1
|
Wen T, Boyden SE, Hocutt CM, Lewis RG, Baldwin EE, Vagher J, Andrews A, Nicholas TJ, Chapin A, Fan EM, Botto LD, Bayrak-Toydemir P, Mao R, Meznarich JA. Identification of 2 novel noncoding variants in patients with Diamond-Blackfan anemia syndrome by whole genome sequencing. Blood Adv 2025; 9:2443-2452. [PMID: 40029997 DOI: 10.1182/bloodadvances.2024015347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 02/16/2025] [Indexed: 05/17/2025] Open
Abstract
ABSTRACT Diamond-Blackfan anemia syndrome (DBAS) is a rare congenital disorder with variable penetrance and expressivity and is characterized by pure red cell aplasia that typically manifests as early-onset chronic macrocytic or normocytic anemia and is often associated with other congenital anomalies. DBAS is etiologically heterogeneous with >20 known DBAS-associated genes that encode small and large ribosomal protein subunits and an inheritance pattern that is largely autosomal dominant or sporadic. We report 2 DBAS cases with previous negative genetic testing, which included targeted gene panels, karyotype analysis, chromosome breakage analysis, and whole exome sequencing. Although clinical whole genome sequencing (WGS) was initially negative, in-depth reanalysis identified 2 novel noncoding variants in the RPS gene family, namely a maternally inherited splicing variant at the end of the first noncoding exon in RPS7 (NM_001011.4, c.-19G>C) in family 1 and a deep intronic de novo variant in RPS19 (NM_001022.4, c.172+350C>T) in family 2. In family 1, several maternal relatives were identified who shared the same variant through cascade testing; clinically, they exhibited variable degrees of anemia and elevated erythrocyte adenosine deaminase activity, a marker for DBAS. RNA sequencing analysis demonstrated deleterious functional consequences for both noncoding variants. In case 1, hematopoietic stem cell transplant with an unaffected matched sibling donor who did not carry the variant successfully cured the congenital anemia. This study identified novel noncoding variants and underscores the clinical utility of WGS in accelerating diagnosis and improving care for rare genetic disorders, particularly when timely treatment decisions are critically important.
Collapse
Affiliation(s)
- Ting Wen
- ARUP Laboratories, Salt Lake City, UT
- Department of Pathology, University of Utah, Salt Lake City, UT
- Department of Pathology and Laboratory Medicine, Henry Ford Hospital, Detroit, MI
| | - Steven E Boyden
- Department of Human Genetics, Utah Center for Genetic Discovery, Salt Lake City, UT
| | - Caleb M Hocutt
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, University of Utah, Salt Lake City, UT
- Primary Children's Hospital, Intermountain Healthcare, Salt Lake City, UT
| | - Robert G Lewis
- ARUP Laboratories, Salt Lake City, UT
- Department of Pathology, University of Utah, Salt Lake City, UT
| | - Erin E Baldwin
- Primary Children's Hospital, Intermountain Healthcare, Salt Lake City, UT
- Division of Medical Genetics, Department of Pediatrics, University of Utah, Salt Lake City, UT
| | - Jennie Vagher
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT
| | - Ashley Andrews
- Primary Children's Hospital, Intermountain Healthcare, Salt Lake City, UT
- Division of Medical Genetics, Department of Pediatrics, University of Utah, Salt Lake City, UT
| | - Thomas J Nicholas
- Department of Human Genetics, Utah Center for Genetic Discovery, Salt Lake City, UT
| | | | - Elaine M Fan
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, University of Utah, Salt Lake City, UT
- Primary Children's Hospital, Intermountain Healthcare, Salt Lake City, UT
| | - Lorenzo D Botto
- Division of Medical Genetics, Department of Pediatrics, University of Utah, Salt Lake City, UT
| | - Pinar Bayrak-Toydemir
- ARUP Laboratories, Salt Lake City, UT
- Department of Pathology, University of Utah, Salt Lake City, UT
| | - Rong Mao
- ARUP Laboratories, Salt Lake City, UT
- Department of Pathology, University of Utah, Salt Lake City, UT
| | - Jessica A Meznarich
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, University of Utah, Salt Lake City, UT
- Primary Children's Hospital, Intermountain Healthcare, Salt Lake City, UT
| |
Collapse
|
2
|
Dutta D, Chatterjee N. Expanding scope of genetic studies in the era of biobanks. Hum Mol Genet 2025:ddaf054. [PMID: 40312842 DOI: 10.1093/hmg/ddaf054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 03/25/2025] [Accepted: 04/08/2025] [Indexed: 05/03/2025] Open
Abstract
Biobanks have become pivotal in genetic research, particularly through genome-wide association studies (GWAS), driving transformative insights into the genetic basis of complex diseases and traits through the integration of genetic data with phenotypic, environmental, family history, and behavioral information. This review explores the distinct design and utility of different biobanks, highlighting their unique contributions to genetic research. We further discuss the utility and methodological advances in combining data from disease-specific study or consortia with that of biobanks, especially focusing on summary statistics based meta-analysis. Subsequently we review the spectrum of additional advantages offered by biobanks in genetic studies in representing population differences, calibration of polygenic scores, assessment of pleiotropy and improving post-GWAS in silico analyses. Advances in sequencing technologies, particularly whole-exome and whole-genome sequencing, have further enabled the discovery of rare variants at biobank scale. Among recent developments, the integration of large-scale multi-omics data especially proteomics and metabolomics, within biobanks provides deeper insights into disease mechanisms and regulatory pathways. Despite challenges like ascertainment strategies and phenotypic misclassification, biobanks continue to evolve, driving methodological innovation and enabling precision medicine. We highlight the contributions of biobanks to genetic research, their growing integration with multi-omics, and finally discuss their future potential for advancing healthcare and therapeutic development.
Collapse
Affiliation(s)
- Diptavo Dutta
- Integrative Tumor Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, 9609 Medical Center Drive, Rockville, MD, 20879, United States
| | - Nilanjan Chatterjee
- Department of Biostatistics, Johns Hopkins University, 615 N Wolfe Street, Baltimore, MD, 21205, United States
- Department of Oncology, Johns Hopkins University, 615 N Wolfe Street, Baltimore, MD, 21205, United States
| |
Collapse
|
3
|
Lucca C, Rosina E, Pezzani L, Piazzolla D, Spaccini L, Scatigno A, Gasperini S, Pezzoli L, Cereda A, Milani D, Cattaneo E, Cavallari U, Frigeni M, Marchetti D, Daolio C, Giordano L, Bellini M, Goisis L, Mongodi C, Tonduti D, Pilotta A, Cazzaniga G, Furlan F, Bedeschi MF, Mangili G, Bonanomi E, Iascone M. First-Tier Versus Last-Tier Trio Whole-Genome Sequencing for the Diagnosis of Pediatric-Onset Rare Diseases. Clin Genet 2025. [PMID: 40274276 DOI: 10.1111/cge.14760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 04/11/2025] [Accepted: 04/16/2025] [Indexed: 04/26/2025]
Abstract
Despite advances in diagnostics, children with rare genetic disorders still face extended diagnostic odysseys, delaying appropriate clinical management, and placing burdens on families and healthcare resources. Whole-genome sequencing (WGS) offers a more comprehensive interrogation of the genome than other genetic tests, but its use in clinical practice remains limited. This study compared diagnostic rates, turnaround times, and clinical utility of first-tier versus last-tier trio-WGS for patients with suspected genetic pediatric-onset conditions, including 97 critical and 104 non-critical patients. Eighty-five patients (42.3%), including 57 (58.8%) critical and 28 (26.9%) non-critical patients, received a molecular diagnosis. The diagnostic rate was higher for first-tier (57%) than for last-tier (32.8%) trio-WGS. Of 121 causative variants identified, 19.8% would have been missed by whole-exome sequencing. Laboratory processing time was 4 days for all patients. The clinical setting had the greatest impact on time to reporting, averaging 5 days for critical patients versus 74 days for outpatients. WGS results impacted clinical decision-making for 34% of all critical and 14.3% of WGS-positive non-critical patients. This is the first Italian clinical study to demonstrate the diagnostic and clinical utility of a genome-first approach for both critical and non-critical patients with suspected genetic pediatric-onset disorders and feasibility in a public healthcare system.
Collapse
Affiliation(s)
- Camilla Lucca
- Laboratory of Medical Genetics, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Erica Rosina
- Laboratory of Medical Genetics, ASST Papa Giovanni XXIII, Bergamo, Italy
- Fondazione IRCCS ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Lidia Pezzani
- Rare Disease Unit, ASST Papa Giovanni XXIII, Bergamo, Italy
| | | | - Luigina Spaccini
- Clinical Genetics Unit, Department of Obstetrics and Gynecology, Vittore Buzzi Children's Hospital, University of Milan, Milan, Italy
| | | | - Serena Gasperini
- Inherited Metabolic Disorders Unit Pediatrics, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Laura Pezzoli
- Laboratory of Medical Genetics, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Anna Cereda
- Medical Genetics, Fondazione IRCCS San Gerardo Dei Tintori, Monza, Italy
| | - Donatella Milani
- Fondazione IRCCS ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Elisa Cattaneo
- Clinical Genetics Unit, Department of Obstetrics and Gynecology, Vittore Buzzi Children's Hospital, University of Milan, Milan, Italy
| | - Ugo Cavallari
- Medical Genetics Unit, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Marco Frigeni
- Hematology and Bone Marrow Transplant Unit, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Daniela Marchetti
- Laboratory of Medical Genetics, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Cecilia Daolio
- Pediatrics, Fondazione IRCCS San Gerardo Dei Tintori, Monza, Italy
| | - Laura Giordano
- Pediatric Unit, Ospedale Fatebenefratelli e Oftalmico, Milan, Italy
| | - Matteo Bellini
- Laboratory of Medical Genetics, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Lucrezia Goisis
- Laboratory of Medical Genetics, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Chiara Mongodi
- Laboratory of Medical Genetics, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Davide Tonduti
- Pediatric Neurology Unit, C.O.A.L.A. (Center for Diagnosis and Treatment of Leukodystrophies), Vittore Buzzi Children's Hospital, University of Milan, Milan, Italy
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Alba Pilotta
- Pediatric Clinic, Children's Hospital, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Giovanni Cazzaniga
- Medical Genetics, Fondazione IRCCS San Gerardo Dei Tintori, Monza, Italy
- School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Francesca Furlan
- Clinical Metabolic Reference Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | | | - Giovanna Mangili
- Neonatal Intensive Care Unit, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Ezio Bonanomi
- Pediatric Intensive Care Unit, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Maria Iascone
- Laboratory of Medical Genetics, ASST Papa Giovanni XXIII, Bergamo, Italy
| |
Collapse
|
4
|
Del Gobbo GF, Boycott KM. The additional diagnostic yield of long-read sequencing in undiagnosed rare diseases. Genome Res 2025; 35:559-571. [PMID: 39900460 PMCID: PMC12047273 DOI: 10.1101/gr.279970.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2025]
Abstract
Long-read sequencing (LRS) is a promising technology positioned to study the significant proportion of rare diseases (RDs) that remain undiagnosed as it addresses many of the limitations of short-read sequencing, detecting and clarifying additional disease-associated variants that may be missed by the current standard diagnostic workflow for RDs. Some key areas where additional diagnostic yields may be realized include: (1) detection and resolution of structural variants (SVs); (2) detection and characterization of tandem repeat expansions; (3) coverage of regions of high sequence similarity; (4) variant phasing; (5) the use of de novo genome assemblies for reference-based or graph genome variant detection; and (6) epigenetic and transcriptomic evaluations. Examples from over 50 studies support that the main areas of added diagnostic yield currently lie in SV detection and characterization, repeat expansion assessment, and phasing (with or without DNA methylation information). Several emerging studies applying LRS in cohorts of undiagnosed RDs also demonstrate that LRS can boost diagnostic yields following negative standard-of-care clinical testing and provide an added yield of 7%-17% following negative short-read genome sequencing. With this evidence of improved diagnostic yield, we discuss the incorporation of LRS into the diagnostic care pathway for undiagnosed RDs, including current challenges and considerations, with the ultimate goal of ending the diagnostic odyssey for countless individuals with RDs.
Collapse
Affiliation(s)
- Giulia F Del Gobbo
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario, Canada K1H 5B2
| | - Kym M Boycott
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario, Canada K1H 5B2;
- Department of Genetics, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada K1H 8L1
| |
Collapse
|
5
|
Koriath CAM, Guntoro F, Norsworthy P, Dolzhenko E, Eberle M, Hensman Moss DJ, Flower M, Hummerich H, Rosser AE, Tabrizi SJ, Mead S, Wild EJ. Huntington's disease phenocopy syndromes revisited: a clinical comparison and next-generation sequencing exploration. J Neurol Neurosurg Psychiatry 2025; 96:466-469. [PMID: 39443079 PMCID: PMC12015005 DOI: 10.1136/jnnp-2024-333602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 09/28/2024] [Indexed: 10/25/2024]
Abstract
BACKGROUND Genetic testing for Huntington's disease (HD) was initially usually positive but more recently the negative rate has increased: patients with negative HD tests are described as having HD phenocopy syndromes (HDPC). This study examines their clinical characteristics and investigates the genetic causes of HDPC. METHODS Clinical data from neurogenetics clinics and HDPC gene-panel data were analysed. Additionally, a subset of 50 patients with HDPC underwent whole-genome sequencing (WGS) analysed via Expansion Hunter and Ingenuity Variant Analysis. RESULTS HDPC prevalence was estimated at 2.3-2.9 per 100 000. No clinical discriminators between patients with HD and HDPC could be identified. In the gene-panel data, deleterious variants and potentially deleterious variants were over-represented in cases versus controls. WGS analysis identified one ATXN1 expansion in a patient with HDPC. CONCLUSIONS The HDPC phenotype is consistent with HD, but the genotype is distinct. Both established deleterious variants and novel potentially deleterious variants in genes related to neurodegeneration contribute to HDPC.
Collapse
Affiliation(s)
- Carolin Anna Maria Koriath
- LMU University Hospital, Department of Psychiatry and Psychotherapie, Ludwig Maximilian University of Munich, Munchen, Bayern, Germany
- MRC Prion Unit at the UCL Institute of Prion Disease, London, UK
| | - Fernando Guntoro
- MRC Prion Unit at the UCL Institute of Prion Disease, London, UK
| | | | | | | | - Davina J Hensman Moss
- St George's University of London, London, UK
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Michael Flower
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Holger Hummerich
- MRC Prion Unit at the UCL Institute of Prion Disease, London, UK
| | - Anne Elizabeth Rosser
- Neuroscience and Mental Health Institute and BRAIN unit Cardiff University, Cardiff, UK
| | - Sarah J Tabrizi
- Huntington's Disease Centre, University College London, London, UK
| | - Simon Mead
- MRC Prion Unit at the UCL Institute of Prion Disease, London, UK
| | - Edward J Wild
- Huntington's Disease Centre, University College London, London, UK
| |
Collapse
|
6
|
Malhotra A, Thorpe E, Coffey AJ, Rajkumar R, Adjeman J, Naa Adjeley Adjetey ND, Aglobitse S, Allotey F, Arsov T, Ashong J, Badoe EV, Basel D, Brew Y, Brown C, Bosfield K, Casas K, Cornejo-Olivas M, Davis-Keppen L, Freed A, Gibson K, Jayakar P, Jones MC, Kawome M, Lumaka A, Maier U, Makay P, Manassero G, Marbell-Wilson M, Marcuccilli C, Masser-Frye D, McCarrier J, Mills HS, Montoya JB, Mubungu G, Ngole M, Perez J, Pivnick E, Duenas-Roque MM, Pena Salguero H, Serize A, Shinawi M, Sirchia F, Soler-Alfonso C, Taylor A, Thompson L, Vance G, Vanderver A, Vaux K, Velasco D, Wiafe S, Taft RJ, Perry DL, Kesari A. Multiple molecular diagnoses identified through genome sequencing in individuals with suspected rare disease. HGG ADVANCES 2025; 6:100430. [PMID: 40195116 PMCID: PMC12033986 DOI: 10.1016/j.xhgg.2025.100430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 04/01/2025] [Accepted: 04/01/2025] [Indexed: 04/09/2025] Open
Abstract
Genome sequencing is a powerful and comprehensive test that detects multiple variants of different types. The interrogation of variants across the genome enables the identification of multiple molecular diagnoses (MMDs) in a single individual. In this retrospective study, we describe individuals in whom MMDs were associated with the proband's indication for testing (IFT), secondary findings, or incidental findings. An MMD is considered where at least one of the findings is associated with the primary IFT and all variants are classified as either likely pathogenic or pathogenic. Clinical genome sequencing was performed for all individuals as part of the iHope program at the Illumina Laboratory Services between September 2017 and December 2023. The iHope cohort included 1,846 affected individuals, with 872 (47.2%) found to have at least one likely pathogenic or pathogenic variant associated with the primary IFT. Of these, 81 (9.3%) individuals had multiple clinically significant molecular findings, including 76 individuals with reported variants associated with 2 different conditions, and 5 individuals with more than 2 molecular findings. A total of 32 individuals (3.7%) had at least 2 molecular diagnoses related to the primary IFT, while in 49 (5.6%) individuals, the variant(s) reported for the second condition constituted a secondary or incidental finding. Our study highlights that among individuals with a likely pathogenic or pathogenic finding identified through genome sequencing, 9% have MMDs, which may have been missed with different testing methods. Of note, approximately 60% of the 81 individuals with an MMD had a potentially actionable secondary or incidental finding.
Collapse
Affiliation(s)
| | - Erin Thorpe
- Illumina Inc., San Diego, CA, USA; Genetic Alliance, Damascus, MD, USA
| | | | | | | | | | | | | | - Todor Arsov
- Goce Delcev Universiity, Stip, North Macedonia
| | | | | | - Donald Basel
- Children's Wisconsin, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Yvonne Brew
- Greater Accra Regional Hospital, Accra, Ghana
| | - Chester Brown
- University of Tennessee Health Science Center, Le Bonheur Children's Hospital, Memphis, TN, USA
| | - Kerri Bosfield
- University of Tennessee Health Science Center, Le Bonheur Children's Hospital, Memphis, TN, USA
| | | | - Mario Cornejo-Olivas
- Neurogenetics Working Group, Universidad Cientifica del Sur, Lima, Peru; Neurogenetics Research Center, Instituto Nacional de Ciencias Neurológicas, Lima, Peru
| | | | - Abbey Freed
- Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Kate Gibson
- Genetic Health Service, Wellington, New Zealand
| | | | - Marilyn C Jones
- Rady Children's Hospital, San Diego, CA, USA; San Diego-Imperial Counties Developmental Services, Inc., San Diego, CA, USA
| | | | - Aimé Lumaka
- Center for Human Genetics, Universite de Kinshasa, Kinshasa, Democratic Republic of the Congo
| | | | - Prince Makay
- Center for Human Genetics, Universite de Kinshasa, Kinshasa, Democratic Republic of the Congo
| | | | - Marilyn Marbell-Wilson
- Instituto Nacional de Salud del Nino-San Borja, Lima, Peru; Mission Clinic, Accra, Ghana
| | | | - Diane Masser-Frye
- Rady Children's Hospital, San Diego, CA, USA; San Diego-Imperial Counties Developmental Services, Inc., San Diego, CA, USA
| | - Julie McCarrier
- Children's Wisconsin, Medical College of Wisconsin, Milwaukee, WI, USA
| | | | | | - Gerrye Mubungu
- Center for Human Genetics, Universite de Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - Mamy Ngole
- Center for Human Genetics, Universite de Kinshasa, Kinshasa, Democratic Republic of the Congo
| | | | - Eniko Pivnick
- University of Tennessee Health Science Center, Le Bonheur Children's Hospital, Memphis, TN, USA
| | | | | | | | - Marwan Shinawi
- Washington University, St. Louis, MO, USA; St. Louis Children's Hospital, St. Louis, MO, USA
| | - Fabio Sirchia
- Department of Molecular Medicine, University of Pavia, Pavia, Italy; Medical Genetics Unit, IRCCS San Matteo Foundation, Pavia, Italy
| | | | - Alan Taylor
- Al Jalila Genomics Center of Excellence, Al Jalila Children's Specialty Hospital, Dubai, United Arab Emirates
| | | | - Gail Vance
- Indiana University School of Medicine, Indianapolis, IN, USA
| | - Adeline Vanderver
- Division of Neurology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Keith Vaux
- Point Loma Pediatrics, San Diego, CA, USA
| | | | | | - Ryan J Taft
- Illumina Inc., San Diego, CA, USA; Genetic Alliance, Damascus, MD, USA
| | | | | |
Collapse
|
7
|
Mukherjee A, Abraham S, Singh A, Balaji S, Mukunthan KS. From Data to Cure: A Comprehensive Exploration of Multi-omics Data Analysis for Targeted Therapies. Mol Biotechnol 2025; 67:1269-1289. [PMID: 38565775 PMCID: PMC11928429 DOI: 10.1007/s12033-024-01133-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 02/27/2024] [Indexed: 04/04/2024]
Abstract
In the dynamic landscape of targeted therapeutics, drug discovery has pivoted towards understanding underlying disease mechanisms, placing a strong emphasis on molecular perturbations and target identification. This paradigm shift, crucial for drug discovery, is underpinned by big data, a transformative force in the current era. Omics data, characterized by its heterogeneity and enormity, has ushered biological and biomedical research into the big data domain. Acknowledging the significance of integrating diverse omics data strata, known as multi-omics studies, researchers delve into the intricate interrelationships among various omics layers. This review navigates the expansive omics landscape, showcasing tailored assays for each molecular layer through genomes to metabolomes. The sheer volume of data generated necessitates sophisticated informatics techniques, with machine-learning (ML) algorithms emerging as robust tools. These datasets not only refine disease classification but also enhance diagnostics and foster the development of targeted therapeutic strategies. Through the integration of high-throughput data, the review focuses on targeting and modeling multiple disease-regulated networks, validating interactions with multiple targets, and enhancing therapeutic potential using network pharmacology approaches. Ultimately, this exploration aims to illuminate the transformative impact of multi-omics in the big data era, shaping the future of biological research.
