1
|
Morin G, Garneau AP, Bouzakher N, Ségot L, Fraissenon A, Blondel A, Petit F, Chopinet C, Mayeux F, Fayoux P, Dompmartin A, Bodemer C, Balducci E, Kaltenbach S, Villarese P, Asnafi V, Legendre C, Broissand C, Fraitag S, Quelin C, Goudin N, Guibaud L, Canaud G. Somatic PIK3R1 mutations in the iSH2 domain are accessible to PI3Kα inhibition. EMBO Mol Med 2025:10.1038/s44321-025-00249-9. [PMID: 40389643 DOI: 10.1038/s44321-025-00249-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 04/03/2025] [Accepted: 04/24/2025] [Indexed: 05/21/2025] Open
Abstract
Mutations in PIK3R1 have recently been identified in patients with overgrowth syndromes and complex vascular malformations. PIK3R1 encodes p85α which acts as the regulatory subunit of the lipid kinase PI3Kα. PIK3R1 mutations result in the excessive activation of the AKT/mTOR pathway. Currently, there are no approved treatments specifically dedicated to patients with PIK3R1 mutations, and medical care primarily focuses on managing symptoms. In this study, we identified three patients, including two children, who had mosaic somatic PIK3R1 mutations affecting the iSH2 domain, along with severe associated symptoms that were unsuccessfully treated with rapamycin. We conducted in vitro experiments to investigate the impact of these mutations, including a double PIK3R1 mutation in cis observed in one patient. Our findings revealed that p85α mutants in the iSH2 domain showed sensitivity to alpelisib, a pharmacological inhibitor of PI3Kα. Based on these findings, we received authorization to administer alpelisib to all three patients. Following drug introduction, patients rapidly demonstrated clinical improvement, pain, fatigue and inflammatory flares were attenuated. Magnetic Resonance Imaging showed a mean decrease of 22.67% in the volume of vascular malformations over twelve months of treatment with alpelisib. No drug-related adverse events were reported during the course of the study. In conclusion, this study provides support for the use of PI3Kα inhibition as a promising therapeutic approach for individuals with PIK3R1-related anomalies.
Collapse
Affiliation(s)
- Gabriel Morin
- Université Paris Cité, Paris, France
- INSERM U1151, Institut Necker-Enfants Malades, Paris, France
- Unité de Médecine Translationnelle et Thérapies Ciblées, Hôpital Necker-Enfants Malades, AP-HP, Paris, France
| | - Alexandre P Garneau
- Université Paris Cité, Paris, France
- INSERM U1151, Institut Necker-Enfants Malades, Paris, France
| | - Nabiha Bouzakher
- Université Paris Cité, Paris, France
- INSERM U1151, Institut Necker-Enfants Malades, Paris, France
| | - Louise Ségot
- Polytech Nice Sophia, Université Côte d'Azur, Nice, France
| | - Antoine Fraissenon
- INSERM U1151, Institut Necker-Enfants Malades, Paris, France
- Service d'Imagerie Pédiatrique, Hôpital Femme-Mère-Enfant, HCL, Bron, France
- CREATIS UMR 5220, Villeurbanne, 69100, France
- Service de Radiologie Mère-Enfant, Hôpital Nord, Saint Etienne, France
| | - Amélie Blondel
- Université Paris Cité, Paris, France
- INSERM U1151, Institut Necker-Enfants Malades, Paris, France
| | - Florence Petit
- Clinique de Génétique, CHU de Lille, Lille, 59000, France
| | - Caroline Chopinet
- Service de Physiologie & Explorations Fonctionnelles Cardiovasculaires, CHU de Lille, Lille, 59000, France
| | - Franck Mayeux
- Université Paris Cité, Paris, France
- INSERM U1151, Institut Necker-Enfants Malades, Paris, France
| | | | - Anne Dompmartin
- Service de Dermatologie, CHU Côte de Nacre, Caen, 14033, France
| | - Christine Bodemer
- Université Paris Cité, Paris, France
- Service de Dermatologie, Hôpital Necker-Enfants Malades, AP-HP, Paris, France
| | - Estelle Balducci
- Université Paris Cité, Paris, France
- Laboratoire d'Oncohématologie, Hôpital Necker-Enfants Malades, AP-HP, Paris, France
| | - Sophie Kaltenbach
- Université Paris Cité, Paris, France
- Laboratoire d'Oncohématologie, Hôpital Necker-Enfants Malades, AP-HP, Paris, France
| | - Patrick Villarese
- Laboratoire d'Oncohématologie, Hôpital Necker-Enfants Malades, AP-HP, Paris, France
| | - Vahid Asnafi
- Université Paris Cité, Paris, France
- INSERM U1151, Institut Necker-Enfants Malades, Paris, France
- Laboratoire d'Oncohématologie, Hôpital Necker-Enfants Malades, AP-HP, Paris, France
| | - Christophe Legendre
- Université Paris Cité, Paris, France
- Service de Néphrologie, Transplantation Adultes, Hôpital Necker-Enfants Malades, AP-HP, Paris, France
| | | | - Sylvie Fraitag
- Service d'Anatomie Pathologique, Hôpital Necker-Enfants Malades, AP-HP, Paris, France
| | - Chloé Quelin
- Service de Génétique Clinique, Centre de Référence Anomalies du Développement de l'Ouest, CHU Rennes, Rennes, France
| | - Nicolas Goudin
- Structure Fédérative de Recherche Necker, INSERM US24,-CNRS UAR 3633, Institut Necker-Enfants Malades, Paris, France
| | - Laurent Guibaud
- INSERM U1151, Institut Necker-Enfants Malades, Paris, France
- Service d'Imagerie Pédiatrique, Hôpital Femme-Mère-Enfant, HCL, Bron, France
| | - Guillaume Canaud
- Université Paris Cité, Paris, France.
- INSERM U1151, Institut Necker-Enfants Malades, Paris, France.
- Unité de Médecine Translationnelle et Thérapies Ciblées, Hôpital Necker-Enfants Malades, AP-HP, Paris, France.
| |
Collapse
|
2
|
Shen A, Wu M, Guo Z, Ali F, Wu J, Chen H, Cheng Y, Lian D, Peng J, Yu M, Chen K. Effects and mechanisms of trifolin on attenuating hypertension-induced vascular smooth muscle cell proliferation and collagen deposition in vivo and in vitro. Sci Rep 2025; 15:16145. [PMID: 40341164 PMCID: PMC12062450 DOI: 10.1038/s41598-025-01022-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 05/02/2025] [Indexed: 05/10/2025] Open
Abstract
Trifolin exhibits anti-tumor activities; however, its effect on hypertension remains unknown. This study was performed to investigate trifolin's potential therapeutic effects and underlying mechanisms of action on angiotensin II (Ang II)-induced hypertension in mice and Ang II stimulated A7R5 cells. Mice were randomly allocated into six groups: control, Ang II, Ang II + Trifolin (0.1 mg/kg), Ang II + Trifolin (1 mg/kg), Ang II + Trifolin (10 mg/kg), and Ang II + Valsartan (10 mg/kg). The hypertensive mouse model was constructed by infusing Ang II via a micro-osmotic pump (500 ng/kg/min), and trifolin, valsartan, or double distilled water was administered intragastrically once daily for 4 weeks. Blood pressure, vascular function, pathological morphology, and collagen deposition in Ang II infused mice and cell viability of Ang II stimulated A7R5 cells were assessed. A networking pharmacology analysis was performed to identify potential targets, pathways, and processes. These were verified by determining proliferating cell nuclear antigen (PCNA) expression, cell migration, collagen protein expression and related pathway activation in vivo and in vitro using masson, immunohistochemistry, cell counting Kit-8 assays, phalloidin staining, wound healing assays, and western-blotting. Different concentrations of trifolin effectively mitigated the rise in systolic blood pressure, diastolic blood pressure, mean arterial pressure, pulse wave velocity, abdominal aorta wall thickness, and collagen deposition of Ang II infused mice. Notably, higher concentrations of trifolin exhibited greater attenuation which was similar to the effects of valsartan (a positive control). Networking pharmacology analysis identified 105 common targets and various gene ontology processes. The Kyoto Encyclopedia of Genes and Genomes pathways analysis identified multiple enriched signaling pathways, including responses to wounding, phosphatidylinositol 3-kinase complex, oxidoreductase, PI3K/AKT, and FoxO signaling pathways. Consistently, trifolin treatment significantly down-regulated the expression of PCNA and the ratio of p-PI3K/PI3K and p-AKT/AKT in the abdominal aorta tissues. In vitro study indicated that trifolin consistently reduced the cell viability, down-regulated the expression of PCNA, collagen I and collagen III, and reduced the cell migration, as well as reduced the ratio of p-PI3K/PI3K and p-AKT/AKT (similar with the effect of PI3K inhibitor: LY294002) in Ang II stimulated A7R5 cells. Trifolin treatment attenuated the elevation of blood pressure, the proliferation and collagen deposition of VSMCs, and modulated multiple signaling pathways, including PI3K/Akt pathway. These results suggest that trifolin could be a potential therapeutic approach for treating hypertension.
Collapse
MESH Headings
- Animals
- Cell Proliferation/drug effects
- Mice
- Collagen/metabolism
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/cytology
- Hypertension/drug therapy
- Hypertension/metabolism
- Hypertension/pathology
- Hypertension/chemically induced
- Angiotensin II
- Cell Movement/drug effects
- Male
- Signal Transduction/drug effects
- Disease Models, Animal
- Cell Line
- Blood Pressure/drug effects
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Mice, Inbred C57BL
Collapse
Affiliation(s)
- Aling Shen
- Postdoctoral Workstation, Tianjiang Pharmaceutical Co., Ltd., Jiangyin, 214400, Jiangsu, China
- Department of Cardiology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100091, China
- National Clinical Research Center for Cardiovascular Diseases of Traditional Chinese Medicine, Beijing, 100091, China
- Clinical Research Institute, the Second Affiliated Hospital & Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China
| | - Meizhu Wu
- Clinical Research Institute, the Second Affiliated Hospital & Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China
| | - Zhi Guo
- Clinical Research Institute, the Second Affiliated Hospital & Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China
| | - Farman Ali
- Clinical Research Institute, the Second Affiliated Hospital & Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China
| | - Jinkong Wu
- Clinical Research Institute, the Second Affiliated Hospital & Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China
| | - Hong Chen
- Clinical Research Institute, the Second Affiliated Hospital & Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China
| | - Ying Cheng
- Clinical Research Institute, the Second Affiliated Hospital & Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China
| | - Dawei Lian
- Clinical Research Institute, the Second Affiliated Hospital & Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China
| | - Jun Peng
- Clinical Research Institute, the Second Affiliated Hospital & Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China.
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China.
- Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, 350122, Fujian, China.
- Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, MinhouShangjie, Fuzhou, 350122, Fujian, China.
| | - Min Yu
- Postdoctoral Workstation, Tianjiang Pharmaceutical Co., Ltd., Jiangyin, 214400, Jiangsu, China.
| | - Keji Chen
- Postdoctoral Workstation, Tianjiang Pharmaceutical Co., Ltd., Jiangyin, 214400, Jiangsu, China.
- Department of Cardiology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100091, China.
- National Clinical Research Center for Cardiovascular Diseases of Traditional Chinese Medicine, Beijing, 100091, China.
| |
Collapse
|
3
|
Tsai YF, Lai JI, Liu CY, Hsi CN, Hsu CY, Huang CC, Feng CJ, Lin YS, Chao TC, Chiu JH, Tseng LM. Correlation Between PIK3R1 Expression and Cell Growth in Human Breast Cancer Cell Line BT-474 and Clinical Outcomes. World J Oncol 2025; 16:131-141. [PMID: 39850525 PMCID: PMC11750754 DOI: 10.14740/wjon1986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 12/16/2024] [Indexed: 01/25/2025] Open
Abstract
Background While mutations in the PIK3CA gene play important roles in human breast carcinogenesis, PIK3R1 gene alterations are recognized as actionable mutations for clinical cancer treatment. We aimed to elucidate the role of PIK3R1 in cell proliferation on breast carcinoma and to correlate the PIK3R1 expression with patients' outcome using human tumor tissue arrays. Methods Using human BT-474 (estrogen receptor (ER)+/human epidermal growth factor receptor 2 (HER2)-high) breast carcinoma cell line as in vitro model, the role of PIK3R1 in cell proliferation was elucidated by knock-down of the PIK3R1 gene (ΔPIK3R1) in this cell line. Between January 2000 to December 2015, the records of a cohort of 440 patients in our hospital were retrospectively reviewed, including patients' survival. The correlations between PIK3R1 expression and patient prognosis, such as overall survival (OS) and disease-free survival (DFS), were elucidated by human breast cancer tumor tissue array immunostaining. Results After the PIK3R1 gene was silenced in the BT-474 line, there was an increased cell number and a decrease in the G0G1-fraction, and increased S-fraction and the S+G2M-fraction for the ΔPIK3R1-BT-474 cell line, as compared to their cell wild type (WT) line. Western blot analysis showed that decreased PIK3R1 protein levels were accompanied by an increase of the p-AKT and p-mTOR proteins in the ΔPIK3R1-BT-474 cell line, compared to the equivalent WT line. Using a human tumor tissue array, patients with high-expressed PIK3R1 protein had better outcomes in terms of DFS and OS, compared to those with low-expressed PIK3R1 protein, when breast cancer was at an early stage (stage I/II), but not across all stages of breast cancer in human patients. Conclusions We concluded that downregulated PIK3R1 in BT-474 cells resulted in an increased cell growth and upregulated AKT-mTOR signaling. Clinically, the high-expressed PIK3R1 protein in tumors correlates positively with patients' outcome in stage I and II breast cancer.
