1
|
Hu C, Yuan F, Wu Y, Xiao S, Xu Y, Peng X, He L. Disruption of the caspase-1/IL-1β axis alleviates myocardial Ischemia/Reperfusion injury via improvement of mitochondrial homeostasis and reduction of Pyroptosis. Clin Exp Hypertens 2025; 47:2506619. [PMID: 40373207 DOI: 10.1080/10641963.2025.2506619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 04/28/2025] [Accepted: 05/09/2025] [Indexed: 05/17/2025]
Abstract
BACKGROUND Pyroptosis is a novel kind of programmed cell death and Caspase-1 plays key roles in driving pyroptosis. The current study aims to elucidate the molecular mechanism affecting cardiomyocyte pyroptosis in myocardial ischemia/reperfusion (I/R) injury, both in vivo and in vitro. METHODS A murine model of myocardial I/R injury was established and then treated with lentivirus-mediated shRNA targeting Caspase-1 to evaluate the effect of Caspase-1 on myocardial I/R injury. Further, Caspase-1 was silenced in the cardiomyocytes following hypoxia-reoxygenation (H/R) to detect the function of Caspase-1 in mitochondrial homeostasis and cardiomyocyte pyroptosis. RESULTS Knockdown of Caspase-1 inhibited the secretion of interleukin-1 beta (IL-1β), improved cardiac dysfunction and decreased pyroptosis in vivo. The cardio-protective effect was verified in the H/R-induced cardiomyocyte model. Recombinant IL-1β protein reversed the inhibitory effect of Caspase-1 knockdown on pyroptosis. CONCLUSION Overall, activating the Caspase-1/IL-1β axis by myocardial I/R injury causes mitochondrial homeostasis imbalance, pyroptosis, and the consequent cardiomyocyte injury.
Collapse
Affiliation(s)
- ChenKai Hu
- Department of Cardiology, the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| | - FengXia Yuan
- Department of Pharmacy, the Second Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi Province, China
| | - YingXing Wu
- Department of Cardiology, the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| | - Shan Xiao
- Department of Cardiology, the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| | - Yuan Xu
- Medical Big Data Research Center, the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| | - Xiang Peng
- Information Department, the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| | - Lei He
- Department of Cardiology, the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| |
Collapse
|
2
|
Ren X, Zhao L, Hao Y, Huang X, Lv G, Zhou X. Copper-instigated modulatory cell mortality mechanisms and progress in kidney diseases. Ren Fail 2025; 47:2431142. [PMID: 39805816 PMCID: PMC11734396 DOI: 10.1080/0886022x.2024.2431142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/23/2024] [Accepted: 11/13/2024] [Indexed: 01/16/2025] Open
Abstract
Copper is a vital cofactor in various enzymes, plays a pivotal role in maintaining cell homeostasis. When copper metabolism is disordered and mitochondrial dysfunction is impaired, programmed cell death such as apoptosis, paraptosis, pyroptosis, ferroptosis, cuproptosis, autophagy and necroptosis can be induced. In this review, we focus on the metabolic mechanisms of copper. In addition, we discuss the mechanism by which copper induces various programmed cell deaths. Finally, this review examines copper's involvement in prevalent kidney diseases such as acute kidney injury and chronic kidney disease. The findings indicate that the use of copper chelators or plant extracts can mitigate kidney damage by reducing copper accumulation, offering novel insights into the pathogenesis and treatment strategies for kidney diseases.
Collapse
Affiliation(s)
- Xiya Ren
- The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Limei Zhao
- The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yajie Hao
- The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiu Huang
- The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Guangna Lv
- The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiaoshuang Zhou
- Department of Nephrology, Shanxi Provincial People’s Hospital, The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
3
|
Zhang Z, Yang Z, Wang S, Wang X, Mao J. Natural products and ferroptosis: A novel approach for heart failure management. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 142:156783. [PMID: 40286752 DOI: 10.1016/j.phymed.2025.156783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 03/23/2025] [Accepted: 04/17/2025] [Indexed: 04/29/2025]
Abstract
BACKGROUND The discovery of ferroptosis has brought a revolutionary breakthrough in heart failure treatment, and natural products, as a significant source of drug discovery, are gradually demonstrating their extraordinary potential in regulating ferroptosis and alleviating heart failure symptoms. In addition to chemically synthesized small molecule compounds, natural products have attracted attention as an important source for discovering compounds that target ferroptosis in treating heart failure. PURPOSE Systematically summarize and analyze the research progress on improving heart failure through natural products' modulation of the ferroptosis pathway. METHODS By comprehensively searching authoritative databases like PubMed, Web of Science, and China National Knowledge Infrastructure with keywords such as "heart failure", "cardiovascular disease", "heart disease", "ferroptosis", "natural products", "active compounds", "traditional Chinese medicine formulas", "traditional Chinese medicine", and "acupuncture", we aim to systematically review the mechanism of ferroptosis and its link with heart failure. We also want to explore natural small-molecule compounds, traditional Chinese medicine formulas, and acupuncture therapies that can inhibit ferroptosis to improve heart failure. RESULTS In this review, we not only trace the evolution of the concept of ferroptosis and clearly distinguish it from other forms of cell death but also establish a comprehensive theoretical framework encompassing core mechanisms such as iron overload and system xc-/GSH/GPX4 imbalance, along with multiple auxiliary pathways. On this basis, we innovatively link ferroptosis with various types of heart failure, covering classic heart failure types and extending our research to pre-heart failure conditions such as arrhythmia and aortic aneurysm, providing new insights for early intervention in heart failure. Importantly, this article systematically integrates multiple strategies of natural products for interfering with ferroptosis, ranging from monomeric compounds and bioactive components to crude extracts and further to traditional Chinese medicine formulae. In addition, non-pharmacological means such as acupuncture are also included. CONCLUSION This study fills the gap in the systematic description of the relationship between ferroptosis and heart failure and the therapeutic strategies of natural products, aiming to provide patients with more diverse treatment options and promote the development of the heart failure treatment field.
Collapse
Affiliation(s)
- Zeyu Zhang
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, No.88 Changling Road, Xiqing District, Tianjin 300381, PR China; Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Zhihua Yang
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, No.88 Changling Road, Xiqing District, Tianjin 300381, PR China; Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Shuai Wang
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, No.88 Changling Road, Xiqing District, Tianjin 300381, PR China
| | - Xianliang Wang
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, No.88 Changling Road, Xiqing District, Tianjin 300381, PR China.
| | - Jingyuan Mao
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, No.88 Changling Road, Xiqing District, Tianjin 300381, PR China.
| |
Collapse
|
4
|
Xu R, Li L, Ke Y, An Z, Duan W, Guo M, Tan Z, Liu X, Liu Y, Guo H. The role of pyroptosis in environmental pollutants-induced multisystem toxicities. Life Sci 2025; 372:123632. [PMID: 40220954 DOI: 10.1016/j.lfs.2025.123632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 04/01/2025] [Accepted: 04/08/2025] [Indexed: 04/14/2025]
Abstract
The global ecosystem is adversely affected by environmental pollutants, which have numerous deleterious consequences on both the environment and human health. A multitude of human organs and systems, including the neurological, digestive, cardiovascular, reproductive, and respiratory systems, can be adversely affected by these pollutants. Pyroptosis is a form of programmed cell death, primarily involving the Caspase-1/Gasdermin D (GSDMD) classical inflammasome pathway, Caspase-4/5/11/GSDMD non-classical inflammasome pathway, Caspase-3/8 pathway, and other signaling pathways, which induce cell death and regulate the occurrence of inflammatory responses. Pyroptosis plays an important role in a range of diseases, including cancer, neurodegenerative diseases and cardiovascular disease. Evidence has emerged in recent years indicating that environmental pollutants exert various toxic effects by modulating pyroptosis. In this review, we examine hepatotoxicity, cardiovascular toxicity, nephrotoxicity, neurotoxicity, pulmonary toxicity, reproductive toxicity and the related mechanisms caused by environmental pollutants through the regulation of pyroptosis. We aim to provide theoretical references for future toxicity research on environmental pollutants.
Collapse
Affiliation(s)
- Rui Xu
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Longfei Li
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Yijia Ke
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Ziwen An
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Wenjing Duan
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Mingmei Guo
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Zhenzhen Tan
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Xuehui Liu
- Hebei Key Laboratory of Environment and Human Health, Hebei Province, Shijiazhuang 050017, PR China
| | - Yi Liu
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Huicai Guo
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, PR China; Hebei Key Laboratory of Environment and Human Health, Hebei Province, Shijiazhuang 050017, PR China.
| |
Collapse
|
5
|
Wang Y, Cui Y, Liu Z, Liu L, Huang Z, Wang Q, Mao X. Acevaltrate overcomes myeloma resistance to bortezomib via pyroptosis by promoting BAX translocalization to mitochondria. Eur J Pharmacol 2025; 996:177572. [PMID: 40180268 DOI: 10.1016/j.ejphar.2025.177572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/13/2025] [Accepted: 03/31/2025] [Indexed: 04/05/2025]
Abstract
Bortezomib is a mainstay drug for the treatment of myeloma, a malignancy of plasma cells, but resistance frequently develops. Overcoming bortezomib resistance is urgently needed. In the present study, we found that acevaltrate, an active ingredient from a traditional Chinese medicine, exhibits potent activity in triggering pyroptosis in bortezomib-resistant myeloma cells. Mechanistically, acevaltrate induces myeloma cells pyroptosis in a Caspase-3 and GSDME-dependent manner. When Caspase-3 is inhibited by its specific inhibitor or GSDME is knocked out, myeloma cells fail to undergo pyroptosis triggered by acevaltrate. Moreover, acevaltrate promotes the production of reactive oxygen species and strikingly reduces mitochondrial membrane potential. Consistent with this finding, acevaltrate dissociates BAX from its inhibitor, Bcl-2, thereby promoting BAX translocalization to mitochondria. Furthermore, IFIT3, an IFN-inducible protein, is upregulated by acevaltrate. Interestingly, while IFIT3 fails to directly induce myeloma cells pyroptosis, it markedly enhances acevaltrate-induced pyroptosis. IFIT3 binds to Bcl-2 and prevents it from interacting with BAX. Lastly, acevaltrate effectively triggers pyroptosis in bortezomib-resistant myeloma cells. Pre-treatment with acevaltrate significantly restores the sensitivity of resistant myeloma cells to bortezomib. Therefore, acevaltrate strongly induces myeloma cell pyroptosis and overcomes bortezomib resistance. Given its potent activity against myeloma and its established safety profile, acevaltrate warrants further evaluation in clinical settings for its potential to overcome myeloma resistance to bortezomib.
Collapse
Affiliation(s)
- Yaner Wang
- Institute of Clinical Pharmacology, Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, PR China
| | - Yaoli Cui
- Guangdongand Guangzhou Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Ziyang Liu
- Guangdongand Guangzhou Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Longlong Liu
- Department of Hematology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, PR China
| | - Zhenqian Huang
- Department of Hematology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, PR China
| | - Qi Wang
- Institute of Clinical Pharmacology, Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, PR China
| | - Xinliang Mao
- Institute of Clinical Pharmacology, Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, PR China; Guangdongand Guangzhou Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, PR China.
| |
Collapse
|
6
|
Tang K, Ye T, He Y, Ba X, Xia D, Peng E, Chen Z, Ye Z, Yang X. Ferroptosis, necroptosis, and pyroptosis in calcium oxalate crystal-induced kidney injury. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167791. [PMID: 40086520 DOI: 10.1016/j.bbadis.2025.167791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/24/2025] [Accepted: 03/04/2025] [Indexed: 03/16/2025]
Abstract
Kidney stones represent a highly prevalent urological disorder worldwide, with high incidence and recurrence rates. Calcium oxalate (CaOx) crystal-induced kidney injury serves as the foundational mechanism for the formation and progression of CaOx stones. Regulated cell death (RCD) such as ferroptosis, necroptosis, and pyroptosis are essential in the pathophysiological process of kidney injury. Ferroptosis, a newly discovered RCD, is characterized by its reliance on iron-mediated lipid peroxidation. Necroptosis, a widely studied programmed necrosis, initiates with a necrotic phenotype that resembles apoptosis in appearance. Pyroptosis, a type of RCD that involves the gasdermin protein, is accompanied by inflammation and immune response. In recent years, increasing amounts of evidence has demonstrated that ferroptosis, necroptosis, and pyroptosis are significant pathophysiological processes involved in CaOx crystal-induced kidney injury. Herein, we summed up the roles of ferroptosis, necroptosis, and pyroptosis in CaOx crystal-induced kidney injury. Furthermore, we delved into the curative potential of ferroptosis, necroptosis, and pyroptosis in CaOx crystal-induced kidney injury.
Collapse
Affiliation(s)
- Kun Tang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Ye
- Department of Geriatric Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu He
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaozhuo Ba
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ding Xia
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ejun Peng
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhiqiang Chen
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhangqun Ye
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoqi Yang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
7
|
Liu J, Li Z, Li Z, Wang A, Liao X, Liu Z, Wu J. Fudosteine attenuates lung inflammation in mice with PM2.5-induced asthma exacerbation by inhibiting pyroptosis via the NLRP3/caspase-1/GSDMD pathway. Toxicol Appl Pharmacol 2025; 499:117346. [PMID: 40228672 DOI: 10.1016/j.taap.2025.117346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 04/09/2025] [Accepted: 04/11/2025] [Indexed: 04/16/2025]
Abstract
This study aimed to explore the potential preventive effects of fudosteine (Fud) on PM2.5-induced asthma exacerbations in a murine model. BALB/c mice were randomly allocated into six groups: control, Fud, ovalbumin (OVA), OVA+Fud, OVA+PM2.5, and OVA+PM2.5 + Fud. An asthma model was established through OVA sensitization and challenge. Compared to the OVA group, PM2.5 exposure exacerbated allergic asthma, as evidenced by increased collagen fiber deposition, goblet cell metaplasia, mucus secretion, heightened airway inflammation, elevated total cell and eosinophil counts, and upregulated levels of interleukin (IL)-1β, IL-18, and NLRP3 expression in lung tissues. Notably, fudosteine treatment mitigated these pathological changes. Western blot analysis revealed that fudosteine significantly reduced the expression of NLRP3, caspase-1, gasdermin D (GSDMD), cleaved-caspase-1, and cleaved-GSDMD in lung tissues. In conclusion, fudosteine alleviated lung inflammation, collagen deposition, and mucus secretion in PM2.5-induced asthma exacerbation, potentially by inhibiting the NLRP3 inflammasome-mediated pyroptosis pathway.
Collapse
Affiliation(s)
- Jianling Liu
- School of Medicine South China University of Technology, Guangzhou, Guangdong 510000, China; Second Department of Elderly Respiratory, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Zhongpeng Li
- Second Department of Elderly Respiratory, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China; Critical Care Medicine Department, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Zhangwen Li
- School of Medicine South China University of Technology, Guangzhou, Guangdong 510000, China; Second Department of Elderly Respiratory, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Aili Wang
- Second Department of Elderly Respiratory, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Xiaoyang Liao
- Second Department of Elderly Respiratory, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Zhangquan Liu
- Second Department of Elderly Respiratory, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Jian Wu
- School of Medicine South China University of Technology, Guangzhou, Guangdong 510000, China; Second Department of Elderly Respiratory, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China.
| |
Collapse
|
8
|
Meng Y, Zhou Q, Dian Y, Zeng F, Deng G, Chen X. Ferroptosis: A Targetable Vulnerability for Melanoma Treatment. J Invest Dermatol 2025; 145:1323-1344. [PMID: 39797894 DOI: 10.1016/j.jid.2024.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/10/2024] [Accepted: 11/11/2024] [Indexed: 01/13/2025]
Abstract
Melanoma is a devastating form of skin cancer characterized by a high mutational burden, limited treatment success, and dismal prognosis. Although immunotherapy and targeted therapies have significantly revolutionized melanoma treatment, the majority of patients fail to achieve durable responses, highlighting the urgent need for novel therapeutic strategies. Ferroptosis, an iron-dependent form of regulated cell death driven by the overwhelming accumulation of lipid peroxides, has emerged as a promising therapeutic approach in preclinical melanoma models. A deeper understanding of the ferroptosis landscape in melanoma based on its biology characteristics, including phenotypic plasticity, metabolic state, genomic alterations, and epigenetic changes, as well as the complex role and mechanisms of ferroptosis in immune cells could provide a foundation for developing effective treatments. In this review, we outline the molecular mechanisms of ferroptosis, decipher the role of melanoma biology in ferroptosis regulation, reveal the therapeutic potential of ferroptosis in melanoma, and discuss the pressing questions that should guide future investigations into ferroptosis in melanoma.
