- Department of Translational Physiology, Infectiology and Public Health
| | - Aashiq Mirza
- Department of Pharmacology, Weill Medical College, Cornell University, New York NY 10021, USA
| | - Samie Jaffrey
- Department of Pharmacology, Weill Medical College, Cornell University, New York NY 10021, USA
| | | |
Collapse
|
10
|
You H, Zhang N, Yu T, Ma L, Li Q, Wang X, Yuan D, Kong D, Liu X, Hu W, Liu D, Kong F, Zheng K, Tang R. Hepatitis B virus X protein promotes MAN1B1 expression by enhancing stability of GRP78 via TRIM25 to facilitate hepatocarcinogenesis. Br J Cancer 2023; 128:992-1004. [PMID: 36635499 PMCID: PMC10006172 DOI: 10.1038/s41416-022-02115-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 12/06/2022] [Accepted: 12/08/2022] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND GRP78 has been implicated in hepatocarcinogenesis. However, the clinical relevance, biological functions and related regulatory mechanisms of GRP78 in hepatitis B virus (HBV)-associated hepatoma carcinoma (HCC) remain elusive. METHODS The association between GRP78 expression and HBV-related HCC was investigated. The effects of HBV X protein (HBX) on GRP78 and MAN1B1 expression, biological functions of GRP78 and MAN1B1 in HBX-mediated HCC cells and mechanisms related to TRIM25 on GRP78 upregulation to induce MAN1B1 expression in HBX-related HCC cells were examined. RESULTS GRP78 expression was correlated with poor prognosis in HBV-positive HCC. HBX increased MAN1B1 protein expression depending on GRP78, and HBX enhanced the levels of MAN1B1 to promote proliferation, migration and PI3-K/mTOR signalling pathway activation in HCC cells. GRP78 activates Smad4 via its interaction with Smad4 to increase MAN1B1 expression in HBX-expressing HCC cells. TRIM25 enhanced the stability of GRP78 by inhibiting its ubiquitination. HBX binds to GRP78 and TRIM25 and accelerates their interaction of GRP78 and TRIM25, leading to an increase in GRP78 expression. CONCLUSIONS HBX enhances the stability of GRP78 through TRIM25 to increase the expression of MAN1B1 to facilitate tumorigenesis, and we provide new insights into the molecular mechanisms underlying HBV-induced malignancy.
Collapse
Affiliation(s)
- Hongjuan You
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Ning Zhang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Tong Yu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Lihong Ma
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Qi Li
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Laboratory Department, The People's Hospital of Funing, Yancheng, Jiangsu, China
| | - Xing Wang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Dongchen Yuan
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Delong Kong
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiangye Liu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Wei Hu
- Nanjing Drum Tower Hospital Group Suqian Hospital, The Affiliate Suqian Hospital of Xuzhou Medical University, Suqian, Jiangsu, China
| | - Dongsheng Liu
- Nanjing Drum Tower Hospital Group Suqian Hospital, The Affiliate Suqian Hospital of Xuzhou Medical University, Suqian, Jiangsu, China
| | - Fanyun Kong
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China.
| | - Kuiyang Zheng
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
- National Demonstration Center for Experimental Basic Medical Sciences Education, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Renxian Tang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China.
- National Demonstration Center for Experimental Basic Medical Sciences Education, Xuzhou Medical University, Xuzhou, Jiangsu, China.