Collapse
Affiliation(s)
- Yi-Fang Tsai
- Comprehensive Breast Health Center, Department of Surgery, Taipei Veterans General Hospital, Taipei 112201, Taiwan
- Division of Breast Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei 112201, Taiwan
- Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112201, Taiwan
| | - Jiun-I Lai
- Comprehensive Breast Health Center, Department of Surgery, Taipei Veterans General Hospital, Taipei 112201, Taiwan
- Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112201, Taiwan
- Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei 112201, Taiwan
| | - Chun-Yu Liu
- Comprehensive Breast Health Center, Department of Surgery, Taipei Veterans General Hospital, Taipei 112201, Taiwan
- Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112201, Taiwan
- Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei 112201, Taiwan
| | - Chieh-Ning Hsi
- Comprehensive Breast Health Center, Department of Surgery, Taipei Veterans General Hospital, Taipei 112201, Taiwan
- Division of Breast Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei 112201, Taiwan
| | - Chih-Yi Hsu
- Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112201, Taiwan
- Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei 112201, Taiwan
| | - Chi-Cheng Huang
- Comprehensive Breast Health Center, Department of Surgery, Taipei Veterans General Hospital, Taipei 112201, Taiwan
- Division of Breast Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei 112201, Taiwan
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei 100233, Taiwan
| | - Chin-Jung Feng
- Comprehensive Breast Health Center, Department of Surgery, Taipei Veterans General Hospital, Taipei 112201, Taiwan
- Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112201, Taiwan
- Division of Plastic Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei 112201, Taiwan
| | - Yen-Shu Lin
- Comprehensive Breast Health Center, Department of Surgery, Taipei Veterans General Hospital, Taipei 112201, Taiwan
- Division of Breast Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei 112201, Taiwan
- Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112201, Taiwan
| | - Ta-Chung Chao
- Comprehensive Breast Health Center, Department of Surgery, Taipei Veterans General Hospital, Taipei 112201, Taiwan
- Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112201, Taiwan
- Division of Cancer Prevention, Department of Oncology, Taipei Veterans General Hospital, Taipei 112201, Taiwan
| | - Jen-Hwey Chiu
- Comprehensive Breast Health Center, Department of Surgery, Taipei Veterans General Hospital, Taipei 112201, Taiwan
- Division of Breast Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei 112201, Taiwan
- Division of General Surgery, Department of Surgery, Cheng-Hsin General Hospital, Taipei 112401, Taiwan
| | - Ling-Ming Tseng
- Comprehensive Breast Health Center, Department of Surgery, Taipei Veterans General Hospital, Taipei 112201, Taiwan
- Division of Breast Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei 112201, Taiwan
- Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112201, Taiwan
- These authors contributed equally to this work
| |
Collapse
|
4
|
Tomlinson PR, Knox RG, Perisic O, Su H, Brierley GV, Williams RL, Semple RK. Paradoxical dominant negative activity of an immunodeficiency-associated activating PIK3R1 variant. eLife 2025; 13:RP94420. [PMID: 39835783 PMCID: PMC11750134 DOI: 10.7554/elife.94420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025] Open
Abstract
PIK3R1 encodes three regulatory subunits of class IA phosphoinositide 3-kinase (PI3K), each associating with any of three catalytic subunits, namely p110α, p110β, or p110δ. Constitutional PIK3R1 mutations cause diseases with a genotype-phenotype relationship not yet fully explained: heterozygous loss-of-function mutations cause SHORT syndrome, featuring insulin resistance and short stature attributed to reduced p110α function, while heterozygous activating mutations cause immunodeficiency, attributed to p110δ activation and known as APDS2. Surprisingly, APDS2 patients do not show features of p110α hyperactivation, but do commonly have SHORT syndrome-like features, suggesting p110α hypofunction. We sought to investigate this. In dermal fibroblasts from an APDS2 patient, we found no increased PI3K signalling, with p110δ expression markedly reduced. In preadipocytes, the APDS2 variant was potently dominant negative, associating with Irs1 and Irs2 but failing to heterodimerise with p110α. This attenuation of p110α signalling by a p110δ-activating PIK3R1 variant potentially explains co-incidence of gain-of-function and loss-of-function PIK3R1 phenotypes.
Collapse
Affiliation(s)
- Patsy R Tomlinson
- The University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic ScienceCambridgeUnited Kingdom
- MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic ScienceCambridgeUnited Kingdom
| | - Rachel G Knox
- The University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic ScienceCambridgeUnited Kingdom
- MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic ScienceCambridgeUnited Kingdom
- The National Institute for Health Research Cambridge Biomedical Research CentreCambridgeUnited Kingdom
| | - Olga Perisic
- MRC Laboratory of Molecular BiologyCambridgeUnited Kingdom
| | - Helen Su
- Laboratory of Clinical Immunology & Microbiology, Intramural Research Program, National Institute of Allergy and Infectious Disease, National Institutes of HealthBethesdaUnited States
| | - Gemma V Brierley
- The University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic ScienceCambridgeUnited Kingdom
- Department of Comparative Biomedical Science, The Royal Veterinary CollegeLondonUnited Kingdom
| | | | - Robert K Semple
- The University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic ScienceCambridgeUnited Kingdom
- The National Institute for Health Research Cambridge Biomedical Research CentreCambridgeUnited Kingdom
- Centre for Cardiovascular Science, University of EdinburghEdinburghUnited Kingdom
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of EdinburghEdinburghUnited Kingdom
| |
Collapse
|
5
|
Al-Anbagi U, Elmakaty I, Al-Zoubi HM, Nashwan AJ, Sharif M. Klippel-Trenaunay Syndrome: A Case Study of Severe Anemia in a Rare Vascular Disorder. Cureus 2024; 16:e75725. [PMID: 39816300 PMCID: PMC11732612 DOI: 10.7759/cureus.75725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2024] [Indexed: 01/18/2025] Open
Abstract
Klippel-Trenaunay syndrome (KTS) is a rare congenital vascular disorder involving varicosities, cutaneous vascular malformations, and hypertrophy of soft tissues and bones. It is often linked to PIK3CA gene mutations. It affects the lymphatic, capillary, and venous systems. The diagnosis is usually based on clinical presentation, supplemented by magnetic resonance imaging (MRI) and computed tomography (CT) imaging. This case involves a 43-year-old male diagnosed with KTS after presenting with severe anemia (hemoglobin 2.5 g/dL) and left lower limb swelling with varicosities. Investigations revealed hepatosplenomegaly, hemangiomas, rectosigmoid malformations, an enlarged inferior vena cava (IVC), and vascular congestion. MRI confirmed an extensive veno-lymphatic malformation in the left lower limb. The case highlights KTS's complex presentation, emphasizing the importance of timely diagnosis, multidisciplinary care, and ongoing monitoring to manage its complications. Further research is needed to enhance treatment strategies for this rare condition.
Collapse
Affiliation(s)
- Usamah Al-Anbagi
- Internal Medicine Department, Hamad Medical Corporation, Doha, QAT
| | - Ibrahim Elmakaty
- Internal Medicine Department, Hamad Medical Corporation, Doha, QAT
| | | | | | - Muhammad Sharif
- Internal Medicine Department, Hamad Medical Corporation, Doha, QAT
| |
Collapse
|
6
|
Dsouza NR, Haque N, Tripathi S, Zimmermann MT. Assessing Protein Surface-Based Scoring for Interpreting Genomic Variants. Int J Mol Sci 2024; 25:12018. [PMID: 39596086 PMCID: PMC11594063 DOI: 10.3390/ijms252212018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/31/2024] [Accepted: 11/04/2024] [Indexed: 11/28/2024] Open
Abstract
Clinical genomics sequencing is rapidly expanding the number of variants that need to be functionally elucidated. Interpreting genetic variants (i.e., mutations) usually begins by identifying how they affect protein-coding sequences. Still, the three-dimensional (3D) protein molecule is rarely considered for large-scale variant analysis, nor in analyses of how proteins interact with each other and their environment. We propose a standardized approach to scoring protein surface property changes as a new dimension for functionally and mechanistically interpreting genomic variants. Further, it directs hypothesis generation for functional genomics research to learn more about the encoded protein's function. We developed a novel method leveraging 3D structures and time-dependent simulations to score and statistically evaluate protein surface property changes. We evaluated positive controls composed of eight thermophilic versus mesophilic orthologs and variants that experimentally change the protein's solubility, which all showed large and statistically significant differences in charge distribution (p < 0.01). We scored static 3D structures and dynamic ensembles for 43 independent variants (23 pathogenic and 20 uninterpreted) across four proteins. Focusing on the potassium ion channel, KCNK9, the average local surface potential shifts were 0.41 kBT/ec with an average p-value of 1 × 10-2. In contrast, dynamic ensemble shifts averaged 1.15 kBT/ec with an average p-value of 1 × 10-5, enabling the identification of changes far from mutated sites. This study demonstrates that an objective assessment of how mutations affect electrostatic distributions of protein surfaces can aid in interpreting genomic variants discovered through clinical genomic sequencing.
Collapse
Affiliation(s)
- Nikita R. Dsouza
- Computational Structural Genomics Unit, Linda T. and John A. Mellowes Center for Genomics Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (N.R.D.); (N.H.); (S.T.)
| | - Neshatul Haque
- Computational Structural Genomics Unit, Linda T. and John A. Mellowes Center for Genomics Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (N.R.D.); (N.H.); (S.T.)
| | - Swarnendu Tripathi
- Computational Structural Genomics Unit, Linda T. and John A. Mellowes Center for Genomics Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (N.R.D.); (N.H.); (S.T.)
| | - Michael T. Zimmermann
- Computational Structural Genomics Unit, Linda T. and John A. Mellowes Center for Genomics Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (N.R.D.); (N.H.); (S.T.)
- Data Science Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
7
|
Tomlinson PR, Knox R, Perisic O, Su HC, Brierley GV, Williams RL, Semple RK. Paradoxical dominant negative activity of an immunodeficiency-associated activating PIK3R1 variant. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.02.565250. [PMID: 38077044 PMCID: PMC10705566 DOI: 10.1101/2023.11.02.565250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
PIK3R1 encodes three regulatory subunits of class IA phosphoinositide 3-kinase (PI3K), each associating with any of three catalytic subunits, namely p110α, p110β or p110δ. Constitutional PIK3R1 mutations cause diseases with a genotype-phenotype relationship not yet fully explained: heterozygous loss-of-function mutations cause SHORT syndrome, featuring insulin resistance and short stature attributed to reduced p110α function, while heterozygous activating mutations cause immunodeficiency, attributed to p110δ activation and known as APDS2. Surprisingly, APDS2 patients do not show features of p110α hyperactivation, but do commonly have SHORT syndrome-like features, suggesting p110α hypofunction. We sought to investigate this. In dermal fibroblasts from an APDS2 patient, we found no increased PI3K signalling, with p110δ expression markedly reduced. In preadipocytes, the APDS2 variant was potently dominant negative, associating with Irs1 and Irs2 but failing to heterodimerise with p110α. This attenuation of p110α signalling by a p110δ-activating PIK3R1 variant potentially explains co-incidence of gain-of-function and loss-of-function PIK3R1 phenotypes.
