1
|
Wang T, Zhou X, Chen M, Li Y, Li M, Wang R, Guo R, Gong S, Liu K. Downregulation of Dmxl2 disrupts the hearing development in mice. Neuroscience 2025; 573:322-332. [PMID: 40118164 DOI: 10.1016/j.neuroscience.2025.03.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 03/10/2025] [Accepted: 03/16/2025] [Indexed: 03/23/2025]
Abstract
Congenital hearing loss is a major type of sensorineural deafness. Recently, Dmxl2 has been identified as a new gene associated with familial deafness. However, its role in auditory development remains unclear. This study investigated the expression and localization of DmX-like protein 2 (DMXL2), encoded by Dmxl2, in the mouse cochlea at various postnatal stages. DMXL2 was predominantly expressed in inner and outer hair cells, with the highest levels at postnatal day 7, followed by a rapid decline, nearly disappearing by day 14. To elucidate Dmxl2's function, we administered short hairpin RNA (shRNA) targeting Dmxl2 to the cochlea within 24 h post-birth, effectively knocking down its expression in the mouse inner ear. This resulted in profound hearing loss in treated mice, accompanied by disruption of development of cochlear ribbon synapses and spiral ganglion cells (SGCs). In conclusion, our study demonstrates the critical role of Dmxl2 in hearing development, suggesting it as a potential molecular target for future gene therapy in hearing loss treatment.
Collapse
Affiliation(s)
- Tianying Wang
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China; Clinical Center for Hearing Loss, Capital Medical University, Beijing 100050, China.
| | - Xuan Zhou
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China; Clinical Center for Hearing Loss, Capital Medical University, Beijing 100050, China.
| | - Minglin Chen
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China; Clinical Center for Hearing Loss, Capital Medical University, Beijing 100050, China.
| | - Yang Li
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China; Clinical Center for Hearing Loss, Capital Medical University, Beijing 100050, China.
| | - Menghua Li
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China; Clinical Center for Hearing Loss, Capital Medical University, Beijing 100050, China.
| | - Rong Wang
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China; Clinical Center for Hearing Loss, Capital Medical University, Beijing 100050, China.
| | - Rui Guo
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China; Clinical Center for Hearing Loss, Capital Medical University, Beijing 100050, China.
| | - Shusheng Gong
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China; Clinical Center for Hearing Loss, Capital Medical University, Beijing 100050, China.
| | - Ke Liu
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China; Clinical Center for Hearing Loss, Capital Medical University, Beijing 100050, China.
| |
Collapse
|
2
|
Mishra A, Priyadarshini P, Tripathi S, Kumar M. Neonate with developmental and epileptic encephalopathy 81 (DEE81): lessons learnt and future implications. BMJ Case Rep 2025; 18:e260508. [PMID: 40180340 DOI: 10.1136/bcr-2024-260508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025] Open
Abstract
Developmental and epileptic encephalopathy 81 (DEE81) presents a complex challenge in diagnosis and management due to its rarity and diverse clinical manifestations. Here, we report the case of a neonate born from a consanguineous marriage, presenting with refractory focal seizures shortly after birth. Despite initial treatment with multiple antiepileptics, seizures persisted, prompting a thorough diagnostic evaluation. Through advanced genomic testing, a homozygous nonsense variant in the DMXL2 gene was identified, leading to the diagnosis of DEE81. This case underscores the importance of considering genetic aetiologies in neonates with early-onset seizures and highlights the value of targeted genetic analysis in guiding personalised management strategies. Our findings contribute to the understanding of DEE81 and emphasise the need for collaborative efforts to improve diagnostic accuracy and therapeutic interventions for affected individuals.
Collapse
Affiliation(s)
- Anshika Mishra
- Pediatrics, King George's Medical University, Lucknow, Uttar Pradesh, India
| | | | - Shalini Tripathi
- Pediatrics, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Mala Kumar
- Pediatrics, King George's Medical University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
3
|
Cali E, Quirin T, Rocca C, Efthymiou S, Riva A, Marafi D, Zaki MS, Suri M, Dominguez R, Elbendary HM, Alavi S, Abdel-Hamid MS, Morsy H, Mau-Them FT, Nizon M, Tesner P, Ryba L, Zafar F, Rana N, Saadi NW, Firoozfar Z, Gencpinar P, Unay B, Ustun C, Bruel AL, Coubes C, Stefanich J, Sezer O, Agolini E, Novelli A, Vasco G, Lettori D, Milh M, Villard L, Zeidler S, Opperman H, Strehlow V, Issa MY, El Khassab H, Chand P, Ibrahim S, Rashidi-Nezhad A, Miryounesi M, Larki P, Morrison J, Cristian I, Thiffault I, Bertsch NL, Noh GJ, Pappas J, Moran E, Marinakis NM, Traeger-Synodinos J, Hosseini S, Abbaszadegan MR, Caumes R, Vissers LELM, Neshatdoust M, Montazer Zohour M, El Fahime E, Canavati C, Kamal L, Kanaan M, Askander O, Voinova V, Levchenko O, Haider S, Halbach SS, Elias Maia R, Mansoor S, Jain V, Tawde S, Challa VSR, Gowda VK, Srinivasan VM, Victor LA, Pinero-Banos B, Hague J, ElAwady HA, Maria de Miranda Henriques-Souza A, Cheema HA, Anjum MN, Idkaidak S, Alqarajeh F, Atawneh O, Mor-Shaked H, Harel T, Zifarelli G, Bauer P, Kok F, Kitajima JP, Monteiro F, Josahkian J, Lesca G, Chatron N, Ville D, Murphy D, Neul JL, Mullegama SV, Begtrup A, et alCali E, Quirin T, Rocca C, Efthymiou S, Riva A, Marafi D, Zaki MS, Suri M, Dominguez R, Elbendary HM, Alavi S, Abdel-Hamid MS, Morsy H, Mau-Them FT, Nizon M, Tesner P, Ryba L, Zafar F, Rana N, Saadi NW, Firoozfar Z, Gencpinar P, Unay B, Ustun C, Bruel AL, Coubes C, Stefanich J, Sezer O, Agolini E, Novelli A, Vasco G, Lettori D, Milh M, Villard L, Zeidler S, Opperman H, Strehlow V, Issa MY, El Khassab H, Chand P, Ibrahim S, Rashidi-Nezhad A, Miryounesi M, Larki P, Morrison J, Cristian I, Thiffault I, Bertsch NL, Noh GJ, Pappas J, Moran E, Marinakis NM, Traeger-Synodinos J, Hosseini S, Abbaszadegan MR, Caumes R, Vissers LELM, Neshatdoust M, Montazer Zohour M, El Fahime E, Canavati C, Kamal L, Kanaan M, Askander O, Voinova V, Levchenko O, Haider S, Halbach SS, Elias Maia R, Mansoor S, Jain V, Tawde S, Challa VSR, Gowda VK, Srinivasan VM, Victor LA, Pinero-Banos B, Hague J, ElAwady HA, Maria de Miranda Henriques-Souza A, Cheema HA, Anjum MN, Idkaidak S, Alqarajeh F, Atawneh O, Mor-Shaked H, Harel T, Zifarelli G, Bauer P, Kok F, Kitajima JP, Monteiro F, Josahkian J, Lesca G, Chatron N, Ville D, Murphy D, Neul JL, Mullegama SV, Begtrup A, Herman I, Mitani T, Posey JE, Tay CG, Javed I, Carr L, Kanani F, Beecroft F, Hane L, Abdelkreem E, Macek M, Bispo L, Elmaksoud MA, Hashemi-Gorji F, Pehlivan D, Amor DJ, Jamra RA, Chung WK, Ghayoor Karimiani E, Campeau PM, Alkuraya FS, Pagnamenta AT, Gleeson JG, Lupski JR, Striano P, Moreno-De-Luca A, Lafontaine DLJ, Houlden H, Maroofian R. Clinical and genetic delineation of autosomal recessive and dominant ACTL6B-related developmental brain disorders. Genet Med 2025; 27:101251. [PMID: 39275948 PMCID: PMC12042808 DOI: 10.1016/j.gim.2024.101251] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 09/16/2024] Open
Abstract
PURPOSE This study aims to comprehensively delineate the phenotypic spectrum of ACTL6B-related disorders, previously associated with both autosomal recessive and autosomal dominant neurodevelopmental disorders. Molecularly, the role of the nucleolar protein ACTL6B in contributing to the disease has remained unclear. METHODS We identified 105 affected individuals, including 39 previously reported cases, and systematically analyzed detailed clinical and genetic data for all individuals. Additionally, we conducted knockdown experiments in neuronal cells to investigate the role of ACTL6B in ribosome biogenesis. RESULTS Biallelic variants in ACTL6B are associated with severe-to-profound global developmental delay/intellectual disability, infantile intractable seizures, absent speech, autistic features, dystonia, and increased lethality. De novo monoallelic variants result in moderate-to-severe global developmental delay/intellectual disability, absent speech, and autistic features, whereas seizures and dystonia were less frequently observed. Dysmorphic facial features and brain abnormalities, including hypoplastic corpus callosum, and parenchymal volume loss/atrophy, are common findings in both groups. We reveal that in the nucleolus, ACTL6B plays a crucial role in ribosome biogenesis, particularly in pre-rRNA processing. CONCLUSION This study provides a comprehensive characterization of the clinical spectrum of both autosomal recessive and dominant forms of ACTL6B-associated disorders. It offers a comparative analysis of their respective phenotypes provides a plausible molecular explanation and suggests their inclusion within the expanding category of "ribosomopathies."
Collapse
Affiliation(s)
- Elisa Cali
- Department of Neuromuscular Diseases, University College London, Queen Square, Institute of Neurology, London, United Kingdom
| | - Tania Quirin
- RNA Molecular Biology, Fonds de la Recherche Scientifique (F.R.S./FNRS), Université libre de Bruxelles (ULB), Biopark campus, Gosselies, Belgium
| | - Clarissa Rocca
- Department of Neuromuscular Diseases, University College London, Queen Square, Institute of Neurology, London, United Kingdom
| | - Stephanie Efthymiou
- Department of Neuromuscular Diseases, University College London, Queen Square, Institute of Neurology, London, United Kingdom
| | - Antonella Riva
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| | - Dana Marafi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX; Department of Pediatrics, Faculty of Medicine, Kuwait University, Safat, Kuwait
| | - Maha S Zaki
- Clinical Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
| | - Mohnish Suri
- UK National Paediatric Ataxia Telangiectasia Clinic, Nottingham University Hospitals NHS Trust, Nottingham, United Kingdom; Nottingham Clinical Genetics Service, Nottingham University Hospitals NHS Trust, Nottingham, United Kingdom
| | - Roberto Dominguez
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Hasnaa M Elbendary
- Clinical Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
| | - Shahryar Alavi
- Department of Neuromuscular Diseases, University College London, Queen Square, Institute of Neurology, London, United Kingdom; Palindrome, Isfahan, Iran
| | - Mohamed S Abdel-Hamid
- Medical Molecular Genetics Department, Human Genetics and Genome Research Institute, National Research Centre Cairo, Egypt
| | - Heba Morsy
- Department of Neuromuscular Diseases, University College London, Queen Square, Institute of Neurology, London, United Kingdom; Human Genetics Department, Medical Research Institute, Alexandria University, Egypt
| | - Frederic Tran Mau-Them
- Unité Fonctionnelle 6254 d'Innovation en Diagnostique Génomique des Maladies Rares, Pôle de Biologie, CHU Dijon Bourgogne, Dijon, France; INSERM UMR1231 GAD, Dijon, France
| | - Mathilde Nizon
- Service de génétique médicale, CHU de Nantes, Nantes, France; Institut du thorax, INSERM, CNRS, UNIV Nantes, Nantes, France
| | - Pavel Tesner
- Department of Biology and Medical Genetics, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Lukáš Ryba
- Department of Biology and Medical Genetics, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Faisal Zafar
- Department of Paediatric Neurology, Children's Hospital and Institute of Child Health, Multan, Pakistan
| | - Nuzhat Rana
- Department of Paediatric Neurology, Children's Hospital and Institute of Child Health, Multan, Pakistan
| | - Nebal W Saadi
- College of Medicine/University of Baghdad, Unit of Pediatric Neurology, Children Welfare Teaching Hospital, Baghdad, Iraq
| | | | - Pinar Gencpinar
- İzmir Katip Çelebi University Tepecik Training and Research Department of Pediatric Neurology, Izmir, Turkey
| | - Bulent Unay
- University of Health Sciences, Gülhane Faculty of Medicine, Department of Child Neurology, Ankara, Turkey
| | - Canan Ustun
- University of Health Sciences, Gülhane Faculty of Medicine, Department of Child Neurology, Ankara, Turkey
| | - Ange-Line Bruel
- Unité Fontctionnelle d'Innovation diagnostiques des maladies rares, FHU TRANSLAD, CHU Dijon Bourgogne, Dijon, France; INSERM-Université de Bourgogne UMR1231 GAD "Génétique des Anomalies du Développement" Dijon, France
| | - Christine Coubes
- Département de Génétique Médicale, Maladies rares et Médecine Personnalisée, et Centre de Référence Anomalies du Développement et Syndromes Malformatifs, CHRU de Montpellier, Montpellier, France
| | | | - Ozlem Sezer
- Department of Medical Genetics, Samsun University, Faculty of Medicine, Samsun, Turkey
| | - Emanuele Agolini
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children Hospital, IRCCS, Rome, Italy
| | - Antonio Novelli
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children Hospital, IRCCS, Rome, Italy
| | - Gessica Vasco
- Department of Neurosciences, Unit of Neurorehabilitation, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Donatella Lettori
- Department of Neurosciences, Unit of Neurorehabilitation, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Mathieu Milh
- Aix-Marseille Univ, APHM, department of Pediatrics Neurology. Timone children Hospital. Marseille, France
| | - Laurent Villard
- Aix Marseille Univ, Inserm, MMG, Marseille, France Service de Génétique Médicale, AP-HM, Hôpital de La Timone, Marseille, France
| | - Shimriet Zeidler
- Department of Clinical Genetics, Erasmus MC, Rotterdam, The Netherlands
| | - Henry Opperman
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Vincent Strehlow
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Mahmoud Y Issa
- Clinical Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
| | | | - Prem Chand
- Department of Paediatric and Child Health, Aga Khan University Hospital, Karachi, Pakistan
| | - Shahnaz Ibrahim
- Department of Paediatric and Child Health, Aga Khan University Hospital, Karachi, Pakistan
| | - Ali Rashidi-Nezhad
- Maternal, Fetal and Neonatal Research Center, Family Health Research Institute, Tehran University of Medical Sciences, Tehran, Iran; Genetics Ward, Yas Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Miryounesi
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Pegah Larki
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jennifer Morrison
- Division of Genetics, Arnold Palmer Hospital for Children, Orlando Health, Orlando, FL
| | - Ingrid Cristian
- Division of Genetics, Arnold Palmer Hospital for Children, Orlando Health, Orlando, FL
| | - Isabelle Thiffault
- Genomic Medicine Center, Children's Mercy Hospital, Kansas City, MO; Kansas City School of Medicine, University of Missouri, Kansas City, MO; Department of Pathology and Laboratory Medicine, Children's Mercy Hospital, Kansas City, MO
| | | | - Grace J Noh
- Department of Genetics, Southern California Permanente Medical Group, Fontana, CA
| | - John Pappas
- Clinical Genetic Services, Department of Pediatrics, NYU Grossman School of Medicine, New York, NY; Clinical Genetics, NYU Orthopedic Hospital, New York, NY
| | - Ellen Moran
- Clinical Genetics, Center for Children, Hassenfeld Children's Hospital, New York University, New York, NY
| | - Nikolaos M Marinakis
- Laboratory of Medical Genetics, Medical School, National and Kapodistrian University of Athens, St. Sophia's Children's Hospital, Athens, Greece
| | - Joanne Traeger-Synodinos
- Laboratory of Medical Genetics, Medical School, National and Kapodistrian University of Athens, St. Sophia's Children's Hospital, Athens, Greece
| | - Susan Hosseini
- Pardis Pathobiology and Genetics Laboratory, Mashhad, Iran
| | - Mohammad Reza Abbaszadegan
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Lisenka E L M Vissers
- Department of Human Genetics, Radboudumc University Medical Center, Nijmegen, The Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Maedeh Neshatdoust
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Mostafa Montazer Zohour
- Genetics of Non-Communicable Disease Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Elmostafa El Fahime
- Centre Mohamed VI for Research and Innovation (CM6RI) and University Mohamed VI for Health Science (UM6SS), Benguerir, Morocco
| | - Christina Canavati
- Molecular Genetics Laboratory, Istishari Arab Hospital, Ramallah, Palestine
| | - Lara Kamal
- Molecular Genetics Laboratory, Istishari Arab Hospital, Ramallah, Palestine
| | - Moien Kanaan
- Molecular Genetics Laboratory, Istishari Arab Hospital, Ramallah, Palestine
| | - Omar Askander
- Faculty of Medical Sciences, Mohammed 6 Polytechnic University of Benguerir, Ben Guerir, Morocco
| | - Victoria Voinova
- Veltischev Research and Clinical Institute for Pediatrics of the Pirogov, Russian National Research Medical University, Ministry of Health of Russian Federation, Moscow, Russia; Mental Health Research Center, Moscow, Russia
| | | | - Shahzhad Haider
- Paediatrics Wah Medical College NUMS, Wah Cantonment, Punjab, Pakistan
| | - Sara S Halbach
- University of Chicago Medicine, University of Chicago, Chicago, IL
| | - Rayana Elias Maia
- Department of Paediatrics and Genetics, Universidade Federal de Paraiba, Joao Pessoa, Paraiba, Brazil
| | - Salehi Mansoor
- Cellular, Molecular and Genetics Research Center, Isfahan University of Medical Sciences, Isfahan, Iran; Medical Genetics Research Center of Genome, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Vivek Jain
- Department of Pediatric Neurology, Neo Clinic Children's Hospital, Jaipur, India
| | - Sanjukta Tawde
- Department of Human Genetics, The University of Chicago, Illinois
| | | | - Vykuntaraju K Gowda
- Department of Pediatric Neurology, Indira Gandhi Institute of Child Health, Bengaluru, India
| | | | - Lucas Alves Victor
- Department of Pediatric Neurology - Instituto de Medicina Integral Prof. Fernando Figueira (IMIP), Boa Vista, Recife, Brazil
| | - Benito Pinero-Banos
- Oxford Genetics Laboratories, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Jennifer Hague
- Clinical Genetics service, Northampton General Hospital, Northampton, United Kingdom
| | | | | | - Huma Arshad Cheema
- Department of Pediatric Gastroenterology Hepatology and Genetic diseases Children's Hospital and University of Child Health Sciences Lahore, Pakistan
| | - Muhammad Nadeem Anjum
- Department of Pediatric Gastroenterology Hepatology and Genetic diseases Children's Hospital and University of Child Health Sciences Lahore, Pakistan
| | | | | | | | - Hagar Mor-Shaked
- Department of Genetics, Hadassah Medical Center, Jerusalem, Israel Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israe
| | - Tamar Harel
- Department of Genetics, Hadassah Medical Center, Jerusalem, Israel Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israe
| | | | | | | | | | | | | | - Gaetan Lesca
- Hospices Civils de Lyon, Service de Génétique, Bron, France; Pathophysiology and Genetics of Neuron and Muscle (PGNM, UCBL - CNRS UMR5261 - INSERM U1315), Université Claude Bernard Lyon 1, Lyon, France
| | - Nicolas Chatron
- Hospices Civils de Lyon, Service de Génétique, Bron, France; Pathophysiology and Genetics of Neuron and Muscle (PGNM, UCBL - CNRS UMR5261 - INSERM U1315), Université Claude Bernard Lyon 1, Lyon, France
| | - Dorothe Ville
- Department of Neuropediatric, University Hospital of Lyon, Lyon, France
| | - David Murphy
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Jeffrey L Neul
- Department of Pediatrics, Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, TN
| | | | | | - Isabella Herman
- Section of Pediatric Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, TX
| | - Tadahiro Mitani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Jennifer E Posey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Chee Geap Tay
- Clinical Research Centre, Sunway Medical Centre, Malaysia
| | - Iram Javed
- Department of Paediatric Neurology, Children Hospital and Institute of Child Health, Faisalabad, Pakistan
| | - Lucinda Carr
- Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Farah Kanani
- West Midlands Clinical Genetics Service, Birmingham Women's Hospital, Birmingham, United Kingdom
| | - Fiona Beecroft
- West Midlands Clinical Genetics Service, Birmingham Women's Hospital, Birmingham, United Kingdom
| | - Lee Hane
- Division of Medical Genetics, 3billion, Inc, Seoul, South Korea
| | - Elsayed Abdelkreem
- Department of Pediatrics, Faculty of Medicine, Sohag University, Sohag, Egypt
| | - Milan Macek
- Department of Biology and Medical Genetics, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Luciana Bispo
- Laboratório Mendelics, Department of Genetic, São Paulo, Brazil
| | - Marwa Abd Elmaksoud
- Neurology Unit, Department of Pediatrics, Faculty of Medicine, Alexandria University, Egypt
| | - Farzad Hashemi-Gorji
- Genomic Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Davut Pehlivan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX; Section of Pediatric Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, TX
| | - David J Amor
- Department of Paediatrics, Murdoch Children's Research Institute and University of Melbourne, Royal Children's Hospital, Melbourne, Australia
| | - Rami Abou Jamra
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Wendy K Chung
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Eshan Ghayoor Karimiani
- Department of Medical Genetics, Next Generation Genetic Polyclinic, Mashhad, Iran; Molecular and Clinical Sciences Institute, St. George's, University of London, Cranmer Terrace, London, United Kingdom; Innovative Medical Research Center, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Philippe M Campeau
- CHU Sainte-Justine Research Center, Montreal, QC, Canada; Department of Pediatrics, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Fowzan S Alkuraya
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Alistair T Pagnamenta
- NIHR Biomedical Research Centre, Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Joseph G Gleeson
- Department of Neurosciences, University of California, San Diego, La Jolla, CA; Rady Children's Institute for Genomic Medicine, San Diego, CA
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX; Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX; Department of Pediatrics, Baylor College of Medicine, Houston, TX
| | - Pasquale Striano
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy; Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Andres Moreno-De-Luca
- Department of Radiology, Neuroradiology Section, Kingston Health Sciences Centre, Queen's University Faculty of Health Sciences, Kingston, Ontario, Canada
| | - Denis L J Lafontaine
- RNA Molecular Biology, Fonds de la Recherche Scientifique (F.R.S./FNRS), Université libre de Bruxelles (ULB), Biopark campus, Gosselies, Belgium
| | - Henry Houlden
- Department of Neuromuscular Diseases, University College London, Queen Square, Institute of Neurology, London, United Kingdom
| | - Reza Maroofian
- Department of Neuromuscular Diseases, University College London, Queen Square, Institute of Neurology, London, United Kingdom.