Collapse
Affiliation(s)
- Yu Meng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, China; Furong Laboratory, Changsha, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
| | - Qian Zhou
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, China; Furong Laboratory, Changsha, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
| | - Yating Dian
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, China; Furong Laboratory, Changsha, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
| | - Furong Zeng
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Guangtong Deng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, China; Furong Laboratory, Changsha, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China.
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, China; Furong Laboratory, Changsha, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China.
| |
Collapse
|
9
|
Elariny HA, Atia HA, Abdallah MH, Khalifa AM, Abd Elmaaboud MA, Elkady MA, Kabel AM. Olmesartan attenuates doxorubicin-elicited testicular toxicity: The interaction between sirtuin-1, HMGB1/NLRP3 inflammasome/gasdermin D signaling, and AMPK/mTOR-driven autophagy. Life Sci 2025; 370:123545. [PMID: 40058574 DOI: 10.1016/j.lfs.2025.123545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/01/2025] [Accepted: 03/06/2025] [Indexed: 03/20/2025]
Abstract
BACKGROUND In the recent years, there has been an increased incidence of testicular toxicity associated with doxorubicin (DOX) use in cancer therapy. The mechanisms of this adverse effect may include induction of oxidative stress with augmentation of the inflammatory and the apoptotic signals in the testicular tissues. The ongoing research is directed towards the exploration of new agents that are capable of overcoming this health problem. This study was a trial to evaluate the efficacy of Olmesartan as a protective agent against DOX-induced testicular dysfunction in male rats. MATERIALS AND METHODS Forty adult male Sprague-Dawley rats were divided into control group, DOX-injected group, and three DOX-injected groups treated with olmesartan at 3 dose levels (1, 5, and 10 mg/kg/day). The effect of the different treatments was assessed at the biochemical and the morphological levels. KEY FINDINGS Olmesartan administered to DOX-treated rats induced dose-dependent restoration of the testicular weight and functions, normalization of the hormonal profile, augmentation of the antioxidant defenses, and potentiation of AMPK/mTOR-driven autophagy in comparison to rats treated with DOX alone. These effects were accompanied with a dose-dependent significant mitigation of the cellular events related to pyroptosis and inflammation and a significant amelioration of the testicular morphological changes induced by DOX. SIGNIFICANCE Olmesartan may represent a promising therapy for DOX-elicited testicular dysfunction, possibly via dose-dependent antioxidant, anti-pyroptotic, anti-inflammatory, and autophagy enhancing effects.
Collapse
Affiliation(s)
- Hemat A Elariny
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Ha'il, Ha'il 81442, Saudi Arabia
| | - Hanan Abdelmawgoud Atia
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Ha'il, Ha'il 81442, Saudi Arabia
| | - Marwa H Abdallah
- Department of Pharmaceutics, College of Pharmacy, University of Ha'il, Ha'il 81442, Saudi Arabia
| | - Amany M Khalifa
- Department of Pathology, College of Medicine, University of Ha'il, Ha'il 81442, Saudi Arabia
| | | | - Mennatallah A Elkady
- Pharmacology Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt
| | - Ahmed M Kabel
- Pharmacology Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt.
| |
Collapse
|
10
|
Zhou L, Zhao S, Xu Y, Li L, Wu Y, Zhu J, Xia D, Li F, Cai K, Zhang J. Spatial-Constraint Modulation of Intra/Extracellular Reactive Oxygen Species by Adaptive Hybrid Materials for Boosting Pyroptosis and Combined Immunotherapy of Breast Tumor. Adv Healthc Mater 2025:e2500371. [PMID: 40434189 DOI: 10.1002/adhm.202500371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 05/02/2025] [Indexed: 05/29/2025]
Abstract
Pyroptosis-immunotherapy has potential for triple-negative breast cancer treatment, but its efficacy is limited by insufficient pyroptosis activation and the need for phased, balanced, and spatially controlled activation of active species during long-term treatment. To reconcile intracellular/extracellular demands in tumor ablation, a nanoparticle-hydrogel hybrid enabling spatiotemporal reactive oxygen species (ROS) modulation is engineered. An open-shell sonosensitizer with unpaired electrons in its molecular orbitals is prepared by chelating Cu2⁺ with TCPP. These sonosensitizers are undergoing bovine serum albumin mediated biomineralization to form calcium phosphate particles and are incorporated into an injectable hydrogel through Schiff base crosslinking between dopamine-functionalized oxidized hyaluronic acid and gallic acid-modified chitosan. After intratumoral injection, nanoparticles endocytosed into tumor cells undergo acidic degradation, releasing calcium ions and GSH-activatable sonosensitizers. Calcium overload synergizes with ultrasound-mediated oxidative stress to induce mitochondrial damage and pyroptosis, while adhesive hydrogels retained in the extracellular matrix control excessive secondary ROS levels to protect oxidation-sensitive entities. This dual-action mechanism enhances the overall therapeutic effect by combining immediate tumor killing with long-term immune activation. This study provides a new route to hybrid material design, addressing the conflicting demands of short-term tumor ablation and long-term immune activation, overcoming the limitations of current pyroptosis-based immunotherapies.
Collapse
Affiliation(s)
- Luoli Zhou
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing, 400044, China
| | - Sheng Zhao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing, 400044, China
| | - Yijing Xu
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Lin Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing, 400044, China
| | - Yunyun Wu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing, 400044, China
| | - Jing Zhu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing, 400044, China
| | - Daqing Xia
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing, 400044, China
| | - Fan Li
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing, 400044, China
| | - Jixi Zhang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing, 400044, China
| |
Collapse
|
11
|
Chen X, Yang M, Zhang H, Wang Y, Yan W, Cheng C, Guo R, Chai J, Zheng Y, Zhang F. Cucurbitacin B induces oral squamous cell carcinomapyroptosis via GSDME and inhibits tumour growth. Transl Oncol 2025; 58:102422. [PMID: 40424936 DOI: 10.1016/j.tranon.2025.102422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 05/12/2025] [Accepted: 05/16/2025] [Indexed: 05/29/2025] Open
Abstract
BACKGROUND Pyroptosis, a form of programmed cell death, has been shown to induce anti-tumour immunity and inhibit tumour growth. Oral squamous cell carcinoma (OSCC), a prevalent malignant tumour, could benefit from pyroptosis induction as a therapeutic strategy. Cucurbitacin B (CuB), a natural compound derived from various plants, exhibits broad anti-tumour activity. However, whether CuB can exert its anti-tumour effects in OSCC through pyroptosis remains unexplored. RESULTS CuB significantly inhibited the proliferation of OSCC cells, induced pyroptosis, and elevated the levels of inflammatory factors in the cell supernatant. Bioinformatics analysis predicted the potential role of pyroptosis in OSCC, which was subsequently validated in a 4NQO-induced OSCC mouse model. The results demonstrated that CuB not only exerted tumour-inhibitory effects but also increased the infiltration of CD8+ T cells in the peritumoural region. To elucidate the mechanism of CuB-induced pyroptosis, STAT3 was identified as a key target of CuB in OSCC, with its expression upregulated in tumour tissues. Further experiments revealed that CuB induced pyroptosis by suppressing STAT3 expression and promoting the cleavage of caspase-3 and Gasdermin-E (GSDME). CONCLUSION CuB triggers OSCC pyroptosis through the STAT3/caspase-3/GSDME pathway, enhancing peritumoural CD8+ T cell infiltration and offering a novel strategy to boost tumour immunotherapy efficacy.
Collapse
Affiliation(s)
- Xin Chen
- Shanxi Medical University School and Hospital of Stomatology, Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, No.63 Xinjian South Road, Yingze District, Taiyuan, Shanxi 030001, China
| | - Mengyuan Yang
- Shanxi Medical University School and Hospital of Stomatology, Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, No.63 Xinjian South Road, Yingze District, Taiyuan, Shanxi 030001, China
| | - Heng Zhang
- Shanxi Medical University School and Hospital of Stomatology, Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, No.63 Xinjian South Road, Yingze District, Taiyuan, Shanxi 030001, China
| | - Yajun Wang
- Shanxi Medical University School and Hospital of Stomatology, Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, No.63 Xinjian South Road, Yingze District, Taiyuan, Shanxi 030001, China
| | - Wenpeng Yan
- Shanxi Medical University School and Hospital of Stomatology, Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, No.63 Xinjian South Road, Yingze District, Taiyuan, Shanxi 030001, China
| | - Chen Cheng
- Shanxi Medical University School and Hospital of Stomatology, Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, No.63 Xinjian South Road, Yingze District, Taiyuan, Shanxi 030001, China
| | - Rongrong Guo
- Shanxi Medical University School and Hospital of Stomatology, Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, No.63 Xinjian South Road, Yingze District, Taiyuan, Shanxi 030001, China
| | - Jiawei Chai
- Shanxi Medical University School and Hospital of Stomatology, Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, No.63 Xinjian South Road, Yingze District, Taiyuan, Shanxi 030001, China
| | - YaHsin Zheng
- Department of Physiology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Fang Zhang
- Shanxi Medical University School and Hospital of Stomatology, Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, No.63 Xinjian South Road, Yingze District, Taiyuan, Shanxi 030001, China.
| |
Collapse
|
12
|
Huang LJ, Chen F, Chen L, Zhan ST, Liu MM, Xiang JD, Zhang QY, Yang Y. GSDMD is a novel predictive biomarker for immunotherapy response: in the pan-cancer and single cell landscapes. Front Immunol 2025; 16:1570901. [PMID: 40491921 PMCID: PMC12146313 DOI: 10.3389/fimmu.2025.1570901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Accepted: 05/05/2025] [Indexed: 06/11/2025] Open
Abstract
Background Gasdermin D (GSDMD), a key executor of pyroptosis, has been implicated in modulating the tumor immune microenvironment. However, its role as a predictive biomarker for immunotherapy response remains unclear. Methods We conducted a pan-cancer analysis of GSDMD expression across TCGA datasets and investigated its association with tumor mutational burden (TMB), microsatellite instability (MSI), and mismatch repair (MMR) status. Immunological relevance was further assessed by correlating GSDMD expression with immune cell infiltration and immune checkpoint gene signatures. We performed single-cell RNA sequencing analysis to investigate the immune cell populations and immunological pathways associated with GSDMD expression. Finally, organoid-based functional assays confirmed that Poly ADP-ribose polymerase inhibitors (PARPi) exert antitumor effects at least in part by enhancing GSDMD-mediated pyroptosis. Results GSDMD was found to be aberrantly expressed in multiple tumor types and positively correlated with TMB, MSI, and immune checkpoint expression. High GSDMD expression was associated with increased infiltration of pro-inflammatory immune cells. In organoid models, GSDMD expression influenced sensitivity to PARPi, suggesting a potential role in shaping the immune-responsive phenotype. Conclusion Our findings highlight GSDMD as a potential biomarker for predicting immunotherapy response and as a modulator of tumor-immune interactions. These results provide a foundation for future studies exploring GSDMD-targeted strategies to enhance immunotherapeutic efficacy.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Qin Yi Zhang
- *Correspondence: Ye Yang, ; Qin Yi Zhang, ; Jiang Dong Xiang,
| | - Ye Yang
- *Correspondence: Ye Yang, ; Qin Yi Zhang, ; Jiang Dong Xiang,
| |
Collapse
|
13
|
Meng J, Zuo J, Li L, Zhang Y, Zhao M, Xiong P. Sonodynamic Therapy Induces Pyroptosis and Recruits CAR-NK Cells to Enhance the Treatment of Oral Squamous Cell Carcinoma. ACS APPLIED MATERIALS & INTERFACES 2025; 17:29352-29363. [PMID: 40338058 PMCID: PMC12100594 DOI: 10.1021/acsami.5c03584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 04/27/2025] [Accepted: 04/30/2025] [Indexed: 05/09/2025]
Abstract
Background: Immunotherapy strategies have demonstrated promising efficacy in treating various cancers. However, cancer cells often evade immune surveillance by reducing their immunogenicity, which limits immune cell infiltration into the tumor microenvironment. Pyroptosis, a proinflammatory form of programmed cell death, is characterized by the formation of plasma membrane pores that lead to the release of intracellular contents and stimulate a robust immune response. Results: To exploit this mechanism, we developed hematoporphyrin monomethyl ether (HMME)-loaded nanoliposomes capable of efficiently accumulating at the tumor site. Upon ultrasound irradiation, these nanomedicines generate reactive oxygen species (ROS) that activate Caspase-3, which cleaves Gasdermin E (GSDME) and induces tumor cell pyroptosis. Notably, this sonodynamic therapy (SDT) based on nanosonosensitizers enhanced the targeted enrichment of chimeric antigen receptor (CAR)-engineered natural killer (NK) cells at the ultrasound-irradiated tumor site, significantly improved the tumor immune response, and effectively inhibited the growth and proliferation of oral squamous cell carcinoma (OSCC) cells both in vivo and in vitro. Conclusions: Given that NK cell immunotherapy has an excellent safety profile with minimal risks of cytokine release syndrome and neurotoxicity, this approach holds promise as an adjunct to various NK cell-based immunotherapies through SDT-induced pyroptosis.
Collapse
Affiliation(s)
- Jing Meng
- Department
of Ultrasound, Ninth People’s Hospital,
Shanghai Jiaotong University School of Medicine, Shanghai200001, P.R. China
| | - Jiaxin Zuo
- Department
of Ultrasound, Ninth People’s Hospital,
Shanghai Jiaotong University School of Medicine, Shanghai200001, P.R. China
| | - Luyu Li
- Shanghai
Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University
School of Medicine, Shanghai200240, China
| | - Yunxuan Zhang
- School
of Pharmacy, Shanghai Jiao Tong University, Shanghai200240, P.R. China
| | - Minghao Zhao
- School
of Pharmacy, Shanghai Jiao Tong University, Shanghai200240, P.R. China
| | - Ping Xiong
- Department
of Ultrasound, Ninth People’s Hospital,
Shanghai Jiaotong University School of Medicine, Shanghai200001, P.R. China
| |
Collapse
|
14
|
Wang X, Gao F, Guan J, Zhang L, Du L, Zhao Y, Gao F, Zhao K, He W, Lin J. mTOR blockade mitigates chemotherapy drug-induced intestinal toxicity via inhibition of pyroptosis. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167913. [PMID: 40398827 DOI: 10.1016/j.bbadis.2025.167913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 05/13/2025] [Accepted: 05/15/2025] [Indexed: 05/23/2025]
Abstract
Mammalian target of rapamycin (mTOR) signaling constitutes a crucial intracellular signaling pathway indispensable for regulating a variety of pathophysiological processes, including cancers. Intriguingly, the inhibition of mTOR can reverse the adverse effects induced by chemotherapy drugs; however, the fundamental mechanism underlying this phenomenon remains unclear. In this study, we demonstrate that mTOR signaling blockade can mitigate etoposide- or cisplatin-induced intestinal injury in mice. The mTOR inhibitor AZD8055 can inhibit chemotherapy drug-induced normal cell pyroptosis, as manifested by a decreased proportion of PI-positive cells, attenuated intestinal cell swelling, and reduced release of lactate dehydrogenase (LDH) and high mobility group box-1 protein (HMGB1). We further determined that mTOR inhibition suppressed the cleavage of caspase-3 and gasdermin E (GSDME), suggesting the inhibition of the caspase3/GSDME signaling pathway. We also discovered that AZD8055 can impede chemotherapy drug-induced alterations in mitochondrial membrane potential, reactive oxygen species generation, and DNA damage in intestinal cells, which are the key upstream events for activating caspase-3. Correspondingly, data from in vivo mouse models also demonstrated that AZD8055 effectively curtailed intestinal DNA damage and inflammation induced by chemotherapy drugs. Importantly, although AZD8055 counteracts the side effects of chemotherapy drugs, it does not substantially affect their anti-tumor activity. Our study proposes the potential application of mTOR inhibitors as chemoprotective agents, presenting a means to prolong the duration of chemotherapy drug use and optimize the chemotherapeutic regimen.
