1
|
Monnot S, Ravineau A, Coindre E, Mistral P, Leyre K, Chadœuf J, Cantet M, Boissot N. Genome-wide association studies to assess genetic factors controlling cucumber resistance to CABYV and CMV in crop fields and the attractiveness for their Aphis gossypii vector. HORTICULTURE RESEARCH 2025; 12:uhaf016. [PMID: 40196039 PMCID: PMC11975396 DOI: 10.1093/hr/uhaf016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 01/10/2025] [Indexed: 04/09/2025]
Abstract
Cucumber crops face high pressure from pathogens, including various viral species. Mapping quantitative trait loci (QTL) for vegetable resistance to viruses has primarily been conducted after mechanical inoculation in controlled environments, but not in crop field conditions. Moreover, viruses that cannot be mechanically inoculated, e.g. the cucurbit aphid-borne yellows virus (CABYV), have been overlooked in resistance studies. Here, we aimed to identify QTLs reducing epidemics of two prevalent cucumber viruses: CABYV and the cucumber mosaic virus (CMV). We evaluated the resistance of 256 elite cucumber lines and landraces in crop field conditions by screening for the presence of both viruses six-times during the season. We mapped twelve QTLs reducing CABYV epidemics and seven QTLs reducing CMV epidemics by combining multiloci genome-wide association studies and local score approach analyses. We also examined the attractiveness of this cucumber panel for Aphis gossypii, a major cucumber virus vector. We identified five QTLs that reduced the attractiveness, including one co-localizing with a QTL reducing CABYV epidemics. Interestingly, some accessions deemed CMV-resistant after mechanical inoculation in controlled environments showed high infection rates in crop field conditions. Only one QTL for CMV resistance was detected in both conditions, indicating that these phenotypes are regulated by independent QTLs. Local linkage disequilibrium study findings suggested that certain QTLs reducing epidemics were introduced early into elite lines through serendipity or selection. QTLs could be pyramided with other low-effect QTLs through genomic selection to obtain cucumber cultivars with enhanced field resistance to viruses.
Collapse
Affiliation(s)
- Séverine Monnot
- INRAE, Génétique et Amélioration des Fruits et Légumes, allée des chênes, 84143 Montfavet, France
- Bayer Crop Science, Vegetable Trait Discovery, Mas Lamy, 13670 Saint-Andiol, France
| | - Anaïs Ravineau
- INRAE, Génétique et Amélioration des Fruits et Légumes, allée des chênes, 84143 Montfavet, France
| | - Eva Coindre
- INRAE, Génétique et Amélioration des Fruits et Légumes, allée des chênes, 84143 Montfavet, France
| | - Pascale Mistral
- INRAE, Génétique et Amélioration des Fruits et Légumes, allée des chênes, 84143 Montfavet, France
| | - Karine Leyre
- INRAE, Génétique et Amélioration des Fruits et Légumes, allée des chênes, 84143 Montfavet, France
| | - Joel Chadœuf
- INRAE, Génétique et Amélioration des Fruits et Légumes, allée des chênes, 84143 Montfavet, France
| | - Melissa Cantet
- Bayer Crop Science, Vegetable Trait Discovery, Mas Lamy, 13670 Saint-Andiol, France
| | - Nathalie Boissot
- INRAE, Génétique et Amélioration des Fruits et Légumes, allée des chênes, 84143 Montfavet, France
| |
Collapse
|
2
|
Xie X, Ling J, Dong S, Zhai M, Lu J, Zhao J, Yang X, Dong X, Li Y, Visser RGF, Bai Y, Mao Z, Zhang S, Xie B. Clade V MLO Genes Are Negative Modulators of Cucumber Defence Response to Meloidogyne incognita. MOLECULAR PLANT PATHOLOGY 2025; 26:e70078. [PMID: 40151055 PMCID: PMC11950635 DOI: 10.1111/mpp.70078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 02/26/2025] [Accepted: 03/03/2025] [Indexed: 03/29/2025]
Abstract
Cucumber production is seriously constrained by Meloidogyne incognita. Because no resistance resources to the pathogen have been reported, disabling susceptibility genes may represent a novel breeding strategy to introduce resistance against this nematode in cucumber. Here, we studied the clade V MLO genes for their involvement in the interaction between cucumber and M. incognita. Our results showed that Arabidopsis clade V MLO mutants were resistant to M. incognita. Cucumber has three clade V MLO genes, CsaMLO1, CsaMLO8 and CsaMLO11, with upregulated expression upon inoculation with M. incognita. Heterologous overexpression of CsaMLO1, CsaMLO8 and CsaMLO11 in Arabidopsis mutants restored susceptibility to varying degrees. Silencing and knockout of individual clade V MLO genes in cucumber reduced susceptibility to M. incognita. The cucumber CRISPR mutants produced similar fruits as the wild type (WT) did. Although the yields of two single mutants (M111 and M112) and two double mutants (M81 M111 and M81 M112) were reduced compared to WT, the yields of M81 and M82 were not decreased. In summary, clade V MLO genes function as susceptibility genes for M. incognita in cucumber. Among them, CsaMLO8 may be the most promising candidate for M. incognita resistance breeding in cucumber.
Collapse
Affiliation(s)
- Xiaoxiao Xie
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and FlowersChinese Academy of Agricultural SciencesBeijingChina
- Plant BreedingWageningen University & ResearchWageningenthe Netherlands
- Graduate School Experimental Plant SciencesWageningen University and ResearchWageningenthe Netherlands
| | - Jian Ling
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and FlowersChinese Academy of Agricultural SciencesBeijingChina
| | - Shaoyun Dong
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and FlowersChinese Academy of Agricultural SciencesBeijingChina
| | - Mingjuan Zhai
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and FlowersChinese Academy of Agricultural SciencesBeijingChina
| | - Junru Lu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and FlowersChinese Academy of Agricultural SciencesBeijingChina
| | - Jianlong Zhao
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and FlowersChinese Academy of Agricultural SciencesBeijingChina
| | - Xueyong Yang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and FlowersChinese Academy of Agricultural SciencesBeijingChina
| | - Xin Dong
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and FlowersChinese Academy of Agricultural SciencesBeijingChina
| | - Yan Li
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and FlowersChinese Academy of Agricultural SciencesBeijingChina
| | | | - Yuling Bai
- Plant BreedingWageningen University & ResearchWageningenthe Netherlands
| | - Zhenchuan Mao
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and FlowersChinese Academy of Agricultural SciencesBeijingChina
| | - Shengping Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and FlowersChinese Academy of Agricultural SciencesBeijingChina
| | - Bingyan Xie
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and FlowersChinese Academy of Agricultural SciencesBeijingChina
| |
Collapse
|
3
|
Biernacik B, Słomnicka R, Kaźmińska K, Mużacz S, Bartoszewski G. A single nucleotide substitution introducing premature stop codon within CsTFL1 explains the determinate-2 phenotype in cucumber (Cucumis sativus L.). Sci Rep 2024; 14:25368. [PMID: 39455674 PMCID: PMC11511849 DOI: 10.1038/s41598-024-76549-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
The determinate growth habit of plants reduces the number of internodes and shortens the main stem by terminating the shoot apical meristem through a transition to inflorescence. Understanding the genetic basis of this habit can help optimize crop yield and cultivation technology for vegetable breeding. This study aimed to identify the determinate-2 (de-2) gene responsible for the determinate growth habit in the W-sk cucumber line. Termination of the main stem in the W-sk line occurred between 14 and 23 internodes, depending on cultivation conditions. Resequencing of the W-sk genome identified a novel SNP in the cucumber TERMINAL FLOWER1 (CsTFL1) gene, explaining the de-2 phenotype. This was verified with a CAPS-T marker cosegregation with determinate growth in the F2:3 population, and this polymorphism is unique among genotyped indeterminate cucumber cultivars or breeding lines. Crossing the W-sk line with the G421 line with the determinate (de) gene confirmed the allelism of both genes. An SNP in CsTFL1 in the W-sk line introduced a premature stop codon, resulting in the putative deletion of 13 amino acids, possibly causing determinate growth habit. Overall, this study provides insights into the genetic basis of cucumber plant growth architecture and advances in cucumber breeding.
Collapse
Affiliation(s)
- Bartosz Biernacik
- Department of Plant Genetics Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Renata Słomnicka
- Department of Plant Genetics Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Karolina Kaźmińska
- Department of Plant Genetics Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Szymon Mużacz
- Department of Plant Genetics Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Grzegorz Bartoszewski
- Department of Plant Genetics Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, Poland.
| |
Collapse
|
4
|
Liu J, Wang Y, Peng L, Chen M, Ye X, Li Y, Li Z, Wen Q, Zhu H. Genome-Wide Identification of the Cyclic Nucleotide-Gated Ion Channel Gene Family and Expression Profiles Under Low-Temperature Stress in Luffa cylindrica L. Int J Mol Sci 2024; 25:11330. [PMID: 39457112 PMCID: PMC11508470 DOI: 10.3390/ijms252011330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/11/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Cyclic nucleotide-gated ion channels (CNGCs) are cell membrane channel proteins for calcium ions. They have been reported to play important roles in survival and in the responses to environmental factors in various plants. However, little is known about the CNGC family and its functions in luffa (Luffa cylindrica L.). In this study, a bioinformatics-based method was used to identify members of the CNGC gene family in L. cylindrica. In total, 20 LcCNGCs were detected, and they were grouped into five subfamilies (I, II, Ⅲ, IV-a, and IV-b) in a phylogenetic analysis with CNGCs from Arabidopsis thaliana (20 AtCNGCs) and Momordica charantia (17 McCNGCs). The 20 LcCNGC genes were unevenly distributed on 11 of the 13 chromosomes in luffa, with none on Chromosomes 1 and 5. The members of each subfamily encoded proteins with highly conserved functional domains. An evolutionary analysis of CNGCs in luffa revealed three gene losses and a motif deletion. An examination of gene replication events during evolution indicated that two tandemly duplicated gene pairs were the primary driving force behind the evolution of the LcCNGC gene family. PlantCARE analyses of the LcCNGC promoter regions revealed various cis-regulatory elements, including those responsive to plant hormones (abscisic acid, methyl jasmonate, and salicylic acid) and abiotic stresses (light, drought, and low temperature). The presence of these cis-acting elements suggested that the encoded CNGC proteins may be involved in stress responses, as well as growth and development. Transcriptome sequencing (RNA-seq) analyses revealed tissue-specific expression patterns of LcCNGCs in various plant parts (roots, stems, leaves, flowers, and fruit) and the upregulation of some LcCNGCs under low-temperature stress. To confirm the accuracy of the RNA-seq data, 10 cold-responsive LcCNGC genes were selected for verification by quantitative real-time polymerase chain reaction (RT-qPCR) analysis. Under cold conditions, LcCNGC4 was highly upregulated (>50-fold increase in its transcript levels), and LcCNGC3, LcCNGC6, and LcCNGC13 were upregulated approximately 10-fold. Our findings provide new information about the evolution of the CNGC family in L. cylindrica and provide insights into the functions of the encoded CNGC proteins.