Collapse
Affiliation(s)
- Arnab Mukherjee
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, India
| | - Suzanna Abraham
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, India
| | - Akshita Singh
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, India
| | - S Balaji
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, India
| | - K S Mukunthan
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, India.
| |
Collapse
|
8
|
Weekley BH, Ahmed NI, Maze I. Elucidating neuroepigenetic mechanisms to inform targeted therapeutics for brain disorders. iScience 2025; 28:112092. [PMID: 40160416 PMCID: PMC11951040 DOI: 10.1016/j.isci.2025.112092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025] Open
Abstract
The evolving field of neuroepigenetics provides important insights into the molecular foundations of brain function. Novel sequencing technologies have identified patient-specific mutations and gene expression profiles involved in shaping the epigenetic landscape during neurodevelopment and in disease. Traditional methods to investigate the consequences of chromatin-related mutations provide valuable phenotypic insights but often lack information on the biochemical mechanisms underlying these processes. Recent studies, however, are beginning to elucidate how structural and/or functional aspects of histone, DNA, and RNA post-translational modifications affect transcriptional landscapes and neurological phenotypes. Here, we review the identification of epigenetic regulators from genomic studies of brain disease, as well as mechanistic findings that reveal the intricacies of neuronal chromatin regulation. We then discuss how these mechanistic studies serve as a guideline for future neuroepigenetics investigations. We end by proposing a roadmap to future therapies that exploit these findings by coupling them to recent advances in targeted therapeutics.
Collapse
Affiliation(s)
- Benjamin H. Weekley
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Newaz I. Ahmed
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ian Maze
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Howard Hughes Medical Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
9
|
Twigg SRF, Greene NDE, Henderson DJ, Mill P, Liu KJ. The power of mouse models in the diagnostic odyssey of patients with rare congenital anomalies. Mamm Genome 2025:10.1007/s00335-025-10114-2. [PMID: 40100426 DOI: 10.1007/s00335-025-10114-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Accepted: 02/13/2025] [Indexed: 03/20/2025]
Abstract
Congenital anomalies are structural or functional abnormalities present at birth, which can be caused by genetic or environmental influences. The availability of genome sequencing has significantly increased our understanding of congenital anomalies, but linking variant identification to functional relevance and definitive diagnosis remains challenging. Many genes have unknown or poorly understood functions, and with a lack of clear genotype-to-phenotype correlations, it can be difficult to move from variant discovery to diagnosis. Thus, for most congenital anomalies, there still exists a "diagnostic odyssey" which presents a significant burden to patients, families and society. Animal models are essential in the gene discovery process because they allow researchers to validate candidate gene function and disease progression within intact organisms. However, use of advanced model systems continues to be limited due to the complexity of efficiently generating clinically relevant animals. Here we focus on the use of precisely engineered mice in variant-to-function studies for resolving molecular diagnoses and creating powerful preclinical models for congenital anomalies, covering advances in genomics, genome editing and phenotyping approaches as well as the necessity for future initiatives aligning animal modelling to deep patient multimodal datasets.
Collapse
Affiliation(s)
- Stephen R F Twigg
- MRC National Mouse Genetics Network, Congenital Anomalies Cluster, Mary Lyon Centre at MRC Harwell, UK.
- MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK.
| | - Nicholas D E Greene
- MRC National Mouse Genetics Network, Congenital Anomalies Cluster, Mary Lyon Centre at MRC Harwell, UK.
- Developmental Biology and Cancer Department, Great Ormond Street Institute of Child Health, University College London, London, UK.
| | - Deborah J Henderson
- MRC National Mouse Genetics Network, Congenital Anomalies Cluster, Mary Lyon Centre at MRC Harwell, UK.
- Biosciences Institute, Centre for Life, Newcastle University, Newcastle upon Tyne, UK.
| | - Pleasantine Mill
- MRC National Mouse Genetics Network, Congenital Anomalies Cluster, Mary Lyon Centre at MRC Harwell, UK.
- MRC Human Genetics Unit, MRC Institute of Genetics & Cancer, University of Edinburgh, Edinburgh, UK.
| | - Karen J Liu
- MRC National Mouse Genetics Network, Congenital Anomalies Cluster, Mary Lyon Centre at MRC Harwell, UK.
- Centre for Craniofacial and Regenerative Biology, King's College London, London, UK.
| |
Collapse
|
10
|
Gnanaolivu R, Oliver G, Jenkinson G, Blake E, Chen W, Chia N, Klee EW, Wang C. A clinical knowledge graph-based framework to prioritize candidate genes for facilitating diagnosis of Mendelian diseases and rare genetic conditions. BMC Bioinformatics 2025; 26:82. [PMID: 40087567 PMCID: PMC11908102 DOI: 10.1186/s12859-025-06096-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 02/25/2025] [Indexed: 03/17/2025] Open
Abstract
BACKGROUND Diagnosing Mendelian and rare genetic conditions requires identifying phenotype-associated genetic findings and prioritizing likely disease-causing genes. This task is labor-intensive for molecular and clinical geneticists, who must review extensive literature and databases to link patient phenotypes with causal genotypes. The challenge is further complicated by the large number of genetic variants detected through next-generation sequencing, which impacts both diagnosis timelines and patient care strategies. To address this, in silico methods that prioritize causal genes based on patient-derived phenotypes offer an effective solution, reducing the time involved in diagnostic case reviews and enhancing the efficiency of clinical diagnosis. RESULTS We developed the phenotype prioritization and analysis for rare diseases (PPAR) to rank genes based on human phenotype ontology (HPO) terms, with the specific goal of aiding the interpretation of genetic testing for Mendelian and rare diseases. PPAR leverages embeddings from a knowledge graph and incorporates knowledge from connections between genes, HPO terms, and gene ontology annotations. When applied on a clinical rare disease cohort and the publicly available deciphering developmental disorders (DDD) dataset. PPAR ranked the causal gene in the top 10 for 27% of cases in the clinical cohort and for 85% of cases in the DDD dataset, outperforming other established HPO-based methods. CONCLUSION Our findings demonstrate that PPAR, a method developed from the clinical knowledge graph, effectively ranks causal genes based on patient-derived HPO terms in rare and Mendelian disease contexts. PPAR has shown superior performance compared to other well-established HPO-only methods and provides an efficient, accessible solution for clinical geneticists. The Python-based tool is publicly available at https://github.com/dimi-lab/PPAR , offering a user-friendly platform for gene prioritization.
Collapse
Affiliation(s)
- Rohan Gnanaolivu
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, 55905, USA
| | - Gavin Oliver
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, 55905, USA
| | - Garrett Jenkinson
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, 55905, USA
| | - Emily Blake
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, 55905, USA
| | - Wenan Chen
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, 55905, USA
| | - Nicholas Chia
- Department of Surgery, Mayo Clinic, Rochester, MN, 55905, USA
| | - Eric W Klee
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, 55905, USA
| | - Chen Wang
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, 55905, USA.
| |
Collapse
|
11
|
Ali SS, Li Q, Agrawal PB. Implementation of multi-omics in diagnosis of pediatric rare diseases. Pediatr Res 2025; 97:1337-1344. [PMID: 39562738 DOI: 10.1038/s41390-024-03728-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 10/24/2024] [Accepted: 10/28/2024] [Indexed: 11/21/2024]
Abstract
The rapid and accurate diagnosis of rare diseases is paramount in directing clinical management. In recent years, the integration of multi-omics approaches has emerged as a potential strategy to overcome diagnostic hurdles. This review examines the application of multi-omics technologies, including genomics, epigenomics, transcriptomics, proteomics, and metabolomics, in relation to the diagnostic journey of rare diseases. We explore how these combined approaches enhance the detection of pathogenic genetic variants and decipher molecular mechanisms. This review highlights the groundbreaking potential of multi-omics in advancing the precision medicine paradigm for rare diseases, offering insights into future directions and clinical applications. IMPACT: This review discusses using current tests and emerging technologies to diagnose pediatric rare diseases. We describe the next steps after inconclusive molecular testing and a structure for using multi-omics in further investigations. The use of multi-omics is expanding, and it is essential to incorporate it into clinical practice to enhance individualized patient care.
Collapse
Affiliation(s)
- Sara S Ali
- Division of Neonatology, Department of Pediatrics, University of Miami Miller School of Medicine and Holtz Children's Hospital, Jackson Health System, Miami, FL, USA
| | - Qifei Li
- Division of Neonatology, Department of Pediatrics, University of Miami Miller School of Medicine and Holtz Children's Hospital, Jackson Health System, Miami, FL, USA
| | - Pankaj B Agrawal
- Division of Neonatology, Department of Pediatrics, University of Miami Miller School of Medicine and Holtz Children's Hospital, Jackson Health System, Miami, FL, USA.
| |
Collapse
|
12
|
Kessler L, Krause J, Kraft F, Amin AK, Fekete G, Lengyel A, Pinti E, Kovacs A, Lischka A, Eggermann K, Kurth I, Knopp C, Elbracht M, Begemann M, Eggermann T. Diagnostic Use of Genome Sequencing in Patients With 11p15.5 Imprinting Disorder Features: A Pilot Study. Clin Genet 2025; 107:278-291. [PMID: 39663844 PMCID: PMC11790513 DOI: 10.1111/cge.14649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/29/2024] [Accepted: 11/04/2024] [Indexed: 12/13/2024]
Abstract
To assess the suitability of genome sequencing (GS) as the second step in the diagnostics of patients with the features of 11p15.5-associated imprinting disorders (ImpDis: Silver-Russell syndrome [SRS], Beckwith-Wiedemann syndrome [BWS]), we performed short-read GS in patients negatively tested for imprinting disturbances. Obtaining a genetic diagnosis for patients with the features of these syndromes is challenging due to the clinical and molecular heterogeneity and overlap, and many patients remain undiagnosed after the currently suggested stepwise diagnostic workup. GS was conducted in 48 patients (SRS features: n = 37 and BWS features: n = 11). The detection rate differed markedly between the ImpDis: although a genetic cause could be identified in 51% of patients referred with SRS features, no pathogenic variants were detected in patients with BWS features. Thus, GS substantially improves the diagnostic yield and broadens the spectrum of overlapping disorders with SRS features. Obtaining a precise molecular diagnosis provides the basis for a personalized clinical management. Our findings support the use of GS as a second-tier diagnostic tool for patients with growth disturbances, as it addresses all currently known variant types and shortens the diagnostic odyssey.
Collapse
Affiliation(s)
- Luise Kessler
- Institute for Human Genetics and Genomic Medicine, Medical FacultyRWTH Aachen UniversityAachenGermany
| | - Jeremias Krause
- Institute for Human Genetics and Genomic Medicine, Medical FacultyRWTH Aachen UniversityAachenGermany
| | - Florian Kraft
- Institute for Human Genetics and Genomic Medicine, Medical FacultyRWTH Aachen UniversityAachenGermany
| | - Asmaa K. Amin
- Department of Human Genetics, Medical Research InstituteAlexandria UniversityAlexandriaEgypt
| | - Gyorgy Fekete
- 2nd Department of PediatricsSemmelweis UniversityBudapestHungary
| | - Anna Lengyel
- 2nd Department of PediatricsSemmelweis UniversityBudapestHungary
| | - Eva Pinti
- 2nd Department of PediatricsSemmelweis UniversityBudapestHungary
| | - Arpad Kovacs
- 2nd Department of PediatricsSemmelweis UniversityBudapestHungary
| | - Annette Lischka
- Institute for Human Genetics and Genomic Medicine, Medical FacultyRWTH Aachen UniversityAachenGermany
| | - Katja Eggermann
- Institute for Human Genetics and Genomic Medicine, Medical FacultyRWTH Aachen UniversityAachenGermany
| | - Ingo Kurth
- Institute for Human Genetics and Genomic Medicine, Medical FacultyRWTH Aachen UniversityAachenGermany
| | - Cordula Knopp
- Institute for Human Genetics and Genomic Medicine, Medical FacultyRWTH Aachen UniversityAachenGermany
| | - Miriam Elbracht
- Institute for Human Genetics and Genomic Medicine, Medical FacultyRWTH Aachen UniversityAachenGermany
| | - Matthias Begemann
- Institute for Human Genetics and Genomic Medicine, Medical FacultyRWTH Aachen UniversityAachenGermany
| | - Thomas Eggermann
- Institute for Human Genetics and Genomic Medicine, Medical FacultyRWTH Aachen UniversityAachenGermany
| |
Collapse
|
13
|
Stevenson DK, Wong RJ, Reiss JD, Shaw GM, Aghaeepour N, Mahzarnia A, Marić I. Advancing neonatal health: the promise and challenges of universal genome sequencing in newborn screening. Pediatr Res 2025; 97:1258-1260. [PMID: 39833347 DOI: 10.1038/s41390-025-03874-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 12/28/2024] [Indexed: 01/22/2025]
Affiliation(s)
- David K Stevenson
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA.
| | - Ronald J Wong
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Jonathan D Reiss
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Gary M Shaw
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Nima Aghaeepour
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, School of Medicine, Stanford, CA, USA
- Department of Biomedical Data Science, Stanford University, Stanford, CA, USA
| | - Ali Mahzarnia
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Ivana Marić
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
14
|
K M N, Karmakar S, Sahoo B, Mishrra N, Moitra P. Use of Quantum Dots as Nanotheranostic Agents: Emerging Applications in Rare Genetic Diseases. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2407353. [PMID: 39828615 DOI: 10.1002/smll.202407353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/03/2025] [Indexed: 01/22/2025]
Abstract
Rare genetic diseases (RGDs) affect a small percentage of the global population but collectively have a substantial impact due to their diverse manifestations. Although the precise reasons behind these diseases remain unclear, roughly 80% of cases are genetically linked. Recent efforts focus on understanding pathology and developing new diagnostic and therapeutic approaches for RGDs. However, there persists a gap between fundamental research and clinical therapeutic approaches, where advancements in nanotechnology offer promising improvements. In this context, nanosized light-emitting quantum dots (QDs), ranging from 2-10 nm, are promising materials for diverse applications. Their size-tunable light emission, high quantum yield, and photostability allow for precise tracking of cargo. Additionally, QDs can be functionalized with therapeutic agents, antibodies, or peptides to target specific cellular pathways, enhancing treatment efficacy while minimizing side effects. By combining diagnostic and therapeutic capabilities in a single platform, QDs thus offer a versatile and powerful approach to tackle rare genetic disorders. Despite several reviews on various therapeutic applications of QDs, their utilization in the specific domain of RGDs is not well documented. This review highlight QDs' potential in diagnosing and treating certain RGDs and addresses the challenges limiting their application.
Collapse
Affiliation(s)
- Neethu K M
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Berhampur, Berhampur, Odisha, 760010, India
| | - Shyamal Karmakar
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Berhampur, Berhampur, Odisha, 760010, India
| | - Baishakhi Sahoo
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Berhampur, Berhampur, Odisha, 760010, India
| | - Navniet Mishrra
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Berhampur, Berhampur, Odisha, 760010, India
| | - Parikshit Moitra
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Berhampur, Berhampur, Odisha, 760010, India
| |
Collapse
|
15
|
Estévez-Arias B, Matalonga L, Yubero D, Polavarapu K, Codina A, Ortez C, Carrera-García L, Expósito-Escudero J, Jou C, Meyer S, Kilicarslan OA, Aleman A, Thompson R, Luknárová R, Esteve-Codina A, Gut M, Laurie S, Demidov G, Yépez VA, Beltran S, Gagneur J, Topf A, Lochmüller H, Nascimento A, Hoenicka J, Palau F, Natera-de Benito D. Phenotype-driven genomics enhance diagnosis in children with unresolved neuromuscular diseases. Eur J Hum Genet 2025; 33:239-247. [PMID: 39333429 PMCID: PMC11840105 DOI: 10.1038/s41431-024-01699-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/23/2024] [Accepted: 09/19/2024] [Indexed: 09/29/2024] Open
Abstract
Establishing a molecular diagnosis remains challenging in half of individuals with childhood-onset neuromuscular diseases (NMDs) despite exome sequencing. This study evaluates the diagnostic utility of combining genomic approaches in undiagnosed NMD patients. We performed deep phenotyping of 58 individuals with unsolved childhood-onset NMDs that have previously undergone inconclusive exome studies. Genomic approaches included trio genome sequencing and RNASeq. Genetic diagnoses were reached in 23 out of 58 individuals (40%). Twenty-one individuals carried causal single nucleotide variants (SNVs) or small insertions and deletions, while 2 carried pathogenic structural variants (SVs). Genomic sequencing identified pathogenic variants in coding regions or at the splice site in 17 out of 21 resolved cases, while RNA sequencing was additionally required for the diagnosis of 4 cases. Reasons for previous diagnostic failures included low coverage in exonic regions harboring the second pathogenic variant and involvement of genes that were not yet linked to human diseases at the time of the first NGS analysis. In summary, our systematic genetic analysis, integrating deep phenotyping, trio genome sequencing and RNASeq, proved effective in diagnosing unsolved childhood-onset NMDs. This approach holds promise for similar cohorts, offering potential improvements in diagnostic rates and clinical management of individuals with NMDs.