Collapse
Affiliation(s)
- Xinyue Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Fei Gao
- Department of Laboratory Animals, College of Animal Science, Jilin University, 130062 Changchun, China
| | - Jiyu Guan
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Lening Zhang
- Department of Thoracic Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin, China
| | - Li Du
- Department of Pulmonary and Critical Care Medicine, The Affiliate Hospital of Inner Mongolia Medical University, Hohhot 010050, Inner Mongolia Autonomous Region, China
| | - Yicheng Zhao
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China; Department of Thoracic Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin, China; Clinical Medical College, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Feng Gao
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Kui Zhao
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Wenqi He
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Jing Lin
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China.
| |
Collapse
|
15
|
Tang X, Zou Y, Yang S, Chen Z, Zhou Z, Peng X, Tang C. Impaired Mitophagy Contributes to Pyroptosis in Sarcopenic Obesity Zebrafish Skeletal Muscle. Nutrients 2025; 17:1711. [PMID: 40431451 PMCID: PMC12114099 DOI: 10.3390/nu17101711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2025] [Revised: 05/15/2025] [Accepted: 05/15/2025] [Indexed: 05/29/2025] Open
Abstract
Background: Growing evidence suggests that the prevalence of sarcopenic obesity (SOB) is on the rise across the globe. However, the key molecular mechanisms behind this disease have not been clarified. Methods: In this experiment, we fed zebrafish a high-fat diet (HFD) for 16 weeks to induce sarcopenic obesity. Results: After a dietary trial, HFD zebrafish exhibited an obese phenotype with skeletal muscle atrophy and decreased swimming capacity. We demonstrated that mitochondrial content and function were abnormal in SOB zebrafish skeletal muscle. These results may be associated with the impairment of mitophagy regulated by the PTEN-induced putative kinase 1 (PINK1)/Parkin (PRKN) pathway. In addition, we also found that NOD-like receptor protein 3 (NLRP3)/gasdermin D (GSDMD) signaling was activated with the upregulation of NLRP3, GSDMD-NT, and mature-IL1β, which indicated that pyroptosis was induced in SOB zebrafish skeletal muscle. Conclusions: Our study identified that impaired mitophagy and pyroptosis were associated with the pathogenesis of SOB. These results could potentially offer novel therapeutic objectives for the treatment of sarcopenic obesity.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiyang Peng
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, College of Physical Education, Hunan Normal University, Changsha 410012, China; (X.T.); (Y.Z.); (S.Y.); (Z.C.); (Z.Z.)
| | - Changfa Tang
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, College of Physical Education, Hunan Normal University, Changsha 410012, China; (X.T.); (Y.Z.); (S.Y.); (Z.C.); (Z.Z.)
| |
Collapse
|
16
|
Sun C, Gui J, Sheng Y, Huang L, Zhu X, Huang K. Specific signaling pathways mediated programmed cell death in tumor microenvironment and target therapies. Discov Oncol 2025; 16:776. [PMID: 40377777 PMCID: PMC12084487 DOI: 10.1007/s12672-025-02592-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Accepted: 05/06/2025] [Indexed: 05/18/2025] Open
Abstract
Increasing evidence has shown that programmed cell death (PCD) plays a crucial role in tumorigenesis and cancer progression. The components of PCD are complex and include various mechanisms such as apoptosis, necroptosis, alkaliptosis, oxeiptosis, and anoikis, all of which are interrelated in their functions and regulatory pathways. Given the significance of these processes, it is essential to conduct a comprehensive study on PCD to elucidate its multifaceted nature. Key signaling pathways, particularly the caspase signaling pathway, the RIPK1/RIPK3/MLKL pathway, and the mTOR signaling pathway, are pivotal in regulating PCD and influencing tumor progression. In this review, we briefly describe the generation mechanisms of different PCD components and focus on the regulatory mechanisms of these three major signaling pathways within the context of global PCD. Furthermore, we discuss various tumor therapeutic compounds that target different signaling axes of these pathways, which may provide novel strategies for effective tumor therapy and help improve patient outcomes in cancer treatment.
Collapse
Affiliation(s)
- Chengpeng Sun
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, No.1, Minde Road, Donghu District, Nanchang, 330006, Jiangxi, China
- HuanKui Academy, Jiangxi Medical College, Nanchang, 330031, China
| | - Jiawei Gui
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, No.1, Minde Road, Donghu District, Nanchang, 330006, Jiangxi, China
- HuanKui Academy, Jiangxi Medical College, Nanchang, 330031, China
| | - Yilei Sheng
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, No.1, Minde Road, Donghu District, Nanchang, 330006, Jiangxi, China
- HuanKui Academy, Jiangxi Medical College, Nanchang, 330031, China
| | - Le Huang
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, No.1, Minde Road, Donghu District, Nanchang, 330006, Jiangxi, China
- Jiangxi Province Key Laboratory of Neurological Diseases, Nanchang, 330006, Jiangxi, China
| | - Xingen Zhu
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, No.1, Minde Road, Donghu District, Nanchang, 330006, Jiangxi, China.
- Jiangxi Province Key Laboratory of Neurological Diseases, Nanchang, 330006, Jiangxi, China.
- JXHC Key Laboratory of Neurological Medicine, Nanchang, 330006, Jiangxi, China.
- Institute of Neuroscience, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China.
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China.
| | - Kai Huang
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, No.1, Minde Road, Donghu District, Nanchang, 330006, Jiangxi, China.
- Jiangxi Province Key Laboratory of Neurological Diseases, Nanchang, 330006, Jiangxi, China.
- JXHC Key Laboratory of Neurological Medicine, Nanchang, 330006, Jiangxi, China.
- Institute of Neuroscience, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China.
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
17
|
Wu C, Gao M, Xiao W, Huang X, Yang X, Wu Z, Yu X, Mo B, Du Z, Shang Z, Liu J, Shi C, Li R, Luo S, Wang W. Light-activatable manganese carbonate nanocubes elicit robust immunotherapy by amplifying endoplasmic reticulum stress-meditated pyroptotic cell death. J Exp Clin Cancer Res 2025; 44:147. [PMID: 40380194 DOI: 10.1186/s13046-025-03408-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Accepted: 05/06/2025] [Indexed: 05/19/2025] Open
Abstract
Although tumor immunotherapy has emerged as a promising treatment modality, it faces significant challenges stemming from the immunosuppressive characteristics of the tumor microenvironment (TME), the low immunogenicity of tumors, and the poor specificity of immunoactivation. These factors can hinder the efficacy of immunotherapeutic approaches and lead to immune-related adverse events. This study reports a multifunctional nanocube (Mn-ER-Cy) that integrates Mn carbonate (MnCO3) and a photosensitizer (ER-Cy) by targeting tumor-cell endoplasmic reticulum (ER). The results demonstrate that Mn-ER-Cy preferentially accumulates in tumor tissues and is retained within ER organelles, facilitating photothermal therapy (PTT) and photodynamic therapy (PDT) upon exposure to 808 nm light irradiation. Triggered by acidic TME and light irradiation, MnCO3 is rapidly degraded to Mn2+, which in turn promotes the generation of reactive oxygen species through the Mn2+-mimic Fenton reaction, enabling chemical dynamics therapy (CDT). Triple-modal synergistic therapy simultaneously happens in ER to induce excessive ER stress, which subsequently amplify highly immunogenic pyroptotic cell death through activating NLRP3 inflammasome, caspase-1, and gasdermin D (GSDMD) pathway. Meanwhile, the decomposition of MnCO3 consumes H+ and contributes to an increased intracellular pH by regulating lactic acid levels, thereby counteracting the immunosuppressive acidic TME. Furthermore, Mn-ER-Cy serves as an inherent dual-modality imaging contrast agent for near-infrared fluorescence and photoacoustic imaging, facilitating imaging-guided precision therapy. These findings underscore the potential of Mn-ER-Cy to substantially enhance the efficacy and specificity of tumor immunotherapy, portraying a bright prospect to improve the clinical outcomes of patients with cancer.
Collapse
Affiliation(s)
- Chuan Wu
- Department of Radiation Oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Mingquan Gao
- Institute of Combined Injury, State Key Laboratory of Trauma and Chemical Poisoning, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Weidong Xiao
- Department of Pharmacy, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, 400042, China
| | - Xie Huang
- Institute of Combined Injury, State Key Laboratory of Trauma and Chemical Poisoning, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Xinrui Yang
- Institute of Combined Injury, State Key Laboratory of Trauma and Chemical Poisoning, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Zifei Wu
- Institute of Combined Injury, State Key Laboratory of Trauma and Chemical Poisoning, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Xudong Yu
- Institute of Combined Injury, State Key Laboratory of Trauma and Chemical Poisoning, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Banghui Mo
- Institute of Combined Injury, State Key Laboratory of Trauma and Chemical Poisoning, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Zaizhi Du
- Institute of Combined Injury, State Key Laboratory of Trauma and Chemical Poisoning, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Ziqian Shang
- Institute of Combined Injury, State Key Laboratory of Trauma and Chemical Poisoning, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Jing Liu
- Institute of Combined Injury, State Key Laboratory of Trauma and Chemical Poisoning, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Can Shi
- Institute of Combined Injury, State Key Laboratory of Trauma and Chemical Poisoning, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Rong Li
- Institute of Combined Injury, State Key Laboratory of Trauma and Chemical Poisoning, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| | - Shenglin Luo
- Institute of Combined Injury, State Key Laboratory of Trauma and Chemical Poisoning, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| | - Weidong Wang
- Department of Radiation Oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, China.
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, 610041, China.
| |
Collapse
|
18
|
Xu W, Wang L, Chen R, Liu Y, Chen W. Pyroptosis and its role in intestinal ischemia-reperfusion injury: a potential therapeutic target. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04261-1. [PMID: 40372474 DOI: 10.1007/s00210-025-04261-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Accepted: 05/02/2025] [Indexed: 05/16/2025]
Abstract
Intestinal ischemia-reperfusion injury (II/RI) is a critical acute condition characterized by complex pathological mechanisms, including various modes of cell death. Among these, pyroptosis has garnered significant attention in recent years. This review explores the characteristics, molecular mechanisms, and implications of pyroptosis in II/RI, with a focus on therapeutic strategies targeting the pyroptosis pathway. Key processes such as NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome activation, caspase-1 activation, and gasdermin D (GSDMD)-mediated membrane pore formation are identified as central to pyroptosis. Compounds like MCC950, CY-09, metformin, and curcumin have shown promise in attenuating II/RI in preclinical studies by modulating these pathways. However, challenges remain in understanding non-canonical pyroptosis pathways, unraveling the exact mechanisms of GSDMD-induced pore formation, and translating these findings into clinical applications. Addressing these gaps will be crucial for developing innovative and effective treatments for II/RI.
Collapse
Affiliation(s)
- Wenping Xu
- Department of Anesthesiology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, 650032, China
| | - Lang Wang
- Department of Anesthesiology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, 650032, China
| | - Ruili Chen
- Department of Anesthesiology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, 650032, China
| | - Yi Liu
- Department of Anesthesiology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, 650032, China
| | - Wendong Chen
- Department of Anesthesiology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, 650032, China.
| |
Collapse
|
19
|
Wang Y, Li Y, Zhou L, Yuan Y, Liu C, Zeng Z, Chen Y, He Q, Wu Z. Identification and validation of pyroptosis-related genes in Alzheimer's disease based on multi-transcriptome and machine learning. Front Aging Neurosci 2025; 17:1568337. [PMID: 40438507 PMCID: PMC12116433 DOI: 10.3389/fnagi.2025.1568337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Accepted: 04/29/2025] [Indexed: 06/01/2025] Open
Abstract
Background Alzheimer's disease (AD) progression is characterized by persistent neuroinflammation, where pyroptosis-an inflammatory programmed cell death mechanism-has emerged as a key pathological contributor. However, the molecular mechanisms through which pyroptosis-related genes (PRGs) drive AD pathogenesis remain incompletely elucidated. Methods We integrated multiple transcriptomes of AD patients from the GEO database and analyzed the expression of PRGs in combined datasets. Machine learning algorithms and comprehensive bioinformatics analysis (including immune infiltration and receiver operating characteristic (ROC)) were applied to identify the hub genes. Additionally, we validated the expression patterns of these key genes using the expression data from AD mice and constructed potential regulatory networks through time series and correlation analysis. Results We identified 91 PRGs in AD using the weighted gene co-expression network analysis (WGCNA) and differentially expressed genes analysis. By application of the protein-protein interaction and machine learning algorithms, seven pyroptosis feature genes (CHMP2A, EGFR, FOXP3, HSP90B1, MDH1, METTL3, and PKN2) were identified. Crucially, MDH1 and PKN2 demonstrated superior performance in terms of immune cell infiltration, ROC curves, and experimental validation. Furthermore, we constructed the long non-coding RNA and mRNA (lncRNA-mRNA) regulatory network of these characteristic genes using the gene expression profiles from AD mice at varying ages, revealing the potential regulatory mechanism in AD. Conclusion This study provides the first comprehensive characterization of pyroptosis-related molecular signatures in AD. Seven hub genes were identified, with particular emphasis on MDH1 and PKN2. Their superior performances were validated through comprehensive bioinformatic analysis in both patient and mouse transcriptomes, as well as the experimental data. Our findings establish foundational insights into pyroptosis mechanisms in AD that may inform novel treatment strategies targeting neuroinflammatory pathways.
Collapse
Affiliation(s)
- Yuntai Wang
- Institute of Basic Medicine, North Sichuan Medical College, Nanchong, China
- School of Clinical Medicine, North Sichuan Medical College, Nanchong, China
| | - Yilin Li
- School of Integrated Traditional Chinese and Western Clinical Medicine, North Sichuan Medical College, Nanchong, China
| | - Lu Zhou
- School of Clinical Medicine, North Sichuan Medical College, Nanchong, China
| | - Yihuan Yuan
- School of Clinical Medicine, North Sichuan Medical College, Nanchong, China
| | - Chuanfei Liu
- School of Medical Imaging, North Sichuan Medical College, Nanchong, China
| | - Zimeng Zeng
- Institute of Basic Medicine, North Sichuan Medical College, Nanchong, China
| | - Yuanqi Chen
- School of Nursing, North Sichuan Medical College, Nanchong, China
| | - Qi He
- Institute of Basic Medicine, North Sichuan Medical College, Nanchong, China
| | - Zhuoze Wu
- Institute of Basic Medicine, North Sichuan Medical College, Nanchong, China
| |
Collapse
|
20
|
Gou ZH, Su N, Li XC, Ren DP, Ren SS, Wang L, Wang Y. Integrated transcriptomic and immune profiling reveals crucial molecular pathways and hub genes associated with postoperative delirium in elderly patients. Front Med (Lausanne) 2025; 12:1580355. [PMID: 40417694 PMCID: PMC12098571 DOI: 10.3389/fmed.2025.1580355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Accepted: 04/15/2025] [Indexed: 05/27/2025] Open
Abstract
Background Postoperative delirium (POD) manifests as severe mental disorientation, often experienced by elderly patients undergoing surgery, significantly hindering recovery and deteriorating the quality of life. Despite numerous clinical studies, the molecular mechanisms behind POD in elderly patients are still not well understood, requiring further investigation to identify potential biomarkers and therapeutic targets. Methods This study amalgamates Gene Set Variation Analysis (GSVA), Weighted Gene Co-expression Network Analysis (WGCNA), differential expression analysis, and immune infiltration assessments to identify molecular pathways and hub genes linked to the initiation of POD in the elderly. Gene expression data were sourced from the GSE163943 dataset in the Gene Expression Omnibus (GEO) database. A total of 18,894 protein-coding genes were extracted for analysis. Results We constructed a gene co-expression network using WGCNA and performed GSVA to investigate the link between POD and different types of cell death. The results indicated that POD is positively associated with pyroptosis and parthanatos, while negatively correlated with oxidative stress and disulfidptosis. Differential expression analysis revealed 145 differentially expressed genes (DEGs), including 83 downregulated and 62 upregulated genes. Analysis of functional enrichment revealed that DEGs were enriched in activities like neuron projection development, axonogenesis, and synapse organization, with KEGG pathway analysis identifying neuroactive ligand-receptor interaction and neurodegeneration pathways. Gene Set Enrichment Analysis (GSEA) further revealed the upregulation of the apoptosis pathway and the downregulation of neuroactive ligand-receptor interaction. Protein-protein interaction (PPI) network analysis identified 10 hub genes, including COL18A1, CD63, and LTF. Immune infiltration analysis indicated that the occurrence of POD is strongly associated with immune cell activation, particularly in T cells and macrophages. Conclusion Overall, this research primarily examines the intricate interplay between cell death processes and alterations in the immune microenvironment throughout the development of geriatric POD, pinpointing essential genes that provide vital theoretical support for further studies on geriatric POD. However, this discovery is only an initial one derived from analyzing the datasets. Upcoming research ought to evaluate and scrutinize additional datasets and conduct essential experiments to guarantee the precision and widespread relevance of the analytical findings.