Collapse
Affiliation(s)
- Jianting Liu
- Fujian Key Laboratory of Vegetable Genetics and Breeding, Crops Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China; (J.L.); (M.C.); (X.Y.); (Y.L.); (Z.L.)
- Vegetable Research Center, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Yuqian Wang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350003, China; (Y.W.); (L.P.)
| | - Lijuan Peng
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350003, China; (Y.W.); (L.P.)
| | - Mindong Chen
- Fujian Key Laboratory of Vegetable Genetics and Breeding, Crops Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China; (J.L.); (M.C.); (X.Y.); (Y.L.); (Z.L.)
- Vegetable Research Center, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Xinru Ye
- Fujian Key Laboratory of Vegetable Genetics and Breeding, Crops Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China; (J.L.); (M.C.); (X.Y.); (Y.L.); (Z.L.)
- Vegetable Research Center, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Yongping Li
- Fujian Key Laboratory of Vegetable Genetics and Breeding, Crops Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China; (J.L.); (M.C.); (X.Y.); (Y.L.); (Z.L.)
- Vegetable Research Center, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Zuliang Li
- Fujian Key Laboratory of Vegetable Genetics and Breeding, Crops Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China; (J.L.); (M.C.); (X.Y.); (Y.L.); (Z.L.)
- Vegetable Research Center, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Qingfang Wen
- Fujian Key Laboratory of Vegetable Genetics and Breeding, Crops Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China; (J.L.); (M.C.); (X.Y.); (Y.L.); (Z.L.)
- Vegetable Research Center, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Haisheng Zhu
- Fujian Key Laboratory of Vegetable Genetics and Breeding, Crops Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China; (J.L.); (M.C.); (X.Y.); (Y.L.); (Z.L.)
- Vegetable Research Center, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| |
Collapse
|
5
|
Xu X, Du Y, Li S, Tan M, Sohail H, Liu X, Qi X, Yang X, Chen X. A genome-wide association study reveals molecular mechanism underlying powdery mildew resistance in cucumber. Genome Biol 2024; 25:252. [PMID: 39358737 PMCID: PMC11445940 DOI: 10.1186/s13059-024-03402-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 09/24/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND Powdery mildew is a disease with one of the most substantial impacts on cucumber production globally. The most efficient approach for controlling powdery mildew is the development of genetic resistance; however, few genes associated with inherent variations in cucumber powdery mildew resistance have been identified as of yet. RESULTS In this study, we re-sequence 299 cucumber accessions, which are divided into four geographical groups. A genome-wide association study identifies 50 sites significantly associated with natural variations in powdery mildew resistance. Linkage disequilibrium analysis further divides these 50 sites into 32 linkage disequilibrium blocks containing 41 putative genes. Virus-induced gene silencing and gene expression analysis implicate CsGy5G015960, which encodes a phosphate transporter, as the candidate gene regulating powdery mildew resistance. On the basis of the resequencing data, we generate five CsGy5G015960 haplotypes, identifying Hap.1 as the haplotype most likely associated with powdery mildew resistance. In addition, we determine that a 29-bp InDel in the 3' untranslated region of CsGy5G015960 is responsible for mRNA stability. Overexpression of CsGy5G015960Hap.1 in the susceptible line enhances powdery mildew resistance and phosphorus accumulation. Further comparative RNA-seq analysis demonstrates that CsGy5G015960Hap.1 may regulate cucumber powdery mildew resistance by maintaining a higher H2O2 level through the depletion of multiple class III peroxidases. CONCLUSIONS Here we identify a candidate powdery mildew-resistant gene in cucumber using GWAS. The identified gene may be a promising target for molecular breeding and genetic engineering in cucumber to enhance powdery mildew resistance.
Collapse
Affiliation(s)
- Xuewen Xu
- School of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, Jiangsu, 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the, Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Yujiao Du
- School of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Suhao Li
- School of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Ming Tan
- School of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Hamza Sohail
- School of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Xueli Liu
- School of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Xiaohua Qi
- School of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Xiaodong Yang
- School of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, Jiangsu, 225009, China.
| | - Xuehao Chen
- School of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, Jiangsu, 225009, China.
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the, Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, 225009, China.
| |
Collapse
|
6
|
Rett-Cadman S, Weng Y, Fei Z, Thompson A, Grumet R. Genome-Wide Association Study of Cuticle and Lipid Droplet Properties of Cucumber ( Cucumis sativus L.) Fruit. Int J Mol Sci 2024; 25:9306. [PMID: 39273254 PMCID: PMC11395541 DOI: 10.3390/ijms25179306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/23/2024] [Accepted: 08/25/2024] [Indexed: 09/15/2024] Open
Abstract
The fruit surface is a critical first line of defense against environmental stress. Overlaying the fruit epidermis is the cuticle, comprising a matrix of cutin monomers and waxes that provides protection and mechanical support throughout development. The epidermal layer of the cucumber (Cucumis sativus L.) fruit also contains prominent lipid droplets, which have recently been recognized as dynamic organelles involved in lipid storage and metabolism, stress response, and the accumulation of specialized metabolites. Our objective was to genetically characterize natural variations for traits associated with the cuticle and lipid droplets in cucumber fruit. Phenotypic characterization and genome-wide association studies (GWAS) were performed using a resequenced cucumber core collection accounting for >96% of the allelic diversity present in the U.S. National Plant Germplasm System collection. The collection was grown in the field, and fruit were harvested at 16-20 days post-anthesis, an age when the cuticle thickness and the number and size of lipid droplets have stabilized. Fresh fruit tissue sections were prepared to measure cuticle thickness and lipid droplet size and number. The collection showed extensive variation for the measured traits. GWAS identified several QTLs corresponding with genes previously implicated in cuticle or lipid biosynthesis, including the transcription factor SHINE1/WIN1, as well as suggesting new candidate genes, including a potential lipid-transfer domain containing protein found in association with isolated lipid droplets.
Collapse
Affiliation(s)
- Stephanie Rett-Cadman
- Department of Horticulture, Graduate Program in Plant Breeding, Genetics and Biotechnology, Michigan State University, East Lansing, MI 48824, USA
| | - Yiqun Weng
- Department of Plant and Agroecosystem Sciences, University of Wisconsin, Madison, WI 53706, USA
- USDA-ARS Vegetable Crops Research Unit, Madison, WI 53706, USA
| | - Zhangjun Fei
- Boyce Thompson Institute, Cornell University, Ithaca, NY 14853, USA
- USDA-ARS Robert W. Holley Center for Agriculture and Health, Ithaca, NY 14853, USA
| | - Addie Thompson
- Department of Plant, Soil and Microbial Sciences, Graduate Program in Plant Breeding, Genetics and Biotechnology, Michigan State University, East Lansing, MI 48824, USA
| | - Rebecca Grumet
- Department of Horticulture, Graduate Program in Plant Breeding, Genetics and Biotechnology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
7
|
Dai Z, Dong S, Cai H, Beckles DM, Guan J, Liu X, Gu X, Miao H, Zhang S. Genome-wide association analysis reveal candidate genes and haplotypes related to root weight in cucumber ( Cucumis sativus L.). FRONTIERS IN PLANT SCIENCE 2024; 15:1417314. [PMID: 39086910 PMCID: PMC11288866 DOI: 10.3389/fpls.2024.1417314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 06/25/2024] [Indexed: 08/02/2024]
Abstract
Background The plant root system is critical for the absorption of water and nutrients, and have a direct influence on growth and yield. In cucumber, a globally consumed crop, the molecular mechanism of root development remains unclear, and this has implications for developing stress tolerant varieties. This study sought to determine the genetic patterns and related genes of cucumber root weight. A core cucumber germplasms population was used to do the GWAS analysis in three environments. Results Here, we investigated four root-weight related traits including root fresh weight (RFW), root dry weight (RDW), ratio of root dry weight to root fresh weight (RDFW) and the comprehensive evaluation index, D-value of root weight (DRW) deduced based on the above three traits for the core germplasm of the cucumber global repository. According to the D-value, we identified 21 and 16 accessions with light and heavy-root, respectively. We also found that the East Asian ecotype accessions had significantly heavier root than other three ecotypes. The genome-wide association study (GWAS) for these four traits reveals that 4 of 10 significant loci (gDRW3.1, gDRW3.2, gDRW4.1 and gDRW5.1) were repeatedly detected for at least two traits. Further haplotype and expression analysis for protein-coding genes positioned within these 4 loci between light and heavy-root accessions predicted five candidate genes (i.e., Csa3G132020 and Csa3G132520 both encoding F-box protein PP2-B1 for gDRW3.1, Csa3G629240 encoding a B-cell receptor-associated protein for gDRW3.2, Csa4G499330 encodes a GTP binding protein for gDRW4.1, and Csa5G286040 encodes a proteinase inhibitor for gDRW5.1). Conclusions We conducted a systematic analysis of the root genetic basis and characteristics of cucumber core germplasms population. We detected four novel loci, which regulate the root weight in cucumber. Our study provides valuable candidate genes and haplotypes for the improvement of root system in cucumber breeding.
Collapse
Affiliation(s)
- Zhuonan Dai
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shaoyun Dong
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hexu Cai
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Diane M. Beckles
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| | - Jiantao Guan
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaoping Liu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xingfang Gu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Han Miao
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shengping Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
8
|
Shigita G, Shimomura K, Dung TP, Haque NP, Duong TT, Imoh ON, Monden Y, Nishida H, Tanaka K, Sugiyama M, Kawazu Y, Tomooka N, Kato K. Genetic characterization of cucumber genetic resources in the NARO Genebank indicates their multiple dispersal trajectories to the East. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:174. [PMID: 38954043 PMCID: PMC11219412 DOI: 10.1007/s00122-024-04683-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 06/22/2024] [Indexed: 07/04/2024]
Abstract
KEY MESSAGE Genotyping-by-sequencing of 723 worldwide cucumber genetic resources revealed that cucumbers were dispersed eastward via at least three distinct routes, one to Southeast Asia and two from different directions to East Asia. The cucumber (Cucumis sativus) is an economically important vegetable crop cultivated and consumed worldwide. Despite its popularity, the manner in which cucumbers were dispersed from their origin in South Asia to the rest of the world, particularly to the east, remains a mystery due to the lack of written records. In this study, we performed genotyping-by-sequencing (GBS) on 723 worldwide cucumber accessions, mainly deposited in the Japanese National Agriculture and Food Research Organization (NARO) Genebank, to characterize their genetic diversity, relationships, and population structure. Analyses based on over 60,000 genome-wide single-nucleotide polymorphisms identified by GBS revealed clear genetic differentiation between Southeast and East Asian populations, suggesting that they reached their respective region independently, not progressively. A deeper investigation of the East Asian population identified two subpopulations with different fruit characteristics, supporting the traditional classification of East Asian cucumbers into two types thought to have been introduced by independent routes. Finally, we developed a core collection of 100 accessions representing at least 93.2% of the genetic diversity present in the entire collection. The genetic relationships and population structure, their associations with geographic distribution and phenotypic traits, and the core collection presented in this study are valuable resources for elucidating the dispersal history and promoting the efficient use and management of genetic resources for research and breeding in cucumber.
