1
|
Shetty NS, Pampana A, Gaonkar M, Patel N, Vekariya N, Smith JG, Kalra R, Chahal CAA, Semsarian C, Li P, Arora G, Arora P. Association of Pathogenic/Likely Pathogenic Genetic Variants for Cardiomyopathies With Clinical Outcomes: A Multiancestry Analysis in the All of Us Research Program. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2025:e005113. [PMID: 40433684 DOI: 10.1161/circgen.124.005113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 04/23/2025] [Indexed: 05/29/2025]
Abstract
BACKGROUND This study aimed to evaluate the prevalence of pathogenic/likely pathogenic cardiomyopathy variant carriers in a multiancestry US population and examine the risk of adverse clinical outcomes. METHODS This retrospective cohort study included multiancestry US adults aged ≥18 years with sequencing data from the All of Us Research Program. Pathogenic/likely pathogenic variants in cardiomyopathy genes were identified using the ClinVar database. The primary outcome was heart failure. Secondary outcomes included cardiomyopathy and arrhythmia. Outcomes were identified from electronic health records. Interval-censored Cox models, taking age on the timescale, were used to assess the risk of outcomes in pathogenic/likely pathogenic variant carriers with noncarriers as the reference group. RESULTS Among 167 435 individuals (median age, 55.2 [39.5-66.3] years; 61.7% female; 40.7% non-European ancestry) included, the proportion of pathogenic/likely pathogenic cardiomyopathy variant carriers was 0.7% of the overall population and 0.8%, 0.8%, 0.5%, and 1.2% of European, African, East Asian, and South Asian ancestry individuals, respectively. Over the lifetime, there were 12 867 heart failure events (205 in carriers and 12 662 in noncarriers), with an incidence rate of 3.05 (95% CI, 2.66-3.49) per 1000 person-years in carriers and 1.37 (95% CI, 1.35-1.40) in noncarriers (HRadj, 2.30 [95% CI, 2.04-2.60]). Cardiomyopathy occurred in 5164 (161 in carriers and 5003 in noncarriers), with an incidence rate of 2.38 (95% CI, 2.04-2.78) per 1000 person-years among carriers and 0.54 (95% CI, 0.53-0.56) in noncarriers (HRadj, 4.31 [95% CI, 3.73-4.97]). There were 19 405 arrhythmia events (263 in carriers and 19 142 in noncarriers), with an incidence rate of 3.93 (95% CI, 3.48-4.44) per 1000 person-years among carriers and 2.09 (95% CI, 2.06-2.12) in noncarriers (HRadj, 2.12 [95% CI, 1.78-2.53]). CONCLUSIONS Pathogenic/likely pathogenic cardiomyopathy variant carriers have an increased risk of heart failure, cardiomyopathy, and arrhythmias. Despite the modest overall prevalence, the associated risks suggest potential benefits of targeted genetic screening for early detection and management.
Collapse
Affiliation(s)
- Naman S Shetty
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston (N.S.S.)
- Harvard Medical School, Boston, MA (N.S.S.)
| | - Akhil Pampana
- Division of Cardiovascular Disease, University of Alabama at Birmingham. (A.P., M.G., N.P., N.V., G.A., P.A.)
| | - Mokshad Gaonkar
- Division of Cardiovascular Disease, University of Alabama at Birmingham. (A.P., M.G., N.P., N.V., G.A., P.A.)
| | - Nirav Patel
- Division of Cardiovascular Disease, University of Alabama at Birmingham. (A.P., M.G., N.P., N.V., G.A., P.A.)
| | - Nehal Vekariya
- Division of Cardiovascular Disease, University of Alabama at Birmingham. (A.P., M.G., N.P., N.V., G.A., P.A.)
| | - J Gustav Smith
- The Wallenberg Laboratory/Department of Molecular and Clinical Medicine, Institute of Medicine and Science for Life Laboratory, University of Gothenburg, Sweden (J.G.S.)
- Department of Cardiology, Sahlgrenska University Hospital, Gothenburg, Sweden (J.G.S.)
- Department of Cardiology, Clinical Sciences, Lund University & Skåne University Hospital (J.G.S.)
- Wallenberg Center for Molecular Medicine, Lund University Diabetes Center, Lund University, Sweden (J.G.S.)
| | - Rajat Kalra
- Cardiovascular Division, University of Minnesota, Minneapolis (R.K.)
| | - C Anwar A Chahal
- Center for Inherited Cardiovascular Diseases, WellSpan Health, Lancaster, PA (C.A.A.C.)
- Barts Heart Centre, St Bartholomew's Hospital, Barts Health NHS Trust, London, United Kingdom (C.A.A.C.)
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN (C.A.A.C.)
| | - Christopher Semsarian
- Agnes Ginges Centre for Molecular Cardiology at Centenary Institute, The University of Sydney, New South Wales, Australia. (C.S.)
- Faculty of Medicine and Health, The University of Sydney, New South Wales, Australia. (C.S.)
- Department of Cardiology, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia (C.S.)
| | - Peng Li
- School of Nursing, University of Alabama at Birmingham. (P.L.)
| | - Garima Arora
- Division of Cardiovascular Disease, University of Alabama at Birmingham. (A.P., M.G., N.P., N.V., G.A., P.A.)
| | - Pankaj Arora
- Division of Cardiovascular Disease, University of Alabama at Birmingham. (A.P., M.G., N.P., N.V., G.A., P.A.)
- Section of Cardiology, Birmingham Veterans Affairs Medical Center, AL (P.A.)
| |
Collapse
|
2
|
Jurado Vélez J, Anderson N, Datcher I, Foster C, Jackson P, Hidalgo B. Striving Towards Equity in Cardiovascular Genomics Research. Curr Atheroscler Rep 2025; 27:34. [PMID: 39964583 PMCID: PMC11836143 DOI: 10.1007/s11883-025-01277-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/29/2025] [Indexed: 02/21/2025]
Abstract
PURPOSE OF REVIEW Our review emphasizes recent advancements and persisting gaps in cardiovascular genomics, particularly highlighting how emerging studies involving underrepresented populations have uncovered new genetic variants associated with cardiovascular diseases. RECENT FINDINGS Initiatives like the H3Africa project, the Million Veterans Program, and the All of Us Research Program are working to address this gap by focusing on underrepresented groups. Additionally, emerging research is centering on the interplay between genetic factors and socio-environmental determinants of health, which disproportionately impact marginalized communities. As cardiovascular genomics research grows, increasing the inclusion of underrepresented populations is essential for gaining a more comprehensive understanding of genetic variability. This will lead to more accurate and clinically meaningful strategies for preventing and treating cardiovascular diseases across all ancestral backgrounds and diverse populations.
Collapse
Affiliation(s)
- Javier Jurado Vélez
- Marnix E Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Nekayla Anderson
- Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Ivree Datcher
- Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Christy Foster
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Pamela Jackson
- Department of Environmental Health Sciences, School of Public Health, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Bertha Hidalgo
- Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
3
|
Huang HYR, Vitali C, Zhang D, Hand NJ, Phillips MC, Creasy KT, Scorletti E, Park J, Regeneron Centre, Schneider KM, Rader DJ, Schneider CV. Deep metabolic phenotyping of humans with protein-altering variants in TM6SF2 using a genome-first approach. JHEP Rep 2025; 7:101243. [PMID: 39687601 PMCID: PMC11647476 DOI: 10.1016/j.jhepr.2024.101243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/28/2024] [Accepted: 10/07/2024] [Indexed: 12/18/2024] Open
Abstract
Background & Aim An unbiased genome-first approach can expand the molecular understanding of specific genes in disease-agnostic biobanks for deeper phenotyping. TM6SF2 represents a good candidate for this approach due to its known association with steatotic liver disease (SLD). Methods We screened participants with whole-exome sequences in the Penn Medicine Biobank (PMBB, n >40,000) and the UK Biobank (UKB, n >200,000) for protein-altering variants in TM6SF2 and evaluated their association with liver phenotypes and clinical outcomes. Results Missense variants in TM6SF2 (E167K, L156P, P216L) were associated with an increased risk of clinically diagnosed and imaging-proven steatosis, independent of the PNPLA3 I48M risk allele and hepatitis B/C (p <0.001). E167K homozygotes had significantly increased risk of SLD (odds ratio [OR] 5.38, p <0.001), steatohepatitis (OR 5.76, p <0.05) and hepatocellular carcinoma (OR 11.22, p <0.0001), while heterozygous carriers of L156P and P216L were also at an increased risk of steatohepatitis. In addition, carriers of E167K are at a 3-fold increased risk of at-risk MASH (OR 2.75, p <0.001). CT-derived liver fat scores were higher in E167K and L156P in an allele-dose manner (p <0.05). This corresponded with the UKB nuclear magnetic resonance-derived lipidomic analyses (n = 105,348), revealing all carriers to exhibit lower total cholesterol, triglycerides and total choline. In silico predictions suggested that these missense variants cause structural disruptions in the EXPERA domain, leading to reduced protein function. This hypothesis was supported by the association of rare loss-of-function variants in TM6SF2 with an increased risk of SLD (OR 4.9, p <0.05), primarily driven by a novel rare stop-gain variant (W35X) with the same directionality. Conclusion The functional genetic study of protein-altering variants provides insights on the association between loss of TM6SF2 function and SLD and provides the basis for future mechanistic studies. Impact and implications The genome-first approach expands insights into genetic risk factors for steatotic liver disease with TM6SF2 being a focal point due to its known association with plasma lipid traits. Our findings validated the association of two missense variants (E167K and L156P) with increased risk of hepatic steatosis on CT and MRI scans, as well as the risk of clinically diagnosed hepatocellular carcinoma independent of the common PNPLA3 I48M risk variant. Notably, we also identified a predicted deleterious missense variant (P216L) linked to steatotic risk and demonstrated that an aggregated gene burden of rare putative loss-of-function variants was associated with the risk of hepatic steatosis. Combined, this study sets the stage for future mechanistic investigations into the functional consequences of TM6SF2 variants in metabolic dysfunction-associated steatotic liver disease.
Collapse
Affiliation(s)
- Helen Ye Rim Huang
- Department of Medicine, Division of Translational Medicine and Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Cecilia Vitali
- Department of Medicine, Division of Translational Medicine and Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - David Zhang
- Department of Medicine, Division of Translational Medicine and Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nicholas J. Hand
- Department of Medicine, Division of Translational Medicine and Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael C. Phillips
- Department of Medicine, Division of Translational Medicine and Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kate Townsend Creasy
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Eleonora Scorletti
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- The Institute for Translational Medicine and Therapeutics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Joseph Park
- Department of Medicine, Division of Translational Medicine and Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- NewYork-Presbyterian, Weill Cornell Medical Center, New York, NY 10065, USA
| | | | - Kai Markus Schneider
- Department of Medicine III, Gastroenterology, Metabolic diseases and Intensive Care, University Hospital RWTH Aachen, 52074 Aachen, Germany
- Medical Department 1, Technische Universität, Dresden, Germany
| | - Daniel J. Rader
- Department of Medicine, Division of Translational Medicine and Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- The Institute for Translational Medicine and Therapeutics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Carolin Victoria Schneider
- The Institute for Translational Medicine and Therapeutics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Medicine III, Gastroenterology, Metabolic diseases and Intensive Care, University Hospital RWTH Aachen, 52074 Aachen, Germany
| |
Collapse
|
4
|
Park J, Levin MG, Zhang D, Reza N, Mead JO, Carruth ED, Kelly MA, Winters A, Kripke CM, Judy RL, Damrauer SM, Owens AT, Bastarache L, Verma A, Kinnamon DD, Hershberger RE, Ritchie MD, Rader DJ. Bidirectional Risk Modulator and Modifier Variant of Dilated and Hypertrophic Cardiomyopathy in BAG3. JAMA Cardiol 2024; 9:1124-1133. [PMID: 39535783 PMCID: PMC11561727 DOI: 10.1001/jamacardio.2024.3547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/23/2024] [Indexed: 11/16/2024]
Abstract
Importance The genetic factors that modulate the reduced penetrance and variable expressivity of heritable dilated cardiomyopathy (DCM) are largely unknown. BAG3 genetic variants have been implicated in both DCM and hypertrophic cardiomyopathy (HCM), nominating BAG3 as a gene that harbors potential modifier variants in DCM. Objective To interrogate the clinical traits and diseases associated with BAG3 coding variation. Design, Setting, and Participants This was a cross-sectional study in the Penn Medicine BioBank (PMBB) enrolling patients of the University of Pennsylvania Health System's clinical practice sites from 2014 to 2023. Whole-exome sequencing (WES) was linked to electronic health record (EHR) data to associate BAG3 coding variants with EHR phenotypes. This was a health care population-based study including individuals of European and African genetic ancestry in the PMBB with WES linked to EHR phenotypes, with replication studies in BioVU, UK Biobank, MyCode, and DCM Precision Medicine Study. Exposures Carrier status for BAG3 coding variants. Main Outcomes and Measures Association of BAG3 coding variation with clinical diagnoses, echocardiographic traits, and longitudinal outcomes. Results In PMBB (n = 43 731; median [IQR] age, 65 [50-76] years; 21 907 female [50.1%]), among 30 324 European and 11 198 African individuals, the common C151R variant was associated with decreased risk for DCM (odds ratio [OR], 0.85; 95% CI, 0.78-0.92) and simultaneous increased risk for HCM (OR, 1.59; 95% CI, 1.25-2.02), which was confirmed in the replication cohorts. C151R carriers exhibited improved longitudinal outcomes compared with noncarriers as assessed by age at death (hazard ratio [HR], 0.85; 95% CI, 0.74-0.96; median [IQR] age, 71.8 [63.1-80.7] in carriers and 70.3 [61.6-79.2] in noncarriers) and heart transplant (HR, 0.81; 95% CI, 0.66-0.99; median [IQR] age, 56.7 [46.1-63.1] in carriers and 55.6 [45.2-62.9] in noncarriers). C151R was associated with reduced risk of DCM (OR, 0.42; 95% CI, 0.24-0.74) and heart failure (OR, 0.27; 95% CI, 0.14-0.50) among individuals harboring truncating TTN variants in exons with high cardiac expression (n = 358). Conclusions and Relevance BAG3 C151R was identified as a bidirectional modulator of risk along the DCM-HCM spectrum, as well as an important genetic modifier variant in TTN-mediated DCM. This work expands on the understanding of the etiology and penetrance of DCM, suggesting that BAG3 C151R is an important genetic modifier variant contributing to the variable expressivity of DCM, warranting further exploration of its mechanisms and of genetic modifiers in DCM more broadly.
Collapse
Affiliation(s)
- Joseph Park
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia
- Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia
- Department of Medicine, Weill Cornell Medicine, NewYork-Presbyterian Hospital, New York
| | - Michael G. Levin
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - David Zhang
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia
- Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Nosheen Reza
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Jonathan O. Mead
- Division of Human Genetics, Department of Internal Medicine, The Ohio State University, Columbus
| | - Eric D. Carruth
- Department of Genomic Health, Geisinger, Danville, Pennsylvania
| | | | - Alex Winters
- Autism and Developmental Medicine Institute, Geisinger, Danville, Pennsylvania
| | - Colleen M. Kripke
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia
- Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Renae L. Judy
- Department of Surgery, Corporal Michael Crescenz VA Medical Center, Philadelphia, Pennsylvania
| | - Scott M. Damrauer
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia
- Department of Surgery, Corporal Michael Crescenz VA Medical Center, Philadelphia, Pennsylvania
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Anjali T. Owens
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Lisa Bastarache
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Anurag Verma
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia
- Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Daniel D. Kinnamon
- Division of Human Genetics, Department of Internal Medicine, The Ohio State University, Columbus
| | - Ray E. Hershberger
- Division of Human Genetics, Department of Internal Medicine, The Ohio State University, Columbus
- Division of Cardiovascular Medicine, Department of Internal Medicine, and the Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus
| | - Marylyn D. Ritchie
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia
- Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Daniel J. Rader
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| |
Collapse
|
5
|
Mancin E, Maltecca C, Jiang J, Huang YJ, Tiezzi F. Capturing resilience from phenotypic deviations: a case study using feed consumption and whole genome data in pigs. BMC Genomics 2024; 25:1128. [PMID: 39574040 PMCID: PMC11583387 DOI: 10.1186/s12864-024-11052-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 11/14/2024] [Indexed: 11/24/2024] Open
Abstract
BACKGROUND In recent years, interest has grown in quantifying resilience in livestock by examining deviations in target phenotypes. This method is based on the idea that variability in these phenotypes reflects an animal's ability to adapt to external factors. By utilizing routinely collected time-series feed intake data in pigs, researchers can obtain a broad measure of resilience. This measure extends beyond specific conditions, capturing the impact of various unknown external factors that influence phenotype variations. Importantly, this method does not require additional phenotyping investments. Despite growing interest, the relationship between resilience indicators-calculated as deviations from longitudinally recorded target traits-and the mean of those traits remains largely unexplored. This gap raises the risk of inadvertently selecting for the mean rather than accurately capturing true resilience. Additionally, distinguishing between random phenotype fluctuations (white noise) and structural variations linked to resilience poses a challenge. With the aim of developing general resilience indicators applicable to commercial swine populations, we devised four resilience indicators utilizing daily feed consumption as the target trait. These include a canonical resilience indicator (BALnVar) and three novel ones (BAMaxArea, SPLnVar, and SPMaxArea), designed to minimize noise and ensure independence from daily feed consumption. We subsequently integrated these indicators with Whole Genome Sequencing using SLEMM algorithm, data from 1,250 animals to assess their efficacy in capturing resilience and their independence from the mean of daily feed consumption. RESULTS Our findings revealed that conventional resilience indicators failed to differentiate from the mean of daily feed consumption, underscoring potential limitations in accurately capturing true resilience. Notably, significant associations involving conventional resilience indicators were identified on chromosome 1, which is commonly linked to body weight. CONCLUSION We observed that deviations in feed consumption can effectively serve as indicators for selecting resilience in commercial pig farming, as confirmed by the identification of genes such as PKN1 and GYPC. However, the identification of other genes, such as RNF152, related to growth, suggests that common resilience quantification methods may be more closely related to the mean of daily feed consumption rather than capturing true resilience.