Collapse
Affiliation(s)
- Berta Estévez-Arias
- Neuromuscular Unit, Department of Neurology, Hospital Sant Joan de Déu, Barcelona, Spain
- Laboratory of Neurogenetics and Molecular Medicine - IPER, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Leslie Matalonga
- Centro Nacional de Análisis Genómico (CNAG), Barcelona, Spain
- Universitat de Barcelona (UB), Barcelona, Spain
| | - Delia Yubero
- Center for Biomedical Research Network on Rare Diseases (CIBERER), ISCIII, Barcelona, Spain
- Department of Genetic and Molecular Medicine - IPER, Hospital Sant Joan de Déu and Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Kiran Polavarapu
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
| | - Anna Codina
- Applied Research in Neuromuscular Diseases, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
- Department of Pathology, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Carlos Ortez
- Neuromuscular Unit, Department of Neurology, Hospital Sant Joan de Déu, Barcelona, Spain
- Center for Biomedical Research Network on Rare Diseases (CIBERER), ISCIII, Barcelona, Spain
- Applied Research in Neuromuscular Diseases, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Laura Carrera-García
- Neuromuscular Unit, Department of Neurology, Hospital Sant Joan de Déu, Barcelona, Spain
- Applied Research in Neuromuscular Diseases, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Jesica Expósito-Escudero
- Neuromuscular Unit, Department of Neurology, Hospital Sant Joan de Déu, Barcelona, Spain
- Applied Research in Neuromuscular Diseases, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Cristina Jou
- Universitat de Barcelona (UB), Barcelona, Spain
- Applied Research in Neuromuscular Diseases, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
- Department of Pathology, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Stefanie Meyer
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
- University Medical Center Göttingen, Department of Neurology, Göttingen, Germany
| | | | - Alberto Aleman
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
- Division of Neurology, Department of Medicine, The Ottawa Hospital, Ottawa, ON, Canada
| | - Rachel Thompson
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
| | - Rebeka Luknárová
- School of Computation, Information and Technology, Technical University of Munich, Munich, Germany
| | - Anna Esteve-Codina
- Centro Nacional de Análisis Genómico (CNAG), Barcelona, Spain
- Universitat de Barcelona (UB), Barcelona, Spain
| | - Marta Gut
- Centro Nacional de Análisis Genómico (CNAG), Barcelona, Spain
- Universitat de Barcelona (UB), Barcelona, Spain
| | - Steven Laurie
- Centro Nacional de Análisis Genómico (CNAG), Barcelona, Spain
- Universitat de Barcelona (UB), Barcelona, Spain
| | - German Demidov
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Vicente A Yépez
- School of Computation, Information and Technology, Technical University of Munich, Munich, Germany
| | - Sergi Beltran
- Centro Nacional de Análisis Genómico (CNAG), Barcelona, Spain
- Universitat de Barcelona (UB), Barcelona, Spain
| | - Julien Gagneur
- School of Computation, Information and Technology, Technical University of Munich, Munich, Germany
- Computational Health Center, Helmholtz Center Munich, Neuherberg, Germany
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany
| | - Ana Topf
- The John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK
| | - Hanns Lochmüller
- Centro Nacional de Análisis Genómico (CNAG), Barcelona, Spain
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
- Division of Neurology, Department of Medicine, The Ottawa Hospital, Ottawa, ON, Canada
| | - Andres Nascimento
- Neuromuscular Unit, Department of Neurology, Hospital Sant Joan de Déu, Barcelona, Spain
- Center for Biomedical Research Network on Rare Diseases (CIBERER), ISCIII, Barcelona, Spain
- Applied Research in Neuromuscular Diseases, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Janet Hoenicka
- Laboratory of Neurogenetics and Molecular Medicine - IPER, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
- Center for Biomedical Research Network on Rare Diseases (CIBERER), ISCIII, Barcelona, Spain
| | - Francesc Palau
- Laboratory of Neurogenetics and Molecular Medicine - IPER, Institut de Recerca Sant Joan de Déu, Barcelona, Spain.
- Center for Biomedical Research Network on Rare Diseases (CIBERER), ISCIII, Barcelona, Spain.
- Department of Genetic and Molecular Medicine - IPER, Hospital Sant Joan de Déu and Institut de Recerca Sant Joan de Déu, Barcelona, Spain.
- ERN ITHACA, Barcelona, Spain.
- Division of Pediatrics, Faculty of Medicine and Health Sciences, Universitat de Barcelona (UB), Barcelona, Spain.
| | - Daniel Natera-de Benito
- Neuromuscular Unit, Department of Neurology, Hospital Sant Joan de Déu, Barcelona, Spain.
- Center for Biomedical Research Network on Rare Diseases (CIBERER), ISCIII, Barcelona, Spain.
- Applied Research in Neuromuscular Diseases, Institut de Recerca Sant Joan de Déu, Barcelona, Spain.
| |
Collapse
|
16
|
Lin SJ, Huang K, Petree C, Qin W, Varshney P, Varshney G. Optimizing gRNA selection for high-penetrance F0 CRISPR screening for interrogating disease gene function. Nucleic Acids Res 2025; 53:gkaf180. [PMID: 40103232 PMCID: PMC11915512 DOI: 10.1093/nar/gkaf180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 02/14/2025] [Accepted: 02/24/2025] [Indexed: 03/20/2025] Open
Abstract
Genes and genetic variants associated with human disease are continually being discovered, but validating their causative roles and mechanisms remains a significant challenge. CRISPR/Cas9 genome editing in model organisms like zebrafish can enable phenotypic characterization of founder generation (F0) knockouts (Crispants), but existing approaches are not amenable to high-throughput genetic screening due to high variability, cost, and low phenotype penetrance. To overcome these challenges, here we provide guide RNA (gRNA) selection rules that enable high phenotypic penetrance of up to three simultaneous knockouts in F0 animals following injection of 1-2 gRNAs per gene. We demonstrate a strong transcriptomic overlap in our F0 knockouts and stable knockout lines that take several months to generate. We systematically evaluated this approach across 324 gRNAs targeting 125 genes and demonstrated its utility in studying epistasis, characterizing paralogous genes, and validating human disease gene phenotypes across multiple tissues. Applying our approach in a high-throughput manner, we screened and identified 10 novel neurodevelopmental disorders and 50 hearing genes not previously studied in zebrafish. Altogether, our approach achieves high phenotypic penetrance using low numbers of gRNAs per gene in F0 zebrafish, offering a robust pipeline for rapidly characterizing candidate human disease genes.
Collapse
Affiliation(s)
- Sheng-Jia Lin
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, United States
| | - Kevin Huang
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, United States
| | - Cassidy Petree
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, United States
| | - Wei Qin
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, United States
| | - Pratishtha Varshney
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, United States
| | - Gaurav K Varshney
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, United States
| |
Collapse
|
17
|
Fotook Kiaei SZ, Schwartz DA. Genetic underpinning of idiopathic pulmonary fibrosis: the role of mucin. Expert Rev Respir Med 2025:1-12. [PMID: 39912527 DOI: 10.1080/17476348.2025.2464035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/27/2024] [Accepted: 02/04/2025] [Indexed: 02/07/2025]
Abstract
INTRODUCTION Idiopathic pulmonary fibrosis (IPF) is a chronic lung disease characterized by progressive scarring and reduced survival. The development of IPF is influenced by rare and common genetic variants, cigarette smoking, aging, and environmental exposures. Among the two dozen genetic contributors, the MUC5B promoter variant (rs35705950) is the dominant risk factor, increasing the risk of both familial and sporadic IPF and accounting for nearly 50% of the genetic predisposition to the disease. AREAS COVERED This review provides an expert perspective on the genetic underpinnings of IPF rather than a systematic analysis, emphasizing key insights into its genetic basis. The articles referenced in this review were identified through targeted searches in PubMed, Scopus, and Web of Science for studies published between 2000 and 2023, prioritizing influential research on the genetic factors contributing to IPF. Search terms included 'idiopathic pulmonary fibrosis,' 'genetics,' 'MUC5B,' 'telomere dysfunction,' and 'surfactant proteins.' The selection of studies was guided by the authors' expertise, focusing on the most relevant publications. EXPERT OPINION The identification of genetic variants not only highlights the complexity of IPF but also offers potential for earlier diagnosis and personalized treatment strategies targeting specific genetic pathways, ultimately aiming to improve patient outcomes.
Collapse
Affiliation(s)
| | - David A Schwartz
- Department of Medicine, University of Colorado Denver, School of Medicine, Aurora, CO, USA
| |
Collapse
|
18
|
Saba LF, Streff H, Lopez-Terrada D, Scull J. The "genetic test request": A genomic stewardship intervention for inpatient exome and genome orders at a tertiary pediatric hospital. Genet Med 2025; 27:101330. [PMID: 39559977 DOI: 10.1016/j.gim.2024.101330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/11/2024] [Accepted: 11/11/2024] [Indexed: 11/20/2024] Open
Abstract
PURPOSE Exome sequencing (ES) and genome sequencing (GS) are useful tests to diagnose rare diseases in pediatric patients in critical care settings. Genomic test stewardship can increase the appropriate use of these tests leading to improved diagnostics and cost savings. METHODS A mandatory review of ES and GS orders for admitted patients was implemented in March 2023. Outcomes of the reviews, cost analysis, and subsequent test results through February 2024 were analyzed with descriptive statistics. RESULTS There were 444 genetic test request orders placed for 412 unique patients. Of these, 81 (18.2%) were redirected and 57 (12.8%) required modification after approval, leading to an overall cost savings of $345,821.00 or $778.88 per order. The combined diagnostic rate was 28.2% in this patient population. CONCLUSION Stewardship of ES/GS orders for pediatric inpatients is an effective tool to improve the appropriate usage of these genomic tests. Additional collaboration with stakeholders and expansion of genomic stewardship initiatives may shorten the diagnostic odyssey for critically ill pediatric patients and result in cost savings.
Collapse
Affiliation(s)
- Lisa F Saba
- Department of Pathology, Texas Children's Hospital, Houston, TX
| | - Haley Streff
- Department of Pathology, Texas Children's Hospital, Houston, TX; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX; Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX
| | - Dolores Lopez-Terrada
- Department of Pathology, Texas Children's Hospital, Houston, TX; Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX; Department of Pediatrics, Baylor College of Medicine, Houston, TX
| | - Jennifer Scull
- Department of Pathology, Texas Children's Hospital, Houston, TX; Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX.
| |
Collapse
|
19
|
Abrams ED, Basu A, Zavorka Thomas ME, Henrickson SE, Abraham RS. Expanding the diagnostic toolbox for complex genetic immune disorders. J Allergy Clin Immunol 2025; 155:255-274. [PMID: 39581295 DOI: 10.1016/j.jaci.2024.11.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/29/2024] [Accepted: 11/12/2024] [Indexed: 11/26/2024]
Abstract
Laboratory-based immunology evaluation is essential to the diagnostic workup of patients with complex immune disorders, and is as essential, if not more so, depending on the context, as genetic testing, because it enables identification of aberrant pathways amenable to therapeutic intervention and clarifies variants of uncertain significance. There have been considerable advances in techniques and instrumentation in the clinical laboratory in the past 2 decades, although there are still "miles to go." One of the goals of the clinical laboratory is to ensure advanced diagnostic testing is widely accessible to physicians and thus patients, through reference laboratories, particularly in the context of academic medical centers. This ensures a greater likelihood of translating research discoveries into the diagnostic laboratory, on the basis of patient care needs rather than a sole emphasis on commercial utility. However, these advances are under threat from burdensome regulatory oversight that can compromise, at best, and curtail, at worst, the ability to rapidly diagnose rare immune disorders and ensure delivery of precision medicine. This review discusses the clinical utility of diagnostic immunology tools, beyond cellular immunophenotyping of lymphocyte subsets, which can be used in conjunction with clinical and other laboratory data for diagnosis as well as monitoring of therapeutic response in patients with genetic immunologic diseases.
Collapse
Affiliation(s)
- Eric D Abrams
- Division of Allergy and Immunology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pa
| | - Amrita Basu
- Diagnostic Immunology Laboratory, Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Columbus, Ohio
| | - Megan E Zavorka Thomas
- Diagnostic Immunology Laboratory, Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Columbus, Ohio
| | - Sarah E Henrickson
- Division of Allergy and Immunology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pa; Institute for Immunology and Immune Health, University of Pennsylvania, Philadelphia, Pa; Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pa
| | - Roshini S Abraham
- Diagnostic Immunology Laboratory, Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Columbus, Ohio.
| |
Collapse
|
20
|
Belova V, Vasiliadis I, Repinskaia Z, Samitova A, Shmitko A, Ponikarovskaya N, Suchalko O, Cheranev V, Peter S, Peter S, Andrey K, Rebrikov D, Korostin D. Comparative evaluation of four exome enrichment solutions in 2024: Agilent, Roche, Vazyme and Nanodigmbio. BMC Genomics 2025; 26:76. [PMID: 39871131 PMCID: PMC11770928 DOI: 10.1186/s12864-024-11196-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 12/30/2024] [Indexed: 01/29/2025] Open
Abstract
Whole exome sequencing (WES) is essential for identifying genetic variants linked to diseases. This study compares available to date four exome enrichment kits: Agilent SureSelect Human All Exon v8, Roche KAPA HyperExome, Vazyme VAHTS Target Capture Core Exome Panel, and Nanodigmbio NEXome Plus Panel v1. We evaluated target design, coverage statistics, and variant calling accuracy across these four different exome capture products. All kits showed high target coverage, with 10x coverage exceeding 97.5% and 20x coverage above 95%. Roche exhibited the most uniform coverage, indicated by the lowest fold-80 scores, while Nanodigmbio had more on-target reads due to fewer off-target reads. Variant calling performance, evaluated using in-lab standard E701 DNA sample, showed high recall rates for all kits, especially Agilent v8. All kits achieved an F-measure above 95.87%. Nanodigmbio had the highest precision with the fewest false positives but a slightly lower F-measure than other kits. This study also highlights the performance of new solutions from Vazyme (China) and Nanodigmbio (China), which were comparable to Agilent v8 and Roche KAPA kits. These findings assist researchers and clinicians in selecting appropriate exome capture solutions.
Collapse
Affiliation(s)
- Vera Belova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Ostrovityanova str. 1, Moscow, 117997, Russia.
| | - Iuliia Vasiliadis
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Ostrovityanova str. 1, Moscow, 117997, Russia
| | - Zhanna Repinskaia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Ostrovityanova str. 1, Moscow, 117997, Russia
| | - Alina Samitova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Ostrovityanova str. 1, Moscow, 117997, Russia
| | - Anna Shmitko
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Ostrovityanova str. 1, Moscow, 117997, Russia
| | - Natalya Ponikarovskaya
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Ostrovityanova str. 1, Moscow, 117997, Russia
| | - Oleg Suchalko
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Ostrovityanova str. 1, Moscow, 117997, Russia
| | - Valery Cheranev
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Ostrovityanova str. 1, Moscow, 117997, Russia
| | - Shatalov Peter
- National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, Koroleva st. 4, Obninsk, 249036, Russia
| | - Shegai Peter
- National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, Koroleva st. 4, Obninsk, 249036, Russia
| | - Kaprin Andrey
- National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, Koroleva st. 4, Obninsk, 249036, Russia
| | - Denis Rebrikov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Ostrovityanova str. 1, Moscow, 117997, Russia
| | - Dmitriy Korostin
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Ostrovityanova str. 1, Moscow, 117997, Russia
| |
Collapse
|
21
|
Wang Y, Zhu G, Li D, Pan Y, Li R, Zhou T, Mao A, Chen L, Zhu J, Zhu M. High clinical utility of long-read sequencing for precise diagnosis of congenital adrenal hyperplasia in 322 probands. Hum Genomics 2025; 19:3. [PMID: 39810276 PMCID: PMC11731552 DOI: 10.1186/s40246-024-00696-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 11/11/2024] [Indexed: 01/30/2025] Open
Abstract
BACKGROUND The molecular genetic diagnosis of congenital adrenal hyperplasia (CAH) is very challenging due to the high homology between the CYP21A2 gene and its pseudogene CYP21A1P. METHODOLOGY This study aims to assess the clinical efficacy of targeted long-read sequencing (T-LRS) by comparing it with a control method based on the combined assay (NGS, Multiplex ligation-dependent probe amplification and Sanger sequencing) and to introduce T-LRS as a first-tier diagnostic test for suspected CAH patients to improve the precise diagnosis of CAH. RESULTS A large cohort of 562 participants including 322 probands and 240 family members was enrolled for the perspective (96 probands) and prospective study (226 probands). The comparison analysis of T-LRS and control method have been performed. In the perspective study, 96 probands were identified using both the control method and T-LRS. Concordant results were detected in 85.42% (82/96) of probands. T-LRS performed more precise diagnosis in 14.58% (14/96) of probands. Among these, a novel 4141 kb deletion involving CYP21A2 and TNXB was established. A new diagnosis was improved by T-LRS. The duplications were also precisely identified to clarify the misdiagnosis by MLPA. In the prospective study, Variants were identified not only in CYP21A2 but also in HSD3B2 and CYP11B1 in 226 probands. Expand to 322 probands, the actual frequency of duplication haplotype (1.55%) could be calculated due to the accurate genotyping. Moreover, 75.47% of alleles with SNVs/indels, 22.20% of alleles with deletion chimeras. CONCLUSION T-LRS has higher resolution and reduced cost than control method with accurate diagnosis. The clinical utility of L-LRS could help to provide precision therapy to CAH patients, advance the life-long management of this complex disease and promote our understanding of CAH.
Collapse
Affiliation(s)
- Yunpeng Wang
- Department of Endocrine and Metabolic Diseases, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, China
- Department of Pediatric Research Institute, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Gaohui Zhu
- Department of Endocrine and Metabolic Diseases, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Danhua Li
- Berry Genomics Corporation, Beijing, 102200, China
| | - Yu Pan
- Department of Endocrine and Metabolic Diseases, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Rong Li
- Department of Endocrine and Metabolic Diseases, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Ting Zhou
- Department of Endocrine and Metabolic Diseases, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Aiping Mao
- Berry Genomics Corporation, Beijing, 102200, China
| | - Libao Chen
- Berry Genomics Corporation, Beijing, 102200, China
| | - Jing Zhu
- Department of Pediatric Research Institute, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China.
- Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing, China.
| | - Min Zhu
- Department of Endocrine and Metabolic Diseases, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China.
- Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
22
|
Hussain A, Villalba MF, Swols DM, Khzam RA, Johnson BK, Peart L, D'Haiti S, Grajewski AL, Tekin M, Chang TC, Bademci G. Genome sequencing reveals novel variants in a diverse population with congenital anterior segment anomalies. Sci Rep 2025; 15:518. [PMID: 39747279 PMCID: PMC11695809 DOI: 10.1038/s41598-024-84205-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 12/20/2024] [Indexed: 01/04/2025] Open
Abstract
Congenital anterior segment anomalies are disorders that affect the development of the eye and cause severe visual impairment. The molecular basis of congenital anterior segment anomalies is not well known. In this study, genome sequencing was performed on 27 families from diverse ethnicities with congenital anterior segment anomalies and 11 variants were identified, most of which were novel and family specific. These variants included single nucleotide variants CPAMD8:c.4825 C > T, c.534 G > A, CRYBB1:c.683 C > A, NHS:c.1180 C > T, GJA3:c.176 C > T, CRYGC:c.470 G > A, COL2A1:c.2819 G > A, c.1693 C > T, EPHA2:c.2864 A > C, a splice donor variant in COL11A1:c.933 + 1del, and a copy number variant in FBN1. The observed inheritance patterns were predominantly dominant, with a few recessive cases and a single instance of X-linked inheritance. Genome sequencing identified variants in 40.74% of diverse cases, offering valuable insights for enhancing the diagnosis and management of this disorder.