Collapse
Affiliation(s)
- Gentaro Shigita
- Graduate School of Environmental and Life Science, Okayama University, 1-1-1 Tsushima-Naka, Kita-ku, Okayama, 700-8530, Japan
- Department of Life Science Systems, TUM School of Life Sciences, Technical University of Munich, Emil-Ramann-Strasse 2, 85354, Freising, Germany
| | - Koichiro Shimomura
- Institute of Vegetable and Floriculture Science, National Agriculture and Food Research Organization (NARO), 360 Kusawa, Ano, Tsu, Mie, 514-2392, Japan
| | - Tran Phuong Dung
- Graduate School of Environmental and Life Science, Okayama University, 1-1-1 Tsushima-Naka, Kita-ku, Okayama, 700-8530, Japan
| | - Naznin Pervin Haque
- Graduate School of Environmental and Life Science, Okayama University, 1-1-1 Tsushima-Naka, Kita-ku, Okayama, 700-8530, Japan
| | - Thuy Thanh Duong
- Graduate School of Environmental and Life Science, Okayama University, 1-1-1 Tsushima-Naka, Kita-ku, Okayama, 700-8530, Japan
- Faculty of Agronomy, University of Agriculture and Forestry, Hue University, 102 Phung Hung Street, Hue, Vietnam
| | - Odirich Nnennaya Imoh
- Graduate School of Environmental and Life Science, Okayama University, 1-1-1 Tsushima-Naka, Kita-ku, Okayama, 700-8530, Japan
| | - Yuki Monden
- Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, 1-1-1 Tsushima-Naka, Kita-ku, Okayama, 700-8530, Japan
| | - Hidetaka Nishida
- Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, 1-1-1 Tsushima-Naka, Kita-ku, Okayama, 700-8530, Japan
| | - Katsunori Tanaka
- Faculty of Agriculture and Life Science, Hirosaki University, 3 Bunkyo, Hirosaki, Aomori, 036-8561, Japan
| | - Mitsuhiro Sugiyama
- Institute of Vegetable and Floriculture Science, National Agriculture and Food Research Organization (NARO), 360 Kusawa, Ano, Tsu, Mie, 514-2392, Japan
| | - Yoichi Kawazu
- Institute of Vegetable and Floriculture Science, National Agriculture and Food Research Organization (NARO), 360 Kusawa, Ano, Tsu, Mie, 514-2392, Japan
| | - Norihiko Tomooka
- Genetic Resources Center, National Agriculture and Food Research Organization (NARO), 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8602, Japan
| | - Kenji Kato
- Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, 1-1-1 Tsushima-Naka, Kita-ku, Okayama, 700-8530, Japan.
| |
Collapse
|
9
|
Zhang RJ, Liu B, Song SS, Salah R, Song CJ, Xia SW, Hao Q, Liu YJ, Li Y, Lai YS. Lipid-Related Domestication Accounts for the Extreme Cold Sensitivity of Semiwild and Tropic Xishuangbanna Cucumber ( Cucumis sativus L. var. xishuangbannanesis). Int J Mol Sci 2023; 25:79. [PMID: 38203249 PMCID: PMC10779220 DOI: 10.3390/ijms25010079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 12/10/2023] [Accepted: 12/14/2023] [Indexed: 01/12/2024] Open
Abstract
Xishuangbanna (XIS) cucumber (Cucumis sativus L. var. xishuangbannanesis) is a semiwild variety originating from low latitude tropic areas, and therefore shows extreme cold sensitivity and heat tolerance. Here, we mapped the quantitative trait loci (QTLs) that control the cold sensitivity and heat tolerance of XIS cucumber seedlings. Using bulked segregant analysis (BSA), we identified three QTLs (HTT1.1, HTT3.1, and HTT3.2, with a total length of 11.98 Mb) for heat tolerance and two QTLs (LTT6.1 and LTT6.2, with a total length of 8.74 Mb) for cold sensitivity. The QTL LTT6.1 was then narrowed down to a length of 641 kb by using kompetitive allele-specific PCR (KASP) markers. Based on structural variants (SVs) and single-nucleotide polymorphisms (SNPs), we found the LTT6.1 is covered by a high divergent region including a 50 kb deletion in the XIS49 genome, which affects the gene structure of lipase abhydrolase domain containing 6 (ABHD6, Csa_6G032560). Accordingly, there is a very big difference in lipid composition, but not in other osmoprotectants like free amino acids and fatty acids, between XIS49 and cultivated cucumber CL. Moreover, we calculated the composite likelihood ratio (CLR) and identified selective sweeps from 115 resequencing data, and found that lipid- and fatty-acid-related processes are major aspects in the domestication of the XIS group cucumber. LTT6.1 is a particularly special region positioned nearby lipid-related selective sweeps. These studies above suggested that the lipid-related domestication of XIS cucumbers should account for their extreme cold sensitivity.
Collapse
Affiliation(s)
- Rui-Jing Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China (R.S.)
| | - Bin Liu
- Hami-Melon Research Center, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China;
| | - Shan-Shan Song
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China (R.S.)
| | - Radwa Salah
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China (R.S.)
| | - Chang-Jiang Song
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China (R.S.)
| | - Shi-Wei Xia
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China (R.S.)
| | - Qian Hao
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China (R.S.)
| | - Yan-Jun Liu
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China (R.S.)
| | - Yu Li
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China (R.S.)
| | - Yun-Song Lai
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China (R.S.)
| |
Collapse
|
10
|
Lin YC, Mansfeld BN, Tang X, Colle M, Chen F, Weng Y, Fei Z, Grumet R. Identification of QTL associated with resistance to Phytophthora fruit rot in cucumber ( Cucumis sativus L.). FRONTIERS IN PLANT SCIENCE 2023; 14:1281755. [PMID: 38046614 PMCID: PMC10693349 DOI: 10.3389/fpls.2023.1281755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 10/30/2023] [Indexed: 12/05/2023]
Abstract
Phytophthora fruit rot (PFR) caused by the soilborne oomycete pathogen, Phytophthora capsici, can cause severe yield loss in cucumber. With no resistant variety available, genetic resources are needed to develop resistant varieties. The goal of this work was to identify quantitative trait loci (QTL) associated with resistance to PFR using multiple genomic approaches and populations. Two types of resistances have been identified: age-related resistance (ARR) and young fruit resistance. ARR occurs at 12-16 days post pollination (dpp), coinciding with the end of exponential fruit growth. A major QTL for ARR was discovered on chromosome 3 and a candidate gene identified based on comparative transcriptomic analysis. Young fruit resistance, which is observed during the state of rapid fruit growth prior to commercial harvest, is a quantitative trait for which multiple QTL were identified. The largest effect QTL, qPFR5.1, located on chromosome 5 was fine mapped to a 1-Mb region. Genome-wide association studies (GWAS) and extreme-phenotype genome-wide association study (XP-GWAS) for young fruit resistance were also performed on a cucumber core collection representing > 96% of the genetic diversity of the USDA cucumber germplasm. Several SNPs overlapped with the QTL identified from QTL-seq analysis on biparental populations. In addition, novel SNPs associated with the resistance were identified from the germplasm. The resistant alleles were found mostly in accessions from India and South Asia, the center of diversity for cucumber. The results from this work can be applied to future disease resistance studies and marker-assisted selection in breeding programs.
Collapse
Affiliation(s)
- Ying-Chen Lin
- Department of Horticulture, Graduate Program in Plant Breeding, Genetics and Biotechnology, Michigan State University, East Lansing, MI, United States
| | - Ben N. Mansfeld
- Department of Horticulture, Graduate Program in Plant Breeding, Genetics and Biotechnology, Michigan State University, East Lansing, MI, United States
| | - Xuemei Tang
- Boyce Thompson Institute, Cornell University, Ithaca, NY, United States
| | - Marivi Colle
- Department of Horticulture, Graduate Program in Plant Breeding, Genetics and Biotechnology, Michigan State University, East Lansing, MI, United States
| | - Feifan Chen
- Department of Plant and Agroecosystem Sciences, University of Wisconsin, Madison, WI, United States
| | - Yiqun Weng
- Department of Plant and Agroecosystem Sciences, University of Wisconsin, Madison, WI, United States
- Vegetable Crops Research Unit, United States Department of Agriculture-Agriculture Research Service (USDA-ARS), Madison, WI, United States
| | - Zhangjun Fei
- Boyce Thompson Institute, Cornell University, Ithaca, NY, United States
- Robert W. Holley Center for Agriculture and Health, United States Department of Agriculture-Agriculture Research Service (USDA-ARS), Ithaca, NY, United States
| | - Rebecca Grumet
- Department of Horticulture, Graduate Program in Plant Breeding, Genetics and Biotechnology, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
11
|
Kim S, Kim DS, Moyle H, Heo S. ShinyCore: An R/Shiny program for establishing core collection based on single nucleotide polymorphism data. PLANT METHODS 2023; 19:106. [PMID: 37821997 PMCID: PMC10566191 DOI: 10.1186/s13007-023-01084-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 09/28/2023] [Indexed: 10/13/2023]
Abstract
BACKGROUND Managing and investigating all available genetic resources are challenging. As an alternative, breeders and researchers use core collection-a representative subset of the entire collection. A good core is characterized by high genetic diversity and low repetitiveness. Among the several available software, GenoCore uses a coverage criterion that does not require computationally expensive distance-based metrics. RESULTS ShinyCore is a new method to select a core collection through two phases. The first phase uses the coverage criterion to quickly attain a fixed coverage, and the second phase uses a newly devised score (referred to as the rarity score) to further enhance diversity. It can attain a fixed coverage faster than a currently available algorithm devised for the coverage criterion, so it will benefit users who have big data. ShinyCore attains the minimum coverage specified by a user faster than GenoCore, and it then seeks to add entries with the rarest allele for each marker. Therefore, measures of genetic diversity and distance can be improved. CONCLUSION Although GenoCore is a fast algorithm, its implementation is difficult for those unfamiliar with R, ShinyCore can be easily implemented in Shiny with RStudio and an interactive web applet is available for those who are not familiar with programming languages.
Collapse
Affiliation(s)
- Steven Kim
- Department of Mathematics and Statistics, California State University, Monterey Bay, Seaside, USA
| | - Dong Sub Kim
- Department of Horticulture, Kongju National University, Yesan, Korea
| | - Hana Moyle
- Department of Mathematics and Statistics, California State University, Monterey Bay, Seaside, USA
- Department of Marine Science, California State University, Monterey Bay, Seaside, USA
| | - Seong Heo
- Department of Horticulture, Kongju National University, Yesan, Korea.
| |
Collapse
|
12
|
Hu Y, Yu Z, Gao X, Liu G, Zhang Y, Šmarda P, Guo Q. Genetic diversity, population structure, and genome-wide association analysis of ginkgo cultivars. HORTICULTURE RESEARCH 2023; 10:uhad136. [PMID: 37564270 PMCID: PMC10410194 DOI: 10.1093/hr/uhad136] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 07/02/2023] [Indexed: 08/12/2023]
Abstract
Ginkgo biloba is an economically valuable tree worldwide. The species has nearly become extinct during the Quaternary, which has likely resulted in reduction of its genetic variability. The genetic variability is now conserved in few natural populations in China and a number of cultivars that are, however, derived from a few ancient trees, helping the species survive in China through medieval times. Despite the recent interest in ginkgo, however, detailed knowledge of its genetic diversity, conserved in cultivated trees and cultivars, has remained poor. This limits efficient conservation of its diversity as well as efficient use of the existing germplasm resources. Here we performed genotyping-by-sequencing (GBS) on 102 cultivated germplasms of ginkgo collected to explore their genetic structure, kinship, and inbreeding prediction. For the first time in ginkgo, a genome-wide association analysis study (GWAS) was used to attempt gene mapping of seed traits. The results showed that most of the germplasms did not show any obvious genetic relationship. The size of the ginkgo germplasm population expanded significantly around 1500 years ago during the Sui and Tang dynasties. Classification of seed cultivars based on a phylogenetic perspective does not support the current classification criteria based on phenotype. Twenty-four candidate genes were localized after performing GWAS on the seed traits. Overall, this study reveals the genetic basis of ginkgo seed traits and provides insights into its cultivation history. These findings will facilitate the conservation and utilization of the domesticated germplasms of this living fossil plant.