Collapse
Affiliation(s)
- Enrico Mancin
- Department of Agronomy, Natural Resources, Animals and Environment, (DAFNAE), University of Padova, Viale del Università 14, Legnaro (Padova), Food, 35020, Italy
| | - Christian Maltecca
- Department of Animal Science, North Carolina State University, Raleigh, NC, 27695, USA
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Piazzale delle Cascine 18, Firenze, 50144, Italy
| | - Jicaj Jiang
- Department of Animal Science, North Carolina State University, Raleigh, NC, 27695, USA
| | - Yi Jian Huang
- Smithfield Premium Genetics, Rose Hill, NC, 28458, USA
| | - Francesco Tiezzi
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Piazzale delle Cascine 18, Firenze, 50144, Italy.
| |
Collapse
|
6
|
Saeidian AH, March ME, Youssefian L, Watson DJ, Bhandari E, Wang X, Zhao X, Owen NM, Strong A, Harr MH, Bhoj E, Zackai E, Vahidnezhad H, Gudjonsson JE, Cederbaum SD, Deignan JL, Glessner J, Grody WW, Hakonarson H. Secondary ACMG and non-ACMG genetic findings in a multiethnic cohort of 16,713 pediatric participants. Genet Med 2024; 26:101225. [PMID: 39096151 DOI: 10.1016/j.gim.2024.101225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 08/04/2024] Open
Abstract
PURPOSE Clinical next-generation sequencing is an effective approach for identifying pathogenic sequence variants that are medically actionable for participants and families but are not associated with the participant's primary diagnosis. These variants are called secondary findings (SFs). According to the literature, there is no report of the types and frequencies of SFs in a large pediatric cohort that includes substantial African-American participants. We sought to investigate the types (including American College of Medical Genetics and Genomics [ACMG] and non-ACMG-recommended gene lists), frequencies, and rates of SFs, as well as the effects of SF disclosure on the participants and families of a large pediatric cohort at the Center for Applied Genomics at The Children's Hospital of Philadelphia. METHODS We systematically identified pathogenic (P) and likely pathogenic (LP) variants in established disease-causing genes, adhering to ACMG v3.2 secondary finding guidelines and beyond. For non-ACMG SFs, akin to incidental findings in clinical settings, we utilized a set of criteria focusing on pediatric onset, high penetrance, moderate to severe phenotypes, and the clinical actionability of the variants. This criteria-based approach was applied rather than using a fixed gene list to ensure that the variants identified are likely to affect participant health significantly. To identify and categorize these variants, we used a clinical-grade variant classification standard per ACMG/AMP recommendations; additionally, we conducted a detailed literature search to ensure a comprehensive exploration of potential SFs relevant to pediatric participants. RESULTS We report a distinctive distribution of 1464 P/LP SF variants in 16,713 participants. There were 427 unique variants in ACMG genes and 265 in non-ACMG genes. The most frequently mutated genes among the ACMG and non-ACMG gene lists were TTR(41.6%) and CHEK2 (7.16%), respectively. Overall, variants of possible medical importance were found in 8.76% of participants in both ACMG (5.81%) and non-ACMG (2.95%) genes. CONCLUSION Our study revealed that 8.76% of a large, multiethnic pediatric cohort carried actionable secondary genetic findings, with 5.81% in ACMG genes and 2.95% in non-ACMG genes. These findings emphasize the importance of including diverse populations in genetic research to ensure that all groups benefit from early identification of disease risks. Our results provide a foundation for expanding the ACMG gene list and improving clinical care through early interventions.
Collapse
Affiliation(s)
- Amir Hossein Saeidian
- Center for Applied Genomics (CAG), The Children's Hospital of Philadelphia, Philadelphia, PA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Michael E March
- Center for Applied Genomics (CAG), The Children's Hospital of Philadelphia, Philadelphia, PA
| | - Leila Youssefian
- Center for Applied Genomics (CAG), The Children's Hospital of Philadelphia, Philadelphia, PA; Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA; Department of Pathology, Cytogenetics Laboratory, City of Hope National Medical Center, Irwindale, CA
| | - Deborah J Watson
- Center for Applied Genomics (CAG), The Children's Hospital of Philadelphia, Philadelphia, PA
| | - Esha Bhandari
- Center for Applied Genomics (CAG), The Children's Hospital of Philadelphia, Philadelphia, PA; Drexel University College of Medicine, Philadelphia, PA
| | - Xiang Wang
- Center for Applied Genomics (CAG), The Children's Hospital of Philadelphia, Philadelphia, PA
| | - Xiaonan Zhao
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Nichole Marie Owen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Alanna Strong
- Center for Applied Genomics (CAG), The Children's Hospital of Philadelphia, Philadelphia, PA; Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA; Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Margaret H Harr
- Center for Applied Genomics (CAG), The Children's Hospital of Philadelphia, Philadelphia, PA
| | - Elizabeth Bhoj
- Center for Applied Genomics (CAG), The Children's Hospital of Philadelphia, Philadelphia, PA; Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA; Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Elaine Zackai
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA; Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Hassan Vahidnezhad
- Center for Applied Genomics (CAG), The Children's Hospital of Philadelphia, Philadelphia, PA; Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA; Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA; Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Johann E Gudjonsson
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI
| | - Stephen D Cederbaum
- Departments of Psychiatry, Pediatrics, and Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, CA
| | - Joshua L Deignan
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA
| | - Joseph Glessner
- Center for Applied Genomics (CAG), The Children's Hospital of Philadelphia, Philadelphia, PA; Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA; Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Wayne W Grody
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA; Departments of Pathology and Laboratory Medicine, Pediatrics, and Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, CA
| | - Hakon Hakonarson
- Center for Applied Genomics (CAG), The Children's Hospital of Philadelphia, Philadelphia, PA; Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA; Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA; Division of Pulmonary Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA.
| |
Collapse
|
7
|
Figueiral M, Paldino A, Wilke MVMB, Farris JD, Verheijen J, Giudicessi JR, Ackerman MJ, Olson JE, Arroyo J, Olson RJ, Klee EW, Pereira NL. Prevalence, Penetrance, and Phenotypic Manifestation of Cardiomyopathy-Associated Genetic Variants in the General Population: Insights from a Mayo Clinic Biobank Study. Mayo Clin Proc 2024; 99:1732-1743. [PMID: 39387793 DOI: 10.1016/j.mayocp.2024.05.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/24/2024] [Accepted: 05/31/2024] [Indexed: 10/15/2024]
Abstract
OBJECTIVE To determine the prevalence, penetrance, and disease expression of cardiomyopathy-related genetic variants in an unselected, richly phenotyped Mayo Clinic population in the setting of preemptive sequencing, with return of incidental findings following the American College of Medical Genetics and Genomics recommendations. PATIENTS AND METHODS We analyzed a quaternary medical center-based biobank cohort (n=983) for reportable variants in 15 cardiomyopathy genes. Prioritization of genetic variants was performed using an internally developed pipeline to identify potentially reportable variants. Prioritized variants were then manually curated. The correlation of likely pathogenic/pathogenic (LP/P) variants with clinical phenotypes and outcomes was established. Artificial intelligence-enabled electrocardiographic predictions of reduced left ventricular ejection fraction and hypertrophic cardiomyopathy were applied to genotype-positive (G+) participants. RESULTS Of the 983 patients, 11 (1%) were G+, with 11 LP/P variants found in the MYBPC3, DSG2, MYH7, DSP, and PKP2 genes. All G+ participants underwent electrocardiography, and 10 (90%) underwent echocardiography. Most patients (10 [90%]) did not have a prior diagnosis of cardiomyopathy. Definitive disease penetrance (heart failure or cardiomyopathy) was present in 4 (36%), while 3 (27%) had possible penetrance (structural heart disease identified by echocardiography). Arrhythmias and/or cardiac conduction disease was present in 4 of 11 G+ individuals (36%). Artificial intelligence-electrocardiography was positive for hypertrophic cardiomyopathy or reduced left ventricular ejection fraction in 5 of the G+ participants (45%), of whom 4 (80%) had definitive or possible disease penetrance. CONCLUSION Cardiomyopathy-associated LP/P variants are present in a small subset of a quaternary medical center population, and disease penetrance in G+ individuals is high in the form of cardiac structural abnormalities and heart failure.
Collapse
Affiliation(s)
- Marta Figueiral
- The Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN; Center for Individualized Medicine, Mayo Clinic, Rochester, MN
| | - Alessia Paldino
- The Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN; Cardiovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina(ASUGI), University of Trieste, Trieste, Italy
| | | | - Joseph D Farris
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN
| | - Jan Verheijen
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN
| | - John R Giudicessi
- The Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN
| | | | - Janet E Olson
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN
| | - Jennifer Arroyo
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN
| | - Rory J Olson
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN
| | - Eric W Klee
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN
| | - Naveen L Pereira
- The Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN.
| |
Collapse
|
8
|
Cañadas-Garre M, Baños-Jaime B, Maqueda JJ, Smyth LJ, Cappa R, Skelly R, Hill C, Brennan EP, Doyle R, Godson C, Maxwell AP, McKnight AJ. Genetic variants affecting mitochondrial function provide further insights for kidney disease. BMC Genomics 2024; 25:576. [PMID: 38858654 PMCID: PMC11163707 DOI: 10.1186/s12864-024-10449-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 05/24/2024] [Indexed: 06/12/2024] Open
Abstract
BACKGROUND Chronic kidney disease (CKD) is a complex disorder that has become a high prevalence global health problem, with diabetes being its predominant pathophysiologic driver. Autosomal genetic variation only explains some of the predisposition to kidney disease. Variations in the mitochondrial genome (mtDNA) and nuclear-encoded mitochondrial genes (NEMG) are implicated in susceptibility to kidney disease and CKD progression, but they have not been thoroughly explored. Our aim was to investigate the association of variation in both mtDNA and NEMG with CKD (and related traits), with a particular focus on diabetes. METHODS We used the UK Biobank (UKB) and UK-ROI, an independent collection of individuals with type 1 diabetes mellitus (T1DM) patients. RESULTS Fourteen mitochondrial variants were associated with estimated glomerular filtration rate (eGFR) in UKB. Mitochondrial variants and haplogroups U, H and J were associated with eGFR and serum variables. Mitochondrial haplogroup H was associated with all the serum variables regardless of the presence of diabetes. Mitochondrial haplogroup X was associated with end-stage kidney disease (ESKD) in UKB. We confirmed the influence of several known NEMG on kidney disease and function and found novel associations for SLC39A13, CFL1, ACP2 or ATP5G1 with serum variables and kidney damage, and for SLC4A1, NUP210 and MYH14 with ESKD. The G allele of TBC1D32-rs113987180 was associated with higher risk of ESKD in patients with diabetes (OR:9.879; CI95%:4.440-21.980; P = 2.0E-08). In UK-ROI, AGXT2-rs71615838 and SURF1-rs183853102 were associated with diabetic nephropathies, and TFB1M-rs869120 with eGFR. CONCLUSIONS We identified novel variants both in mtDNA and NEMG which may explain some of the missing heritability for CKD and kidney phenotypes. We confirmed the role of MT-ND5 and mitochondrial haplogroup H on renal disease (serum variables), and identified the MT-ND5-rs41535848G variant, along with mitochondrial haplogroup X, associated with higher risk of ESKD. Despite most of the associations were independent of diabetes, we also showed potential roles for NEMG in T1DM.
Collapse
Affiliation(s)
- Marisa Cañadas-Garre
- Molecular Epidemiology and Public Health Research Group, Centre for Public Health,, Queen's University Belfast, Institute for Clinical Sciences A, Royal Victoria Hospital, Belfast, BT12 6BA, UK.
- Genomic Oncology Area, Centre for Genomics and Oncological Research: Pfizer, GENYO, University of Granada-Andalusian Regional Government, PTS Granada. Avenida de La Ilustración 114, 18016, Granada, Spain.
- Hematology Department, Hospital Universitario Virgen de Las Nieves, Avenida de Las Fuerzas Armadas 2, 18014, Granada, Spain.
- Instituto de Investigación Biosanitaria de Granada (Ibs.GRANADA), Avda. de Madrid, 15, 18012, Granada, Spain.
| | - Blanca Baños-Jaime
- Molecular Epidemiology and Public Health Research Group, Centre for Public Health,, Queen's University Belfast, Institute for Clinical Sciences A, Royal Victoria Hospital, Belfast, BT12 6BA, UK
- Instituto de Investigaciones Químicas (IIQ), Centro de Investigaciones Científicas Isla de La Cartuja (cicCartuja), Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Sevilla, Avda. Américo Vespucio 49, 41092, Seville, Spain
| | - Joaquín J Maqueda
- Molecular Epidemiology and Public Health Research Group, Centre for Public Health,, Queen's University Belfast, Institute for Clinical Sciences A, Royal Victoria Hospital, Belfast, BT12 6BA, UK
- Experimental Oncology Laboratory, IRCCS Rizzoli Orthopaedic Institute, 40136, Bologna, Italy
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40126, Bologna, Italy
| | - Laura J Smyth
- Molecular Epidemiology and Public Health Research Group, Centre for Public Health,, Queen's University Belfast, Institute for Clinical Sciences A, Royal Victoria Hospital, Belfast, BT12 6BA, UK
| | - Ruaidhri Cappa
- Molecular Epidemiology and Public Health Research Group, Centre for Public Health,, Queen's University Belfast, Institute for Clinical Sciences A, Royal Victoria Hospital, Belfast, BT12 6BA, UK
| | - Ryan Skelly
- Molecular Epidemiology and Public Health Research Group, Centre for Public Health,, Queen's University Belfast, Institute for Clinical Sciences A, Royal Victoria Hospital, Belfast, BT12 6BA, UK
| | - Claire Hill
- Molecular Epidemiology and Public Health Research Group, Centre for Public Health,, Queen's University Belfast, Institute for Clinical Sciences A, Royal Victoria Hospital, Belfast, BT12 6BA, UK
| | - Eoin P Brennan
- UCD Diabetes Complications Research Centre, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, D04 V1W8, Ireland
- School of Medicine, University College Dublin, Dublin, D04 V1W8, Ireland
| | - Ross Doyle
- UCD Diabetes Complications Research Centre, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, D04 V1W8, Ireland
- School of Medicine, University College Dublin, Dublin, D04 V1W8, Ireland
- Mater Misericordiae University Hospital, Eccles St, Dublin, D07 R2WY, Ireland
| | - Catherine Godson
- UCD Diabetes Complications Research Centre, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, D04 V1W8, Ireland
- School of Medicine, University College Dublin, Dublin, D04 V1W8, Ireland
| | - Alexander P Maxwell
- Molecular Epidemiology and Public Health Research Group, Centre for Public Health,, Queen's University Belfast, Institute for Clinical Sciences A, Royal Victoria Hospital, Belfast, BT12 6BA, UK
- Regional Nephrology Unit, Belfast City Hospital, Level 11Lisburn Road, Belfast, BT9 7AB, UK
| | - Amy Jayne McKnight
- Molecular Epidemiology and Public Health Research Group, Centre for Public Health,, Queen's University Belfast, Institute for Clinical Sciences A, Royal Victoria Hospital, Belfast, BT12 6BA, UK
| |
Collapse
|
9
|
Cappadocia J, Aiello LB, Kelley MJ, Katona BW, Maxwell KN. PMS2CL interference leading to erroneous identification of a pathogenic PMS2 variant in Black patients. GENETICS IN MEDICINE OPEN 2024; 2:101858. [PMID: 39669620 PMCID: PMC11613782 DOI: 10.1016/j.gimo.2024.101858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 12/14/2024]
Abstract
This study investigates the frequency of a clinically reported variant in PMS2, NM_000535.7:c.2523G>A p.(W841∗), from next-generation sequencing studies in 2 racially diverse cohorts. We identified clinical reports of the PMS2 c.2523G>A p.(W841∗) variant in the National Precision Oncology Program's somatic testing database (n = 25,168). We determined frequency of the variant in germline exome sequencing from the Penn Medicine BioBank (n = 44,256) and in gnomAD. The PMS2 c.2523G>A p.(W841∗) was identified as a homozygous variant on tumor testing in an adult patient of self-identified Black race/ethnicity with no evidence of constitutional mismatch repair deficiency. The variant was clinically reported on 35 total tumor and liquid biopsy tests (0.1%), and all individuals with the variant were of self-identified Black race/ethnicity (0.6% of n = 5787). In individuals of African genetic ancestry (AFR), the variant's germline frequency was reported to be 0.2% and 1.3% in the Penn Medicine BioBank (PMBB) and gnomAD, respectively. The variant cannot be found in any individuals of European genetic ancestry (EUR) from either of the databases. The variant is found in a region of PMS2 with 100% homology to the PMS2CL pseudogene. PMS2 c.2523G>A p.(W841∗), when identified, is typically an African-ancestry-specific PMS2CL pseudogene variant, which should be recognized to prevent misdiagnosis of Lynch syndrome in Blacks.