Collapse
Affiliation(s)
- Ashraf Hussain
- Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Maria Fernanda Villalba
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Dayna Morel Swols
- Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Rayan Abou Khzam
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Brittney Keira Johnson
- Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - LéShon Peart
- Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Sarha D'Haiti
- Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Alana L Grajewski
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Mustafa Tekin
- Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Ta Chen Chang
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Guney Bademci
- Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.
| |
Collapse
|
23
|
Rius R, Compton AG, Baker NL, Balasubramaniam S, Best S, Bhattacharya K, Boggs K, Boughtwood T, Braithwaite J, Bratkovic D, Bray A, Brion MJ, Burke J, Casauria S, Chong B, Coman D, Cowie S, Cowley M, de Silva MG, Delatycki MB, Edwards S, Ellaway C, Fahey MC, Finlay K, Fletcher J, Frajman LE, Frazier AE, Gayevskiy V, Ghaoui R, Goel H, Goranitis I, Haas M, Hock DH, Howting D, Jackson MR, Kava MP, Kemp M, King-Smith S, Lake NJ, Lamont PJ, Lee J, Long JC, MacShane M, Madelli EO, Martin EM, Marum JE, Mattiske T, McGill J, Metke A, Murray S, Panetta J, Phillips LK, Quinn MCJ, Ryan MT, Schenscher S, Simons C, Smith N, Stroud DA, Tchan MC, Tom M, Wallis M, Ware TL, Welch AE, Wools C, Wu Y, Christodoulou J, Thorburn DR. The Australian Genomics Mitochondrial Flagship: A national program delivering mitochondrial diagnoses. Genet Med 2025; 27:101271. [PMID: 39305161 DOI: 10.1016/j.gim.2024.101271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 11/06/2024] Open
Abstract
PURPOSE Families living with mitochondrial diseases (MD) often endure prolonged diagnostic journeys and invasive testing, yet many remain without a molecular diagnosis. The Australian Genomics Mitochondrial Flagship, comprising clinicians, diagnostic, and research scientists, conducted a prospective national study to identify the diagnostic utility of singleton genomic sequencing using blood samples. METHODS A total of 140 children and adults living with suspected MD were recruited using modified Nijmegen criteria (MNC) and randomized to either exome + mitochondrial DNA (mtDNA) sequencing or genome sequencing. RESULTS Diagnostic yield was 55% (n = 77) with variants in nuclear (n = 37) and mtDNA (n = 18) MD genes, as well as phenocopy genes (n = 22). A nuclear gene etiology was identified in 77% of diagnoses, irrespective of disease onset. Diagnostic rates were higher in pediatric-onset (71%) than adult-onset (31%) cases and comparable in children with non-European (78%) vs European (67%) ancestry. For children, higher MNC scores correlated with increased diagnostic yield and fewer diagnoses in phenocopy genes. Additionally, 3 adult patients had a mtDNA deletion discovered in skeletal muscle that was not initially identified in blood. CONCLUSION Genomic sequencing from blood can simplify the diagnostic pathway for individuals living with suspected MD, especially those with childhood onset diseases and high MNC scores.
Collapse
Affiliation(s)
- Rocio Rius
- Centre for Population Genomics, Murdoch Children's Research Institute, Melbourne, VIC, Australia; Centre for Population Genomics, Garvan Institute of Medical Research, and UNSW Sydney, Sydney, NSW, Australia; The University of Melbourne, Melbourne, VIC, Australia
| | - Alison G Compton
- The University of Melbourne, Melbourne, VIC, Australia; Murdoch Children's Research Institute, Melbourne, VIC, Australia; Victorian Clinical Genetics Services, Melbourne, VIC, Australia
| | - Naomi L Baker
- The University of Melbourne, Melbourne, VIC, Australia; Victorian Clinical Genetics Services, Melbourne, VIC, Australia
| | - Shanti Balasubramaniam
- Sydney Children's Hospitals Network, Westmead, NSW, Australia; University of Sydney, Sydney, NSW, Australia
| | - Stephanie Best
- The University of Melbourne, Melbourne, VIC, Australia; Australian Institute of Health Innovation, Macquarie University, Sydney, NSW, Australia; Peter MacCallum Cancer Centre, Melbourne, VIC, Australia; Victorian Comprehensive Cancer Centre, Melbourne, VIC, Australia; Australian Genomics, Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | | | - Kirsten Boggs
- Sydney Children's Hospitals Network, Westmead, NSW, Australia
| | - Tiffany Boughtwood
- Australian Genomics, Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | - Jeffrey Braithwaite
- Australian Institute of Health Innovation, Macquarie University, Sydney, NSW, Australia
| | | | - Alessandra Bray
- Sydney Children's Hospitals Network, Westmead, NSW, Australia
| | - Marie-Jo Brion
- Australian Genomics, Murdoch Children's Research Institute, Melbourne, VIC, Australia; QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Jo Burke
- Tasmanian Clinical Genetics Service, Hobart, Australia; The University of Tasmania, Hobart, TAS, Australia
| | - Sarah Casauria
- Australian Genomics, Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | - Belinda Chong
- Victorian Clinical Genetics Services, Melbourne, VIC, Australia
| | - David Coman
- Queensland Children's Hospital, Brisbane, QLD, Australia; Wesley Hospital, Brisbane, QLD, Australia; University of Queensland, Brisbane, QLD, Australia
| | - Shannon Cowie
- Victorian Clinical Genetics Services, Melbourne, VIC, Australia
| | - Mark Cowley
- Children's Cancer Institute, University of New South Wales, NSW, Australia
| | - Michelle G de Silva
- The University of Melbourne, Melbourne, VIC, Australia; Murdoch Children's Research Institute, Melbourne, VIC, Australia; Victorian Clinical Genetics Services, Melbourne, VIC, Australia
| | - Martin B Delatycki
- The University of Melbourne, Melbourne, VIC, Australia; Victorian Clinical Genetics Services, Melbourne, VIC, Australia
| | - Samantha Edwards
- Harry Perkins Institute of Medical Research, University of Western Australia, Perth, WA, Australia
| | - Carolyn Ellaway
- S1ydney Children's Hospitals Network, Westmead, NSW, Australia; University of Sydney, Sydney, NSW, Australia
| | | | - Keri Finlay
- Australian Genomics, Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | | | - Leah E Frajman
- The University of Melbourne, Melbourne, VIC, Australia; Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | - Ann E Frazier
- The University of Melbourne, Melbourne, VIC, Australia; Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | | | - Roula Ghaoui
- Royal Adelaide Hospital, Adelaide, SA, Australia
| | | | - Ilias Goranitis
- The University of Melbourne, Melbourne, VIC, Australia; Australian Genomics, Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | - Matilda Haas
- Australian Genomics, Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | - Daniella H Hock
- The University of Melbourne, Melbourne, VIC, Australia; Bio 21 Molecular Science and Biotechnology Institute, Melbourne, VIC, Australia; Department of Genetic Medicine, Westmead Hospital, Westmead, NSW, Australia
| | - Denise Howting
- Harry Perkins Institute of Medical Research, Perth, WA, Australia
| | - Matilda R Jackson
- Australian Genomics, Murdoch Children's Research Institute, Melbourne, VIC, Australia; Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
| | | | - Madonna Kemp
- The Australian e-Health Research Centre, CSIRO, Brisbane, QLD, Australia
| | - Sarah King-Smith
- Australian Genomics, Murdoch Children's Research Institute, Melbourne, VIC, Australia; Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
| | - Nicole J Lake
- Murdoch Children's Research Institute, Melbourne, VIC, Australia; Yale School of Medicine, New Haven, CT
| | - Phillipa J Lamont
- Perth Children's Hospital, Perth, WA, Australia; Royal Perth Hospital, Perth, WA, Australia
| | - Joy Lee
- The University of Melbourne, Melbourne, VIC, Australia; Victorian Clinical Genetics Services, Melbourne, VIC, Australia; Royal Children's Hospital, Melbourne, VIC, Australia
| | - Janet C Long
- Australian Institute of Health Innovation, Macquarie University, Sydney, NSW, Australia
| | - Mandi MacShane
- Harry Perkins Institute of Medical Research, Perth, WA, Australia
| | - Evanthia O Madelli
- Australian Genomics, Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | | | - Justine E Marum
- Victorian Clinical Genetics Services, Melbourne, VIC, Australia; Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Tessa Mattiske
- Australian Genomics, Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | - Jim McGill
- Queensland Children's Hospital, Brisbane, QLD, Australia
| | - Alejandro Metke
- The Australian e-Health Research Centre, CSIRO, Brisbane, QLD, Australia
| | | | | | | | - Michael C J Quinn
- Australian Genomics, Genetic Health Queensland, Brisbane, QLD, Australia
| | | | | | - Cas Simons
- Centre for Population Genomics, Murdoch Children's Research Institute, Melbourne, VIC, Australia; Centre for Population Genomics, Garvan Institute of Medical Research, and UNSW Sydney, Sydney, NSW, Australia
| | - Nicholas Smith
- Department of Neurology and Clinical Neurophysiology, Women's and Children's Hospital, Adelaide, SA, Australia; Discipline of Paediatrics, University of Adelaide, Adelaide, SA, Australia
| | - David A Stroud
- The University of Melbourne, Melbourne, VIC, Australia; Murdoch Children's Research Institute, Melbourne, VIC, Australia; Victorian Clinical Genetics Services, Melbourne, VIC, Australia; Bio 21 Molecular Science and Biotechnology Institute, Melbourne, VIC, Australia
| | - Michel C Tchan
- Department of Genetic Medicine, Westmead Hospital, Westmead, NSW, Australia; Faculty of Medicine and Health, University of Sydney, NSW, Australia
| | - Melanie Tom
- Genetic Health Queensland, Brisbane, QLD, Australia
| | - Mathew Wallis
- Tasmanian Clinical Genetics Service, Hobart, TAS, Australia; School of Medicine and Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia; Royal Hobart Hospital, Hobart, TAS, Australia
| | | | | | | | - You Wu
- The University of Melbourne, Melbourne, VIC, Australia
| | - John Christodoulou
- The University of Melbourne, Melbourne, VIC, Australia; Murdoch Children's Research Institute, Melbourne, VIC, Australia; Victorian Clinical Genetics Services, Melbourne, VIC, Australia.
| | - David R Thorburn
- The University of Melbourne, Melbourne, VIC, Australia; Murdoch Children's Research Institute, Melbourne, VIC, Australia; Victorian Clinical Genetics Services, Melbourne, VIC, Australia.
| |
Collapse
|
24
|
Bick SL, Nathan A, Park H, Green RC, Wojcik MH, Gold NB. Estimating the sensitivity of genomic newborn screening for treatable inherited metabolic disorders. Genet Med 2025; 27:101284. [PMID: 39355980 PMCID: PMC11717630 DOI: 10.1016/j.gim.2024.101284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/03/2024] Open
Abstract
PURPOSE Over 30 research groups and companies are exploring newborn screening using genomic sequencing (NBSeq), but the sensitivity of this approach is not well understood. METHODS We identified individuals with treatable inherited metabolic disorders (IMDs) and ascertained the proportion whose DNA analysis revealed explanatory deleterious variants (EDVs). We examined variables associated with EDV detection and estimated the sensitivity of DNA-first NBSeq. We further predicted the annual rate of true-positive and false-negative NBSeq results in the United States for several conditions on the Recommended Uniform Screening Panel. RESULTS We identified 635 individuals with 80 unique IMDs. In univariate analyses, Black race (OR = 0.37, 95% CI: 0.16-0.89, P = .02) and public insurance (OR = 0.60, 95% CI: 0.39-0.91, P = .02) were less likely to be associated with finding EDVs. Had all individuals been screened with NBSeq, the sensitivity would have been 80.3%. We estimated that between 0 and 649.9 cases of Recommended Uniform Screening Panel IMDs would be missed annually by NBSeq in the United States. CONCLUSION The overall sensitivity of NBSeq for treatable IMDs is estimated at 80.3%. That sensitivity will likely be lower for Black infants and those who are on public insurance.
Collapse
Affiliation(s)
- Sarah L Bick
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA; Division of Medical Genetics and Metabolism, Massachusetts General Hospital for Children, Boston, MA; Harvard Medical School, Boston, MA
| | - Aparna Nathan
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA
| | - Hannah Park
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA; Harvard Medical School, Boston, MA; Division of Newborn Medicine, Department of Pediatrics, Boston Children's Hospital, Boston, MA
| | - Robert C Green
- Harvard Medical School, Boston, MA; Mass General Brigham, Boston, MA; Broad Institute of MIT and Harvard, Cambridge, MA; Ariadne Labs, Boston, MA
| | - Monica H Wojcik
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA; Harvard Medical School, Boston, MA; Division of Newborn Medicine, Department of Pediatrics, Boston Children's Hospital, Boston, MA; Broad Institute of MIT and Harvard, Cambridge, MA
| | - Nina B Gold
- Division of Medical Genetics and Metabolism, Massachusetts General Hospital for Children, Boston, MA; Harvard Medical School, Boston, MA.
| |
Collapse
|
25
|
Maróti Z, Ochieng PJ, Dombi J, Krész M, Kalmár T. Optimizing sequence data analysis using convolution neural network for the prediction of CNV bait positions. BMC Bioinformatics 2024; 25:389. [PMID: 39719572 DOI: 10.1186/s12859-024-06006-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 12/05/2024] [Indexed: 12/26/2024] Open
Abstract
BACKGROUND Accurate prediction of copy number variations (CNVs) from targeted capture next-generation sequencing (NGS) data relies on effective normalization of read coverage profiles. The normalization process is particularly challenging due to hidden systemic biases such as GC bias, which can significantly affect the sensitivity and specificity of CNV detection. In many cases, the kit manifests provide only the genome coordinates of the targeted regions, and the exact bait design of the oligo capture baits is not available. Although the on-target regions significantly overlap with the bait design, a lack of adequate information allows less accurate normalization of the coverage data. In this study, we propose a novel approach that utilizes a 1D convolution neural network (CNN) model to predict the positions of capture baits in complex whole-exome sequencing (WES) kits. By accurately identifying the exact positions of bait coordinates, our model enables precise normalization of GC bias across target regions, thereby allowing better CNV data normalization. RESULTS We evaluated the optimal hyperparameters, model architecture, and complexity to predict the likely positions of the oligo capture baits. Our analysis shows that the CNN models outperform the Dense NN for bait predictions. Batch normalization is the most important parameter for the stable training of CNN models. Our results indicate that the spatiality of the data plays an important role in the prediction performance. We have shown that combined input data, including experimental coverage, on-target information, and sequence data, are critical for bait prediction. Furthermore, comparison with the on-target information indicated that the CNN models performed better in predicting bait positions that exhibited a high degree of overlap (>90%) with the true bait positions. RESULTS This study highlights the potential of utilizing CNN-based approaches to optimize coverage data analysis and improve copy number data normalization. Subsequent CNV detection based on these predicted coordinates facilitates more accurate measurement of coverage profiles and better normalization for GC bias. As a result, this approach could reduce systemic bias and improve the sensitivity and specificity of CNV detection in genomic studies.
Collapse
Affiliation(s)
- Zoltán Maróti
- Albert Szent-Györgyi Health Centre, University of Szeged, Korányi fasor 14-15, Szeged, H-6725, Csongrád-Csanád, Hungary.
| | - Peter Juma Ochieng
- Interdisciplinary Research Development and Innovation Center of Excellence, Institute of Informatics, University of Szeged, Árpád tér 2, Szeged, H-6720, Csongrád-Csanád, Hungary.
- HUN-REN SZTE Research Group on Artificial Intelligence, University of Szeged, Árpád tér 2, Szeged, H-6720, Csongrád-Csanád, Hungary.
- Institute of Informatics, University of Szeged, Árpád tér 2, Szeged, H-6720, Csongrád-Csanád, Hungary.
| | - József Dombi
- HUN-REN SZTE Research Group on Artificial Intelligence, University of Szeged, Árpád tér 2, Szeged, H-6720, Csongrád-Csanád, Hungary
- Institute of Informatics, University of Szeged, Árpád tér 2, Szeged, H-6720, Csongrád-Csanád, Hungary
| | - Miklós Krész
- InnoRenew CoE, Livade 6a, Izola, SI-6310, Slovenia
- Andrej Marušic Institute, University of Primorska, Muzejski trg 2, Koper, 6000, Slovenia
- Department of Applied Informatics, University of Szeged, Boldogasszony sgt. 6, Szeged, H-6725, Hungary
| | - Tibor Kalmár
- Albert Szent-Györgyi Health Centre, University of Szeged, Korányi fasor 14-15, Szeged, H-6725, Csongrád-Csanád, Hungary.
| |
Collapse
|
26
|
Moon Y, Hong CH, Kim YH, Kim JK, Ye SH, Kang EK, Choi HW, Cho H, Choi H, Lee DE, Choi Y, Kim TM, Heo SG, Han N, Hong KM. Enhancing Clinical Applications by Evaluation of Sensitivity and Specificity in Whole Exome Sequencing. Int J Mol Sci 2024; 25:13250. [PMID: 39769013 PMCID: PMC11678496 DOI: 10.3390/ijms252413250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/04/2024] [Accepted: 12/06/2024] [Indexed: 01/11/2025] Open
Abstract
The cost-effectiveness of whole exome sequencing (WES) remains controversial due to variant call variability, necessitating sensitivity and specificity evaluation. WES was performed by three companies (AA, BB, and CC) using reference standards composed of DNA from hydatidiform mole and individual blood at various ratios. Sensitivity was assessed by the detection rate of null-homozygote (N-H) alleles at expected variant allelic fractions, while false positive (FP) errors were counted for unexpected alleles. Sensitivity was approximately 20% for in-house results from BB and CC and around 5% for AA. Dynamic Read Analysis for GENomics (DRAGEN) analyses identified 1.34 to 1.71 times more variants, detecting over 96% of in-house variants, with sensitivity for common variants increasing to 5%. In-house FP errors varied significantly among companies (up to 13.97 times), while DRAGEN minimized this variation. Despite DRAGEN showing higher FP errors for BB and CC, the increased sensitivity highlights the importance of effective bioinformatic conditions. We also assessed the potential effects of target enrichment and proposed optimal cutoff values for the read depth and variant allele fraction in WES. Optimizing bioinformatic analysis based on sensitivity and specificity from reference standards can enhance variant detection and improve the clinical utility of WES.
Collapse
Affiliation(s)
- Youngbeen Moon
- Bioinformatics Analysis Team, Research Core Center, Research Institute, National Cancer Center, Goyang 10408, Gyeonggi-do, Republic of Korea; (Y.M.); (J.-K.K.)
| | - Chung Hwan Hong
- Cancer Molecular Biology Branch, Division of Cancer Biology, Research Institute, National Cancer Center, Goyang 10408, Gyeonggi-do, Republic of Korea; (C.H.H.); (S.-H.Y.); (E.-K.K.); (H.W.C.)
| | - Young-Ho Kim
- Diagnostic and Therapeutics Technology Branch, Division of Technology Convergence, Research Institute, National Cancer Center, Goyang 10408, Gyeonggi-do, Republic of Korea; (Y.-H.K.); (H.C.); (H.C.)
| | - Jong-Kwang Kim
- Bioinformatics Analysis Team, Research Core Center, Research Institute, National Cancer Center, Goyang 10408, Gyeonggi-do, Republic of Korea; (Y.M.); (J.-K.K.)
| | - Seo-Hyeon Ye
- Cancer Molecular Biology Branch, Division of Cancer Biology, Research Institute, National Cancer Center, Goyang 10408, Gyeonggi-do, Republic of Korea; (C.H.H.); (S.-H.Y.); (E.-K.K.); (H.W.C.)
| | - Eun-Kyung Kang
- Cancer Molecular Biology Branch, Division of Cancer Biology, Research Institute, National Cancer Center, Goyang 10408, Gyeonggi-do, Republic of Korea; (C.H.H.); (S.-H.Y.); (E.-K.K.); (H.W.C.)
| | - Hye Won Choi
- Cancer Molecular Biology Branch, Division of Cancer Biology, Research Institute, National Cancer Center, Goyang 10408, Gyeonggi-do, Republic of Korea; (C.H.H.); (S.-H.Y.); (E.-K.K.); (H.W.C.)
| | - Hyeri Cho
- Diagnostic and Therapeutics Technology Branch, Division of Technology Convergence, Research Institute, National Cancer Center, Goyang 10408, Gyeonggi-do, Republic of Korea; (Y.-H.K.); (H.C.); (H.C.)
| | - Hana Choi
- Diagnostic and Therapeutics Technology Branch, Division of Technology Convergence, Research Institute, National Cancer Center, Goyang 10408, Gyeonggi-do, Republic of Korea; (Y.-H.K.); (H.C.); (H.C.)
| | - Dong-eun Lee
- Biostatistics Collaboration Team, Research Core Center, Research Institute, National Cancer Center, Goyang 10408, Gyeonggi-do, Republic of Korea;
| | - Yongdoo Choi
- Division of Technology Convergence, National Cancer Center, 323 Ilsan-ro, Goyang 10408, Gyeonggi-do, Republic of Korea;
| | - Tae-Min Kim
- Department of Medical Informatics and Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Gyeonggi-do, Republic of Korea;
| | - Seong Gu Heo
- Dana Farber Cancer Institute, Boston, MA 02215, USA;
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Namshik Han
- Milner Therapeutics Institute, University of Cambridge, Cambridge CB2 0AW, UK;
- Cambridge Centre for AI in Medicine, Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge CB3 0WA, UK
- Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK
| | - Kyeong-Man Hong
- Bioinformatics Analysis Team, Research Core Center, Research Institute, National Cancer Center, Goyang 10408, Gyeonggi-do, Republic of Korea; (Y.M.); (J.-K.K.)