Collapse
Affiliation(s)
- Yaping Hu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Zhaoyan Yu
- Coconut Research Institute of Chinese Academy of Tropical Agricultural Science, Wenchang, Hainan 571339, China
| | - Xiaoge Gao
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Ganping Liu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Yun Zhang
- Institute of Grassland, Flowers, and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Petr Šmarda
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Koltlářská 2, Brno 61137, Czech Republic
| | - Qirong Guo
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
13
|
Shigita G, Dung TP, Pervin MN, Duong TT, Imoh ON, Monden Y, Nishida H, Tanaka K, Sugiyama M, Kawazu Y, Tomooka N, Kato K. Elucidation of genetic variation and population structure of melon genetic resources in the NARO Genebank, and construction of the World Melon Core Collection. BREEDING SCIENCE 2023; 73:269-277. [PMID: 37840980 PMCID: PMC10570884 DOI: 10.1270/jsbbs.22071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 02/25/2023] [Indexed: 10/17/2023]
Abstract
Numerous genetic resources of major crops have been introduced from around the world and deposited in Japanese National Agriculture and Food Research Organization (NARO) Genebank. Understanding their genetic variation and selecting a representative subset ("core collection") are essential for optimal management and efficient use of genetic resources. In this study, we conducted genotyping-by-sequencing (GBS) to characterize the genetic relationships and population structure in 755 accessions of melon genetic resources. The GBS identified 39,324 single-nucleotide polymorphisms (SNPs) that are distributed throughout the melon genome with high density (one SNP/10.6 kb). The phylogenetic relationships and population structure inferred using this SNP dataset are highly associated with the cytoplasm type and geographical origin. Our results strongly support the recent hypothesis that cultivated melon was established in Africa and India through multiple independent domestication events. Finally, we constructed a World Melon Core Collection that covers at least 82% of the genetic diversity and has a wide range of geographical origins and fruit morphology. The genome-wide SNP dataset, phylogenetic relationships, population structure, and the core collection provided in this study should largely contribute to genetic research, breeding, and genetic resource preservation in melon.
Collapse
Affiliation(s)
- Gentaro Shigita
- Graduate School of Environmental and Life Science, Okayama University, 1-1-1 Tsushima-Naka, Kita-ku, Okayama 700-8530, Japan
- Department of Life Science Systems, Technical University of Munich, Emil-Ramann Strasse 2, Freising 85354, Germany
| | - Tran Phuong Dung
- Graduate School of Environmental and Life Science, Okayama University, 1-1-1 Tsushima-Naka, Kita-ku, Okayama 700-8530, Japan
| | - Mst. Naznin Pervin
- Graduate School of Environmental and Life Science, Okayama University, 1-1-1 Tsushima-Naka, Kita-ku, Okayama 700-8530, Japan
| | - Thanh-Thuy Duong
- Graduate School of Environmental and Life Science, Okayama University, 1-1-1 Tsushima-Naka, Kita-ku, Okayama 700-8530, Japan
- Faculty of Agronomy, University of Agriculture and Forestry, Hue University, 102 Phung Hung Street, Hue City, Vietnam
| | - Odirich Nnennaya Imoh
- Graduate School of Environmental and Life Science, Okayama University, 1-1-1 Tsushima-Naka, Kita-ku, Okayama 700-8530, Japan
| | - Yuki Monden
- Graduate School of Environmental and Life Science, Okayama University, 1-1-1 Tsushima-Naka, Kita-ku, Okayama 700-8530, Japan
| | - Hidetaka Nishida
- Graduate School of Environmental and Life Science, Okayama University, 1-1-1 Tsushima-Naka, Kita-ku, Okayama 700-8530, Japan
| | - Katsunori Tanaka
- Faculty of Agriculture and Life Science, Hirosaki University, 3 Bunkyo, Hirosaki, Aomori 036-8561, Japan
| | - Mitsuhiro Sugiyama
- Institute of Vegetable and Floriculture Science, National Agriculture and Food Research Organization (NARO), 360 Kusawa, Ano, Tsu, Mie 514-2392, Japan
| | - Yoichi Kawazu
- Institute of Vegetable and Floriculture Science, National Agriculture and Food Research Organization (NARO), 360 Kusawa, Ano, Tsu, Mie 514-2392, Japan
| | - Norihiko Tomooka
- Research Center of Genetic Resources, National Agriculture and Food Research Organization (NARO), 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| | - Kenji Kato
- Graduate School of Environmental and Life Science, Okayama University, 1-1-1 Tsushima-Naka, Kita-ku, Okayama 700-8530, Japan
| |
Collapse
|
14
|
Xia L, Wang H, Zhao X, Obel HO, Yu X, Lou Q, Chen J, Cheng C. Chloroplast Pan-Genomes and Comparative Transcriptomics Reveal Genetic Variation and Temperature Adaptation in the Cucumber. Int J Mol Sci 2023; 24:ijms24108943. [PMID: 37240287 DOI: 10.3390/ijms24108943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/01/2023] [Accepted: 05/03/2023] [Indexed: 05/28/2023] Open
Abstract
Although whole genome sequencing, genetic variation mapping, and pan-genome studies have been done on a large group of cucumber nuclear genomes, organelle genome information is largely unclear. As an important component of the organelle genome, the chloroplast genome is highly conserved, which makes it a useful tool for studying plant phylogeny, crop domestication, and species adaptation. Here, we have constructed the first cucumber chloroplast pan-genome based on 121 cucumber germplasms, and investigated the genetic variations of the cucumber chloroplast genome through comparative genomic, phylogenetic, haplotype, and population genetic structure analysis. Meanwhile, we explored the changes in expression of cucumber chloroplast genes under high- and low-temperature stimulation via transcriptome analysis. As a result, a total of 50 complete chloroplast genomes were successfully assembled from 121 cucumber resequencing data, ranging in size from 156,616-157,641 bp. The 50 cucumber chloroplast genomes have typical quadripartite structures, consisting of a large single copy (LSC, 86,339-86,883 bp), a small single copy (SSC, 18,069-18,363 bp), and two inverted repeats (IRs, 25,166-25,797 bp). Comparative genomic, haplotype, and population genetic structure results showed that there is more genetic variation in Indian ecotype cucumbers compared to other cucumber cultivars, which means that many genetic resources remain to be explored in Indian ecotype cucumbers. Phylogenetic analysis showed that the 50 cucumber germplasms could be classified into 3 types: East Asian, Eurasian + Indian, and Xishuangbanna + Indian. The transcriptomic analysis showed that matK were significantly up-regulated under high- and low-temperature stresses, further demonstrating that cucumber chloroplasts respond to temperature adversity by regulating lipid metabolism and ribosome metabolism. Further, accD has higher editing efficiency under high-temperature stress, which may contribute to the heat tolerance. These studies provide useful insight into genetic variation in the chloroplast genome, and established the foundation for exploring the mechanisms of temperature-stimulated chloroplast adaptation.
Collapse
Affiliation(s)
- Lei Xia
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Han Wang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaokun Zhao
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Hesbon Ochieng Obel
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaqing Yu
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Qunfeng Lou
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Jinfeng Chen
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Chunyan Cheng
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
15
|
Hernandez CO, Labate J, Reitsma K, Fabrizio J, Bao K, Fei Z, Grumet R, Mazourek M. Characterization of the USDA Cucurbita pepo, C. moschata, and C. maxima germplasm collections. FRONTIERS IN PLANT SCIENCE 2023; 14:1130814. [PMID: 36993863 PMCID: PMC10040574 DOI: 10.3389/fpls.2023.1130814] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 02/22/2023] [Indexed: 06/19/2023]
Abstract
The Cucurbita genus is home to a number of economically and culturally important species. We present the analysis of genotype data generated through genotyping-by-sequencing of the USDA germplasm collections of Cucurbita pepo, C. moschata, and C. maxima. These collections include a mixture of wild, landrace, and cultivated specimens from all over the world. Roughly 1,500 - 32,000 high-quality single nucleotide polymorphisms (SNPs) were called in each of the collections, which ranged in size from 314 to 829 accessions. Genomic analyses were conducted to characterize the diversity in each of the species. Analysis revealed extensive structure corresponding to a combination of geographical origin and morphotype/market class. Genome-wide associate studies (GWAS) were conducted using both historical and contemporary data. Signals were observed for several traits, but the strongest was for the bush (Bu) gene in C. pepo. Analysis of genomic heritability, together with population structure and GWAS results, was used to demonstrate a close alignment of seed size in C. pepo, maturity in C. moschata, and plant habit in C. maxima with genetic subgroups. These data represent a large, valuable collection of sequenced Cucurbita that can be used to direct the maintenance of genetic diversity, for developing breeding resources, and to help prioritize whole-genome re-sequencing.