Collapse
Affiliation(s)
- Zi-han Gou
- Department of Anesthesiology, The People’s Hospital of kaizhou District Chongqing, Chongqing, China
| | - Nan Su
- Inner Mongolia People’s Hospital Department of Surgical Anesthesia, Inner Mongolia, China
| | - Xiao-chuan Li
- Department of Orthopaedic, Chongqing Sanbo Changan Hospital, Chongqing, China
| | - Da-peng Ren
- Department of Anesthesiology, The People’s Hospital of kaizhou District Chongqing, Chongqing, China
| | - Shan-shan Ren
- Department of Anesthesiology, The Thirteenth People’s Hospital of Chongqing, Chongqing, China
| | - Lin Wang
- Department of Anesthesiology, The Thirteenth People’s Hospital of Chongqing, Chongqing, China
| | - Yao Wang
- Department of Anesthesiology, The Thirteenth People’s Hospital of Chongqing, Chongqing, China
| |
Collapse
|
21
|
Duan H, Deng W, Kzhyshkowska J, Chen D, Zhang S. Macrophage at maternal-fetal Interface: Perspective on pregnancy and related disorders. Placenta 2025:S0143-4004(25)00158-4. [PMID: 40399151 DOI: 10.1016/j.placenta.2025.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 04/13/2025] [Accepted: 05/08/2025] [Indexed: 05/23/2025]
Abstract
Immune cells at the maternal-fetal interface (MFI) undergo dynamic changes to facilitate fetal growth and development during pregnancy. In contrast to the adaptive immune system, where effector T cells, Tregs, and suppressor T cells play key roles in maintaining immune tolerance toward the semi-allogeneic fetus, the innate immune system-comprising decidual nature killer (dNK) cells, macrophages, and dendritic cells (DCs)-makes up a significant portion of the decidual leukocyte population. These innate immune cells are crucial in modulating trophoblast invasion, spiral artery remodeling, and apoptotic cell phagocytosis. Dysregulation of the innate immune system has been linked to impaired uterine vessel remodeling and defective trophoblast invasion, which can lead to complications such as spontaneous abortion, preeclampsia (PE), and preterm. This review focuses on recent advancements in understanding the innate immune defenses at the maternal-fetal interface and their connections to pregnancy-related diseases, with particular emphasis on the role of macrophages.
Collapse
Affiliation(s)
- Haoran Duan
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China; Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China; Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China; Guangdong-Hong Kong-Macao Great Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China; Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University. Beijing Maternal and Child Health Care Hospital, Beijing, 100026, China
| | - Weinan Deng
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China; Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China; Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China; Guangdong-Hong Kong-Macao Great Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China; Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University. Beijing Maternal and Child Health Care Hospital, Beijing, 100026, China
| | - Julia Kzhyshkowska
- Institute of Transfusion Medicine and Immunology, Mannheim Institute of Innate Immunosciences (MI3), Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany; German Red Cross Blood Service Baden- Württemberg-Hessen, 68167, Mannheim, Germany; Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, Tomsk, Russia
| | - Dunjin Chen
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China; Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China; Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China; Guangdong-Hong Kong-Macao Great Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China; Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University. Beijing Maternal and Child Health Care Hospital, Beijing, 100026, China.
| | - Shuang Zhang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China; Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China; Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China; Guangdong-Hong Kong-Macao Great Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China; Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University. Beijing Maternal and Child Health Care Hospital, Beijing, 100026, China.
| |
Collapse
|
22
|
Wang X, Hu Y. Identification and verification of a combined ferroptosis- and pyroptosis-related signature for a prognostic classifier and immunosuppressive targets in colorectal cancer. Arab J Gastroenterol 2025:S1687-1979(25)00015-2. [PMID: 40340195 DOI: 10.1016/j.ajg.2025.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 01/17/2025] [Accepted: 02/07/2025] [Indexed: 05/10/2025]
Abstract
BACKGROUND AND STUDY AIMS Ferroptosis and pyroptosis, two forms of cell death, are increasingly reported for their pivotal roles in cancer biology. However, the understanding of the combined ferroptosis-pyroptosis (FPtosis)-related gene signature in colorectal cancer (CRC) remains limited. MATERIAL AND METHODS We conducted a comprehensive investigation of the FPtosis-related signature in CRC. Data integration from both the training and validation cohorts was performed. The FPtosis-related signature was established. We evaluated the prognostic significance of the signature through Kaplan-Meier analysis, as well as univariate and multivariate Cox regression models. Functional analyses were conducted to explore the underlying biological mechanisms. Additionally, we analyzed the correlations between the FPtosis-related signature, immune infiltration, and immune checkpoint blockade (ICB) immunotherapy. RESULTS The FPtosis-related signature demonstrated significant prognostic potential and can serve as an independent biomarker for predicting outcomes. The signature showed correlations with advanced tumor stage, invasion depth, lymph node metastasis, and distant metastasis. Subgroup analyses revealed the valuable predictive role of the FPtosis-related signature in predicting survival across different clinical subgroups, including age, gender, tumor stage, invasion depth, lymph node metastasis status, and distant metastasis status. Moreover, the signature exhibited positive associations with inflammation and the infiltration of diverse immune cells, such as neutrophils, M0 and M2 macrophages, and regulatory T cells (Tregs). In microsatellite instable (MSI) CRC, the expression of most ICB genes was higher in the high-FPtosis group compared to the low-FPtosis group. CONCLUSION The FPtosis signature can effectively predict the prognosis of CRC and had the potential to improve the development of innovative therapeutic strategies.
Collapse
Affiliation(s)
- Xiao Wang
- Department of Anesthesiology, Beijing Shijitan Hospital, Capital Medical University, Tieyi Road No. 10, Haidian District, Beijing 100038, China.
| | - Yanting Hu
- Department of Anesthesiology, Beijing Shijitan Hospital, Capital Medical University, Tieyi Road No. 10, Haidian District, Beijing 100038, China
| |
Collapse
|
23
|
Zhang K, Du Y, Yang S, Sun G. Irisin suppressed the progression of TBI via modulating AMPK/MerTK/autophagy and SYK/ROS/inflammatory signaling. Sci Rep 2025; 15:15583. [PMID: 40320408 PMCID: PMC12050266 DOI: 10.1038/s41598-025-00066-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 04/24/2025] [Indexed: 05/08/2025] Open
Abstract
Irisin is a hormone-like peptide secreted by muscle tissues and generated by hydrolysis of type III fibronectin domain-containing protein 5 by proteolytic hydrolases. Whether Irisin has a potential protective role in traumatic brain injury (TBI). In this study, we will investigate the relevant research progress of Irisin's protective role in traumatic brain injury (TBI) in recent years in terms of attenuating oxidative stress, inhibiting pyroptosis, suppressing inflammatory response, and improving autophagy, with the aim of providing valuable references for the diagnosis and treatment of traumatic brain injury (TBI). Utilize bioinformatics analysis to study the interactions between genes in TBI (Traumatic Brain Injury). Construct a TBI mouse model to observe the effects of Irisin on TBI. The Morris water maze test is used to assess the learning and spatial memory abilities of mice, TUNEL fluorescence is used to detect cell apoptosis, Nissl staining is employed to observe the survival of hippocampal neurons in mice, and HE staining is used to observe the extent of brain injury in mice. Western blot is used to detect protein expression in both in vivo and in vitro experiments. Q-PCR is employed to detect the levels of proteins related to autophagy/pyroptosis/inflammation. Irisin promotes MerTK overexpression by enhancing AMPK activation. Irisin can increase the expression of LC3I and Beclin-1 proteins, indicating the promotion of autophagic response. Additionally, Irisin reduces ROS levels and decreases SYK expression, thereby inhibiting the inflammatory response. Irisin improves the learning and spatial memory abilities of TBI mice and reduces cell apoptosis, as well as decreases hippocampal neuron death. HE staining shows that the brain injury in mice treated with Irisin is significantly alleviated. Irisin can enhance the expression of phosphorylated AMPK and phosphorylated MerTK proteins, promote autophagic response, and inhibit pyroptosis/inflammatory response. Correction experiments confirmed that after stimulation with an AMPK agonist, the expression of phosphorylated MerTK protein is significantly increased, autophagic response is enhanced, and pyroptosis/inflammatory response is weakened. When treated with a MerTK inhibitor during AMPK agonist stimulation, the autophagic response is weakened while pyroptosis/inflammatory response is enhanced. Irisin can inhibit the progression of traumatic brain injury by regulating AMPK/MerTK/autophagy and SYK/ROS/inflammatory signaling.
Collapse
Affiliation(s)
- Kuo Zhang
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang City, 050000, Hebei Province, China
- Department of Neurosurgery, Hebei General Hospital, Shijiazhuang City, 050000, Hebei Province, China
| | - Yihui Du
- Department of Neurosurgery, Hebei General Hospital, Shijiazhuang City, 050000, Hebei Province, China
| | - Sihui Yang
- Department of Neurosurgery, Hebei General Hospital, Shijiazhuang City, 050000, Hebei Province, China
| | - Guozhu Sun
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang City, 050000, Hebei Province, China.
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, 215 Heping West Road, Xinhua District, Shijiazhuang City, 050000, Hebei Province, China.
| |
Collapse
|
24
|
Zhu Y, Yang S, Su S, Huang Y, Chen Y, Liang H, Miao J, Wu Z, Li X, Xiao J, Wang X. Macelignan Improves Functional Recovery After Spinal Cord Injury by Augmenting Autophagy via the AKT-mTOR-TFEB Signaling Pathway. Phytother Res 2025; 39:2091-2109. [PMID: 40062822 DOI: 10.1002/ptr.8473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/14/2025] [Accepted: 02/01/2025] [Indexed: 05/21/2025]
Abstract
Spinal cord injury (SCI) presents considerable therapeutic challenges due to its complex pathophysiology, and effective treatments are currently lacking. Macelignan (Mace) has shown therapeutic effects in some neurological disorders, but its potential to enhance functional recovery in SCI and the underlying mechanisms are not well understood. This research endeavors to explore the therapeutic value of Mace in SCI and its underlying mechanism of action. A mouse model of SCI was established, and the mice were randomly divided into 13 groups: Sham, Sham + Mace, SCI, SCI + 25 mg/kg Mace, SCI + Mace, SCI + 75 mg/kg Mace, SCI + 100 mg/kg Mace, SCI + 3MA, SCI + Mace/3MA, SCI + Mace/Scramble shRNA, SCI + Mace/TFEB shRNA, SCI + SC79, and SCI + Mace/SC79. Histological examinations were conducted using hematoxylin and eosin (HE), Masson's trichrome, and Nissl staining techniques. Functional recovery post-injury was evaluated through footprint analysis and the Basso Mouse Scale (BMS). The levels of proteins associated with pyroptosis and autophagy were quantified using qPCR, protein immunoblotting, and immunofluorescence (IF). Network pharmacology techniques were applied to elucidate the signaling pathways modulated by Mace. Mace facilitated functional recovery following SCI by augmenting autophagy and diminishing pyroptosis, with these effects being partially counteracted by 3-Methyladenine (3MA). It was noted that Mace induced autophagy via inhibition of the AKT-mTOR signaling pathway, leading to an increase in TFEB expression. As an autophagy activator, Mace induces TFEB-mediated autophagy and inhibits pyroptosis, which supports functional recovery post-SCI, indicating its potential clinical relevance.
Collapse
Affiliation(s)
- Yuxuan Zhu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Shu Yang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Shenkai Su
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yeheng Huang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang, China
| | - Yuli Chen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Haibo Liang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jiansen Miao
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Zhejiang, China
| | - Zhouwei Wu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiang Li
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jian Xiao
- Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang, China
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Zhejiang, China
| | - Xiangyang Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
25
|
Ju X, Zhang H, Wang J, Wang J, Wang N, Geng J, Guo L, Wang Q. LXR agonists induces GSDME-mediated pyroptosis in tumors through alters the integrity of the MOM to activates Caspase-4/APAF-1 pyroptosome. Int J Biol Macromol 2025; 310:142568. [PMID: 40154703 DOI: 10.1016/j.ijbiomac.2025.142568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 03/24/2025] [Accepted: 03/25/2025] [Indexed: 04/01/2025]
Abstract
Liver X receptors (LXRs) play a key role in cholesterol transport, glucose metabolism and the tumorigenesis. LXR ligands can inhibit tumor growth through several mechanisms, such as suppressing tumor cell proliferation and migration, and inducing tumor cell death. Among them, induction of tumor cell death is one of the main mechanisms by which LXR ligands inhibit tumor growth; but how exactly LXR ligands cause cell death is still unclear. In this study, we found that LXR agonists can induce nonclassical pyroptosis in various cancer cells. Further study we found that Caspase-3-mediated GSDME cleavage is involved in LXR agonist-induced pyroptosis. Mechanically, LXR agonists firstly induce ER stress in tumor cells, then the ER stress induced by LXR agonists alters the integrity of the mitochondrial outer membrane (MOM) through the NOXA and BAX/BAK. Subsequently, mitochondrial permeability transition activates Caspase-4/APAF-1 pyroptosome to activate GSDME-dependent pyroptosis. Finally, we also found that LXR agonists induced GSDME-dependent pyroptosis in mouse cells. Our results demonstrated that LXR agonists can induce nonclassical GSDME-dependent pyroptosis in cancer cells by inducing ER stress, which alters the integrity of MOM to activate Caspase-4/APAF-1 pyroptosome.