Collapse
Affiliation(s)
- Patsy R. Tomlinson
- The University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, UK
- MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, UK
| | - Rachel Knox
- The University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, UK
- MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, UK
- The National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, UK
| | - Olga Perisic
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Helen C. Su
- Laboratory of Clinical Immunology & Microbiology, Intramural Research Program, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, USA
| | - Gemma V. Brierley
- The University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, UK
- Department of Comparative Biomedical Science, The Royal Veterinary College, London NW1 0TU, UK
| | | | - Robert K. Semple
- The University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, UK
- The National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, UK
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
8
|
Horta E, Dahlen E, Engel C, Piard J, Thauvin-Robinet C, Faivre L, Vabres P, Kuentz P. Correspondence on "The ClinGen Brain Malformation Variant Curation Expert Panel: Rules for somatic variants in AKT3, MTOR, PIK3CA, and PIK3R2" by Lai et al. Genet Med 2024; 26:101214. [PMID: 39011768 DOI: 10.1016/j.gim.2024.101214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 06/24/2024] [Indexed: 07/17/2024] Open
Affiliation(s)
- Edgar Horta
- Université de Franche-Comté, CHU Besançon, Oncobiologie Génétique Bioinformatique, FHU-TRANSLAD et Institut GIMI, Besançon, France
| | - Eric Dahlen
- Université de Franche-Comté, CHU Besançon, Oncobiologie Génétique Bioinformatique, FHU-TRANSLAD et Institut GIMI, Besançon, France
| | - Camille Engel
- Université de Franche-Comté, CHU Besançon, Centre de Génétique Humaine, Besançon, France; Université de Bourgogne, INSERM UMR1231 GAD "Génétique des Anomalies du Développement," Dijon, France
| | - Juliette Piard
- Université de Franche-Comté, CHU Besançon, Centre de Génétique Humaine, Besançon, France; Université de Bourgogne, INSERM UMR1231 GAD "Génétique des Anomalies du Développement," Dijon, France
| | - Christel Thauvin-Robinet
- Université de Bourgogne, INSERM UMR1231 GAD "Génétique des Anomalies du Développement," Dijon, France; CHU Dijon, Unité Fonctionnelle "Innovation diagnostique dans les maladies rares," FHU TRANSLAD et Institut GIMI, Dijon, France
| | - Laurence Faivre
- Université de Bourgogne, INSERM UMR1231 GAD "Génétique des Anomalies du Développement," Dijon, France; CHU Dijon, Centre de Génétique et Centres de référence Anomalies du Développement et Déficience Intellectuelle, FHU-TRANSLAD et Institut GIMI, Dijon, France
| | - Pierre Vabres
- CHU Dijon, Centre de référence MAGEC Nord "Maladies rares de la peau et des muqueuses d'origine Génétique à Expression Cutanée, "FHU-TRANSLAD et Institut GIMI, Dijon, France; Reference centre for rare diseases, St John's Institute of Dermatology, St Thomas' Hospital, London, United Kingdom
| | - Paul Kuentz
- Université de Franche-Comté, CHU Besançon, Oncobiologie Génétique Bioinformatique, FHU-TRANSLAD et Institut GIMI, Besançon, France; Université de Bourgogne, INSERM UMR1231 GAD "Génétique des Anomalies du Développement," Dijon, France.
| |
Collapse
|
9
|
Bellucca S, Carli D, Gazzin A, Massuras S, Cardaropoli S, Luca M, Coppo P, Caprioglio M, La Selva R, Piglionica M, Bontempo P, D'Elia G, Bagnulo R, Ferrero GB, Resta N, Mussa A. Molecular Basis and Diagnostic Approach to Isolated and Syndromic Lateralized Overgrowth in Childhood. J Pediatr 2024; 274:114177. [PMID: 38945442 DOI: 10.1016/j.jpeds.2024.114177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/24/2024] [Accepted: 06/24/2024] [Indexed: 07/02/2024]
Abstract
OBJECTIVE To demonstrate a high-yield molecular diagnostic workflow for lateralized overgrowth (LO), a congenital condition with abnormal enlargement of body parts, and to classify it by molecular genetics. STUDY DESIGN We categorized 186 retrospective cases of LO diagnosed between 2003 and 2023 into suspected Beckwith-Wiedemann spectrum, PIK3CA-related overgrowth spectrum (PROS), vascular overgrowth, or isolated LO, based on initial clinical assessments, to determine the appropriate first-tier molecular tests and tissue for analysis. Patients underwent testing for 11p15 epigenetic abnormalities or somatic variants in genes related to PI3K/AKT/mTOR, vascular proliferation, and RAS-MAPK cascades using blood or skin DNA. For cases with negative initial tests, a sequential cascade molecular approach was employed to improve diagnostic yield. RESULTS This approach led to a molecular diagnosis in 54% of cases, 89% of cases consistent with initial clinical suspicions, and 11% reclassified. Beckwith-Wiedemann spectrum was the most common cause, with 43% of cases exhibiting 11p15 abnormalities. PIK3CA-related overgrowth spectrum had the highest confirmation rate, with 74% of clinically diagnosed patients showing a PIK3CA variant. Vascular overgrowth demonstrated significant clinical overlap with other syndromes. A molecular diagnosis of isolated LO proved challenging, with only 21% of cases classifiable into a specific condition. CONCLUSIONS LO is underdiagnosed from a molecular viewpoint and to date has had no diagnostic guidelines, which is crucial for addressing potential cancer predisposition, enabling precision medicine treatments, and guiding management. This study sheds light on the molecular etiology of LO, highlighting the importance of a tailored diagnostic approach and of selecting appropriate testing to achieve the highest diagnostic yield.
Collapse
Affiliation(s)
- Simone Bellucca
- Postgraduate School of Pediatrics, University of Torino, Turin, Italy
| | - Diana Carli
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Andrea Gazzin
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, Turin, Italy; Pediatric Clinical Genetics Unit, Regina Margherita Childrens' Hospital, Torino, Italy
| | - Stefania Massuras
- Pediatric Clinical Genetics Unit, Regina Margherita Childrens' Hospital, Torino, Italy; Department of Pediatric and Public Health Sciences, University of Torino, Torino, Italy
| | - Simona Cardaropoli
- Department of Pediatric and Public Health Sciences, University of Torino, Torino, Italy
| | - Maria Luca
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Paola Coppo
- Pediatric Dermatology Unit, Regina Margherita Childrens' Hospital, Torino, Italy
| | - Mirko Caprioglio
- Department of Pediatric and Public Health Sciences, University of Torino, Torino, Italy
| | - Roberta La Selva
- Pediatric Dermatology Unit, Regina Margherita Childrens' Hospital, Torino, Italy
| | - Marilidia Piglionica
- Medical Genetics Section, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University Hospital Consortium Corporation Polyclinics of Bari, Bari, Italy
| | - Piera Bontempo
- Laboratory of Medical Genetics, Molecular Genetics Unit, Bambino Gesù Children Hospital, IRCCS, Rome, Italy
| | - Gemma D'Elia
- Laboratory of Medical Genetics, Molecular Genetics Unit, Bambino Gesù Children Hospital, IRCCS, Rome, Italy
| | - Rosanna Bagnulo
- Medical Genetics Section, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University Hospital Consortium Corporation Polyclinics of Bari, Bari, Italy
| | | | - Nicoletta Resta
- Medical Genetics Section, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University Hospital Consortium Corporation Polyclinics of Bari, Bari, Italy
| | - Alessandro Mussa
- Pediatric Clinical Genetics Unit, Regina Margherita Childrens' Hospital, Torino, Italy; Department of Pediatric and Public Health Sciences, University of Torino, Torino, Italy.
| |
Collapse
|
10
|
Wedemeyer MA, Ding T, Garfinkle EAR, Westfall JJ, Navarro JB, Hernandez Gonzalez ME, Varga EA, Witman P, Mardis ER, Cottrell CE, Miller AR, Miller KE. Defining the transcriptome of PIK3CA-altered cells in a human capillary malformation using single cell long-read sequencing. Sci Rep 2024; 14:25440. [PMID: 39455600 PMCID: PMC11512043 DOI: 10.1038/s41598-024-72167-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 09/04/2024] [Indexed: 10/28/2024] Open
Abstract
PIK3CA-related overgrowth spectrum (PROS) disorders are caused by somatic mosaic variants that result in constitutive activation of the phosphatidylinositol-3-kinase/AKT/mTOR pathway. Promising responses to molecularly targeted therapy have been reported, although identification of an appropriate agent can be hampered by the mosaic nature and corresponding low variant allele frequency of the causal variant. Moreover, our understanding of the molecular consequences of these variants-for example how they affect gene expression profiles-remains limited. Here we describe in vitro expansion of a human capillary malformation followed by molecular characterization using exome sequencing, single cell gene expression, and targeted long-read single cell RNA-sequencing in a patient with clinical features consistent with Megalencephaly-Capillary Malformation Syndrome (MCAP, a PROS condition). These approaches identified a targetable PIK3CA variant with expression restricted to PAX3+ fibroblast and undifferentiated keratinocyte populations. This study highlights the innovative combination of next-generation single cell sequencing methods to better understand unique transcriptomic profiles and cell types associated with MCAP, revealing molecular intricacies of this genetic syndrome.
Collapse
Affiliation(s)
- Michelle A Wedemeyer
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
- Department of Neurosurgery, Nationwide Children's Hospital, Columbus, OH, USA
- Department of Neurosurgery, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Tianli Ding
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Elizabeth A R Garfinkle
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Jesse J Westfall
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Jaye B Navarro
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Maria Elena Hernandez Gonzalez
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Elizabeth A Varga
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Patricia Witman
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
- Division of Dermatology, Nationwide Children's Hospital, Columbus, OH, USA
| | - Elaine R Mardis
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
- Department of Neurosurgery, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Catherine E Cottrell
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
- Department of Pathology, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Anthony R Miller
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Katherine E Miller
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA.
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA.
| |
Collapse
|
11
|
De Bortoli M, Queisser A, Pham VC, Dompmartin A, Helaers R, Boutry S, Claus C, De Roo AK, Hammer F, Brouillard P, Abdelilah-Seyfried S, Boon LM, Vikkula M. Somatic Loss-of-Function PIK3R1 and Activating Non-hotspot PIK3CA Mutations Associated with Capillary Malformation with Dilated Veins (CMDV). J Invest Dermatol 2024; 144:2066-2077.e6. [PMID: 38431221 DOI: 10.1016/j.jid.2024.01.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/25/2024] [Accepted: 01/27/2024] [Indexed: 03/05/2024]
Abstract
Common capillary malformations are red vascular skin lesions, most commonly associated with somatic activating GNAQ or GNA11 mutations. We focused on capillary malformations lacking such a mutation to identify previously unreported genetic causes. We used targeted next-generation sequencing on 82 lesions. Bioinformatic analysis allowed the identification of 9 somatic pathogenic variants in PIK3R1 and PIK3CA, encoding for the regulatory and catalytic subunits of phosphoinositide 3-kinase, respectively. Recharacterization of these lesions unraveled a common phenotype: a pale capillary malformation associated with visible dilated veins. Primary endothelial cells from 2 PIK3R1-mutated lesions were isolated, and PI3k-Akt-mTOR and RAS-RAF-MAPK signaling were assessed by western blot. This unveiled an abnormal increase in Akt phosphorylation, effectively reduced by PI3K pathway inhibitors, such as mTOR, Akt, and PIK3CA inhibitors. The effects of mutant PIK3R1 were further studied using zebrafish embryos. Endothelium-specific expression of PIK3R1 mutants resulted in abnormal development of the posterior capillary-venous plexus. In summary, capillary malformation associated with visible dilated veins emerges as a clinical entity associated with somatic pathogenic variants in PIK3R1 or PIK3CA (nonhotspot). Our findings suggest that the activated Akt signaling can be effectively reversed by PI3K pathway inhibitors. In addition, the proposed zebrafish model holds promise as a valuable tool for future drug screening aimed at developing patient-tailored treatments.