- Cancer Molecular Biology Branch, Division of Cancer Biology, Research Institute, National Cancer Center, Goyang 10408, Gyeonggi-do, Republic of Korea; (C.H.H.); (S.-H.Y.); (E.-K.K.); (H.W.C.)
| |
Collapse
|
27
|
Pal S, Kulshrestha S, Garg N, Gupta D, Gupta ND, Puri RD. Two-Compound Heterozygous Deletions Affecting TUBGCP6 in a Patient with Microcephaly and Ocular Abnormalities and in an Unborn Sibling with Abnormal Sulcation. Mol Syndromol 2024; 15:503-516. [PMID: 39634241 PMCID: PMC11614437 DOI: 10.1159/000539099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/24/2024] [Indexed: 12/07/2024] Open
Abstract
Introduction TUBGCP6-related disorder is a known cause of autosomal recessive microcephaly and chorioretinopathy, which was originally recognized as a new syndrome based on unique ocular findings on a phenotypic overlap of microcephalic primordial short stature. Since the elucidation of its molecular mechanism, limited families have been published in literature and the disorder remains rare worldwide. Case Presentation We present the first Indian family with an affected child and sibling fetus with microcephaly, dysmorphism, and agyria/pachygyria complex on brain imaging in both and short stature, intellectual disability, and visual impairment in proband. As for many patients with long diagnostic odysseys, this child also underwent multiple genomic tests. Genome sequencing through the Indian Undiagnosed Disease Program (I-UDP) confirmed the diagnosis in both proband and sibling fetus. Compound heterozygous variants were identified in TUBGCP6 including an eleven base pair deletion (inherited from father) and 405 base pair large deletion (inherited from mother). Reverse phenotyping to confirm the ocular phenotype in proband confirmed TUBGCP6-related microcephaly and chorioretinopathy. We report third trimester microcephaly with ventriculomegaly and abnormal sulcation as part of the antenatal presentation for this condition. Conclusion This case represents an Indian family with a seemingly obvious clinical diagnosis compounded by a long diagnostic odyssey and the first ever structural variant to be identified via whole genome sequencing in TUBGCP6 in trans with an indel variant.
Collapse
Affiliation(s)
- Swasti Pal
- Institute of Medical Genetics and Genomics Ganga Ram Institute of Post Graduate Medical Education and Research Sir Ganga Ram Hospital, New Delhi, India
| | - Samarth Kulshrestha
- Institute of Medical Genetics and Genomics Ganga Ram Institute of Post Graduate Medical Education and Research Sir Ganga Ram Hospital, New Delhi, India
| | - Neha Garg
- Institute of Medical Genetics and Genomics Ganga Ram Institute of Post Graduate Medical Education and Research Sir Ganga Ram Hospital, New Delhi, India
| | - Deepti Gupta
- Institute of Medical Genetics and Genomics Ganga Ram Institute of Post Graduate Medical Education and Research Sir Ganga Ram Hospital, New Delhi, India
| | - Nandita Dimri Gupta
- Department of Fetal Medicine, Ganga Ram Institute of Post Graduate Medical Education and Research, Sir Ganga Ram Hospital, New Delhi, India
| | - Ratna Dua Puri
- Institute of Medical Genetics and Genomics Ganga Ram Institute of Post Graduate Medical Education and Research Sir Ganga Ram Hospital, New Delhi, India
| |
Collapse
|
28
|
Tan JK, Awuah WA, Ahluwalia A, Sanker V, Ben-Jaafar A, Tenkorang PO, Aderinto N, Mehta A, Darko K, Shah MH, Roy S, Abdul-Rahman T, Atallah O. Genes to therapy: a comprehensive literature review of whole-exome sequencing in neurology and neurosurgery. Eur J Med Res 2024; 29:538. [PMID: 39523358 PMCID: PMC11552425 DOI: 10.1186/s40001-024-02063-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 09/12/2024] [Indexed: 11/16/2024] Open
Abstract
Whole-exome sequencing (WES), a ground-breaking technology, has emerged as a linchpin in neurology and neurosurgery, offering a comprehensive elucidation of the genetic landscape of various neurological disorders. This transformative methodology concentrates on the exonic portions of DNA, which constitute approximately 1% of the human genome, thus facilitating an expedited and efficient sequencing process. WES has been instrumental in advancing our understanding of neurodegenerative diseases, neuro-oncology, cerebrovascular disorders, and epilepsy by revealing rare variants and novel mutations and providing intricate insights into their genetic complexities. This has been achieved while maintaining a substantial diagnostic yield, thereby offering novel perspectives on the pathophysiology and personalized management of these conditions. The utilization of WES boasts several advantages over alternative genetic sequencing methodologies, including cost-effectiveness, reduced incidental findings, simplified analysis and interpretation process, and reduced computational demands. However, despite its benefits, there are challenges, such as the interpretation of variants of unknown significance, cost considerations, and limited accessibility in resource-constrained settings. Additionally, ethical, legal, and social concerns are raised, particularly in the context of incidental findings and patient consent. As we look to the future, the integration of WES with other omics-based approaches could help revolutionize the field of personalized medicine through its implications in predictive models and the development of targeted therapeutic strategies, marking a significant stride toward more effective and clinically oriented solutions.
Collapse
Affiliation(s)
- Joecelyn Kirani Tan
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom.
| | | | | | - Vivek Sanker
- Department of Neurosurgery, Trivandrum Medical College, Thiruvananthapuram, India
| | - Adam Ben-Jaafar
- University College Dublin, School of Medicine, Belfield, Dublin 4, Ireland
| | | | - Nicholas Aderinto
- Internal Medicine Department, LAUTECH Teaching Hospital, Ogbomoso, Nigeria
| | - Aashna Mehta
- University of Debrecen-Faculty of Medicine, Debrecen, Hungary
| | - Kwadwo Darko
- Department of Neurosurgery, Korle Bu Teaching Hospital, Accra, Ghana
| | | | - Sakshi Roy
- School of Medicine, Queen's University Belfast, Belfast, UK
| | | | - Oday Atallah
- Department of Neurosurgery, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
| |
Collapse
|
29
|
Gaynor SM, Joseph T, Bai X, Zou Y, Boutkov B, Maxwell EK, Delaneau O, Hofmeister RJ, Krasheninina O, Balasubramanian S, Marcketta A, Backman J, Reid JG, Overton JD, Lotta LA, Marchini J, Salerno WJ, Baras A, Abecasis GR, Thornton TA. Yield of genetic association signals from genomes, exomes and imputation in the UK Biobank. Nat Genet 2024; 56:2345-2351. [PMID: 39322778 PMCID: PMC11549045 DOI: 10.1038/s41588-024-01930-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 08/23/2024] [Indexed: 09/27/2024]
Abstract
Whole-genome sequencing (WGS), whole-exome sequencing (WES) and array genotyping with imputation (IMP) are common strategies for assessing genetic variation and its association with medically relevant phenotypes. To date, there has been no systematic empirical assessment of the yield of these approaches when applied to hundreds of thousands of samples to enable the discovery of complex trait genetic signals. Using data for 100 complex traits from 149,195 individuals in the UK Biobank, we systematically compare the relative yield of these strategies in genetic association studies. We find that WGS and WES combined with arrays and imputation (WES + IMP) have the largest association yield. Although WGS results in an approximately fivefold increase in the total number of assayed variants over WES + IMP, the number of detected signals differed by only 1% for both single-variant and gene-based association analyses. Given that WES + IMP typically results in savings of lab and computational time and resources expended per sample, we evaluate the potential benefits of applying WES + IMP to larger samples. When we extend our WES + IMP analyses to 468,169 UK Biobank individuals, we observe an approximately fourfold increase in association signals with the threefold increase in sample size. We conclude that prioritizing WES + IMP and large sample sizes rather than contemporary short-read WGS alternatives will maximize the number of discoveries in genetic association studies.
Collapse
Affiliation(s)
| | | | | | - Yuxin Zou
- Regeneron Genetics Center, Tarrytown, NY, USA
| | | | | | | | - Robin J Hofmeister
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
| | | | | | | | | | | | | | | | | | | | - Aris Baras
- Regeneron Genetics Center, Tarrytown, NY, USA.
| | | | | |
Collapse
|
30
|
Xu K, Li G, Niu Y, Wu Z, Zhang TJ, Zhang S, Wu N. First copy number variant in trans with single nucleotide variant in CCN6 causing progressive pseudorheumatoid dysplasia revealed by genome sequencing and deep phenotyping in monozygotic twins. Am J Med Genet A 2024; 194:e63801. [PMID: 38958524 DOI: 10.1002/ajmg.a.63801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/21/2024] [Accepted: 06/14/2024] [Indexed: 07/04/2024]
Abstract
Biallelic pathogenic variants in CCN6 cause progressive pseudorheumatoid dysplasia (PPD), a rare skeletal dysplasia. The predominant features include noninflammatory progressive joint stiffness and enlargement, which are not unique to this condition. Nearly 100% of the reported variants are single nucleotide variants or small indels, and missing of a second variant has been reported. Genome sequencing (GS) covers various types of variants and deep phenotyping (DP) provides detailed and precise information facilitating genetic data interpretation. The combination of GS and DP improves diagnostic yield, especially in rare and undiagnosed diseases. We identified a novel compound heterozygote involving a disease-causing copy number variant (g.112057664_112064205del) in trans with a single nucleotide variant (c.624dup(p.Cys209MetfsTer21)) in CCN6 in a pair of monozygotic twins, through the methods of GS and DP. The twins had received three nondiagnostic results before. The g.112057664_112064205del variant was missed by all the tests, and the recorded phenotypes were inaccurate or even misleading. The twins were diagnosed with PPD, ending a 13-year diagnostic odyssey. There may be other patients with PPD experiencing underdiagnosis and misdiagnosis due to inadequate genetic testing or phenotyping methods. This case highlights the critical role of GS and DP in facilitating an accurate and timely diagnosis.
Collapse
Affiliation(s)
- Kexin Xu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
- Key Laboratory of Big Data for spinal Deformities, Chinese Academy of Medical Sciences, Beijing, China
| | - Guozhuang Li
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
- Key Laboratory of Big Data for spinal Deformities, Chinese Academy of Medical Sciences, Beijing, China
| | - Yuchen Niu
- Clinical Biobank, Medical Research Center, National Science and Technology Key Infrastructure on Translational Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhihong Wu
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
- Key Laboratory of Big Data for spinal Deformities, Chinese Academy of Medical Sciences, Beijing, China
- Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- State Key Laboratory of Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Terry Jianguo Zhang
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
- Key Laboratory of Big Data for spinal Deformities, Chinese Academy of Medical Sciences, Beijing, China
- State Key Laboratory of Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Shuyang Zhang
- State Key Laboratory of Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
- Department of Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, China
| | - Nan Wu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
- Key Laboratory of Big Data for spinal Deformities, Chinese Academy of Medical Sciences, Beijing, China
- State Key Laboratory of Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| |
Collapse
|
31
|
Ueda M. A brief clinical genetics review: stepwise diagnostic processes of a monogenic disorder-hypertriglyceridemia. Transl Pediatr 2024; 13:1828-1848. [PMID: 39524398 PMCID: PMC11543124 DOI: 10.21037/tp-24-131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 09/24/2024] [Indexed: 11/16/2024] Open
Abstract
The completion of the Human Genome Project and tremendous advances in automated high-throughput genetic analysis technologies have enabled explosive progress in the field of genetics, which resulted in countless discoveries of novel genes and pathways. Many phenotype- or disease-associated single nucleotide polymorphisms (SNPs) with a high statistical significance have been identified through numerous genome-wide association studies (GWAS), and various polygenic risk scoring (PRS) schemes have been proposed to identify individuals with a high risk for a certain trait or disorder. Meanwhile, medical education in genetics has lagged far behind, leaving many physicians and healthcare providers unprepared in the genomic era. Thus, there is an urgent need to educate physicians and healthcare providers with basic knowledge and skills in genetics. To facilitate this, some basic terminologies and concepts are discussed in this review. In addition, some important considerations in delineating and incorporating clinical genetic testing in the diagnosis and management of a monogenic disorder are illustrated in a stepwise fashion. Furthermore, the effects of disease-associated SNPs represented by a PRS scheme clearly demonstrated that even the phenotypes of a monogenic disorder due to the same pathogenic variant in family members are modulated by the polygenic background. In human genetics, despite these explosive advancements, we are still far from clearly deciphering the interplay of gene variants to effect unique characteristics in an individual. In addition, sophisticated genome or gene directed therapies are being investigated for numerous disorders. Therefore, evolution in the field of genetics is likely to continue into the foreseeable future. In the meantime, much emphasis should be placed on educating physicians and healthcare professionals to be well-versed and skillful in the clinical use of genetics so that they can fully embrace the new era of precision medicine.
Collapse
Affiliation(s)
- Masako Ueda
- Department of Medicine, The University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
32
|
Jaramillo Oquendo C, Wai HA, Rich WI, Bunyan DJ, Thomas NS, Hunt D, Lord J, Douglas AGL, Baralle D. Identification of diagnostic candidates in Mendelian disorders using an RNA sequencing-centric approach. Genome Med 2024; 16:110. [PMID: 39252027 PMCID: PMC11382415 DOI: 10.1186/s13073-024-01381-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 08/30/2024] [Indexed: 09/11/2024] Open
Abstract
BACKGROUND RNA sequencing (RNA-seq) is increasingly being used as a complementary tool to DNA sequencing in diagnostics where DNA analysis has been uninformative. RNA-seq enables the identification of aberrant splicing and aberrant gene expression, improving the interpretation of variants of unknown significance (VUSs), and provides the opportunity to scan the transcriptome for aberrant splicing and expression in relevant genes that may be the cause of a patient's phenotype. This work aims to investigate the feasibility of generating new diagnostic candidates in patients without a previously reported VUS using an RNA-seq-centric approach. METHODS We systematically assessed the transcriptomic profiles of 86 patients with suspected Mendelian disorders, 38 of whom had no candidate sequence variant, using RNA from blood samples. Each VUS was visually inspected to search for splicing abnormalities. Once aberrant splicing was identified in cases with VUS, multiple open-source alternative splicing tools were used to investigate if they would identify what was observed in IGV. Expression outliers were detected using OUTRIDER. Diagnoses in cases without a VUS were explored using two separate strategies. RESULTS RNA-seq allowed us to assess 71% of VUSs, detecting aberrant splicing in 14/48 patients with a VUS. We identified four new diagnoses by detecting novel aberrant splicing events in patients with no candidate sequence variants from prior DNA testing (n = 32) or where the candidate VUS did not affect splicing (n = 23). An additional diagnosis was made through the detection of skewed X-inactivation. CONCLUSION This work demonstrates the utility of an RNA-centric approach in identifying novel diagnoses in patients without candidate VUSs. It underscores the utility of blood-based RNA analysis in improving diagnostic yields and highlights optimal approaches for such analyses.
Collapse
Affiliation(s)
- Carolina Jaramillo Oquendo
- Faculty of Medicine, University of Southampton, Southampton General Hospital, Tremona Road, Southampton, SO16 6YD, UK
| | - Htoo A Wai
- Faculty of Medicine, University of Southampton, Southampton General Hospital, Tremona Road, Southampton, SO16 6YD, UK
| | - Wil I Rich
- Faculty of Medicine, University of Southampton, Southampton General Hospital, Tremona Road, Southampton, SO16 6YD, UK
| | - David J Bunyan
- Wessex Genomics Laboratory Service, Salisbury District Hospital, Salisbury, UK
| | - N Simon Thomas
- Wessex Genomics Laboratory Service, Salisbury District Hospital, Salisbury, UK
| | - David Hunt
- Faculty of Medicine, University of Southampton, Southampton General Hospital, Tremona Road, Southampton, SO16 6YD, UK
- Wessex Clinical Genetics Service, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Jenny Lord
- Faculty of Medicine, University of Southampton, Southampton General Hospital, Tremona Road, Southampton, SO16 6YD, UK
| | - Andrew G L Douglas
- Faculty of Medicine, University of Southampton, Southampton General Hospital, Tremona Road, Southampton, SO16 6YD, UK
- Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Diana Baralle
- Faculty of Medicine, University of Southampton, Southampton General Hospital, Tremona Road, Southampton, SO16 6YD, UK.
- Wessex Clinical Genetics Service, University Hospital Southampton NHS Foundation Trust, Southampton, UK.
| |
Collapse
|
33
|
Weber RJ, Kawaja C, Wallerstein R, Kunwar SM, Liu C. Impaired 11β-HSD1 Activity in a Male Patient With Cushing Disease Resulting in Lack of the Full Cushingoid Phenotype. JCEM CASE REPORTS 2024; 2:luae158. [PMID: 39238944 PMCID: PMC11375565 DOI: 10.1210/jcemcr/luae158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Indexed: 09/07/2024]
Abstract
We present a patient who had surgically confirmed CD but without the full cushingoid phenotype despite markedly elevated cortisol. Nonpathologic causes of elevated ACTH and cortisol were eliminated as were pathogenic variants in the glucocorticoid receptor gene. Further studies of urine metabolites, cortisol half-life, and the ratios of cortisone to cortisol conversion revealed impaired 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) activity. There have only been 2 prior reports of impaired 11β-HSD1 resulting in lack of classic cushingoid features in the past 2 decades. Our patient's presentation and previous reports demonstrate the key role of 11β-HSD1 in modulating intracellular cortisol concentration, therefore shielding the peripheral tissues from the effects of excess cortisol. When patients present with markedly elevated cortisol but without classic cushingoid features, impaired 11β-HSD1 should be considered in the differential diagnosis.
Collapse
Affiliation(s)
- Robert J Weber
- Department of Medicine, Division of Endocrinology, University of California, San Francisco, CA 94143, USA
| | | | - Robert Wallerstein
- Department of Genetics, University of California, San Francisco, CA 94143, USA
| | - Sandeep M Kunwar
- Department of Neurosurgery, University of California, San Francisco, CA 94143, USA
| | - Chienying Liu
- Department of Medicine, Division of Endocrinology, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
34
|
Tsai CY, Hsu JSJ, Chen PL, Wu CC. Implementing next-generation sequencing for diagnosis and management of hereditary hearing impairment: a comprehensive review. Expert Rev Mol Diagn 2024; 24:753-765. [PMID: 39194060 DOI: 10.1080/14737159.2024.2396866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/22/2024] [Indexed: 08/29/2024]
Abstract
INTRODUCTION Sensorineural hearing impairment (SNHI), a common childhood disorder with heterogeneous genetic causes, can lead to delayed language development and psychosocial problems. Next-generation sequencing (NGS) offers high-throughput screening and high-sensitivity detection of genetic etiologies of SNHI, enabling clinicians to make informed medical decisions, provide tailored treatments, and improve prognostic outcomes. AREAS COVERED This review covers the diverse etiologies of HHI and the utility of different NGS modalities (targeted sequencing and whole exome/genome sequencing), and includes HHI-related studies on newborn screening, genetic counseling, prognostic prediction, and personalized treatment. Challenges such as the trade-off between cost and diagnostic yield, detection of structural variants, and exploration of the non-coding genome are also highlighted. EXPERT OPINION In the current landscape of NGS-based diagnostics for HHI, there are both challenges (e.g. detection of structural variants and non-coding genome variants) and opportunities (e.g. the emergence of medical artificial intelligence tools). The authors advocate the use of technological advances such as long-read sequencing for structural variant detection, multi-omics analysis for non-coding variant exploration, and medical artificial intelligence for pathogenicity assessment and outcome prediction. By integrating these innovations into clinical practice, precision medicine in the diagnosis and management of HHI can be further improved.