Collapse
Affiliation(s)
- Xiaoli Ju
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Heng Zhang
- Department of General Surgery, Nanjing Lishui District People's Hospital, Zhongda Hospital Lishui Branch, Southeast University, Nanjing, China
| | - Jin Wang
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Jiayou Wang
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Ning Wang
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Jingyao Geng
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Lanfang Guo
- Department of Clinical Laboratory Medicine, The Fourth People's Hospital of Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| | - Qiang Wang
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| |
Collapse
|
26
|
Berkel C. Potential Impact of Climate Change-Induced Alterations on Pyroptotic Cell Death in Animal Cells: A Review. Mol Biotechnol 2025; 67:1784-1799. [PMID: 38748072 DOI: 10.1007/s12033-024-01182-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 04/16/2024] [Indexed: 04/10/2025]
Abstract
Climate change-induced alterations in temperature variation, ozone exposure, water salinity and acidification, and hypoxia might influence immunity and thus survival in diverse groups of animals from fish to mammals. Pyroptosis is a type of lytic pro-inflammatory programmed cell death, which participates in the innate immune response, and is involved in multiple diseases characterized by inflammation and cell death, mostly studied in human cells. Diverse extrinsic factors can induce pyroptosis, leading to the extracellular release of pro-inflammatory molecules such as IL-18. Climate change-related factors, either directly or indirectly, can also promote animal cell death via different regulated mechanisms, impacting organismal fitness. However, pyroptosis has been relatively less studied in this context compared to another cell death process, apoptosis. This review covers previous research pointing to the potential impact of climate change, through various abiotic stressors, on pyroptotic cell death in different animal cells in various contexts. It was proposed that temperature, ozone exposure, water salinity, water acidification and hypoxia have the potential to induce pyroptotic cell death in animal cells and promote inflammation, and that these pyroptotic events should be better understood to be able to mitigate the adverse effects of climate change on animal physiology and health. This is of high importance considering the increasing frequency, intensity and duration of climate-based changes in these environmental parameters, and the critical function of pyroptosis in immune responses of animals and in their predisposition to multiple diseases including cancer. Furthermore, the need for further mechanistic studies showing the more direct impact of climate change-induced environmental alterations on pyroptotic cell death in animals at the organismal level was highlighted. A complete picture of the association between climate change and pyroptosis in animals will be also highly valuable in terms of ecological and clinical applications, and it requires an interdisciplinary approach. SIGNIFICANCE: Climate change-induced alterations might influence animal physiology. Pyroptosis is a form of cell death with pro-inflammatory characteristics. Previous research suggests that temperature variation, ozone exposure, water salinity and acidification, and hypoxia might have the potential to contribute to pyroptotic cell death in certain cell types and contexts. Climate change-induced pyroptotic cell death should be better understood to be able to mitigate the adverse effects of climate change on animal health.
Collapse
Affiliation(s)
- Caglar Berkel
- Deparment of Molecular Biology and Genetics, Tokat Gaziosmanpasa University, Tokat, Türkiye.
| |
Collapse
|
27
|
Wen Q, Liu J, Hu J, Kou KI, Li H, Zhang J, Zhang R, Zhong S, Huang R. Molecular mechanisms underlying the anti-Colon Cancer effects of Caulerpa lentillifera polysaccharides (CLP). Int J Biol Macromol 2025; 308:142594. [PMID: 40157667 DOI: 10.1016/j.ijbiomac.2025.142594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 03/15/2025] [Accepted: 03/26/2025] [Indexed: 04/01/2025]
Abstract
Colon cancer (CC) ranks is the second leading cause of cancer-related deaths globally. Despite chemotherapy being a primary treatment its effectiveness significantly declines in advanced in stage. Emerging evidence suggests that dietary components particularly polysaccharides, play a role in CC progression. This study employed multi-omics and network pharmacology to elucidate the mechanisms underlying the apoptotic effects of Caulerpa lentillifera polysaccharide (CLP) in CC, validated through in vitro and in vivo experiments. Transcriptomics and network pharmacology analysis identified the p53/Bax/Caspase-3 pathway as a key regulatory axis. Further targeted analysis of amino acid metabolism revealed that CLP significantly decreased intracellular aspartate (Asp) levels. Additionally, reactive oxygen species (ROS) accumulation was detected in cells. CLP treatment reduced Asp content, leading to ROS accumulation, which activated the p53/Bax/Caspase-3 pathway, triggering apoptosis. In vivo, CLP effectively inhibited tumor growth in BALB/c mice bearing CT26 colon cancer cells. These findings suggest that CLP exerts anti-colon cancer effects by modulating amino acid metabolism and inducing apoptosis via the p53/Bax/Caspase-3 axis, providing a promising therapeutic strategy for CC.
Collapse
Affiliation(s)
- Qinghua Wen
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Jun Liu
- Laboratory of Pathogenic Biology, Guangdong Medical University, Zhanjiang 524023, China
| | - Jiaheng Hu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Kit Ian Kou
- Department of Mathematics, Faculty of Science and Technology, University of Macau, Macao
| | - Haichou Li
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Jiaojiao Zhang
- College of Food and Health, Zhejiang A& F University, Hangzhou 311300, China
| | - Rongxin Zhang
- Department of Colorectal Surgery, Sun Yatsen University Cancer center, Guangzhou 510060, China; State Key Laboratory of Oncology in South China, Guangzhou 510060, China
| | - Saiyi Zhong
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; Shenzhen Research Institute, Guangdong Ocean University, Shenzhen 518108, China.
| | - Riming Huang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
28
|
Chen P, Liu D, Zhou YK, Jiang JH, Yang RL. Pyroptosis of periodontal ligament stem cells aggravates periodontitis via Piezo1 channel. iScience 2025; 28:112395. [DOI: 10.1016/j.isci.2025.112395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2025] Open
|
29
|
Shan D, Song J, Ren Y, Zhang Y, Ba Y, Luo P, Cheng Q, Xu H, Weng S, Zuo A, Liu S, Han X, Deng J, Liu Z. Copper in cancer: friend or foe? Metabolism, dysregulation, and therapeutic opportunities. Cancer Commun (Lond) 2025; 45:577-607. [PMID: 39945125 PMCID: PMC12067407 DOI: 10.1002/cac2.70005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 01/24/2025] [Accepted: 02/06/2025] [Indexed: 05/13/2025] Open
Abstract
Copper, one of the essential nutrients for the human body, acts as an electron relay in multiple pathways due to its redox properties. Both deficiencies and excesses of copper lead to cellular fragility. Therefore, it can manifest pro- and anti-cancer properties in tumors. Therefore, it is crucial to clarify the copper activity within the cell. We have thoughtfully summarized the metabolic activities of copper from a macro and micro perspective. Cuproptosis, as well as other forms of cell death, is directly or indirectly interfered with by Cu2+, causing cancer cell death. Meanwhile, we did pan-cancer analysis of cuproptosis-related genes to further clarify the roles of these genes. In addition, copper has been found to be involved in multiple pathways within the metastasis of cancer cells. Given the complexity of copper's role, we are compelled to ask: is copper a friend or a foe? Up to now, copper has been used in various clinical applications, including protocols for measurement of copper concentration and bioimaging of radioactive 64Cu. But therapeutically it is still a continuation of the old medicine, and new possibilities need to be explored, such as the use of nanomaterials. Some studies have also shown that copper has considerable interventional power in metabolic cancers, which provides the great applications potential of copper therapy in specific cancer types. This paper reviews the dual roles played by cuproptosis in cancer from the new perspectives of oxidative stress, cell death, and tumor metastasis, and points out the value of its application in specific cancer types, summarizes the value of its testing and imaging from the perspective of clinical application as well as the current feasible options for the new use of the old drugs, and emphasizes the prospects for the application of nano-copper.
Collapse
Affiliation(s)
- Dan Shan
- Department of Interventional RadiologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanP. R. China
- University Hospital GalwayNational University of Ireland GalwayGalwayIreland
- Department of Biobehavioral SciencesColumbia UniversityNew YorkUSA
| | - Jinling Song
- Division of PulmonologyDepartment of PediatricsThe Third Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanP. R. China
| | - Yuqing Ren
- Department of Respiratory and Critical Care MedicineThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanP. R. China
| | - Yuyuan Zhang
- Department of Interventional RadiologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanP. R. China
| | - Yuhao Ba
- Department of Interventional RadiologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanP. R. China
| | - Peng Luo
- The Department of OncologyZhujiang HospitalSouthern Medical UniversityGuangzhouGuangdongP. R. China
| | - Quan Cheng
- Department of NeurosurgeryXiangya HospitalCentral South UniversityChangshaHunanP. R. China
| | - Hui Xu
- Department of Interventional RadiologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanP. R. China
| | - Siyuan Weng
- Department of Interventional RadiologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanP. R. China
| | - Anning Zuo
- Department of Interventional RadiologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanP. R. China
| | - Shutong Liu
- Department of Interventional RadiologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanP. R. China
| | - Xinwei Han
- Department of Interventional RadiologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanP. R. China
- Interventional Institute of Zhengzhou UniversityZhengzhouHenanP. R. China
- Interventional Treatment and Clinical Research Center of Henan ProvinceZhengzhouHenanP. R. China
| | - Jinhai Deng
- Richard Dimbleby Department of Cancer ResearchComprehensive Cancer Centre, Kings College LondonLondonUK
| | - Zaoqu Liu
- Department of Interventional RadiologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanP. R. China
- Interventional Institute of Zhengzhou UniversityZhengzhouHenanP. R. China
- Interventional Treatment and Clinical Research Center of Henan ProvinceZhengzhouHenanP. R. China
- Institute of Basic Medical SciencesChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingP. R. China
| |
Collapse
|
30
|
Jin H, Wu P, Lv C, Zhang S, Zhang Y, Li C, Gao R, Shan G, Bi H, Chang H, Liu X, Zeng Y. Mannose inhibits PKM2 lactylation to induce pyroptosis in bladder cancer and activate antitumor immune responses. Commun Biol 2025; 8:689. [PMID: 40312519 PMCID: PMC12045973 DOI: 10.1038/s42003-025-08130-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 04/25/2025] [Indexed: 05/03/2025] Open
Abstract
Bladder cancer therapy remains challenging due to poor efficacy and frequent recurrence. Mannose, a naturally occurring monosaccharide, has demonstrated antitumor effects in various cancers, yet its mechanism of action in bladder cancer is unclear. This study explored the inhibitory effects of mannose on bladder cancer. We found mannose significantly inhibited the growth of bladder cancer cells, xenografts, and organoids. Mannose directly binds to PKM2, inhibiting its enzymatic activity and reducing lactate production. This reduction in lactate led to decreased PKM2 lactylation and increased acetylation, causing PKM2 to translocate to the nucleus. Nuclear PKM2 activated the NF-κB pathway, inducing NLRP1/Caspase-1/GSDMD/IL-1β-dependent pyroptosis. Additionally, mannose promoted antitumor immune responses by inducing pyroptosis and enhancing the efficacy of immune checkpoint inhibitors. These findings highlight the use of mannose as a potent antitumor agent and a promising therapeutic strategy for bladder cancer.
Collapse
Affiliation(s)
- Haoyi Jin
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou, China
- Department of Thoracic Surgery and Oncology, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning Province, China
| | - Pingeng Wu
- Department of Urology, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning Province, China
| | - Chengcheng Lv
- Department of Urology, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning Province, China
| | - Shouyi Zhang
- Department of Urology, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning Province, China
| | - Yunchao Zhang
- Department of Urology, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning Province, China
| | - Changqi Li
- Department of Urology, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning Province, China
| | - Ruxu Gao
- Department of Urology, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning Province, China
| | - Guangyi Shan
- Department of Urology, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning Province, China
| | - Huan Bi
- Department of Urology, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning Province, China
| | - Hong Chang
- Department of Anesthesiology, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Xi Liu
- Department of Urology, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning Province, China.
| | - Yu Zeng
- Department of Urology, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning Province, China.
| |
Collapse
|
31
|
Yan W, Xiang S, Feng J, Zu X. Role of ubiquitin-specific proteases in programmed cell death of breast cancer cells. Genes Dis 2025; 12:101341. [PMID: 40083330 PMCID: PMC11904532 DOI: 10.1016/j.gendis.2024.101341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/26/2024] [Accepted: 04/11/2024] [Indexed: 03/16/2025] Open
Abstract
Breast cancer (BC) is the most common malignant tumor and the leading cause of cancer-related deaths among women worldwide. Great progress has been recently achieved in controlling breast cancer; however, mortality from breast cancer remains a substantial challenge, and new treatment mechanisms are being actively sought. Programmed cell death (PCD) is associated with the progression and treatment of many types of human cancers. PCD can be divided into multiple pathways including autophagy, apoptosis, mitotic catastrophe, necroptosis, ferroptosis, pyroptosis, and anoikis. Ubiquitination is a post-translational modification process in which ubiquitin, a 76-amino acid protein, is coupled to the lysine residues of other proteins. Ubiquitination is involved in many physiological events and promotes cancer development and progression. This review elaborates the role of ubiquitin-specific protease (USP) in programmed cell death, which is common in breast cancer cells, and lays the foundation for tumor diagnosis and targeted therapy.
Collapse
Affiliation(s)
| | | | - Jianbo Feng
- The First Affiliated Hospital, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, 421001 Hunan, China
| | - Xuyu Zu
- The First Affiliated Hospital, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, 421001 Hunan, China
| |
Collapse
|
32
|
Shang DF, Xu WQ, Zhao Q, Zhao CL, Wang SY, Han YL, Li HG, Liu MH, Zhao WX. Molecular mechanisms of pyroptosis in non-alcoholic steatohepatitis and feasible diagnosis and treatment strategies. Pharmacol Res 2025; 216:107754. [PMID: 40306603 DOI: 10.1016/j.phrs.2025.107754] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 04/11/2025] [Accepted: 04/27/2025] [Indexed: 05/02/2025]
Abstract
Pyroptosis is a distinct form of cell death that plays a critical role in intensifying inflammatory responses. It primarily occurs via the classical pathway, non-classical pathway, caspase-3/6/7/8/9-mediated pathways, and granzyme-mediated pathways. Key effector proteins involved in the pyroptosis process include gasdermin family proteins and pannexin-1 protein. Pyroptosis is intricately linked to the onset and progression of non-alcoholic steatohepatitis (NASH). During the development of NASH, factors such as pyroptosis, innate immunity, lipotoxicity, endoplasmic reticulum stress, and gut microbiota imbalance interact and interweave, collectively driving disease progression. This review analyzes the molecular mechanisms of pyroptosis and its role in the pathogenesis of NASH. Furthermore, it explores potential diagnostic and therapeutic strategies targeting pyroptosis, offering new avenues for improving the diagnosis and treatment of NASH.
Collapse
Affiliation(s)
- Dong-Fang Shang
- Henan University of CM, Zhengzhou 450000, China; The First Affiliated Hospital of Henan University of CM, Zhengzhou 450003, China
| | - Wen-Qian Xu
- Henan University of CM, Zhengzhou 450000, China
| | - Qing Zhao
- The First Affiliated Hospital of Henan University of CM, Zhengzhou 450003, China
| | - Chen-Lu Zhao
- The First Affiliated Hospital of Henan University of CM, Zhengzhou 450003, China
| | - Si-Ying Wang
- The First Affiliated Hospital of Henan University of CM, Zhengzhou 450003, China
| | - Yong-Li Han
- The First Affiliated Hospital of Henan University of CM, Zhengzhou 450003, China
| | - He-Guo Li
- The First Affiliated Hospital of Henan University of CM, Zhengzhou 450003, China.
| | - Ming-Hao Liu
- The First Affiliated Hospital of Henan University of CM, Zhengzhou 450003, China.
| | - Wen-Xia Zhao
- The First Affiliated Hospital of Henan University of CM, Zhengzhou 450003, China.
| |
Collapse
|
33
|
Zhao S, Bai B, Zhu B, Cui Y, Deng W, Xie Z, Wang S, Wang X, Mao Y, Lu Y, Huang Y, You T, Sun W, Shen X, Lu X. Hyaluronic acid-modified doxorubicin-covalent organic framework nanoparticles triggered pyroptosis in combinations with immune checkpoint blockade for the treatment of breast cancer. Int J Biol Macromol 2025; 310:143265. [PMID: 40274165 DOI: 10.1016/j.ijbiomac.2025.143265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 04/03/2025] [Accepted: 04/15/2025] [Indexed: 04/26/2025]
Abstract
Triple-negative breast cancer (TNBC) is a highly aggressive malignancy, and the current treatment strategies have poor efficacy. Pyroptosis, a type of immunogenic cell death, significantly enhances antitumor immunity by triggering the release of numerous intracellular components. Here, we prepared a covalent-organic framework (COF) loaded with doxorubicin (DOX) and coated it with hyaluronic acid (HA) as a therapeutic delivery system (HA@DOX-COF) for the treatment of TNBC. Mechanistically, upon cellular uptake, HA@DOX-COF activated pyroptosis through the caspase-3/GSDME pathway. Moreover, HA@DOX-COF induced a pyroptosis-induced antitumor immune response and further augmented the efficacy of immune checkpoint blockade (ICB). Our results demonstrated that the combination of HA@DOX-COF and an anti-PD-1 antibody markedly inhibited tumor progression in a TNBC murine model. Overall, our work offers a potential approach for pyroptosis-induced immunotherapy for TNBC, which may increase the efficacy of ICB-based immunotherapy.