| |
Collapse
|
4
|
Riffe RM, Downes GB. Neurogenetic disorders associated with mutations in the FERRY complex: a novel disease class? Biol Open 2025; 14:BIO061808. [PMID: 40062705 PMCID: PMC11928052 DOI: 10.1242/bio.061808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2025] Open
Abstract
The five-subunit endosomal Rab5 and RNA/ribose intermediary (FERRY) complex is a newly described protein complex consisting of TBCK, PPP1R21, FERRY3 (previously C12orf4), CRYZL1, and GATD1. The FERRY complex is proposed to function as a Rab5 effector to shuttle mRNA to the cell periphery for local translation, a process especially important in cells with far reaching processes. Interestingly, three members of the FERRY complex are associated with ultra-rare neurogenetic disorders. Mutation of TBCK causes TBCK syndrome, mutation of PPP1R21 is associated with PPP1R21-related intellectual disability, and mutation of FERRY3 results in an autosomal recessive intellectual disability. Neurologic disorders have yet to be associated with mutation of GATD1 or CRYZL1. Here, we provide a review of each FERRY complex-related neurologic disorder and draw clinical comparisons between the disease states. We also discuss data from the current cellular and animal models available to study these disorders, which is notably disparate and scattered across different cell types and systems. Taken together, we explore the possibility that these three diseases may represent one shared disease class, which could be further understood by combining and comparing known information about each individual disease. If true, this could have substantial implications on our understanding of the cellular role of the FERRY complex and on treatment strategies for affected individuals, allowing researchers, clinicians, and patient organizations to maximize the utility of research efforts and resources to support patients with these disorders.
Collapse
Affiliation(s)
- R. Madison Riffe
- Neuroscience and Behavior Graduate Program, University of Massachusetts Amherst, Amherst, MA, 01003, USA
- Biology Department, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Gerald B. Downes
- Neuroscience and Behavior Graduate Program, University of Massachusetts Amherst, Amherst, MA, 01003, USA
- Biology Department, University of Massachusetts Amherst, Amherst, MA, 01003, USA
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| |
Collapse
|
5
|
AlAbdi L, Maddirevula S, Aljamal B, Hamid H, Almulhim A, Hashem MO, Algoos Y, Alqahtani M, Albaloshi S, Alghamdi M, Alduaylij M, Shamseldin HE, Nadeef S, Patel N, Abdulwahab F, Abouyousef O, Alshidi T, Jaafar A, Abouelhoda M, Alhazzani A, Alfares A, Qudair A, Alsulaiman A, Alhashem A, Khan AO, Chedrawi A, Alebdi B, AlAjlan F, Alotaibi F, Alzaidan H, Banjar H, Abdelraouf H, Alkuraya H, Abumansour I, Alfayez K, Tulbah M, Alowain M, Alqahtani M, El-Kalioby M, Shboul M, Sulaiman R, Al Tala S, Khan S, Coskun S, Mrouge S, Alenazi W, Rahbeeni Z, Alkuraya FS. Arab founder variants: Contributions to clinical genomics and precision medicine. MED 2025; 6:100528. [PMID: 39504961 DOI: 10.1016/j.medj.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/16/2024] [Accepted: 10/07/2024] [Indexed: 11/08/2024]
Abstract
BACKGROUND Founder variants are ancestral variants shared by individuals who are not closely related. The large effect size of some of these variants in the context of Mendelian disorders offers numerous precision medicine opportunities. METHODS Using one of the largest datasets on Mendelian disorders in the Middle East, we identified 2,908 medically relevant founder variants derived from 18,360 exomes and genomes and investigated their contribution to the clinical annotation of the human genome. FINDINGS Strikingly, ∼34% of Arab founder variants are absent in gnomAD. We found a strong contribution of Arab founder variants to the identification of novel gene-disease links (n = 224) and the support/dispute (n = 81 support, n = 101 dispute) of previously reported candidate gene-disease links. The powerful segregation evidence generated by Arab founder variants allowed many ClinVar and Human Gene Mutation Database variants to be reclassified. Overall, 39.5% of diagnostic reports from our clinical lab are based on founder variants, and 19.41% of tested individuals carry at least one pathogenic founder variant. The presumptive loss-of-function mechanism that typically underlies autosomal recessive diseases means that Arab founder variants also offer unique opportunities in "druggable genome" research. Arab founder variants were also informative of migration patterns in the Middle East consistent with documented historical accounts. CONCLUSIONS We highlight the contribution of founder variants from an under-represented population group to precision medicine and inform future prevention programs. Our study also sheds light on the added value of these variants in supplementing other lines of research in tracing population history. FUNDING There is no funding for this work.
Collapse
Affiliation(s)
- Lama AlAbdi
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Sateesh Maddirevula
- Department of Clinical Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Bayan Aljamal
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Halima Hamid
- Department of Zoology, College of Science, King Saud University, Riyadh 11362, Saudi Arabia
| | - Aisha Almulhim
- Department of Zoology, College of Science, King Saud University, Riyadh 11362, Saudi Arabia
| | - Mais O Hashem
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Yusra Algoos
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Mashael Alqahtani
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Shahad Albaloshi
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Mohammed Alghamdi
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Mohammed Alduaylij
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Hanan E Shamseldin
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Seba Nadeef
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Nisha Patel
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Firdous Abdulwahab
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Omar Abouyousef
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Tarfa Alshidi
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Amal Jaafar
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Mohamed Abouelhoda
- Department of Computational Science, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Adel Alhazzani
- Neuroscience Center, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Ahmed Alfares
- Department of Clinical Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Ahmad Qudair
- Department of Pediatrics, King Faisal Specialist Hospital and Research Center, Jeddah 23433, Saudi Arabia
| | - Ahood Alsulaiman
- Department of Medical Genomics, Centre for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Amal Alhashem
- Department of Pediatrics, Prince Sultan Military Medical Center, Riyadh 12233, Saudi Arabia; College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; Seha Virtual Hospital, Ministry of Health, Riyadh 12382, Saudi Arabia
| | - Arif O Khan
- Eye Institute, Cleveland Clinic, Abu Dhabi, UAE; Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH 44195, USA
| | - Aziza Chedrawi
- Department of Medical Genomics, Centre for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Basel Alebdi
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Fahad AlAjlan
- Neuroscience Center, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Fawaz Alotaibi
- Neuroscience Center, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Hamad Alzaidan
- Department of Medical Genomics, Centre for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Hanaa Banjar
- Department of Pediatrics, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Hanem Abdelraouf
- Department of Pediatrics, Prince Sultan Military Medical Center, Riyadh 12233, Saudi Arabia
| | - Hisham Alkuraya
- Global Eye Care, Specialized Medical Center Hospital, Riyadh 13215, Saudi Arabia
| | - Iman Abumansour
- Department of Pediatrics, King Faisal Specialist Hospital and Research Center, Jeddah 23433, Saudi Arabia; Department of Medical Genetics, Faculty of Medicine, Umm Al-Qura University, Makkah 24382, Saudi Arabia
| | - Khowlah Alfayez
- Department of Pediatrics, Prince Sultan Military Medical Center, Riyadh 12233, Saudi Arabia
| | - Maha Tulbah
- Department of Obstetrics and Gynecology, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Mohammed Alowain
- Department of Medical Genomics, Centre for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia; College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Mohammed Alqahtani
- Neuroscience Center, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Mohammed El-Kalioby
- Department of Computational Science, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Mohammad Shboul
- Department of Medical Laboratory Sciences, Faculty of Medical Sciences, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Raashda Sulaiman
- Department of Medical Genomics, Centre for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Saed Al Tala
- Department of Pediatrics, Armed Forces Hospital, Khamis Mushayt 62413, Saudi Arabia
| | - Sameena Khan
- Neuroscience Center, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Serdar Coskun
- Department of Pathology and Laboratory Medicine, King Faisal Specialist Hospital and Research Center and College of Medicine, Riyadh 11564, Saudi Arabia
| | - Sobaihi Mrouge
- Department of Pediatrics, King Faisal Specialist Hospital and Research Center, Jeddah 23433, Saudi Arabia
| | - Walaa Alenazi
- Department of Computational Science, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Zuhair Rahbeeni
- Department of Medical Genomics, Centre for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Fowzan S Alkuraya
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia; Department of Pediatrics, Prince Sultan Military Medical Center, Riyadh 12233, Saudi Arabia.
| |
Collapse
|
6
|
Flores-Mendez M, Tintos-Hernández JA, Ramos-Rodriguez L, Miles L, Lo TY, Song Y, Ortiz-González XR. TBCK-deficiency leads to compartment-specific mRNA and lysosomal trafficking defects in patient-derived neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.02.641041. [PMID: 40093117 PMCID: PMC11908138 DOI: 10.1101/2025.03.02.641041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Monogenic pediatric neurodegenerative disorders can reveal fundamental cellular mechanisms that underlie selective neuronal vulnerability. TBCK-Encephaloneuronopathy (TBCKE) is a rare autosomal recessive disorder caused by stop-gain variants in the TBCK gene. Clinically, patients show evidence of profound neurodevelopmental delays, but also symptoms of progressive encephalopathy and motor neuron disease. Yet, the physiological role of TBCK protein remains unclear. We report a human neuronal TBCKE model, derived from iPSCs homozygous for the Boricua variant (p.R126X). Using unbiased proteomic analyses of human neurons, we find TBCK interacts with PPP1R21, C12orf4, and Cryzl1, consistent with TBCK being part of the FERRY mRNA transport complex. Loss of TBCK leads to depletion of C12ORF4 protein levels across multiple cell types, suggesting TBCK may also play a role regulating at least some members of the FERRY complex. We find that TBCK preferentially, but not exclusively, localizes to the surface of endolysosomal vesicles and can colocalize with mRNA in lysosomes. Furthermore, TBCK-deficient neurons have reduced mRNA content in the axonal compartment relative to the soma. TBCK-deficient neurons show reduced levels of the lysosomal dynein/dynactin adapter protein JIP4, which functionally leads to TBCK-deficient neurons exhibiting striking lysosomal axonal retrograde trafficking defects. Hence, our work reveals that TBCK can mediate endolysosomal trafficking of mRNA, particularly along lysosomes in human axonal compartments. TBCK-deficiency leads to compartment-specific mRNA and lysosomal trafficking defects in neurons, which likely contribute to the preferential susceptibility to neurodegeneration.
Collapse
Affiliation(s)
- Marco Flores-Mendez
- Department of Pediatrics, Division of Neurology, The Children's of Philadelphia, Philadelphia, PA
- Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA
| | - Jesus A Tintos-Hernández
- Department of Pediatrics, Division of Neurology, The Children's of Philadelphia, Philadelphia, PA
- Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA
| | - Leonardo Ramos-Rodriguez
- Department of Biomedical Graduate Studies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Leann Miles
- Department of Biomedical Graduate Studies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Tsz Y Lo
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA
| | - Yuanquan Song
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA
| | - Xilma R Ortiz-González
- Department of Pediatrics, Division of Neurology, The Children's of Philadelphia, Philadelphia, PA
- Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
7
|
Medyanik AD, Anisimova PE, Kustova AO, Tarabykin VS, Kondakova EV. Developmental and Epileptic Encephalopathy: Pathogenesis of Intellectual Disability Beyond Channelopathies. Biomolecules 2025; 15:133. [PMID: 39858526 PMCID: PMC11763800 DOI: 10.3390/biom15010133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/11/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
Developmental and epileptic encephalopathies (DEEs) are a group of neuropediatric diseases associated with epileptic seizures, severe delay or regression of psychomotor development, and cognitive and behavioral deficits. What sets DEEs apart is their complex interplay of epilepsy and developmental delay, often driven by genetic factors. These two aspects influence one another but can develop independently, creating diagnostic and therapeutic challenges. Intellectual disability is severe and complicates potential treatment. Pathogenic variants are found in 30-50% of patients with DEE. Many genes mutated in DEEs encode ion channels, causing current conduction disruptions known as channelopathies. Although channelopathies indeed make up a significant proportion of DEE cases, many other mechanisms have been identified: impaired neurogenesis, metabolic disorders, disruption of dendrite and axon growth, maintenance and synapse formation abnormalities -synaptopathies. Here, we review recent publications on non-channelopathies in DEE with an emphasis on the mechanisms linking epileptiform activity with intellectual disability. We focus on three major mechanisms of intellectual disability in DEE and describe several recently identified genes involved in the pathogenesis of DEE.
Collapse
Affiliation(s)
- Alexandra D. Medyanik
- Institute of Neuroscience, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia; (A.D.M.); (P.E.A.); (A.O.K.); (E.V.K.)
| | - Polina E. Anisimova
- Institute of Neuroscience, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia; (A.D.M.); (P.E.A.); (A.O.K.); (E.V.K.)
| | - Angelina O. Kustova
- Institute of Neuroscience, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia; (A.D.M.); (P.E.A.); (A.O.K.); (E.V.K.)
| | - Victor S. Tarabykin
- Institute of Neuroscience, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia; (A.D.M.); (P.E.A.); (A.O.K.); (E.V.K.)
- Institute of Cell Biology and Neurobiology, Charité—Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Elena V. Kondakova
- Institute of Neuroscience, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia; (A.D.M.); (P.E.A.); (A.O.K.); (E.V.K.)
| |
Collapse
|
8
|
Mahalingan KK, Grotjahn DA, Li Y, Lander GC, Zehr EA, Roll-Mecak A. Structural basis for α-tubulin-specific and modification state-dependent glutamylation. Nat Chem Biol 2024; 20:1493-1504. [PMID: 38658656 PMCID: PMC11529724 DOI: 10.1038/s41589-024-01599-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 03/06/2024] [Indexed: 04/26/2024]
Abstract
Microtubules have spatiotemporally complex posttranslational modification patterns. Tubulin tyrosine ligase-like (TTLL) enzymes introduce the most prevalent modifications on α-tubulin and β-tubulin. How TTLLs specialize for specific substrate recognition and ultimately modification-pattern generation is largely unknown. TTLL6, a glutamylase implicated in ciliopathies, preferentially modifies tubulin α-tails in microtubules. Cryo-electron microscopy, kinetic analysis and single-molecule biochemistry reveal an unprecedented quadrivalent recognition that ensures simultaneous readout of microtubule geometry and posttranslational modification status. By binding to a β-tubulin subunit, TTLL6 modifies the α-tail of the longitudinally adjacent tubulin dimer. Spanning two tubulin dimers along and across protofilaments (PFs) ensures fidelity of recognition of both the α-tail and the microtubule. Moreover, TTLL6 reads out and is stimulated by glutamylation of the β-tail of the laterally adjacent tubulin dimer, mediating crosstalk between α-tail and β-tail. This positive feedback loop can generate localized microtubule glutamylation patterns. Our work uncovers general principles that generate tubulin chemical and topographic complexity.
Collapse
Affiliation(s)
- Kishore K Mahalingan
- Cell Biology and Biophysics Unit, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Danielle A Grotjahn
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute La Jolla, La Jolla, CA, USA
| | - Yan Li
- Proteomics Core Facility, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Gabriel C Lander
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute La Jolla, La Jolla, CA, USA
| | - Elena A Zehr
- Cell Biology and Biophysics Unit, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Antonina Roll-Mecak
- Cell Biology and Biophysics Unit, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA.