Collapse
Affiliation(s)
- Christopher O. Hernandez
- Department of Agriculture Nutrition and Food Systems, University of New Hampshire, Durham, NH, United States
| | - Joanne Labate
- Plant Genetic Resource Conservation Unit, United States Department of Agricultural Research Service, Geneva, NY, United States
| | - Kathleen Reitsma
- North Central Regional Plant Introduction Station, Iowa State University, Ames, IA, United States
| | - Jack Fabrizio
- Plant Breeding and Genetics, Cornell University, Ithaca, NY, United States
| | - Kan Bao
- Boyce Thompson Institute, Cornell University, Ithaca, NY, United States
| | - Zhangjun Fei
- Boyce Thompson Institute, Cornell University, Ithaca, NY, United States
- U.S. Department of Agriculture-Agriculture Research Service, Robert W. Holley Center for Agriculture and Health, Ithaca, NY, United States
| | - Rebecca Grumet
- Department of Horticulture, Michigan State University, East Lansing, MI, United States
| | - Michael Mazourek
- Plant Breeding and Genetics, Cornell University, Ithaca, NY, United States
| |
Collapse
|
16
|
Hongal DA, Raju D, Kumar S, Talukdar A, Das A, Kumari K, Dash PK, Chinnusamy V, Munshi AD, Behera TK, Dey SS. Elucidating the role of key physio-biochemical traits and molecular network conferring heat stress tolerance in cucumber. FRONTIERS IN PLANT SCIENCE 2023; 14:1128928. [PMID: 36895870 PMCID: PMC9990136 DOI: 10.3389/fpls.2023.1128928] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Cucumber is an important vegetable crop grown worldwide and highly sensitive to prevailing temperature condition. The physiological, biochemical and molecular basis of high temperature stress tolerance is poorly understood in this model vegetable crop. In the present study, a set of genotypes with contrasting response under two different temperature stress (35/30°C and 40/35°C) were evaluated for important physiological and biochemical traits. Besides, expression of the important heat shock proteins (HSPs), aquaporins (AQPs), photosynthesis related genes was conducted in two selected contrasting genotypes at different stress conditions. It was established that tolerant genotypes were able to maintain high chlorophyll retention, stable membrane stability index, higher retention of water content, stability in net photosynthesis, high stomatal conductance and transpiration in combination with less canopy temperatures under high temperature stress conditions compared to susceptible genotypes and were considered as the key physiological traits associated with heat tolerance in cucumber. Accumulation of biochemicals like proline, protein and antioxidants like SOD, catalase and peroxidase was the underlying biochemical mechanisms for high temperature tolerance. Upregulation of photosynthesis related genes, signal transduction genes and heat responsive genes (HSPs) in tolerant genotypes indicate the molecular network associated with heat tolerance in cucumber. Among the HSPs, higher accumulation of HSP70 and HSP90 were recorded in the tolerant genotype, WBC-13 under heat stress condition indicating their critical role. Besides, Rubisco S, Rubisco L and CsTIP1b were upregulated in the tolerant genotypes under heat stress condition. Therefore, the HSPs in combination with photosynthetic and aquaporin genes were the underlying important molecular network associated with heat stress tolerance in cucumber. The findings of the present study also indicated negative feedback of G-protein alpha unit and oxygen evolving complex in relation to heat stress tolerance in cucumber. These results indicate that the thermotolerant cucumber genotypes enhanced physio-biochemical and molecular adaptation under high-temperature stress condition. This study provides foundation to design climate smart genotypes in cucumber through integration of favorable physio-biochemical traits and understanding the detailed molecular network associated with heat stress tolerance in cucumber.
Collapse
Affiliation(s)
- Dhananjay A. Hongal
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Dhandapani Raju
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Sudhir Kumar
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Akshay Talukdar
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Anjan Das
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Khushboo Kumari
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Prasanta K. Dash
- ICAR-National Institute for Plant Biotechnology, New Delhi, India
| | - Viswanathan Chinnusamy
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Anilabha Das Munshi
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Tusar Kanti Behera
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi, India
- ICAR-Indian Institute of Vegetable Research, Varanasi, India
| | - Shyam Sundar Dey
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
17
|
Yu J, Wu S, Sun H, Wang X, Tang X, Guo S, Zhang Z, Huang S, Xu Y, Weng Y, Mazourek M, McGregor C, Renner SS, Branham S, Kousik C, Wechter W, Levi A, Grumet R, Zheng Y, Fei Z. CuGenDBv2: an updated database for cucurbit genomics. Nucleic Acids Res 2023; 51:D1457-D1464. [PMID: 36271794 PMCID: PMC9825510 DOI: 10.1093/nar/gkac921] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/03/2022] [Accepted: 10/06/2022] [Indexed: 01/30/2023] Open
Abstract
The Cucurbitaceae (cucurbit) family consists of about 1,000 species in 95 genera, including many economically important and popular fruit and vegetable crops. During the past several years, reference genomes have been generated for >20 cucurbit species, and variome and transcriptome profiling data have been rapidly accumulated for cucurbits. To efficiently mine, analyze and disseminate these large-scale datasets, we have developed an updated version of Cucurbit Genomics Database. The updated database, CuGenDBv2 (http://cucurbitgenomics.org/v2), currently hosts 34 reference genomes from 27 cucurbit species/subspecies belonging to 10 different genera. Protein-coding genes from these genomes have been comprehensively annotated by comparing their protein sequences to various public protein and domain databases. A novel 'Genotype' module has been implemented to facilitate mining and analysis of the functionally annotated variome data including SNPs and small indels from large-scale genome sequencing projects. An updated 'Expression' module has been developed to provide a comprehensive gene expression atlas for cucurbits. Furthermore, synteny blocks between any two and within each of the 34 genomes, representing a total of 595 pair-wise genome comparisons, have been identified and can be explored and visualized in the database.
Collapse
Affiliation(s)
- Jingyin Yu
- Boyce Thompson Institute, Ithaca, NY 14853, USA
| | - Shan Wu
- Boyce Thompson Institute, Ithaca, NY 14853, USA
| | - Honghe Sun
- Boyce Thompson Institute, Ithaca, NY 14853, USA
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Xin Wang
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Xuemei Tang
- Boyce Thompson Institute, Ithaca, NY 14853, USA
| | - Shaogui Guo
- National Watermelon and Melon Improvement Center, Beijing Academy of Agricultural and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, China
| | - Zhonghua Zhang
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
| | - Sanwen Huang
- Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518124, China
| | - Yong Xu
- National Watermelon and Melon Improvement Center, Beijing Academy of Agricultural and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, China
| | - Yiqun Weng
- U.S. Department of Agriculture-Agricultural Research Service, Vegetable Crops Research Unit, Madison, WI 53706, USA
- Department of Horticulture, University of Wisconsin, Madison, WI 53706, USA
| | - Michael Mazourek
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Cecilia McGregor
- Department of Horticulture, University of Georgia, Athens, GA 30602, USA
| | - Susanne S Renner
- Faculty of Biology, Systematic Botany and Mycology, University of Munich (LMU), 80638 Munich, Germany
- Department of Biology, Washington University, Saint Louis, MO 63130, USA
| | - Sandra Branham
- Coastal Research and Educational Center, Clemson University, Charleston, SC 29414, USA
| | - Chandrasekar Kousik
- U.S. Department of Agriculture-Agricultural Research Service, U.S. Vegetable Laboratory, 2700 Savannah Highway, Charleston, SC 29414, USA
| | - W Patrick Wechter
- U.S. Department of Agriculture-Agricultural Research Service, U.S. Vegetable Laboratory, 2700 Savannah Highway, Charleston, SC 29414, USA
| | - Amnon Levi
- U.S. Department of Agriculture-Agricultural Research Service, U.S. Vegetable Laboratory, 2700 Savannah Highway, Charleston, SC 29414, USA
| | - Rebecca Grumet
- Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA
| | - Yi Zheng
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
- Bioinformatics Center, Beijing University of Agriculture, Beijing 102206, China
| | - Zhangjun Fei
- Boyce Thompson Institute, Ithaca, NY 14853, USA
- U.S. Department of Agriculture-Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, Ithaca, NY 14853, USA
| |
Collapse
|
18
|
Grumet R, Lin YC, Rett-Cadman S, Malik A. Morphological and Genetic Diversity of Cucumber ( Cucumis sativus L.) Fruit Development. PLANTS (BASEL, SWITZERLAND) 2022; 12:23. [PMID: 36616152 PMCID: PMC9824707 DOI: 10.3390/plants12010023] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/30/2022] [Accepted: 12/04/2022] [Indexed: 06/03/2023]
Abstract
Cucumber (Cucumis sativus L.) fruits, which are eaten at an immature stage of development, can vary extensively in morphological features such as size, shape, waxiness, spines, warts, and flesh thickness. Different types of cucumbers that vary in these morphological traits are preferred throughout the world. Numerous studies in recent years have added greatly to our understanding of cucumber fruit development and have identified a variety of genetic factors leading to extensive diversity. Candidate genes influencing floral organ establishment, cell division and cell cycle regulation, hormone biosynthesis and response, sugar transport, trichome development, and cutin, wax, and pigment biosynthesis have all been identified as factors influencing cucumber fruit morphology. The identified genes demonstrate complex interplay between structural genes, transcription factors, and hormone signaling. Identification of genetic factors controlling these traits will facilitate breeding for desired characteristics to increase productivity, improve shipping, handling, and storage traits, and enhance consumer-desired qualities. The following review examines our current understanding of developmental and genetic factors driving diversity of cucumber fruit morphology.
Collapse
Affiliation(s)
- Rebecca Grumet
- Graduate Program in Plant Breeding, Genetics and Biotechnology, Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA
| | - Ying-Chen Lin
- Graduate Program in Plant Breeding, Genetics and Biotechnology, Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA
| | - Stephanie Rett-Cadman
- Graduate Program in Plant Breeding, Genetics and Biotechnology, Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA
| | - Ajaz Malik
- Department of Horticulture-Vegetable Science, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Srinagar 190 025, India
| |
Collapse
|
19
|
Bhattarai G, Shi A, Mou B, Correll JC. Resequencing worldwide spinach germplasm for identification of field resistance QTLs to downy mildew and assessment of genomic selection methods. HORTICULTURE RESEARCH 2022; 9:uhac205. [PMID: 36467269 PMCID: PMC9715576 DOI: 10.1093/hr/uhac205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 09/04/2022] [Indexed: 06/16/2023]
Abstract
Downy mildew, commercially the most important disease of spinach, is caused by the obligate oomycete Peronospora effusa. In the past two decades, new pathogen races have repeatedly overcome the resistance used in newly released cultivars, urging the need for more durable resistance. Commercial spinach cultivars are bred with major R genes to impart resistance to downy mildew pathogens and are effective against some pathogen races/isolates. This work aimed to evaluate the worldwide USDA spinach germplasm collections and commercial cultivars for resistance to downy mildew pathogen in the field condition under natural inoculum pressure and conduct genome wide association analysis (GWAS) to identify resistance-associated genomic regions (alleles). Another objective was to evaluate the prediction accuracy (PA) using several genomic prediction (GP) methods to assess the potential implementation of genomic selection (GS) to improve spinach breeding for resistance to downy mildew pathogen. More than four hundred diverse spinach genotypes comprising USDA germplasm accessions and commercial cultivars were evaluated for resistance to downy mildew pathogen between 2017-2019 in Salinas Valley, California and Yuma, Arizona. GWAS was performed using single nucleotide polymorphism (SNP) markers identified via whole genome resequencing (WGR) in GAPIT and TASSEL programs; detected 14, 12, 5, and 10 significantly associated SNP markers with the resistance from four tested environments, respectively; and the QTL alleles were detected at the previously reported region of chromosome 3 in three of the four experiments. In parallel, PA was assessed using six GP models and seven unique marker datasets for field resistance to downy mildew pathogen across four tested environments. The results suggest the suitability of GS to improve field resistance to downy mildew pathogen. The QTL, SNP markers, and PA estimates provide new information in spinach breeding to select resistant plants and breeding lines through marker-assisted selection (MAS) and GS, eventually helping to accumulate beneficial alleles for durable disease resistance.