Collapse
Affiliation(s)
- Shengsheng Zhao
- Department of Gastrointestinal Surgery, Zhejiang International Scientific and Technological Cooperation Base of Translational Cancer Research, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, Department of Gastrointestinal Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Binglong Bai
- Department of Gastrointestinal Surgery, Zhejiang International Scientific and Technological Cooperation Base of Translational Cancer Research, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Bingzi Zhu
- Department of Gastrointestinal Surgery, Zhejiang International Scientific and Technological Cooperation Base of Translational Cancer Research, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Research Center of Basic Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Yuekai Cui
- Department of Gastrointestinal Surgery, Zhejiang International Scientific and Technological Cooperation Base of Translational Cancer Research, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Research Center of Basic Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Wenhai Deng
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Zuoliang Xie
- Department of Gastrointestinal Surgery, Zhejiang International Scientific and Technological Cooperation Base of Translational Cancer Research, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Research Center of Basic Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Shuaibin Wang
- Department of Gastrointestinal Surgery, Zhejiang International Scientific and Technological Cooperation Base of Translational Cancer Research, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Research Center of Basic Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Xiang Wang
- Department of Gastrointestinal Surgery, Zhejiang International Scientific and Technological Cooperation Base of Translational Cancer Research, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, Department of Gastrointestinal Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Yiwen Mao
- Department of Breast Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Yongyong Lu
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Yingpeng Huang
- Department of Gastrointestinal Surgery, Zhejiang International Scientific and Technological Cooperation Base of Translational Cancer Research, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, Department of Gastrointestinal Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Tao You
- Department of Gastrointestinal Surgery, Zhejiang International Scientific and Technological Cooperation Base of Translational Cancer Research, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, Department of Gastrointestinal Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Weijian Sun
- Department of Gastrointestinal Surgery, Zhejiang International Scientific and Technological Cooperation Base of Translational Cancer Research, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, Department of Gastrointestinal Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China.
| | - Xian Shen
- Department of Gastrointestinal Surgery, Zhejiang International Scientific and Technological Cooperation Base of Translational Cancer Research, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, Department of Gastrointestinal Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China.
| | - Xufeng Lu
- Department of Gastrointestinal Surgery, Zhejiang International Scientific and Technological Cooperation Base of Translational Cancer Research, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, Department of Gastrointestinal Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Research Center of Basic Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China.
| |
Collapse
|
34
|
Song S, Wang J, Ouyang X, Huang R, Wang F, Xie J, Chen Q, Hu D. Therapeutic connections between pyroptosis and paclitaxel in anti-tumor effects: an updated review. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04036-8. [PMID: 40257490 DOI: 10.1007/s00210-025-04036-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 03/06/2025] [Indexed: 04/22/2025]
Abstract
As a form of inflammation-associated cell death, pyroptosis has gained widespread attention in recent years. Accumulating evidence indicates that pyroptosis regulates tumor growth and is associated with autoimmune disorders and inflammatory response. Paclitaxel, a traditional Chinese medicine, usually induces death of cancer cells as a chemotherapeutic agent. Previous studies have revealed that paclitaxel can exert an anti-tumor effect through a variety of cell death mechanisms, of which pyroptosis plays a pivotal role in inhibiting tumor growth and enhancing anti-tumor immunity. In this review, we summarize the current advances in therapeutic connections between pyroptosis and paclitaxel in anti-tumor effects.
Collapse
Affiliation(s)
- Shuxin Song
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jingbo Wang
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiaohu Ouyang
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Renyin Huang
- Jingshan Union Hospital, Union Hospital, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Fang Wang
- Jingshan Union Hospital, Union Hospital, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Junke Xie
- Jingshan Union Hospital, Union Hospital, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Qianyun Chen
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Desheng Hu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- China-Russia Medical Research Center for Stress Immunology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
35
|
Wang S, Chen X, Wang K, Yang S. The Regulatory Role of NcRNAs in Pyroptosis and Disease Pathogenesis. Cell Biochem Biophys 2025:10.1007/s12013-025-01720-7. [PMID: 40249522 DOI: 10.1007/s12013-025-01720-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2025] [Indexed: 04/19/2025]
Abstract
Non-coding RNAs (ncRNAs), as critical regulators of gene expression, play a pivotal role in the modulation of pyroptosis and exhibit a close association with a wide range of diseases. Pyroptosis is a form of programmed cell death mediated by inflammasomes, characterized by cell membrane perforation, release of inflammatory cytokines, and a robust immune response. Recent studies have revealed that ncRNAs influence the initiation and execution of pyroptosis by regulating the expression of pyroptosis-related genes or modulating associated signaling pathways. This review systematically summarizes the molecular mechanisms and applications of ncRNAs in diseases such as cancer, infectious diseases, neurological disorders, cardiovascular diseases, and metabolic disorders. It further explores the potential of ncRNAs as diagnostic biomarkers and therapeutic targets, elucidates the intricate interactions among ncRNAs, pyroptosis, and diseases, and provides novel strategies and directions for the precision treatment of related diseases.
Collapse
Affiliation(s)
- Shaocong Wang
- Department of Cardiovascular Surgery, Institute of Chronic Diseases, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Xinzhe Chen
- Department of Cardiovascular Surgery, Institute of Chronic Diseases, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Kun Wang
- Department of Cardiovascular Surgery, Institute of Chronic Diseases, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China.
| | - Sumin Yang
- Department of Cardiovascular Surgery, Institute of Chronic Diseases, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China.
| |
Collapse
|
36
|
Taher RF, Abd El ghany EM, El-Gendy ZA, Elghonemy MM, Hassan HA, Abdel Jaleel GA, Hassan A, Sarker TC, Abd-ElGawad AM, Farag MA, Elshamy AI. In vivo anti-ulceration effect of Pancratium maritimum extract against ethanol-induced rats via NLRP3 inflammasome and HMGB1/TLR4/MYD88/NF-κβ signaling pathways and its extract metabolite profile. PLoS One 2025; 20:e0321018. [PMID: 40238859 PMCID: PMC12002509 DOI: 10.1371/journal.pone.0321018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 02/27/2025] [Indexed: 04/18/2025] Open
Abstract
BACKGROUND Gastric ulcer is a multifaceted ailment of multiple causes and is chronic warranting the discovery of remedies to alleviate its symptoms and severity. Pancratium maritimum L. is recognized for its several health benefits, although its potential against gastric ulcers has yet to be reported. METHODS AND FINDINGS This study reports on the effects of P. maritimum L. whole plant (PM-EtOH) ethanol extract at a dose of 25, 50, and 100 mg/kg body weight orally for managing ethanol-induced peptic ulcer in rats. The anti-ulceration capacity of PM-EtOH was determined against ethanol (EtOH)-induced rats via biochemical, histological, immunohistochemical, and western blotting assays. The profiling of the bioactive metabolites in P. maritimum extract was based on Ultra-high-performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight mass spectrometry (UHPLC-ESI-qTOF-MS/MS) analysis. Following PM-EtOH treated group, the gastric glutathione (GSH) level dropped in the ulcer group receiving ethanol was restored to normal levels. Additionally, following PM-EtOH, elevated malondialdehyde (MDA) content in the stomach tissues diminished. PM-EtOH treated group displayed recovery and comparable morphology compared with normal group, concurrent with lower levels of Tumor Necrosis Factor α (TNF-α), MyD88, and NLRP3, along with low expression of Nuclear Factor kappa β (NF-кβ) and high-mobility group box protein 1 (HMGB1) proteins. Immune-histochemicals of caspase-3 and toll-like receptors-4 (TLR-4) showed their normalization. These findings imply that PM-EtOH exerts a protective effect on rat stomach damage that has yet to be further tested in clinical trials for treatment of stomach ulcers. Phytochemical profiling of PM-EtOH via UHPLC-ESI-qTOF-MS/MS led to the identification of 84 metabolites belonging to amino acids, organic acids, phenolic acids, alkaloids, flavonoids, and fatty acids to likely mediate for the observed effects. CONCLUSIONS These outcomes provided evidence for the potential of PM-EtOH in gastric ulcers management.
Collapse
Affiliation(s)
- Rehab F. Taher
- Department of Natural Compounds Chemistry, National Research Centre, Dokki, Giza, Egypt
| | | | - Zeinab A. El-Gendy
- Department of Pharmacology, Medical Research and Clinical Studies Institute, National Research Centre, Dokki, Giza, Egypt
| | - Mai M. Elghonemy
- Department of Natural Compounds Chemistry, National Research Centre, Dokki, Giza, Egypt
| | - Heba A. Hassan
- Therapeutic Chemistry Department, National Research Centre, Dokki, Giza, Egypt
| | - Gehad A. Abdel Jaleel
- Department of Pharmacology, Medical Research and Clinical Studies Institute, National Research Centre, Dokki, Giza, Egypt
| | - Azza Hassan
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt
| | - Tushar C. Sarker
- Texs A&M AgriLife Research Center, Overton, Texas, United States of America
| | - Ahmed M. Abd-ElGawad
- Plant Production Department, College of Food & Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed A. Farag
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
- Healthcare Department, Saxony Egypt University (SEU), Badr City, Egypt
| | - Abdelsamed I. Elshamy
- Department of Natural Compounds Chemistry, National Research Centre, Dokki, Giza, Egypt
| |
Collapse
|
37
|
You X, Li H, Li Q, Zhang Q, Cao Y, Fu W, Wang B. Astragaloside IV-PESV facilitates pyroptosis by enhancing palmitoylation of GSDMD protein mediated by ZDHHC1. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04122-x. [PMID: 40237800 DOI: 10.1007/s00210-025-04122-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 03/28/2025] [Indexed: 04/18/2025]
Abstract
Prostate cancer (PCa) is an epithelial malignancy affecting the prostate gland. Astragaloside IV combined with polypeptide extract from scorpion venom (PESV) has been reported to inhibit the growth of PCa. This study aimed to investigate the mechanisms by which this combination mitigates the progression of PCa. Bioinformatic analysis was utilized to investigate the correlation between zinc finger DHHC-type containing 1 (ZDHHC1) expression and PCa progression. The extent of pyroptosis in PCa cells was assessed by measuring cell viability, IL-1β and IL-18 secretion, LDH release, and HMGB1 content. PCa mouse models were constructed by subcutaneous injection of DU145 or PC-3 cells into nude mice, with subsequent monitoring of tumor weight and volume. ZDHHC1 expression was significantly lower in PCa patient tissues, which correlated with a poor prognosis. ZDHHC1 overexpression inhibited PC-3 and DU145 cell viability and increased IL-1β, IL-18, LDH, and HMGB1 levels in cell supernatants. Notably, the pyroptosis inhibitor LDC7559 partially reversed these effects. Co-IP assay demonstrated an interaction between ZDHHC1 and GSDMD. ZDHHC1 overexpression significantly enhanced GSDMD palmitoylation-mediated membrane translocation and pyroptosis; however, this effect was partially reversed by the palmitoylation inhibitor 2-BP. The combination of Astragaloside IV and PESV promoted GSDMD membrane translocation and pyroptosis in PCa cells, with ZDHHC1 knockdown partially reversing the effects of Astragaloside IV-PESV. Furthermore, treatment with Astragaloside IV-PESV significantly inhibited tumor tissue growth in tumor-bearing nude mouse models. Astragaloside IV-PESV enhances palmitoylation-mediated membrane translocation of GSDMD-N by upregulating ZDHHC1 expression, thereby facilitating pyroptosis in PCa cells and attenuating PCa progression.
Collapse
Affiliation(s)
- Xujun You
- Department of Andrology, Dongcheng District, Dongzhimen Hospital, Beijing University of Chinese Medicine, Hai Yun Cang on the 5 th, Beijing, 100700, China
- Department of Andrology, Shenzhen Bao'an Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, 518101, China
| | - Honghan Li
- The Seventh Clinical Medical College of Guangzhou, University of Traditional Chinese Medicine, Shenzhen, 518133, China
| | - Qixin Li
- Department of Andrology, Shenzhen Bao'an Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, 518101, China
| | - Qing Zhang
- Department of Andrology, Shenzhen Bao'an Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, 518101, China
| | - Yiguo Cao
- Department of Urology Surgery, Shenzhen Bao'an Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, 518101, China
| | - Wei Fu
- Department of Andrology, Shenzhen Bao'an Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, 518101, China.
| | - Bin Wang
- Department of Andrology, Dongcheng District, Dongzhimen Hospital, Beijing University of Chinese Medicine, Hai Yun Cang on the 5 th, Beijing, 100700, China.
| |
Collapse
|
38
|
Guo C, Lin L, Wang Y, Jing J, Gong Q, Luo K. Nano drug delivery systems for advanced immune checkpoint blockade therapy. Theranostics 2025; 15:5440-5480. [PMID: 40303342 PMCID: PMC12036873 DOI: 10.7150/thno.112475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Accepted: 04/04/2025] [Indexed: 05/02/2025] Open
Abstract
Immune checkpoint inhibitors (ICIs) have been widely utilized in the first-line therapy of various types of cancer. However, immune-related adverse events (irAEs) and resistance to ICIs remain intractable challenges for immune checkpoint blockade (ICB) therapy during clinic treatment. Nano drug delivery systems (NDDSs) have shown promising potential to improve anticancer efficacy and reduce side effects of small molecular drugs. The combination of nanotechnology and ICB provides new opportunities to overcome the challenges of immunotherapy. Nanoplatforms have been employed for direct delivery of ICIs, and they are preferred vehicles for combination therapy of ICIs and other therapeutic agents. In this review, the strategies of using NDDSs for advancing ICB therapy in recent years are surveyed, emphasizing the employment of NDDSs for combination treatment by ICIs and other agents to manipulate antitumor immunity. Analysis of current strategies for applying NDDSs for ICB leads to future research directions and development trends.