- Biochemistry & Biophysics Center, National Heart, Lung and Blood Institute, Bethesda, MD, USA.
| |
Collapse
|
9
|
Kamble N, Holla VV, Katragadda PK, Muthusamy B, Pal PK. Dystonia in a Patient with Genetically Proven Salih Ataxia Due to a Novel Truncating Variant: Expanding the Genotypic and Phenotypic Spectrum. Mov Disord Clin Pract 2024; 11:1295-1297. [PMID: 38934208 PMCID: PMC11489611 DOI: 10.1002/mdc3.14152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 05/06/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Affiliation(s)
- Nitish Kamble
- Department of NeurologyNational Institute of Mental Health & Neurosciences (NIMHANS)BengaluruIndia
| | - Vikram V. Holla
- Department of NeurologyNational Institute of Mental Health & Neurosciences (NIMHANS)BengaluruIndia
| | - Pavan Kumar Katragadda
- Department of NeurologyNational Institute of Mental Health & Neurosciences (NIMHANS)BengaluruIndia
| | | | - Pramod Kumar Pal
- Department of NeurologyNational Institute of Mental Health & Neurosciences (NIMHANS)BengaluruIndia
| |
Collapse
|
10
|
Yahia A, Hamed AAA, Mohamed IN, Elseed MA, Salih MA, El-Sadig SM, Siddig HE, Nasreldien AEM, Abdullah MA, Elzubair M, Omer FY, Bakhiet AM, Abubaker R, Abozar F, Adil R, Emad S, Musallam MA, Eltazi IZM, Omer Z, Malik H, Mohamed MOE, Elhassan AA, Mohamed EOE, Ahmed AKMA, Ahmed EAA, Eltaraifee E, Hussein BK, Abd Allah ASI, Salah L, Nimir M, Tag Elseed OM, Elhassan TEA, Elbashier A, Alfadul ESA, Fadul M, Ali KF, Taha SOMA, Bushara EE, Amin M, Koko M, Ibrahim ME, Ahmed AE, Elsayed LEO, Stevanin G. Clinical phenotyping and genetic diagnosis of a large cohort of Sudanese families with hereditary spinocerebellar degenerations. Eur J Hum Genet 2024; 32:1214-1226. [PMID: 37012327 PMCID: PMC11499676 DOI: 10.1038/s41431-023-01344-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 02/12/2023] [Accepted: 03/13/2023] [Indexed: 04/05/2023] Open
Abstract
Hereditary spinocerebellar degenerations (SCDs) is an umbrella term that covers a group of monogenic conditions that share common pathogenic mechanisms and include hereditary spastic paraplegia (HSP), cerebellar ataxia, and spinocerebellar ataxia. They are often complicated with axonal neuropathy and/or intellectual impairment and overlap with many neurological conditions, including neurodevelopmental disorders. More than 200 genes and loci inherited through all modes of Mendelian inheritance are known. Autosomal recessive inheritance predominates in consanguineous communities; however, autosomal dominant and X-linked inheritance can also occur. Sudan is inhabited by genetically diverse populations, yet it has high consanguinity rates. We used next-generation sequencing, genotyping, bioinformatics analysis, and candidate gene approaches to study 90 affected patients from 38 unrelated Sudanese families segregating multiple forms of SCDs. The age-at-onset in our cohort ranged from birth to 35 years; however, most patients manifested childhood-onset diseases (the mean and median ages at onset were 7.5 and 3 years, respectively). We reached the genetic diagnosis in 63% and possibly up to 73% of the studied families when considering variants of unknown significance. Combining the present data with our previous analysis of 25 Sudanese HSP families, the success rate reached 52-59% (31-35/59 families). In this article we report candidate variants in genes previously known to be associated with SCDs or other phenotypically related monogenic disorders. We also highlight the genetic and clinical heterogeneity of SCDs in Sudan, as we did not identify a major causative gene in our cohort, and the potential for discovering novel SCD genes in this population.
Collapse
Affiliation(s)
- Ashraf Yahia
- Faculty of Medicine, University of Khartoum, Khartoum, Sudan.
- Paris Brain Institute - ICM, CNRS UMR7225, INSERM 1127, Sorbonne University, F-75000, Paris, France.
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research, Department of Women's and Children's Health, Karolinska Institutet and Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden.
- Astrid Lindgren Children's Hospital, Karolinska University Hospital, Solna, Sweden.
| | - Ahlam A A Hamed
- Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Inaam N Mohamed
- Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Maha A Elseed
- Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Mustafa A Salih
- Division of Pediatric Neurology, Department of Pediatrics, College of Medicine, King Saud University, Riyadh, Saudi Arabia
- College of Medicine, AlMughtaribeen University, Khartoum, Sudan
| | | | | | - Ali Elsir Musa Nasreldien
- Pediatric Neurology Department, Red Cross Memorial Children Hospital (RCWMCH), University of Cape Town (UCT), Cape Town, South Africa
| | | | - Maha Elzubair
- Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | | | | | - Rayan Abubaker
- Sudanese Neurogenetics Research group, Faculty of Medicine, University of Khartoum, Khartoum, Sudan
- National University Biomedical Research Institute, National University, Khartoum, Sudan
| | - Fatima Abozar
- Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Rawaa Adil
- Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Sara Emad
- Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | | | - Isra Z M Eltazi
- Neurology Department, Hamad Medical Corporation, Doha, Qatar
| | - Zulfa Omer
- Department of Hematology and Medical Oncology, University of Cincinnati Medical Center, Ohio, USA
| | - Hiba Malik
- Department of Neurology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, CB2 0QQ, UK
| | - Mayada O E Mohamed
- Division of Emergency Medicine, Sudan Medical Specialization Board, Khartoum, Sudan
| | - Ali A Elhassan
- Sudan Neuroscience Projects, University of Khartoum, Khartoum, Sudan
| | | | - Ahmed K M A Ahmed
- Department of Molecular Neuroscience, Graduate school of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
- WPI Immunology Frontier Research Center, Osaka University, 3-1, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | | | | | - Bidour K Hussein
- Institute of Endemic Diseases, University of Khartoum, Khartoum, Sudan
| | | | - Lina Salah
- Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Mohamed Nimir
- Department of Pathology, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, UK
- Warwick Medical School, University of Warwick, Coventry, UK
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | | | | | | | | | - Moneeb Fadul
- Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Khalil F Ali
- Department of Cardiology, Royal Derby Hospital, Derby, UK
| | | | | | - Mutaz Amin
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Al-Neelain University, Khartoum, Sudan
| | - Mahmoud Koko
- Institute of Endemic Diseases, University of Khartoum, Khartoum, Sudan
| | | | - Ammar E Ahmed
- Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Liena E O Elsayed
- Department of Basic Sciences, College of Medicine, Princess Nourah bint Abdulrahman University, Riyadh, P.O.Box 84428, Riyadh, 11671, Saudi Arabia
| | - Giovanni Stevanin
- Paris Brain Institute - ICM, CNRS UMR7225, INSERM 1127, Sorbonne University, F-75000, Paris, France.
- Univ. Bordeaux, CNRS, INCIA, UMR 5287, F-33000, Bordeaux, France.
- EPHE, PSL Research university, CNRS, INCIA, UMR 5287, F-75000, Paris, France.
| |
Collapse
|
11
|
Falace A, Volpedo G, Scala M, Zara F, Striano P, Fassio A. V-ATPase Dysfunction in the Brain: Genetic Insights and Therapeutic Opportunities. Cells 2024; 13:1441. [PMID: 39273013 PMCID: PMC11393946 DOI: 10.3390/cells13171441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/23/2024] [Accepted: 08/25/2024] [Indexed: 09/15/2024] Open
Abstract
Vacuolar-type ATPase (v-ATPase) is a multimeric protein complex that regulates H+ transport across membranes and intra-cellular organelle acidification. Catabolic processes, such as endocytic degradation and autophagy, strictly rely on v-ATPase-dependent luminal acidification in lysosomes. The v-ATPase complex is expressed at high levels in the brain and its impairment triggers neuronal dysfunction and neurodegeneration. Due to their post-mitotic nature and highly specialized function and morphology, neurons display a unique vulnerability to lysosomal dyshomeostasis. Alterations in genes encoding subunits composing v-ATPase or v-ATPase-related proteins impair brain development and synaptic function in animal models and underlie genetic diseases in humans, such as encephalopathies, epilepsy, as well as neurodevelopmental, and degenerative disorders. This review presents the genetic and functional evidence linking v-ATPase subunits and accessory proteins to various brain disorders, from early-onset developmental epileptic encephalopathy to neurodegenerative diseases. We highlight the latest emerging therapeutic strategies aimed at mitigating lysosomal defects associated with v-ATPase dysfunction.
Collapse
Affiliation(s)
- Antonio Falace
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy;
| | - Greta Volpedo
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, 16132 Genoa, Italy; (G.V.)
| | - Marcello Scala
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, 16132 Genoa, Italy; (G.V.)
- Medical Genetics Unit, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| | - Federico Zara
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, 16132 Genoa, Italy; (G.V.)
- Medical Genetics Unit, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| | - Pasquale Striano
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy;
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, 16132 Genoa, Italy; (G.V.)
| | - Anna Fassio
- Department of Experimental Medicine, University of Genoa, 16132 Genoa, Italy
- IRCCS, Ospedale Policlinico San Martino, 16132 Genoa, Italy
| |
Collapse
|
12
|
Brachet C, Laemmle A, Cools M, Sauter KS, De Baere E, Vanlander A, Pandey AV, du Toit T, Voegel CD, Heinrichs C, Verdin H, Flück CE. Insight into the role of TXNRD2 in steroidogenesis through a novel homozygous TXNRD2 splice variant. Eur J Endocrinol 2024; 191:144-155. [PMID: 39097530 DOI: 10.1093/ejendo/lvae090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/21/2024] [Accepted: 06/24/2024] [Indexed: 08/05/2024]
Abstract
OBJECTIVE Adrenal cortisol production occurs through a biosynthetic pathway which depend on NADH and NADPH for energy supply. The mitochondrial respiratory chain and the reactive oxygen species (ROS) detoxification system are therefore important for steroidogenesis. Mitochondrial dysfunction leading to oxidative stress has been implicated in the pathogenesis of several adrenal conditions. Nonetheless, only very few patients with variants in one gene of the ROS detoxification system, Thioredoxin Reductase 2 (TXNRD2), have been described with variable phenotypes. DESIGN Clinical, genetic, structural, and functional characterization of a novel, biallelic TXNRD2 splice variant. METHODS On human biomaterial, we performed whole exome sequencing to identify and RNA analysis to characterize the specific TXNRD2 splice variant. Amino acid conservation analysis and protein structure modeling were performed in silico. Using patient's fibroblast-derived human induced pluripotent stem cells, we generated adrenal-like cells (iALC) to study the impact of wild-type (WT) and mutant TXNRD2 on adrenal steroidogenesis and ROS production. RESULTS The patient had a complex phenotype of primary adrenal insufficiency (PAI), combined with genital, ophthalmological, and neurological features. He carried a homozygous splice variant c.1348-1G > T in TXNRD2 which leads to a shorter protein lacking the C-terminus and thereby affecting homodimerization and flavin adenine dinucleotide binding. Patient-derived iALC showed a loss of cortisol production with overall diminished adrenal steroidogenesis, while ROS production was significantly increased. CONCLUSION Lack of TXNRD2 activity for mitochondrial ROS detoxification affects adrenal steroidogenesis and predominantly cortisol production.
Collapse
Affiliation(s)
- Cécile Brachet
- Université libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (H.U.B), Hôpital Universitaire des Enfants Reine Fabiola (HUDERF), Paediatric Endocrinology Unit, Avenue J.J. Crocq 15, 1020 Bruxelles, Belgium
| | - Alexander Laemmle
- Division of Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
- Department of Biomedical Research, University of Bern, 3010 Bern, Switzerland
- Institute of Clinical Chemistry, University of Bern, 3010 Bern, Switzerland
| | - Martine Cools
- Department of Internal Medicine and Pediatrics, Ghent University; Department of Pediatrics, Division of Pediatric Endocrinology, Ghent University Hospital, 9000 Ghent, Belgium
| | - Kay-Sara Sauter
- Division of Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
- Department of Biomedical Research, University of Bern, 3010 Bern, Switzerland
| | - Elfride De Baere
- Center for Medical Genetics, Ghent University Hospital; Department of Biomolecular Medicine, Ghent University, C. Heymanslaan 10, 9000 Ghent, Belgium
| | - Arnaud Vanlander
- Mitochondrial Investigations Laboratory, Ghent University C. Heymanslaan 10, 9000 Ghent, Ghent, Belgium and Department of Internal Medicine and Paediatrics, Ghent University Hospital, 9000 Ghent, Belgium
| | - Amit V Pandey
- Division of Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
- Department of Biomedical Research, University of Bern, 3010 Bern, Switzerland
| | - Therina du Toit
- Department of Biomedical Research, University of Bern, 3010 Bern, Switzerland
- Department of Nephrology and Hypertension, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
| | - Clarissa D Voegel
- Department of Biomedical Research, University of Bern, 3010 Bern, Switzerland
- Department of Nephrology and Hypertension, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
| | - Claudine Heinrichs
- Université libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (H.U.B), Hôpital Universitaire des Enfants Reine Fabiola (HUDERF), Paediatric Endocrinology Unit, Avenue J.J. Crocq 15, 1020 Bruxelles, Belgium
| | - Hannah Verdin
- Center for Medical Genetics, Ghent University Hospital; Department of Biomolecular Medicine, Ghent University, C. Heymanslaan 10, 9000 Ghent, Belgium
| | - Christa E Flück
- Division of Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
- Department of Biomedical Research, University of Bern, 3010 Bern, Switzerland
| |
Collapse
|
13
|
Inoue Y, Tsuchida N, Kim CA, de Oliveira Stephan B, Castro MAA, Honjo RS, Bertola DR, Uchiyama Y, Hamanaka K, Fujita A, Koshimizu E, Misawa K, Miyatake S, Mizuguchi T, Matsumoto N. Novel compound heterozygous ABCA2 variants cause IDPOGSA, a variable phenotypic syndrome with intellectual disability. J Hum Genet 2024; 69:163-167. [PMID: 38228874 DOI: 10.1038/s10038-024-01219-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/07/2023] [Accepted: 12/28/2023] [Indexed: 01/18/2024]
Abstract
The gene for ATP binding cassette subfamily A member 2 (ABCA2) is located at chromosome 9q34.3. Biallelic ABCA2 variants lead to intellectual developmental disorder with poor growth and with or without seizures or ataxia (IDPOGSA). In this study, we identified novel compound heterozygous ABCA2 variants (NM_001606.5:c.[5300-17C>A];[6379C>T]) by whole exome sequencing in a 28-year-old Korean female patient with intellectual disability. These variants included intronic and nonsense variants of paternal and maternal origin, respectively, and are absent from gnomAD. SpliceAI predicted that the intron variant creates a cryptic acceptor site. Reverse transcription-PCR using RNA extracted from a lymphoblastoid cell line of the patient confirmed two aberrant transcripts. Her clinical features are compatible with those of IDPOGSA.
Collapse
Affiliation(s)
- Yuta Inoue
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Naomi Tsuchida
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
- Department of Rare Disease Genomics, Yokohama City University Hospital, Yokohama, Japan
| | - Chong Ae Kim
- Clinical Genetics Unit, Instituto da Crianca, Hospital das Clinicas HC-FMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Bruno de Oliveira Stephan
- Clinical Genetics Unit, Instituto da Crianca, Hospital das Clinicas HC-FMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Matheus Augusto Araujo Castro
- Clinical Genetics Unit, Instituto da Crianca, Hospital das Clinicas HC-FMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Rachel Sayuri Honjo
- Clinical Genetics Unit, Instituto da Crianca, Hospital das Clinicas HC-FMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Debora Romeo Bertola
- Clinical Genetics Unit, Instituto da Crianca, Hospital das Clinicas HC-FMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Yuri Uchiyama
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
- Department of Rare Disease Genomics, Yokohama City University Hospital, Yokohama, Japan
| | - Kohei Hamanaka
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Atsushi Fujita
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Eriko Koshimizu
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Kazuharu Misawa
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
- RIKEN Center for Advanced Intelligence Project, Tokyo, Japan
| | - Satoko Miyatake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
- Department of Clinical Genetics, Yokohama City University Hospital, Yokohama, Japan
| | - Takeshi Mizuguchi
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan.
| |
Collapse
|
14
|
Hakami W, Thabet F, Alhashem A, Alghamdi A, Alshahwan S, Alkuraya FS, Tabarki B. Bi-allelic variants in HCRT cause autosomal recessive narcolepsy. Neurogenetics 2024; 25:79-83. [PMID: 38240911 DOI: 10.1007/s10048-024-00744-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/10/2024] [Indexed: 05/08/2024]
Abstract
Narcolepsy with cataplexy is a complex disease with both genetic and environmental risk factors. To gain further insight into the homozygous HCRT-related narcolepsy, we present a case series of five patients from two consanguineous families, each harboring a novel homozygous variant of HCRT c.17_18del. All affected individuals exhibited severe cataplexy accompanied by narcolepsy symptoms during infancy. Additionally, cataplexy symptoms improved or disappeared in the majority of patients over time. Pathogenic variants in HCRT cause autosomal recessive narcolepsy with cataplexy. Genetic testing of the HCRT gene should be conducted in specific subgroups of narcolepsy, particularly those with early onset, familial cases, and a predominantly cataplexy phenotype.
Collapse
Affiliation(s)
- Wejdan Hakami
- Pediatric Neurology, Department of Pediatrics, Prince Sultan Military Medical City, 11159, Riyadh, Saudi Arabia
| | - Farah Thabet
- Department of Pediatrics, Fattouma Bourguiba University Hospital, Monastir, Tunisia
| | - Amal Alhashem
- Division of Pediatric Genetics, Department of Pediatrics, Prince Sultan Military Medical City, 12233, Riyadh, Saudi Arabia
| | - Abdulaziz Alghamdi
- Pediatric Neurology, Department of Pediatrics, Prince Sultan Military Medical City, 11159, Riyadh, Saudi Arabia
| | - Saad Alshahwan
- Pediatric Neurology, Department of Pediatrics, Prince Sultan Military Medical City, 11159, Riyadh, Saudi Arabia
| | - Fowzan S Alkuraya
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Brahim Tabarki
- Pediatric Neurology, Department of Pediatrics, Prince Sultan Military Medical City, 11159, Riyadh, Saudi Arabia.
| |
Collapse
|
15
|
Chen CP. Syndromic and single gene disorders associated with fetal megacystis (I): Megacystis-microcolon-intestinal hypoperistalsis syndrome (MMIHS). Taiwan J Obstet Gynecol 2024; 63:19-21. [PMID: 38216263 DOI: 10.1016/j.tjog.2023.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2023] [Indexed: 01/14/2024] Open
Abstract
Fetal megacystis has been reported to be associated with chromosomal abnormalities, megacystis-microcolon-intestinal hypoperistalsis syndrome (MMIHS), obstructive uropathy, prune belly syndrome, cloacal anomalies, limb-body wall complex, amniotic band syndrome, anorectal malformations, VACTERL association (vertebral anomalies, anal atresia, cardiac malformations, tracheo-esophageal fistula, renal anomalies and limb abnormalities) and fetal overgrowth syndrome such as Bechwith-Wiedemann syndrome and Sotos syndrome. This review provides an overview of syndromic and single gene disorders associated with fetal megacystis which is useful for genetic counseling at prenatal diagnosis of fetal megacystis.