Collapse
Affiliation(s)
- Martina De Bortoli
- Laboratory of Human Molecular Genetics, de Duve Institute, UCLouvain, Brussels, Belgium
| | - Angela Queisser
- Laboratory of Human Molecular Genetics, de Duve Institute, UCLouvain, Brussels, Belgium
| | - Van Cuong Pham
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Anne Dompmartin
- Department of Dermatology, VASCERN VASCA European Reference Center, Université de Caen Basse Normandie, Caen, France
| | - Raphaël Helaers
- Laboratory of Human Molecular Genetics, de Duve Institute, UCLouvain, Brussels, Belgium
| | - Simon Boutry
- Laboratory of Human Molecular Genetics, de Duve Institute, UCLouvain, Brussels, Belgium; Interuniversity Institute of Bioinformatics in Brussels, Université Libre de Bruxelles-Vrije Universiteit Brussel, Brussels, Belgium
| | - Cathy Claus
- Center for Vascular Anomalies, Division of Plastic Surgery, VASCERN VASCA European Reference Center, Cliniques Universitaires Saint Luc, UCLouvain, Brussels, Belgium
| | - An-Katrien De Roo
- Center for Vascular Anomalies, Division of Plastic Surgery, VASCERN VASCA European Reference Center, Cliniques Universitaires Saint Luc, UCLouvain, Brussels, Belgium; Service d'anatomopathologie, VASCERN VASCA European Reference Center, Cliniques Universitaires Saint Luc, UCLouvain, Brussels, Belgium; Institute of Experimental and Clinical Research, UCLouvain, Brussels, Belgium
| | - Frank Hammer
- Department of Medical Imaging, VASCERN VASCA European Reference Center, Cliniques Universitaires Saint-Luc, UCLouvain, Brussels, Belgium
| | - Pascal Brouillard
- Laboratory of Human Molecular Genetics, de Duve Institute, UCLouvain, Brussels, Belgium
| | | | - Laurence M Boon
- Laboratory of Human Molecular Genetics, de Duve Institute, UCLouvain, Brussels, Belgium; Center for Vascular Anomalies, Division of Plastic Surgery, VASCERN VASCA European Reference Center, Cliniques Universitaires Saint Luc, UCLouvain, Brussels, Belgium
| | - Miikka Vikkula
- Laboratory of Human Molecular Genetics, de Duve Institute, UCLouvain, Brussels, Belgium; Center for Vascular Anomalies, Division of Plastic Surgery, VASCERN VASCA European Reference Center, Cliniques Universitaires Saint Luc, UCLouvain, Brussels, Belgium; WELBIO Department, WEL Research Institute, Wavre, Belgium.
| |
Collapse
|
12
|
Kuentz P, Engel C, Laeng M, Chevarin M, Duffourd Y, Martel J, Piard J, Morice-Picard F, Aubert H, Bessis D, Guerrot AM, Maruani A, Boccara O, Mazereeuw-Hautier J, Ott H, Phan A, Puzenat E, Quelin C, Thauvin-Robinet C, Faivre L, Vabres P. Clinical phenotype of the PIK3R1-related vascular overgrowth syndrome. Br J Dermatol 2024; 191:303-305. [PMID: 38623710 DOI: 10.1093/bjd/ljae167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/25/2024] [Accepted: 04/18/2024] [Indexed: 04/17/2024]
Abstract
Here we report 19 additional patients with PIK3R1 mosaic variants with clinical phenotyping, showing that the PIK3R1 phenotype is indistinguishable from the PIK3CA-related phenotypes, although the megalencephaly-capillary malformation phenotype is consistently absent in patients with PIK3R1 variants. We also report novel PIK3R1 variants. We consider that the meaning of PROS should shift from ‘PIK3CA-related overgrowth spectrum’ to ‘PI3-kinase-related overgrowth spectrum’.
Collapse
Affiliation(s)
- Paul Kuentz
- Université de Franche-Comté, CHU Besançon, Oncobiologie Génétique Bioinformatique, FHU-TRANSLAD et Institut GIMI, F-25000 Besançon, France
| | | | - Mathieu Laeng
- Université de Franche-Comté, CHU Besançon, Oncobiologie Génétique Bioinformatique, FHU-TRANSLAD et Institut GIMI, F-25000 Besançon, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Chen H, Sun B, Liu H, Gao W, Qiu Y, Hua C, Lin X. Delineation of the phenotypes and genotypes of PIK3CA-related overgrowth spectrum in East asians. Mol Genet Genomics 2024; 299:66. [PMID: 38980418 DOI: 10.1007/s00438-024-02159-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 06/20/2024] [Indexed: 07/10/2024]
Abstract
PIK3CA-related overgrowth spectrum (PROS) is an umbrella term to describe a diverse range of developmental disorders. Research to date has predominantly emerged from Europe and North America, resulting in a notable scarcity of studies focusing on East Asian populations. Currently, the prevalence and distribution of PIK3CA variants across various genetic loci and their correlation with distinct phenotypes in East Asian populations remain unclear. This study aims to elucidate the phenotype-genotype correlations of PROS in East Asian populations. We presented the phenotypes and genotypes of 82 Chinese patients. Among our cohort, 67 individuals carried PIK3CA variants, including missense, frameshift, and splice variants. Six patients presented with both PIK3CA and an additional variant. Seven PIK3CA-negative patients exhibited overlapping PROS manifestations with variants in GNAQ, AKT1, PTEN, MAP3K3, GNA11, or KRAS. An integrative review of the literature pertaining to East Asian populations revealed that specific variants are uniquely associated with certain PROS phenotypes. Some rare variants were exclusively identified in cases of megalencephaly and diffuse capillary malformation with overgrowth. Non-hotspot variants with undefined oncogenicity were more common in CNS phenotypes. Diseases with vascular malformation were more likely to have variants in the helical domain, whereas phenotypes involving adipose/muscle overgrowth without vascular abnormalities predominantly presented variants in the C2 domain. Our findings underscore the unique phenotype-genotype patterns within the East Asian PROS population, highlighting the necessity for an expanded cohort to further elucidate these correlations. Such endeavors would significantly facilitate the development of PI3Kα selective inhibitors tailored for the East Asian population in the future.
Collapse
Affiliation(s)
- Hongrui Chen
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, P.R. China
| | - Bin Sun
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, P.R. China
| | - Hongyuan Liu
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, P.R. China
| | - Wei Gao
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, P.R. China
| | - Yajing Qiu
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, P.R. China
| | - Chen Hua
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, P.R. China.
| | - Xiaoxi Lin
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, P.R. China.
| |
Collapse
|
14
|
Stor MLE, Horbach SER, Lokhorst MM, Tan E, Maas SM, van Noesel CJM, van der Horst CMAM. Genetic mutations and phenotype characteristics in peripheral vascular malformations: A systematic review. J Eur Acad Dermatol Venereol 2024; 38:1314-1328. [PMID: 38037869 DOI: 10.1111/jdv.19640] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 08/29/2023] [Indexed: 12/02/2023]
Abstract
Vascular malformations (VMs) are clinically diverse with regard to the vessel type, anatomical location, tissue involvement and size. Consequently, symptoms and disease impact differ significantly. Diverse causative mutations in more and more genes are discovered and play a major role in the development of VMs. However, the relationship between the underlying causative mutations and the highly variable phenotype of VMs is not yet fully understood. In this systematic review, we aimed to provide an overview of known causative mutations in genes in VMs and discuss associations between the causative mutations and clinical phenotypes. PubMed and EMBASE libraries were systematically searched on November 9th, 2022 for randomized controlled trials and observational studies reporting causative mutations in at least five patients with peripheral venous, lymphatic, arteriovenous and combined malformations. Study quality was assessed with the Newcastle-Ottawa Scale. Data were extracted on patient and VM characteristics, molecular sequencing method and results of molecular analysis. In total, 5667 articles were found of which 69 studies were included, reporting molecular analysis in a total of 4261 patients and 1686 (40%) patients with peripheral VMs a causative mutation was detected. In conclusion, this systematic review provides a comprehensive overview of causative germline and somatic mutations in various genes and associated phenotypes in peripheral VMs. With these findings, we attempt to better understand how the underlying causative mutations in various genes contribute to the highly variable clinical characteristics of VMs. Our study shows that some causative mutations lead to a uniform phenotype, while other causal variants lead to more varying phenotypes. By contrast, distinct causative mutations may lead to similar phenotypes and result in almost indistinguishable VMs. VMs are currently classified based on clinical and histopathology features, however, the findings of this systematic review suggest a larger role for genotype in current diagnostics and classification.
Collapse
Affiliation(s)
- M L E Stor
- Department of Plastic, Reconstructive and Hand Surgery, Amsterdam University Medical Centres, University of Amsterdam, Amsterdam, The Netherlands
| | - S E R Horbach
- Department of Plastic, Reconstructive and Hand Surgery, Amsterdam University Medical Centres, University of Amsterdam, Amsterdam, The Netherlands
| | - M M Lokhorst
- Department of Plastic, Reconstructive and Hand Surgery, Amsterdam University Medical Centres, University of Amsterdam, Amsterdam, The Netherlands
| | - E Tan
- Department of Plastic, Reconstructive and Hand Surgery, Amsterdam University Medical Centres, University of Amsterdam, Amsterdam, The Netherlands
| | - S M Maas
- Department of Clinical Genetics, Amsterdam University Medical Centres, University of Amsterdam, Amsterdam, The Netherlands
| | - C J M van Noesel
- Department of Pathology, Molecular Diagnostics, Amsterdam University Medical Centres, University of Amsterdam, Amsterdam, The Netherlands
| | - C M A M van der Horst
- Department of Plastic, Reconstructive and Hand Surgery, Amsterdam University Medical Centres, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
15
|
De Bortoli M, Ivars M, Revencu N, Nassogne MC, Lavarino C, Paco S, Lammens M, Renders A, Dumitriu D, Helaers R, Boon LM, Baselga E, Vikkula M. Epilepsy with faint capillary malformation or reticulated telangiectasia associated with mosaic AKT3 pathogenic variants. Am J Med Genet A 2024; 194:e63551. [PMID: 38321651 DOI: 10.1002/ajmg.a.63551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/11/2024] [Accepted: 01/17/2024] [Indexed: 02/08/2024]
Abstract
Capillary malformations (CMs) are the most common type of vascular anomalies, affecting around 0.3% of newborns. They are usually caused by somatic pathogenic variants in GNAQ or GNA11. PIK3CA and PIK3R1, part of the phosphoinositide 3-kinase-protein kinase B-mammalian target of rapamycin pathway, are mutated in fainter CMs such as diffuse CM with overgrowth and megalencephaly CM. In this study, we present two young patients with a CM-like phenotype associated with cerebral anomalies and severe epilepsy. Pathogenic variants in PIK3CA and PIK3R1, as well as GNAQ and GNA11, were absent in affected cutaneous tissue biopsies. Instead, we identified two somatic pathogenic variants in the AKT3 gene. Subsequent analysis of the DNA obtained from surgically resected brain tissue of one of the two patients confirmed the presence of the AKT3 variant. Focal cortical dysplasia was also detected in this patient. Genetic analysis thus facilitated workup to reach a precise diagnosis for these patients, associating the vascular anomaly with the neurological symptoms. This study underscores the importance of searching for additional signs and symptoms to guide the diagnostic workup, especially in cases with atypical vascular malformations. In addition, it strongly emphasizes the significance of genotype-phenotype correlation studies in guiding clinicians' informed decision-making regarding patient care.
Collapse
Affiliation(s)
- Martina De Bortoli
- Human Molecular Genetics, de Duve Institute, UCLouvain, Brussels, Belgium
| | - Marta Ivars
- Department of Dermatology, VASCERN VASCA European Reference Center, Hospital Sant Joan de Deu, Barcelona, Spain
| | - Nicole Revencu
- Center for Human Genetics, VASCERN VASCA European Reference Center, Cliniques Universitaires Saint Luc, UCLouvain, Brussels, Belgium
| | - Marie-Cécile Nassogne
- Pediatric Neurology Unit, VASCERN VASCA European Reference Center, Cliniques Universitaires Saint Luc, UCLouvain, Brussels, Belgium
| | - Cinzia Lavarino
- Laboratory of Molecular Oncology, VASCERN VASCA European Reference Center, Pediatric Cancer Center Barcelona, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Sonia Paco
- Laboratory of Molecular Oncology, VASCERN VASCA European Reference Center, Pediatric Cancer Center Barcelona, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Martin Lammens
- Department of Pathology, Antwerp University Hospital, University of Antwerp, Edegem, Belgium
- Service d'anatomopathologie, VASCERN VASCA European Reference Center, Cliniques Universitaires Saint Luc, UCLouvain, Brussels, Belgium
| | - Anne Renders
- Rehabilitation Department, Cliniques Universitaires Saint Luc, UCLouvain, Brussels, Belgium
| | - Dana Dumitriu
- Pediatric Radiology Unit, VASCERN VASCA European Reference Center, Cliniques Universitaires Saint Luc, UCLouvain, Brussels, Belgium
| | - Raphaël Helaers
- Human Molecular Genetics, de Duve Institute, UCLouvain, Brussels, Belgium
| | - Laurence M Boon
- Human Molecular Genetics, de Duve Institute, UCLouvain, Brussels, Belgium
- Center for Vascular Anomalies, Division of Plastic Surgery, VASCERN VASCA European Reference Center, Cliniques Universitaires Saint Luc, UCLouvain, Brussels, Belgium
| | - Eulalia Baselga
- Department of Dermatology, VASCERN VASCA European Reference Center, Hospital Sant Joan de Deu, Barcelona, Spain
| | - Miikka Vikkula
- Human Molecular Genetics, de Duve Institute, UCLouvain, Brussels, Belgium
- WELBIO department, WEL Research Institute, Wavre, Belgium
| |
Collapse
|
16
|
Revencu N, Eijkelenboom A, Bracquemart C, Alhopuro P, Armstrong J, Baselga E, Cesario C, Dentici ML, Eyries M, Frisk S, Karstensen HG, Gene-Olaciregui N, Kivirikko S, Lavarino C, Mero IL, Michiels R, Pisaneschi E, Schönewolf-Greulich B, Wieland I, Zenker M, Vikkula M. Assessment of gene-disease associations and recommendations for genetic testing for somatic variants in vascular anomalies by VASCERN-VASCA. Orphanet J Rare Dis 2024; 19:213. [PMID: 38778413 PMCID: PMC11110196 DOI: 10.1186/s13023-024-03196-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 04/19/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND Vascular anomalies caused by somatic (postzygotic) variants are clinically and genetically heterogeneous diseases with overlapping or distinct entities. The genetic knowledge in this field is rapidly growing, and genetic testing is now part of the diagnostic workup alongside the clinical, radiological and histopathological data. Nonetheless, access to genetic testing is still limited, and there is significant heterogeneity across the approaches used by the diagnostic laboratories, with direct consequences on test sensitivity and accuracy. The clinical utility of genetic testing is expected to increase progressively with improved theragnostics, which will be based on information about the efficacy and safety of the emerging drugs and future molecules. The aim of this study was to make recommendations for optimising and guiding the diagnostic genetic testing for somatic variants in patients with vascular malformations. RESULTS Physicians and lab specialists from 11 multidisciplinary European centres for vascular anomalies reviewed the genes identified to date as being involved in non-hereditary vascular malformations, evaluated gene-disease associations, and made recommendations about the technical aspects for identification of low-level mosaicism and variant interpretation. A core list of 24 genes were selected based on the current practices in the participating laboratories, the ISSVA classification and the literature. In total 45 gene-phenotype associations were evaluated: 16 were considered definitive, 16 strong, 3 moderate, 7 limited and 3 with no evidence. CONCLUSIONS This work provides a detailed evidence-based view of the gene-disease associations in the field of vascular malformations caused by somatic variants. Knowing both the gene-phenotype relationships and the strength of the associations greatly help laboratories in data interpretation and eventually in the clinical diagnosis. This study reflects the state of knowledge as of mid-2023 and will be regularly updated on the VASCERN-VASCA website (VASCERN-VASCA, https://vascern.eu/groupe/vascular-anomalies/ ).