Collapse
Affiliation(s)
- Jacqueline Cappadocia
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Lisa B. Aiello
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA
| | - Michael J. Kelley
- National Oncology Program, Department of Veterans Affairs, Washington, DC
- Division of Medical Oncology, Duke University Medical Center, Durham, NC
- Hematology-Oncology, Durham Veterans Affairs Health Care System, Durham, NC
| | - Bryson W. Katona
- Division of Gastroenterology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Kara N. Maxwell
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
10
|
Forrest IS, Duffy Á, Park JK, Vy HMT, Pasquale LR, Nadkarni GN, Cho JH, Do R. Genome-first evaluation with exome sequence and clinical data uncovers underdiagnosed genetic disorders in a large healthcare system. Cell Rep Med 2024; 5:101518. [PMID: 38642551 PMCID: PMC11148562 DOI: 10.1016/j.xcrm.2024.101518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 05/01/2023] [Accepted: 03/26/2024] [Indexed: 04/22/2024]
Abstract
Population-based genomic screening may help diagnose individuals with disease-risk variants. Here, we perform a genome-first evaluation for nine disorders in 29,039 participants with linked exome sequences and electronic health records (EHRs). We identify 614 individuals with 303 pathogenic/likely pathogenic or predicted loss-of-function (P/LP/LoF) variants, yielding 644 observations; 487 observations (76%) lack a corresponding clinical diagnosis in the EHR. Upon further investigation, 75 clinically undiagnosed observations (15%) have evidence of symptomatic untreated disease, including familial hypercholesterolemia (3 of 6 [50%] undiagnosed observations with disease evidence) and breast cancer (23 of 106 [22%]). These genetic findings enable targeted phenotyping that reveals new diagnoses in previously undiagnosed individuals. Disease yield is greater with variants in penetrant genes for which disease is observed in carriers in an independent cohort. The prevalence of P/LP/LoF variants exceeds that of clinical diagnoses, and some clinically undiagnosed carriers are discovered to have disease. These results highlight the potential of population-based genomic screening.
Collapse
Affiliation(s)
- Iain S Forrest
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Medical Scientist Training Program, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Áine Duffy
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Joshua K Park
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Medical Scientist Training Program, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ha My T Vy
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Center for Genomic Data Analytics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Louis R Pasquale
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Eye and Vision Research Institute, New York Eye and Ear Infirmary of Mount Sinai, New York, NY 10003, USA
| | - Girish N Nadkarni
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Division of Data-driven and Digital Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Judy H Cho
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ron Do
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Center for Genomic Data Analytics, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
11
|
Koehler S, Hengel FE, Dumoulin B, Damashek L, Holzman LB, Susztak K, Huber TB. The 14th International Podocyte Conference 2023: from podocyte biology to glomerular medicine. Kidney Int 2024; 105:935-952. [PMID: 38447880 DOI: 10.1016/j.kint.2024.01.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/11/2023] [Accepted: 01/02/2024] [Indexed: 03/08/2024]
Abstract
The 14th International Podocyte Conference took place in Philadelphia, Pennsylvania, USA from May 23 to 26, 2023. It commenced with an early-career researchers' meeting on May 23, providing young scientists with a platform to present and discuss their research findings. Throughout the main conference, 29 speakers across 9 sessions shared their insights on podocyte biology, glomerular medicine, novel technologic advancements, and translational approaches. Additionally, the event featured 3 keynote lectures addressing engineered chimeric antigen receptor T cell- and mRNA-based therapies and the use of biobanks for enhanced disease comprehension. Furthermore, 4 brief oral abstract sessions allowed scientists to present their findings to a broad audience. The program also included a panel discussion addressing the challenges of conducting human research within the American Black community. Remarkably, after a 5-year hiatus from in-person conferences, the 14th International Podocyte Conference successfully convened scientists from around the globe, fostering the presentation and discussion of crucial research findings, as summarized in this review. Furthermore, to ensure continuous and sustainable education, research, translation, and trial medicine related to podocyte and glomerular diseases for the benefit of patients, the International Society of Glomerular Disease was officially launched during the conference.
Collapse
Affiliation(s)
- Sybille Koehler
- III. Department of Medicine and Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Felicitas E Hengel
- III. Department of Medicine and Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Bernhard Dumoulin
- III. Department of Medicine and Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany; Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Laurel Damashek
- International Society of Glomerular Disease, Florence, Massachusetts, USA
| | - Lawrence B Holzman
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Katalin Susztak
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA; Institute of Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Tobias B Huber
- III. Department of Medicine and Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany; International Society of Glomerular Disease, Florence, Massachusetts, USA.
| |
Collapse
|
12
|
Chen C, An G, Yu X, Wang S, Lin P, Yuan J, Zhuang Y, Lu X, Bai Y, Zhang G, Su J, Qu J, Xu L, Wang H. Screening Mutations of the Monogenic Syndromic High Myopia by Whole Exome Sequencing From MAGIC Project. Invest Ophthalmol Vis Sci 2024; 65:9. [PMID: 38315492 PMCID: PMC10851780 DOI: 10.1167/iovs.65.2.9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 01/17/2024] [Indexed: 02/07/2024] Open
Abstract
Purpose This observational study aimed to identify mutations in monogenic syndromic high myopia (msHM) using data from reported samples (n = 9370) of the Myopia Associated Genetics and Intervention Consortium (MAGIC) project. Methods The targeted panel containing 298 msHM-related genes was constructed and screening of clinically actionable variants was performed based on whole exome sequencing. Capillary sequencing was used to verify the identified gene mutations in the probands and perform segregation analysis with their relatives. Results A total of 381 candidate variants in 84 genes and 85 eye diseases were found to contribute to msHM in 3.6% (335/9370) of patients with HM. Among them, the 22 genes with the most variations accounted for 62.7% of the diagnostic cases. In the genotype-phenotype association analysis, 60% (201/335) of suspected msHM cases were recalled and 25 patients (12.4%) received a definitive genetic diagnosis. Pathogenic variants were distributed in 18 msHM-related diseases, mainly involving retinal dystrophy genes (e.g. TRPM1, CACNA1F, and FZD4), connective tissue disease genes (e.g. FBN1 and COL2A1), corneal or lens development genes (HSF4, GJA8, and MIP), and other genes (TEK). The msHM gene mutation types were allocated to four categories: nonsense mutations (36%), missense mutations (36%), frameshift mutations (20%), and splice site mutations (8%). Conclusions This study highlights the importance of thorough molecular subtyping of msHM to provide appropriate genetic counselling and multispecialty care for children and adolescents with HM.
Collapse
Affiliation(s)
- Chong Chen
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- Center of Optometry International Innovation of Wenzhou, Eye Valley, Wenzhou, China
| | - Gang An
- Institute of PSI Genomics Co., Ltd., Wenzhou, China
| | - Xiaoguang Yu
- Institute of PSI Genomics Co., Ltd., Wenzhou, China
| | - Siyu Wang
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Peng Lin
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Jian Yuan
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Youyuan Zhuang
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Xiaoyan Lu
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Yu Bai
- Center of Optometry International Innovation of Wenzhou, Eye Valley, Wenzhou, China
| | - Guosi Zhang
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Jianzhong Su
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Jia Qu
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- Center of Optometry International Innovation of Wenzhou, Eye Valley, Wenzhou, China
| | - Liangde Xu
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- Center of Optometry International Innovation of Wenzhou, Eye Valley, Wenzhou, China
| | - Hong Wang
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- Center of Optometry International Innovation of Wenzhou, Eye Valley, Wenzhou, China
| |
Collapse
|
13
|
Tong L, Shi W, Isgut M, Zhong Y, Lais P, Gloster L, Sun J, Swain A, Giuste F, Wang MD. Integrating Multi-Omics Data With EHR for Precision Medicine Using Advanced Artificial Intelligence. IEEE Rev Biomed Eng 2024; 17:80-97. [PMID: 37824325 DOI: 10.1109/rbme.2023.3324264] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
With the recent advancement of novel biomedical technologies such as high-throughput sequencing and wearable devices, multi-modal biomedical data ranging from multi-omics molecular data to real-time continuous bio-signals are generated at an unprecedented speed and scale every day. For the first time, these multi-modal biomedical data are able to make precision medicine close to a reality. However, due to data volume and the complexity, making good use of these multi-modal biomedical data requires major effort. Researchers and clinicians are actively developing artificial intelligence (AI) approaches for data-driven knowledge discovery and causal inference using a variety of biomedical data modalities. These AI-based approaches have demonstrated promising results in various biomedical and healthcare applications. In this review paper, we summarize the state-of-the-art AI models for integrating multi-omics data and electronic health records (EHRs) for precision medicine. We discuss the challenges and opportunities in integrating multi-omics data with EHRs and future directions. We hope this review can inspire future research and developing in integrating multi-omics data with EHRs for precision medicine.
Collapse
|
14
|
Kim J, Vaksman Z, Egolf LE, Kaufman R, Evans JP, Conkrite KL, Danesh A, Lopez G, Randall MP, Dent MH, Farra LM, Menghani NL, Dymek M, Desai H, Hausler R, Hicks B, Guidry Auvil JM, Gerhard DS, Hakonarson H, Maxwell KN, Cole KA, Pugh TJ, Bosse KR, Khan J, Wei JS, Maris JM, Stewart DR, Diskin SJ. Germline pathogenic variants in neuroblastoma patients are enriched in BARD1 and predict worse survival. J Natl Cancer Inst 2024; 116:149-159. [PMID: 37688579 PMCID: PMC10777667 DOI: 10.1093/jnci/djad183] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 08/02/2023] [Accepted: 08/25/2023] [Indexed: 09/11/2023] Open
Abstract
BACKGROUND Neuroblastoma is an embryonal cancer of the developing sympathetic nervous system. The genetic contribution of rare pathogenic or likely pathogenic germline variants in patients without a family history remains unclear. METHODS Germline DNA sequencing was performed on 786 neuroblastoma patients. The frequency of rare cancer predisposition gene pathogenic or likely pathogenic variants in patients was compared with 2 cancer-free control cohorts. Matched tumor DNA sequencing was evaluated for second hits, and germline DNA array data from 5585 neuroblastoma patients and 23 505 cancer-free control children were analyzed to identify rare germline copy number variants. Patients with germline pathogenic or likely pathogenic variants were compared with those without to test for association with clinical characteristics, tumor features, and survival. RESULTS We observed 116 pathogenic or likely pathogenic variants involving 13.9% (109 of 786) of neuroblastoma patients, representing a statistically significant excess burden compared with cancer-free participants (odds ratio [OR] = 1.60, 95% confidence interval [CI] = 1.27 to 2.00). BARD1 harbored the most statistically significant enrichment of pathogenic or likely pathogenic variants (OR = 32.30, 95% CI = 6.44 to 310.35). Rare germline copy number variants disrupting BARD1 were identified in patients but absent in cancer-free participants (OR = 29.47, 95% CI = 1.52 to 570.70). Patients harboring a germline pathogenic or likely pathogenic variant had a worse overall survival compared with those without (P = 8.6 x 10-3). CONCLUSIONS BARD1 is an important neuroblastoma predisposition gene harboring both common and rare germline pathogenic or likely pathogenic variations. The presence of any germline pathogenic or likely pathogenic variant in a cancer predisposition gene was independently predictive of worse overall survival. As centers move toward paired tumor-normal sequencing at diagnosis, efforts should be made to centralize data and provide an infrastructure to support cooperative longitudinal prospective studies of germline pathogenic variation.
Collapse
Affiliation(s)
- Jung Kim
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Zalman Vaksman
- Department of Biomedical and Health Informatics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Laura E Egolf
- Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Rebecca Kaufman
- Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - J Perry Evans
- Department of Biomedical and Health Informatics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Karina L Conkrite
- Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Arnavaz Danesh
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, ON, Canada
| | - Gonzalo Lopez
- Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Michael P Randall
- Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Maiah H Dent
- Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Lance M Farra
- Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Neil L Menghani
- Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Malwina Dymek
- Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Heena Desai
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ryan Hausler
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Belynda Hicks
- Cancer Genome Research Laboratory, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | | | - Daniela S Gerhard
- Office of Cancer Genomics, National Cancer Institute, Bethesda, MD, USA
| | - Hakon Hakonarson
- Center for Applied Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kara N Maxwell
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kristina A Cole
- Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Trevor J Pugh
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Kristopher R Bosse
- Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Javed Khan
- Oncogenomics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jun S Wei
- Oncogenomics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - John M Maris
- Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Douglas R Stewart
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Sharon J Diskin
- Department of Biomedical and Health Informatics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
15
|
Deng M, Chen W, Qi Y. High-throughput Second-generation Sequencing Technology Assisted Diagnosis of Familial Partial Lipodystrophy (Type 2 Kobberling-Dunnigan Syndrome): A Case Report. Comb Chem High Throughput Screen 2024; 27:346-351. [PMID: 37231758 DOI: 10.2174/1386207326666230523112454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 05/06/2023] [Accepted: 05/08/2023] [Indexed: 05/27/2023]
Abstract
BACKGROUND Whole exome sequencing (WES) provides support for clinical diagnosis and treatment of genetically related diseases based on specific probe capture and high-throughput second-generation sequencing technology. Familial partial lipodystrophy 2 (FPLD2; OMIM # 151660) or type 2 Köbberling-Dunnigan syndrome with insulin resistance syndrome is uncommon in mainland China and elsewhere. AIMS We report the case in order to have a further understanding of FPLD2 or type 2 Kobberling- Dunnigan syndrome) with the assistance of WES and improve the clinical and genetic understanding and diagnosis of this disease. CASE REPORT A 30-year-old woman was admitted to the cadre department of our hospital at 14:00 on July 11, 2021, because of hyperglycemia, a rapid heart rate, and excessive sweating during pregnancy. An oral glucose tolerance test (OGTT) showed that insulin and C-peptide increased slowly after glucose stimulation, and the peak value was extended backward (Table 1). It was suggested that the patient had developed insulin antibodies, resulting in insulin resistance. Her clinical features and familial inheritance were consistent with FPLD2 (type 2 Kobberling-Dunnigan syndrome). The results of WES indicated that a heterozygous mutation occurred in exon 8 of the LMNA gene, because the base C at position 1444 was mutated into T during transcription. This mutation changed the amino acid position 482 of the encoded protein from Arg to Trp. Type 2 Kobberling- Dunnigan syndrome is associated with an LMNA gene mutation. According to the patient's clinical manifestations, hypoglycemic and lipid-lowering therapy is recommended. CONCLUSION WES can assist in the simultaneous clinical investigation or confirmation of FPLD2 and help identify diseases with similar clinical phenotypes. This case demonstrates that familial partial lipodystrophy is associated with an LMNA gene mutation on chromosome 1q21-22. This is one of the few cases of familial partial lipodystrophy diagnosed by WES.
Collapse
Affiliation(s)
- Mingling Deng
- Department of Cadre Ward Two, Chinese Medicine Hospital Affiliated to Xinjiang Medical University, Urumchi, 830000, China
| | - Wen Chen
- Department of Cadre Ward Two, Chinese Medicine Hospital Affiliated to Xinjiang Medical University, Urumchi, 830000, China
| | - Yan Qi
- Department of Cadre Ward Two, Chinese Medicine Hospital Affiliated to Xinjiang Medical University, Urumchi, 830000, China
| |
Collapse
|
16
|
Wineland D, Le AN, Hausler R, Kelly G, Barrett E, Desai H, Wubbenhorst B, Pluta J, Bastian P, Symecko H, D'Andrea K, Doucette A, Gabriel P, Reiss KA, Nayak A, Feldman M, Domchek SM, Nathanson KL, Maxwell KN. Biallelic BRCA Loss and Homologous Recombination Deficiency in Nonbreast/Ovarian Tumors in Germline BRCA1/2 Carriers. JCO Precis Oncol 2023; 7:e2300036. [PMID: 37535879 PMCID: PMC10581613 DOI: 10.1200/po.23.00036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 05/02/2023] [Accepted: 06/02/2023] [Indexed: 08/05/2023] Open
Abstract
PURPOSE Breast and ovarian tumors in germline BRCA1/2 carriers undergo allele-specific loss of heterozygosity, resulting in homologous recombination deficiency (HRD) and sensitivity to poly-ADP-ribose polymerase (PARP) inhibitors. This study investigated whether biallelic loss and HRD also occur in primary nonbreast/ovarian tumors that arise in germline BRCA1/2 carriers. METHODS A clinically ascertained cohort of BRCA1/2 carriers with a primary nonbreast/ovarian cancer was identified, including canonical (prostate and pancreatic cancers) and noncanonical (all other) tumor types. Whole-exome sequencing or clinical sequencing results (n = 45) were analyzed. A pan-cancer analysis of nonbreast/ovarian primary tumors from germline BRCA1/2 carriers from The Cancer Genome Atlas (TCGA, n = 73) was used as a validation cohort. RESULTS Ages of nonbreast/ovarian cancer diagnosis in germline BRCA1/2 carriers were similar to controls for the majority of cancer types. Nine of 45 (20%) primary nonbreast/ovarian tumors from germline BRCA1/2 carriers had biallelic loss of BRCA1/2 in the clinical cohort, and 23 of 73 (32%) in the TCGA cohort. In the combined cohort, 35% and 27% of primary canonical and noncanonical BRCA tumor types, respectively, had biallelic loss. High HRD scores (HRDex > 42) were detected in 81% of tumors with biallelic BRCA loss compared with 22% (P < .001) of tumors without biallelic BRCA loss. No differences in genomic profile, including mutational signatures, mutation spectrum, tumor mutational burden, or microsatellite instability, were found in primary nonbreast/ovarian tumors with or without biallelic BRCA1/2 loss. CONCLUSION A proportion of noncanonical primary tumors have biallelic loss and evidence of HRD. Our data suggest that assessment of biallelic loss and HRD could supplement identification of germline BRCA1/2 mutations in selection of patients for platinum or PARP inhibitor therapy.