Collapse
Affiliation(s)
- Chih-Ping Chen
- Department of Obstetrics and Gynecology, MacKay Memorial Hospital, Taipei, Taiwan; Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan; School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan; Institute of Clinical and Community Health Nursing, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Obstetrics and Gynecology, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Medical Laboratory Science and Biotechnology, College of Medical and Health Science, Asia University, Taichung, Taiwan.
| |
Collapse
|
16
|
Licchetta L, Di Giorgi L, Santucci M, Taruffi L, Stipa C, Minardi R, Carelli V, Bisulli F. Biallelic pathogenic variants of PARS2 cause developmental and epileptic encephalopathy with spike-and-wave activation in sleep. Mol Genet Genomic Med 2024; 12:e2311. [PMID: 38087948 PMCID: PMC10767575 DOI: 10.1002/mgg3.2311] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/06/2023] [Accepted: 10/13/2023] [Indexed: 01/07/2024] Open
Abstract
BACKGROUND Biallelic pathogenic variants in the mitochondrial prolyl-tRNA synthetase 2 gene (PARS2, OMIM * 612036) have been associated with Developmental and Epileptic Encephalopathy-75 (DEE-75, MIM #618437). This condition is typically characterized by early-onset refractory infantile spasms with hypsarrhythmia, intellectual disability, microcephaly, cerebral atrophy with hypomyelination, lactic acidemia, and cardiomyopathy. Most affected individuals do not survive beyond the age of 10 years. METHODS We describe a patient with early-onset DEE, consistently showing an EEG pattern of Spike-and-Wave Activation in Sleep (SWAS) since childhood. The patient underwent extensive clinical, metabolic and genetic investigations, including whole exome sequencing (WES). RESULTS WES analysis identified compound heterozygous variants in PARS2 that have been already reported as pathogenic. A literature review of PARS2-associated DEE, focusing mainly on the electroclinical phenotype, did not reveal the association of SWAS with pathogenic variants in PARS2. Notably, unlike previously reported cases with the same genotype, this patient had longer survival without cardiac involvement or lactic acidosis, suggesting potential genetic modifiers contributing to disease variability. CONCLUSION These findings widen the genetic heterogeneity of DEE-SWAS, including PARS2 as a causative gene in this syndromic entity, and highlight the importance of prolonged sleep EEG recording for the recognition of SWAS as a possible electroclinical evolution of PARS2-related DEE.
Collapse
Affiliation(s)
- Laura Licchetta
- IRCCS Istituto delle Scienze Neurologiche di BolognaFull member of the European Reference Network EpiCARE BolognaBolognaItaly
| | - Lucia Di Giorgi
- IRCCS Istituto delle Scienze Neurologiche di BolognaFull member of the European Reference Network EpiCARE BolognaBolognaItaly
- Department of Biomedicine, Neuroscience and Advanced DiagnosticsUniversity of PalermoPalermoItaly
| | - Margherita Santucci
- Department of Biomedical and Neuromotor SciencesUniversity of BolognaBolognaItaly
| | - Lisa Taruffi
- IRCCS Istituto delle Scienze Neurologiche di BolognaFull member of the European Reference Network EpiCARE BolognaBolognaItaly
| | - Carlotta Stipa
- IRCCS Istituto delle Scienze Neurologiche di BolognaFull member of the European Reference Network EpiCARE BolognaBolognaItaly
| | - Raffaella Minardi
- IRCCS Istituto delle Scienze Neurologiche di BolognaFull member of the European Reference Network EpiCARE BolognaBolognaItaly
| | - Valerio Carelli
- IRCCS Istituto delle Scienze Neurologiche di BolognaFull member of the European Reference Network EpiCARE BolognaBolognaItaly
- Department of Biomedical and Neuromotor SciencesUniversity of BolognaBolognaItaly
| | - Francesca Bisulli
- IRCCS Istituto delle Scienze Neurologiche di BolognaFull member of the European Reference Network EpiCARE BolognaBolognaItaly
- Department of Biomedical and Neuromotor SciencesUniversity of BolognaBolognaItaly
| |
Collapse
|
17
|
Nosková L, Fukata Y, Stránecký V, Šaligová J, Bodnárová O, Giertlová M, Fukata M, Kmoch S. ADAM22 ethnic-specific variant reducing binding of membrane-associated guanylate kinases causes focal epilepsy and behavioural disorder. Brain Commun 2023; 5:fcad295. [PMID: 37953841 PMCID: PMC10636567 DOI: 10.1093/braincomms/fcad295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 07/19/2023] [Accepted: 10/25/2023] [Indexed: 11/14/2023] Open
Abstract
Pathogenic variants of ADAM22 affecting either its biosynthesis and/or its interactions with either LGI1 and/or PSD-95 have been recently identified in individuals with developmental and epileptic encephalopathy. Here, we describe a girl with seizures, delayed psychomotor development, and behavioural disorder, carrying a homozygous variant in ADAM22 (NM_021723.5:c.2714C > T). The variant has a surprisingly high frequency in the Roma population of the Czech and Slovak Republic, with 11 of 213 (∼5.2%) healthy Roma individuals identified as heterozygous carriers. Structural in silico characterization revealed that the genetic variant encodes the missense variant p.S905F, which localizes to the PDZ-binding motif of ADAM22. Studies in transiently transfected mammalian cells revealed that the variant has no effect on biosynthesis and stability of ADAM22. Rather, protein-protein interaction studies showed that the p.S905F variant specifically impairs ADAM22 binding to PSD-95 and other proteins from a family of membrane-associated guanylate kinases, while it has only minor effect on ADAM22-LGI1 interaction. Our study indicates that a significant proportion of epilepsy in patients of Roma ancestry may be caused by homozygous c.2714C > T variants in ADAM22. The study of this ADAM22 variant highlights a novel pathogenic mechanism of ADAM22 dysfunction and reconfirms an essential role of interaction of ADAM22 with membrane-associated guanylate kinases in seizure protection in humans.
Collapse
Affiliation(s)
- Lenka Nosková
- Research Unit for Rare Diseases, Department of Pediatrics and Inherited Metabolic Disorders, 1st Faculty of Medicine, Charles University in Prague, 128 08 Prague 2, Czech Republic
| | - Yuko Fukata
- Division of Membrane Physiology, Department of Molecular and Cellular Physiology, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki 444-8787, Japan
- Department of Physiological Sciences, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki 444-8585, Japan
- Division of Molecular and Cellular Pharmacology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Viktor Stránecký
- Research Unit for Rare Diseases, Department of Pediatrics and Inherited Metabolic Disorders, 1st Faculty of Medicine, Charles University in Prague, 128 08 Prague 2, Czech Republic
| | - Jana Šaligová
- Children's Faculty Hospital, Košice 040 11, Slovakia
| | | | - Mária Giertlová
- Medical Genetics Outpatient Service, Unilabs Slovakia Ltd, Košice 040 01, Slovakia
- Department of Paediatric and Adolescent Medicine, Faculty of Medicine, P.J. Šafárik University,Košice 040 01, Slovak Republic
| | - Masaki Fukata
- Division of Membrane Physiology, Department of Molecular and Cellular Physiology, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki 444-8787, Japan
- Department of Physiological Sciences, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki 444-8585, Japan
- Division of Neuropharmacology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Stanislav Kmoch
- Research Unit for Rare Diseases, Department of Pediatrics and Inherited Metabolic Disorders, 1st Faculty of Medicine, Charles University in Prague, 128 08 Prague 2, Czech Republic
| |
Collapse
|
18
|
Misceo D, Senaratne LDS, Mero IL, Sundaram AYM, Bjørnstad PM, Szczałuba K, Gasperowicz P, Kamien B, Nedregaard B, Holmgren A, Strømme P, Frengen E. Novel Loss of Function Variants in CENPF Including a Large Intragenic Deletion in Patients with Strømme Syndrome. Genes (Basel) 2023; 14:1985. [PMID: 38002928 PMCID: PMC10671177 DOI: 10.3390/genes14111985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 11/26/2023] Open
Abstract
Strømme syndrome is an ultra-rare primary ciliopathy with clinical variability. The syndrome is caused by bi-allelic variants in CENPF, a protein with key roles in both chromosomal segregation and ciliogenesis. We report three unrelated patients with Strømme syndrome and, using high-throughput sequencing approaches, we identified novel pathogenic variants in CENPF, including one structural variant, giving a genetic diagnosis to the patients. Patient 1 was a premature baby who died at 26 days with congenital malformations affecting many organs including the brain, eyes, and intestine. She was homozygous for a donor splice variant in CENPF, NM_016343.3:c.1068+1G>A, causing skipping of exon 7, resulting in a frameshift. Patient 2 was a female with intestinal atresia, microcephaly, and a Peters anomaly. She had normal developmental milestones at the age of 7 years. She is compound heterozygous for CENPF NM_016343.3:c.5920dup and c.8991del, both frameshift. Patient 3 was a male with anomalies of the brain, eye, intestine, and kidneys. He was compound heterozygous for CENPF p.(Glu298Ter), and a 5323 bp deletion covering exon 1. CENPF exon 1 is flanked by repetitive sequences that may represent a site of a recurrent structural variation, which should be a focus in patients with Strømme syndrome of unknown etiology.
Collapse
Affiliation(s)
- Doriana Misceo
- Department of Medical Genetics, Oslo University Hospital, 0450 Oslo, Norway; (D.M.); (L.D.S.S.); (I.-L.M.); (A.Y.M.S.); (A.H.)
- Faculty of Medicine, University of Oslo, 0450 Oslo, Norway;
| | - Lokuliyanage Dona Samudita Senaratne
- Department of Medical Genetics, Oslo University Hospital, 0450 Oslo, Norway; (D.M.); (L.D.S.S.); (I.-L.M.); (A.Y.M.S.); (A.H.)
- Faculty of Medicine, University of Oslo, 0450 Oslo, Norway;
| | - Inger-Lise Mero
- Department of Medical Genetics, Oslo University Hospital, 0450 Oslo, Norway; (D.M.); (L.D.S.S.); (I.-L.M.); (A.Y.M.S.); (A.H.)
| | - Arvind Y. M. Sundaram
- Department of Medical Genetics, Oslo University Hospital, 0450 Oslo, Norway; (D.M.); (L.D.S.S.); (I.-L.M.); (A.Y.M.S.); (A.H.)
- Faculty of Medicine, University of Oslo, 0450 Oslo, Norway;
| | - Pål Marius Bjørnstad
- Department of Medical Genetics, Oslo University Hospital, 0450 Oslo, Norway; (D.M.); (L.D.S.S.); (I.-L.M.); (A.Y.M.S.); (A.H.)
- Faculty of Medicine, University of Oslo, 0450 Oslo, Norway;
| | - Krzysztof Szczałuba
- Department of Medical Genetics, Medical University of Warsaw, Żwirki i Wigury 61, 02-091 Warszawa, Poland; (K.S.)
| | - Piotr Gasperowicz
- Department of Medical Genetics, Medical University of Warsaw, Żwirki i Wigury 61, 02-091 Warszawa, Poland; (K.S.)
| | - Benjamin Kamien
- Genetic Services of Western Australia, King Edward Memorial Hospital, 374 Bagot Rd, Subiaco, WA 6008, Australia;
| | - Bård Nedregaard
- Department of Radiology and Nuclear Medicine, Section of Neuroradiology, Oslo University Hospital, 0450 Oslo, Norway;
| | - Asbjørn Holmgren
- Department of Medical Genetics, Oslo University Hospital, 0450 Oslo, Norway; (D.M.); (L.D.S.S.); (I.-L.M.); (A.Y.M.S.); (A.H.)
- Faculty of Medicine, University of Oslo, 0450 Oslo, Norway;
| | - Petter Strømme
- Faculty of Medicine, University of Oslo, 0450 Oslo, Norway;
- Division of Pediatric and Adolescent Medicine, Oslo University Hospital, 0450 Oslo, Norway
| | - Eirik Frengen
- Department of Medical Genetics, Oslo University Hospital, 0450 Oslo, Norway; (D.M.); (L.D.S.S.); (I.-L.M.); (A.Y.M.S.); (A.H.)
- Faculty of Medicine, University of Oslo, 0450 Oslo, Norway;
| |
Collapse
|
19
|
Picker SM, Parker G, Gissen P. Features of Congenital Arthrogryposis Due to Abnormalities in Collagen Homeostasis, a Scoping Review. Int J Mol Sci 2023; 24:13545. [PMID: 37686358 PMCID: PMC10487887 DOI: 10.3390/ijms241713545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/30/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023] Open
Abstract
Congenital arthrogryposis (CA) refers to the presence of multiple contractures at birth. It is a feature of several inherited syndromes, notable amongst them are disorders of collagen formation. This review aims to characterize disorders that directly or indirectly impact collagen structure and function leading to CA in search for common phenotypic or pathophysiological features, possible genotype-phenotype correlation, and potential novel treatment approaches based on a better understanding of the underlying pathomechanism. Nine genes, corresponding to five clinical phenotypes, were identified after a literature search. The most notable trend was the extreme phenotype variability. Clinical features across all syndromes ranged from subtle with minimal congenital contractures, to severe with multiple congenital contractures and extra-articular features including skin, respiratory, or other manifestations. Five of the identified genes were involved in the function of the Lysyl Hydroxylase 2 or 3 enzymes, which enable the hydroxylation and/or glycosylation of lysyl residues to allow the formation of the collagen superstructure. Whilst current treatment approaches are post-natal surgical correction, there are also potential in-utero therapies being developed. Cyclosporin A showed promise in treating collagen VI disorders although there is an associated risk of immunosuppression. The treatments that could be in the clinical trials soon are the splice correction therapies in collagen VI-related disorders.
Collapse
Affiliation(s)
| | - George Parker
- Newcastle University Medical School, Newcastle NE2 4HH, UK;
| | - Paul Gissen
- National Institute for Health Research Great Ormond Street Hospital Biomedical Research Centre, University College London, London WC1N 1EH, UK
- Genetics and Genomic Medicine Department, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| |
Collapse
|
20
|
Abstract
ABC transporters are essential for cellular physiology. Humans have 48 ABC genes organized into seven distinct families. Of these genes, 44 (in five distinct families) encode for membrane transporters, of which several are involved in drug resistance and disease pathways resulting from transporter dysfunction. Over the last decade, advances in structural biology have vastly expanded our mechanistic understanding of human ABC transporter function, revealing details of their molecular arrangement, regulation, and interactions, facilitated in large part by advances in cryo-EM that have rendered hitherto inaccessible targets amenable to high-resolution structural analysis. As a result, experimentally determined structures of multiple members of each of the five families of ABC transporters in humans are now available. Here we review this recent progress, highlighting the physiological relevance of human ABC transporters and mechanistic insights gleaned from their direct structure determination. We also discuss the impact and limitations of model systems and structure prediction methods in understanding human ABC transporters and discuss current challenges and future research directions.
Collapse
Affiliation(s)
- Amer Alam
- The Hormel Institute, University of Minnesota, Austin, Minnesota, USA
| | - Kaspar P Locher
- Institute of Molecular Biology and Biophysics, ETH Zurich, Switzerland;
| |
Collapse
|
21
|
Bizzari S, Nair P, Hana S, Deepthi A, Al-Ali MT, Al-Gazali L, El-Hayek S. Spectrum of genetic disorders and gene variants in the United Arab Emirates national population: insights from the CTGA database. Front Genet 2023; 14:1177204. [PMID: 37214420 PMCID: PMC10194840 DOI: 10.3389/fgene.2023.1177204] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 04/17/2023] [Indexed: 05/24/2023] Open
Abstract
Like many other Arab countries, the United Arab Emirates (UAE) has a relatively high prevalence of genetic disorders. Here we present the first review and analysis of all genetic disorders and gene variants reported in Emirati nationals and hosted on the Catalogue for Transmission Genetics in Arabs (CTGA), an open-access database hosting bibliographic data on human gene variants associated with inherited or heritable phenotypes in Arabs. To date, CTGA hosts 665 distinct genetic conditions that have been described in Emiratis, 621 of which follow a clear Mendelian inheritance. Strikingly, over half of these are extremely rare according to global prevalence rates, predominantly with an autosomal recessive mode of inheritance. This is likely due to the relatively high consanguinity rates within the Emirati population. The 665 conditions include disorders that are unique to the Emirati population, as well as clearly monogenic disorders that have not yet been mapped to a causal genetic locus. We also describe 1,365 gene variants reported in Emiratis, most of which are substitutions and over half are classified as likely pathogenic or pathogenic. Of these, 235 had not been reported on the international databases dbSNP and Clinvar, as of December 2022. Further analysis of this Emirati variant dataset allows a comparison of clinical significance as reported by Clinvar and CTGA, where the latter is derived from the study cited. A total of 307 pathogenic/likely pathogenic variants from CTGA's Emirati dataset, were classified as benign, variants of uncertain significance, or were missing a clinical significance or had not been reported by Clinvar. In conclusion, we present here the spectrum of genetic disorders and gene variants reported in Emiratis. This review emphasizes the importance of ethnic databases such as CTGA in addressing the underrepresentation of Arab variant data in international databases and documenting population-specific discrepancies in variant interpretation, reiterating the value of such repositories for clinicians and researchers, especially when dealing with rare disorders.
Collapse
Affiliation(s)
- Sami Bizzari
- Centre for Arab Genomic Studies, Dubai, United Arab Emirates
| | - Pratibha Nair
- Centre for Arab Genomic Studies, Dubai, United Arab Emirates
| | - Sayeeda Hana
- Centre for Arab Genomic Studies, Dubai, United Arab Emirates
| | - Asha Deepthi
- Centre for Arab Genomic Studies, Dubai, United Arab Emirates
| | | | - Lihadh Al-Gazali
- Department of Pediatrics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | | |
Collapse
|
22
|
Abstract
Macroautophagy and microautophagy are highly conserved eukaryotic cellular processes that degrade cytoplasmic material in lysosomes. Both pathways involve characteristic membrane dynamics regulated by autophagy-related proteins and other molecules, some of which are shared between the two pathways. Over the past few years, the application of new technologies, such as cryo-electron microscopy, coevolution-based structural prediction and in vitro reconstitution, has revealed the functions of individual autophagy gene products, especially in autophagy induction, membrane reorganization and cargo recognition. Concomitantly, mutations in autophagy genes have been linked to human disorders, particularly neurodegenerative diseases, emphasizing the potential pathogenic implications of autophagy defects. Accumulating genome data have also illuminated the evolution of autophagy genes within eukaryotes as well as their transition from possible ancestral elements in prokaryotes.
Collapse
Affiliation(s)
- Hayashi Yamamoto
- grid.26999.3d0000 0001 2151 536XDepartment of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan ,grid.410821.e0000 0001 2173 8328Department of Molecular Oncology, Institute for Advanced Medical Sciences, Nippon Medical School, Tokyo, Japan
| | - Sidi Zhang
- grid.26999.3d0000 0001 2151 536XDepartment of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Noboru Mizushima
- grid.26999.3d0000 0001 2151 536XDepartment of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
23
|
Ishikawa Y, Taga Y, Coste T, Tufa SF, Keene DR, Mizuno K, Tournier-Lasserve E, Gould DB. Lysyl hydroxylase 3-mediated post-translational modifications are required for proper biosynthesis of collagen α1α1α2(IV). J Biol Chem 2022; 298:102713. [PMID: 36403858 PMCID: PMC9761383 DOI: 10.1016/j.jbc.2022.102713] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 11/05/2022] [Accepted: 11/09/2022] [Indexed: 11/19/2022] Open
Abstract
Collagens are the most abundant proteins in the body and among the most biosynthetically complex. A molecular ensemble of over 20 endoplasmic reticulum resident proteins participates in collagen biosynthesis and contributes to heterogeneous post-translational modifications. Pathogenic variants in genes encoding collagens cause connective tissue disorders, including osteogenesis imperfecta, Ehlers-Danlos syndrome, and Gould syndrome (caused by mutations in COL4A1 and COL4A2), and pathogenic variants in genes encoding proteins required for collagen biosynthesis can cause similar but overlapping clinical phenotypes. Notably, pathogenic variants in lysyl hydroxylase 3 (LH3) cause a multisystem connective tissue disorder that exhibits pathophysiological features of collagen-related disorders. LH3 is a multifunctional collagen-modifying enzyme; however, its precise role(s) and substrate specificity during collagen biosynthesis has not been defined. To address this critical gap in knowledge, we generated LH3 KO cells and performed detailed quantitative and molecular analyses of collagen substrates. We found that LH3 deficiency severely impaired secretion of collagen α1α1α2(IV) but not collagens α1α1α2(I) or α1α1α1(III). Amino acid analysis revealed that LH3 is a selective LH for collagen α1α1α2(IV) but a general glucosyltransferase for collagens α1α1α2(IV), α1α1α2(I), and α1α1α1(III). Importantly, we identified rare variants that are predicted to be pathogenic in the gene encoding LH3 in two of 113 fetuses with intracranial hemorrhage-a cardinal feature of Gould syndrome. Collectively, our findings highlight a critical role of LH3 in α1α1α2(IV) biosynthesis and suggest that LH3 pathogenic variants might contribute to Gould syndrome.