Collapse
Affiliation(s)
- Nicole Revencu
- Center for Human Genetics, Cliniques universitaires Saint-Luc, University of Louvain, VASCERN VASCA European Reference Centre, Brussels, Belgium
| | - Astrid Eijkelenboom
- Department of Pathology, Radboud University Medical Center, VASCERN VASCA European Reference Centre, PO Box 9101, 6500, HB, Nijmegen, the Netherlands
| | - Claire Bracquemart
- Normandie Univ, UNICAEN, Service de Génétique, CHU Caen Normandie, BIOTARGEN EA 7450, VASCERN VASCA European Reference Centre, Caen, 14000, France
| | - Pia Alhopuro
- HUS Diagnostic Center, Laboratory of Genetics, University of Helsinki and Helsinki University Hospital, VASCERN VASCA European Reference Centre, Helsinki, Finland
| | - Judith Armstrong
- Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, CIBER-ER (Biomedical Network Research Center for Rare Diseases), Instituto de Salud Carlos III (ISCIII), Madrid, and Genomic Unit, Molecular and Genetic Medicine Section, Hospital Sant Joan de Déu, VASCERN VASCA European Reference Centre, Barcelona, Spain
| | - Eulalia Baselga
- Department of Dermatology, Hospital Sant Joan de Deu, VASCERN VASCA European Reference Centre, Barcelona, Spain
| | - Claudia Cesario
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children Hospital and Research Institute, IRCCS, VASCERN VASCA European Reference Centre, Rome, Italy
| | - Maria Lisa Dentici
- Medical Genetics Unit, Bambino Gesù Children's Hospital, IRCCS, VASCERN VASCA European Reference Centre, 00165, Rome, Italy
| | - Melanie Eyries
- Sorbonne Université, Département de Génétique, Assistance Publique-Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, VASCERN VASCA European Reference Centre, Paris, France
| | - Sofia Frisk
- Department of Molecular Medicine and Surgery, Karolinska Institutet and Department of Clinical Genetics, Karolinska University Hospital, VASCERN VASCA European Reference Centre, Stockholm, Sweden
| | - Helena Gásdal Karstensen
- Department of Genetics, Center of Diagnostics, Copenhagen University Hospital - Rigshospitalet, VASCERN VASCA European Reference Centre, Copenhagen, Denmark
| | - Nagore Gene-Olaciregui
- Laboratory of Molecular Oncology, Pediatric Cancer Center Barcelona, Hospital Sant Joan de Déu, VASCERN VASCA European Reference Centre, Barcelona, Spain
| | - Sirpa Kivirikko
- Department of Clinical Genetics, HUS Diagnostic Center, University of Helsinki and Helsinki University Hospital, VASCERN VASCA European Reference Centre, Helsinki, Finland
| | - Cinzia Lavarino
- Laboratory of Molecular Oncology, Pediatric Cancer Center Barcelona, Hospital Sant Joan de Déu, VASCERN VASCA European Reference Centre, Barcelona, Spain
| | - Inger-Lise Mero
- Department of Medical Genetics, Oslo University Hospital, VASCERN VASCA European Reference Centre, Oslo, Norway
| | - Rodolphe Michiels
- Center for Human Genetics, Cliniques universitaires Saint-Luc, University of Louvain, VASCERN VASCA European Reference Centre, Brussels, Belgium
| | - Elisa Pisaneschi
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children Hospital and Research Institute, IRCCS, VASCERN VASCA European Reference Centre, Rome, Italy
| | - Bitten Schönewolf-Greulich
- Department of Genetics, Center of Diagnostics, Copenhagen University Hospital - Rigshospitalet, VASCERN VASCA European Reference Centre, Copenhagen, Denmark
| | - Ilse Wieland
- Institute of Human Genetics, University Hospital Otto-Von-Guericke-University, Magdeburg, Germany
| | - Martin Zenker
- Institute of Human Genetics, University Hospital Otto-Von-Guericke-University, Magdeburg, Germany
| | - Miikka Vikkula
- Center for Vascular Anomalies, Cliniques Universitaires Saint-Luc, Brussels, Belgium.
- Human Molecular Genetics , de Duve Institute, University of Louvain, VASCERN VASCA European Reference Centre, Brussels, Belgium.
- WELBIO Department, WEL Research Institute, Avenue Pasteur, 6, 1300, Wavre, Belgium.
| |
Collapse
|
17
|
Wu G, Lin X, Jiang H, Liu Z. Association Between the miR-100 rs1834306 A>G Polymorphism and Susceptibility to Venous Malformation. Int J Gen Med 2024; 17:509-515. [PMID: 38356685 PMCID: PMC10864769 DOI: 10.2147/ijgm.s441542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 02/03/2024] [Indexed: 02/16/2024] Open
Abstract
Background Venous malformation is related to genes and results in functional and morphologic anomalies. Genetic variations affecting the development of vessel endothelial cells are unclear. Therefore, this study aimed to investigate the potential value of the miR-100 rs1834306 A>G polymorphism as a marker of susceptibility to venous malformation. Methods In this case-control study in southern Chinese children, we collected blood samples from 1158 controls and 1113 patients with venous malformation. TaqMan genotyping of miR-100 rs1834306 A>G was performed by real-time fluorescent quantitative polymerase chain reaction. Results Multivariate logistic regression analysis showed that there was no significant association between the presence of the miR-100 rs1834306 A>G polymorphism and susceptibility to venous malformation by evaluating the values of pooled odds ratios and 95% confidence intervals. Similarly, among different sites, rs1834306 A>G was also not associated with venous malformation. Conclusion Our results suggest that the miR-100 rs1834306 A>G polymorphism is not associated with susceptibility to venous malformation in southern Chinese children. These results need to be further confirmed by investigating a more diverse ethnic population of patients with venous malformations.
Collapse
Affiliation(s)
- Guitao Wu
- Department of Interventional Radiology and Vascular Anomalies, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, 510623, People’s Republic of China
| | - Xi Lin
- Department of Interventional Radiology and Vascular Anomalies, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, 510623, People’s Republic of China
| | - Hua Jiang
- Department of Interventional Radiology and Vascular Anomalies, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, 510623, People’s Republic of China
| | - Zhenyin Liu
- Department of Interventional Radiology and Vascular Anomalies, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, 510623, People’s Republic of China
| |
Collapse
|
18
|
Woodis KM, Garlisi Torales LD, Wolf A, Britt A, Sheppard SE. Updates in Genetic Testing for Head and Neck Vascular Anomalies. Oral Maxillofac Surg Clin North Am 2024; 36:1-17. [PMID: 37867039 PMCID: PMC11092895 DOI: 10.1016/j.coms.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
Vascular anomalies include benign or malignant tumors or benign malformations of the arteries, veins, capillaries, or lymphatic vasculature. The genetic etiology of the lesion is essential to define the lesion and can help navigate choice of therapy. . In the United States, about 1.2% of the population has a vascular anomaly, which may be underestimating the true prevalence as genetic testing for these conditions continues to evolve.
Collapse
Affiliation(s)
- Kristina M Woodis
- Unit on Vascular Malformations, Division of Intramural Research, Eunice Kennedy Shriver National Institute for Child Health and Human Development, 10 Center Drive, MSC 1103, Bethesda, MD 20892-1103, USA
| | - Luciana Daniela Garlisi Torales
- Unit on Vascular Malformations, Division of Intramural Research, Eunice Kennedy Shriver National Institute for Child Health and Human Development, 10 Center Drive, MSC 1103, Bethesda, MD 20892-1103, USA
| | - Alejandro Wolf
- Department of Pathology and ARUP Laboratories, University of Utah, 2000 Circle of Hope, Room 3100, Salt Lake City, UT 84112, USA
| | - Allison Britt
- Comprehensive Vascular Anomalies Program, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Sarah E Sheppard
- Unit on Vascular Malformations, Division of Intramural Research, Eunice Kennedy Shriver National Institute for Child Health and Human Development, 10 Center Drive, MSC 1103, Bethesda, MD 20892-1103, USA.
| |
Collapse
|
19
|
Wang Y, Qinqin H, Wang H, Zhang H, Zhang X, Liu W, Xiang Z, Gu Y. Network pharmacology and molecular docking to explore the mechanism of Sheng Xue Bao mixture against iron deficiency anemia. Medicine (Baltimore) 2023; 102:e35012. [PMID: 37713882 PMCID: PMC10508396 DOI: 10.1097/md.0000000000035012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 08/08/2023] [Indexed: 09/17/2023] Open
Abstract
Based on network pharmacology and molecular docking, we investigated the mechanism of action of Sheng Xue Bao mixture (SXBM) in treating iron deficiency anemia (IDA). We screened the HERB and traditional Chinese medicine systems pharmacology database and analysis platform databases to identify the active ingredients and targets of SXBM. The targets associated with "iron deficiency anemia" were collected from GeneCards, TTD, and OMIM databases. A component-target interaction network was constructed using Cytoscape 3.8.2. The protein-protein interaction network of candidate targets was generated using the STRING database and visualized with Cytoscape 3.8.2 software. Core modules obtained from clustering analysis were subjected to Gene Ontology and Kyoto encyclopedia of genes and genomes enrichment analysis. Finally, molecular docking validation of key targets and active components was performed using Autodock Vina software. A total of 174 active components and 111 genes were identified as potential active components and targets for IDA treatment, including quercetin, kaempferol, luteolin, beta-sitosterol, and other flavonoids as main active components. Gene Ontology enrichment analysis show that interleaved genes are enriched in 2328 biological processes, 71 cellular component expression processes, and 157 molecular function processes. Kyoto encyclopedia of genes and genomes analysis mainly envolved Prostate cancer, Hepatitis B, Kaposi sarcoma-associated herpesvirus infection, Endocrine resistance, Lipid and atherosclerosis, Central carbon metabolism in cancer, Human cytomegalovirus infection and HIF-1 signaling pathway. STAT3, SRC, PIK3R1, and GRB2 were selected as core targets. The molecular docking results demonstrated strong interactions between key components and their respective target proteins. Network pharmacological analysis suggested that SXBM could treat IDA by regulating various biological processes and related signaling pathways. It laid the foundation for further elucidating the molecular mechanism of SXBM treatment of IDA.