Collapse
|
20
|
Monnot S, Cantet M, Mary-Huard T, Moreau L, Lowdon R, Van Haesendonck M, Ricard A, Boissot N. Unravelling cucumber resistance to several viruses via genome-wide association studies highlighted resistance hotspots and new QTLs. HORTICULTURE RESEARCH 2022; 9:uhac184. [PMID: 36338844 PMCID: PMC9627523 DOI: 10.1093/hr/uhac184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/10/2022] [Indexed: 06/16/2023]
Abstract
The mapping and introduction of sustainable resistance to viruses in crops is a major challenge in modern breeding, especially regarding vegetables. We hence assembled a panel of cucumber elite lines and landraces from different horticultural groups for testing with six virus species. We mapped 18 quantitative trait loci (QTL) with a multiloci genome wide association studies (GWAS), some of which have already been described in the literature. We detected two resistance hotspots, one on chromosome 5 for resistance to the cucumber mosaic virus (CMV), cucumber vein yellowing virus (CVYV), cucumber green mottle mosaic virus (CGMMV) and watermelon mosaic virus (WMV), colocalizing with the RDR1 gene, and another on chromosome 6 for resistance to the zucchini yellowing mosaic virus (ZYMV) and papaya ringspot virus (PRSV) close to the putative VPS4 gene location. We observed clear structuring of resistance among horticultural groups due to plant virus coevolution and modern breeding which have impacted linkage disequilibrium (LD) in resistance QTLs. The inclusion of genetic structure in GWAS models enhanced the GWAS accuracy in this study. The dissection of resistance hotspots by local LD and haplotype construction helped gain insight into the panel's resistance introduction history. ZYMV and CMV resistance were both introduced from different donors in the panel, resulting in multiple resistant haplotypes at same locus for ZYMV, and in multiple resistant QTLs for CMV.
Collapse
Affiliation(s)
- Severine Monnot
- INRAE, Génétique et Amélioration des Fruits et Légumes, 84143, Montfavet, France
- Bayer Crop Science, 13670, Saint-Andiol, France
| | | | - Tristan Mary-Huard
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, Génétique Quantitative et Evolution - Le Moulon, 91190, Gif-sur-Yvette, France
| | - Laurence Moreau
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, Génétique Quantitative et Evolution - Le Moulon, 91190, Gif-sur-Yvette, France
| | - Rebecca Lowdon
- Université Paris-Saclay, INRAE, AgroParisTech, Mathématiques et Informatique Appliquées-Paris, 75005 Paris, France
| | | | | | - Nathalie Boissot
- INRAE, Génétique et Amélioration des Fruits et Légumes, 84143, Montfavet, France
| |
Collapse
|
21
|
Guerra‐García A, Rojas‐Barrera IC, Ross‐Ibarra J, Papa R, Piñero D. The genomic signature of wild-to-crop introgression during the domestication of scarlet runner bean ( Phaseolus coccineus L.). Evol Lett 2022; 6:295-307. [PMID: 35937471 PMCID: PMC9346085 DOI: 10.1002/evl3.285] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 03/06/2022] [Accepted: 05/15/2022] [Indexed: 11/23/2022] Open
Abstract
The scarlet runner bean (Phaseolus coccineus) is one of the five domesticated Phaseolus species. It is cultivated in small-scale agriculture in the highlands of Mesoamerica for its dry seeds and immature pods, and unlike the other domesticated beans, P. coccineus is an open-pollinated legume. Contrasting with its close relative, the common bean, few studies focusing on its domestication history have been conducted. Demographic bottlenecks associated with domestication might reduce genetic diversity and facilitate the accumulation of deleterious mutations. Conversely, introgression from wild relatives could be a source of variation. Using Genotyping by Sequencing data (79,286 single-nucleotide variants) from 237 cultivated and wild samples, we evaluated the demographic history of traditional varieties from different regions of Mexico and looked for evidence of introgression between sympatric wild and cultivated populations. Traditional varieties have high levels of diversity, even though there is evidence of a severe initial genetic bottleneck followed by a population expansion. Introgression from wild to domesticated populations was detected, which might contribute to the recovery of the genetic variation. Introgression has occurred at different times: constantly in the center of Mexico; recently in the North West; and anciently in the South. Several factors are acting together to increase and maintain genetic diversity in P. coccineus cultivars, such as demographic expansion and introgression. Wild relatives represent a valuable genetic resource and have played a key role in scarlet runner bean evolution via introgression into traditional varieties.
Collapse
Affiliation(s)
- Azalea Guerra‐García
- Departamento de Ecología Evolutiva, Instituto de EcologíaUniversidad Nacional Autónoma de MéxicoCiudad de México04510México
- Department of Plant SciencesUniversity of SaskatchewanSaskatoonSKS7N 5A2Canada
| | - Idalia C. Rojas‐Barrera
- Departamento de Ecología Evolutiva, Instituto de EcologíaUniversidad Nacional Autónoma de MéxicoCiudad de México04510México
- Environmental GenomicsMax Planck Institute for Evolutionary Biology24306PlönGermany
| | - Jeffrey Ross‐Ibarra
- Department of Evolution and Ecology, Center for Population Biology, and Genome CenterUniversity of California, DavisDavisCalifornia95616
| | - Roberto Papa
- Dipartimento di Scienze Agrarie, Alimentari ed AmbientaliUniversità Politecnica delle MarcheAncona60131Italy
| | - Daniel Piñero
- Departamento de Ecología Evolutiva, Instituto de EcologíaUniversidad Nacional Autónoma de MéxicoCiudad de México04510México
| |
Collapse
|
22
|
Yang Y, Dong S, Miao H, Liu X, Dai Z, Li X, Gu X, Zhang S. Genome-Wide Association Studies Reveal Candidate Genes Related to Stem Diameter in Cucumber ( Cucumis sativus L.). Genes (Basel) 2022; 13:genes13061095. [PMID: 35741858 PMCID: PMC9222855 DOI: 10.3390/genes13061095] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/10/2022] [Accepted: 06/16/2022] [Indexed: 02/04/2023] Open
Abstract
The stem diameter, an important agronomic trait, affects cucumber growth and yield. However, no genes responsible for cucumber stem diameter have been identified yet. In this study, the stem diameter of 88 cucumber core germplasms were measured in spring 2020, autumn 2020 and autumn 2021, and a genome-wide association study (GWAS) was carried out based on the gene sequence and stem diameter of core germplasms. A total of eight loci (gSD1.1, gSD2.1, gSD3.1, gSD3.2, gSD4.1, gSD5.1, gSD5.2, and gSD6.1) significantly associated with cucumber stem diameter were detected. Of these, five loci (gSD1.1, gSD2.1, gSD3.1, gSD5.2, and gSD6.1) were repeatedly detected in two or more seasons and were considered as robust and reliable loci. Based on the linkage disequilibrium sequences of the associated SNP loci, 37 genes were selected. By further investigating the five loci via analyzing Arabidopsis homologous genes and gene haplotypes, five genes (CsaV3_1G028310, CsaV3_2G006960, CsaV3_3G009560, CsaV3_5G031320, and CsaV3_6G031260) showed variations in amino acid sequence between thick stem lines and thin stem lines. Expression pattern analyses of these genes also showed a significant difference between thick stem and thin stem lines. This study laid the foundation for gene cloning and molecular mechanism study of cucumber stem development.
Collapse
|
23
|
Zhang H, Wang Y, Tan J, Weng Y. Functional copy number variation of CsSHINE1 is associated with fruit skin netting intensity in cucumber, Cucumis sativus. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:2101-2119. [PMID: 35524817 DOI: 10.1007/s00122-022-04100-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 04/11/2022] [Indexed: 06/14/2023]
Abstract
Fruit skin netting in cucumber (Cucumis sativus) is associated with important fruit quality attributes. Two simply inherited genes H (Heavy netting) and Rs (Russet skin) control skin netting, but their molecular basis is unknown. Here, we reported map-based cloning and functional characterization of the candidate gene for the Rs locus that encodes CsSHINE1 (CsSHN1), an AP2 domain containing ethylene-responsive transcription factor protein. Comparative phenotypic analysis in near-isogenic lines revealed that fruit with netted skin had different epidermal structures from that with smooth skin including thicker cuticles, smaller, palisade-shaped epidermal and sub-epidermal cells with heavily suberized and lignified cell walls, higher peroxidase activities, which suggests multiple functions of CsSHN1 in regulating fruit skin netting and epidermal cell patterning. Among three representative cucumber inbred lines, three haplotypes at three polymorphic sites were identified inside CsSHN1: a functional copy in Gy14 (wild type) with light fruit skin netting, a copy number variant with two tandemly arrayed functional copies in WI7120 with heavy skin netting, and a loss-of-function copy in 9930 with smooth skin. The expression level of CsSHN1 in fruit exocarp of three lines was positively correlated with the skin netting intensity. Comparative analysis between cucumber and melon revealed conserved and divergent genetic mechanisms underlying fruit skin netting/reticulation that may reflect the different selection histories in the two crops. A discussion was made on genetic basis of fruit skin netting in the context of natural and artificial selections of fruit quality-related epidermal features during cucumber breeding.
Collapse
Affiliation(s)
- Huijun Zhang
- School of Life Science, Huaibei Normal University, Huaibei, 10000, China
- Horticulture Department, University of Wisconsin, Madison, WI, 53706, USA
| | - Yuhui Wang
- Horticulture Department, University of Wisconsin, Madison, WI, 53706, USA.
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China.
| | - Junyi Tan
- Horticulture Department, University of Wisconsin, Madison, WI, 53706, USA
| | - Yiqun Weng
- Horticulture Department, University of Wisconsin, Madison, WI, 53706, USA.
- USDA-ARS Vegetable Crops Research Unit, Madison, WI, 53706, USA.
| |
Collapse
|
24
|
Liu X, Yang X, Xie Q, Miao H, Bo K, Dong S, Xin T, Gu X, Sun J, Zhang S. NS encodes an auxin transporter that regulates the 'numerous spines' trait in cucumber (Cucumis sativus) fruit. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:325-336. [PMID: 35181968 DOI: 10.1111/tpj.15710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Abstract
Fruit spine is an important agronomic trait in cucumber and the "numerous spines (ns)" cucumber varieties are popular in Europe and West Asia. Although the classical genetic locus of ns was reported more than two decades ago, the NS gene has not been cloned yet. In this study, nine genetic loci for the different densities of fruit spines were identified by a genome-wide association study. Among the nine loci, fsdG2.1 was closely associated with the classical genetic locus ns, which harbors a candidate gene Csa2G264590. Overexpression of Csa2G264590 resulted in lower fruit spine density, and the knockout mutant generated by CRISPR/Cas9 displayed an increased spine density, demonstrating that the Csa2G264590 gene is NS. NS is specifically expressed in the fruit peel and spine. Genetic analysis showed that NS regulates fruit spine development independently of the tuberculate gene, Tu, which regulates spine development on tubercules; the cucumber glabrous mutants csgl1 and csgl3 are epistatic to ns. Furthermore, we found that auxin levels in the fruit peel and spine were significantly lower in the knockout mutant ns-cr. Moreover, RNA-sequencing showed that the plant hormone signal transduction pathway was enriched. Notably, most of the auxin responsive Aux/IAA family genes were downregulated in ns-cr. Haplotype analysis showed that the non-functional haplotype of NS exists exclusively in the Eurasian cucumber backgrounds. Taken together, the cloning of NS gene provides new insights into the regulatory network of fruit spine development.