Collapse
Affiliation(s)
- Cheng-Yu Tsai
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University College of Medicine, Taipei, Taiwan
- Department of Otolaryngology, National Taiwan University Hospital, Taipei, Taiwan
| | - Jacob Shu-Jui Hsu
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Pei-Lung Chen
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University College of Medicine, Taipei, Taiwan
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
- Institute of Molecular Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan
| | - Chen-Chi Wu
- Department of Otolaryngology, National Taiwan University Hospital, Taipei, Taiwan
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
- Department of Medical Research, National Taiwan University Hospital Hsin-Chu Branch, Hsinchu, Taiwan
- Department of Otolaryngology, National Taiwan University Hospital Hsin-Chu Branch, Hsinchu, Taiwan
| |
Collapse
|
35
|
Senthivel V, Jolly B, Vr A, Bajaj A, Bhoyar R, Imran M, Vignesh H, Divakar MK, Sharma G, Rai N, Kumar K, Mp J, Krishna M, Shenthar J, Ali M, Abqari S, Nadri G, Scaria V, Naik N, Sivasubbu S. Whole genome sequencing of families diagnosed with cardiac channelopathies reveals structural variants missed by whole exome sequencing. J Hum Genet 2024; 69:455-465. [PMID: 38890497 DOI: 10.1038/s10038-024-01265-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 03/07/2024] [Accepted: 06/02/2024] [Indexed: 06/20/2024]
Abstract
Cardiac channelopathies are a group of heritable disorders that affect the heart's electrical activity due to genetic variations present in genes coding for ion channels. With the advent of new sequencing technologies, molecular diagnosis of these disorders in patients has paved the way for early identification, therapeutic management and family screening. The objective of this retrospective study was to understand the efficacy of whole-genome sequencing in diagnosing patients with suspected cardiac channelopathies who were reported negative after whole exome sequencing and analysis. We employed a 3-tier analysis approach to identify nonsynonymous variations and loss-of-function variations missed by exome sequencing, and structural variations that are better resolved only by sequencing whole genomes. By performing whole genome sequencing and analyzing 25 exome-negative cardiac channelopathy patients, we identified 3 pathogenic variations. These include a heterozygous likely pathogenic nonsynonymous variation, CACNA1C:NM_000719:exon19:c.C2570G:p. P857R, which causes autosomal dominant long QT syndrome in the absence of Timothy syndrome, a heterozygous loss-of-function variation CASQ2:NM_001232.4:c.420+2T>C classified as pathogenic, and a 9.2 kb structural variation that spans exon 2 of the KCNQ1 gene, which is likely to cause Jervell-Lange-Nielssen syndrome. In addition, we also identified a loss-of-function variation and 16 structural variations of unknown significance (VUS). Further studies are required to elucidate the role of these identified VUS in gene regulation and decipher the underlying genetic and molecular mechanisms of these disorders. Our present study serves as a pilot for understanding the utility of WGS over clinical exomes in diagnosing cardiac channelopathy disorders.
Collapse
Affiliation(s)
- Vigneshwar Senthivel
- CSIR- Institute of Genomics and Integrative Biology, Mathura Road, Sukhdev Vihar, New Delhi, 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Bani Jolly
- CSIR- Institute of Genomics and Integrative Biology, Mathura Road, Sukhdev Vihar, New Delhi, 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Arvinden Vr
- CSIR- Institute of Genomics and Integrative Biology, Mathura Road, Sukhdev Vihar, New Delhi, 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Anjali Bajaj
- CSIR- Institute of Genomics and Integrative Biology, Mathura Road, Sukhdev Vihar, New Delhi, 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Rahul Bhoyar
- CSIR- Institute of Genomics and Integrative Biology, Mathura Road, Sukhdev Vihar, New Delhi, 110025, India
| | - Mohamed Imran
- CSIR- Institute of Genomics and Integrative Biology, Mathura Road, Sukhdev Vihar, New Delhi, 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Harie Vignesh
- CSIR- Institute of Genomics and Integrative Biology, Mathura Road, Sukhdev Vihar, New Delhi, 110025, India
| | - Mohit Kumar Divakar
- CSIR- Institute of Genomics and Integrative Biology, Mathura Road, Sukhdev Vihar, New Delhi, 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Gautam Sharma
- Department of Cardiology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Nitin Rai
- Department of Cardiology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Kapil Kumar
- Department of Cardiology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Jayakrishnan Mp
- Government Medical College, Kozhikode, Kerala, 673008, India
| | - Maniram Krishna
- Tiny Hearts Fetal and Pediatric Clinic, Thanjavur, Tamil Nadu, 613001, India
| | - Jeyaprakash Shenthar
- Sri Jayadeva Institute of Cardiovascular Sciences and Research, Bengaluru, Karnataka, 560069, India
| | - Muzaffar Ali
- Sri Jayadeva Institute of Cardiovascular Sciences and Research, Bengaluru, Karnataka, 560069, India
| | - Shaad Abqari
- Jawaharlal Nehru Medical College and Hospital, Aligarh Muslim University, Aligarh, Uttar Pradesh, 202002, India
| | - Gulnaz Nadri
- Jawaharlal Nehru Medical College and Hospital, Aligarh Muslim University, Aligarh, Uttar Pradesh, 202002, India
| | - Vinod Scaria
- CSIR- Institute of Genomics and Integrative Biology, Mathura Road, Sukhdev Vihar, New Delhi, 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Nitish Naik
- Department of Cardiology, All India Institute of Medical Sciences, New Delhi, 110029, India.
| | - Sridhar Sivasubbu
- CSIR- Institute of Genomics and Integrative Biology, Mathura Road, Sukhdev Vihar, New Delhi, 110025, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
36
|
Rodriguez KM, Vaught J, Salz L, Foley J, Boulil Z, Van Dongen-Trimmer HM, Whalen D, Oluchukwu O, Liu KC, Burton J, Syngal P, Vargas-Shiraishi O, Kingsmore SF, Kobayashi ES, Coufal NG. Rapid Whole-Genome Sequencing and Clinical Management in the PICU: A Multicenter Cohort, 2016-2023. Pediatr Crit Care Med 2024; 25:699-709. [PMID: 38668387 PMCID: PMC11300160 DOI: 10.1097/pcc.0000000000003522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
OBJECTIVES Analysis of the clinical utility of rapid whole-genome sequencing (rWGS) outside of the neonatal period is lacking. We describe the use of rWGS in PICU and cardiovascular ICU (CICU) patients across four institutions. DESIGN Ambidirectional multisite cohort study. SETTING Four tertiary children's hospitals. PATIENTS Children 0-18 years old in the PICU or CICU who underwent rWGS analysis, from May 2016 to June 2023. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS A total of 133 patients underwent clinical, phenotype-driven rWGS analysis, 36 prospectively. A molecular diagnosis was identified in 79 patients (59%). Median (interquartile range [IQR]) age was 6 months (IQR 1.2 mo-4.6 yr). Median time for return of preliminary results was 3 days (IQR 2-4). In 79 patients with a molecular diagnosis, there was a change in ICU management in 19 patients (24%); and some change in clinical management in 63 patients (80%). Nondiagnosis changed management in 5 of 54 patients (9%). The clinical specialty ordering rWGS did not affect diagnostic rate. Factors associated with greater odds ratio (OR [95% CI]; OR [95% CI]) of diagnosis included dysmorphic features (OR 10.9 [95% CI, 1.8-105]) and congenital heart disease (OR 4.2 [95% CI, 1.3-16.8]). Variables associated with greater odds of changes in management included obtaining a genetic diagnosis (OR 16.6 [95% CI, 5.5-62]) and a shorter time to genetic result (OR 0.8 [95% CI, 0.76-0.9]). Surveys of pediatric intensivists indicated that rWGS-enhanced clinical prognostication ( p < 0.0001) and contributed to a decision to consult palliative care ( p < 0.02). CONCLUSIONS In this 2016-2023 multiple-PICU/CICU cohort, we have shown that timely genetic diagnosis is feasible across institutions. Application of rWGS had a 59% (95% CI, 51-67%) rate of diagnostic yield and was associated with changes in critical care management and long-term patient management.
Collapse
Affiliation(s)
- Katherine M. Rodriguez
- Rady Children’s Hospital, San Diego, CA
- Department of Pediatrics, University of California, San Diego
- Rady Children’s Institute for Genomic Medicine, San Diego, CA
| | - Jordan Vaught
- Rady Children’s Hospital, San Diego, CA
- Department of Pediatrics, University of California, San Diego
| | - Lisa Salz
- Rady Children’s Institute for Genomic Medicine, San Diego, CA
| | | | | | | | | | - Okonkwo Oluchukwu
- OSF Children’s Hospital of Illinois, Peoria, IL
- University of Illinois College of Medicine at Peoria, Peoria, IL
| | - Kuang Chuen Liu
- University of Illinois College of Medicine at Peoria, Peoria, IL
| | - Jennifer Burton
- OSF Children’s Hospital of Illinois, Peoria, IL
- University of Illinois College of Medicine at Peoria, Peoria, IL
| | - Prachi Syngal
- OSF Children’s Hospital of Illinois, Peoria, IL
- University of Illinois College of Medicine at Peoria, Peoria, IL
| | | | | | - Erica Sanford Kobayashi
- Rady Children’s Institute for Genomic Medicine, San Diego, CA
- Cedars-Sinai Medical Center, Department of Pediatrics, Los Angeles, CA
- Children’s Hospital of Orange County, Orange, CA
| | - Nicole G. Coufal
- Rady Children’s Hospital, San Diego, CA
- Department of Pediatrics, University of California, San Diego
- Rady Children’s Institute for Genomic Medicine, San Diego, CA
| |
Collapse
|
37
|
Nurchis MC, Radio FC, Salmasi L, Heidar Alizadeh A, Raspolini GM, Altamura G, Tartaglia M, Dallapiccola B, Damiani G. Bayesian cost-effectiveness analysis of Whole genome sequencing versus Whole exome sequencing in a pediatric population with suspected genetic disorders. THE EUROPEAN JOURNAL OF HEALTH ECONOMICS : HEPAC : HEALTH ECONOMICS IN PREVENTION AND CARE 2024; 25:999-1011. [PMID: 37975990 PMCID: PMC11283423 DOI: 10.1007/s10198-023-01644-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 10/25/2023] [Indexed: 11/19/2023]
Abstract
Genetic diseases are medical conditions caused by sequence or structural changes in an individual's genome. Whole exome sequencing (WES) and whole genome sequencing (WGS) are increasingly used for diagnosing suspected genetic conditions in children to reduce the diagnostic delay and accelerating the implementation of appropriate treatments. While more information is becoming available on clinical efficacy and economic sustainability of WES, the broad implementation of WGS is still hindered by higher complexity and economic issues. The aim of this study is to estimate the cost-effectiveness of WGS versus WES and standard testing for pediatric patients with suspected genetic disorders. A Bayesian decision tree model was set up. Model parameters were retrieved both from hospital administrative datasets and scientific literature. The analysis considered a lifetime time frame and adopted the perspective of the Italian National Health Service (NHS). Bayesian inference was performed using the Markov Chain Monte Carlo simulation method. Uncertainty was explored through a probabilistic sensitivity analysis (PSA) and a value of information analysis (VOI). The present analysis showed that implementing first-line WGS would be a cost-effective strategy, against the majority of the other tested alternatives at a threshold of €30,000-50,000, for diagnosing outpatient pediatric patients with suspected genetic disorders. According to the sensitivity analyses, the findings were robust to most assumption and parameter uncertainty. Lessons learnt from this modeling study reinforces the adoption of first-line WGS, as a cost-effective strategy, depending on actual difficulties for the NHS to properly allocate limited resources.
Collapse
Affiliation(s)
- Mario Cesare Nurchis
- School of Economics, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168, Rome, Italy.
- Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Rome, Italy.
| | | | - Luca Salmasi
- Department of Economics and Finance, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
| | - Aurora Heidar Alizadeh
- Department of Health Sciences and Public Health, Section of Hygiene, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
| | - Gian Marco Raspolini
- Department of Health Sciences and Public Health, Section of Hygiene, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
| | - Gerardo Altamura
- Department of Health Sciences and Public Health, Section of Hygiene, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
| | - Marco Tartaglia
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù IRCCS, 00146, Rome, Italy
| | - Bruno Dallapiccola
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù IRCCS, 00146, Rome, Italy
| | - Gianfranco Damiani
- Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Rome, Italy
- Department of Health Sciences and Public Health, Section of Hygiene, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
| |
Collapse
|
38
|
Mallawaarachchi AC, Fowles L, Wardrop L, Wood A, O'Shea R, Biros E, Harris T, Alexander SI, Bodek S, Boudville N, Burke J, Burnett L, Casauria S, Chadban S, Chakera A, Crafter S, Dai P, De Fazio P, Faull R, Honda A, Huntley V, Jahan S, Jayasinghe K, Jose M, Leaver A, MacShane M, Madelli EO, Nicholls K, Pawlowski R, Rangan G, Snelling P, Soraru J, Sundaram M, Tchan M, Valente G, Wallis M, Wedd L, Welland M, Whitlam J, Wilkins EJ, McCarthy H, Simons C, Quinlan C, Patel C, Stark Z, Mallett AJ. Genomic Testing in Patients with Kidney Failure of an Unknown Cause: A National Australian Study. Clin J Am Soc Nephrol 2024; 19:887-897. [PMID: 38861662 PMCID: PMC11254024 DOI: 10.2215/cjn.0000000000000464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 04/25/2024] [Indexed: 06/13/2024]
Abstract
Key Points Twenty-five percent of those with unexplained kidney failure have a monogenic cause. Whole genome sequencing with broad gene panel analysis is a feasible diagnostic approach in nephrology. Background The cause of kidney failure is unknown in approximately 10% of patients with stage 5 chronic kidney disease (CKD). For those who first present to nephrology care with kidney failure, standard investigations of serology, imaging, urinalysis, and kidney biopsy are limited differentiators of etiology. We aimed to determine the diagnostic utility of whole genome sequencing (WGS) with analysis of a broad kidney gene panel in patients with kidney failure of unknown cause. Methods We prospectively recruited 100 participants who reached CKD stage 5 at the age of ≤50 years and had an unknown cause of kidney failure after standard investigation. Clinically accredited WGS was performed in this national cohort after genetic counseling. The primary analysis was targeted to 388 kidney-related genes with second-tier, genome-wide, and mitochondrial analysis. Results The cohort was 61% male and the average age of participants at stage 5 CKD was 32 years (9 months to 50 years). A genetic diagnosis was made in 25% of participants. Disease-causing variants were identified across autosomal dominant tubulointerstitial kidney disease (6), glomerular disorders (4), ciliopathies (3), tubular disorders (2), Alport syndrome (4), and mitochondrial disease (1). Most diagnoses (80%) were in autosomal dominant, X-linked, or mitochondrial conditions (UMOD ; COL4A5 ; INF2 ; CLCN5 ; TRPC6 ; COL4A4 ; EYA1 ; HNF1B ; WT1 ; NBEA ; m.3243A>G ). Participants with a family history of CKD were more likely to have a positive result (odds ratio, 3.29; 95% confidence interval, 1.10 to 11.29). Thirteen percent of participants without a CKD family history had a positive result. In those who first presented in stage 5 CKD, WGS with broad analysis of a curated kidney disease gene panel was diagnostically more informative than kidney biopsy, with biopsy being inconclusive in 24 of the 25 participants. Conclusions In this prospectively ascertained Australian cohort, we identified a genetic diagnosis in 25% of patients with kidney failure of unknown cause.
Collapse
Affiliation(s)
- Amali C. Mallawaarachchi
- Clinical Genetics Service, Institute of Precision Medicine and Bioinformatics, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
- Genomic and Inherited Diseases Program, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- KidGen Collaborative, Australian Genomics Health Alliance, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Lindsay Fowles
- Genetic Health Queensland, Royal Brisbane and Women's Hospital, Herston, Queensland, Australia
| | - Louise Wardrop
- KidGen Collaborative, Kidney Regeneration, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Alasdair Wood
- KidGen Collaborative, Kidney Regeneration, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Rosie O'Shea
- KidGen Collaborative, Australian Genomics Health Alliance, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Erik Biros
- KidGen Collaborative, Australian Genomics Health Alliance, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
- College of Medicine and Dentistry, James Cook University, Townsville, Queensland, Australia
- Townsville University Hospital, Townsville, Queensland, Australia
| | - Trudie Harris
- KidGen Collaborative, Australian Genomics Health Alliance, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
- Townsville University Hospital, Townsville, Queensland, Australia
| | - Stephen I. Alexander
- Centre for Kidney Research at the Children's Hospital at Westmead, Sydney, New South Wales, Australia
- Department of Nephrology, Children's Hospital at Westmead, Sydney, New South Wales, Australia
- Discipline of Child and Adolescent Health, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Simon Bodek
- Clinical Genetics Service, Austin Health, Melbourne, Victoria, Australia
| | - Neil Boudville
- Medical School, University of Western Australia, Crawley, Western Australia, Australia
| | - Jo Burke
- School of Medicine and Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
- Tasmanian Clinical Genetics Service, Royal Hobart Hospital, Hobart, Tasmania, Australia
| | - Leslie Burnett
- Genomic and Inherited Diseases Program, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, Northern Clinical School, University of Sydney, Sydney, New South Wales, Australia
- St Vincent's Healthcare Clinical Campus, UNSW Sydney, Sydney, New South Wales, Australia
| | - Sarah Casauria
- Australian Genomics, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Steve Chadban
- Renal Medicine, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
| | - Aron Chakera
- Harry Perkins Institute for Medical Research, University of Western Australia, Crawley, Western Australia, Australia
- Renal Unit, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
| | - Sam Crafter
- The Women's and Children's Hospital, North Adelaide, South Australia, Australia
| | - Pei Dai
- Precision Immunology Program, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- Faculty of Medicine, St Vincent's Clinical School, UNSW Sydney, Sydney, New South Wales, Australia
| | - Paul De Fazio
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Randall Faull
- Renal Unit, Royal Adelaide Hospital, Adelaide, South Australia, Australia
- University of Adelaide, Adelaide, South Australia, Australia
| | - Andrew Honda
- The Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Vanessa Huntley
- Adult Genetics Service, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Sadia Jahan
- The Central and Northern Renal and Transplantation Service, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Kushani Jayasinghe
- Department of Medicine, Monash University, Melbourne, Victoria, Australia
- Department of Nephrology, Monash Health, Melbourne, Victoria, Australia
- Melbourne Health, Melbourne, Victoria, Australia
| | - Matthew Jose
- Royal Hobart Hospital, Hobart, Tasmania, Australia
| | - Anna Leaver
- Clinical Genetics Service, Austin Health, Melbourne, Victoria, Australia
| | - Mandi MacShane
- Genetic Services of WA, KEMH, Subiaco, Western Australia, Australia
- Harry Perkins Institute of Medical Research, Nedlands, Western Australia, Australia
| | | | - Kathy Nicholls
- Nephrology Unit, Royal Melbourne Hospital, Parkville, Victoria, Australia
- The University of Melbourne, Parkville, Victoria, Australia
| | - Rhonda Pawlowski
- Anatomical Pathology, Monash Health, Melbourne, Victoria, Australia
| | - Gopi Rangan
- Department of Renal Medicine, Westmead Hospital, Western Sydney Local Health District, Sydney, New South Wales, Australia
- Michael Stern Laboratory for Polycystic Kidney Disease, Westmead Institute for Medical Research, Westmead, New South Wales, Australia
| | - Paul Snelling
- Renal Medicine, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
| | - Jacqueline Soraru
- Department of Nephrology and Hypertension, Perth Children's Hospital, Nedlands, Western Australia, Australia
- Department of Nephrology and Renal Transplantation, Fiona Stanley Hospital, Murdoch, Western Australia, Australia
| | | | - Michel Tchan
- Genetic Medicine, Westmead Hospital, Sydney, New South Wales, Australia
- Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Giulia Valente
- Clinical Genetics Service, Austin Health, Melbourne, Victoria, Australia
| | - Mathew Wallis
- School of Medicine and Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
- Tasmanian Clinical Genetics Service, Royal Hobart Hospital, Hobart, Tasmania, Australia
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Laura Wedd
- Centre for Population Genomics, Garvan Institute of Medical Research and UNSW Sydney, Sydney, New South Wales, Australia
| | - Matthew Welland
- Centre for Population Genomics, Garvan Institute of Medical Research and UNSW Sydney, Sydney, New South Wales, Australia
- Centre for Population Genomics, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - John Whitlam
- Department of Nephrology, Austin Health, Melbourne, Victoria, Australia
| | - Ella J. Wilkins
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Hugh McCarthy
- Centre for Kidney Research at the Children's Hospital at Westmead, Sydney, New South Wales, Australia
- Discipline of Child and Adolescent Health, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
- Department of Nephrology, Sydney Children's Hospitals Network, Sydney, New South Wales, Australia
| | - Cas Simons
- Centre for Population Genomics, Garvan Institute of Medical Research and UNSW Sydney, Sydney, New South Wales, Australia
- Centre for Population Genomics, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
- Department of Kidney Regeneration, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Catherine Quinlan
- Department of Kidney Regeneration, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
- Department of Nephrology, Royal Children's Hospital, Melbourne, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - Chirag Patel
- Genetic Health Queensland, Royal Brisbane and Women's Hospital, Herston, Queensland, Australia
| | - Zornitza Stark
- Australian Genomics, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - Andrew J. Mallett
- KidGen Collaborative, Australian Genomics Health Alliance, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
- Townsville University Hospital, Townsville, Queensland, Australia
- Australian Genomics, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
- Institute for Molecular Bioscience and Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
39
|
McCarthy HJ, Mallett AJ, Sullivan P, Cowley MJ, Mallawaarachchi AC. Beyond DNA sequencing: genetic kidney disorders related to altered splicing. Nephrol Dial Transplant 2024; 39:1056-1059. [PMID: 38289833 DOI: 10.1093/ndt/gfae022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Indexed: 02/01/2024] Open
Affiliation(s)
- Hugh J McCarthy
- Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
- Department of Nephrology, Sydney Children's Hospitals Network, Westmead, NSW, Australia
| | - Andrew J Mallett
- Department of Renal Medicine, Townsville University Hospital, Townsville, QLD, Australia
- College of Medicine & Dentistry, James Cook University, Townsville, QLD, Australia
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Patricia Sullivan
- Children's Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington, NSW, Australia
- School of Clinical Medicine, UNSW Medicine & Health, University of New South Wales Sydney, Kensington, NSW, Australia
| | - Mark J Cowley
- Children's Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington, NSW, Australia
- School of Clinical Medicine, UNSW Medicine & Health, University of New South Wales Sydney, Kensington, NSW, Australia
| | - Amali C Mallawaarachchi
- School of Clinical Medicine, UNSW Medicine & Health, University of New South Wales Sydney, Kensington, NSW, Australia
- Genomic and Inherited Disease Program, Garvan Institute of Medical Research, Sydney, NSW, Australia
- Clinical Genetics Service, Institute of Precision Medicine and Bioinformatics, Royal Prince Alfred Hospital, Sydney, Australia
| |
Collapse
|
40
|
van der Geest MA, Maeckelberghe ELM, van Gijn ME, Lucassen AM, Swertz MA, van Langen IM, Plantinga M. Systematic reanalysis of genomic data by diagnostic laboratories: a scoping review of ethical, economic, legal and (psycho)social implications. Eur J Hum Genet 2024; 32:489-497. [PMID: 38480795 PMCID: PMC11061183 DOI: 10.1038/s41431-023-01529-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 12/11/2023] [Accepted: 12/19/2023] [Indexed: 05/02/2024] Open
Abstract
With the introduction of Next Generation Sequencing (NGS) techniques increasing numbers of disease-associated variants are being identified. This ongoing progress might lead to diagnoses in formerly undiagnosed patients and novel insights in already solved cases. Therefore, many studies suggest introducing systematic reanalysis of NGS data in routine diagnostics. Introduction will, however, also have ethical, economic, legal and (psycho)social (ELSI) implications that Genetic Health Professionals (GHPs) from laboratories should consider before possible implementation of systematic reanalysis. To get a first impression we performed a scoping literature review. Our findings show that for the vast majority of included articles ELSI aspects were not mentioned as such. However, often these issues were raised implicitly. In total, we identified nine ELSI aspects, such as (perceived) professional responsibilities, implications for consent and cost-effectiveness. The identified ELSI aspects brought forward necessary trade-offs for GHPs to consciously take into account when considering responsible implementation of systematic reanalysis of NGS data in routine diagnostics, balancing the various strains on their laboratories and personnel while creating optimal results for new and former patients. Some important aspects are not well explored yet. For example, our study shows GHPs see the values of systematic reanalysis but also experience barriers, often mentioned as being practical or financial only, but in fact also being ethical or psychosocial. Engagement of these GHPs in further research on ELSI aspects is important for sustainable implementation.