Collapse
Affiliation(s)
- Chenqi Guo
- Department of Radiology, Huaxi MR Research Center (HMRRC), Institution of Radiology and Medical Imaging, Rehabilitation Therapy, Breast Center, Institute of Breast Health Medicine, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ling Lin
- Department of Radiology, Huaxi MR Research Center (HMRRC), Institution of Radiology and Medical Imaging, Rehabilitation Therapy, Breast Center, Institute of Breast Health Medicine, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yihan Wang
- Department of Radiology, Huaxi MR Research Center (HMRRC), Institution of Radiology and Medical Imaging, Rehabilitation Therapy, Breast Center, Institute of Breast Health Medicine, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
- West China School of Medicine, Chengdu 610041, China
| | - Jing Jing
- Department of Radiology, Huaxi MR Research Center (HMRRC), Institution of Radiology and Medical Imaging, Rehabilitation Therapy, Breast Center, Institute of Breast Health Medicine, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qiyong Gong
- Department of Radiology, Huaxi MR Research Center (HMRRC), Institution of Radiology and Medical Imaging, Rehabilitation Therapy, Breast Center, Institute of Breast Health Medicine, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
- Functional and molecular imaging Key Laboratory of Sichuan Province, Key Laboratory of Transplant Engineering and Immunology, NHC, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, China
- Xiamen Key Lab of Psychoradiology and Neuromodulation, Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen 361021, China
| | - Kui Luo
- Department of Radiology, Huaxi MR Research Center (HMRRC), Institution of Radiology and Medical Imaging, Rehabilitation Therapy, Breast Center, Institute of Breast Health Medicine, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
- Functional and molecular imaging Key Laboratory of Sichuan Province, Key Laboratory of Transplant Engineering and Immunology, NHC, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, China
| |
Collapse
|
39
|
Wang Z, Wang X, Fang H, Song X, Ding L, Chang M, Yan H, Chen Y. 2D Indium-Vacancy-Rich ZnIn 2S 4 Nanocatalysts for Sonocatalytic Cancer Suppression by Boosting Cancer-Cell Pyroptosis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2414432. [PMID: 40207706 DOI: 10.1002/adma.202414432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 03/23/2025] [Indexed: 04/11/2025]
Abstract
Sonocatalytic therapy is gaining interest for its non-invasive nature, precise control, and excellent tissue penetration, making it a promising approach for treating malignant tumors. While defect engineering enhances electron and hole separation to boost reactive oxygen species (ROS) generation, challenges in constructing effective hole traps compared to electron traps severely limit ROS production. In this study, 2D ZnIn2S4-VIn nanosheets enriched are rationally designed with In vacancies for the efficient capture of electrons and holes, which has achieved substantial sonocatalytic performance in suppressing tumor growth. Compared to pristine ZnIn2S4 nanosheets, which possess a periodic electrostatic potential inherent in their structure, In vacancies effectively disrupt this potential field, promote the simultaneous separation and migration of charge carriers, and inhibit their recombination, thereby boosting ROS production and inducing tumor cell pyroptosis via the ROS-NLRP3-caspase-1-GSDMD pathway under ultrasound (US) irradiation. Furthermore, both pristine ZnIn2S4 and ZnIn2S4-VIn nanosheets exhibited remarkable biocompatibility. In vitro and in vivo antineoplastic experiments demonstrate that this sonocatalytic approach effectively promotes tumor elimination, underscoring the critical importance of defect-engineered optimization in sonocatalytic tumor therapy.
Collapse
Affiliation(s)
- Zeyu Wang
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
- Department of Ultrasound, Jiangsu University Affiliated People's Hospital, Zhenjiang, 212002, P. R. China
| | - Xue Wang
- Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, P. R. China
| | - Hongsheng Fang
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, P. R. China
| | - Xinran Song
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Li Ding
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Tongji University Cancer Center, School of Medicine, Tongji University, Shanghai, 200072, P. R. China
| | - Meiqi Chang
- Laboratory Center, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, P. R. China
| | - Hao Yan
- Department of Urology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, P. R. China
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| |
Collapse
|
40
|
Cui Y, Mei J, Zhao S, Zhu B, Lu J, Li H, Bai B, Sun W, Jin W, Zhu X, Rao S, Yi Y. Identification of a PANoptosis-related long noncoding rna risk signature for prognosis and immunology in colon adenocarcinoma. BMC Cancer 2025; 25:662. [PMID: 40211224 PMCID: PMC11987197 DOI: 10.1186/s12885-025-14021-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 03/26/2025] [Indexed: 04/12/2025] Open
Abstract
BACKGROUND PANoptosis, a complex programmed cell death (PCD) pathway that includes apoptosis, pyroptosis and necroptosis, is significantly involved in the progression of cancers. Long noncoding RNAs (lncRNAs) play crucial roles in PCD. However, the predictive value of PANoptosis-related lncRNAs (PRlncRNAs) for colon adenocarcinoma (COAD) has not been established. METHODS Gene expression data and clinical characteristics of patients with COAD were obtained from The Cancer Genome Atlas database. Differential expression analysis and Pearson correlation analysis were used to identify PRlncRNAs. In addition to least absolute shrinkage and selection operator, univariate and multivariate Cox regression analyses were employed to obtain PRlncRNAs for constructing a risk signature. Patients with COAD in the training set, testing set and entire set were stratified into high- and low-risk groups for further comparison of survival prognosis, using the median risk score as the cut-off point. Time-dependent receiver operating characteristic curves, a nomogram and multivariate Cox regression analysis were conducted to validate the risk signature in the testing set and the entire set. In addition, critical pathways, immune infiltration cells, immune checkpoint-related genes, Tumor Immune Dysfunction and Exclusion (TIDE) scores and antitumour drugs were compared between the two risk groups in the entire set. Correlations between ferroptosis, cuproptosis, disulfidptosis and the PRlncRNA risk score were evaluated. Finally, a competitive endogenous RNA (ceRNA) network was established, and enrichment analysis of the predicted mRNAs was performed using Gene Ontology (GO) analysis. The Kaplan-Meier plotter database was used as an external database to confirm the accuracy of the risk signature in predicting patient prognosis. Additionally, small interfering RNA (siRNA), a cell counting kit- 8 assay, a cell colony formation assay, quantitative polymerase chain reaction (qPCR) and an apoptosis assay were further employed to investigate the roles of AP003555.1 in colon cancer. RESULTS A risk signature comprising four PRlncRNAs (LINC01133, FOXD3-AS1, AP001066.1, and AP003555.1) was developed to predict the prognosis of patients with COAD. Kaplan‒Meier curves demonstrated significant differences in prognosis between the high- and low-risk groups across the three sets. Multivariate Cox regression analysis confirmed that the risk signature was an independent prognostic factor across the three sets. A nomogram, receiver operating characteristic curves and calibration curves indicated strong confidence in the risk signature. Using the CIBERSORT algorithm and gene set enrichment analysis, variations in infiltrating immune cells and immune processes were observed between the two risk groups. Furthermore, TIDE algorithm suggested that the high-risk group exhibited a lower risk of immunotherapy escape and better immunotherapy outcomes than the low-risk group. Distinct responses to various antitumour drugs were observed between the two risk groups. Additionally, we constructed a ceRNA network based on PRlncRNAs, and GO enrichment analysis of the predicted mRNAs revealed different functions. In addition, the results of the Kaplan‒Meier plotter database revealed that patients who exhibited high levels of LINC01133 and FOXD3-AS1 experienced significantly shorter overall survival than those with low levels of these lncRNAs. Specifically, in terms of functionality, AP003555.1 was found to be highly expressed in colon cancer tissue and promoted viability and proliferation while suppressing the apoptosis of colon cancer cells. CONCLUSION We identified a novel risk signature consisting of four PRlncRNAs, which is an independent prognostic indicator for patients with COAD. This PRlncRNA risk signature is potentially relevant for immunotherapy and could serve as a therapeutic target for COAD.
Collapse
Affiliation(s)
- Yuekai Cui
- Second Affiliated Hospital & Yuying Childrens' & Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jie Mei
- Second Affiliated Hospital & Yuying Childrens' & Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shengsheng Zhao
- Second Affiliated Hospital & Yuying Childrens' & Hospital of Wenzhou Medical University, Wenzhou, China
| | - Bingzi Zhu
- Second Affiliated Hospital & Yuying Childrens' & Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jianhua Lu
- Second Affiliated Hospital & Yuying Childrens' & Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hongzheng Li
- Second Affiliated Hospital & Yuying Childrens' & Hospital of Wenzhou Medical University, Wenzhou, China
| | - Binglong Bai
- Second Affiliated Hospital & Yuying Childrens' & Hospital of Wenzhou Medical University, Wenzhou, China
| | - Weijian Sun
- First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wenyu Jin
- Second Affiliated Hospital & Yuying Childrens' & Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xueqiong Zhu
- Second Affiliated Hospital & Yuying Childrens' & Hospital of Wenzhou Medical University, Wenzhou, China.
- Wenzhou Medical University, Wenzhou, China.
| | - Shangrui Rao
- Second Affiliated Hospital & Yuying Childrens' & Hospital of Wenzhou Medical University, Wenzhou, China.
| | - Yongdong Yi
- Second Affiliated Hospital & Yuying Childrens' & Hospital of Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
41
|
Su L, Wang D, Purwin TJ, Ran S, Yang Q, Zhang Q, Cai W. Selective USP7 Inhibition Synergizes with MEK1/2 Inhibitor to Enhance Immune Responses and Potentiate Anti-PD-1 Therapy in NRAS-Mutant Melanoma. J Invest Dermatol 2025:S0022-202X(25)00384-7. [PMID: 40204067 DOI: 10.1016/j.jid.2025.03.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 02/28/2025] [Accepted: 03/21/2025] [Indexed: 04/11/2025]
Abstract
Targeted therapy for NRAS-mutant melanoma remains an unmet clinical need. We found that inhibiting USP7 with the selective ubiquitin-specific protease 7 inhibitor (USP7i) FT671 inhibited cell proliferation in NRAS-mutant melanoma cell lines. In addition, we identified and validated that knockout of TP53BP1, TP53, or CDKN1A conferred resistance to FT671, suggesting that the activation of a functional p53 signaling pathway is essential for the efficacy of USP7i. In Nras-mutant melanoma isograft models, FT671 treatment delayed tumor growth. Moreover, the combinatorial treatment with FT671 and MAPK/(extracellular signal-regulated kinase) kinase 1/2 inhibitor was synergistic and induced pyroptosis in vitro. In immunocompetent mice, the combined treatment profoundly suppressed tumor growth, prolonged survival, and enhanced intratumoral immune cell infiltration, particularly increasing the ratios of CD8+ T cells and mature dendritic cells, indicative of activated antitumor immunity. Notably, the triple combination of USP7i, MAPK/(extracellular signal-regulated kinase) kinase 1/2 inhibitor, and anti-PD-1 antibody resulted in durable tumor regression, with effects persisting beyond 80 days after treatment cessation. These findings establish USP7i + MAPK (extracellular signal-regulated kinase) kinase 1/2 inhibitor as a promising strategy for targeting NRAS, an 'undruggable' mutation in melanoma, and provide a strong rationale for the clinical development of USP7i plus MAPK (extracellular signal-regulated kinase) kinase 1/2 inhibitor as an adjuvant therapy to enhance anti-PD-1 immunotherapy in patients with NRAS-mutant melanoma.
Collapse
Affiliation(s)
- Liya Su
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, Illinois, USA
| | - Dinghao Wang
- Department of Mathematics and Statistics, Faculty of Science, University of Calgary, Calgary, Canada
| | - Timothy J Purwin
- Department of Cancer Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Sophia Ran
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, Illinois, USA; Simmons Cancer Institute, Southern Illinois University School of Medicine, Springfield, Illinois, USA
| | - Qi Yang
- Department of Pediatrics, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA; Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA; Rutgers Institute for Translational Medicine and Science, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
| | - Qingrun Zhang
- Department of Mathematics and Statistics, Faculty of Science, University of Calgary, Calgary, Canada; Department of Biochemistry & Molecular Biology, University of Calgary, Calgary, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada
| | - Weijia Cai
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, Illinois, USA; Simmons Cancer Institute, Southern Illinois University School of Medicine, Springfield, Illinois, USA; Department of Surgery, Southern Illinois University School of Medicine, Springfield, Illinois, USA.
| |
Collapse
|
42
|
Zhang N, Xu D. Controlling pyroptosis through post-translational modifications of gasdermin D. Dev Cell 2025; 60:994-1007. [PMID: 40199241 DOI: 10.1016/j.devcel.2025.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 12/15/2024] [Accepted: 02/05/2025] [Indexed: 04/10/2025]
Abstract
Pyroptosis, a lytic and programmed cell death pathway, is mediated by gasdermins (GSDMs), with GSDMD playing an important role in innate immunity and pathology. Upon activation, GSDMD is cleaved to release the active N-terminal fragment that oligomerizes into membrane pores, which promote pyroptosis and cytokine secretion, leading to inflammation. Emerging evidence indicates that post-translational modification (PTM) is an important regulatory mechanism of GSDMD activity. This review explores how PTMs, aside from proteolytic cleavage, control GSDMD activity and link biological contexts to pyroptosis in innate immunity and inflammation, which could inform future studies and therapeutic solutions for treating inflammatory conditions.
Collapse
Affiliation(s)
- Na Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
| | - Daichao Xu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China; State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China; Shanghai Key Laboratory of Aging Studies, Shanghai 201210, China; Shanghai Academy of Natural Sciences (SANS), Fudan University, Shanghai 200031, China.
| |
Collapse
|
43
|
Yang N, Hua R, Lai Y, Zhu P, Ding J, Ma X, Yu G, Xia Y, Liang C, Gao W, Wang Z, Zhang H, Yang L, Zhou K, Ge L. Microenvironment-adaptive nanomedicine MXene promotes flap survival by inhibiting ROS cascade and endothelial pyroptosis. J Nanobiotechnology 2025; 23:282. [PMID: 40197477 PMCID: PMC11978011 DOI: 10.1186/s12951-025-03343-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Accepted: 03/20/2025] [Indexed: 04/10/2025] Open
Abstract
In the field of large-area trauma flap transplantation, preventing avascular necrosis remains a critical challenge. Key mechanisms for improving flap viability include angiogenesis promotion, oxidative stress inhibition, and cell death prevention. Recently, two-dimensional ultrathin Ti3C2TX (MXene) nanosheets have gained attention for their potential contributions to these processes, though MXene's physiological impact on flap survival had not been previously investigated. This study is the first to confirm MXene's biological effects on the ischaemic microenvironment post-skin flap transplantation. Findings indicated that MXene significantly decreased the necrotic area in ischaemic flaps (37.96% ± 2.00%), with reductions of 30.40% ± 1.86% at 1 mg/mL and 20.19% ± 2.11% at 2 mg/mL in a concentration-dependent manner. Mechanistically, MXene facilitated in situ angiogenesis, mitigated oxidative stress, suppressed pro-inflammatory pyroptosis, and activated the PI3K-Akt pathway, particularly influencing vascular endothelial cells. Comparative transcriptome analysis of skin tissues with and without MXene treatment provided additional evidence, highlighting mechanisms such as pro-inflammatory pyroptosis, ROS metabolic processes, endothelial cell proliferation regulation, and PI3K-Akt signaling pathway activation. Overall, MXene demonstrated biological activity, effectively promoting ischaemic flaps survival and presenting a novel strategy for addressing ischaemic necrosis in skin flaps.
Collapse
Affiliation(s)
- Ningning Yang
- School of Pharmaceutical Sciences, Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
- Department of Orthopaedics, Zhejiang Provincial Key Laboratory of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou, 325027, Zhejiang, China
- State Key Laboratory of Macromolecular Drugs and Large-Scale Preparation, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Rongrong Hua
- School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Yingying Lai
- Department of Orthopaedics, Zhejiang Provincial Key Laboratory of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou, 325027, Zhejiang, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Peijun Zhu
- School of Pharmaceutical Sciences, Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Jian Ding
- Affiliated Cixi Hospital, Wenzhou Medical University, Ningbo, 315300, Zhejiang, China
- Department of Orthopaedics, Zhejiang Provincial Key Laboratory of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou, 325027, Zhejiang, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Xianhui Ma
- Department of Orthopaedics, Zhejiang Provincial Key Laboratory of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou, 325027, Zhejiang, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Gaoxiang Yu
- Department of Orthopaedics, Zhejiang Provincial Key Laboratory of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou, 325027, Zhejiang, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Yiheng Xia
- Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo, 315300, Zhejiang, China
| | - Chao Liang
- Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo, 315300, Zhejiang, China
| | - Weiyang Gao
- Department of Orthopaedics, Zhejiang Provincial Key Laboratory of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou, 325027, Zhejiang, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Zhouguang Wang
- School of Pharmaceutical Sciences, Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
- State Key Laboratory of Macromolecular Drugs and Large-Scale Preparation, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.
| | - Hongyu Zhang
- School of Pharmaceutical Sciences, Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
- Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo, 315300, Zhejiang, China.
| | - Liangliang Yang
- Affiliated Cixi Hospital, Wenzhou Medical University, Ningbo, 315300, Zhejiang, China.
- School of Pharmaceutical Sciences, Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
- Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo, 315300, Zhejiang, China.
| | - Kailiang Zhou
- Department of Orthopaedics, Zhejiang Provincial Key Laboratory of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou, 325027, Zhejiang, China.