Collapse
Affiliation(s)
- Yoshihiro Ishikawa
- Department of Ophthalmology, University of California San Francisco, School of Medicine, California, USA.
| | - Yuki Taga
- Nippi Research Institute of Biomatrix, Ibaraki, Japan
| | - Thibault Coste
- Université Paris Cité, Inserm Neurodiderot, AP-HP Paris, France
| | - Sara F Tufa
- Research Department, Shriners Hospital for Children, Portland, Oregon, USA
| | - Douglas R Keene
- Research Department, Shriners Hospital for Children, Portland, Oregon, USA
| | | | | | - Douglas B Gould
- Department of Ophthalmology, University of California San Francisco, School of Medicine, California, USA; Department Anatomy, Cardiovascular Research Institute, Bakar Aging Research Institute, and Institute for Human Genetics, University of California, San Francisco, California, USA.
| |
Collapse
|
24
|
Altassan R, Qudair A, Alokaili R, Alhasan K, Faqeih EA, Alhashem A, Alowain M, Alsayed M, Rahbeeni Z, Albadi L, Alkuraya FS, Anderson EN, Rajan D, Pandey UB. Further delineation of GEMIN4 related neurodevelopmental disorder with microcephaly, cataract, and renal abnormalities syndrome. Am J Med Genet A 2022; 188:2932-2940. [PMID: 35861185 DOI: 10.1002/ajmg.a.62894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 06/21/2022] [Accepted: 06/27/2022] [Indexed: 01/31/2023]
Abstract
Pathogenic variants in GEMIN4 have recently been linked to an inherited autosomal recessive neurodevelopmental disorder characterized with microcephaly, cataracts, and renal abnormalities (NEDMCR syndrome). This report provides a retrospective review of 16 patients from 11 unrelated Saudi consanguineous families with GEMIN4 mutations. The cohort comprises 11 new and unpublished clinical details from five previously described patients. Only two missense, homozygous, pathogenic variants were found in all affected patients, suggesting a founder effect. All patients shared global developmental delay with variable ophthalmological, renal, and skeletal manifestations. In addition, we knocked down endogenous Drosophila GEMIN4 in neurons to further investigate the mechanism of the functional defects in affected patients. Our fly model findings demonstrated developmental defects and motor dysfunction suggesting that loss of GEMIN4 function is detrimental in vivo; likely similar to human patients. To date, this study presents the largest cohort of patients affected with GEMIN4 mutations. Considering that identifying GEMIN4 defects in patients presenting with neurodevelopmental delay and congenital cataract will help in early diagnosis, appropriate management and prevention plans that can be made for affected families.
Collapse
Affiliation(s)
- Ruqaiah Altassan
- Department of Medical Genetics, Centre for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.,Department of Anatomy and Cell Biology, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Ahmad Qudair
- Department of Medical Genetics, Centre for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Riyadh Alokaili
- Department of Radiology, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Khalid Alhasan
- Department of Pediatrics, College of Medicine, King Saud University, Riyadh, Saudi Arabia.,Department of Pediatrics, King Saud University Medical City, Riyadh, Saudi Arabia
| | - Eissa A Faqeih
- Medical Genetics Section, King Fahad Medical City, Children's Hospital, Riyadh, Kingdom of Saudi Arabia
| | - Amal Alhashem
- Division of Genetics, Department of Pediatrics, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Muhammed Alowain
- Department of Medical Genetics, Centre for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.,Department of Anatomy and Cell Biology, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Moeanaldeen Alsayed
- Department of Medical Genetics, Centre for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.,Department of Anatomy and Cell Biology, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Zuhair Rahbeeni
- Department of Medical Genetics, Centre for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Lama Albadi
- Department of Translational Genomics, Centre for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Fowzan S Alkuraya
- Department of Translational Genomics, Centre for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Eric N Anderson
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Deepa Rajan
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Udai Bhan Pandey
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
25
|
Almannai M, Marafi D, El-Hattab AW. WIPI proteins: Biological functions and related syndromes. Front Mol Neurosci 2022; 15:1011918. [PMID: 36157071 PMCID: PMC9500159 DOI: 10.3389/fnmol.2022.1011918] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 08/10/2022] [Indexed: 11/13/2022] Open
Abstract
WIPI (WD-repeat protein Interacting with PhosphoInositides) are important effectors in autophagy. These proteins bind phosphoinositides and recruit autophagy proteins. In mammals, there are four WIPI proteins: WIPI1, WIPI2, WIPI3 (WDR45B), and WIPI4 (WDR45). These proteins consist of a seven-bladed β-propeller structure. Recently, pathogenic variants in genes encoding these proteins have been recognized to cause human diseases with a predominant neurological phenotype. Defects in WIPI2 cause a disease characterized mainly by intellectual disability and variable other features while pathogenic variants in WDR45B and WDR45 have been recently reported to cause El-Hattab-Alkuraya syndrome and beta-propeller protein-associated neurodegeneration (BPAN), respectively. Whereas, there is no disease linked to WIPI1 yet, one study linked it neural tube defects (NTD). In this review, the role of WIPI proteins in autophagy is discussed first, then syndromes related to these proteins are summarized.
Collapse
Affiliation(s)
- Mohammed Almannai
- Genetics and Precision Medicine Department, King Abdullah Specialized Children's Hospital, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
- *Correspondence: Mohammed Almannai
| | - Dana Marafi
- Department of Pediatrics, Faculty of Medicine, Kuwait University, Jabriya, Kuwait
| | - Ayman W. El-Hattab
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Department of Pediatrics, University Hospital Sharjah, Sharjah, United Arab Emirates
- Genetics and Metabolic Department, KidsHeart Medical Center, Abu Dhabi, United Arab Emirates
| |
Collapse
|
26
|
Zhou J, Feng W, Zhuo X, Lu W, Wang J, Fang F, Wang X. Cerebral small vessel disease caused by PLOD3 mutation: Expanding the phenotypic spectrum of lysyl hydroxylase-3 deficiency. Pediatr Investig 2022; 6:219-223. [PMID: 36203519 PMCID: PMC9523809 DOI: 10.1002/ped4.12328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 03/15/2022] [Indexed: 11/11/2022] Open
Abstract
Introduction Pathogenic variants in PLOD3, encoding lysyl hydroxylase-3 (LH3), can cause a hereditary connective tissue disorder that has rarely been reported. It is a multi-system disease, presenting with craniofacial dysmorphisms, skeletal and eye manifestations, sensorineural hearing loss, and variable skin manifestations. Severe central nervous system involvement has not been reported. Case presentation A 10-month-old girl was admitted with development delay and clustered epileptic spasms. Hypertelorism, an upturned nose, and low-set ears were noted in physical examination. Cerebral magnetic resonance imaging showed multiple intracranial malacias and bleeding foci, extensive abnormal signals in the white matter, and obvious brain atrophy, which was consistent with cerebral small vessel disease (SVD). Electroencephalography suggested hypsarrhythmia. The vertebrae were flattened. The distal end of the metacarpal bone in the left hand was irregular. She was diagnosed with West syndrome. Whole-exome sequencing revealed a novel homozygous variant of c.1216_1218delCTC (p.L406del) in PLOD3, which was found to be inherited from her heterozygous parents. Conclusion We report a patient with pathogenic PLOD3 mutation who presented with cerebral SVD. This report expands the phenotypic spectrum of LH3 deficiency.
Collapse
Affiliation(s)
- Ji Zhou
- Department of Neurology, Beijing Children's Hospital, Capital Medical UniversityNational Center for Children's HealthChina
| | - Weixing Feng
- Department of Neurology, Beijing Children's Hospital, Capital Medical UniversityNational Center for Children's HealthChina
| | - Xiuwei Zhuo
- Department of Neurology, Beijing Children's Hospital, Capital Medical UniversityNational Center for Children's HealthChina
| | - Wenting Lu
- Hematology Oncology Center, Beijing Children's Hospital, Capital Medical UniversityNational Center for Children's HealthChina
| | - Junling Wang
- Department of Neurology, Beijing Children's Hospital, Capital Medical UniversityNational Center for Children's HealthChina
| | - Fang Fang
- Department of Neurology, Beijing Children's Hospital, Capital Medical UniversityNational Center for Children's HealthChina
| | - Xiaohui Wang
- Department of Neurology, Beijing Children's Hospital, Capital Medical UniversityNational Center for Children's HealthChina
| |
Collapse
|
27
|
van der Knoop MM, Maroofian R, Fukata Y, van Ierland Y, Karimiani EG, Lehesjoki AE, Muona M, Paetau A, Miyazaki Y, Hirano Y, Selim L, de França M, Fock RA, Beetz C, Ruivenkamp CAL, Eaton AJ, Morneau-Jacob FD, Sagi-Dain L, Shemer-Meiri L, Peleg A, Haddad-Halloun J, Kamphuis DJ, Peeters-Scholte CMPCD, Kurul SH, Horvath R, Lochmüller H, Murphy D, Waldmüller S, Spranger S, Overberg D, Muir AM, Rad A, Vona B, Abdulwahad F, Maddirevula S, Povolotskaya IS, Voinova VY, Gowda VK, Srinivasan VM, Alkuraya FS, Mefford HC, Alfadhel M, Haack TB, Striano P, Severino M, Fukata M, Hilhorst-Hofstee Y, Houlden H. Biallelic ADAM22 pathogenic variants cause progressive encephalopathy and infantile-onset refractory epilepsy. Brain 2022; 145:2301-2312. [PMID: 35373813 PMCID: PMC9337806 DOI: 10.1093/brain/awac116] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 01/31/2022] [Accepted: 03/04/2022] [Indexed: 12/03/2022] Open
Abstract
Pathogenic variants in A Disintegrin And Metalloproteinase (ADAM) 22, the postsynaptic cell membrane receptor for the glycoprotein leucine-rich repeat glioma-inactivated protein 1 (LGI1), have been recently associated with recessive developmental and epileptic encephalopathy. However, so far, only two affected individuals have been described and many features of this disorder are unknown. We refine the phenotype and report 19 additional individuals harbouring compound heterozygous or homozygous inactivating ADAM22 variants, of whom 18 had clinical data available. Additionally, we provide follow-up data from two previously reported cases. All affected individuals exhibited infantile-onset, treatment-resistant epilepsy. Additional clinical features included moderate to profound global developmental delay/intellectual disability (20/20), hypotonia (12/20) and delayed motor development (19/20). Brain MRI findings included cerebral atrophy (13/20), supported by post-mortem histological examination in patient-derived brain tissue, cerebellar vermis atrophy (5/20), and callosal hypoplasia (4/20). Functional studies in transfected cell lines confirmed the deleteriousness of all identified variants and indicated at least three distinct pathological mechanisms: (i) defective cell membrane expression; (ii) impaired LGI1-binding; and/or (iii) impaired interaction with the postsynaptic density protein PSD-95. We reveal novel clinical and molecular hallmarks of ADAM22 deficiency and provide knowledge that might inform clinical management and early diagnostics.
Collapse
Affiliation(s)
- Marieke M van der Knoop
- Department of Child Neurology, Sophia Children’s Hospital, Erasmus University Medical Center, 3015 CN Rotterdam, The Netherlands
| | - Reza Maroofian
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Yuko Fukata
- Division of Membrane Physiology, Department of Molecular and Cellular Physiology, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
- Department of Physiological Sciences, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi 444-8585, Japan
| | - Yvette van Ierland
- Department of Clinical Genetics, Erasmus University Medical Center, 3015 CN Rotterdam, The Netherlands
| | - Ehsan G Karimiani
- Next Generation Genetic Polyclinic, Razavi International Hospital, Mashhad, Iran
- Genetics Research Centre, Molecular and Clinical Sciences Institute, St. George’s University, London SW17 0RE, UK
| | - Anna Elina Lehesjoki
- Folkhälsan Research Center, Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Helsinki 00290, Finland
| | - Mikko Muona
- Folkhälsan Research Center, Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Helsinki 00290, Finland
- Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Finland,00100 Helsinki, Finland
- Blueprint Genetics, 02150 Espoo, Finland
| | - Anders Paetau
- Department of Pathology, Medicum, University of Helsinki, 00100 Helsinki, Finland
| | - Yuri Miyazaki
- Division of Membrane Physiology, Department of Molecular and Cellular Physiology, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
- Department of Physiological Sciences, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi 444-8585, Japan
| | - Yoko Hirano
- Division of Membrane Physiology, Department of Molecular and Cellular Physiology, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
- Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Bunkyo, Tokyo 113-8655, Japan
| | - Laila Selim
- Division of Neurology and Metabolism, Kasr Al Ainy School of Medicine, Cairo University Children Hospital, Cairo, Egypt
| | - Marina de França
- Department of Morphology and Genetics, Clinical Center of Medical Genetics Federal, University of São Paulo, São Paulo, Brazil
| | - Rodrigo Ambrosio Fock
- Department of Morphology and Genetics, Clinical Center of Medical Genetics Federal, University of São Paulo, São Paulo, Brazil
| | | | - Claudia A L Ruivenkamp
- Department of Clinical Genetics, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Alison J Eaton
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada
| | | | - Lena Sagi-Dain
- Affiliated to the Ruth and Bruce Rappaport Faculty of Medicine Technion-Israel Institute of Technology, Genetics Institute, Carmel Medical Center,Haifa, Israel
| | | | - Amir Peleg
- Affiliated to the Ruth and Bruce Rappaport Faculty of Medicine Technion-Israel Institute of Technology, Genetics Institute, Carmel Medical Center,Haifa, Israel
| | - Jumana Haddad-Halloun
- Department of Biology, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Daan J Kamphuis
- Department of Neurology, Reinier de Graaf Hospital, 2625 AD Delft, The Netherlands
| | | | - Semra Hiz Kurul
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, Izmir, Turkey
- Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey
- Department of Paediatric Neurology, School of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Rita Horvath
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- Department of Clinical Neurosciences, John Van Geest Centre for Brain Repair, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Hanns Lochmüller
- CNAG-CRG, Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
- Children’s Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Canada
- Department of Neuropediatrics and Muscle Disorders, Medical Center–University of Freiburg, Faculty of Medicine, Freiburg, Germany
- Division of Neurology, Department of Medicine, The Ottawa Hospital; and Brain and Mind Research Institute, University of Ottawa, Ottawa, Canada
| | - David Murphy
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Stephan Waldmüller
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen 72076, Germany
| | | | - David Overberg
- Department of Pediatrics, Klinikum Bremen-Mitte, Bremen 28205, Germany
| | - Alison M Muir
- Division of Genetic Medicine, Department of Pediatrics, University of Washington and Seattle Children’s Hospital, Seattle, WA 98195, USA
| | - Aboulfazl Rad
- Department of Otolaryngology - Head and Neck Surgery, Tübingen Hearing Research Centre, Eberhard Karls University Tübingen, Tübingen 72076, Germany
| | - Barbara Vona
- Department of Otolaryngology - Head and Neck Surgery, Tübingen Hearing Research Centre, Eberhard Karls University Tübingen, Tübingen 72076, Germany
| | - Firdous Abdulwahad
- Department of Translational Genomics, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Sateesh Maddirevula
- Department of Translational Genomics, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Inna S Povolotskaya
- Veltischev Research and Clinical Institute for Pediatrics of the Pirogov Russian National Research Medical University of the Russian Ministry of Health, Moscow, Russia
| | - Victoria Y Voinova
- Veltischev Research and Clinical Institute for Pediatrics of the Pirogov Russian National Research Medical University of the Russian Ministry of Health, Moscow, Russia
- Mental Health Research Center, Moscow 107076, Russia
| | - Vykuntaraju K Gowda
- Department of Pediatric Neurology, Indira Gandhi Institute of Child Health, Bangalore, India
| | | | - Fowzan S Alkuraya
- Department of Translational Genomics, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Heather C Mefford
- Division of Genetic Medicine, Department of Pediatrics, University of Washington and Seattle Children’s Hospital, Seattle, WA 98195, USA
| | - Majid Alfadhel
- Genetics and Precision Medicine Department, King Abdullah Specialized Children's Hospital (KASCH), King Abdulaziz Medical City, Ministry of National Guard-Health Affairs (MNG-HA), Riyadh, Saudi Arabia
- Medical Genomics Research Department, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, King AbdulAziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Tobias B Haack
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen 72076, Germany
- Centre for Rare Diseases, University of Tübingen, Tübingen 72076, Germany
| | - Pasquale Striano
- IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
| | | | - Masaki Fukata
- Division of Membrane Physiology, Department of Molecular and Cellular Physiology, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
- Department of Physiological Sciences, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi 444-8585, Japan
| | - Yvonne Hilhorst-Hofstee
- Department of Clinical Genetics, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Henry Houlden
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| |
Collapse
|
28
|
Lischka A, Lassuthova P, Çakar A, Record CJ, Van Lent J, Baets J, Dohrn MF, Senderek J, Lampert A, Bennett DL, Wood JN, Timmerman V, Hornemann T, Auer-Grumbach M, Parman Y, Hübner CA, Elbracht M, Eggermann K, Geoffrey Woods C, Cox JJ, Reilly MM, Kurth I. Genetic pain loss disorders. Nat Rev Dis Primers 2022; 8:41. [PMID: 35710757 DOI: 10.1038/s41572-022-00365-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/10/2022] [Indexed: 01/05/2023]
Abstract
Genetic pain loss includes congenital insensitivity to pain (CIP), hereditary sensory neuropathies and, if autonomic nerves are involved, hereditary sensory and autonomic neuropathy (HSAN). This heterogeneous group of disorders highlights the essential role of nociception in protecting against tissue damage. Patients with genetic pain loss have recurrent injuries, burns and poorly healing wounds as disease hallmarks. CIP and HSAN are caused by pathogenic genetic variants in >20 genes that lead to developmental defects, neurodegeneration or altered neuronal excitability of peripheral damage-sensing neurons. These genetic variants lead to hyperactivity of sodium channels, disturbed haem metabolism, altered clathrin-mediated transport and impaired gene regulatory mechanisms affecting epigenetic marks, long non-coding RNAs and repetitive elements. Therapies for pain loss disorders are mainly symptomatic but the first targeted therapies are being tested. Conversely, chronic pain remains one of the greatest unresolved medical challenges, and the genes and mechanisms associated with pain loss offer new targets for analgesics. Given the progress that has been made, the coming years are promising both in terms of targeted treatments for pain loss disorders and the development of innovative pain medicines based on knowledge of these genetic diseases.