Collapse
Affiliation(s)
- Xiaoping Liu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xueyong Yang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Qing Xie
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Han Miao
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Kailiang Bo
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Shaoyun Dong
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Tongxu Xin
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xingfang Gu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jiaqiang Sun
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Shengping Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
25
|
Yu B, Ming F, Liang Y, Wang Y, Gan Y, Qiu Z, Yan S, Cao B. Heat Stress Resistance Mechanisms of Two Cucumber Varieties from Different Regions. Int J Mol Sci 2022; 23:ijms23031817. [PMID: 35163740 PMCID: PMC8837171 DOI: 10.3390/ijms23031817] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/12/2022] [Accepted: 01/22/2022] [Indexed: 02/01/2023] Open
Abstract
High temperatures affect the yield and quality of vegetable crops. Unlike thermosensitive plants, thermotolerant plants have excellent systems for withstanding heat stress. This study evaluated various heat resistance indexes of the thermotolerant cucumber (TT) and thermosensitive cucumber (TS) plants at the seedling stage. The similarities and differences between the regulatory genes were assessed through transcriptome analysis to understand the mechanisms for heat stress resistance in cucumber. The TT plants exhibited enhanced leaf status, photosystem, root viability, and ROS scavenging under high temperature compared to the TS plants. Additionally, transcriptome analysis showed that the genes involved in photosynthesis, the chlorophyll metabolism, and defense responses were upregulated in TT plants but downregulated in TS plants. Zeatin riboside (ZR), brassinosteroid (BR), and jasmonic acid (JA) levels were higher in TT plants than in TS. The heat stress increased gibberellic acid (GA) and indoleacetic acid (IAA) levels in both plant lines; however, the level of GA was higher in TT. Correlation and interaction analyses revealed that heat cucumber heat resistance is regulated by a few transcription factor family genes and metabolic pathways. Our study revealed different phenotypic and physiological mechanisms of the heat response by the thermotolerant and thermosensitive cucumber plants. The plants were also shown to exhibit different expression profiles and metabolic pathways. The heat resistant pathways and genes of two cucumber varieties were also identified. These results enhance our understanding of the molecular mechanisms of cucumber response to high-temperature stress.
Collapse
Affiliation(s)
- Bingwei Yu
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (B.Y.); (F.M.); (Y.L.); (Y.W.); (Y.G.); (Z.Q.)
- Guangdong Vegetable Engineering and Technology Research Center, South China Agricultural University, Guangzhou 510642, China
| | - Fangyan Ming
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (B.Y.); (F.M.); (Y.L.); (Y.W.); (Y.G.); (Z.Q.)
- Guangdong Vegetable Engineering and Technology Research Center, South China Agricultural University, Guangzhou 510642, China
| | - Yonggui Liang
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (B.Y.); (F.M.); (Y.L.); (Y.W.); (Y.G.); (Z.Q.)
- Guangdong Vegetable Engineering and Technology Research Center, South China Agricultural University, Guangzhou 510642, China
| | - Yixi Wang
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (B.Y.); (F.M.); (Y.L.); (Y.W.); (Y.G.); (Z.Q.)
- Guangdong Vegetable Engineering and Technology Research Center, South China Agricultural University, Guangzhou 510642, China
| | - Yuwei Gan
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (B.Y.); (F.M.); (Y.L.); (Y.W.); (Y.G.); (Z.Q.)
- Guangdong Vegetable Engineering and Technology Research Center, South China Agricultural University, Guangzhou 510642, China
| | - Zhengkun Qiu
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (B.Y.); (F.M.); (Y.L.); (Y.W.); (Y.G.); (Z.Q.)
- Guangdong Vegetable Engineering and Technology Research Center, South China Agricultural University, Guangzhou 510642, China
| | - Shuangshuang Yan
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (B.Y.); (F.M.); (Y.L.); (Y.W.); (Y.G.); (Z.Q.)
- Guangdong Vegetable Engineering and Technology Research Center, South China Agricultural University, Guangzhou 510642, China
- Correspondence: (S.Y.); (B.C.)
| | - Bihao Cao
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (B.Y.); (F.M.); (Y.L.); (Y.W.); (Y.G.); (Z.Q.)
- Guangdong Vegetable Engineering and Technology Research Center, South China Agricultural University, Guangzhou 510642, China
- Correspondence: (S.Y.); (B.C.)
| |
Collapse
|
26
|
Graph-based pan-genome reveals structural and sequence variations related to agronomic traits and domestication in cucumber. Nat Commun 2022; 13:682. [PMID: 35115520 PMCID: PMC8813957 DOI: 10.1038/s41467-022-28362-0] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 01/19/2022] [Indexed: 12/21/2022] Open
Abstract
Structural variants (SVs) represent a major source of genetic diversity and are related to numerous agronomic traits and evolutionary events; however, their comprehensive identification and characterization in cucumber (Cucumis sativus L.) have been hindered by the lack of a high-quality pan-genome. Here, we report a graph-based cucumber pan-genome by analyzing twelve chromosome-scale genome assemblies. Genotyping of seven large chromosomal rearrangements based on the pan-genome provides useful information for use of wild accessions in breeding and genetic studies. A total of ~4.3 million genetic variants including 56,214 SVs are identified leveraging the chromosome-level assemblies. The pan-genome graph integrating both variant information and reference genome sequences aids the identification of SVs associated with agronomic traits, including warty fruits, flowering times and root growth, and enhances the understanding of cucumber trait evolution. The graph-based cucumber pan-genome and the identified genetic variants provide rich resources for future biological research and genomics-assisted breeding. Increasing studies have suggested that single reference genome is insufficient to capture all variations in the genome. Here, the authors report a graph-based cucumber pan-genome by analyzing 12 chromosome-scale assemblies and reveal variations associated with agronomic traits and domestication.
Collapse
|
27
|
Deng Y, Fu W, Tang B, Tao L, Zhang L, Zhou X, Wang Q, Li J, Chen J. Transcriptome analysis of ovary culture-induced embryogenesis in cucumber ( Cucumis sativus L.). PeerJ 2021; 9:e12145. [PMID: 35003908 PMCID: PMC8684322 DOI: 10.7717/peerj.12145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 08/19/2021] [Indexed: 11/20/2022] Open
Abstract
Background.
Ovary culture is a useful technique used to generate double haploid (DH) cucumber (Cucumis sativus L.) plants. However, cucumber ovary culture have a low rate of embryo induction and plant regeneration. Moreover, the cucumber embryogenesis mechanism remains unclear. In this study, we explored the molecular basis of cucumber embryogenesis in order to establish a foundation for a more efficient ovary culture method. Using transcriptome sequencing, we also investigated the differential expression of genes during the embryogenesis process.
Methods.
Cytological and morphological observations have divided cucumber ovary culture into three stages: early embryo development (T0), embryo morphogenesis (T1, T2, T3 and T4), and shoot formation (T5). We selected six key time points for transcriptome sequencing and analysis: T0 (the ovules were cultured for 0 d), T1 (the ovules were cultured for 2 d), T2 (the embryos were cultured for 10 d), T3 (the embryos were cultured for 20 d), T4 (the embryos were cultured for 30 d), and T5 (the shoots after 60 d culture).
Results.
We used cytology and morphology to observe the characteristics of the cucumber’s developmental transformation during embryogenesis and plant regeneration. The differentially expressed genes(DEGs) at developmental transition points were analyzed using transcriptome sequencing. In the early embryogenesis stage, the cells expanded, which was the signal for gametophytes to switch to the sporophyte development pathway. RNA-seq revealed that when compared to the fresh unpollinated ovaries, there were 3,468 up-regulated genes in the embryos, including hormone signal transduction genes, hormone response genes, and stress-induced genes. The reported embryogenesis-related genes BBM, HSP90 and AGL were also actively expressed during this stage. In the embryo morphogenesis stage (from cell division to cotyledon-embryo formation), 480 genes that functioned in protein complex binding, microtubule binding, tetrapyrrole binding, tubulin binding and other microtubule activities were continuously up-regulated during the T1, T2, T3 and T4 time points. This indicated that the cytoskeleton structure was continuously being built and maintained by the action of microtubule-binding proteins and enzyme modification. In the shoot formation stage, 1,383 genes were up-regulated that were mainly enriched in phenylpropanoid biosynthesis, plant hormone signal transduction, phenylalanine metabolism, and starch and sucrose metabolism. These up-regualted genes included six transcription factors that contained a B3 domain, nine genes in the AP2/ERF family, and two genes encoding WUS homologous domain proteins.
Conclusions.
Evaluation of molecular gynogenesis events may contribute to a better understanding of the molecular mechanism of cucumber ovarian culture.
Collapse
Affiliation(s)
- Ying Deng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
- Institute of Horticulture, Guizhou Academy of Agricultural Sciences, Guiyan, China
| | - Wenyuan Fu
- Institute of Horticulture, Guizhou Academy of Agricultural Sciences, Guiyan, China
| | - Bing Tang
- Institute of Horticulture, Guizhou Academy of Agricultural Sciences, Guiyan, China
| | - Lian Tao
- Institute of Horticulture, Guizhou Academy of Agricultural Sciences, Guiyan, China
| | - Lu Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Xia Zhou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Qingqing Wang
- Institute of Horticulture, Guizhou Academy of Agricultural Sciences, Guiyan, China
| | - Ji Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Jinfeng Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
28
|
Wang Y, Wu X, Li Y, Feng Z, Mu Z, Wang J, Wu X, Wang B, Lu Z, Li G. Identification and Validation of a Core Single-Nucleotide Polymorphism Marker Set for Genetic Diversity Assessment, Fingerprinting Identification, and Core Collection Development in Bottle Gourd. FRONTIERS IN PLANT SCIENCE 2021; 12:747940. [PMID: 34868131 PMCID: PMC8636714 DOI: 10.3389/fpls.2021.747940] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
Germplasm collections are indispensable resources for the mining of important genes and variety improvement. To preserve and utilize germplasm collections in bottle gourd, we identified and validated a highly informative core single-nucleotide polymorphism (SNP) marker set from 1,100 SNPs. This marker set consisted of 22 uniformly distributed core SNPs with abundant polymorphisms, which were established to have strong representativeness and discriminatory power based on analyses of 206 bottle gourd germplasm collections and a multiparent advanced generation inter-cross (MAGIC) population. The core SNP markers were used to assess genetic diversity and population structure, and to fingerprint important accessions, which could provide an optimized procedure for seed authentication. Furthermore, using the core SNP marker set, we developed an accessible core population of 150 accessions that represents 100% of the genetic variation in bottle gourds. This core population will make an important contribution to the preservation and utilization of bottle gourd germplasm collections, cultivar identification, and marker-assisted breeding.