Collapse
Affiliation(s)
- Marije A van der Geest
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| | - Els L M Maeckelberghe
- Institute for Medical Education, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Marielle E van Gijn
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Anneke M Lucassen
- Faculty of Medicine, Clinical Ethics and Law, University of Southampton, Southampton, UK
- Centre for Personalised Medicine, Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Morris A Swertz
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Irene M van Langen
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Mirjam Plantinga
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
41
|
Del Gobbo GF, Wang X, Couse M, Mackay L, Goldsmith C, Marshall AE, Liang Y, Lambert C, Zhang S, Dhillon H, Fanslow C, Rowell WJ, Marshall CR, Kernohan KD, Boycott KM. Long-read genome sequencing reveals a novel intronic retroelement insertion in NR5A1 associated with 46,XY differences of sexual development. Am J Med Genet A 2024; 194:e63522. [PMID: 38131126 DOI: 10.1002/ajmg.a.63522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023]
Abstract
Despite significant advancements in rare genetic disease diagnostics, many patients with rare genetic disease remain without a molecular diagnosis. Novel tools and methods are needed to improve the detection of disease-associated variants and understand the genetic basis of many rare diseases. Long-read genome sequencing provides improved sequencing in highly repetitive, homologous, and low-complexity regions, and improved assessment of structural variation and complex genomic rearrangements compared to short-read genome sequencing. As such, it is a promising method to explore overlooked genetic variants in rare diseases with a high suspicion of a genetic basis. We therefore applied PacBio HiFi sequencing in a large multi-generational family presenting with autosomal dominant 46,XY differences of sexual development (DSD), for whom extensive molecular testing over multiple decades had failed to identify a molecular diagnosis. This revealed a rare SINE-VNTR-Alu retroelement insertion in intron 4 of NR5A1, a gene in which loss-of-function variants are an established cause of 46,XY DSD. The insertion segregated among affected family members and was associated with loss-of-expression of alleles in cis, demonstrating a functional impact on NR5A1. This case highlights the power of long-read genome sequencing to detect genomic variants that have previously been intractable to detection by standard short-read genomic testing.
Collapse
Affiliation(s)
- Giulia F Del Gobbo
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Canada
| | - Xueqi Wang
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Canada
| | - Madeline Couse
- Centre for Computational Medicine, The Hospital for Sick Children, Toronto, Canada
| | - Layla Mackay
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Canada
- Department of Genetics, Children's Hospital of Eastern Ontario, Ottawa, Canada
| | - Claire Goldsmith
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Canada
- Department of Genetics, Children's Hospital of Eastern Ontario, Ottawa, Canada
| | - Aren E Marshall
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Canada
| | - Yijing Liang
- Centre for Computational Medicine, The Hospital for Sick Children, Toronto, Canada
| | | | - Siyuan Zhang
- PacBio of California, Inc, Menlo Park, California, USA
| | | | | | | | | | - Kristin D Kernohan
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Canada
- Newborn Screening Ontario, Ottawa, Canada
| | - Kym M Boycott
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Canada
- Department of Genetics, Children's Hospital of Eastern Ontario, Ottawa, Canada
| |
Collapse
|
42
|
Dias KR, Shrestha R, Schofield D, Evans CA, O'Heir E, Zhu Y, Zhang F, Standen K, Weisburd B, Stenton SL, Sanchis-Juan A, Brand H, Talkowski ME, Ma A, Ghedia S, Wilson M, Sandaradura SA, Smith J, Kamien B, Turner A, Bakshi M, Adès LC, Mowat D, Regan M, McGillivray G, Savarirayan R, White SM, Tan TY, Stark Z, Brown NJ, Pérez-Jurado LA, Krzesinski E, Hunter MF, Akesson L, Fennell AP, Yeung A, Boughtwood T, Ewans LJ, Kerkhof J, Lucas C, Carey L, French H, Rapadas M, Stevanovski I, Deveson IW, Cliffe C, Elakis G, Kirk EP, Dudding-Byth T, Fletcher J, Walsh R, Corbett MA, Kroes T, Gecz J, Meldrum C, Cliffe S, Wall M, Lunke S, North K, Amor DJ, Field M, Sadikovic B, Buckley MF, O'Donnell-Luria A, Roscioli T. Narrowing the diagnostic gap: Genomes, episignatures, long-read sequencing, and health economic analyses in an exome-negative intellectual disability cohort. Genet Med 2024; 26:101076. [PMID: 38258669 PMCID: PMC11786952 DOI: 10.1016/j.gim.2024.101076] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
PURPOSE Genome sequencing (GS)-specific diagnostic rates in prospective tightly ascertained exome sequencing (ES)-negative intellectual disability (ID) cohorts have not been reported extensively. METHODS ES, GS, epigenetic signatures, and long-read sequencing diagnoses were assessed in 74 trios with at least moderate ID. RESULTS The ES diagnostic yield was 42 of 74 (57%). GS diagnoses were made in 9 of 32 (28%) ES-unresolved families. Repeated ES with a contemporary pipeline on the GS-diagnosed families identified 8 of 9 single-nucleotide variations/copy-number variations undetected in older ES, confirming a GS-unique diagnostic rate of 1 in 32 (3%). Episignatures contributed diagnostic information in 9% with GS corroboration in 1 of 32 (3%) and diagnostic clues in 2 of 32 (6%). A genetic etiology for ID was detected in 51 of 74 (69%) families. Twelve candidate disease genes were identified. Contemporary ES followed by GS cost US$4976 (95% CI: $3704; $6969) per diagnosis and first-line GS at a cost of $7062 (95% CI: $6210; $8475) per diagnosis. CONCLUSION Performing GS only in ID trios would be cost equivalent to ES if GS were available at $2435, about a 60% reduction from current prices. This study demonstrates that first-line GS achieves higher diagnostic rate than contemporary ES but at a higher cost.
Collapse
Affiliation(s)
- Kerith-Rae Dias
- Neuroscience Research Australia, Sydney, NSW, Australia; Prince of Wales Clinical School, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Rupendra Shrestha
- Centre for Economic Impacts of Genomic Medicine, Macquarie Business School, Macquarie University, Sydney, NSW, Australia
| | - Deborah Schofield
- Centre for Economic Impacts of Genomic Medicine, Macquarie Business School, Macquarie University, Sydney, NSW, Australia
| | - Carey-Anne Evans
- Neuroscience Research Australia, Sydney, NSW, Australia; New South Wales Health Pathology Randwick Genomics, Prince of Wales Hospital, Sydney, NSW, Australia
| | - Emily O'Heir
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Ying Zhu
- Neuroscience Research Australia, Sydney, NSW, Australia; New South Wales Health Pathology Randwick Genomics, Prince of Wales Hospital, Sydney, NSW, Australia; The Genetics of Learning Disability Service, Waratah, NSW, Australia
| | - Futao Zhang
- Neuroscience Research Australia, Sydney, NSW, Australia; New South Wales Health Pathology Randwick Genomics, Prince of Wales Hospital, Sydney, NSW, Australia
| | - Krystle Standen
- New South Wales Health Pathology Randwick Genomics, Prince of Wales Hospital, Sydney, NSW, Australia
| | - Ben Weisburd
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Sarah L Stenton
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Alba Sanchis-Juan
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Harrison Brand
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Michael E Talkowski
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Alan Ma
- Department of Clinical Genetics, Children's Hospital at Westmead, Sydney Children's Hospital Network, Sydney, NSW, Australia; Specialty of Genomic Medicine, Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Sondy Ghedia
- Department of Clinical Genetics, Royal North Shore Hospital, Sydney, NSW, Australia; Northern Clinical School, Royal North Shore Hospital, Sydney, NSW, Australia
| | - Meredith Wilson
- Department of Clinical Genetics, Children's Hospital at Westmead, Sydney Children's Hospital Network, Sydney, NSW, Australia
| | - Sarah A Sandaradura
- Department of Clinical Genetics, Children's Hospital at Westmead, Sydney Children's Hospital Network, Sydney, NSW, Australia; Disciplines of Child and Adolescent Health and Genetic Medicine, University of Sydney, Sydney, NSW 2050, Australia
| | - Janine Smith
- Department of Clinical Genetics, Children's Hospital at Westmead, Sydney Children's Hospital Network, Sydney, NSW, Australia; Specialty of Genomic Medicine, Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Benjamin Kamien
- Genetic Services of Western Australia, Perth, WA, Australia; School of Paediatrics and Child Health, University of Western Australia, Perth, WA, Australia
| | - Anne Turner
- Centre for Clinical Genetics, Sydney Children's Hospital, Sydney, NSW, Australia
| | - Madhura Bakshi
- Department of Clinical Genetics, Liverpool Hospital, Sydney, NSW, Australia
| | - Lesley C Adès
- Department of Clinical Genetics, Children's Hospital at Westmead, Sydney Children's Hospital Network, Sydney, NSW, Australia; Disciplines of Child and Adolescent Health and Genetic Medicine, University of Sydney, Sydney, NSW 2050, Australia
| | - David Mowat
- Centre for Clinical Genetics, Sydney Children's Hospital, Sydney, NSW, Australia; Discipline of Paediatrics & Child Health, Faculty of Medicine and Health, School of Clinical Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Matthew Regan
- Monash Genetics, Monash Health, Melbourne, VIC, Australia
| | - George McGillivray
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, VIC 3052, Australia
| | - Ravi Savarirayan
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, VIC 3052, Australia; Murdoch Children's Research Institute, Melbourne, VIC, Australia; Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
| | - Susan M White
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, VIC 3052, Australia; Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
| | - Tiong Yang Tan
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, VIC 3052, Australia; Murdoch Children's Research Institute, Melbourne, VIC, Australia; Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
| | - Zornitza Stark
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, VIC 3052, Australia; Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia; Australian Genomics, Melbourne, VIC, Australia
| | - Natasha J Brown
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, VIC 3052, Australia; Murdoch Children's Research Institute, Melbourne, VIC, Australia; Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
| | - Luis A Pérez-Jurado
- Genetics Unit, Universitat Pompeu Fabra, Institut Hospital del Mar d'Investigacions Mediques (IMIM), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain; Women's and Children's Hospital, South Australian Health and Medical Research Institute & University of Adelaide, Adelaide, SA, Australia
| | - Emma Krzesinski
- Monash Genetics, Monash Health, Melbourne, VIC, Australia; Department of Paediatrics, Monash University, Melbourne, VIC, Australia
| | - Matthew F Hunter
- Monash Genetics, Monash Health, Melbourne, VIC, Australia; Department of Paediatrics, Monash University, Melbourne, VIC, Australia
| | - Lauren Akesson
- Melbourne Pathology, Melbourne, VIC, Australia; Department of Pathology, The Royal Melbourne Hospital, Melbourne, VIC, Australia; Melbourne Medical School, University of Melbourne, Melbourne, VIC, Australia
| | - Andrew Paul Fennell
- Monash Genetics, Monash Health, Melbourne, VIC, Australia; Department of Paediatrics, Monash University, Melbourne, VIC, Australia
| | - Alison Yeung
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, VIC 3052, Australia; Murdoch Children's Research Institute, Melbourne, VIC, Australia; Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
| | - Tiffany Boughtwood
- Murdoch Children's Research Institute, Melbourne, VIC, Australia; Australian Genomics, Melbourne, VIC, Australia
| | - Lisa J Ewans
- Centre for Clinical Genetics, Sydney Children's Hospital, Sydney, NSW, Australia; Discipline of Paediatrics & Child Health, Faculty of Medicine and Health, School of Clinical Medicine, University of New South Wales, Sydney, NSW, Australia; Genomics and Inherited Disease Program, Garvan Institute of Medical Research, University of New South Wales Sydney, Sydney, NSW, Australia
| | - Jennifer Kerkhof
- Verspeeten Clinical Genome Centre London Health Sciences Centre, London, ON, Canada
| | - Christopher Lucas
- New South Wales Health Pathology Randwick Genomics, Prince of Wales Hospital, Sydney, NSW, Australia
| | - Louise Carey
- New South Wales Health Pathology Randwick Genomics, Prince of Wales Hospital, Sydney, NSW, Australia
| | - Hugh French
- Department of Medical Genomics, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Melissa Rapadas
- Genomics and Inherited Disease Program, Garvan Institute of Medical Research, University of New South Wales Sydney, Sydney, NSW, Australia; Centre for Population Genomics, Garvan Institute of Medical Research and Murdoch Children's Research Institute, Sydney, NSW, Australia
| | - Igor Stevanovski
- Genomics and Inherited Disease Program, Garvan Institute of Medical Research, University of New South Wales Sydney, Sydney, NSW, Australia; Centre for Population Genomics, Garvan Institute of Medical Research and Murdoch Children's Research Institute, Sydney, NSW, Australia
| | - Ira W Deveson
- Genomics and Inherited Disease Program, Garvan Institute of Medical Research, University of New South Wales Sydney, Sydney, NSW, Australia; Centre for Population Genomics, Garvan Institute of Medical Research and Murdoch Children's Research Institute, Sydney, NSW, Australia; St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Corrina Cliffe
- New South Wales Health Pathology Randwick Genomics, Prince of Wales Hospital, Sydney, NSW, Australia
| | - George Elakis
- New South Wales Health Pathology Randwick Genomics, Prince of Wales Hospital, Sydney, NSW, Australia
| | - Edwin P Kirk
- New South Wales Health Pathology Randwick Genomics, Prince of Wales Hospital, Sydney, NSW, Australia; Centre for Clinical Genetics, Sydney Children's Hospital, Sydney, NSW, Australia; Discipline of Paediatrics & Child Health, Faculty of Medicine and Health, School of Clinical Medicine, University of New South Wales, Sydney, NSW, Australia
| | | | - Janice Fletcher
- New South Wales Health Pathology Randwick Genomics, Prince of Wales Hospital, Sydney, NSW, Australia
| | - Rebecca Walsh
- New South Wales Health Pathology Randwick Genomics, Prince of Wales Hospital, Sydney, NSW, Australia
| | - Mark A Corbett
- Adelaide Medical School and Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia
| | - Thessa Kroes
- Adelaide Medical School and Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia
| | - Jozef Gecz
- Adelaide Medical School and Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia; South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Cliff Meldrum
- State Wide Service, New South Wales Health Pathology, Sydney, NSW, Australia
| | - Simon Cliffe
- State Wide Service, New South Wales Health Pathology, Sydney, NSW, Australia
| | - Meg Wall
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, VIC 3052, Australia
| | - Sebastian Lunke
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, VIC 3052, Australia
| | - Kathryn North
- Murdoch Children's Research Institute, Melbourne, VIC, Australia; Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia; Australian Genomics, Melbourne, VIC, Australia; Global Alliance for Genomics and Health, Toronto, ON, Canada
| | - David J Amor
- Murdoch Children's Research Institute, Melbourne, VIC, Australia; Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
| | - Michael Field
- The Genetics of Learning Disability Service, Waratah, NSW, Australia
| | - Bekim Sadikovic
- Verspeeten Clinical Genome Centre London Health Sciences Centre, London, ON, Canada; Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada
| | - Michael F Buckley
- New South Wales Health Pathology Randwick Genomics, Prince of Wales Hospital, Sydney, NSW, Australia
| | - Anne O'Donnell-Luria
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts; Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA
| | - Tony Roscioli
- Neuroscience Research Australia, Sydney, NSW, Australia; Prince of Wales Clinical School, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia; New South Wales Health Pathology Randwick Genomics, Prince of Wales Hospital, Sydney, NSW, Australia.
| |
Collapse
|
43
|
Kaufman O, Donnelly C, Cork E, Fiel MI, Chu J, Ganesh J. Shwachman-Diamond syndrome mimicking mitochondrial hepatopathy. JPGN REPORTS 2024; 5:213-217. [PMID: 38756125 PMCID: PMC11093899 DOI: 10.1002/jpr3.12064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 05/18/2024]
Abstract
Shwachman-Diamond syndrome (SDS) is a genetic disorder caused by mutations in the Shwachman-Bodian-Diamond syndrome (SBDS) gene. The syndrome is characterized by multiorgan dysfunction primarily involving the bone marrow and exocrine pancreas. Frequently overlooked is the hepatic dysfunction seen in early childhood which tends to improve by adulthood. Here, we report a child who initially presented with failure to thrive and elevated transaminases, and was ultimately diagnosed with SDS. A liver biopsy electron micrograph revealed hepatocytes crowded with numerous small mitochondria, resembling the hepatic architecture from patients with inborn errors of metabolism, including mitochondrial diseases. To our knowledge, this is the first report of the mitochondrial phenotype in an SDS patient. These findings are compelling given the recent cellular and molecular research studies which have identified SBDS as an essential regulator of mitochondrial function and have also implicated SBDS in the maintenance of mitochondrial DNA.