Collapse
Affiliation(s)
- Annette Lischka
- Institute of Human Genetics, Medical Faculty, Uniklinik RWTH Aachen University, Aachen, Germany
| | - Petra Lassuthova
- Department of Paediatric Neurology, 2nd Faculty of Medicine, Charles University in Prague and Motol University Hospital, Prague, Czech Republic
| | - Arman Çakar
- Neuromuscular Unit, Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Christopher J Record
- Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Jonas Van Lent
- Peripheral Neuropathy Research Group, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Laboratory of Neuromuscular Pathology, Institute Born Bunge, Antwerp, Belgium
| | - Jonathan Baets
- Laboratory of Neuromuscular Pathology, Institute Born Bunge, Antwerp, Belgium
- Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
- Neuromuscular Reference Centre, Department of Neurology, Antwerp University Hospital, Antwerp, Belgium
| | - Maike F Dohrn
- Department of Neurology, Medical Faculty, Uniklinik RWTH Aachen University, Aachen, Germany
- Dr. John T. Macdonald Foundation, Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Jan Senderek
- Friedrich-Baur-Institute, Department of Neurology, Ludwig-Maximilians-University, Munich, Germany
| | - Angelika Lampert
- Institute of Physiology, Medical Faculty, Uniklinik RWTH Aachen University, Aachen, Germany
| | - David L Bennett
- Nuffield Department of Clinical Neuroscience, Oxford University, Oxford, UK
| | - John N Wood
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London, UK
| | - Vincent Timmerman
- Peripheral Neuropathy Research Group, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Laboratory of Neuromuscular Pathology, Institute Born Bunge, Antwerp, Belgium
| | - Thorsten Hornemann
- Department of Clinical Chemistry, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Michaela Auer-Grumbach
- Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Vienna, Austria
| | - Yesim Parman
- Neuromuscular Unit, Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | | | - Miriam Elbracht
- Institute of Human Genetics, Medical Faculty, Uniklinik RWTH Aachen University, Aachen, Germany
| | - Katja Eggermann
- Institute of Human Genetics, Medical Faculty, Uniklinik RWTH Aachen University, Aachen, Germany
| | - C Geoffrey Woods
- Cambridge Institute for Medical Research, Keith Peters Building, Cambridge Biomedical Campus, Cambridge, UK
| | - James J Cox
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London, UK
| | - Mary M Reilly
- Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Ingo Kurth
- Institute of Human Genetics, Medical Faculty, Uniklinik RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
29
|
Girisha KM, Jacob P, SriLakshmi Bhavani G, Shah H, Mortier GR. Report of three patients, including monozygotic twins and review of clinical and mutation profiles. Eur J Med Genet 2022; 65:104521. [PMID: 35568358 DOI: 10.1016/j.ejmg.2022.104521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/03/2022] [Accepted: 05/08/2022] [Indexed: 11/03/2022]
Abstract
Steel syndrome (MIM# 615155) is an autosomal recessive skeletal disorder, characterized by dislocations of the hips and radial heads, carpal coalition, short stature, facial dysmorphism, and scoliosis. Until date 47 patients have been reported. However, disease causing variants have been identified only in twenty Puerto Rican and nine non-Puerto Rican families. Here we report two monozygotic twins and a boy from two families with novel missense variants, c.295G > A p.(Ala99 Thr), c.3056C > A p.(Pro1019His) and c.2521G > A p.(Gly841Arg) in COL27A1. We describe for the first time, cleft palate and delayed carpal bone ossification as features of Steel syndrome. We reviewed clinical features in all mutation-proven Steel syndrome patients. Short stature and dislocation/subluxation of hip joint are consistently observed. Other features include dislocated radial heads, scoliosis, lordosis, carpal coalition, facial dysmorphism, hearing loss, bilateral fifth finger clinodactyly, knee deformities and developmental delay. Seven missense variants and eight null variants are reported in COL27A1 until date. We also looked into the genotype-phenotype correlation in Puerto Rican and non-Puerto Rican patients.
Collapse
Affiliation(s)
- Katta M Girisha
- Department of Medical Genetics, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, India.
| | - Prince Jacob
- Department of Medical Genetics, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, India.
| | - Gandham SriLakshmi Bhavani
- Department of Medical Genetics, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, India.
| | - Hitesh Shah
- Department of Orthopaedics, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, India.
| | - Geert R Mortier
- Center for Medical Genetics, University of Antwerp/Antwerp University Hospital, Antwerp, Belgium.
| |
Collapse
|
30
|
Eigenhuis KN, Somsen HB, van den Berg DLC. Transcription Pause and Escape in Neurodevelopmental Disorders. Front Neurosci 2022; 16:846272. [PMID: 35615272 PMCID: PMC9125161 DOI: 10.3389/fnins.2022.846272] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 04/11/2022] [Indexed: 11/17/2022] Open
Abstract
Transcription pause-release is an important, highly regulated step in the control of gene expression. Modulated by various factors, it enables signal integration and fine-tuning of transcriptional responses. Mutations in regulators of pause-release have been identified in a range of neurodevelopmental disorders that have several common features affecting multiple organ systems. This review summarizes current knowledge on this novel subclass of disorders, including an overview of clinical features, mechanistic details, and insight into the relevant neurodevelopmental processes.
Collapse
|
31
|
Jin L, Qu K, Hanif Q, Zhang J, Liu J, Chen N, Suolang Q, Lei C, Huang B. Whole-Genome Sequencing of Endangered Dengchuan Cattle Reveals Its Genomic Diversity and Selection Signatures. Front Genet 2022; 13:833475. [PMID: 35422847 PMCID: PMC9001881 DOI: 10.3389/fgene.2022.833475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 03/04/2022] [Indexed: 12/14/2022] Open
Abstract
Dengchuan cattle are the only dairy yellow cattle and endangered cattle among Yunnan native cattle breeds. However, its genetic background remains unclear. Here, we performed whole-genome sequencing of ten Dengchuan cattle. Integrating our data with the publicly available data, Dengchuan cattle were observed to be highly interbred than other cattle in the dataset. Furthermore, the positive selective signals were mainly manifested in candidate genes and pathways related to milk production, disease resistance, growth and development, and heat tolerance. Notably, five genes (KRT39, PGR, KRT40, ESR2, and PRKACB) were significantly enriched in the estrogen signaling pathway. Moreover, the missense mutation in the PGR gene (c.190T > C, p.Ser64Pro) showed a homozygous mutation pattern with higher frequency (83.3%) in Dengchuan cattle. In addition, a large number of strong candidate regions matched genes and QTLs related to milk yield and composition. Our research provides a theoretical basis for analyzing the genetic mechanism underlying Dengchuan cattle with excellent lactation and adaptability, crude feed tolerance, good immune performance, and small body size and also laid a foundation for genetic breeding research of Dengchuan cattle in the future.
Collapse
Affiliation(s)
- Liangliang Jin
- Yunnan Academy of Grassland and Animal Science, Kunming, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Kaixing Qu
- Academy of Science and Technology, Chuxiong Normal University, Chuxiong, China
| | - Quratulain Hanif
- National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
| | - Jicai Zhang
- Yunnan Academy of Grassland and Animal Science, Kunming, China
| | - Jianyong Liu
- Yunnan Academy of Grassland and Animal Science, Kunming, China
| | - Ningbo Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Quji Suolang
- Institute of Animal Science, Tibet Academy of Agricultural and Animal Husbandry Science, Lhasa, China
| | - Chuzhao Lei
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Bizhi Huang
- Yunnan Academy of Grassland and Animal Science, Kunming, China
| |
Collapse
|
32
|
Neurodevelopmental Disorders Associated with PSD-95 and Its Interaction Partners. Int J Mol Sci 2022; 23:ijms23084390. [PMID: 35457207 PMCID: PMC9025546 DOI: 10.3390/ijms23084390] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 01/17/2023] Open
Abstract
The postsynaptic density (PSD) is a massive protein complex, critical for synaptic strength and plasticity in excitatory neurons. Here, the scaffolding protein PSD-95 plays a crucial role as it organizes key PSD components essential for synaptic signaling, development, and survival. Recently, variants in DLG4 encoding PSD-95 were found to cause a neurodevelopmental disorder with a variety of clinical features including intellectual disability, developmental delay, and epilepsy. Genetic variants in several of the interaction partners of PSD-95 are associated with similar phenotypes, suggesting that deficient PSD-95 may affect the interaction partners, explaining the overlapping symptoms. Here, we review the transmembrane interaction partners of PSD-95 and their association with neurodevelopmental disorders. We assess how the structural changes induced by DLG4 missense variants may disrupt or alter such protein-protein interactions, and we argue that the pathological effect of DLG4 variants is, at least partly, exerted indirectly through interaction partners of PSD-95. This review presents a direction for functional studies to elucidate the pathogenic mechanism of deficient PSD-95, providing clues for therapeutic strategies.
Collapse
|
33
|
Broly M, Polevoda BV, Awayda KM, Tong N, Lentini J, Besnard T, Deb W, O'Rourke D, Baptista J, Ellard S, Almannai M, Hashem M, Abdulwahab F, Shamseldin H, Al-Tala S, Alkuraya FS, Leon A, van Loon RLE, Ferlini A, Sanchini M, Bigoni S, Ciorba A, van Bokhoven H, Iqbal Z, Al-Maawali A, Al-Murshedi F, Ganesh A, Al-Mamari W, Lim SC, Pais LS, Brown N, Riazuddin S, Bézieau S, Fu D, Isidor B, Cogné B, O'Connell MR. THUMPD1 bi-allelic variants cause loss of tRNA acetylation and a syndromic neurodevelopmental disorder. Am J Hum Genet 2022; 109:587-600. [PMID: 35196516 PMCID: PMC9069073 DOI: 10.1016/j.ajhg.2022.02.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 02/01/2022] [Indexed: 12/16/2022] Open
Abstract
Covalent tRNA modifications play multi-faceted roles in tRNA stability, folding, and recognition, as well as the rate and fidelity of translation, and other cellular processes such as growth, development, and stress responses. Mutations in genes that are known to regulate tRNA modifications lead to a wide array of phenotypes and diseases including numerous cognitive and neurodevelopmental disorders, highlighting the critical role of tRNA modification in human disease. One such gene, THUMPD1, is involved in regulating tRNA N4-acetylcytidine modification (ac4C), and recently was proposed as a candidate gene for autosomal-recessive intellectual disability. Here, we present 13 individuals from 8 families who harbor rare loss-of-function variants in THUMPD1. Common phenotypic findings included global developmental delay, speech delay, moderate to severe intellectual deficiency, behavioral abnormalities such as angry outbursts, facial dysmorphism, and ophthalmological abnormalities. We demonstrate that the bi-allelic variants identified cause loss of function of THUMPD1 and that this defect results in a loss of ac4C modification in small RNAs, and of individually purified tRNA-Ser-CGA. We further corroborate this effect by showing a loss of tRNA acetylation in two CRISPR-Cas9-generated THUMPD1 KO cell lines. In addition, we also show the resultant amino acid substitution that occurs in a missense THUMPD1 allele identified in an individual with compound heterozygous variants results in a marked decrease in THUMPD1 stability and RNA-binding capacity. Taken together, these results suggest that the lack of tRNA acetylation due to THUMPD1 loss of function results in a syndromic form of intellectual disability associated with developmental delay, behavioral abnormalities, hearing loss, and facial dysmorphism.
Collapse
Affiliation(s)
- Martin Broly
- Service de Génétique Médicale, CHU de Nantes, 44000 Nantes, France
| | - Bogdan V Polevoda
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester, Rochester, NY 14642, USA
| | - Kamel M Awayda
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester, Rochester, NY 14642, USA
| | - Ning Tong
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester, Rochester, NY 14642, USA
| | - Jenna Lentini
- Department of Biology, Center for RNA Biology, University of Rochester, Rochester, NY 14642, USA
| | - Thomas Besnard
- Service de Génétique Médicale, CHU de Nantes, 44000 Nantes, France; Université de Nantes, CNRS, INSERM, l'institut du thorax, 44093 Nantes, France
| | - Wallid Deb
- Service de Génétique Médicale, CHU de Nantes, 44000 Nantes, France; Université de Nantes, CNRS, INSERM, l'institut du thorax, 44093 Nantes, France
| | - Declan O'Rourke
- Department of Neurology, Children's Health Ireland at Temple Street, Dublin, D01 XD99, Ireland
| | - Julia Baptista
- Exeter Genomics Laboratory, Royal Devon and Exeter NHS Foundation Trust, Exeter EX2 5DW, UK; Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter EX1 2LU, UK
| | - Sian Ellard
- Exeter Genomics Laboratory, Royal Devon and Exeter NHS Foundation Trust, Exeter EX2 5DW, UK; Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter EX1 2LU, UK
| | - Mohammed Almannai
- Section of Medical Genetics, Children's Hospital, King Fahad Medical City, Riyadh 12231, Saudi Arabia
| | - Mais Hashem
- Department of Translational Genomics, Center for Genomics Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Ferdous Abdulwahab
- Department of Translational Genomics, Center for Genomics Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Hanan Shamseldin
- Department of Translational Genomics, Center for Genomics Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Saeed Al-Tala
- Pediatrics Department, Armed Forces Hospital, Khamis Mushait 62413, Saudi Arabia
| | - Fowzan S Alkuraya
- Department of Translational Genomics, Center for Genomics Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia; College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Alberta Leon
- Research & Innovation (R&I Genetics) Srl, Genetic Laboratory, 35127 Padua, Italy
| | - Rosa L E van Loon
- Department of Genetics, University of Utrecht, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Alessandra Ferlini
- Medical Genetics Unit, Department of Medical Sciences, University of Ferrara, Ferrara 44121, Italy
| | - Mariabeatrice Sanchini
- Medical Genetics Unit, Department of Medical Sciences, University of Ferrara, Ferrara 44121, Italy
| | - Stefania Bigoni
- Medical Genetics Unit, Department of Medical Sciences, University of Ferrara, Ferrara 44121, Italy
| | - Andrea Ciorba
- ENT & Audiology Unit, Department of Neurosciences, University Hospital of Ferrara, 44124 Cona FE, Italy
| | - Hans van Bokhoven
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 HR Nijmegen, the Netherlands; Department of Human Genetics, Radboud University Medical Center, 6525 HR Nijmegen, the Netherlands
| | - Zafar Iqbal
- Department of Neurology, Oslo University Hospital, 0188 Oslo, Norway
| | - Almundher Al-Maawali
- Department of Genetics, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat 123, Oman; Genetic and Developmental Medicine Clinic, Sultan Qaboos University Hospital, Muscat 123, Oman
| | - Fathiya Al-Murshedi
- Department of Genetics, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat 123, Oman; Genetic and Developmental Medicine Clinic, Sultan Qaboos University Hospital, Muscat 123, Oman
| | - Anuradha Ganesh
- Department of Ophthalmology, Pediatric Ophthalmology and Ocular Genetics Unit, Sultan Qaboos University Hospital, Muscat 123, Oman
| | - Watfa Al-Mamari
- Department of Child Health, Sultan Qaboos University Hospital, Muscat 123, Oman
| | - Sze Chern Lim
- Victorian Clinical Genetics Services, Parkville, VIC 3052, Australia; Murdoch Children's Research Institute, Parkville, VIC 3052, Australia
| | - Lynn S Pais
- Broad Center for Mendelian Genomics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Natasha Brown
- Victorian Clinical Genetics Services, Parkville, VIC 3052, Australia; Murdoch Children's Research Institute, Parkville, VIC 3052, Australia; Department of Paediatrics, University of Melbourne, Parkville, VIC 3052, Australia
| | - Saima Riazuddin
- Laboratory of Molecular Genetics, Department of Otorhinolaryngology Head and Neck Surgery, School of Medicine, University of Maryland, Baltimore, MD 21201, USA; Pakistan Institute of Medical Sciences, Shaheed Zulfiqar Ali Bhutto Medical University, Sector G-8/3, Islamabad, Pakistan
| | - Stéphane Bézieau
- Service de Génétique Médicale, CHU de Nantes, 44000 Nantes, France; Université de Nantes, CNRS, INSERM, l'institut du thorax, 44093 Nantes, France
| | - Dragony Fu
- Department of Biology, Center for RNA Biology, University of Rochester, Rochester, NY 14642, USA
| | - Bertrand Isidor
- Service de Génétique Médicale, CHU de Nantes, 44000 Nantes, France; Université de Nantes, CNRS, INSERM, l'institut du thorax, 44093 Nantes, France
| | - Benjamin Cogné
- Service de Génétique Médicale, CHU de Nantes, 44000 Nantes, France; Université de Nantes, CNRS, INSERM, l'institut du thorax, 44093 Nantes, France.
| | - Mitchell R O'Connell
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester, Rochester, NY 14642, USA.
| |
Collapse
|
34
|
Rowland ME, Jajarmi JM, Osborne TSM, Ciernia AV. Insights Into the Emerging Role of Baf53b in Autism Spectrum Disorder. Front Mol Neurosci 2022; 15:805158. [PMID: 35185468 PMCID: PMC8852769 DOI: 10.3389/fnmol.2022.805158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 01/11/2022] [Indexed: 12/15/2022] Open
Abstract
Accurate and precise regulation of gene expression is necessary to ensure proper brain development and plasticity across the lifespan. As an ATP-dependent chromatin-remodeling complex, the BAF (Brg1 Associated Factor) complex can alter histone-DNA interactions, facilitating dynamic changes in gene expression by controlling DNA accessibility to the transcriptional machinery. Mutations in 12 of the potential 29 subunit genes that compose the BAF nucleosome remodeling complex have been identified in several developmental disorders including Autism spectrum disorders (ASD) and intellectual disability. A novel, neuronal version of BAF (nBAF) has emerged as promising candidate in the development of ASD as its expression is tied to neuron differentiation and it’s hypothesized to coordinate expression of synaptic genes across brain development. Recently, mutations in BAF53B, one of the neuron specific subunits of the nBAF complex, have been identified in patients with ASD and Developmental and epileptic encephalopathy-76 (DEE76), indicating BAF53B is essential for proper brain development. Recent work in cultured neurons derived from patients with BAF53B mutations suggests links between loss of nBAF function and neuronal dendritic spine formation. Deletion of one or both copies of mouse Baf53b disrupts dendritic spine development, alters actin dynamics and results in fewer synapses in vitro. In the mouse, heterozygous loss of Baf53b severely impacts synaptic plasticity and long-term memory that is reversible with reintroduction of Baf53b or manipulations of the synaptic plasticity machinery. Furthermore, surviving Baf53b-null mice display ASD-related behaviors, including social impairments and repetitive behaviors. This review summarizes the emerging evidence linking deleterious variants of BAF53B identified in human neurodevelopmental disorders to abnormal transcriptional regulation that produces aberrant synapse development and behavior.
Collapse
|
35
|
Aldhalaan H, AlBakheet A, AlRuways S, AlMutairi N, AlNakiyah M, AlGhofaili R, Cardona-Londoño KJ, Alahmadi KO, AlQudairy H, AlRasheed MM, Colak D, Arold ST, Kaya N. A Novel GEMIN4 Variant in a Consanguineous Family Leads to Neurodevelopmental Impairment with Severe Microcephaly, Spastic Quadriplegia, Epilepsy, and Cataracts. Genes (Basel) 2021; 13:genes13010092. [PMID: 35052432 PMCID: PMC8774908 DOI: 10.3390/genes13010092] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 12/24/2021] [Accepted: 12/25/2021] [Indexed: 12/24/2022] Open
Abstract
Pathogenic variants in GEMIN4 contribute to a hereditary disorder characterized by neurodevelopmental features, microcephaly, cataracts, and renal abnormalities (known as NEDMCR). To date, only two homoallelic variations have been linked to the disease. Moreover, clinical features associated with the variants have not been fully elucidated yet. Here, we identified a novel variant in GEMIN4 (NM_015721:exon2:c.440A>G:p.His147Arg) in two siblings from a consanguineous Saudi family by using whole exome sequencing followed by Sanger sequence verification. We comprehensively investigated the patients’ clinical features, including brain imaging and electroencephalogram findings, and compared their phenotypic characteristics with those of previously reported cases. In silico prediction and structural modeling support that the p.His147Arg variant is pathogenic.