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China.
- Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo, 315300, Zhejiang, China.
| | - Lu Ge
- Affiliated Cixi Hospital, Wenzhou Medical University, Ningbo, 315300, Zhejiang, China.
- School of Pharmaceutical Sciences, Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
- Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo, 315300, Zhejiang, China.
| |
Collapse
|
44
|
Wan C, Wu Q, Wang Y, Sun Y, Ji T, Gu Y, Wang L, Chen Q, Yang Z, Wang Y, Wang B, Zhong W. Machine learning-based characterization of PANoptosis-related biomarkers and immune infiltration in ulcerative colitis: A comprehensive bioinformatics analysis and experimental validation. Int Immunopharmacol 2025; 151:114298. [PMID: 39986196 DOI: 10.1016/j.intimp.2025.114298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 11/25/2024] [Accepted: 02/11/2025] [Indexed: 02/24/2025]
Abstract
Ulcerative colitis (UC) is a heterogeneous autoimmune condition. PANoptosis, a new form of programmed cell death, plays a role in inflammatory diseases. This study aimed to identify differentially expressed PANoptosis-related genes (PRGs) involved in immune dysregulation in UC. Three key PRGs-BIRC3, MAGED1, and PSME2 were found using weighted gene co-expression network analysis (WGCNA) and machine learning. Immune infiltration analysis revealed that these key PRGs were associated with neutrophils, CD8+ T cells, activated CD4 T cells, and NK cells. Moreover, these key PRGs were significantly enriched in pathways related to inflammatory bowel disease, the IL-17 signaling pathway, and NOD-like receptor signaling pathway. The expression levels of the key PRGs were validated in various datasets, animal models, and UC intestinal tissue samples. Our findings confirmed the involvement of PANoptosis in UC and predict hub genes and immune characteristics, providing new insights for further investigations into UC pathogenic mechanisms and therapeutic strategies.
Collapse
Affiliation(s)
- Changshan Wan
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin 300052, China
| | - Qiuyan Wu
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin 300052, China
| | - Yali Wang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin 300052, China
| | - Yan Sun
- Department of Obstetrics and Gynecology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Tao Ji
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin 300052, China; Department of Digestive Gastroenterology and Hepatology, Linyi People's Hospital, Shandong 276000, China
| | - Yu Gu
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin 300052, China
| | - Liwei Wang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin 300052, China
| | - Qiuyu Chen
- Department of Gastroenterology, Tianjin First Central Hospital of Tianjin Medical University, Tianjin 300192, China
| | - Zhen Yang
- Department of Clinical Laboratory, Tianjin Cancer Institute of Integrative Traditional Chinese and Western Medicine, Tianjin Union Medical Center of Nankai University, China.
| | - Yao Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine,Harbin 150040, China.
| | - Bangmao Wang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin 300052, China.
| | - Weilong Zhong
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin 300052, China.
| |
Collapse
|
45
|
Tan H, Yang G, Zhu Y, He X, Yang L, Hu Y, Zheng L. Mechanical Force Triggers Macrophage Pyroptosis and Sterile Inflammation by Disrupting Cellular Energy Metabolism. Int J Mol Sci 2025; 26:3321. [PMID: 40244158 PMCID: PMC11989687 DOI: 10.3390/ijms26073321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 03/23/2025] [Accepted: 04/01/2025] [Indexed: 04/18/2025] Open
Abstract
Mechanical force regulates tissue remodeling during orthodontic tooth movement (OTM) by inducing macrophage-mediated sterile inflammatory responses. Pyroptosis, as an inflammatory form of programmed cell death, triggers a robust inflammatory cascade by activating the inflammasome. Although recent reports have demonstrated that pyroptosis can be activated by mechanical force, it remains unclear whether and how orthodontic force induces macrophage pyroptosis and sterile inflammation. In this study, by establishing a rat OTM model and a force-loaded macrophage model, we found that force induces Caspase1-dependent pyroptosis in macrophages and activates sterile inflammation both in vivo and in vitro. Mechanistically, we uncovered that mechanical force disrupts macrophage energy metabolism, characterized by an imbalance between lactate dehydrogenase A (LDHA) and pyruvate dehydrogenase (PDH), as well as mitochondrial dysfunction. Notably, inhibiting pyruvate dehydrogenase kinase 1 (PDK1) effectively restored this metabolic balance, thereby alleviating pyroptosis and sterile inflammation in force-stimulated macrophages. Overall, this study elucidates that force induces macrophage pyroptosis and sterile inflammation, and further identifies imbalances in the LDHA/PDH ratio and mitochondrial dysfunction as pivotal mechanistic features. These insights offer novel perspectives and potential therapeutic targets for the precise and effective modulation of OTM.
Collapse
Affiliation(s)
- Hao Tan
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China; (H.T.); (G.Y.); (Y.Z.); (X.H.); (L.Y.)
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China
| | - Guoyin Yang
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China; (H.T.); (G.Y.); (Y.Z.); (X.H.); (L.Y.)
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China
| | - Ye Zhu
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China; (H.T.); (G.Y.); (Y.Z.); (X.H.); (L.Y.)
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China
| | - Xinyi He
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China; (H.T.); (G.Y.); (Y.Z.); (X.H.); (L.Y.)
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China
| | - Lan Yang
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China; (H.T.); (G.Y.); (Y.Z.); (X.H.); (L.Y.)
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China
| | - Yun Hu
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China; (H.T.); (G.Y.); (Y.Z.); (X.H.); (L.Y.)
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China
| | - Leilei Zheng
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China; (H.T.); (G.Y.); (Y.Z.); (X.H.); (L.Y.)
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China
| |
Collapse
|
46
|
Hushmandi K, Reiter RJ, Farahani N, Cho WC, Alimohammadi M, Khoshnazar SM. Pyroptosis; igniting neuropsychiatric disorders from mild depression to aging-related neurodegeneration. Prog Neuropsychopharmacol Biol Psychiatry 2025; 138:111325. [PMID: 40081561 DOI: 10.1016/j.pnpbp.2025.111325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 03/03/2025] [Accepted: 03/05/2025] [Indexed: 03/16/2025]
Abstract
Neuropsychiatric disorders significantly impact global health and socioeconomic well-being, highlighting the urgent need for effective treatments. Chronic inflammation, often driven by the innate immune system, is a key feature of many neuropsychiatric conditions. NOD-like receptors (NLRs), which are intracellular sensors, detect danger signals and trigger inflammation. Among these, NLR protein (NLRP) inflammasomes play a crucial role by releasing pro-inflammatory cytokines and inducing a particular cell death process known as pyroptosis. Pyroptosis is defined as a proinflammatory form of programmed cell death executed by cysteine-aspartic proteases, also known as caspases. Currently, the role of pyroptotic flux has emerged as a critical factor in innate immunity and the pathogenesis of multiple diseases. Emerging evidence suggests that the induction of pyroptosis, primarily due to NLRP inflammasome activation, is involved in the pathophysiology of various neuropsychiatric disorders, including depression, stress-related issues, schizophrenia, autism spectrum disorders, and neurodegenerative diseases. Within this framework, the current review explores the complex relationship between pyroptosis and neuropsychiatric diseases, aiming to identify potential therapeutic targets for these challenging conditions.
Collapse
Affiliation(s)
- Kiavash Hushmandi
- Nephrology and Urology Research Center, Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, Long School of Medicine, San Antonio, TX, USA
| | - Najma Farahani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong
| | - Mina Alimohammadi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyedeh Mahdieh Khoshnazar
- Gastroenterology and Hepatology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
47
|
Miao Z, Zhang X, Xu Y, Liu Y, Yang Q. Unveiling the nexus: pyroptosis and its crucial implications in liver diseases. Mol Cell Biochem 2025; 480:2159-2176. [PMID: 39477911 DOI: 10.1007/s11010-024-05147-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 10/22/2024] [Indexed: 04/02/2025]
Abstract
Pyroptosis, a distinctive form of programmed cell death orchestrated by gasdermin proteins, manifests as cellular rupture, accompanied by the release of inflammatory factors. While pyroptosis is integral to anti-infection immunity, its aberrant activation has been implicated in tumorigenesis. The liver, as the body's largest metabolic organ, is rich in various enzymes and governs metabolism. It is also the primary site for protein synthesis. Recent years have witnessed the emergence of pyroptosis as a significant player in the pathogenesis of specific liver diseases, exerting a pivotal role in both physiological and pathological processes. A comprehensive exploration of pyroptosis can unveil its contributions to the development and regression of conditions such as hepatitis, cirrhosis, and hepatocellular carcinoma, offering innovative perspectives for clinical prevention and treatment. This review consolidates current knowledge on key molecules involved in cellular pyroptosis and delineates their roles in liver diseases. Furthermore, we discuss the potential of leveraging pyroptosis as a novel or existing anti-cancer strategy.
Collapse
Affiliation(s)
- Zeyu Miao
- Department of Pathogenobiology, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun, 130021, Jilin Province, China
| | - Xiaorong Zhang
- Department of Pathogenobiology, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun, 130021, Jilin Province, China
| | - Yang Xu
- Department of Pathogenobiology, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun, 130021, Jilin Province, China
| | - Yan Liu
- Department of Pathogenobiology, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun, 130021, Jilin Province, China
| | - Qing Yang
- Department of Pathogenobiology, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun, 130021, Jilin Province, China.
| |
Collapse
|
48
|
Ning J, Wang J, Xu L, Li H. MiR-153 is Involved in Testicular Ischemia/Reperfusion Injury by Directly Targeting FOXO3 and Regulating Spermatogonia Pyroptosis. Mol Biotechnol 2025; 67:1707-1719. [PMID: 38664304 DOI: 10.1007/s12033-024-01156-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/26/2024] [Indexed: 03/22/2025]
Abstract
IRI often occurs after detorsion of testicular torsion, which can contribute to permanent damage to sperm production function due to spermatogonia pyroptosis. Mounting data manifest that miRNAs possess a function in the IRI progression. However, the miR-153 function in testicular IRI remains unclear. We aim to elucidate the regulatory mechanism of miR-153 in regulating spermatogonia pyroptosis in testicular IRI. We developed the mouse testicular torsion/detorsion (T/D) model and the oxygen-glucose deprivation/reperfusion (OGD/R) model to examine the miR-153 function in testicular IRI. The extent of testicular ischemic damage was evaluated through HE staining the testicular tissue. Various experimental methods, including Western blotting, QRT-PCR, MDA, SOD assays, and immunohistochemistry (IHC), were deployed to examine the miR-153 levels and the generation of ROS in the testicular tissues. Furthermore, we determined the FoxO3 levels and pyroptosis-related proteins in GC-1 cells. Cell viability was assessed using the CCK-8 assay. Finally, the connection between miR-153 and FoxO3 was verified by employing dual luciferase reporter gene assays and Ago2-RIP. In the testicular IRI, we noted a significant elevation in the pyroptosis-correlated proteins NLRP3, caspase-1 (CASP1), IL-1β, and IL-18 levels. Furthermore, we noted a significant upregulation of miR-153 in the IRI testicular tissues and GC-1 cells treated with OGD/R, and the miR-153 upregulation increased cell pyroptosis. Conversely, the miR-153 downregulation and FoxO3 overexpression reduced cell pyroptosis. Subsequently, we validated that FoxO3 is a miR-153 target gene. During the OGD/R process, miR-153 increased cell pyroptosis in GC-1 cells by suppressing the FoxO3 expression. We identified that the regulation of testicular IRI-induced cell pyroptosis is mediated by miR-153 via its targeting of FoxO3.
Collapse
Affiliation(s)
- Jinzhuo Ning
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, People's Republic of China
| | - Jinrun Wang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, People's Republic of China
| | - Lizhe Xu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, People's Republic of China
| | - Haoyong Li
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, People's Republic of China.
| |
Collapse
|
49
|
Zhang Y, Han J. A GSDMD agonist boosts specific antitumor immunity. Cell Res 2025; 35:235-236. [PMID: 39538026 PMCID: PMC11958794 DOI: 10.1038/s41422-024-01051-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Affiliation(s)
- Yingying Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Jiahuai Han
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, China.
- Research Unit of Cellular Stress of Chinese Academy of Medical Science, Xiang'an Hospital of Xiamen University, Cancer Research Center of Xiamen University, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, China.
- Laboratory Animal Center, Xiamen University, Xiamen, Fujian, China.
| |
Collapse
|
50
|
Zhuang H, Lei W, Wu Q, Zhao S, Zhao Y, Zhang S, Zhao N, Sun J, Liu Y. Overexpressed CD73 attenuates GSDMD-mediated astrocyte pyroptosis induced by cerebral ischemia-reperfusion injury through the A2B/NF-κB pathway. Exp Neurol 2025; 386:115152. [PMID: 39832662 DOI: 10.1016/j.expneurol.2025.115152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 01/03/2025] [Accepted: 01/13/2025] [Indexed: 01/22/2025]
Abstract
Ischemic stroke, resulting from the blockage or narrowing of cerebral vessels, causes brain tissue damage due to ischemia and hypoxia. Although reperfusion therapy is essential to restore blood flow, it may also result in reperfusion injury, causing secondary damage through mechanisms like oxidative stress, inflammation, and excitotoxicity. These effects significantly impact astrocytes, neurons, and endothelial cells, aggravating brain injury and disrupting the blood-brain barrier. CD73, an ectoenzyme that regulates adenosine production through ATP hydrolysis, plays a critical role in purinergic signaling and neuroprotection. During ischemic stroke, CD73 expression is dynamically regulated in response to ischemia and inflammation. It catalyzes the conversion of AMP to adenosine, which activates adenosine receptors to exert neuroprotective effects. Targeting the CD73-adenosine pathway presents a potential therapeutic strategy for mitigating ischemic stroke damage. Pyroptosis, a highly inflammatory form of programmed cell death mediated by inflammasomes like NLRP3 and caspases, plays a significant role in cerebral ischemia-reperfusion injury. Astrocytes, the most abundant CNS cells, contribute to both neuroprotection and injury, with pyroptosis exacerbating inflammation and brain damage. Regulating astrocyte pyroptosis is a promising therapeutic target. Our study investigates CD73's role in regulating astrocyte pyroptosis during ischemia-reperfusion injury. Using CD73 knockout mice and overexpression models, along with in vitro oxygen-glucose deprivation/reperfusion experiments, we found that CD73 overexpression reduces GSDMD-mediated astrocyte pyroptosis via the A2B/NF-κB pathway. These findings offer a novel approach to reducing neuroinflammation, protecting astrocytes, and improving outcomes in ischemic stroke.
Collapse
Affiliation(s)
- Hao Zhuang
- Department of Neurosurgery, Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi 214000, China; Wuxi Medical Center of Nanjing Medical University, Wuxi 214000, China
| | - Wen Lei
- Department of Neurosurgery, Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi 214000, China; Wuxi Medical Center of Nanjing Medical University, Wuxi 214000, China
| | - Qiang Wu
- Department of Neurosurgery, Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi 214000, China; Wuxi Medical Center of Nanjing Medical University, Wuxi 214000, China
| | - Songyun Zhao
- Department of Neurosurgery, Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi 214000, China; Wuxi Medical Center of Nanjing Medical University, Wuxi 214000, China
| | - Yunxuan Zhao
- Department of Endocrinology, Nanjing Hospital of Traditional Chinese Medicine, Nanjing 210001, China
| | - Shizhe Zhang
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Bengbu Medical University, Hefei, Anhui 230001, China
| | - Ning Zhao
- Wuxi School of Medicine, Jiangnan University, Wuxi 214000, China
| | - Jun Sun
- Department of Neurosurgery, Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi 214000, China; Wuxi Medical Center of Nanjing Medical University, Wuxi 214000, China.
| | - Yuankun Liu
- Department of Neurosurgery, Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi 214000, China; Wuxi Medical Center of Nanjing Medical University, Wuxi 214000, China.
| |
Collapse
|