Collapse
Affiliation(s)
- Dylane Wineland
- Arcadia University and Chester County Hospital, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Anh N. Le
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Ryan Hausler
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Gregory Kelly
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Emanuel Barrett
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Heena Desai
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Bradley Wubbenhorst
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - John Pluta
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Paul Bastian
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Heather Symecko
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Kurt D'Andrea
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Abigail Doucette
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Peter Gabriel
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Kim A. Reiss
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Anupma Nayak
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Michael Feldman
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Susan M. Domchek
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Katherine L. Nathanson
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Kara N. Maxwell
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
17
|
Reza N, Levin MG, Vidula MK, Bravo PE, Damrauer SM, Ritchie MD, Regeneron Genetics Center, Chahal CAA, Owens AT. Prevalence of Pathogenic Variants in Dilated Cardiomyopathy-Associated Genes in Patients Evaluated for Cardiac Sarcoidosis. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2023; 16:409-411. [PMID: 37194596 PMCID: PMC10523919 DOI: 10.1161/circgen.122.003850] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Affiliation(s)
- Nosheen Reza
- Division of Cardiovascular Medicine, Dept of Medicine, Perelman School of Medicine at the Univ of Pennsylvania
| | - Michael G. Levin
- Division of Cardiovascular Medicine, Dept of Medicine, Perelman School of Medicine at the Univ of Pennsylvania
| | - Mahesh K. Vidula
- Division of Cardiovascular Medicine, Dept of Medicine, Perelman School of Medicine at the Univ of Pennsylvania
| | - Paco E. Bravo
- Division of Cardiovascular Medicine, Dept of Medicine, Perelman School of Medicine at the Univ of Pennsylvania
| | - Scott M. Damrauer
- Dept of Surgery, Perelman School of Medicine at the Univ of Pennsylvania
- Corporal Michael Crescenz VA Medical Ctr, Philadelphia
| | - Marylyn D. Ritchie
- Dept of Genetics, Perelman School of Medicine at the Univ of Pennsylvania
| | | | - C. Anwar A. Chahal
- Center for Inherited Cardiovascular Diseases, WellSpan Health, Lancaster, PA
| | - Anjali Tiku Owens
- Division of Cardiovascular Medicine, Dept of Medicine, Perelman School of Medicine at the Univ of Pennsylvania
| |
Collapse
|
18
|
Parisi MA, Caggana M, Cohen JL, Gold NB, Morris JA, Orsini JJ, Urv TK, Wasserstein MP. When is the best time to screen and evaluate for treatable genetic disorders?: A lifespan perspective. AMERICAN JOURNAL OF MEDICAL GENETICS. PART C, SEMINARS IN MEDICAL GENETICS 2023; 193:44-55. [PMID: 36876995 PMCID: PMC10475244 DOI: 10.1002/ajmg.c.32036] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 01/10/2023] [Accepted: 01/21/2023] [Indexed: 03/07/2023]
Abstract
This paper focuses on the question of, "When is the best time to identify an individual at risk for a treatable genetic condition?" In this review, we describe a framework for considering the optimal timing for pursuing genetic and genomic screening for treatable genetic conditions incorporating a lifespan approach. Utilizing the concept of a carousel that represents the four broad time periods when critical decisions might be made around genetic diagnoses during a person's lifetime, we describe genetic testing during the prenatal period, the newborn period, childhood, and adulthood. For each of these periods, we describe the objectives of genetic testing, the current status of screening or testing, the near-term vision for the future of genomic testing, the advantages and disadvantages of each approach, and the feasibility and ethical considerations of testing and treating. The notion of a "Genomics Passbook" is one where an early genomic screening evaluation could be performed on each individual through a public health program, with that data ultimately serving as a "living document" that could be queried and/or reanalyzed at prescribed times during the lifetime of that person, or in response to concerns about symptoms of a genetic disorder in that individual.
Collapse
Affiliation(s)
- Melissa A Parisi
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Michele Caggana
- Wadsworth Center, New York State Department of Health, Division of Genetics, Albany, New York, USA
| | | | - Nina B Gold
- Massachusetts General Hospital for Children, Boston, Massachusetts, USA
| | - Jill A Morris
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Joseph J Orsini
- New York State Department of Health, Wadsworth Center, Albany, New York, USA
| | - Tiina K Urv
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland, USA
| | - Melissa P Wasserstein
- Albert Einstein College of Medicine and the Children's Hospital at Montefiore, Bronx, New York, USA
| |
Collapse
|
19
|
Kim J, Vaksman Z, Egolf LE, Kaufman R, Evans JP, Conkrite KL, Danesh A, Lopez G, Randall MP, Dent MH, Farra LM, Menghani N, Dymek M, Desai H, Hausler R, Penn Medicine BioBank, Regeneron Genetics Center, Cancer Genomics Research Laboratory, Guidry Auvil JM, Gerhard DS, Hakonarson H, Maxwell KN, Cole KA, Pugh TJ, Bosse KR, Khan J, Wei JS, Maris JM, Stewart DR, Diskin SJ. Germline pathogenic variants in 786 neuroblastoma patients. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.01.23.23284864. [PMID: 36747619 PMCID: PMC9901064 DOI: 10.1101/2023.01.23.23284864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Importance Neuroblastoma accounts for 12% of childhood cancer deaths. The genetic contribution of rare pathogenic germline variation in patients without a family history remains unclear. Objective To define the prevalence, spectrum, and clinical significance of pathogenic germline variation in cancer predisposition genes (CPGs) in neuroblastoma patients. Design Setting and Participants Germline DNA sequencing was performed on the peripheral blood from 786 neuroblastoma patients unselected for family history. Rare variants mapping to CPGs were evaluated for pathogenicity and the percentage of cases harboring pathogenic (P) or likely pathogenic (LP) variants was quantified. The frequency of CPG P-LP variants in neuroblastoma cases was compared to two distinct cancer-free control cohorts to assess enrichment. Matched tumor DNA sequencing was evaluated for "second hits" at CPGs and germline DNA array data from 5,585 neuroblastoma cases and 23,505 cancer-free control children was analyzed to identify rare germline copy number variants (CNVs) affecting genes with an excess burden of P-LP variants in neuroblastoma. Neuroblastoma patients with germline P-LP variants were compared to those without P-LP variants to test for association with clinical characteristics, tumor features, and patient survival. Main Outcomes and Measures Rare variant prevalence, pathogenicity, enrichment, and association with clinical characteristics, tumor features, and patient survival. Results We observed 116 P-LP variants in CPGs involving 13.9% (109/786) of patients, representing a significant excess burden of P-LP variants compared to controls (9.1%; P = 5.14 × 10-5, Odds Ratio: 1.60, 95% confidence interval: 1.27-2.00). BARD1 harbored the most significant burden of P-LP variants compared to controls (1.0% vs. 0.03%; P = 8.18 × 10-7; Odds Ratio: 32.30, 95% confidence interval: 6.44-310.35). Rare germline CNVs disrupting BARD1 were also identified in neuroblastoma patients (0.05%) but absent in controls (P = 7.08 × 10-3; Odds Ratio: 29.47, 95% confidence interval: 1.52 - 570.70). Overall, P-LP variants in DNA repair genes in this study were enriched in cases compared to controls (8.1% vs. 5.7%; P = 0.01; Odds Ratio: 1.45, 95% confidence interval: 1.08-1.92). Neuroblastoma patients harboring a germline P-LP variant had a worse overall survival when compared to patients without P-LP variants (P = 8.6 × 10-3), and this remained significant in a multivariate Cox proportional-hazards model (P = 0.01). Conclusions and Relevance Neuroblastoma patients harboring germline P-LP variants in CPGs have worse overall survival and BARD1 is an important predisposition gene affected by both common and rare pathogenic variation. Germline sequencing should be performed for all neuroblastoma patients at diagnosis to inform genetic counseling and support future longitudinal and mechanistic studies. Patients with a germline P-LP variant should be closely monitored, regardless of risk group assignment.
Collapse
Affiliation(s)
- Jung Kim
- Clinical Genetics Branch, Division of Cancer Epidemiology and
Genetics, National Cancer Institute, NIH, Rockville, MD, USA
| | - Zalman Vaksman
- Department of Biomedical and Health Informatics,
Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Oncology and Center for Childhood Cancer Research,
Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Laura E. Egolf
- Division of Oncology and Center for Childhood Cancer Research,
Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Cell and Molecular Biology Graduate Group, Perelman School of
Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Rebecca Kaufman
- Division of Oncology and Center for Childhood Cancer Research,
Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - J. Perry Evans
- Department of Biomedical and Health Informatics,
Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Oncology and Center for Childhood Cancer Research,
Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Karina L. Conkrite
- Division of Oncology and Center for Childhood Cancer Research,
Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Arnavaz Danesh
- Princess Margaret Cancer Centre, University Health Network,
Toronto, Ontario, ON, M5S Canada
| | - Gonzalo Lopez
- Division of Oncology and Center for Childhood Cancer Research,
Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Michael P. Randall
- Division of Oncology and Center for Childhood Cancer Research,
Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Maiah H. Dent
- Division of Oncology and Center for Childhood Cancer Research,
Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Lance M. Farra
- Division of Oncology and Center for Childhood Cancer Research,
Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Neil Menghani
- Division of Oncology and Center for Childhood Cancer Research,
Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Malwina Dymek
- Division of Oncology and Center for Childhood Cancer Research,
Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Heena Desai
- Division of Hematology/Oncology, Department of Medicine, Perelman
School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Family Cancer Research Institute, Perelman School of
Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ryan Hausler
- Division of Hematology/Oncology, Department of Medicine, Perelman
School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Family Cancer Research Institute, Perelman School of
Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Penn Medicine BioBank
- Penn Medicine BioBank, Department of Medicine, Perelman School of
Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | | | | | - Hakon Hakonarson
- Center for Applied Genomics, Children’s Hospital of
Philadelphia, Philadelphia, PA 19104, USA
- Department of Pediatrics, Perelman School of Medicine,
University of Pennsylvania, Philadelphia, PA, USA
| | - Kara N. Maxwell
- Division of Hematology/Oncology, Department of Medicine, Perelman
School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Family Cancer Research Institute, Perelman School of
Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kristina A. Cole
- Division of Oncology and Center for Childhood Cancer Research,
Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine,
University of Pennsylvania, Philadelphia, PA, USA
| | - Trevor J. Pugh
- Princess Margaret Cancer Centre, University Health Network,
Toronto, Ontario, ON, M5S Canada
- Department of Medical Biophysics, University of Toronto,
Toronto, Ontario, ON, M5S Canada
| | - Kristopher R. Bosse
- Division of Oncology and Center for Childhood Cancer Research,
Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Abramson Family Cancer Research Institute, Perelman School of
Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine,
University of Pennsylvania, Philadelphia, PA, USA
| | - Javed Khan
- Oncogenomics Section, Genetics Branch, Center for Cancer
Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Jun S. Wei
- Oncogenomics Section, Genetics Branch, Center for Cancer
Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - John M. Maris
- Division of Oncology and Center for Childhood Cancer Research,
Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Abramson Family Cancer Research Institute, Perelman School of
Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine,
University of Pennsylvania, Philadelphia, PA, USA
| | - Douglas R. Stewart
- Clinical Genetics Branch, Division of Cancer Epidemiology and
Genetics, National Cancer Institute, NIH, Rockville, MD, USA
| | - Sharon J. Diskin
- Department of Biomedical and Health Informatics,
Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Oncology and Center for Childhood Cancer Research,
Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Abramson Family Cancer Research Institute, Perelman School of
Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine,
University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
20
|
Verma A, Damrauer SM, Naseer N, Weaver J, Kripke CM, Guare L, Sirugo G, Kember RL, Drivas TG, Dudek SM, Bradford Y, Lucas A, Judy R, Verma SS, Meagher E, Nathanson KL, Feldman M, Ritchie MD, Rader DJ, BioBank FTPM. The Penn Medicine BioBank: Towards a Genomics-Enabled Learning Healthcare System to Accelerate Precision Medicine in a Diverse Population. J Pers Med 2022; 12:jpm12121974. [PMID: 36556195 PMCID: PMC9785650 DOI: 10.3390/jpm12121974] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/17/2022] [Accepted: 11/19/2022] [Indexed: 12/02/2022] Open
Abstract
The Penn Medicine BioBank (PMBB) is an electronic health record (EHR)-linked biobank at the University of Pennsylvania (Penn Medicine). A large variety of health-related information, ranging from diagnosis codes to laboratory measurements, imaging data and lifestyle information, is integrated with genomic and biomarker data in the PMBB to facilitate discoveries and translational science. To date, 174,712 participants have been enrolled into the PMBB, including approximately 30% of participants of non-European ancestry, making it one of the most diverse medical biobanks. There is a median of seven years of longitudinal data in the EHR available on participants, who also consent to permission to recontact. Herein, we describe the operations and infrastructure of the PMBB, summarize the phenotypic architecture of the enrolled participants, and use body mass index (BMI) as a proof-of-concept quantitative phenotype for PheWAS, LabWAS, and GWAS. The major representation of African-American participants in the PMBB addresses the essential need to expand the diversity in genetic and translational research. There is a critical need for a "medical biobank consortium" to facilitate replication, increase power for rare phenotypes and variants, and promote harmonized collaboration to optimize the potential for biological discovery and precision medicine.
Collapse
Affiliation(s)
- Anurag Verma
- Department of Medicine, Division of Translational Medicine and Human Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
- Correspondence: (A.V.); (D.J.R.)
| | - Scott M. Damrauer
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Surgery, Division of Vascular Surgery and Endovascular Therapy, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nawar Naseer
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - JoEllen Weaver
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Colleen M. Kripke
- Department of Medicine, Division of Translational Medicine and Human Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lindsay Guare
- Department of Pathology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Giorgio Sirugo
- Department of Medicine, Division of Translational Medicine and Human Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rachel L. Kember
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Theodore G. Drivas
- Department of Medicine, Division of Translational Medicine and Human Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Scott M. Dudek
- Department of Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yuki Bradford
- Department of Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Anastasia Lucas
- Department of Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Renae Judy
- Department of Surgery, Division of Vascular Surgery and Endovascular Therapy, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Shefali S. Verma
- Department of Pathology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Emma Meagher
- Department of Medicine, Division of Translational Medicine and Human Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Katherine L. Nathanson
- Department of Medicine, Division of Translational Medicine and Human Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael Feldman
- Department of Pathology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Marylyn D. Ritchie
- Department of Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Daniel J. Rader
- Department of Medicine, Division of Translational Medicine and Human Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA
- Correspondence: (A.V.); (D.J.R.)
| | | |
Collapse
|
21
|
Nafissi NA, Abdulrahim JW, Kwee LC, Coniglio AC, Kraus WE, Piccini JP, Daubert JP, Sun AY, Shah SH. Prevalence and Phenotypic Burden of Monogenic Arrhythmias Using Integration of Electronic Health Records With Genetics. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2022; 15:e003675. [PMID: 36136372 PMCID: PMC9588708 DOI: 10.1161/circgen.121.003675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 06/22/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND Inherited primary arrhythmia syndromes and arrhythmogenic cardiomyopathies can lead to sudden cardiac arrest in otherwise healthy individuals. The burden and expression of these diseases in a real-world, well-phenotyped cardiovascular population is not well understood. METHODS Whole exome sequencing was performed on 8574 individuals from the CATHGEN cohort (Catheterization Genetics). Variants in 55 arrhythmia-related genes (associated with 8 disorders) were identified and assessed for pathogenicity based on American College of Genetics and Genomics/Association for Molecular Pathology criteria. Individuals carrying pathogenic/likely pathogenic (P/LP) variants were grouped by arrhythmogenic disorder and matched 1:5 to noncarrier controls based on age, sex, and genetic ancestry. Long-term phenotypic data were annotated through deep electronic health record review. RESULTS Fifty-eight P/LP variants were found in 79 individuals in 12 genes associated with 5 arrhythmogenic disorders (arrhythmogenic right ventricular cardiomyopathy, Brugada syndrome, hypertrophic cardiomyopathy, LMNA-related cardiomyopathy, and long QT syndrome). The penetrance of these P/LP variants in this cardiovascular cohort was 33%, 0%, 28%, 83%, and 4%, respectively. Carriers of P/LP variants associated with arrhythmogenic disorders showed significant differences in ECG, imaging, and clinical phenotypes compared with noncarriers, but displayed no difference in survival. Carriers of novel truncating variants in FLNC, MYBPC3, and MYH7 also developed relevant arrhythmogenic cardiomyopathy phenotypes. CONCLUSIONS In a real-world cardiovascular cohort, P/LP variants in arrhythmia-related genes were relatively common (1:108 prevalence) and most penetrant in LMNA. While hypertrophic cardiomyopathy P/LP variant carriers showed significant differences in clinical outcomes compared with noncarriers, carriers of P/LP variants associated with other arrhythmogenic disorders displayed only ECG differences.