Collapse
Affiliation(s)
- Odelya Kaufman
- Department of Genetics and GenomicsMount Sinai HospitalNew YorkNew YorkUSA
| | - Colleen Donnelly
- Department of Genetics and GenomicsMount Sinai HospitalNew YorkNew YorkUSA
| | - Emalyn Cork
- Department of Genetics and GenomicsMount Sinai HospitalNew YorkNew YorkUSA
| | - Maria I. Fiel
- Department of PathologyMount Sinai HospitalNew YorkNew YorkUSA
| | - Jaime Chu
- Division of Pediatric Hepatology at Kravis Children's HospitalMount Sinai HospitalNew YorkNew YorkUSA
| | - Jaya Ganesh
- Department of Genetics and GenomicsMount Sinai HospitalNew YorkNew YorkUSA
| |
Collapse
|
44
|
Song P, Tian Y, Chen S, Zhang S, Li X, You Z, Fu J, Xu W, Li Z, Luan J, Zhao Q, Wang C, Pang F. A novel method for simultaneous detection of hematological tumors and infectious pathogens by metagenomic next generation sequencing of plasma. Clin Chim Acta 2024; 557:117874. [PMID: 38484907 DOI: 10.1016/j.cca.2024.117874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/23/2024] [Accepted: 03/11/2024] [Indexed: 03/21/2024]
Abstract
BACKGROUND Metagenomic next-generation sequencing (mNGS) is valuable for pathogen identification; however, distinguishing between infectious diseases and conditions with potentially similar clinical manifestations, including malignant tumors, is challenging. Therefore, we developed a method for simultaneous detection of infectious pathogens and cancer in blood samples. METHODS Plasma samples (n = 244) were collected from 150 and 94 patients with infections and hematological malignancies, respectively, and analyzed by mNGS for pathogen detection, alongside human tumor chromosomal copy number variation (CNV) analysis (≥5Mbp or 10Mbp CNV region). Further, an evaluation set, comprising 87 plasma samples, was analyzed by mNGS and human CNV analysis, to validate the feasibility of the method. RESULTS Among 94 patients with hematological malignancy, sensitivity values of CNV detection for tumor diagnosis were 69.15 % and 32.98 % for CNV region 5Mbp and 10Mbp, respectively, with corresponding specificities of 92.62 % and 100 % in the infection group. Area under the ROC curve (AUC) values for 5Mbp and 10Mbp region were 0.825 and 0.665, respectively, which was a significant difference of 0.160 (95 % CI: 0.110-0.210; p < 0.001), highlighting the superiority of 5Mbp output region data. Six patients with high-risk CNV results were identified in the validation study: three with history of tumor treatment, two eventually newly-diagnosed with hematological malignancies, and one with indeterminate final diagnosis. CONCLUSIONS Concurrent CNV analysis alongside mNGS for infection diagnosis is promising for detecting malignant tumors. We recommend adopting a CNV region of 10Mbp over 5Mbp for our model, because of the lower false-positive rate (FPR).
Collapse
Affiliation(s)
- Pingping Song
- Department of Clinical Laboratory, Liaocheng People's Hospital, Liaocheng, China
| | - Yaxian Tian
- Department of Central Laboratory, Liaocheng People's Hospital, Liaocheng, China
| | - Shuai Chen
- Department of Clinical Laboratory, Liaocheng Third People's Hospital, Liaocheng, China
| | - Sheng Zhang
- Department of Pathology, Liaocheng Third People's Hospital, Liaocheng, China
| | - Xuan Li
- The Key Laboratory of Molecular Pharmacology, Liaocheng People's Hospital, Liaocheng, China
| | - Zhiqing You
- Department of Clinical Laboratory, Liaocheng People's Hospital, Liaocheng, China
| | - Juanjuan Fu
- Department of Clinical Laboratory, Liaocheng People's Hospital, Liaocheng, China
| | - Wenbin Xu
- Department of Clinical Laboratory, Liaocheng People's Hospital, Liaocheng, China
| | - Zhen Li
- Department of Clinical Laboratory, Liaocheng People's Hospital, Liaocheng, China
| | - Jing Luan
- Department of Hematology, Liaocheng People's Hospital, Liaocheng, China
| | - Qigang Zhao
- Department of Clinical Laboratory, Liaocheng People's Hospital, Liaocheng, China
| | - Chengtan Wang
- Department of Clinical Laboratory, Liaocheng People's Hospital, Liaocheng, China.
| | - Feng Pang
- Department of Clinical Laboratory, Liaocheng People's Hospital, Liaocheng, China.
| |
Collapse
|
45
|
Yun Y, Lee SY. Updates on Genetic Hearing Loss: From Diagnosis to Targeted Therapies. J Audiol Otol 2024; 28:88-92. [PMID: 38695053 PMCID: PMC11065549 DOI: 10.7874/jao.2024.00157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/21/2024] [Accepted: 04/04/2024] [Indexed: 05/05/2024] Open
Abstract
Sensorineural hearing loss (SNHL) is the most common sensory disorder, with a high Mendelian genetic contribution. Considering the genotypic and phenotypic heterogeneity of SNHL, the advent of next-generation sequencing technologies has revolutionized knowledge on its genomic architecture. Nonetheless, the conventional application of panel and exome sequencing in real-world practice is being challenged by the emerging need to explore the diagnostic capability of whole-genome sequencing, which enables the detection of both noncoding and structural variations. Small molecules and gene therapies represent good examples of how breakthroughs in genetic understanding can be translated into targeted therapies for SNHL. For example, targeted small molecules have been used to ameliorate autoinflammatory hearing loss caused by gain-of-function variants of NLRP3 and inner ear proteinopathy with OSBPL2 variants underlying dysfunctional autophagy. Strikingly, the successful outcomes of the first-in-human trial of OTOF gene therapy highlighted its potential in the treatment of various forms of genetic hearing loss. clustered regularly interspaced short palindromic repeats (CRISPR)-based technologies are currently being developed for site-specific genome editing to treat human genetic disorders. These advancements have led to an era of genotype- and mechanism-based precision medicine in SNHL practice.
Collapse
Affiliation(s)
- Yejin Yun
- Department of Otorhinolaryngology, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Korea
| | - Sang-Yeon Lee
- Department of Otorhinolaryngology, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Korea
- Department of Genomic Medicine, Seoul National University Hospital, Seoul, Korea
- Sensory Organ Research Institute, Seoul National University Medical Research Center, Seoul, Korea
| |
Collapse
|
46
|
Seither K, Thompson W, Suhrie K. A Practical Guide to Whole Genome Sequencing in the NICU. Neoreviews 2024; 25:e139-e150. [PMID: 38425198 DOI: 10.1542/neo.25-3-e139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
The neonatal period is a peak time for the presentation of genetic disorders that can be diagnosed using whole genome sequencing (WGS). While any one genetic disorder is individually rare, they collectively contribute to significant morbidity, mortality, and health-care costs. As the cost of WGS continues to decline and becomes increasingly available, the ordering of rapid WGS for NICU patients with signs or symptoms of an underlying genetic condition is now feasible. However, many neonatal clinicians are not comfortable with the testing, and unfortunately, there is a dearth of geneticists to facilitate testing for every patient that needs it. Here, we will review the science behind WGS, diagnostic capabilities, limitations of testing, time to consider testing, test initiation, interpretation of results, developing a plan of care that incorporates genomic information, and returning WGS results to families.
Collapse
Affiliation(s)
- Katelyn Seither
- Division of Neonatal and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, and the Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Whitney Thompson
- Division of Neonatal Medicine, and the Department of Clinical Genomics, Mayo Clinic, Rochester, MN
| | - Kristen Suhrie
- Division of Neonatology, Department of Pediatrics, and Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN
| |
Collapse
|
47
|
Snyder HE, Jain P, RamachandranNair R, Jones KC, Whitney R. Genetic Advancements in Infantile Epileptic Spasms Syndrome and Opportunities for Precision Medicine. Genes (Basel) 2024; 15:266. [PMID: 38540325 PMCID: PMC10970414 DOI: 10.3390/genes15030266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/13/2024] [Accepted: 02/20/2024] [Indexed: 06/15/2024] Open
Abstract
Infantile epileptic spasms syndrome (IESS) is a devastating developmental epileptic encephalopathy (DEE) consisting of epileptic spasms, as well as one or both of developmental regression or stagnation and hypsarrhythmia on EEG. A myriad of aetiologies are associated with the development of IESS; broadly, 60% of cases are thought to be structural, metabolic or infectious in nature, with the remainder genetic or of unknown cause. Epilepsy genetics is a growing field, and over 28 copy number variants and 70 single gene pathogenic variants related to IESS have been discovered to date. While not exhaustive, some of the most commonly reported genetic aetiologies include trisomy 21 and pathogenic variants in genes such as TSC1, TSC2, CDKL5, ARX, KCNQ2, STXBP1 and SCN2A. Understanding the genetic mechanisms of IESS may provide the opportunity to better discern IESS pathophysiology and improve treatments for this condition. This narrative review presents an overview of our current understanding of IESS genetics, with an emphasis on animal models of IESS pathogenesis, the spectrum of genetic aetiologies of IESS (i.e., chromosomal disorders, single-gene disorders, trinucleotide repeat disorders and mitochondrial disorders), as well as available genetic testing methods and their respective diagnostic yields. Future opportunities as they relate to precision medicine and epilepsy genetics in the treatment of IESS are also explored.
Collapse
Affiliation(s)
- Hannah E. Snyder
- Division of Neurology, Department of Paediatrics, McMaster University, Hamilton, ON L8N 3Z5, Canada (R.R.)
| | - Puneet Jain
- Division of Neurology, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON M5G 1E8, Canada
| | - Rajesh RamachandranNair
- Division of Neurology, Department of Paediatrics, McMaster University, Hamilton, ON L8N 3Z5, Canada (R.R.)
| | - Kevin C. Jones
- Division of Neurology, Department of Paediatrics, McMaster University, Hamilton, ON L8N 3Z5, Canada (R.R.)
| | - Robyn Whitney
- Division of Neurology, Department of Paediatrics, McMaster University, Hamilton, ON L8N 3Z5, Canada (R.R.)
| |
Collapse
|
48
|
Yeow D, Rudaks LI, Siow SF, Davis RL, Kumar KR. Genetic Testing of Movements Disorders: A Review of Clinical Utility. Tremor Other Hyperkinet Mov (N Y) 2024; 14:2. [PMID: 38222898 PMCID: PMC10785957 DOI: 10.5334/tohm.835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 12/04/2023] [Indexed: 01/16/2024] Open
Abstract
Currently, pathogenic variants in more than 500 different genes are known to cause various movement disorders. The increasing accessibility and reducing cost of genetic testing has resulted in increasing clinical use of genetic testing for the diagnosis of movement disorders. However, the optimal use case(s) for genetic testing at a patient level remain ill-defined. Here, we review the utility of genetic testing in patients with movement disorders and also highlight current challenges and limitations that need to be considered when making decisions about genetic testing in clinical practice. Highlights The utility of genetic testing extends across multiple clinical and non-clinical domains. Here we review different aspects of the utility of genetic testing for movement disorders and the numerous associated challenges and limitations. These factors should be weighed on a case-by-case basis when requesting genetic tests in clinical practice.
Collapse
Affiliation(s)
- Dennis Yeow
- Translational Neurogenomics Group, Neurology Department & Molecular Medicine Laboratory, Concord Repatriation General Hospital, Concord, NSW, Australia
- Concord Clinical School, Sydney Medical School, Faculty of Health & Medicine, University of Sydney, Concord, NSW, Australia
- Rare Disease Program, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- Department of Neurology, Prince of Wales Hospital, Randwick, NSW, Australia
- Neuroscience Research Australia, Randwick, NSW, Australia
| | - Laura I. Rudaks
- Translational Neurogenomics Group, Neurology Department & Molecular Medicine Laboratory, Concord Repatriation General Hospital, Concord, NSW, Australia
- Concord Clinical School, Sydney Medical School, Faculty of Health & Medicine, University of Sydney, Concord, NSW, Australia
- Rare Disease Program, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Sue-Faye Siow
- Department of Clinical Genetics, Royal North Shore Hospital, St Leonards, NSW, Australia
| | - Ryan L. Davis
- Rare Disease Program, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- Neurogenetics Research Group, Kolling Institute, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney and Northern Sydney Local Health District, St Leonards, NSW, Australia
| | - Kishore R. Kumar
- Translational Neurogenomics Group, Neurology Department & Molecular Medicine Laboratory, Concord Repatriation General Hospital, Concord, NSW, Australia
- Concord Clinical School, Sydney Medical School, Faculty of Health & Medicine, University of Sydney, Concord, NSW, Australia
- Rare Disease Program, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- School of Clinical Medicine, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
49
|
Nurchis MC, Radio FC, Salmasi L, Heidar Alizadeh A, Raspolini GM, Altamura G, Tartaglia M, Dallapiccola B, Pizzo E, Gianino MM, Damiani G. Cost-Effectiveness of Whole-Genome vs Whole-Exome Sequencing Among Children With Suspected Genetic Disorders. JAMA Netw Open 2024; 7:e2353514. [PMID: 38277144 PMCID: PMC10818217 DOI: 10.1001/jamanetworkopen.2023.53514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 12/05/2023] [Indexed: 01/27/2024] Open
Abstract
Importance The diagnosis of rare diseases and other genetic conditions can be daunting due to vague or poorly defined clinical features that are not recognized even by experienced clinicians. Next-generation sequencing technologies, such as whole-genome sequencing (WGS) and whole-exome sequencing (WES), have greatly enhanced the diagnosis of genetic diseases by expanding the ability to sequence a large part of the genome, rendering a cost-effectiveness comparison between them necessary. Objective To assess the cost-effectiveness of WGS compared with WES and conventional testing in children with suspected genetic disorders. Design, Setting, and Participants In this economic evaluation, a bayesian Markov model was implemented from January 1 to June 30, 2023. The model was developed using data from a cohort of 870 pediatric patients with suspected genetic disorders who were enrolled and underwent testing in the Ospedale Pediatrico Bambino Gesù, Rome, Italy, from January 1, 2015, to December 31, 2022. The robustness of the model was assessed through probabilistic sensitivity analysis and value of information analysis. Main Outcomes and Measures Overall costs, number of definitive diagnoses, and incremental cost-effectiveness ratios per diagnosis were measured. The cost-effectiveness analyses involved 4 comparisons: first-tier WGS with standard of care; first-tier WGS with first-tier WES; first-tier WGS with second-tier WES; and first-tier WGS with second-tier WGS. Results The ages of the 870 participants ranged from 0 to 18 years (539 [62%] girls). The results of the analysis suggested that adopting WGS as a first-tier strategy would be cost-effective compared with all other explored options. For all threshold levels above €29 800 (US $32 408) per diagnosis that were tested up to €50 000 (US $54 375) per diagnosis, first-line WGS vs second-line WES strategy (ie, 54.6%) had the highest probability of being cost-effective, followed by first-line vs second-line WGS (ie, 54.3%), first-line WGS vs the standard of care alternative (ie, 53.2%), and first-line WGS vs first-line WES (ie, 51.1%). Based on sensitivity analyses, these estimates remained robust to assumptions and parameter uncertainty. Conclusions and Relevance The findings of this economic evaluation encourage the development of policy changes at various levels (ie, macro, meso, and micro) of international health systems to ensure an efficient adoption of WGS in clinical practice and its equitable access.
Collapse
Affiliation(s)
- Mario Cesare Nurchis
- School of Economics, Università Cattolica del Sacro Cuore, Rome, Italy
- Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | | | - Luca Salmasi
- Department of Economics and Finance, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Aurora Heidar Alizadeh
- Department of Health Sciences and Public Health, Section of Hygiene, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Gian Marco Raspolini
- Department of Health Sciences and Public Health, Section of Hygiene, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Gerardo Altamura
- Department of Health Sciences and Public Health, Section of Hygiene, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Marco Tartaglia
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù IRCCS, Rome, Italy
| | - Bruno Dallapiccola
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù IRCCS, Rome, Italy
| | - Elena Pizzo
- Department of Applied Health Research, University College London, London, United Kingdom
| | - Maria Michela Gianino
- Department of Public Health Sciences and Paediatrics, Università di Torino, Turin, Italy
| | - Gianfranco Damiani
- Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
- Department of Health Sciences and Public Health, Section of Hygiene, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
50
|
Prince S, Bonkowski E, McGraw C, SanInocencio C, Mefford HC, Carvill G, Broadbent B. A roadmap to cure CHD2-related disorders. THERAPEUTIC ADVANCES IN RARE DISEASE 2024; 5:26330040241283749. [PMID: 39391213 PMCID: PMC11465304 DOI: 10.1177/26330040241283749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 08/27/2024] [Indexed: 10/12/2024]
Abstract
Coalition to Cure CHD2 (CCC) is a patient advocacy group dedicated to improving the lives of those affected by CHD2-related disorders (CHD2-RD) by increasing education, building community, and accelerating research to uncover a cure. CHD2 is a chromatin remodeler that was identified in 2013 as being a genetic cause for developmental and epileptic encephalopathies. Pathogenic changes in CHD2 can cause treatment-resistant epilepsy, intellectual and developmental delays, and autism, and some individuals experience neurodevelopmental regression. There are currently no targeted therapies available for CHD2-related disorders. Haploinsufficiency of CHD2 is a causative mechanism of disease for individuals with pathogenic variants (primarily truncating) in CHD2. Recently, identification of individuals with deletion of nearby gene CHASERR, a regulator of CHD2 gene expression, has established dosage sensitivity in CHD2 and solidified the CHASERR gene as a potential therapeutic target for CHD2 levels. Through collaboration with our community and our scientific advisory board, CCC has created a Roadmap to Cure CHD2 as our guide toward a targeted cure that can benefit our community, with steps including (1) identifying and defining patients, (2) developing models of CHD2, (3) studying models of CHD2, (4) testing therapies, (5) involving patients, and (6) reaching a cure. Despite some of the challenges inherent in CHD2 research including establishing animal and cellular models that recapitulate the CHD2 clinical phenotype, identifying measurable outcomes and reliable biomarkers, or testing emerging therapeutic approaches, CCC continues to engage with our community to support ongoing research that aligns with our priorities. CCC sees new and exciting opportunities for additional research that can move our community toward our common goal of a cure that will improve the lives of individuals and their families now and in the future.
Collapse
Affiliation(s)
- Stephanie Prince
- Coalition To Cure CHD2, Dallas, TX, USA
- Department of Oncology, University Hospitals, Dorset, UK
| | - Emily Bonkowski
- Center for Pediatric Neurological Disease Research, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Christopher McGraw
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Scientific Advisory Board, Coalition To Cure CHD2, Dallas, TX, USA
| | - Christina SanInocencio
- Coalition To Cure CHD2, Dallas, TX, USA
- Department of Communication, Fairfield University, Fairfield, CT, USA
| | - Heather C Mefford
- Center for Pediatric Neurological Disease Research, St. Jude Children’s Research Hospital, Memphis, TN, USA
- Scientific Advisory Board, Coalition To Cure CHD2, Dallas, TX, USA
| | - Gemma Carvill
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Scientific Advisory Board, Coalition To Cure CHD2, Dallas, TX, USA
| | | |
Collapse
|