| |
Collapse
|
11
|
Teulière J, Bernard C, Bonnefous H, Martens J, Lopez P, Bapteste E. Interactomics: Dozens of Viruses, Co-evolving With Humans, Including the Influenza A Virus, may Actively Distort Human Aging. Mol Biol Evol 2023; 40:msad012. [PMID: 36649176 PMCID: PMC9897028 DOI: 10.1093/molbev/msad012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 12/07/2022] [Accepted: 01/09/2023] [Indexed: 01/18/2023] Open
Abstract
Some viruses (e.g., human immunodeficiency virus 1 and severe acute respiratory syndrome coronavirus 2) have been experimentally proposed to accelerate features of human aging and of cellular senescence. These observations, along with evolutionary considerations on viral fitness, raised the more general puzzling hypothesis that, beyond documented sources in human genetics, aging in our species may also depend on virally encoded interactions distorting our aging to the benefits of diverse viruses. Accordingly, we designed systematic network-based analyses of the human and viral protein interactomes, which unraveled dozens of viruses encoding proteins experimentally demonstrated to interact with proteins from pathways associated with human aging, including cellular senescence. We further corroborated our predictions that specific viruses interfere with human aging using published experimental evidence and transcriptomic data; identifying influenza A virus (subtype H1N1) as a major candidate age distorter, notably through manipulation of cellular senescence. By providing original evidence that viruses may convergently contribute to the evolution of numerous age-associated pathways through co-evolution, our network-based and bipartite network-based methodologies support an ecosystemic study of aging, also searching for genetic causes of aging outside a focal aging species. Our findings, predicting age distorters and targets for anti-aging therapies among human viruses, could have fundamental and practical implications for evolutionary biology, aging study, virology, medicine, and demography.
Collapse
Affiliation(s)
- Jérôme Teulière
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Sorbonne Université, CNRS, Museum National d’Histoire Naturelle, EPHE, Université des Antilles, Paris, France
| | - Charles Bernard
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Sorbonne Université, CNRS, Museum National d’Histoire Naturelle, EPHE, Université des Antilles, Paris, France
| | - Hugo Bonnefous
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Sorbonne Université, CNRS, Museum National d’Histoire Naturelle, EPHE, Université des Antilles, Paris, France
| | - Johannes Martens
- Sciences, Normes, Démocratie (SND), Sorbonne Université, CNRS, Paris, France
| | - Philippe Lopez
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Sorbonne Université, CNRS, Museum National d’Histoire Naturelle, EPHE, Université des Antilles, Paris, France
| | - Eric Bapteste
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Sorbonne Université, CNRS, Museum National d’Histoire Naturelle, EPHE, Université des Antilles, Paris, France
| |
Collapse
|
12
|
Wu QJ, Zhang TN, Chen HH, Yu XF, Lv JL, Liu YY, Liu YS, Zheng G, Zhao JQ, Wei YF, Guo JY, Liu FH, Chang Q, Zhang YX, Liu CG, Zhao YH. The sirtuin family in health and disease. Signal Transduct Target Ther 2022; 7:402. [PMID: 36581622 PMCID: PMC9797940 DOI: 10.1038/s41392-022-01257-8] [Citation(s) in RCA: 336] [Impact Index Per Article: 112.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/10/2022] [Accepted: 11/18/2022] [Indexed: 12/30/2022] Open
Abstract
Sirtuins (SIRTs) are nicotine adenine dinucleotide(+)-dependent histone deacetylases regulating critical signaling pathways in prokaryotes and eukaryotes, and are involved in numerous biological processes. Currently, seven mammalian homologs of yeast Sir2 named SIRT1 to SIRT7 have been identified. Increasing evidence has suggested the vital roles of seven members of the SIRT family in health and disease conditions. Notably, this protein family plays a variety of important roles in cellular biology such as inflammation, metabolism, oxidative stress, and apoptosis, etc., thus, it is considered a potential therapeutic target for different kinds of pathologies including cancer, cardiovascular disease, respiratory disease, and other conditions. Moreover, identification of SIRT modulators and exploring the functions of these different modulators have prompted increased efforts to discover new small molecules, which can modify SIRT activity. Furthermore, several randomized controlled trials have indicated that different interventions might affect the expression of SIRT protein in human samples, and supplementation of SIRT modulators might have diverse impact on physiological function in different participants. In this review, we introduce the history and structure of the SIRT protein family, discuss the molecular mechanisms and biological functions of seven members of the SIRT protein family, elaborate on the regulatory roles of SIRTs in human disease, summarize SIRT inhibitors and activators, and review related clinical studies.