Collapse
Affiliation(s)
- Navid A. Nafissi
- Division of Cardiology, Dept of Medicine, Duke University School of Medicine, Durham, NC
| | | | - Lydia Coulter Kwee
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC
| | - Amanda C. Coniglio
- Division of Cardiology, Dept of Medicine, Duke University School of Medicine, Durham, NC
| | - William E. Kraus
- Division of Cardiology, Dept of Medicine, Duke University School of Medicine, Durham, NC
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC
| | - Jonathan P. Piccini
- Division of Cardiology, Dept of Medicine, Duke University School of Medicine, Durham, NC
- Duke Clinical Research Institute, Durham, NC
| | - James P. Daubert
- Division of Cardiology, Dept of Medicine, Duke University School of Medicine, Durham, NC
| | - Albert Y. Sun
- Division of Cardiology, Dept of Medicine, Duke University School of Medicine, Durham, NC
| | - Svati H. Shah
- Division of Cardiology, Dept of Medicine, Duke University School of Medicine, Durham, NC
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC
| |
Collapse
|
22
|
Shah RA, Asatryan B, Sharaf Dabbagh G, Aung N, Khanji MY, Lopes LR, van Duijvenboden S, Holmes A, Muser D, Landstrom AP, Lee AM, Arora P, Semsarian C, Somers VK, Owens AT, Munroe PB, Petersen SE, Chahal CAA. Frequency, Penetrance, and Variable Expressivity of Dilated Cardiomyopathy-Associated Putative Pathogenic Gene Variants in UK Biobank Participants. Circulation 2022; 146:110-124. [PMID: 35708014 PMCID: PMC9375305 DOI: 10.1161/circulationaha.121.058143] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND There is a paucity of data regarding the phenotype of dilated cardiomyopathy (DCM) gene variants in the general population. We aimed to determine the frequency and penetrance of DCM-associated putative pathogenic gene variants in a general adult population, with a focus on the expression of clinical and subclinical phenotype, including structural, functional, and arrhythmic disease features. METHODS UK Biobank participants who had undergone whole exome sequencing, ECG, and cardiovascular magnetic resonance imaging were selected for study. Three variant-calling strategies (1 primary and 2 secondary) were used to identify participants with putative pathogenic variants in 44 DCM genes. The observed phenotype was graded DCM (clinical or cardiovascular magnetic resonance diagnosis); early DCM features, including arrhythmia or conduction disease, isolated ventricular dilation, and hypokinetic nondilated cardiomyopathy; or phenotype-negative. RESULTS Among 18 665 individuals included in the study, 1463 (7.8%) possessed ≥1 putative pathogenic variant in 44 DCM genes by the main variant calling strategy. A clinical diagnosis of DCM was present in 0.34% and early DCM features in 5.7% of individuals with putative pathogenic variants. ECG and cardiovascular magnetic resonance analysis revealed evidence of subclinical DCM in an additional 1.6% and early DCM features in an additional 15.9% of individuals with putative pathogenic variants. Arrhythmias or conduction disease (15.2%) were the most common early DCM features, followed by hypokinetic nondilated cardiomyopathy (4%). The combined clinical/subclinical penetrance was ≤30% with all 3 variant filtering strategies. Clinical DCM was slightly more prevalent among participants with putative pathogenic variants in definitive/strong evidence genes as compared with those with variants in moderate/limited evidence genes. CONCLUSIONS In the UK Biobank, ≈1 of 6 of adults with putative pathogenic variants in DCM genes exhibited early DCM features potentially associated with DCM genotype, most commonly manifesting with arrhythmias in the absence of substantial ventricular dilation or dysfunction.
Collapse
Affiliation(s)
- Ravi A Shah
- Imperial College Healthcare NHS Trust, London, United Kingdom (R.A.S.)
| | - Babken Asatryan
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Switzerland (B.A.)
| | - Ghaith Sharaf Dabbagh
- Center for Inherited Cardiovascular Diseases, WellSpan Health, Lancaster, PA (G.S.D., C.A.A.C.).,University of Michigan, Division of Cardiovascular Medicine, Ann Arbor (G.S.D.)
| | - Nay Aung
- Barts Heart Centre, St Bartholomew's Hospital, Barts Health NHS Trust, London, United Kingdom (N.A., M.Y.K., L.R.L., A.M.L., S.E.P., C.A.A.C.).,NIHR Barts Biomedical Research Centre, William Harvey Research Institute, Queen Mary University of London, United Kingdom (N.A., M.Y.K., S.v.D., A.M.L., P.B.M., S.E.P.)
| | - Mohammed Y Khanji
- Barts Heart Centre, St Bartholomew's Hospital, Barts Health NHS Trust, London, United Kingdom (N.A., M.Y.K., L.R.L., A.M.L., S.E.P., C.A.A.C.).,NIHR Barts Biomedical Research Centre, William Harvey Research Institute, Queen Mary University of London, United Kingdom (N.A., M.Y.K., S.v.D., A.M.L., P.B.M., S.E.P.)
| | - Luis R Lopes
- Centre for Heart Muscle Disease, Institute of Cardiovascular Science, University College London, United Kingdom (L.R.L.)
| | - Stefan van Duijvenboden
- NIHR Barts Biomedical Research Centre, William Harvey Research Institute, Queen Mary University of London, United Kingdom (N.A., M.Y.K., S.v.D., A.M.L., P.B.M., S.E.P.)
| | | | - Daniele Muser
- Cardiac Electrophysiology, Cardiovascular Division, Hospital of the University of Pennsylvania, Philadelphia (D.M., C.A.A.C.)
| | - Andrew P Landstrom
- Departments of Pediatrics, Division of Cardiology, and Cell Biology, Duke University School of Medicine, Durham, NC (A.P.L.)
| | - Aaron Mark Lee
- NIHR Barts Biomedical Research Centre, William Harvey Research Institute, Queen Mary University of London, United Kingdom (N.A., M.Y.K., S.v.D., A.M.L., P.B.M., S.E.P.)
| | - Pankaj Arora
- Division of Cardiovascular Disease, University of Alabama at Birmingham (P.A.)
| | - Christopher Semsarian
- Agnes Ginges Centre for Molecular Cardiology at Centenary Institute (C.S.), The University of Sydney, New South Wales, Australia.,Sydney Medical School Faculty of Medicine and Health (C.S.), The University of Sydney, New South Wales, Australia.,Department of Cardiology, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia (C.S.)
| | - Virend K Somers
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN (V.K.S., C.A.A.C.)
| | - Anjali T Owens
- Center for Inherited Cardiovascular Disease, Cardiovascular Division, University of Pennsylvania Perelman School of Medicine, Philadelphia (A.T.O.)
| | - Patricia B Munroe
- NIHR Barts Biomedical Research Centre, William Harvey Research Institute, Queen Mary University of London, United Kingdom (N.A., M.Y.K., S.v.D., A.M.L., P.B.M., S.E.P.)
| | - Steffen E Petersen
- NIHR Barts Biomedical Research Centre, William Harvey Research Institute, Queen Mary University of London, United Kingdom (N.A., M.Y.K., S.v.D., A.M.L., P.B.M., S.E.P.)
| | - C Anwar A Chahal
- Center for Inherited Cardiovascular Diseases, WellSpan Health, Lancaster, PA (G.S.D., C.A.A.C.).,Cardiac Electrophysiology, Cardiovascular Division, Hospital of the University of Pennsylvania, Philadelphia (D.M., C.A.A.C.).,Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN (V.K.S., C.A.A.C.)
| | | |
Collapse
|
23
|
Lazarte J, Jurgens SJ, Choi SH, Khurshid S, Morrill VN, Weng LC, Nauffal V, Pirruccello JP, Halford JL, Hegele RA, Ellinor PT, Lunetta KL, Lubitz SA. LMNA Variants and Risk of Adult-Onset Cardiac Disease. J Am Coll Cardiol 2022; 80:50-59. [PMID: 35772917 PMCID: PMC11071053 DOI: 10.1016/j.jacc.2022.04.035] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/28/2022] [Accepted: 04/05/2022] [Indexed: 01/01/2023]
Abstract
BACKGROUND Genetic variants in LMNA may cause cardiac disease, but population-level contributions of variants to cardiac disease burden are not well-characterized. OBJECTIVES We sought to determine the frequency and contribution of rare LMNA variants to cardiomyopathy and arrhythmia risk among ambulatory adults. METHODS We included 185,990 UK Biobank participants with whole-exome sequencing. We annotated rare loss-of-function and missense LMNA variants for functional effect using 30 in silico prediction tools. We assigned a predicted functional effect weight to each variant and calculated a score for each carrier. We tested associations between the LMNA score and arrhythmia (atrial fibrillation, bradyarrhythmia, ventricular arrhythmia) or cardiomyopathy outcomes (dilated cardiomyopathy and heart failure). We also examined associations for variants located upstream vs downstream of the nuclear localization signal. RESULTS Overall, 1,167 (0.63%) participants carried an LMNA variant and 15,079 (8.11%) had an arrhythmia or cardiomyopathy event during a median follow-up of 10.9 years. The LMNA score was associated with arrhythmia or cardiomyopathy (OR: 2.21; P < 0.001) and the association was more significant when restricted to variants upstream of the nuclear localization signal (OR: 5.05; P < 0.001). The incidence rate of arrhythmia or cardiomyopathy was 8.43 per 1,000 person-years (95% CI: 6.73-10.12 per 1,000 person-years) among LMNA variant carriers and 6.38 per 1,000 person-years (95% CI: 6.27-6.50 per 1,000 person-years) among noncarriers. Only 3 (1.2%) of the variants were reported as pathogenic in ClinVar. CONCLUSIONS Middle-aged adult carriers of rare missense or loss-of-function LMNA variants are at increased risk for arrhythmia and cardiomyopathy.
Collapse
Affiliation(s)
- Julieta Lazarte
- Cardiovascular Disease Initiative, Broad Institute of Harvard and the Massachusetts Institute of Technology, Cambridge, Massachusetts, USA; Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada; Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada; Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada. https://twitter.com/Juliet_Lazarte
| | - Sean J Jurgens
- Cardiovascular Disease Initiative, Broad Institute of Harvard and the Massachusetts Institute of Technology, Cambridge, Massachusetts, USA; Department of Experimental Cardiology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Seung Hoan Choi
- Cardiovascular Disease Initiative, Broad Institute of Harvard and the Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Shaan Khurshid
- Cardiovascular Disease Initiative, Broad Institute of Harvard and the Massachusetts Institute of Technology, Cambridge, Massachusetts, USA; Demoulas Center for Cardiac Arrhythmias, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Valerie N Morrill
- Cardiovascular Disease Initiative, Broad Institute of Harvard and the Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Lu-Chen Weng
- Cardiovascular Disease Initiative, Broad Institute of Harvard and the Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Victor Nauffal
- Cardiovascular Disease Initiative, Broad Institute of Harvard and the Massachusetts Institute of Technology, Cambridge, Massachusetts, USA; Cardiovascular Medicine Division, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - James P Pirruccello
- Cardiovascular Disease Initiative, Broad Institute of Harvard and the Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Jennifer L Halford
- Cardiovascular Disease Initiative, Broad Institute of Harvard and the Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Robert A Hegele
- Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada; Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada; Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Patrick T Ellinor
- Cardiovascular Disease Initiative, Broad Institute of Harvard and the Massachusetts Institute of Technology, Cambridge, Massachusetts, USA; Demoulas Center for Cardiac Arrhythmias, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Kathryn L Lunetta
- National Heart, Lung, and Blood Institute and Boston University's Framingham Heart Study, Framingham, Massachusetts, USA; Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, USA
| | - Steven A Lubitz
- Cardiovascular Disease Initiative, Broad Institute of Harvard and the Massachusetts Institute of Technology, Cambridge, Massachusetts, USA; Demoulas Center for Cardiac Arrhythmias, Massachusetts General Hospital, Boston, Massachusetts, USA.
| |
Collapse
|
24
|
Genome-wide analysis provides genetic evidence that ACE2 influences COVID-19 risk and yields risk scores associated with severe disease. Nat Genet 2022; 54:382-392. [PMID: 35241825 PMCID: PMC9005345 DOI: 10.1038/s41588-021-01006-7] [Citation(s) in RCA: 109] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 12/17/2021] [Indexed: 01/08/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) enters human host cells via angiotensin-converting enzyme 2 (ACE2) and causes coronavirus disease 2019 (COVID-19). Here, through a genome-wide association study, we identify a variant (rs190509934, minor allele frequency 0.2–2%) that downregulates ACE2 expression by 37% (P = 2.7 × 10−8) and reduces the risk of SARS-CoV-2 infection by 40% (odds ratio = 0.60, P = 4.5 × 10−13), providing human genetic evidence that ACE2 expression levels influence COVID-19 risk. We also replicate the associations of six previously reported risk variants, of which four were further associated with worse outcomes in individuals infected with the virus (in/near LZTFL1, MHC, DPP9 and IFNAR2). Lastly, we show that common variants define a risk score that is strongly associated with severe disease among cases and modestly improves the prediction of disease severity relative to demographic and clinical factors alone. Genome-wide meta-analysis of SARS-CoV-2 susceptibility and severity phenotypes in up to 756,646 samples identifies a rare protective variant proximal to ACE2. A 6-SNP genetic risk score provides additional predictive power when added to known risk factors.
Collapse
|
25
|
Wang L, Desai H, Verma SS, Le A, Hausler R, Verma A, Judy R, Doucette A, Gabriel PE, Nathanson KL, Damrauer SM, Mowery DL, Ritchie MD, Kember RL, Maxwell KN. Performance of polygenic risk scores for cancer prediction in a racially diverse academic biobank. Genet Med 2022; 24:601-609. [PMID: 34906489 PMCID: PMC9680700 DOI: 10.1016/j.gim.2021.10.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 08/09/2021] [Accepted: 10/22/2021] [Indexed: 01/08/2023] Open
Abstract
PURPOSE Genome-wide association studies have identified hundreds of single nucleotide variations (formerly single nucleotide polymorphisms) associated with several cancers, but the predictive ability of polygenic risk scores (PRSs) is unclear, especially among non-Whites. METHODS PRSs were derived from genome-wide significant single-nucleotide variations for 15 cancers in 20,079 individuals in an academic biobank. We evaluated the improvement in discriminatory accuracy by including cancer-specific PRS in patients of genetically-determined African and European ancestry. RESULTS Among the individuals of European genetic ancestry, PRSs for breast, colon, melanoma, and prostate were significantly associated with their respective cancers. Among the individuals of African genetic ancestry, PRSs for breast, colon, prostate, and thyroid were significantly associated with their respective cancers. The area under the curve of the model consisting of age, sex, and principal components was 0.621 to 0.710, and it increased by 1% to 4% with the inclusion of PRS in individuals of European genetic ancestry. In individuals of African genetic ancestry, area under the curve was overall higher in the model without the PRS (0.723-0.810) but increased by <1% with the inclusion of PRS for most cancers. CONCLUSION PRS moderately increased the ability to discriminate the cancer status in individuals of European but not African ancestry. Further large-scale studies are needed to identify ancestry-specific genetic factors in non-White populations to incorporate PRS into cancer risk assessment.
Collapse
Affiliation(s)
- Louise Wang
- Division of Gastroenterology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Heena Desai
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Shefali S Verma
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Anh Le
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Ryan Hausler
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Anurag Verma
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Renae Judy
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Abigail Doucette
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA
| | - Peter E Gabriel
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA; Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Katherine L Nathanson
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA; Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA; Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Scott M Damrauer
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA; Corporal Michael J. Crescenz VA Medical Center, U.S. Department of Veterans Affairs, Philadelphia, PA
| | - Danielle L Mowery
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Marylyn D Ritchie
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Rachel L Kember
- Corporal Michael J. Crescenz VA Medical Center, U.S. Department of Veterans Affairs, Philadelphia, PA; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Kara N Maxwell
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA; Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA; Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA; Corporal Michael J. Crescenz VA Medical Center, U.S. Department of Veterans Affairs, Philadelphia, PA.
| |
Collapse
|
26
|
Priestley JRC, Krantz ID. 50 Years Ago in TheJournalofPediatrics: What's In a Name: Lessons Learned from Atypical Malformation Syndromes. J Pediatr 2022; 241:61. [PMID: 35067288 DOI: 10.1016/j.jpeds.2021.10.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Jessica R C Priestley
- Department of Pediatrics, The Children's Hospital of Philadelphia, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ian D Krantz
- Department of Pediatrics, The Children's Hospital of Philadelphia, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
27
|
Lee DJ, Hausler R, Le AN, Kelly G, Powers J, Ding J, Feld E, Desai H, Morrison C, Doucette A, Gabriel P, Genetics Center R, Judy RL, Weaver J, Kember R, Damrauer SM, Rader DJ, Domchek SM, Narayan V, Schwartz LE, Maxwell KN. Association of Inherited Mutations in DNA Repair Genes with Localized Prostate Cancer. Eur Urol 2021; 81:559-567. [PMID: 34711450 PMCID: PMC9035481 DOI: 10.1016/j.eururo.2021.09.029] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 09/27/2021] [Indexed: 11/16/2022]
Abstract
Background: Identification of germline mutations in DNA repair genes has significant implications for the personalized treatment of individuals with prostate cancer (PrCa). Objective: To determine DNA repair genes associated with localized PrCa in a diverse academic biobank and to determine genetic testing burden. Design, setting, and participants: A cross-sectional study of 2391 localized PrCa patients was carried out. Outcome measurements and statistical analysis: Genetic ancestry and mutation rates (excluding somatic interference) in 17 DNA repair genes were determined in 1588 localized PrCa patients and 3273 cancer-free males. Burden testing within individuals of genetically determined European (EUR) and African (AFR) ancestry was performed between biobank PrCa cases and cancer-free biobank and gnomAD males. Results and limitations: AFR individuals with localized PrCa had lower DNA repair gene mutation rates than EUR individuals (1.4% vs 4.0%, p = 0.02). Mutation rates in localized PrCa patients were similar to those in biobank and gnomAD controls (EUR: 4.0% vs 2.8%, p = 0.15, vs 3.1%, p = 0.04; AFR: 1.4% vs 1.8%, p = 0.8, vs 2.1%, p = 0.5). Gene-based rare variant association testing revealed that only BRCA2 mutations were significantly enriched compared with gnomAD controls of EUR ancestry (1.0% vs 0.28%, p = 0.03). Of the participants, 21% and 11% met high-risk and very-high-risk criteria; of them, 3.7% and 6.2% had any germline genetic mutation and 1.0% and 2.5% had a BRCA2 mutation, respectively. Limitations of this study include an analysis of a relatively small, single-institution cohort. Conclusions: DNA repair gene germline mutation rates are low in an academic biobank cohort of localized PrCa patients, particularly among individuals of AFR genetic ancestry. Mutation rates in genes with published evidence of association with PrCa exceed 2.5% only in high-risk, very-high-risk localized, and node-positive PrCa patients. These findings highlight the importance of risk stratification in localized PrCa patients to identify appropriate patients for germline genetic testing. Patient summary: In the majority of patients who develop localized prostate cancer, germline genetic testing is unlikely to reveal an inherited DNA repair mutation, regardless of race. High-risk features increase the possibility of a germline DNA repair mutation.