Collapse
Affiliation(s)
- Yun Wang
- Department of Traditional Chinese Medicine, Affiliated Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang, China
- Weifang Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Huang Qinqin
- Department of Traditional Chinese Medicine, Affiliated Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang, China
- Weifang Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Haixia Wang
- Department of Traditional Chinese Medicine, Affiliated Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang, China
- Weifang Medical University, Weifang, China
| | | | | | - Weiguo Liu
- Department of Traditional Chinese Medicine, Affiliated Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Zhenhua Xiang
- Department of Traditional Chinese Medicine, Affiliated Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Yuming Gu
- Department of Traditional Chinese Medicine, Affiliated Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang, China
- Weifang Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| |
Collapse
|
20
|
Mussa A, Leoni C, Iacoviello M, Carli D, Ranieri C, Pantaleo A, Buonuomo PS, Bagnulo R, Ferrero GB, Bartuli A, Melis D, Maitz S, Loconte DC, Turchiano A, Piglionica M, De Luisi A, Susca FC, Bukvic N, Forleo C, Selicorni A, Zampino G, Onesimo R, Cappuccio G, Garavelli L, Novelli C, Memo L, Morando C, Della Monica M, Accadia M, Capurso M, Piscopo C, Cereda A, Di Giacomo MC, Saletti V, Spinelli AM, Lastella P, Tenconi R, Dvorakova V, Irvine AD, Resta N. Genotypes and phenotypes heterogeneity in PIK3CA-related overgrowth spectrum and overlapping conditions: 150 novel patients and systematic review of 1007 patients with PIK3CA pathogenetic variants. J Med Genet 2023; 60:163-173. [PMID: 35256403 DOI: 10.1136/jmedgenet-2021-108093] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 02/18/2022] [Indexed: 01/27/2023]
Abstract
BACKGROUND Postzygotic activating PIK3CA variants cause several phenotypes within the PIK3CA-related overgrowth spectrum (PROS). Variant strength, mosaicism level, specific tissue involvement and overlapping disorders are responsible for disease heterogeneity. We explored these factors in 150 novel patients and in an expanded cohort of 1007 PIK3CA-mutated patients, analysing our new data with previous literature to give a comprehensive picture. METHODS We performed ultradeep targeted next-generation sequencing (NGS) on DNA from skin biopsy, buccal swab or blood using a panel including phosphatidylinositol 3-kinase/AKT/mammalian target of rapamycin pathway genes and GNAQ, GNA11, RASA1 and TEK. Additionally, 914 patients previously reported were systematically reviewed. RESULTS 93 of our 150 patients had PIK3CA pathogenetic variants. The merged PROS cohort showed that PIK3CA variants span thorough all gene domains, some were exclusively associated with specific PROS phenotypes: weakly activating variants were associated with central nervous system (CNS) involvement, and strongly activating variants with extra-CNS phenotypes. Among the 57 with a wild-type PIK3CA allele, 11 patients with overgrowth and vascular malformations overlapping PROS had variants in GNAQ, GNA11, RASA1 or TEK. CONCLUSION We confirm that (1) molecular diagnostic yield increases when multiple tissues are tested and by enriching NGS panels with genes of overlapping 'vascular' phenotypes; (2) strongly activating PIK3CA variants are found in affected tissue, rarely in blood: conversely, weakly activating mutations more common in blood; (3) weakly activating variants correlate with CNS involvement, strong variants are more common in cases without; (4) patients with vascular malformations overlapping those of PROS can harbour variants in genes other than PIK3CA.
Collapse
Affiliation(s)
- Alessandro Mussa
- Department of Public Health and Pediatric Sciences, Università degli Studi di Torino, Torino, Italy.,Pediatric Clinical Genetics, Regina Margherita Children's Hospital, Hospital, Città della Salute e della Scienza di Torino, Torino, Italy
| | - Chiara Leoni
- Center for Rare Diseases and Birth Defects, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
| | - Matteo Iacoviello
- Department of Biomedical Sciences and Human Oncology, Università degli Studi di Bari "Aldo Moro", Bari, Italy
| | - Diana Carli
- Department of Public Health and Pediatric Sciences, Università degli Studi di Torino, Torino, Italy.,Pediatric Onco-Hematology, Stem Cell Transplantation and Cell Therapy Division, Regina Margherita Children's Hospital, Città Della Salute e Della Scienza di Torino, Torino, Italy
| | - Carlotta Ranieri
- Department of Biomedical Sciences and Human Oncology, Università degli Studi di Bari "Aldo Moro", Bari, Italy
| | - Antonino Pantaleo
- Department of Biomedical Sciences and Human Oncology, Università degli Studi di Bari "Aldo Moro", Bari, Italy
| | - Paola Sabrina Buonuomo
- Rare Diseases and Medical Genetics Unit, Bambino Gesù Children's Hospital IRCCS, Roma, Italy
| | - Rosanna Bagnulo
- Department of Biomedical Sciences and Human Oncology, Università degli Studi di Bari "Aldo Moro", Bari, Italy
| | | | - Andrea Bartuli
- Rare Diseases and Medical Genetics Unit, Bambino Gesù Children's Hospital IRCCS, Roma, Italy
| | - Daniela Melis
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Fisciano, Italy
| | - Silvia Maitz
- Clinical Pediatric Genetics Unit, MBBM Foundation, San Gerardo Hospital, Monza, Italy
| | - Daria Carmela Loconte
- Department of Biomedical Sciences and Human Oncology, Università degli Studi di Bari "Aldo Moro", Bari, Italy
| | - Antonella Turchiano
- Department of Biomedical Sciences and Human Oncology, Università degli Studi di Bari "Aldo Moro", Bari, Italy
| | - Marilidia Piglionica
- Department of Biomedical Sciences and Human Oncology, Università degli Studi di Bari "Aldo Moro", Bari, Italy
| | - Annunziata De Luisi
- Department of Biomedical Sciences and Human Oncology, Università degli Studi di Bari "Aldo Moro", Bari, Italy
| | - Francesco Claudio Susca
- Department of Biomedical Sciences and Human Oncology, Università degli Studi di Bari "Aldo Moro", Bari, Italy
| | - Nenad Bukvic
- Department of Biomedical Sciences and Human Oncology, Università degli Studi di Bari "Aldo Moro", Bari, Italy
| | - Cinzia Forleo
- Cardiology Unit, Department of Emergency and Organ Transplantation, Università degli Studi di Bari "Aldo Moro", Bari, Italy
| | | | - Giuseppe Zampino
- Center for Rare Diseases and Birth Defects, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
| | - Roberta Onesimo
- Center for Rare Diseases and Birth Defects, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
| | - Gerarda Cappuccio
- Department of Translational Medicine, Federico II University Hospital, Napoli, Italy
| | - Livia Garavelli
- Medical Genetics Unit, Mother and Child Health Department, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Chiara Novelli
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milano, Italy
| | - Luigi Memo
- Department of Pediatrics, Neonatal Intensive Care Unit, San Bortolo Hospital of Vicenza, Vicenza, Italy
| | - Carla Morando
- Department of Pediatrics, Neonatal Intensive Care Unit, San Bortolo Hospital of Vicenza, Vicenza, Italy
| | | | - Maria Accadia
- Medical Genetics Unit, Hospital "Cardinale G. Panico", Tricase, Italy
| | - Martina Capurso
- Department of Biomedical Sciences and Human Oncology, Università degli Studi di Bari "Aldo Moro", Bari, Italy
| | - Carmelo Piscopo
- Medical Genetics Unit, Cardarelli Hospital, Napoli, Italy, Italy
| | - Anna Cereda
- Pediatric Department, ASST Papa Giovanni XXIII, Bergamo, Italy
| | | | - Veronica Saletti
- Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | | | - Patrizia Lastella
- Centro Sovraziendale di Assistenza e Ricerca per le Malattie Rare, Internal Medicine Unit 'C. Frugoni', Ospedale Consorziale Policlinico di Bari, Bari, Italy
| | - Romano Tenconi
- Department of Pediatrics, Clinical Genetics, Universita degli Studi di Padova, Padova, Italy
| | - Veronika Dvorakova
- Dermatology Clinic, Our Lady's Children's Hospital Crumlin, Dublin, Ireland
| | - Alan D Irvine
- Dermatology Clinic, Our Lady's Children's Hospital Crumlin, Dublin, Ireland
| | - Nicoletta Resta
- Department of Biomedical Sciences and Human Oncology, Università degli Studi di Bari "Aldo Moro", Bari, Italy
| |
Collapse
|
21
|
Wu Z, Yu X, Zhang S, He Y, Guo W. Mechanism underlying circRNA dysregulation in the TME of digestive system cancer. Front Immunol 2022; 13:951561. [PMID: 36238299 PMCID: PMC9550895 DOI: 10.3389/fimmu.2022.951561] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 09/12/2022] [Indexed: 11/18/2022] Open
Abstract
Circular RNAs (circRNAs) are a new series of noncoding RNAs (ncRNAs) that have been reported to be expressed in eukaryotic cells and have a variety of biological functions in the regulation of cancer pathogenesis and progression. The TME, as a microscopic ecological environment, consists of a variety of cells, including tumor cells, immune cells and other normal cells, ECM and a large number of signaling molecules. The crosstalk between circRNAs and the TME plays a complicated role in affecting the malignant behaviors of digestive system cancers. Herein, we summarize the mechanisms underlying aberrant circRNA expression in the TME of the digestive system cancers, including immune surveillance, angiogenesis, EMT, and ECM remodelling. The regulation of the TME by circRNA is expected to be a new therapeutic method.
Collapse
Affiliation(s)
- Zeyu Wu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China
- Henan Key Laboratory of Digestive Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiao Yu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China
- Henan Key Laboratory of Digestive Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shuijun Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China
- Henan Key Laboratory of Digestive Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuting He
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China
- Henan Key Laboratory of Digestive Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Wenzhi Guo, ; Yuting He,
| | - Wenzhi Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China
- Henan Key Laboratory of Digestive Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Wenzhi Guo, ; Yuting He,
| |
Collapse
|
22
|
Modlin EW, Slavotinek AM, Darling TN, Lipkowitz S, Barr FG, Munster PN, Biesecker LG, Ours CA. Late-onset Proteus syndrome with cerebriform connective tissue nevus and subsequent development of intraductal papilloma. Am J Med Genet A 2022; 188:2766-2771. [PMID: 35441778 PMCID: PMC9519031 DOI: 10.1002/ajmg.a.62761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/25/2022] [Accepted: 04/01/2022] [Indexed: 01/25/2023]
Abstract
Proteus syndrome (PS) is a rare segmental overgrowth disorder caused by a mosaic activating variant in AKT1. The features of PS are often not present at birth but develop during the first few years of life. We describe a 55-year-old female, whose first symptom of overgrowth, a cerebriform connective tissue nevus, occurred at 19 years of age. We report the identification of the AKT1 c.49G > A p.(Glu17Lys) variant in this progressive lesion, the bony overgrowth, and recurrence after surgical intervention. In the sixth decade of life, this individual developed intraductal papillomas within her right breast which were confirmed to contain the same activating AKT1 variant as the connective tissue nevus. While similar neoplasms have been described in an individual with Proteus syndrome, none has been evaluated for the presence of the AKT1 variant. The tumor also contained two likely pathogenic variants in PIK3R1, c.1392_1403dupTAGATTATATGA p.(Asp464_Tyr467dup) and c.1728_1730delGAG p.(Arg577del). The finding of additional genetic variation putatively affecting the PI3K/AKT pathway in the neoplastic tissue may provide preliminary evidence of a molecular mechanism for tumorigenesis in PS. The late onset of symptoms and molecular characterization of the breast tumor expand the clinical spectrum of this rare disorder.
Collapse
Affiliation(s)
- Emily W. Modlin
- Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Anne M. Slavotinek
- Department of Pediatrics, Division of Genetics, University of California San Francisco, San Francisco, California, USA
| | - Thomas N. Darling
- Department of Dermatology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Stanley Lipkowitz
- Women’s Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Frederic G. Barr
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Pamela N. Munster
- Department of Medicine, University of California Helen Diller Family Comprehensive Cancer Center, San Francisco, California, USA
| | - Leslie G. Biesecker
- Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Christopher A. Ours
- Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
23
|
cBleomycin restricts the glycolysis of lymphatic endothelial cells by inhibiting dimeric PKM2 formation: A novel mechanism for lymphatic malformation treatment. Biochem Pharmacol 2022; 204:115227. [PMID: 36027925 DOI: 10.1016/j.bcp.2022.115227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/13/2022] [Accepted: 08/17/2022] [Indexed: 11/21/2022]
Abstract
Glycolysis is activated in lymphatic endothelial cells and contributes to the development of lymphatic malformations (LMs). Bleomycin (BLM) is the most wildly used sclerosant for LMs, but its mechanisms are unknown. Here, our data showed that BLM suppressed the glycolysis of human dermal lymphatic endothelial cells (HDLECs) via inhibiting the expression and nucleus translocation of pyruvate kinase M2 isoform (PKM2) and inhibited dimeric PKM2 formation. Furthermore, the proliferation of LM lesions was inhibited by BLM through the down-regulation of nuclear PKM2 in the rat model. Additionally, PKM2, especially the nuclear PKM2 along with Ki-67, was inhibited in the lymphatic vessels of BLM-treated LMs. Our findings provide a new molecular mechanism of BLM in LM sclerotherapy treatment.