Collapse
Affiliation(s)
- Hesham Aldhalaan
- Neurosciences Department, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia;
| | - Albandary AlBakheet
- Translational Genomic Department, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia; (A.A.); (S.A.); (N.A.); (M.A.); (R.A.); (H.A.)
| | - Sarah AlRuways
- Translational Genomic Department, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia; (A.A.); (S.A.); (N.A.); (M.A.); (R.A.); (H.A.)
- Clinical Pharmacy Department, College of Pharmacy, King Saud University, Riyadh 11211, Saudi Arabia;
| | - Nouf AlMutairi
- Translational Genomic Department, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia; (A.A.); (S.A.); (N.A.); (M.A.); (R.A.); (H.A.)
- Clinical Pharmacy Department, College of Pharmacy, King Saud University, Riyadh 11211, Saudi Arabia;
| | - Maha AlNakiyah
- Translational Genomic Department, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia; (A.A.); (S.A.); (N.A.); (M.A.); (R.A.); (H.A.)
- Clinical Pharmacy Department, College of Pharmacy, King Saud University, Riyadh 11211, Saudi Arabia;
| | - Reema AlGhofaili
- Translational Genomic Department, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia; (A.A.); (S.A.); (N.A.); (M.A.); (R.A.); (H.A.)
- Clinical Pharmacy Department, College of Pharmacy, King Saud University, Riyadh 11211, Saudi Arabia;
| | - Kelly J. Cardona-Londoño
- Division of Biological and Environmental Sciences and Engineering (BESE), Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; (K.J.C.-L.); (S.T.A.)
| | - Khalid Omar Alahmadi
- Department of Radiology, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia;
| | - Hanan AlQudairy
- Translational Genomic Department, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia; (A.A.); (S.A.); (N.A.); (M.A.); (R.A.); (H.A.)
| | - Maha M. AlRasheed
- Clinical Pharmacy Department, College of Pharmacy, King Saud University, Riyadh 11211, Saudi Arabia;
| | - Dilek Colak
- Department of Biostatistics, Epidemiology and Scientific Computing, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia;
| | - Stefan T. Arold
- Division of Biological and Environmental Sciences and Engineering (BESE), Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; (K.J.C.-L.); (S.T.A.)
| | - Namik Kaya
- Translational Genomic Department, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia; (A.A.); (S.A.); (N.A.); (M.A.); (R.A.); (H.A.)
- Correspondence: ; Tel.: +966-11-4647272 (ext. 39612)
| |
Collapse
|
36
|
Borgio JF. Heterogeneity in biomarkers, mitogenome and genetic disorders of the Arab population with special emphasis on large-scale whole-exome sequencing. Arch Med Sci 2021; 19:765-783. [PMID: 37313193 PMCID: PMC10259412 DOI: 10.5114/aoms/145370] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/27/2021] [Indexed: 09/20/2024] Open
Abstract
More than 25 million DNA variations have been discovered as novel including major alleles from the Arab population. Exome studies on the Saudi genome discovered > 3000 novel nucleotide variants associated with > 1200 rare genetic disorders. Reclassification of many pathogenic variants in the Human Gene Mutation Database and ClinVar Database as benign through the Arab database facilitates building a detailed and comprehensive map of the human morbid genome. Intellectual disability comes first with the combined and observed carrier frequency of 0.06779 among Saudi Arabians; retinal dystrophy is the next highest. Genome studies have discovered interesting novel candidate disease marker variations in many genes from consanguineous families. More than 7 pathogenic variants in the C12orf57 gene are prominently associated with the etiology of developmental delay/intellectual impairment in Arab ancestries. Advances in large-scale genome studies open a new outlook on Mendelian genes and disorders. In the past half-dozen years, candidate genes of intellectual disability, neurogenetic disorders, blood and bleeding disorders and rare genetic diseases have been well documented through genomic medicine studies in combination with advanced computational biology applications. The Arab mitogenome exposed hundreds of variations in the mtDNA genome and ancestral sharing with Africa, the Near East and East Asia and its association with obesity. These recent discoveries in disease markers and molecular genetics of the Arab population will have a positive impact towards supporting genetic counsellors on reaching consanguineous families to manage stress linked to genetics and precision medicine. This narrative review summarizes the advances in molecular medical genetics and recent discoveries on pathogenic variants. Despite the fact that these initiatives are targeting the genetics and genomics of disorders prevalent in Arab populations, a lack of complete cooperation across the projects needed to be revisited to uncover the Arab population's prominent disease markers. This shows that further study is needed in genomics to fully comprehend the molecular abnormalities and associated pathogenesis that cause inherited disorders in Arab ancestries.
Collapse
Affiliation(s)
- J Francis Borgio
- Department of Genetic Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| |
Collapse
|
37
|
Yokoi N, Fukata Y, Okatsu K, Yamagata A, Liu Y, Sanbo M, Miyazaki Y, Goto T, Abe M, Kassai H, Sakimura K, Meijer D, Hirabayashi M, Fukai S, Fukata M. 14-3-3 proteins stabilize LGI1-ADAM22 levels to regulate seizure thresholds in mice. Cell Rep 2021; 37:110107. [PMID: 34910912 DOI: 10.1016/j.celrep.2021.110107] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/08/2021] [Accepted: 11/16/2021] [Indexed: 01/17/2023] Open
Abstract
What percentage of the protein function is required to prevent disease symptoms is a fundamental question in genetic disorders. Decreased transsynaptic LGI1-ADAM22 protein complexes, because of their mutations or autoantibodies, cause epilepsy and amnesia. However, it remains unclear how LGI1-ADAM22 levels are regulated and how much LGI1-ADAM22 function is required. Here, by genetic and structural analysis, we demonstrate that quantitative dual phosphorylation of ADAM22 by protein kinase A (PKA) mediates high-affinity binding of ADAM22 to dimerized 14-3-3. This interaction protects LGI1-ADAM22 from endocytosis-dependent degradation. Accordingly, forskolin-induced PKA activation increases ADAM22 levels. Leveraging a series of ADAM22 and LGI1 hypomorphic mice, we find that ∼50% of LGI1 and ∼10% of ADAM22 levels are sufficient to prevent lethal epilepsy. Furthermore, ADAM22 function is required in excitatory and inhibitory neurons. These results suggest strategies to increase LGI1-ADAM22 complexes over the required levels by targeting PKA or 14-3-3 for epilepsy treatment.
Collapse
Affiliation(s)
- Norihiko Yokoi
- Division of Membrane Physiology, Department of Molecular and Cellular Physiology, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan; Department of Physiological Sciences, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi 444-8585, Japan
| | - Yuko Fukata
- Division of Membrane Physiology, Department of Molecular and Cellular Physiology, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan; Department of Physiological Sciences, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi 444-8585, Japan.
| | - Kei Okatsu
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Atsushi Yamagata
- RIKEN Center for Biosystems Dynamics Research, Yokohama, Kanagawa 230-0045, Japan
| | - Yan Liu
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Makoto Sanbo
- Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
| | - Yuri Miyazaki
- Division of Membrane Physiology, Department of Molecular and Cellular Physiology, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan; Department of Physiological Sciences, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi 444-8585, Japan
| | - Teppei Goto
- Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
| | - Manabu Abe
- Department of Animal Model Development, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Hidetoshi Kassai
- Laboratory of Animal Resources, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Kenji Sakimura
- Department of Animal Model Development, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Dies Meijer
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Masumi Hirabayashi
- Department of Physiological Sciences, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi 444-8585, Japan; Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
| | - Shuya Fukai
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Masaki Fukata
- Division of Membrane Physiology, Department of Molecular and Cellular Physiology, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan; Department of Physiological Sciences, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi 444-8585, Japan.
| |
Collapse
|
38
|
Pastore SF, Muhammad T, Harripaul R, Lau R, Khan MTM, Khan MI, Islam O, Kang C, Ayub M, Jelani M, Vincent JB. Biallelic inheritance in a single Pakistani family with intellectual disability implicates new candidate gene RDH14. Sci Rep 2021; 11:23113. [PMID: 34848785 PMCID: PMC8632963 DOI: 10.1038/s41598-021-02599-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 11/12/2021] [Indexed: 11/19/2022] Open
Abstract
In a multi-branch family from Pakistan, individuals presenting with palmoplantar keratoderma segregate in autosomal dominant fashion, and individuals with intellectual disability (ID) segregate in apparent autosomal recessive fashion. Initial attempts to identify the ID locus using homozygosity-by-descent (HBD) mapping were unsuccessful. However, following an assumption of locus heterogeneity, a reiterative HBD approach in concert with whole exome sequencing (WES) was employed. We identified a known disease-linked mutation in the polymicrogyria gene, ADGRG1, in two affected members. In the remaining two (living) affected members, HBD mapping cross-referenced with WES data identified a single biallelic frameshifting variant in the gene encoding retinol dehydrogenase 14 (RDH14). Transcription data indicate that RDH14 is expressed in brain, but not in retina. Magnetic resonance imaging for the individuals with this RDH14 mutation show no signs of polymicrogyria, however cerebellar atrophy was a notable feature. RDH14 in HEK293 cells localized mainly in the nucleoplasm. Co-immunoprecipitation studies confirmed binding to the proton-activated chloride channel 1 (PACC1/TMEM206), which is greatly diminished by the mutation. Our studies suggest RDH14 as a candidate for autosomal recessive ID and cerebellar atrophy, implicating either disrupted retinoic acid signaling, or, through PACC1, disrupted chloride ion homeostasis in the brain as a putative disease mechanism.
Collapse
Affiliation(s)
- Stephen F Pastore
- Molecular Neuropsychiatry and Development (MiND) Lab, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 250 College Street, Toronto, ON, M5T 1R8, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Tahir Muhammad
- Molecular Neuropsychiatry and Development (MiND) Lab, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 250 College Street, Toronto, ON, M5T 1R8, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Ricardo Harripaul
- Molecular Neuropsychiatry and Development (MiND) Lab, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 250 College Street, Toronto, ON, M5T 1R8, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Rebecca Lau
- Molecular Neuropsychiatry and Development (MiND) Lab, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 250 College Street, Toronto, ON, M5T 1R8, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Muhammad Tariq Masood Khan
- Department of Pathology, North-West School of Medicine, Hayatabad, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Ismail Khan
- Department of Zoology, Islamia College Peshawar, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Omar Islam
- Department of Diagnostic Radiology, Queen's University, Kingston, ON, Canada
| | - Changsoo Kang
- Department of Biology and Institute of Basic Sciences, Sungshin Women's University, Seoul, Republic of Korea
| | - Muhammad Ayub
- Department of Psychiatry, Queen's University Kingston, Kingston, ON, Canada
| | - Musharraf Jelani
- Centre for Omic Sciences, Islamia College Peshawar, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - John B Vincent
- Molecular Neuropsychiatry and Development (MiND) Lab, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 250 College Street, Toronto, ON, M5T 1R8, Canada.
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada.
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
39
|
Pastore SF, Muhammad T, Harripaul R, Lau R, Khan MTM, Khan MI, Islam O, Kang C, Ayub M, Jelani M, Vincent JB. Biallelic inheritance in a single Pakistani family with intellectual disability implicates new candidate gene RDH14. Sci Rep 2021; 11:23113. [DOI: https:/doi.org/10.1038/s41598-021-02599-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 11/12/2021] [Indexed: 10/10/2023] Open
Abstract
AbstractIn a multi-branch family from Pakistan, individuals presenting with palmoplantar keratoderma segregate in autosomal dominant fashion, and individuals with intellectual disability (ID) segregate in apparent autosomal recessive fashion. Initial attempts to identify the ID locus using homozygosity-by-descent (HBD) mapping were unsuccessful. However, following an assumption of locus heterogeneity, a reiterative HBD approach in concert with whole exome sequencing (WES) was employed. We identified a known disease-linked mutation in the polymicrogyria gene, ADGRG1, in two affected members. In the remaining two (living) affected members, HBD mapping cross-referenced with WES data identified a single biallelic frameshifting variant in the gene encoding retinol dehydrogenase 14 (RDH14). Transcription data indicate that RDH14 is expressed in brain, but not in retina. Magnetic resonance imaging for the individuals with this RDH14 mutation show no signs of polymicrogyria, however cerebellar atrophy was a notable feature. RDH14 in HEK293 cells localized mainly in the nucleoplasm. Co-immunoprecipitation studies confirmed binding to the proton-activated chloride channel 1 (PACC1/TMEM206), which is greatly diminished by the mutation. Our studies suggest RDH14 as a candidate for autosomal recessive ID and cerebellar atrophy, implicating either disrupted retinoic acid signaling, or, through PACC1, disrupted chloride ion homeostasis in the brain as a putative disease mechanism.
Collapse
|
40
|
Mancini GMS, Smits DJ, Dekker J, Schot R, de Wit MCY, Lequin MH, Dremmen M, Brooks AS, van Ham T, Verheijen FW, Fornerod M, Dobyns WB, Wilke M. Multidisciplinary interaction and MCD gene discovery. The perspective of the clinical geneticist. Eur J Paediatr Neurol 2021; 35:27-34. [PMID: 34592643 DOI: 10.1016/j.ejpn.2021.09.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/18/2021] [Accepted: 09/09/2021] [Indexed: 10/20/2022]
Abstract
The increasing pace of gene discovery in the last decade has brought a major change in the way the genetic causes of brain malformations are being diagnosed. Unbiased genomic screening has gained the first place in the diagnostic protocol of a child with congenital (brain) anomalies and the detected variants are matched with the phenotypic presentation afterwards. This process is defined as "reverse phenotyping". Screening of DNA, through copy number variant analysis of microarrays and analysis of exome data on different platforms, obtained from the index patient and both parents has become a routine approach in many centers worldwide. Clinicians are used to multidisciplinary team interaction in patient care and disease management and this explains why the majority of research that has led to the discovery of new genetic disorders nowadays proceeds from clinical observations to genomic analysis and to data exchange facilitated by open access sharing databases. However, the relevance of multidisciplinary team interaction has not been object of systematic research in the field of brain malformations. This review will illustrate some examples of how diagnostically driven questions through multidisciplinary interaction, among clinical and preclinical disciplines, can be successful in the discovery of new genes related to brain malformations. The first example illustrates the setting of interaction among neurologists, geneticists and neuro-radiologists. The second illustrates the importance of interaction among clinical dysmorphologists for pattern recognition of syndromes with multiple congenital anomalies. The third example shows how fruitful it can be to step out of the "clinical comfort zone", and interact with basic scientists in applying emerging technologies to solve the diagnostic puzzles.
Collapse
Affiliation(s)
- Grazia M S Mancini
- Department of Clinical Genetics, ErasmusMC University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD, Rotterdam, the Netherlands; ENCORE Expertise Center for Genetic Neurocognitive Developmental Disorders, Erasmus, MC, Rotterdam.
| | - Daphne J Smits
- Department of Clinical Genetics, ErasmusMC University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD, Rotterdam, the Netherlands
| | - Jordy Dekker
- Department of Clinical Genetics, ErasmusMC University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD, Rotterdam, the Netherlands
| | - Rachel Schot
- Department of Clinical Genetics, ErasmusMC University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD, Rotterdam, the Netherlands; ENCORE Expertise Center for Genetic Neurocognitive Developmental Disorders, Erasmus, MC, Rotterdam
| | - Marie Claire Y de Wit
- Department of Child Neurology, Sophia Children's Hospital, ErasmusMC University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD, Rotterdam, Rotterdam, NL, the Netherlands; ENCORE Expertise Center for Genetic Neurocognitive Developmental Disorders, Erasmus, MC, Rotterdam
| | - Maarten H Lequin
- Department of Radiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Marjolein Dremmen
- Department of Radiology, Sophia Children's Hospital, ErasmusMC University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD, Rotterdam, the Netherlands; ENCORE Expertise Center for Genetic Neurocognitive Developmental Disorders, Erasmus, MC, Rotterdam
| | - Alice S Brooks
- Department of Clinical Genetics, ErasmusMC University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD, Rotterdam, the Netherlands
| | - Tjakko van Ham
- Department of Clinical Genetics, ErasmusMC University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD, Rotterdam, the Netherlands
| | - Frans W Verheijen
- Department of Clinical Genetics, ErasmusMC University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD, Rotterdam, the Netherlands; ENCORE Expertise Center for Genetic Neurocognitive Developmental Disorders, Erasmus, MC, Rotterdam
| | - Maarten Fornerod
- Department of Cell Biology, ErasmusMC University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD, Rotterdam, the Netherlands
| | - William B Dobyns
- Department of Pediatrics (Genetics), University of Minnesota, 420 Delaware Street SE, MMC75, Minneapolis, MN, 55454, USA
| | - Martina Wilke
- Department of Clinical Genetics, ErasmusMC University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD, Rotterdam, the Netherlands; ENCORE Expertise Center for Genetic Neurocognitive Developmental Disorders, Erasmus, MC, Rotterdam
| |
Collapse
|
41
|
Shamseldin HE, AlAbdi L, Maddirevula S, Alsaif HS, Alzahrani F, Ewida N, Hashem M, Abdulwahab F, Abuyousef O, Kuwahara H, Gao X, Alkuraya FS. Lethal variants in humans: lessons learned from a large molecular autopsy cohort. Genome Med 2021; 13:161. [PMID: 34645488 PMCID: PMC8511862 DOI: 10.1186/s13073-021-00973-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 09/17/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Molecular autopsy refers to DNA-based identification of the cause of death. Despite recent attempts to broaden its scope, the term remains typically reserved to sudden unexplained death in young adults. In this study, we aim to showcase the utility of molecular autopsy in defining lethal variants in humans. METHODS We describe our experience with a cohort of 481 cases in whom the cause of premature death was investigated using DNA from the index or relatives (molecular autopsy by proxy). Molecular autopsy tool was typically exome sequencing although some were investigated using targeted approaches in the earlier stages of the study; these include positional mapping, targeted gene sequencing, chromosomal microarray, and gene panels. RESULTS The study includes 449 cases from consanguineous families and 141 lacked family history (simplex). The age range was embryos to 18 years. A likely causal variant (pathogenic/likely pathogenic) was identified in 63.8% (307/481), a much higher yield compared to the general diagnostic yield (43%) from the same population. The predominance of recessive lethal alleles allowed us to implement molecular autopsy by proxy in 55 couples, and the yield was similarly high (63.6%). We also note the occurrence of biallelic lethal forms of typically non-lethal dominant disorders, sometimes representing a novel bona fide biallelic recessive disease trait. Forty-six disease genes with no OMIM phenotype were identified in the course of this study. The presented data support the candidacy of two other previously reported novel disease genes (FAAH2 and MSN). The focus on lethal phenotypes revealed many examples of interesting phenotypic expansion as well as remarkable variability in clinical presentation. Furthermore, important insights into population genetics and variant interpretation are highlighted based on the results. CONCLUSIONS Molecular autopsy, broadly defined, proved to be a helpful clinical approach that provides unique insights into lethal variants and the clinical annotation of the human genome.