Collapse
Affiliation(s)
- Daniel J Lee
- Department of Surgery, Division of Urology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ryan Hausler
- Department of Medicine, Division of Hematology/Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Anh N Le
- Department of Medicine, Division of Hematology/Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Gregory Kelly
- Department of Medicine, Division of Hematology/Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jacquelyn Powers
- Department of Medicine, Division of Hematology/Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - James Ding
- Department of Medicine, Division of Hematology/Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Emily Feld
- Department of Medicine, Division of Hematology/Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Heena Desai
- Department of Medicine, Division of Hematology/Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Casey Morrison
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Abigail Doucette
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Peter Gabriel
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Renae L Judy
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Joellen Weaver
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Rachel Kember
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Scott M Damrauer
- Department of Surgery, Division of Vascular Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, USA
| | - Daniel J Rader
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Susan M Domchek
- Department of Medicine, Division of Hematology/Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Vivek Narayan
- Department of Medicine, Division of Hematology/Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lauren E Schwartz
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kara N Maxwell
- Department of Medicine, Division of Hematology/Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, USA.
| |
Collapse
|
28
|
Forrest IS, Chaudhary K, Vy HMT, Bafna S, Kim S, Won HH, Loos RJ, Cho J, Pasquale LR, Nadkarni GN, Rocheleau G, Do R. Genetic pleiotropy of ERCC6 loss-of-function and deleterious missense variants links retinal dystrophy, arrhythmia, and immunodeficiency in diverse ancestries. Hum Mutat 2021; 42:969-977. [PMID: 34005834 PMCID: PMC8295228 DOI: 10.1002/humu.24220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 04/27/2021] [Accepted: 05/15/2021] [Indexed: 11/08/2022]
Abstract
Biobanks with exomes linked to electronic health records (EHRs) enable the study of genetic pleiotropy between rare variants and seemingly disparate diseases. We performed robust clinical phenotyping of rare, putatively deleterious variants (loss-of-function [LoF] and deleterious missense variants) in ERCC6, a gene implicated in inherited retinal disease. We analyzed 213,084 exomes, along with a targeted set of retinal, cardiac, and immune phenotypes from two large-scale EHR-linked biobanks. In the primary analysis, a burden of deleterious variants in ERCC6 was strongly associated with (1) retinal disorders; (2) cardiac and electrocardiogram perturbations; and (3) immunodeficiency and decreased immunoglobulin levels. Meta-analysis of results from the BioMe Biobank and UK Biobank showed a significant association of deleterious ERCC6 burden with retinal dystrophy (odds ratio [OR] = 2.6, 95% confidence interval [CI]: 1.5-4.6; p = 8.7 × 10-4 ), atypical atrial flutter (OR = 3.5, 95% CI: 1.9-6.5; p = 6.2 × 10-5 ), arrhythmia (OR = 1.5, 95% CI: 1.2-2.0; p = 2.7 × 10-3 ), and lymphocyte immunodeficiency (OR = 3.8, 95% CI: 2.1-6.8; p = 5.0 × 10-6 ). Carriers of ERCC6 LoF variants who lacked a diagnosis of these conditions exhibited increased symptoms, indicating underdiagnosis. These results reveal a unique genetic link among retinal, cardiac, and immune disorders and underscore the value of EHR-linked biobanks in assessing the full clinical profile of carriers of rare variants.
Collapse
Affiliation(s)
- Iain S. Forrest
- Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Medical Scientist Training Program, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- BioMe Phenomics Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kumardeep Chaudhary
- Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- BioMe Phenomics Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ha My T. Vy
- Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Shantanu Bafna
- Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Soyeon Kim
- Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Samsung Medical Center, Seoul, South Korea
| | - Hong-Hee Won
- Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Samsung Medical Center, Seoul, South Korea
| | - Ruth J.F. Loos
- Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Judy Cho
- Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- BioMe Phenomics Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Louis R. Pasquale
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Eye and Vision Research Institute, New York Eye and Ear Infirmary of Mount Sinai, New York, NY, USA
| | - Girish N. Nadkarni
- Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- BioMe Phenomics Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Hasso Plattner Institute for Digital Health at Mount Sinai, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ghislain Rocheleau
- Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ron Do
- Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- BioMe Phenomics Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
29
|
Ahmadmehrabi S, Li B, Hui D, Park J, Ritchie M, Rader DJ, Ruckenstein MJ, Epstein DJ, Brant J. A Genome-First Approach to Rare Variants in Dominant Postlingual Hearing Loss Genes in a Large Adult Population. Otolaryngol Head Neck Surg 2021; 166:746-752. [PMID: 34281439 DOI: 10.1177/01945998211029544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
OBJECTIVE To investigate the importance of rare variants in adult-onset hearing loss. STUDY DESIGN Genomic association study. SETTING Large biobank from tertiary care center. METHODS We investigated rare variants (minor allele frequency <5%) in 42 autosomal dominant (DFNA) postlingual hearing loss (HL) genes in 16,657 unselected individuals in the Penn Medicine Biobank. We determined the prevalence of known pathogenic and predicted deleterious variants in subjects with audiometric-proven sensorineural hearing loss. We scanned across known postlingual DFNA HL genes to determine those most significantly contributing to the phenotype. We replicated findings in an independent cohort (UK Biobank). RESULTS While rare individually, when considering the accumulation of variants in all postlingual DFNA genes, more than 90% of participants carried at least 1 rare variant. Rare variants predicted to be deleterious were enriched in adults with audiometric-proven hearing loss (pure-tone average >25 dB; P = .015). Patients with a rare predicted deleterious variant had an odds ratio of 1.27 for HL compared with genotypic controls (P = .029). Gene burden in DIABLO, PTPRQ, TJP2, and POU4F3 were independently associated with sensorineural hearing loss. CONCLUSION Although prior reports have focused on common variants, we find that rare predicted deleterious variants in DFNA postlingual HL genes are enriched in patients with adult-onset HL in a large health care system population. We show the value of investigating rare variants to uncover hearing loss phenotypes related to implicated genes.
Collapse
Affiliation(s)
- Shadi Ahmadmehrabi
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Binglan Li
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Daniel Hui
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Joseph Park
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Marylyn Ritchie
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Daniel J Rader
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Michael J Ruckenstein
- Department of Otorhinolaryngology Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Douglas J Epstein
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jason Brant
- Department of Otorhinolaryngology Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, Pennsylvania, USA
| |
Collapse
|
30
|
Genetic variants associated with inherited cardiovascular disorders among 13,131 asymptomatic older adults of European descent. NPJ Genom Med 2021; 6:51. [PMID: 34135346 PMCID: PMC8209162 DOI: 10.1038/s41525-021-00211-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 05/20/2021] [Indexed: 12/21/2022] Open
Abstract
Genetic testing is used to optimise the management of inherited cardiovascular disorders that can cause sudden cardiac death. Yet more genotype–phenotype correlation studies from populations not ascertained on clinical symptoms or family history of disease are required to improve understanding of gene penetrance. We performed targeted sequencing of 25 genes used routinely in clinical genetic testing for inherited cardiovascular disorders in a population of 13,131 asymptomatic older individuals (mean age 75 years) enrolled in the ASPREE trial. Participants had no prior history of cardiovascular disease events, dementia or physical disability at enrolment. Variants were classified following ACMG/AMP standards. Sudden and rapid cardiac deaths were clinically adjudicated as ASPREE trial endpoints, and assessed during mean 4.7 years of follow-up. In total, 119 participants had pathogenic/deleterious variants in one of the 25 genes analysed (carrier rate of 1 in 110 or 0.9%). Participants carried variants associated with hypertrophic cardiomyopathy (N = 24), dilated cardiomyopathy (N = 29), arrhythmogenic right-ventricular cardiomyopathy (N = 22), catecholaminergic polymorphic ventricular tachycardia (N = 4), aortopathies (N = 1), and long-QT syndrome (N = 39). Among 119 carriers, two died from presumed sudden/rapid cardiac deaths during follow-up (1.7%); both with pathogenic variants in long-QT syndrome genes (KCNQ1, SCN5A). Among non-carriers, the rate of sudden/rapid cardiac deaths was significantly lower (0.08%, 11/12936, p < 0.001). Variants associated with inherited cardiovascular disorders are found in asymptomatic individuals aged 70 years and older without a history of cardiovascular disease.
Collapse
|
31
|
Horowitz JE, Kosmicki JA, Damask A, Sharma D, Roberts GHL, Justice AE, Banerjee N, Coignet MV, Yadav A, Leader JB, Marcketta A, Park DS, Lanche R, Maxwell E, Knight SC, Bai X, Guturu H, Sun D, Baltzell A, Kury FSP, Backman JD, Girshick AR, O'Dushlaine C, McCurdy SR, Partha R, Mansfield AJ, Turissini DA, Li AH, Zhang M, Mbatchou J, Watanabe K, Gurski L, McCarthy SE, Kang HM, Dobbyn L, Stahl E, Verma A, Sirugo G, Ritchie MD, Jones M, Balasubramanian S, Siminovitch K, Salerno WJ, Shuldiner AR, Rader DJ, Mirshahi T, Locke AE, Marchini J, Overton JD, Carey DJ, Habegger L, Cantor MN, Rand KA, Hong EL, Reid JG, Ball CA, Baras A, Abecasis GR, Ferreira MA. Genome-wide analysis in 756,646 individuals provides first genetic evidence that ACE2 expression influences COVID-19 risk and yields genetic risk scores predictive of severe disease. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2021. [PMID: 33619501 PMCID: PMC7899471 DOI: 10.1101/2020.12.14.20248176] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
SARS-CoV-2 enters host cells by binding angiotensin-converting enzyme 2 (ACE2). Through a genome-wide association study, we show that a rare variant (MAF = 0.3%, odds ratio 0.60, P=4.5×10-13) that down-regulates ACE2 expression reduces risk of COVID-19 disease, providing human genetics support for the hypothesis that ACE2 levels influence COVID-19 risk. Further, we show that common genetic variants define a risk score that predicts severe disease among COVID-19 cases.
Collapse
Affiliation(s)
- J E Horowitz
- Regeneron Genetics Center, 777 Old Saw Mill River Rd., Tarrytown, NY 10591, USA
| | - J A Kosmicki
- Regeneron Genetics Center, 777 Old Saw Mill River Rd., Tarrytown, NY 10591, USA
| | - A Damask
- Regeneron Genetics Center, 777 Old Saw Mill River Rd., Tarrytown, NY 10591, USA
| | - D Sharma
- Regeneron Genetics Center, 777 Old Saw Mill River Rd., Tarrytown, NY 10591, USA
| | - G H L Roberts
- AncestryDNA, 1300 West Traverse Parkway, Lehi, UT 84043, USA
| | | | - N Banerjee
- Regeneron Genetics Center, 777 Old Saw Mill River Rd., Tarrytown, NY 10591, USA
| | - M V Coignet
- AncestryDNA, 1300 West Traverse Parkway, Lehi, UT 84043, USA
| | - A Yadav
- Regeneron Genetics Center, 777 Old Saw Mill River Rd., Tarrytown, NY 10591, USA
| | | | - A Marcketta
- Regeneron Genetics Center, 777 Old Saw Mill River Rd., Tarrytown, NY 10591, USA
| | - D S Park
- AncestryDNA, 1300 West Traverse Parkway, Lehi, UT 84043, USA
| | - R Lanche
- Regeneron Genetics Center, 777 Old Saw Mill River Rd., Tarrytown, NY 10591, USA
| | - E Maxwell
- Regeneron Genetics Center, 777 Old Saw Mill River Rd., Tarrytown, NY 10591, USA
| | - S C Knight
- AncestryDNA, 1300 West Traverse Parkway, Lehi, UT 84043, USA
| | - X Bai
- Regeneron Genetics Center, 777 Old Saw Mill River Rd., Tarrytown, NY 10591, USA
| | - H Guturu
- AncestryDNA, 1300 West Traverse Parkway, Lehi, UT 84043, USA
| | - D Sun
- Regeneron Genetics Center, 777 Old Saw Mill River Rd., Tarrytown, NY 10591, USA
| | - A Baltzell
- AncestryDNA, 1300 West Traverse Parkway, Lehi, UT 84043, USA
| | - F S P Kury
- Regeneron Genetics Center, 777 Old Saw Mill River Rd., Tarrytown, NY 10591, USA
| | - J D Backman
- Regeneron Genetics Center, 777 Old Saw Mill River Rd., Tarrytown, NY 10591, USA
| | - A R Girshick
- AncestryDNA, 1300 West Traverse Parkway, Lehi, UT 84043, USA
| | - C O'Dushlaine
- Regeneron Genetics Center, 777 Old Saw Mill River Rd., Tarrytown, NY 10591, USA
| | - S R McCurdy
- AncestryDNA, 1300 West Traverse Parkway, Lehi, UT 84043, USA
| | - R Partha
- AncestryDNA, 1300 West Traverse Parkway, Lehi, UT 84043, USA
| | - A J Mansfield
- Regeneron Genetics Center, 777 Old Saw Mill River Rd., Tarrytown, NY 10591, USA
| | - D A Turissini
- AncestryDNA, 1300 West Traverse Parkway, Lehi, UT 84043, USA
| | - A H Li
- Regeneron Genetics Center, 777 Old Saw Mill River Rd., Tarrytown, NY 10591, USA
| | - M Zhang
- AncestryDNA, 1300 West Traverse Parkway, Lehi, UT 84043, USA
| | - J Mbatchou
- Regeneron Genetics Center, 777 Old Saw Mill River Rd., Tarrytown, NY 10591, USA
| | - K Watanabe
- Regeneron Genetics Center, 777 Old Saw Mill River Rd., Tarrytown, NY 10591, USA
| | - L Gurski
- Regeneron Genetics Center, 777 Old Saw Mill River Rd., Tarrytown, NY 10591, USA
| | - S E McCarthy
- Regeneron Genetics Center, 777 Old Saw Mill River Rd., Tarrytown, NY 10591, USA
| | - H M Kang
- Regeneron Genetics Center, 777 Old Saw Mill River Rd., Tarrytown, NY 10591, USA
| | - L Dobbyn
- Regeneron Genetics Center, 777 Old Saw Mill River Rd., Tarrytown, NY 10591, USA
| | - E Stahl
- Regeneron Genetics Center, 777 Old Saw Mill River Rd., Tarrytown, NY 10591, USA
| | - A Verma
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - G Sirugo
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | | | - M D Ritchie
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - M Jones
- Regeneron Genetics Center, 777 Old Saw Mill River Rd., Tarrytown, NY 10591, USA
| | - S Balasubramanian
- Regeneron Genetics Center, 777 Old Saw Mill River Rd., Tarrytown, NY 10591, USA
| | - K Siminovitch
- Regeneron Genetics Center, 777 Old Saw Mill River Rd., Tarrytown, NY 10591, USA
| | - W J Salerno
- Regeneron Genetics Center, 777 Old Saw Mill River Rd., Tarrytown, NY 10591, USA
| | - A R Shuldiner
- Regeneron Genetics Center, 777 Old Saw Mill River Rd., Tarrytown, NY 10591, USA
| | - D J Rader
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | | | - A E Locke
- Regeneron Genetics Center, 777 Old Saw Mill River Rd., Tarrytown, NY 10591, USA
| | - J Marchini
- Regeneron Genetics Center, 777 Old Saw Mill River Rd., Tarrytown, NY 10591, USA
| | - J D Overton
- Regeneron Genetics Center, 777 Old Saw Mill River Rd., Tarrytown, NY 10591, USA
| | | | - L Habegger
- Regeneron Genetics Center, 777 Old Saw Mill River Rd., Tarrytown, NY 10591, USA
| | - M N Cantor
- Regeneron Genetics Center, 777 Old Saw Mill River Rd., Tarrytown, NY 10591, USA
| | - K A Rand
- AncestryDNA, 1300 West Traverse Parkway, Lehi, UT 84043, USA
| | - E L Hong
- AncestryDNA, 1300 West Traverse Parkway, Lehi, UT 84043, USA
| | - J G Reid
- Regeneron Genetics Center, 777 Old Saw Mill River Rd., Tarrytown, NY 10591, USA
| | - C A Ball
- AncestryDNA, 1300 West Traverse Parkway, Lehi, UT 84043, USA
| | - A Baras
- Regeneron Genetics Center, 777 Old Saw Mill River Rd., Tarrytown, NY 10591, USA
| | - G R Abecasis
- Regeneron Genetics Center, 777 Old Saw Mill River Rd., Tarrytown, NY 10591, USA
| | - M A Ferreira
- Regeneron Genetics Center, 777 Old Saw Mill River Rd., Tarrytown, NY 10591, USA
| |
Collapse
|
32
|
Ahmadmehrabi S, Li B, Park J, Devkota B, Vujkovic M, Ko YA, Van Wagoner D, Tang WHW, Krantz I, Ritchie M, Brant J, Ruckenstein MJ, Epstein DJ, Rader DJ. Genome-first approach to rare EYA4 variants and cardio-auditory phenotypes in adults. Hum Genet 2021; 140:957-967. [PMID: 33745059 DOI: 10.1007/s00439-021-02263-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 02/02/2021] [Indexed: 12/20/2022]
Abstract
While newborns and children with hearing loss are routinely offered genetic testing, adults are rarely clinically tested for a genetic etiology. One clinically actionable result from genetic testing in children is the discovery of variants in syndromic hearing loss genes. EYA4 is a known hearing loss gene which is also involved in important pathways in cardiac tissue. The pleiotropic effects of rare EYA4 variants are poorly understood and their prevalence in a large cohort has not been previously reported. We investigated cardio-auditory phenotypes in 11,451 individuals in a large biobank using a rare variant, genome-first approach to EYA4. We filtered 256 EYA4 variants carried by 6737 participants to 26 rare and predicted deleterious variants carried by 42 heterozygotes. We aggregated predicted deleterious EYA4 gene variants into a combined variable (i.e. "gene burden") and performed association studies across phenotypes compared to wildtype controls. We validated findings with replication in three independent cohorts and human tissue expression data. EYA4 gene burden was significantly associated with audiometric-proven HL (p = [Formula: see text], Mobitz Type II AV block (p = [Formula: see text]) and the syndromic presentation of HL and primary cardiomyopathy (p = 0.0194). Analyses on audiogram, echocardiogram, and electrocardiogram data validated these associations. Prior reports have focused on identifying variants in families with severe or syndromic phenotypes. In contrast, we found, using a genotype-first approach, that gene burden in EYA4 is associated with more subtle cardio-auditory phenotypes in an adult medical biobank population, including cardiac conduction disorders which have not been previously reported. We show the value of using a focused approach to uncover human disease related to pleiotropic gene variants and suggest a role for genetic testing in adults presenting with hearing loss.