Collapse
|
24
|
Wang J, Ma S, Li L, Chen Y, Yang Q, Wang F, Zheng M, Miao S, Shi X. Investigation into the in vivo mechanism of diosmetin in patients with breast cancer and COVID-19 using bioinformatics. Front Pharmacol 2022; 13:983821. [PMID: 36060002 PMCID: PMC9433109 DOI: 10.3389/fphar.2022.983821] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 07/19/2022] [Indexed: 11/24/2022] Open
Abstract
Patients with breast cancer are prone to SARS-CoV-2 infection [the causative virus of coronavirus disease (COVID-19)] due to their lack of immunity. In the current study, we examined the mechanism of action of Diosmetin, a flavonoid with anti-inflammatory properties, in patients with BRCA infected with SARS-CoV-2.We used bioinformatics technology to analyze the binding ability, biological function, and other biological characteristics of Diosmetinin vivo and examine the core target and potential mechanism of action of Diosmetin in patients with patients with breast cancer infected with SARS-CoV-2. A prognostic model of SARS-COV-2–infected breast cancer patients was constructed, and the core genes were screened out, revealing the correlation between these core genes and clinicopathological characteristics, survival rate, and high-risk and low-risk populations. The docking results revealed that Diosmetin binds well to the core genes of patients with breast cancer with COVID-19. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses suggested that Diosmetin inhibited inflammation, enhanced immune function, and regulated the cellular microenvironment in patients with BRCA/COVID-19. For the first time, we reveal the molecular functions and potential targets of Diosmetin in patients with breast cancer infected with SARS-CoV-2, improving the reliability of the new drug and laying the foundation for further research and development.
Collapse
Affiliation(s)
- Jin Wang
- Department of Pharmacy, Xijing Hospital, Air Force Military Medical University, Xi’an, Shaanxi, China
| | - Shanbo Ma
- Department of Pharmacy, Xijing Hospital, Air Force Military Medical University, Xi’an, Shaanxi, China
| | - Long Li
- Department of Pharmacy, Xijing Hospital, Air Force Military Medical University, Xi’an, Shaanxi, China
| | - Yuhan Chen
- Department of Pharmacy, Xijing Hospital, Air Force Military Medical University, Xi’an, Shaanxi, China
- School of Pharmacy, Shaanxi University of Traditional Chinese Medicine, Xianyang, Shaanxi, China
| | - Qian Yang
- Department of Pharmacy, Xijing Hospital, Air Force Military Medical University, Xi’an, Shaanxi, China
| | - Feiyan Wang
- Department of Pharmacy, Xijing Hospital, Air Force Military Medical University, Xi’an, Shaanxi, China
- School of Pharmacy, Shaanxi University of Traditional Chinese Medicine, Xianyang, Shaanxi, China
| | - Meiling Zheng
- Department of Pharmacy, Xijing Hospital, Air Force Military Medical University, Xi’an, Shaanxi, China
- School of Pharmacy, Shaanxi University of Traditional Chinese Medicine, Xianyang, Shaanxi, China
| | - Shan Miao
- Department of Pharmacy, Xijing Hospital, Air Force Military Medical University, Xi’an, Shaanxi, China
- *Correspondence: Shan Miao, ; Xiaopeng Shi,
| | - Xiaopeng Shi
- Department of Pharmacy, Xijing Hospital, Air Force Military Medical University, Xi’an, Shaanxi, China
- *Correspondence: Shan Miao, ; Xiaopeng Shi,
| |
Collapse
|
25
|
Schönewolf-Greulich B, Karstensen HG, Hjortshøj TD, Jørgensen FS, Harder KM, Frevert S, Hove H, Diness BR. Early diagnosis enabling precision medicine treatment in a young boy with PIK3R1-related overgrowth. Eur J Med Genet 2022; 65:104590. [PMID: 35964931 DOI: 10.1016/j.ejmg.2022.104590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 08/01/2022] [Accepted: 08/07/2022] [Indexed: 11/16/2022]
Abstract
Mosaic PIK3R1 variants have recently been demonstrated in patients with complex vascular malformations and overgrowth in a syndrome resembling PIK3CA-related overgrowth syndrome (PROS). The PIK3CA-inhibitor, alpelisib, seems to be a promising treatment option for PROS patients. We describe a young boy with overgrowth and a pathogenic mosaic variant in PIK3R1; c.1699A > G, p.(Lys567Glu). He was prenatally suspected of a syndrome on the presence of unusual transient fluctuating subcutaneous edemas and lymphedema of his left shoulder. The pathogenic variant, later found to be causative, was below detection threshold in whole-genome sequencing (WGS) analysis of amniotic fluid. Upon delivery a mosaic pathogenic PIK3R1 variant, was identified by whole-exome sequencing (WES) of a skin biopsy. With no proven treatment options available, and based on the theoretical disease mechanism, alpelisib therapy was initiated at nine months of age. In the first year of treatment growth normalized and the affected vascular and lymphatic tissue regressed. No side effects have been observed. This report underlines the importance of early variant detection in children suspected of having severe mosaic overgrowth, and proves that prenatal diagnosis is possible, enabling prompt treatment. Furthermore, it demonstrates the promising effects of alpelisib in this patient group.
Collapse
Affiliation(s)
- Bitten Schönewolf-Greulich
- Dept. of Genetics, Center of Diagnostics, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Helena Gásdal Karstensen
- Dept. of Genetics, Center of Diagnostics, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark.
| | - Tina D Hjortshøj
- Dept. of Genetics, Center of Diagnostics, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Finn Stener Jørgensen
- Fetal Medicine Unit, Dept. of Obstetrics and Gynecology, Copenhagen University Hospital - Amager and Hvidovre, Hvidovre, Denmark; Dept. of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Katja M Harder
- Dept. of Pediatrics and Adolescent Medicine, Juliane Marie Centre, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Susanne Frevert
- Dept. of Radiology, Center of Diagnostics Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Hanne Hove
- Dept. of Pediatrics, Center of Rare Diseases, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Birgitte R Diness
- Dept. of Genetics, Center of Diagnostics, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark; Dept. of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
26
|
Angulo-Urarte A, Graupera M. When, where and which PIK3CA mutations are pathogenic in congenital disorders. NATURE CARDIOVASCULAR RESEARCH 2022; 1:700-714. [PMID: 39196083 DOI: 10.1038/s44161-022-00107-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 06/22/2022] [Indexed: 08/29/2024]
Abstract
PIK3CA encodes the class I PI3Kα isoform and is frequently mutated in cancer. Activating mutations in PIK3CA also cause a range of congenital disorders featuring asymmetric tissue overgrowth, known as the PIK3CA-related overgrowth spectrum (PROS), with frequent vascular involvement. In PROS, PIK3CA mutations arise postzygotically, during embryonic development, leading to a mosaic body pattern distribution resulting in a variety of phenotypic features. A clear skewed pattern of overgrowth favoring some mesoderm-derived and ectoderm-derived tissues is observed but not understood. Here, we summarize our current knowledge of the determinants of PIK3CA-related pathogenesis in PROS, including intrinsic factors such as cell lineage susceptibility and PIK3CA variant bias, and extrinsic factors, which refers to environmental modifiers. We also include a section on PIK3CA-related vascular malformations given that the vasculature is frequently affected in PROS. Increasing our biological understanding of PIK3CA mutations in PROS will contribute toward unraveling the onset and progression of these conditions and ultimately impact on their treatment. Given that PIK3CA mutations are similar in PROS and cancer, deeper insights into one will also inform about the other.
Collapse
Affiliation(s)
- Ana Angulo-Urarte
- Endothelial Pathobiology and Microenvironment Group, Josep Carreras Leukaemia Research Institute (IJC), Barcelona, Spain.
| | - Mariona Graupera
- Endothelial Pathobiology and Microenvironment Group, Josep Carreras Leukaemia Research Institute (IJC), Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
27
|
Wasilewska K, Gambin T, Rydzanicz M, Szczałuba K, Płoski R. Postzygotic mutations and where to find them - Recent advances and future implications in the field of non-neoplastic somatic mosaicism. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2022; 790:108426. [PMID: 35690331 DOI: 10.1016/j.mrrev.2022.108426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 05/05/2022] [Accepted: 06/03/2022] [Indexed: 01/01/2023]
Abstract
The technological progress of massively parallel sequencing (MPS) has triggered a remarkable development in the research on postzygotic mutations. Although the overwhelming majority of studies in the field focus on oncogenesis, non-neoplastic diseases are attracting more and more attention. The aim of this review was to summarize some of the most recent findings in the field of somatic mosaicism in diseases other than neoplastic events. We discuss the abundance and role of postzygotic mutations, with a special emphasis on disorders which occur only in a mosaic form (obligatory mosaic diseases; OMDs). Based on the list of OMDs compiled from the published literature and three databases (OMIM, Orphanet and MosaicBase), we demonstrate the prevalence of cancer-related genes across OMDs and suggest other sources to further explore OMDs and OMD-related genes. Additionally, we comment on some practical aspects related to mosaic diseases, such as approaches to tissue sampling, the MPS coverage required to detect variants at a very low frequency, as well as on bioinformatic and molecular tools dedicated to detect somatic mutations in MPS data.
Collapse
Affiliation(s)
- Krystyna Wasilewska
- Department of Medical Genetics, Medical University of Warsaw, ul. Pawińskiego 3c, 02-106 Warsaw, Poland
| | - Tomasz Gambin
- Institute of Computer Science, Warsaw University of Technology, Nowowiejska 15/19, 00-665 Warsaw, Poland
| | - Małgorzata Rydzanicz
- Department of Medical Genetics, Medical University of Warsaw, ul. Pawińskiego 3c, 02-106 Warsaw, Poland
| | - Krzysztof Szczałuba
- Department of Medical Genetics, Medical University of Warsaw, ul. Pawińskiego 3c, 02-106 Warsaw, Poland
| | - Rafał Płoski
- Department of Medical Genetics, Medical University of Warsaw, ul. Pawińskiego 3c, 02-106 Warsaw, Poland.
| |
Collapse
|
28
|
Wu Y, You X, Lin Q, Xiong W, Guo Y, Huang Z, Dai X, Chen Z, Mei S, Long Y, Tian X, Zhou Q. Exploring the Pharmacological Mechanisms of Xihuang Pills Against Prostate Cancer via Integrating Network Pharmacology and Experimental Validation In Vitro and In Vivo. Front Pharmacol 2022; 12:791269. [PMID: 35342388 PMCID: PMC8948438 DOI: 10.3389/fphar.2021.791269] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 12/20/2021] [Indexed: 11/26/2022] Open
Abstract
Background: Drug resistance is the major cause of increasing mortality in prostate cancer (PCa). Therefore, it an urgent to develop more effective therapeutic agents for PCa treatment. Xihuang pills (XHP) have been recorded as the efficient anti-tumor formula in ancient Chinese medical literature, which has been utilized in several types of cancers nowadays. However, the effect protective role of XHP on the PCa and its underlying mechanisms are still unclear. Methods: The active ingredients of XHP were obtained from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) and BATMAN-TCM. The potential targets of PCa were acquired from the Gene Cards and OMIM databases. R language and Perl language program were utilized to clarify the interaction between the PCa-related targets and the potential targets of XHP. The potential targets of XHP for prostate cancer were gathered from the Gene ontology and KEGG pathway. Furthermore, cell proliferation assays were verified by PC3 and LNCaP cells. The efficacy and potential mechanism tests were confirmed by the PCa PC3 cells and mice subcutaneous transplantation. The effects of PI3K/Akt/mTOR-related proteins on proliferation, apoptosis, and cell cycle of PCa cells were measured by the Cell Counting Kit-8(CCK8), TUNEL assay, real-time quantitative reverse transcription PCR (QRT-PCR), and Western Blotting, respectively. Results: The active components of four traditional Chinese medicines in XHP were searched on the TCMSP and Batman TCM database. The biological active components of XHP were obtained as OB ≥30% and DL ≥0.18. The analysis of gene ontology and KEGG pathway identified the PI3K/Akt/mTOR signaling pathway as the XHP-associated pathway. Collectively, the results of in vitro and in vivo experiments showed that XHP had the effect of inhibiting on the proliferation of PC3 and LNCaP cells. XHP promoted the apoptosis and restrained the cell cycle and invasion of the PC3 cells and subcutaneous transplantation. Meanwhile, the suppression of XHP on the level of expression of PI3K, Akt, and mTOR-pathway-related pathway proteins has been identified in a dose-dependent manner. Conclusion: PI3K/Akt/mTOR pathway-related pathway proteins were confirmed as the potential XHP-associated targets for PCa. XHP can suppress the proliferation of prostate cancer via inhibitions of the PI3K/Akt/mTOR pathway.