Collapse
Affiliation(s)
- Hanan E Shamseldin
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Lama AlAbdi
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Sateesh Maddirevula
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Hessa S Alsaif
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
- Center of Excellence for Biomedicine, King Abdulaziz City for Science and Technology, Riyadh, 12354, Saudi Arabia
| | - Fatema Alzahrani
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Nour Ewida
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Mais Hashem
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Firdous Abdulwahab
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Omar Abuyousef
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Hiroyuki Kuwahara
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Xin Gao
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Fowzan S Alkuraya
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.
| |
Collapse
|
42
|
Okamoto N, Miya F, Tsunoda T, Kanemura Y, Saitoh S, Kato M, Yanagi K, Kaname T, Kosaki K. Four pedigrees with aminoacyl-tRNA synthetase abnormalities. Neurol Sci 2021; 43:2765-2774. [PMID: 34585293 DOI: 10.1007/s10072-021-05626-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 09/23/2021] [Indexed: 01/16/2023]
Abstract
Aminoacyl tRNA synthetases (ARSs) are highly conserved enzymes that link amino acids to their cognate tRNAs. Thirty-seven ARSs are known and their deficiencies cause various genetic disorders. Variants in some ARSs are associated with the autosomal dominant inherited form of axonal neuropathy, including Charcot-Marie-Tooth (CMT) disease. Variants of genes encoding ARSs often cause disorders in an autosomal recessive fashion. The clinical features of cytosolic ARS deficiencies are more variable, including systemic features. Deficiencies of ARSs localized in the mitochondria are often associated with neurological disorders including Leigh and early-onset epileptic syndromes. Whole exome sequencing (WES) is an efficient way to identify the genes causing various symptoms in patients. We identified 4 pedigrees with novel compound heterozygous variants in ARS genes (WARS1, MARS1, AARS2, and PARS2) by WES. Some unique manifestations were noted. The number of patients with ARSs has been increasing since the application of WES. Our findings broaden the known genetic and clinical spectrum associated with ARS variants.
Collapse
Affiliation(s)
- Nobuhiko Okamoto
- Department of Medical Genetics, Osaka Women's and Children's Hospital, Izumi, Osaka, Japan.
| | - Fuyuki Miya
- Department of Medical Science Mathematics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan.,Laboratory for Medical Science Mathematics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.,Medical Science Mathematics, Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Tatsuhiko Tsunoda
- Department of Medical Science Mathematics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan.,Laboratory for Medical Science Mathematics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.,Medical Science Mathematics, Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Yonehiro Kanemura
- Department of Neurosurgery, National Hospital Organization Osaka National Hospital, Osaka, Japan.,Department of Biomedical Research and Innovation, Institute for Clinical Research, National Hospital Organization Osaka National Hospital, Osaka, Japan
| | - Shinji Saitoh
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Mitsuhiro Kato
- Department of Pediatrics, Showa University School of Medicine, Tokyo, Japan
| | - Kumiko Yanagi
- Department of Genome Medicine, National Center for Child Health and Development, Tokyo, Japan
| | - Tadashi Kaname
- Department of Genome Medicine, National Center for Child Health and Development, Tokyo, Japan
| | - Kenjiro Kosaki
- Center for Medical Genetics, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
43
|
Baltanás FC, Berciano MT, Santos E, Lafarga M. The Childhood-Onset Neurodegeneration with Cerebellar Atrophy (CONDCA) Disease Caused by AGTPBP1 Gene Mutations: The Purkinje Cell Degeneration Mouse as an Animal Model for the Study of this Human Disease. Biomedicines 2021; 9:biomedicines9091157. [PMID: 34572343 PMCID: PMC8464709 DOI: 10.3390/biomedicines9091157] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 12/20/2022] Open
Abstract
Recent reports have identified rare, biallelic damaging variants of the AGTPBP1 gene that cause a novel and documented human disease known as childhood-onset neurodegeneration with cerebellar atrophy (CONDCA), linking loss of function of the AGTPBP1 protein to human neurodegenerative diseases. CONDCA patients exhibit progressive cognitive decline, ataxia, hypotonia or muscle weakness among other clinical features that may be fatal. Loss of AGTPBP1 in humans recapitulates the neurodegenerative course reported in a well-characterised murine animal model harbouring loss-of-function mutations in the AGTPBP1 gene. In particular, in the Purkinje cell degeneration (pcd) mouse model, mutations in AGTPBP1 lead to early cerebellar ataxia, which correlates with the massive loss of cerebellar Purkinje cells. In addition, neurodegeneration in the olfactory bulb, retina, thalamus and spinal cord were also reported. In addition to neurodegeneration, pcd mice show behavioural deficits such as cognitive decline. Here, we provide an overview of what is currently known about the structure and functional role of AGTPBP1 and discuss the various alterations in AGTPBP1 that cause neurodegeneration in the pcd mutant mouse and humans with CONDCA. The sequence of neuropathological events that occur in pcd mice and the mechanisms governing these neurodegenerative processes are also reported. Finally, we describe the therapeutic strategies that were applied in pcd mice and focus on the potential usefulness of pcd mice as a promising model for the development of new therapeutic strategies for clinical trials in humans, which may offer potential beneficial options for patients with AGTPBP1 mutation-related CONDCA.
Collapse
Affiliation(s)
- Fernando C. Baltanás
- Lab.1, CIC-IBMCC, University of Salamanca-CSIC and CIBERONC, 37007 Salamanca, Spain;
- Correspondence: ; Tel.: +34-923294801
| | - María T. Berciano
- Department of Molecular Biology and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), University of Cantabria-IDIVAL, 39011 Santander, Spain;
| | - Eugenio Santos
- Lab.1, CIC-IBMCC, University of Salamanca-CSIC and CIBERONC, 37007 Salamanca, Spain;
| | - Miguel Lafarga
- Department of Anatomy and Cell Biology and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), University of Cantabria-IDIVAL, 39011 Santander, Spain;
| |
Collapse
|
44
|
Janowski M, Milewska M, Zare P, Pękowska A. Chromatin Alterations in Neurological Disorders and Strategies of (Epi)Genome Rescue. Pharmaceuticals (Basel) 2021; 14:765. [PMID: 34451862 PMCID: PMC8399958 DOI: 10.3390/ph14080765] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/23/2021] [Accepted: 07/24/2021] [Indexed: 12/26/2022] Open
Abstract
Neurological disorders (NDs) comprise a heterogeneous group of conditions that affect the function of the nervous system. Often incurable, NDs have profound and detrimental consequences on the affected individuals' lives. NDs have complex etiologies but commonly feature altered gene expression and dysfunctions of the essential chromatin-modifying factors. Hence, compounds that target DNA and histone modification pathways, the so-called epidrugs, constitute promising tools to treat NDs. Yet, targeting the entire epigenome might reveal insufficient to modify a chosen gene expression or even unnecessary and detrimental to the patients' health. New technologies hold a promise to expand the clinical toolkit in the fight against NDs. (Epi)genome engineering using designer nucleases, including CRISPR-Cas9 and TALENs, can potentially help restore the correct gene expression patterns by targeting a defined gene or pathway, both genetically and epigenetically, with minimal off-target activity. Here, we review the implication of epigenetic machinery in NDs. We outline syndromes caused by mutations in chromatin-modifying enzymes and discuss the functional consequences of mutations in regulatory DNA in NDs. We review the approaches that allow modifying the (epi)genome, including tools based on TALENs and CRISPR-Cas9 technologies, and we highlight how these new strategies could potentially change clinical practices in the treatment of NDs.
Collapse
Affiliation(s)
| | | | | | - Aleksandra Pękowska
- Dioscuri Centre for Chromatin Biology and Epigenomics, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteur Street, 02-093 Warsaw, Poland; (M.J.); (M.M.); (P.Z.)
| |
Collapse
|
45
|
Fukata Y, Hirano Y, Miyazaki Y, Yokoi N, Fukata M. Trans-synaptic LGI1–ADAM22–MAGUK in AMPA and NMDA receptor regulation. Neuropharmacology 2021; 194:108628. [DOI: 10.1016/j.neuropharm.2021.108628] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 05/16/2021] [Accepted: 05/18/2021] [Indexed: 02/06/2023]
|
46
|
Al-Shafai KN, Al-Hashemi M, Manickam C, Musa R, Selvaraj S, Syed N, Vempalli F, Ali M, Yacoub M, Estivill X. Genetic evaluation of cardiomyopathies in Qatar identifies enrichment of pathogenic sarcomere gene variants and possible founder disease mutations in the Arabs. Mol Genet Genomic Med 2021; 9:e1709. [PMID: 34137518 PMCID: PMC8372065 DOI: 10.1002/mgg3.1709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 09/03/2020] [Accepted: 05/04/2021] [Indexed: 01/20/2023] Open
Abstract
Background Hypertrophic cardiomyopathy (HCM) and dilated cardiomyopathy (DCM) are serious inherited heart diseases with various causative mutations identified. The full spectrum of causative mutations remains to be discovered, especially in understudied populations. Methods Here, we established the DOHA Registry and Biobank for cardiomyopathies in Qatar, followed by sequencing of 174 genes on 51 HCM and 53 DCM patients, and 31 relatives. Results In HCM, the analysis of 25 HCM‐associated genes showed that 20% of HCM cases had putative pathogenic variants for cardiomyopathy, mainly in sarcomere genes. Additional 49% of HCM cases had variants of uncertain significance, while 31% of HCM cases had likely benign variant(s) or had no variants identified within the analyzed HCM genes. In DCM, 56 putative DCM genes were analyzed. Eight percent of DCM cases had putative pathogenic variants for DCM, in the TTN gene while 70% of cases had variants of uncertain significance, in the analyzed DCM genes, that will need further pathogenicity assessment. Moreover, 22% of DCM cases remain unexplained, by having likely benign variant(s) or having no variants detected in any of the analyzed DCM genes. Conclusion We identified or replicated at least four recurrent variants among cardiomyopathy patients, which could be founder disease mutations in the Arabic population, including a frameshift variant (c.1371_1381dupTATCCAGTTAT) of unknown significance in the FKTN gene which seems to cause DCM in homozygosity, and HCM in heterozygosity. In vivo and/or in vitro functional validation need to be pursued in order to assess the pathogenicity of the identified variants.
Collapse
Affiliation(s)
- Kholoud N Al-Shafai
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar.,Sidra Research Department, Sidra Medicine, Doha, Qatar
| | | | | | - Rania Musa
- The Heart Hospital, Hamad Medical Corporation, Doha, Qatar
| | | | - Najeeb Syed
- Sidra Research Department, Sidra Medicine, Doha, Qatar
| | | | - Muneera Ali
- The Heart Hospital, Hamad Medical Corporation, Doha, Qatar
| | - Magdi Yacoub
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Xavier Estivill
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar.,Sidra Research Department, Sidra Medicine, Doha, Qatar.,Quantitative Genomics Laboratories (qGenomics, Barcelona, Spain
| |
Collapse
|
47
|
Tkatchenko TV, Tkatchenko AV. Genome-wide analysis of retinal transcriptome reveals common genetic network underlying perception of contrast and optical defocus detection. BMC Med Genomics 2021; 14:153. [PMID: 34107987 PMCID: PMC8190860 DOI: 10.1186/s12920-021-01005-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 06/04/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Refractive eye development is regulated by optical defocus in a process of emmetropization. Excessive exposure to negative optical defocus often leads to the development of myopia. However, it is still largely unknown how optical defocus is detected by the retina. METHODS Here, we used genome-wide RNA-sequencing to conduct analysis of the retinal gene expression network underlying contrast perception and refractive eye development. RESULTS We report that the genetic network subserving contrast perception plays an important role in optical defocus detection and emmetropization. Our results demonstrate an interaction between contrast perception, the retinal circadian clock pathway and the signaling pathway underlying optical defocus detection. We also observe that the relative majority of genes causing human myopia are involved in the processing of optical defocus. CONCLUSIONS Together, our results support the hypothesis that optical defocus is perceived by the retina using contrast as a proxy and provide new insights into molecular signaling underlying refractive eye development.
Collapse
Affiliation(s)
| | - Andrei V. Tkatchenko
- Department of Ophthalmology, Columbia University, New York, NY USA
- Department of Pathology and Cell Biology, Columbia University, New York, NY USA
- Edward S. Harkness Eye Institute, Research Annex Room 415, 635 W. 165th Street, New York, NY 10032 USA
| |
Collapse
|
48
|
Schlöndorff JS. My, oh, MYO9A! Just how complex can regulation of the podocyte actin cytoskeleton get? Kidney Int 2021; 99:1065-1067. [PMID: 33892856 DOI: 10.1016/j.kint.2021.01.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 01/13/2021] [Indexed: 01/15/2023]
Abstract
Genetics contributes significantly to the development of kidney diseases. In the case of glomerular diseases such as focal segmental glomerulosclerosis, over a dozen genes involved in maintaining and regulating the actin cytoskeleton of podocytes have been implicated. A new study adds the atypical myosin, MYO9A, to that list using a combination of human and mouse genetics, suggesting a link to enhanced RhoA activity. Unraveling the growing web of actin regulators remains a key challenge to understanding podocytopathies.
Collapse
Affiliation(s)
- Johannes S Schlöndorff
- Division of Nephrology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
49
|
LGI1-ADAM22-MAGUK configures transsynaptic nanoalignment for synaptic transmission and epilepsy prevention. Proc Natl Acad Sci U S A 2021; 118:2022580118. [PMID: 33397806 PMCID: PMC7826393 DOI: 10.1073/pnas.2022580118] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
This study addresses a fundamental question in neuroscience, namely how does the presynaptic component of the synapse precisely align with the postsynaptic component? This is essential for the proper transmission of signals across the synapse. This paper focuses on a set of transsynaptic, epilepsy-related proteins that are essential for this alignment. We show that the LGI1–ADAM22–MAGUK complex is a key player in the nanoarchitecture of the synapse, such that the release site is directly apposed to the nanocluster of glutamate receptors. Physiological functioning and homeostasis of the brain rely on finely tuned synaptic transmission, which involves nanoscale alignment between presynaptic neurotransmitter-release machinery and postsynaptic receptors. However, the molecular identity and physiological significance of transsynaptic nanoalignment remain incompletely understood. Here, we report that epilepsy gene products, a secreted protein LGI1 and its receptor ADAM22, govern transsynaptic nanoalignment to prevent epilepsy. We found that LGI1–ADAM22 instructs PSD-95 family membrane-associated guanylate kinases (MAGUKs) to organize transsynaptic protein networks, including NMDA/AMPA receptors, Kv1 channels, and LRRTM4–Neurexin adhesion molecules. Adam22ΔC5/ΔC5 knock-in mice devoid of the ADAM22–MAGUK interaction display lethal epilepsy of hippocampal origin, representing the mouse model for ADAM22-related epileptic encephalopathy. This model shows less-condensed PSD-95 nanodomains, disordered transsynaptic nanoalignment, and decreased excitatory synaptic transmission in the hippocampus. Strikingly, without ADAM22 binding, PSD-95 cannot potentiate AMPA receptor-mediated synaptic transmission. Furthermore, forced coexpression of ADAM22 and PSD-95 reconstitutes nano-condensates in nonneuronal cells. Collectively, this study reveals LGI1–ADAM22–MAGUK as an essential component of transsynaptic nanoarchitecture for precise synaptic transmission and epilepsy prevention.
Collapse
|
50
|
Janecke AR, Liu X, Adam R, Punuru S, Viestenz A, Strauß V, Laass M, Sanchez E, Adachi R, Schatz MP, Saboo US, Mittal N, Rohrschneider K, Escher J, Ganesh A, Al Zuhaibi S, Al Murshedi F, AlSaleem B, Alfadhel M, Al Sinani S, Alkuraya FS, Huber LA, Müller T, Heidelberger R, Janz R. Pathogenic STX3 variants affecting the retinal and intestinal transcripts cause an early-onset severe retinal dystrophy in microvillus inclusion disease subjects. Hum Genet 2021; 140:1143-1156. [PMID: 33974130 PMCID: PMC8263458 DOI: 10.1007/s00439-021-02284-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 04/15/2021] [Indexed: 01/12/2023]
Abstract
Biallelic STX3 variants were previously reported in five individuals with the severe congenital enteropathy, microvillus inclusion disease (MVID). Here, we provide a significant extension of the phenotypic spectrum caused by STX3 variants. We report ten individuals of diverse geographic origin with biallelic STX3 loss-of-function variants, identified through exome sequencing, single-nucleotide polymorphism array-based homozygosity mapping, and international collaboration. The evaluated individuals all presented with MVID. Eight individuals also displayed early-onset severe retinal dystrophy, i.e., syndromic-intestinal and retinal-disease. These individuals harbored STX3 variants that affected both the retinal and intestinal STX3 transcripts, whereas STX3 variants affected only the intestinal transcript in individuals with solitary MVID. That STX3 is essential for retinal photoreceptor survival was confirmed by the creation of a rod photoreceptor-specific STX3 knockout mouse model which revealed a time-dependent reduction in the number of rod photoreceptors, thinning of the outer nuclear layer, and the eventual loss of both rod and cone photoreceptors. Together, our results provide a link between STX3 loss-of-function variants and a human retinal dystrophy. Depending on the genomic site of a human loss-of-function STX3 variant, it can cause MVID, the novel intestinal-retinal syndrome reported here or, hypothetically, an isolated retinal dystrophy.
Collapse
Affiliation(s)
- Andreas R Janecke
- Department of Pediatrics I, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria.
- Division of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria.
| | - Xiaoqin Liu
- Department of Neurobiology and Anatomy, MSB 7.046, McGovern Medical School at the University of Texas HSC (UTHealth), 6431 Fannin Street, Houston, TX, 77030, USA
| | - Rüdiger Adam
- University Children's Hospital, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Sumanth Punuru
- Department of Neurobiology and Anatomy, MSB 7.046, McGovern Medical School at the University of Texas HSC (UTHealth), 6431 Fannin Street, Houston, TX, 77030, USA
| | - Arne Viestenz
- Department of Ophthalmology, University Medical Center Halle, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Valeria Strauß
- Klinik für Kinder- und Jugendmedizin, Universitätsklinikum Halle, Halle, Germany
| | - Martin Laass
- Klinik und Poliklinik f. Kinder- u. Jugendmedizin, University of Dresden, Dresden, Germany
| | - Elizabeth Sanchez
- Department of Pulmonary Medicine, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Roberto Adachi
- Department of Pulmonary Medicine, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Martha P Schatz
- Department of Ophthalmology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Ujwala S Saboo
- Department of Ophthalmology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Naveen Mittal
- Department of Department of Pediatrics, Division of Pediatric Gastroenterology, University of Texas Health Science Center, San Antonio, TX, USA
| | | | - Johanna Escher
- Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Anuradha Ganesh
- Department of Ophthalmology, Sultan Qaboos University Hospital, Muscat, Oman
| | - Sana Al Zuhaibi
- Department of Ophthalmology, Sultan Qaboos University Hospital, Muscat, Oman
| | - Fathiya Al Murshedi
- Genetic and Developmental Medicine Clinic, Sultan Qaboos University Hospital, Muscat, Oman
| | - Badr AlSaleem
- King Fahad Medical City, Children's Specialized Hospital, Riyadh, Saudi Arabia
| | - Majid Alfadhel
- Genetics Division and Medical Genomic Research Lab, King Saud Bin Abdulaziz University for Health Sciences (KSAU-HS), Riyadh, Saudi Arabia
| | - Siham Al Sinani
- Department of Child Health, Sultan Qaboos University Hospital, Muscat, Oman
| | - Fowzan S Alkuraya
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Lukas A Huber
- Division of Cell Biology, Medical University of Innsbruck, Innsbruck, Austria
| | - Thomas Müller
- Department of Pediatrics I, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Ruth Heidelberger
- Department of Neurobiology and Anatomy, MSB 7.046, McGovern Medical School at the University of Texas HSC (UTHealth), 6431 Fannin Street, Houston, TX, 77030, USA.
| | - Roger Janz
- Department of Neurobiology and Anatomy, MSB 7.046, McGovern Medical School at the University of Texas HSC (UTHealth), 6431 Fannin Street, Houston, TX, 77030, USA
- Center for Scientific Review, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|