Collapse
Affiliation(s)
- Shadi Ahmadmehrabi
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Binglan Li
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Joseph Park
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Batsal Devkota
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Marijana Vujkovic
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA
| | - Yi-An Ko
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - David Van Wagoner
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Cleveland, OH, USA
| | - W H Wilson Tang
- Cleveland Clinic, Heart and Vascular Institute, Cleveland, OH, USA
| | - Ian Krantz
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Marylyn Ritchie
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jason Brant
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA
- Department of Otorhinolaryngology Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael J Ruckenstein
- Department of Otorhinolaryngology Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Douglas J Epstein
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Daniel J Rader
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Medicine, Division of Translational Medicine and Human Genetics, Perelman School of Medicine at the University of Pennsylvania, 11-125 Smilow Center for Translational Research, 3400 Civic Center Blvd, Philadelphia, PA, 19104, USA.
| |
Collapse
|
33
|
Disrupting upstream translation in mRNAs is associated with human disease. Nat Commun 2021; 12:1515. [PMID: 33750777 PMCID: PMC7943595 DOI: 10.1038/s41467-021-21812-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 02/12/2021] [Indexed: 12/04/2022] Open
Abstract
Ribosome-profiling has uncovered pervasive translation in non-canonical open reading frames, however the biological significance of this phenomenon remains unclear. Using genetic variation from 71,702 human genomes, we assess patterns of selection in translated upstream open reading frames (uORFs) in 5’UTRs. We show that uORF variants introducing new stop codons, or strengthening existing stop codons, are under strong negative selection comparable to protein-coding missense variants. Using these variants, we map and validate gene-disease associations in two independent biobanks containing exome sequencing from 10,900 and 32,268 individuals, respectively, and elucidate their impact on protein expression in human cells. Our results suggest translation disrupting mechanisms relating uORF variation to reduced protein expression, and demonstrate that translation at uORFs is genetically constrained in 50% of human genes. The significance of translated upstream open reading frames is not well known. Here, the authors investigate genetic variants in these regions, finding that they are under high evolutionary constraint and may contribute to disease.
Collapse
|
34
|
Kosmicki JA, Horowitz JE, Banerjee N, Lanche R, Marcketta A, Maxwell E, Bai X, Sun D, Backman JD, Sharma D, Kang HM, O'Dushlaine C, Yadav A, Mansfield AJ, Li AH, Watanabe K, Gurski L, McCarthy SE, Locke AE, Khalid S, O'Keeffe S, Mbatchou J, Chazara O, Huang Y, Kvikstad E, O'Neill A, Nioi P, Parker MM, Petrovski S, Runz H, Szustakowski JD, Wang Q, Wong E, Cordova-Palomera A, Smith EN, Szalma S, Zheng X, Esmaeeli S, Davis JW, Lai YP, Chen X, Justice AE, Leader JB, Mirshahi T, Carey DJ, Verma A, Sirugo G, Ritchie MD, Rader DJ, Povysil G, Goldstein DB, Kiryluk K, Pairo-Castineira E, Rawlik K, Pasko D, Walker S, Meynert A, Kousathanas A, Moutsianas L, Tenesa A, Caulfield M, Scott R, Wilson JF, Baillie JK, Butler-Laporte G, Nakanishi T, Lathrop M, Richards JB, Jones M, Balasubramanian S, Salerno W, Shuldiner AR, Marchini J, Overton JD, Habegger L, Cantor MN, Reid JG, Baras A, Abecasis GR, Ferreira MA. A catalog of associations between rare coding variants and COVID-19 outcomes. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2021:2020.10.28.20221804. [PMID: 33655273 PMCID: PMC7924298 DOI: 10.1101/2020.10.28.20221804] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) causes coronavirus disease-19 (COVID-19), a respiratory illness that can result in hospitalization or death. We investigated associations between rare genetic variants and seven COVID-19 outcomes in 543,213 individuals, including 8,248 with COVID-19. After accounting for multiple testing, we did not identify any clear associations with rare variants either exome-wide or when specifically focusing on (i) 14 interferon pathway genes in which rare deleterious variants have been reported in severe COVID-19 patients; (ii) 167 genes located in COVID-19 GWAS risk loci; or (iii) 32 additional genes of immunologic relevance and/or therapeutic potential. Our analyses indicate there are no significant associations with rare protein-coding variants with detectable effect sizes at our current sample sizes. Analyses will be updated as additional data become available, with results publicly browsable at https://rgc-covid19.regeneron.com.
Collapse
Affiliation(s)
- J A Kosmicki
- Regeneron Genetics Center, 777 Old Saw Mill River Rd., Tarrytown, NY 10591, USA
| | - J E Horowitz
- Regeneron Genetics Center, 777 Old Saw Mill River Rd., Tarrytown, NY 10591, USA
| | - N Banerjee
- Regeneron Genetics Center, 777 Old Saw Mill River Rd., Tarrytown, NY 10591, USA
| | - R Lanche
- Regeneron Genetics Center, 777 Old Saw Mill River Rd., Tarrytown, NY 10591, USA
| | - A Marcketta
- Regeneron Genetics Center, 777 Old Saw Mill River Rd., Tarrytown, NY 10591, USA
| | - E Maxwell
- Regeneron Genetics Center, 777 Old Saw Mill River Rd., Tarrytown, NY 10591, USA
| | - X Bai
- Regeneron Genetics Center, 777 Old Saw Mill River Rd., Tarrytown, NY 10591, USA
| | - D Sun
- Regeneron Genetics Center, 777 Old Saw Mill River Rd., Tarrytown, NY 10591, USA
| | - J D Backman
- Regeneron Genetics Center, 777 Old Saw Mill River Rd., Tarrytown, NY 10591, USA
| | - D Sharma
- Regeneron Genetics Center, 777 Old Saw Mill River Rd., Tarrytown, NY 10591, USA
| | - H M Kang
- Regeneron Genetics Center, 777 Old Saw Mill River Rd., Tarrytown, NY 10591, USA
| | - C O'Dushlaine
- Regeneron Genetics Center, 777 Old Saw Mill River Rd., Tarrytown, NY 10591, USA
| | - A Yadav
- Regeneron Genetics Center, 777 Old Saw Mill River Rd., Tarrytown, NY 10591, USA
| | - A J Mansfield
- Regeneron Genetics Center, 777 Old Saw Mill River Rd., Tarrytown, NY 10591, USA
| | - A H Li
- Regeneron Genetics Center, 777 Old Saw Mill River Rd., Tarrytown, NY 10591, USA
| | - K Watanabe
- Regeneron Genetics Center, 777 Old Saw Mill River Rd., Tarrytown, NY 10591, USA
| | - L Gurski
- Regeneron Genetics Center, 777 Old Saw Mill River Rd., Tarrytown, NY 10591, USA
| | - S E McCarthy
- Regeneron Genetics Center, 777 Old Saw Mill River Rd., Tarrytown, NY 10591, USA
| | - A E Locke
- Regeneron Genetics Center, 777 Old Saw Mill River Rd., Tarrytown, NY 10591, USA
| | - S Khalid
- Regeneron Genetics Center, 777 Old Saw Mill River Rd., Tarrytown, NY 10591, USA
| | - S O'Keeffe
- Regeneron Genetics Center, 777 Old Saw Mill River Rd., Tarrytown, NY 10591, USA
| | - J Mbatchou
- Regeneron Genetics Center, 777 Old Saw Mill River Rd., Tarrytown, NY 10591, USA
| | - O Chazara
- Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge CB2 0AA, UK
| | - Y Huang
- Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge CB2 0AA, UK
| | - E Kvikstad
- Bristol Myers Squibb, Route 206 and Province Line Road, Princeton, NJ 08543, USA
| | - A O'Neill
- Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge CB2 0AA, UK
| | - P Nioi
- Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge CB2 0AA, UK
| | - M M Parker
- Alnylam Pharmaceuticals, 675 West Kendall St, Cambridge, MA 02142, USA
| | - S Petrovski
- Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge CB2 0AA, UK
| | - H Runz
- Biogen, 300 Binney St, Cambridge, MA 02142, USA
| | - J D Szustakowski
- Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge CB2 0AA, UK
| | - Q Wang
- Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge CB2 0AA, UK
| | - E Wong
- Biogen, 300 Binney St, Cambridge, MA 02142, USA
| | | | - E N Smith
- Takeda California Inc., 9625 Towne Centre Dr, San Diego, CA 92121, USA
| | - S Szalma
- Takeda California Inc., 9625 Towne Centre Dr, San Diego, CA 92121, USA
| | - X Zheng
- AbbVie, Inc., 1 N. Waukegan Rd, North Chicago, IL 60064, USA
| | - S Esmaeeli
- AbbVie, Inc., 1 N. Waukegan Rd, North Chicago, IL 60064, USA
| | - J W Davis
- AbbVie, Inc., 1 N. Waukegan Rd, North Chicago, IL 60064, USA
| | - Y-P Lai
- Pfizer, Inc., 1 Portland Street, Cambridge MA 02139, USA
| | - X Chen
- Pfizer, Inc., 1 Portland Street, Cambridge MA 02139, USA
| | | | | | | | | | - A Verma
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - G Sirugo
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - M D Ritchie
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - D J Rader
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - G Povysil
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - D B Goldstein
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Genetics & Development, Columbia University, New York, NY 10032, USA
| | - K Kiryluk
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
- Division of Nephrology, Department of Medicine, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY 10032, USA
| | - E Pairo-Castineira
- Roslin Institute, University of Edinburgh, Easter Bush, Edinburgh, EH25 9RG, UK
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU, UK
| | - K Rawlik
- Roslin Institute, University of Edinburgh, Easter Bush, Edinburgh, EH25 9RG, UK
| | - D Pasko
- Genomics England, London EC1M 6BQ, UK
| | - S Walker
- Genomics England, London EC1M 6BQ, UK
| | - A Meynert
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU, UK
| | | | | | - A Tenesa
- Roslin Institute, University of Edinburgh, Easter Bush, Edinburgh, EH25 9RG, UK
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU, UK
- Centre for Global Health Research, Usher Institute of Population Health Sciences and Informatics, Teviot Place, Edinburgh EH8 9AG, UK
| | - M Caulfield
- Genomics England, London EC1M 6BQ, UK
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - R Scott
- Genomics England, London EC1M 6BQ, UK
- Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK
| | - J F Wilson
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU, UK
- Centre for Global Health Research, Usher Institute of Population Health Sciences and Informatics, Teviot Place, Edinburgh EH8 9AG, UK
| | - J K Baillie
- Roslin Institute, University of Edinburgh, Easter Bush, Edinburgh, EH25 9RG, UK
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU, UK
- Intensive Care Unit, Royal Infirmary of Edinburgh, 54 Little France Drive, Edinburgh, EH16 5SA, UK
| | - G Butler-Laporte
- Lady Davis Institute, Jewish General Hospital, Montréal, Québec H3T 1E2, Canada
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montréal, Québec H3A 0G4, Canada
| | - T Nakanishi
- Lady Davis Institute, Jewish General Hospital, Montréal, Québec H3T 1E2, Canada
- Department of Human Genetics, McGill University, Montréal, Québec H3A 0G4, Canada
- Kyoto-McGill International Collaborative School in Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
- Research Fellow, Japan Society for the Promotion of Science
| | - M Lathrop
- Department of Human Genetics, McGill University, Montréal, Québec H3A 0G4, Canada
- Canadian Centre for Computational Genomics, McGill University, Montréal, Québec H3A 0G4, Canada
| | - J B Richards
- Lady Davis Institute, Jewish General Hospital, Montréal, Québec H3T 1E2, Canada
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montréal, Québec H3A 0G4, Canada
- Department of Human Genetics, McGill University, Montréal, Québec H3A 0G4, Canada
- Department of Twins Research, King's College London, London WC2R 2LS, UK
| | - M Jones
- Regeneron Genetics Center, 777 Old Saw Mill River Rd., Tarrytown, NY 10591, USA
| | - S Balasubramanian
- Regeneron Genetics Center, 777 Old Saw Mill River Rd., Tarrytown, NY 10591, USA
| | - W Salerno
- Regeneron Genetics Center, 777 Old Saw Mill River Rd., Tarrytown, NY 10591, USA
| | - A R Shuldiner
- Regeneron Genetics Center, 777 Old Saw Mill River Rd., Tarrytown, NY 10591, USA
| | - J Marchini
- Regeneron Genetics Center, 777 Old Saw Mill River Rd., Tarrytown, NY 10591, USA
| | - J D Overton
- Regeneron Genetics Center, 777 Old Saw Mill River Rd., Tarrytown, NY 10591, USA
| | - L Habegger
- Regeneron Genetics Center, 777 Old Saw Mill River Rd., Tarrytown, NY 10591, USA
| | - M N Cantor
- Regeneron Genetics Center, 777 Old Saw Mill River Rd., Tarrytown, NY 10591, USA
| | - J G Reid
- Regeneron Genetics Center, 777 Old Saw Mill River Rd., Tarrytown, NY 10591, USA
| | - A Baras
- Regeneron Genetics Center, 777 Old Saw Mill River Rd., Tarrytown, NY 10591, USA
| | - G R Abecasis
- Regeneron Genetics Center, 777 Old Saw Mill River Rd., Tarrytown, NY 10591, USA
| | - M A Ferreira
- Regeneron Genetics Center, 777 Old Saw Mill River Rd., Tarrytown, NY 10591, USA
| |
Collapse
|
35
|
Parikh VN. Promise and Peril of Population Genomics for the Development of Genome-First Approaches in Mendelian Cardiovascular Disease. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2021; 14:e002964. [PMID: 33517676 PMCID: PMC7887109 DOI: 10.1161/circgen.120.002964] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The rich tradition of cardiovascular genomics has placed the field in prime position to extend our knowledge toward a genome-first approach to diagnosis and therapy. Population-scale genomic data has enabled exponential improvements in our ability to adjudicate variant pathogenicity based on allele rarity, and there has been a significant effort to employ these sizeable data in the investigation of rare disease. Certainly, population genomics data has great potential to aid the development of a genome-first approach to Mendelian cardiovascular disease, but its use in the clinical and investigative decision making is limited by the characteristics of the populations studied, and the evolutionary constraints on human Mendelian variation. To truly empower clinicians and patients, the successful implementation of a genome-first approach to rare cardiovascular disease will require the nuanced incorporation of population-based discovery with detailed investigation of rare disease cohorts and prospective variant evaluation.
Collapse
Affiliation(s)
- Victoria N Parikh
- Stanford Center for Inherited Cardiovascular Disease, Division of Cardiovascular Medicine, Department off Medicine, Stanford University School of Medicine, Stanford, CA
| |
Collapse
|
36
|
Sun L, Surya S, Le AN, Desai H, Doucette A, Gabriel P, Ritchie MD, Rader D, Maillard I, Bange E, Huang AC, Vonderheide RH, DeMichele A, Verma A, Mamtani R, Maxwell KN. Rates of COVID-19-Related Outcomes in Cancer Compared With Noncancer Patients. JNCI Cancer Spectr 2021; 5:Pkaa120. [PMID: 33554040 PMCID: PMC7853171 DOI: 10.1093/jncics/pkaa120] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 11/17/2020] [Accepted: 12/15/2020] [Indexed: 02/07/2023] Open
Abstract
Cancer patients are a vulnerable population postulated to be at higher risk for severe coronavirus disease 2019 (COVID-19) infection. Increased COVID-19 morbidity and mortality in cancer patients may be attributable to age, comorbidities, smoking, health care exposure, and cancer treatments, and partially to the cancer itself. Most studies to date have focused on hospitalized patients with severe COVID-19, thereby limiting the generalizability and interpretability of the association between cancer and COVID-19 severity. We compared outcomes of SARS-CoV-2 infection in 323 patients enrolled in a population-based study before the pandemic (n = 67 cancer patients; n = 256 noncancer patients). After adjusting for demographics, smoking status, and comorbidities, a diagnosis of cancer was independently associated with higher odds of hospitalization (odds ratio = 2.16, 95% confidence interval = 1.12 to 4.18) and 30-day mortality (odds ratio = 5.67, 95% confidence interval = 1.49 to 21.59). These associations were primarily driven by patients with active cancer. These results emphasize the critical importance of preventing SARS-CoV-2 exposure and mitigating infection in cancer patients.