Collapse
Affiliation(s)
- Qi-Jun Wu
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Tie-Ning Zhang
- grid.412467.20000 0004 1806 3501Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Huan-Huan Chen
- grid.412467.20000 0004 1806 3501Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xue-Fei Yu
- grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jia-Le Lv
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yu-Yang Liu
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ya-Shu Liu
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Gang Zheng
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jun-Qi Zhao
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yi-Fan Wei
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jing-Yi Guo
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Fang-Hua Liu
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qing Chang
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yi-Xiao Zhang
- grid.412467.20000 0004 1806 3501Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Cai-Gang Liu
- grid.412467.20000 0004 1806 3501Department of Cancer, Breast Cancer Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yu-Hong Zhao
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
13
|
Zai W, Hu K, Ye J, Ding J, Huang C, Li Y, Fang Z, Wu M, Wang C, Chen J, Yuan Z. Long-Term Hepatitis B Virus Infection Induces Cytopathic Effects in Primary Human Hepatocytes, and Can Be Partially Reversed by Antiviral Therapy. Microbiol Spectr 2022; 10:e0132821. [PMID: 35171034 PMCID: PMC8849052 DOI: 10.1128/spectrum.01328-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 01/21/2022] [Indexed: 01/05/2023] Open
Abstract
Chronic infection of hepatitis B virus (HBV) remains a major health burden worldwide. While the immune response has been recognized to play crucial roles in HBV pathogenesis, the direct cytopathic effects of HBV infection and replication on host hepatocytes and the HBV-host interactions are only partially defined due to limited culture systems. Here, based on our recently developed 5 chemical-cultured primary human hepatocytes (5C-PHHs) model that supports long-term HBV infection, we performed multiplexed quantitative analysis of temporal changes of host proteome and transcriptome on PHHs infected by HBV for up to 4 weeks. We showed that metabolic-, complement-, cytoskeleton-, mitochondrial-, and oxidation-related pathways were modulated at transcriptional or posttranscriptional levels during long-term HBV infection, which led to cytopathic effects and could be partially rescued by early, rather than late, nucleot(s)ide analog (NA) administration and could be significantly relieved by blocking viral antigens with RNA interference (RNAi). Overexpression screening of the dysregulated proteins identified a series of host factors that may contribute to pro- or anti-HBV responses of the infected hepatocytes. In conclusion, our results suggest that long-term HBV infection in primary human hepatocytes leads to cytopathic effects through remodeling the proteome and transcriptome and early antiviral treatment may reduce the extent of such effects, indicating a role of virological factors in HBV pathogenesis and a potential benefit of early administration of antiviral treatment. IMPORTANCE Global temporal quantitative proteomic and transcriptomic analysis using long-term hepatitis B virus (HBV)-infected primary human hepatocytes uncovered extensive remodeling of the host proteome and transcriptome and revealed cytopathic effects of long-term viral replication. Metabolic-, complement-, cytoskeleton-, mitochondrial-, and oxidation-related pathways were modulated at transcriptional or posttranscriptional levels, which could be partially rescued by early, rather than late, NA therapy and could be relieved by blocking viral antigens with RNAi. Overexpression screening identified a series of pro- or anti-HBV host factors. These data have deepened the understanding of the mechanisms of viral pathogenesis and HBV-host interactions in hepatocytes, with implications for therapeutic intervention.
Collapse
Affiliation(s)
- Wenjing Zai
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Kongying Hu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jianyu Ye
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jiahui Ding
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Chao Huang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yaming Li
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhong Fang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Min Wu
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Cong Wang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Jieliang Chen
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
- Research Unit of Cure of Chronic Hepatitis B Virus Infection, Chinese Academy of Medical Sciences, Shanghai, China
| | - Zhenghong Yuan
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
- Research Unit of Cure of Chronic Hepatitis B Virus Infection, Chinese Academy of Medical Sciences, Shanghai, China
| |
Collapse
|