Collapse
Affiliation(s)
- Yongrong Wu
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Xujun You
- Graduate School of Hunan University of Chinese Medicine, Changsha, China.,Shenzhen Baoan District Hospital of Traditional Chinese Medicine, Shenzhen, China
| | - Qunfang Lin
- Surgery of Traditional Chinese Medicine, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Wei Xiong
- Surgery of Traditional Chinese Medicine, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Yinmei Guo
- Hunan Provincial Key Laboratory of Traditional Chinese Medicine Prescription and Transformation, Hunan University of Chinese Medicine, Changsha, China
| | - Zhen Huang
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Xinjun Dai
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Zhengjia Chen
- Graduate School of Hunan University of Chinese Medicine, Changsha, China
| | - Si Mei
- Department of Physiology, Faculty of Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Yan Long
- Graduate School of Hunan University of Chinese Medicine, Changsha, China
| | - Xuefei Tian
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China.,Hunan Provincial Key Laboratory of Chinese Medicine Oncology, Changsha, China
| | - Qing Zhou
- Surgery of Traditional Chinese Medicine, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
29
|
Ng AT, Tower RL, Drolet BA. Targeted treatment of vascular anomalies. Int J Womens Dermatol 2022; 7:636-639. [PMID: 35024417 PMCID: PMC8721128 DOI: 10.1016/j.ijwd.2021.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 11/30/2022] Open
Abstract
Vascular anomalies comprise an array of congenital developmental disorders that can lead to significant disfigurement and physiologic disarray. The vast multitude of clinical phenotypes has inherently led to misdiagnosis and patients and families enduring long diagnostic odysseys of medical care. Although the observed variation in disease manifestations remains poorly understood, targeted next-generation sequencing has pivoted our understanding of the pathobiology of vascular anomalies and, for the first time, uncovered potential pharmacologic targets for these disorders. In this review article, we highlight current and developing targeted therapies for vascular anomalies, namely phosphoinositide 3-kinase and mitogen-activated protein kinase pathway inhibitors, and discuss the future directions of targeted therapies.
Collapse
Affiliation(s)
- Ashley T Ng
- Department of Dermatology School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
| | - Richard L Tower
- Department of Pediatrics, Medical College of Wisconsin, Madison, Wisconsin
| | - Beth A Drolet
- Department of Dermatology School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
| |
Collapse
|
30
|
Morin G, Canaud G. Treatment strategies for mosaic overgrowth syndromes of the PI3K-AKT-mTOR pathway. Br Med Bull 2021; 140:36-49. [PMID: 34530449 DOI: 10.1093/bmb/ldab023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 08/05/2021] [Accepted: 08/27/2021] [Indexed: 11/14/2022]
Abstract
INTRODUCTION OR BACKGROUND Mosaic overgrowth syndromes (OS) are a proteiform ensemble of rare diseases displaying asymmetric overgrowth involving any tissue type, with degrees of severity ranging from isolated malformation to life-threatening conditions such as pulmonary embolism. Despite discordant clinical presentations, all those syndromes share common genetic anomalies: somatic mutations of genes involved in cell growth and proliferation. The PI3K-AKT-mTOR signaling pathway is one of the most prominent regulators of cell homeostasis, and somatic oncogenic mutations affecting this pathway are responsible for mosaic OS. This review aims to describe the clinical and molecular characteristics of the main OS involving the PI3K-AKT-mTOR pathway, along with the treatments available or under development. SOURCES OF DATA This review summarizes available data regarding OS in scientific articles published in peer-reviewed journals. AREAS OF AGREEMENT OS care requires a multidisciplinary approach relying on clinical and radiological follow-up along with symptomatic treatment. However, no specific treatment has yet shown efficacy in randomized control trials. AREAS OF CONTROVERSY Clinical classifications of OS led to frequent misdiagnosis. Moreover, targeted therapies directed at causal mutated proteins are developing in OSs through cancer drugs repositioning, but the evidence of efficacy and tolerance is still lacking for most of them. GROWING POINTS The genetic landscape of OS is constantly widening and molecular classifications tend to increase the accuracy of diagnosis, opening opportunities for targeted therapies. AREAS TIMELY FOR DEVELOPING RESEARCH OS are a dynamic, expanding field of research. Studies focusing on the identification of genetic anomalies and their pharmacological inhibition are needed.
Collapse
Affiliation(s)
- Gabriel Morin
- Université de Paris, Paris, France.,INSERM U1151, Institut Necker-Enfants Malades, Paris, France.,Unité d'hypercroissance dysharmonieuse et centre d'anomalies vasculaires, hôpital Necker Enfants Malades, AP-HP, France
| | - Guillaume Canaud
- Université de Paris, Paris, France.,INSERM U1151, Institut Necker-Enfants Malades, Paris, France.,Unité d'hypercroissance dysharmonieuse et centre d'anomalies vasculaires, hôpital Necker Enfants Malades, AP-HP, France
| |
Collapse
|
31
|
Zheng Y, Lang Y, Qi Z, Gao W, Hu X, Li T. PIK3R1, SPNB2, and CRYAB as Potential Biomarkers for Patients with Diabetes and Developing Acute Myocardial Infarction. Int J Endocrinol 2021; 2021:2267736. [PMID: 34887920 PMCID: PMC8651423 DOI: 10.1155/2021/2267736] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 10/20/2021] [Accepted: 11/12/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Young patients with type 2 diabetes mellitus (DM) and acute myocardial infarction (AMI) have high long-term all-cause and cardiovascular mortality rates. We aimed to investigate the differentially expressed genes (DEGs) that might be potential targets for DM patients with AMI. METHODS Gene datasets GSE775, GSE19322, and GSE97494 were meta-analyzed to obtain DEGs of the left ventricle myocardium in infarcted mice. Gene datasets including GSE3313, GSE10617, and GSE136948 were meta-analyzed to identify DEGs in diabetes mice. A Venn diagram was used to obtain the overlapping DEGs. KEGG and GO pathway analyses were performed, and hub genes were obtained. Pivotal miRNAs were predicted and validated using the miRNA dataset in GSE114695. To investigate the cardiac function of the screened genes, a MI mouse model was constructed; echocardiogram, qPCR, and ELISA of hub genes were performed; ELISA of hub genes in human blood samples was also utilized. RESULTS A total of 67 DEGs were identified, which may be potential biomarkers for patients with DM and AMI. GO and KEGG pathway analyses were performed, which were mainly enriched in response to organic cyclic compound and PI3K-Akt signaling pathway. The expression of PIK3R1 and SPNB2 increased in the MI group and was negatively correlated to left ventricular ejection fraction (LVEF), whereas that of CRYAB decreased and was positively correlated to LVEF. Patients with high CRYAB expression demonstrated a short hospital stay and the area under the curves of the three protein levels before and after treatment were 0.964, 0.982, and 0.918, suggesting that PIK3R1, SPNB2, and CRYAB may be diagnostic and prognostic biomarkers for the diabetes patients with AMI. CONCLUSION The screened hub genes, PIK3R1, SPNB2, and CRYAB, were validated as credible molecular biomarkers and may provide a novel therapy for diabetic cardiac diseases with increased proteotoxic stress.
Collapse
Affiliation(s)
- Yue Zheng
- School of Medicine, Nankai University, Tianjin 300071, China
- Nankai University Affiliated Third Center Hospital, No. 83, Jintang Road, Hedong District, Tianjin 300170, China
- The Third Central Clinical College of Tianjin Medical University, Tianjin 300170, China
- The Third Central Hospital of Tianjin, 83 Jintang Road, Hedong District, Tianjin 300170, China
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China
| | - Yuheng Lang
- The Third Central Clinical College of Tianjin Medical University, Tianjin 300170, China
- The Third Central Hospital of Tianjin, 83 Jintang Road, Hedong District, Tianjin 300170, China
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China
- Institute of Hepatobiliary Disease, Tianjin, China
| | - Zhenchang Qi
- The Third Central Clinical College of Tianjin Medical University, Tianjin 300170, China
- The Third Central Hospital of Tianjin, 83 Jintang Road, Hedong District, Tianjin 300170, China
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China
- Institute of Hepatobiliary Disease, Tianjin, China
| | - Wenqing Gao
- The Third Central Clinical College of Tianjin Medical University, Tianjin 300170, China
- The Third Central Hospital of Tianjin, 83 Jintang Road, Hedong District, Tianjin 300170, China
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China
- Institute of Hepatobiliary Disease, Tianjin, China
| | - Xiaomin Hu
- Nankai University Affiliated Third Center Hospital, No. 83, Jintang Road, Hedong District, Tianjin 300170, China
- The Third Central Clinical College of Tianjin Medical University, Tianjin 300170, China
- The Third Central Hospital of Tianjin, 83 Jintang Road, Hedong District, Tianjin 300170, China
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China
- Institute of Hepatobiliary Disease, Tianjin, China
| | - Tong Li
- School of Medicine, Nankai University, Tianjin 300071, China
- Nankai University Affiliated Third Center Hospital, No. 83, Jintang Road, Hedong District, Tianjin 300170, China
- The Third Central Clinical College of Tianjin Medical University, Tianjin 300170, China
- The Third Central Hospital of Tianjin, 83 Jintang Road, Hedong District, Tianjin 300170, China
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China
- Institute of Hepatobiliary Disease, Tianjin, China
| |
Collapse
|
32
|
Melas M, Mathew MT, Mori M, Jayaraman V, Wilson SA, Martin C, Jacobson-Kelly AE, Kelly BJ, Magrini V, Mardis ER, Cottrell CE, Lee K. Somatic Variation as an Incidental Finding in the Pediatric Next Generation Sequencing Era. Cold Spring Harb Mol Case Stud 2021; 7:mcs.a006135. [PMID: 34716204 PMCID: PMC8751410 DOI: 10.1101/mcs.a006135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/27/2021] [Indexed: 11/28/2022] Open
Abstract
The methodologic approach used in next-generation sequencing (NGS) affords a high depth of coverage in genomic analysis. Inherent in the nature of genomic testing, there exists potential for identifying genomic findings that are incidental or secondary to the indication for clinical testing, with the frequency dependent on the breadth of analysis and the tissue sample under study. The interpretation and management of clinically meaningful incidental genomic findings is a pressing issue particularly in the pediatric population. Our study describes a 16-mo-old male who presented with profound global delays, brain abnormality, progressive microcephaly, and growth deficiency, as well as metopic craniosynostosis. Clinical exome sequencing (ES) trio analysis revealed the presence of two variants in the proband. The first was a de novo variant in the PPP2R1A gene (c.773G > A, p.Arg258His), which is associated with autosomal dominant (AD) intellectual disability, accounting for the proband's clinical phenotype. The second was a recurrent hotspot variant in the CBL gene (c.1111T > C, p.Tyr371His), which was present at a variant allele fraction of 11%, consistent with somatic variation in the peripheral blood sample. Germline pathogenic variants in CBL are associated with AD Noonan syndrome–like disorder with or without juvenile myelomonocytic leukemia. Molecular analyses using a different tissue source, buccal epithelial cells, suggest that the CBL alteration may represent a clonal population of cells restricted to leukocytes. This report highlights the laboratory methodologic and interpretative processes and clinical considerations in the setting of acquired variation detected during clinical ES in a pediatric patient.
Collapse
Affiliation(s)
- Marilena Melas
- The Steve and Cindy Rasmussen Inst for Genomic Medicine, Nationwide Children's Hospital
| | - Mariam T Mathew
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital; Dept of Pathology, The Ohio State Univ; Dept of Pediatrics, The Ohio State University
| | - Mari Mori
- Dept of Pediatrics, The Ohio State University; Genetic and Genomic Medicine, Nationwide Children's Hospital
| | - Vijayakumar Jayaraman
- The Steve and Cindy Rasmussen Inst for Genomic Medicine, Nationwide Children's Hospital
| | - Sarah A Wilson
- The Steve and Cindy Rasmussen Inst for Genomic Medicine, Nationwide Children's Hospital
| | | | - Amanda E Jacobson-Kelly
- Dept of Pediatrics, The Ohio State University; Division of Hematology/Oncology/BMT, Nationwide Children's Hospital
| | - Ben J Kelly
- The Steve and Cindy Rasmussen Inst for Genomic Medicine, Nationwide Children's Hospital
| | - Vincent Magrini
- The Steve and Cindy Rasmussen Inst for Genomic Medicine, Nationwide Children's Hospital; Dept of Pediatrics, The Ohio State University
| | - Elaine R Mardis
- The Steve and Cindy Rasmussen Inst for Genomic Medicine, Nationwide Children's Hospital; Dept of Pediatrics, The Ohio State University
| | - Catherine E Cottrell
- The Steve and Cindy Rasmussen Inst for Genomic Medicine, Nationwide Children's Hospital; Dept of Pathology, The Ohio State University; Dept of Pediatrics, The Ohio State University
| | - Kristy Lee
- The Steve and Cindy Rasmussen Inst for Genomic Medicine, Nationwide Children's Hospital; Dept of Pathology, The Ohio State University; Dept of Pediatrics, The Ohio State University
| |
Collapse
|