Collapse
Affiliation(s)
- Lova Sun
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sanjna Surya
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Anh N Le
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Heena Desai
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Abigail Doucette
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Peter Gabriel
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Marylyn D Ritchie
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Daniel Rader
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ivan Maillard
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Erin Bange
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Alexander C Huang
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Robert H Vonderheide
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Angela DeMichele
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Anurag Verma
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ronac Mamtani
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Kara N Maxwell
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
37
|
Erdmann J. What can we learn from common variants associated with unexpected phenotypes in rare genetic diseases? Orphanet J Rare Dis 2021; 16:41. [PMID: 33478553 PMCID: PMC7818908 DOI: 10.1186/s13023-021-01684-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 01/06/2021] [Indexed: 11/30/2022] Open
Abstract
The purpose of this article is to stimulate discussion about whether a phenome-wide association study is a suitable tool for uncovering late-onset risks in patients with monogenic disorders that are not yet fully recognized because the life expectancy of people with such conditions has only recently extended, and they now reach older ages when they may develop additional complications.
Collapse
Affiliation(s)
- Jeanette Erdmann
- Institute for Cardiogenetics, University of Lübeck, Ratzeburger Allee 160, Building 67, 23562, Lübeck, Germany.
| |
Collapse
|
38
|
Exome-wide evaluation of rare coding variants using electronic health records identifies new gene-phenotype associations. Nat Med 2021; 27:66-72. [PMID: 33432171 PMCID: PMC8775355 DOI: 10.1038/s41591-020-1133-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 10/13/2020] [Indexed: 01/18/2023]
Abstract
The clinical impact of rare loss-of-function variants has yet to be determined for most genes. Integration of DNA sequencing data with electronic health records (EHRs) could enhance our understanding of the contribution of rare genetic variation to human disease1. By leveraging 10,900 whole-exome sequences linked to EHR data in the Penn Medicine Biobank, we addressed the association of the cumulative effects of rare predicted loss-of-function variants for each individual gene on human disease on an exome-wide scale, as assessed using a set of diverse EHR phenotypes. After discovering 97 genes with exome-by-phenome-wide significant phenotype associations (P < 10-6), we replicated 26 of these in the Penn Medicine Biobank, as well as in three other medical biobanks and the population-based UK Biobank. Of these 26 genes, five had associations that have been previously reported and represented positive controls, whereas 21 had phenotype associations not previously reported, among which were genes implicated in glaucoma, aortic ectasia, diabetes mellitus, muscular dystrophy and hearing loss. These findings show the value of aggregating rare predicted loss-of-function variants into 'gene burdens' for identifying new gene-disease associations using EHR phenotypes in a medical biobank. We suggest that application of this approach to even larger numbers of individuals will provide the statistical power required to uncover unexplored relationships between rare genetic variation and disease phenotypes.
Collapse
|
39
|
Wenger BM, Patel N, Lui M, Moscati A, Do R, Stewart DR, Tartaglia M, Muiño-Mosquera L, De Backer J, Kontorovich AR, Gelb BD. A genotype-first approach to exploring Mendelian cardiovascular traits with clear external manifestations. Genet Med 2020; 23:94-102. [PMID: 32989268 PMCID: PMC7796917 DOI: 10.1038/s41436-020-00973-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 09/08/2020] [Accepted: 09/09/2020] [Indexed: 01/11/2023] Open
Abstract
Purpose: The purpose of this study is to use a genotype-first approach to explore highly penetrant, autosomal dominant cardiovascular diseases with external features, the RASopathies and Marfan syndrome (MFS), using biobank data. Methods: This study uses exome sequencing and corresponding phenotypic data from Mount Sinai’s BioMe (n = 32,344) and the United Kingdom Biobank (UKBB; n = 49,960). Variant curation identified pathogenic/likely pathogenic (P/LP) variants in RASopathy genes and FBN1. Results: Twenty-one subjects harbored P/LP RASopathy variants; three (14%) were diagnosed, and another 46% had ≥1 classic Noonan syndrome (NS) feature. Major NS features (short stature (9.5% p = 7e-5) and heart anomalies (19%, p < 1e-5)) were less frequent than expected. Prevalence of hypothyroidism/autoimmune disorders was enriched compared to biobank populations (p = 0.007). For subjects with FBN1 P/LP variants, 14/41 (34%) had a MFS diagnosis or highly suggestive features. 5/15 participants (33%) with echocardiographic data had aortic dilation, fewer than expected (p=8e-6). Ectopia lentis affected only 15% (p < 1e-5). Conclusions: Substantial fractions of individuals harboring P/LP variants with partial or full phenotypic matches to a RASopathy or MFS remain undiagnosed, some not meeting diagnostic criteria. Routine population genotyping would enable multi-disciplinary care and avoid life-threatening events.
Collapse
Affiliation(s)
| | - Nihir Patel
- Mindich Child Health and Development Institute, Icahn School of Medicine, New York, NY, USA
| | - Madeline Lui
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Arden Moscati
- Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ron Do
- Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Douglas R Stewart
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Marco Tartaglia
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Laura Muiño-Mosquera
- Division of Pediatric Cardiology. Department of Pediatrics, Ghent University Hospital, Ghent, Belgium.,Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Julie De Backer
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium.,Department of Cardiology, Ghent University Hospital, Ghent, Belgium
| | - Amy R Kontorovich
- Mindich Child Health and Development Institute, Icahn School of Medicine, New York, NY, USA.,Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Bruce D Gelb
- Mindich Child Health and Development Institute, Icahn School of Medicine, New York, NY, USA. .,Departments of Pediatrics and Genetics and Genomic Sciences, Icahn School of Medicine, New York, NY, USA.
| |
Collapse
|
40
|
Abstract
PURPOSE OF REVIEW The purpose of this review is to provide an update on the recent advances in the genetics and genomics of dilated cardiomyopathy and heart failure. RECENT FINDINGS Over the last decade, the approach to the discovery of the genetic contribution to heart failure has evolved from investigation of rare variants implicated in Mendelian cardiomyopathies through linkage studies and candidate gene studies to the exploration of the contribution of common variants through large-scale genome-wide association and genome-first studies. The combination and integration of multiple of case-control heart failure cohorts, refinement of the heart failure phenotype, and utilization of large biobanks linked to electronic health records have advanced the understanding of the heritability of heart failure.
Collapse
Affiliation(s)
- Nosheen Reza
- Center for Inherited Cardiovascular Disease, Division of Cardiovascular Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, 11 South Tower, Room 11-145 3400 Civic Center Boulevard, Philadelphia, PA, 19104, USA.
| | - Anjali Tiku Owens
- Center for Inherited Cardiovascular Disease, Division of Cardiovascular Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, 11 South Tower, Room 11-145 3400 Civic Center Boulevard, Philadelphia, PA, 19104, USA
| |
Collapse
|
41
|
Sun L, Surya S, Le AN, Desai H, Doucette A, Gabriel P, Ritchie M, Rader D, Maillard I, Bange E, Huang A, Vonderheide RH, DeMichele A, Verma A, Mamtani R, Maxwell KN. Rates of COVID-19-related Outcomes in Cancer compared to non-Cancer Patients. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2020:2020.08.14.20174961. [PMID: 32817956 PMCID: PMC7430598 DOI: 10.1101/2020.08.14.20174961] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Cancer patients are a vulnerable population postulated to be at higher risk for severe COVID-19 infection. Increased COVID-19 morbidity and mortality in cancer patients may be attributable to age, comorbidities, smoking, healthcare exposure, and cancer treatments, and partially to the cancer itself. Most studies to date have focused on hospitalized patients with severe COVID-19, thereby limiting the generalizability and interpretability of the association between cancer and COVID-19 severity. We compared outcomes of SARS-CoV-2 infection in 323 patients enrolled prior to the pandemic in a large academic biobank (n=67 cancer patients and n=256 non-cancer patients). After adjusting for demographics, smoking status, and comorbidities, a diagnosis of cancer was independently associated with higher odds of hospitalization (OR 2.16, 95% CI 1.12-4.18) and 30-day mortality (OR 5.67, CI 1.49-21.59). These associations were primarily driven by patients with active cancer. These results emphasize the critical importance of preventing SARS-CoV-2 exposure and mitigating infection in cancer patients.
Collapse
Affiliation(s)
- Lova Sun
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104
| | - Sanjna Surya
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104
| | - Anh N. Le
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104
| | - Heena Desai
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104
| | - Abigail Doucette
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, 19104
| | - Peter Gabriel
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, 19104
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, 19104
| | - Marylyn Ritchie
- Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104
| | - Daniel Rader
- Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104
| | - Ivan Maillard
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, 19104
| | - Erin Bange
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104
| | - Alexander Huang
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104
| | - Robert H. Vonderheide
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, 19104
| | - Angela DeMichele
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, 19104
| | - Anurag Verma
- Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104
| | - Ronac Mamtani
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, 19104
| | - Kara N. Maxwell
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104
- Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, 19104
| |
Collapse
|
42
|
Secondary findings in inherited heart conditions: a genotype-first feasibility study to assess phenotype, behavioural and psychosocial outcomes. Eur J Hum Genet 2020; 28:1486-1496. [PMID: 32686758 PMCID: PMC7576165 DOI: 10.1038/s41431-020-0694-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 06/12/2020] [Accepted: 06/30/2020] [Indexed: 12/28/2022] Open
Abstract
Disclosing secondary findings (SF) from genome sequencing (GS) can alert carriers to disease risk. However, evidence around variant-disease association and consequences of disclosure for individuals and healthcare services is limited. We report on the feasibility of an approach to identification of SF in inherited cardiac conditions (ICC) genes in participants in a rare disease GS study, followed by targeted clinical evaluation. Qualitative methods were used to explore behavioural and psychosocial consequences of disclosure. ICC genes were analysed in genome sequence data from 7203 research participants; a two-stage approach was used to recruit genotype-blind variant carriers and matched controls. Cardiac-focused medical and family history collection and genetic counselling were followed by standard clinical tests, blinded to genotype. Pathogenic ICC variants were identified in 0.61% of individuals; 20 were eligible for the present study. Four variant carriers and seven non-carrier controls participated. One variant carrier had a family history of ICC and was clinically affected; a second was clinically unaffected and had no relevant family history. One variant, in two unrelated participants, was subsequently reclassified as being of uncertain significance. Analysis of qualitative data highlights participant satisfaction with approach, willingness to follow clinical recommendations, but variable outcomes of relatives’ engagement with healthcare services. In conclusion, when offered access to SF, many people choose not to pursue them. For others, disclosure of ICC SF in a specialist setting is valued and of likely clinical utility, and can be expected to identify individuals with, and without a phenotype.
Collapse
|
43
|
An Omics View of Emery-Dreifuss Muscular Dystrophy. J Pers Med 2020; 10:jpm10020050. [PMID: 32549253 PMCID: PMC7354601 DOI: 10.3390/jpm10020050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/08/2020] [Accepted: 06/12/2020] [Indexed: 02/06/2023] Open
Abstract
Recent progress in Omics technologies has started to empower personalized healthcare development at a thorough biomolecular level. Omics have subsidized medical breakthroughs that have started to enter clinical proceedings. The use of this scientific know-how has surfaced as a way to provide a more far-reaching view of the biological mechanisms behind diseases. This review will focus on the discoveries made using Omics and the utility of these approaches for Emery–Dreifuss muscular dystrophy.
Collapse
|
44
|
Carruth ED, Young W, Beer D, James CA, Calkins H, Jing L, Raghunath S, Hartzel DN, Leader JB, Kirchner HL, Smelser DT, Carey DJ, Kelly MA, Sturm AC, Alsaid A, Fornwalt BK, Haggerty CM. Prevalence and Electronic Health Record-Based Phenotype of Loss-of-Function Genetic Variants in Arrhythmogenic Right Ventricular Cardiomyopathy-Associated Genes. CIRCULATION-GENOMIC AND PRECISION MEDICINE 2019; 12:e002579. [PMID: 31638835 DOI: 10.1161/circgen.119.002579] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Arrhythmogenic right ventricular cardiomyopathy (ARVC) is associated with variants in desmosome genes. Secondary findings of pathogenic/likely pathogenic variants, primarily loss-of-function (LOF) variants, are recommended for clinical reporting; however, their prevalence and associated phenotype in a general clinical population are not fully characterized. METHODS From whole-exome sequencing of 61 019 individuals in the DiscovEHR cohort, we screened for putative loss-of-function variants in PKP2, DSC2, DSG2, and DSP. We evaluated measures from prior clinical ECG and echocardiograms, manually over-read to evaluate ARVC diagnostic criteria, and performed a PheWAS (phenome-wide association study). Finally, we estimated expected penetrance using Bayesian inference. RESULTS One hundred forty individuals (0.23%; 59±18 years old at last encounter; 33% male) had an ARVC variant (G+). None had an existing diagnosis of ARVC in the electronic health record, nor significant differences in prior ECG or echocardiogram findings compared with matched controls without variants. Several G+ individuals satisfied major repolarization (n=4) and ventricular function (n=5) criteria, but this prevalence matched controls. PheWAS showed no significant associations of other heart disease diagnoses. Combining our best genetic and disease prevalence estimates yields an estimated penetrance of 6.0%. CONCLUSIONS The prevalence of ARVC loss-of-function variants is ≈1:435 in a general clinical population of predominantly European descent, but with limited electronic health record-based evidence of phenotypic association in our population, consistent with a low penetrance estimate. Prospective deep phenotyping and longitudinal follow-up of a large sequenced cohort is needed to determine the true clinical relevance of an incidentally identified ARVC loss-of-function variant.
Collapse
Affiliation(s)
- Eric D Carruth
- Department of Imaging Science and Innovation (E.D.C., L.J., S.R., B.K.F., C.M.H.), Geisinger, Danville, PA.,Biomedical and Translational Informatics Institute (E.D.C., L.J., S.R., D.N.H., J.B.L., H.L.K., B.K.F., C.M.H.), Geisinger, Danville, PA
| | - Wilson Young
- The Heart Institute (W.Y., D.B., A.A., B.K.F., C.M.H.), Geisinger, Danville, PA
| | - Dominik Beer
- The Heart Institute (W.Y., D.B., A.A., B.K.F., C.M.H.), Geisinger, Danville, PA
| | - Cynthia A James
- Department of Medicine, Division of Cardiology, Johns Hopkins Medical Center, Baltimore, MD (C.A.J., H.C.)
| | - Hugh Calkins
- Department of Medicine, Division of Cardiology, Johns Hopkins Medical Center, Baltimore, MD (C.A.J., H.C.)
| | - Linyuan Jing
- Department of Imaging Science and Innovation (E.D.C., L.J., S.R., B.K.F., C.M.H.), Geisinger, Danville, PA.,Biomedical and Translational Informatics Institute (E.D.C., L.J., S.R., D.N.H., J.B.L., H.L.K., B.K.F., C.M.H.), Geisinger, Danville, PA
| | - Sushravya Raghunath
- Department of Imaging Science and Innovation (E.D.C., L.J., S.R., B.K.F., C.M.H.), Geisinger, Danville, PA.,Biomedical and Translational Informatics Institute (E.D.C., L.J., S.R., D.N.H., J.B.L., H.L.K., B.K.F., C.M.H.), Geisinger, Danville, PA
| | - Dustin N Hartzel
- Biomedical and Translational Informatics Institute (E.D.C., L.J., S.R., D.N.H., J.B.L., H.L.K., B.K.F., C.M.H.), Geisinger, Danville, PA
| | - Joseph B Leader
- Biomedical and Translational Informatics Institute (E.D.C., L.J., S.R., D.N.H., J.B.L., H.L.K., B.K.F., C.M.H.), Geisinger, Danville, PA
| | - H Lester Kirchner
- Biomedical and Translational Informatics Institute (E.D.C., L.J., S.R., D.N.H., J.B.L., H.L.K., B.K.F., C.M.H.), Geisinger, Danville, PA
| | - Diane T Smelser
- Department of Molecular and Functional Genomics (D.T.S., D.J.C.), Geisinger, Danville, PA
| | - David J Carey
- Department of Molecular and Functional Genomics (D.T.S., D.J.C.), Geisinger, Danville, PA
| | - Melissa A Kelly
- Genomic Medicine Institute (M.A.K., A.C.S.), Geisinger, Danville, PA
| | - Amy C Sturm
- Genomic Medicine Institute (M.A.K., A.C.S.), Geisinger, Danville, PA
| | - Amro Alsaid
- The Heart Institute (W.Y., D.B., A.A., B.K.F., C.M.H.), Geisinger, Danville, PA
| | - Brandon K Fornwalt
- Department of Imaging Science and Innovation (E.D.C., L.J., S.R., B.K.F., C.M.H.), Geisinger, Danville, PA.,Biomedical and Translational Informatics Institute (E.D.C., L.J., S.R., D.N.H., J.B.L., H.L.K., B.K.F., C.M.H.), Geisinger, Danville, PA.,The Heart Institute (W.Y., D.B., A.A., B.K.F., C.M.H.), Geisinger, Danville, PA.,Department of Radiology (B.K.F.), Geisinger, Danville, PA
| | - Christopher M Haggerty
- Department of Imaging Science and Innovation (E.D.C., L.J., S.R., B.K.F., C.M.H.), Geisinger, Danville, PA.,Biomedical and Translational Informatics Institute (E.D.C., L.J., S.R., D.N.H., J.B.L., H.L.K., B.K.F., C.M.H.), Geisinger, Danville, PA.,The Heart Institute (W.Y., D.B., A.A., B.K.F., C.M.H.), Geisinger, Danville, PA
| |
Collapse
|