Collapse
Affiliation(s)
- Ying Wang
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xiaohua Wu
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yanwei Li
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Zishan Feng
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Zihan Mu
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jiang Wang
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xinyi Wu
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Baogen Wang
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Zhongfu Lu
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Guojing Li
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
29
|
Grumet R, McCreight JD, McGregor C, Weng Y, Mazourek M, Reitsma K, Labate J, Davis A, Fei Z. Genetic Resources and Vulnerabilities of Major Cucurbit Crops. Genes (Basel) 2021; 12:1222. [PMID: 34440396 PMCID: PMC8392200 DOI: 10.3390/genes12081222] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/27/2021] [Accepted: 08/05/2021] [Indexed: 11/16/2022] Open
Abstract
The Cucurbitaceae family provides numerous important crops including watermelons (Citrullus lanatus), melons (Cucumis melo), cucumbers (Cucumis sativus), and pumpkins and squashes (Cucurbita spp.). Centers of domestication in Africa, Asia, and the Americas were followed by distribution throughout the world and the evolution of secondary centers of diversity. Each of these crops is challenged by multiple fungal, oomycete, bacterial, and viral diseases and insects that vector disease and cause feeding damage. Cultivated varieties are constrained by market demands, the necessity for climatic adaptations, domestication bottlenecks, and in most cases, limited capacity for interspecific hybridization, creating narrow genetic bases for crop improvement. This analysis of crop vulnerabilities examines the four major cucurbit crops, their uses, challenges, and genetic resources. ex situ germplasm banks, the primary strategy to preserve genetic diversity, have been extensively utilized by cucurbit breeders, especially for resistances to biotic and abiotic stresses. Recent genomic efforts have documented genetic diversity, population structure, and genetic relationships among accessions within collections. Collection size and accessibility are impacted by historical collections, current ability to collect, and ability to store and maintain collections. The biology of cucurbits, with insect-pollinated, outcrossing plants, and large, spreading vines, pose additional challenges for regeneration and maintenance. Our ability to address ongoing and future cucurbit crop vulnerabilities will require a combination of investment, agricultural, and conservation policies, and technological advances to facilitate collection, preservation, and access to critical Cucurbitaceae diversity.
Collapse
Affiliation(s)
- Rebecca Grumet
- Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA
| | - James D. McCreight
- USDA, ARS, Crop Improvement and Protection Research Unit, Salinas, CA 93905, USA;
| | - Cecilia McGregor
- Department of Horticulture and Institute of Plant Breeding, Genetics & Genomics, University of Georgia, Athens, GA 30602, USA;
| | - Yiqun Weng
- USDA-ARS Vegetable Crops Research Unit, Madison, WI 53706, USA;
| | - Michael Mazourek
- School of Integrative Plant Science, Plant Breeding & Genetics Section, Cornell University, Ithaca, NY 14853, USA;
| | - Kathleen Reitsma
- North Central Regional Plant Introduction Station, Iowa State University, Ames, IA 50014, USA;
| | - Joanne Labate
- Plant Genetic Resources Unit, United States Department of Agriculture, Agricultural Research Service, Geneva, NY 14456, USA;
| | - Angela Davis
- Sakata Seed America, Inc., Woodland, CA 95776, USA;
| | - Zhangjun Fei
- Boyce Thompson Institute, Cornell University, Ithaca, NY 14853, USA;
| |
Collapse
|
30
|
Sáez C, Ambrosio LGM, Miguel SM, Valcárcel JV, Díez MJ, Picó B, López C. Resistant Sources and Genetic Control of Resistance to ToLCNDV in Cucumber. Microorganisms 2021; 9:microorganisms9050913. [PMID: 33923281 PMCID: PMC8146778 DOI: 10.3390/microorganisms9050913] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 11/21/2022] Open
Abstract
Tomato leaf curl New Delhi virus (ToLCNDV) is a severe threat for cucurbit production worldwide. Resistance has been reported in several crops, but at present, there are no described accessions with resistance to ToLCNDV in cucumber (Cucumis sativus). C. sativus var. sativus accessions were mechanically inoculated with ToLCNDV and screened for resistance, by scoring symptom severity, tissue printing, and PCR (conventional and quantitative). Severe symptoms and high load of viral DNA were found in plants of a nuclear collection of Spanish landraces and in accessions of C. sativus from different geographical origins. Three Indian accessions (CGN23089, CGN23423, and CGN23633) were highly resistant to the mechanical inoculation, as well as all plants of their progenies obtained by selfing. To study the inheritance of the resistance to ToLCNDV, plants of the CGN23089 accession were crossed with the susceptible accession BGV011742, and F1 hybrids were used to construct segregating populations (F2 and backcrosses), which were mechanically inoculated and evaluated for symptom development and viral load by qPCR. The analysis of the genetic control fit with a recessive monogenic inheritance model, and after genotyping with SNPs distributed along the C. sativus genome, a QTL associated with ToLCNDV resistance was identified in chromosome 2 of cucumber.
Collapse
|
31
|
Genetic Diversity Assessment and Cultivar Identification of Cucumber ( Cucumis sativus L.) Using the Fluidigm Single Nucleotide Polymorphism Assay. PLANTS 2021; 10:plants10020395. [PMID: 33669519 PMCID: PMC7923078 DOI: 10.3390/plants10020395] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/13/2021] [Accepted: 02/17/2021] [Indexed: 11/16/2022]
Abstract
Genetic diversity analysis and cultivar identification were performed using a core set of single nucleotide polymorphisms (SNPs) in cucumber (Cucumis sativus L.). For the genetic diversity study, 280 cucumber accessions collected from four continents (Asia, Europe, America, and Africa) by the National Agrobiodiversity Center of the Rural Development Administration in South Korea and 20 Korean commercial F1 hybrids were genotyped using 151 Fluidigm SNP assay sets. The heterozygosity of the SNP loci per accession ranged from 4.76 to 82.76%, with an average of 32.1%. Population genetics analysis was performed using population structure analysis and hierarchical clustering (HC), which indicated that these accessions were classified mainly into four subpopulations or clusters according to their geographical origins. The subpopulations for Asian and European accessions were clearly distinguished from each other (FST value = 0.47), while the subpopulations for Korean F1 hybrids and Asian accessions were closely related (FST = 0.34). The highest differentiation was observed between American and European accessions (FST = 0.41). Nei's genetic distance among the 280 accessions was 0.414 on average. In addition, 95 commercial F1 hybrids of three cultivar groups (Baekdadagi-, Gasi-, and Nakhap-types) were genotyped using 82 Fluidigm SNP assay sets for cultivar identification. These 82 SNPs differentiated all cultivars, except seven. The heterozygosity of the SNP loci per cultivar ranged from 12.20 to 69.14%, with an average of 34.2%. Principal component analysis and HC demonstrated that most cultivars were clustered based on their cultivar groups. The Baekdadagi- and Gasi-types were clearly distinguished, while the Nakhap-type was closely related to the Baekdadagi-type. Our results obtained using core Fluidigm SNP assay sets provide useful information for germplasm assessment and cultivar identification, which are essential for breeding and intellectual right protection in cucumber.
Collapse
|
32
|
Namgung J, Do HDK, Kim C, Choi HJ, Kim JH. Complete chloroplast genomes shed light on phylogenetic relationships, divergence time, and biogeography of Allioideae (Amaryllidaceae). Sci Rep 2021; 11:3262. [PMID: 33547390 PMCID: PMC7865063 DOI: 10.1038/s41598-021-82692-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 01/18/2021] [Indexed: 01/30/2023] Open
Abstract
Allioideae includes economically important bulb crops such as garlic, onion, leeks, and some ornamental plants in Amaryllidaceae. Here, we reported the complete chloroplast genome (cpDNA) sequences of 17 species of Allioideae, five of Amaryllidoideae, and one of Agapanthoideae. These cpDNA sequences represent 80 protein-coding, 30 tRNA, and four rRNA genes, and range from 151,808 to 159,998 bp in length. Loss and pseudogenization of multiple genes (i.e., rps2, infA, and rpl22) appear to have occurred multiple times during the evolution of Alloideae. Additionally, eight mutation hotspots, including rps15-ycf1, rps16-trnQ-UUG, petG-trnW-CCA, psbA upstream, rpl32-trnL-UAG, ycf1, rpl22, matK, and ndhF, were identified in the studied Allium species. Additionally, we present the first phylogenomic analysis among the four tribes of Allioideae based on 74 cpDNA coding regions of 21 species of Allioideae, five species of Amaryllidoideae, one species of Agapanthoideae, and five species representing selected members of Asparagales. Our molecular phylogenomic results strongly support the monophyly of Allioideae, which is sister to Amaryllioideae. Within Allioideae, Tulbaghieae was sister to Gilliesieae-Leucocoryneae whereas Allieae was sister to the clade of Tulbaghieae- Gilliesieae-Leucocoryneae. Molecular dating analyses revealed the crown age of Allioideae in the Eocene (40.1 mya) followed by differentiation of Allieae in the early Miocene (21.3 mya). The split of Gilliesieae from Leucocoryneae was estimated at 16.5 mya. Biogeographic reconstruction suggests an African origin for Allioideae and subsequent spread to Eurasia during the middle Eocene. Cool and arid conditions during the late Eocene led to isolation between African and Eurasian species. African Allioideae may have diverged to South American taxa in the late Oligocene. Rather than vicariance, long-distance dispersal is the most likely explanation for intercontinental distribution of African and South American Allioideae species.
Collapse
Affiliation(s)
- Ju Namgung
- Department of Life Science, Gachon University, Seongnam, 13120, Republic of Korea
| | - Hoang Dang Khoa Do
- Department of Life Science, Gachon University, Seongnam, 13120, Republic of Korea
- Nguyen Tat Thanh Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| | - Changkyun Kim
- Department of Life Science, Gachon University, Seongnam, 13120, Republic of Korea
| | - Hyeok Jae Choi
- Department of Biology and Chemistry, Changwon National University, Gyeongsangnamdo, 51140, Republic of Korea
| | - Joo-Hwan Kim
- Department of Life Science, Gachon University, Seongnam, 13120, Republic of Korea.
| |
Collapse
|
33
|
Gao Y, Yang Z, Yang W, Yang Y, Gong J, Yang QY, Niu X. Plant-ImputeDB: an integrated multiple plant reference panel database for genotype imputation. Nucleic Acids Res 2021; 49:D1480-D1488. [PMID: 33137192 PMCID: PMC7779032 DOI: 10.1093/nar/gkaa953] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/23/2020] [Accepted: 10/08/2020] [Indexed: 12/21/2022] Open
Abstract
Genotype imputation is a process that estimates missing genotypes in terms of the haplotypes and genotypes in a reference panel. It can effectively increase the density of single nucleotide polymorphisms (SNPs), boost the power to identify genetic association and promote the combination of genetic studies. However, there has been a lack of high-quality reference panels for most plants, which greatly hinders the application of genotype imputation. Here, we developed Plant-ImputeDB (http://gong_lab.hzau.edu.cn/Plant_imputeDB/), a comprehensive database with reference panels of 12 plant species for online genotype imputation, SNP and block search and free download. By integrating genotype data and whole-genome resequencing data of plants from various studies and databases, the current Plant-ImputeDB provides high-quality reference panels of 12 plant species, including ∼69.9 million SNPs from 34 244 samples. It also provides an easy-to-use online tool with the option of two popular tools specifically designed for genotype imputation. In addition, Plant-ImputeDB accepts submissions of different types of genomic variations, and provides free and open access to all publicly available data in support of related research worldwide. In general, Plant-ImputeDB may serve as an important resource for plant genotype imputation and greatly facilitate the research on plant genetic research.
Collapse
Affiliation(s)
- Yingjie Gao
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Zhiquan Yang
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Wenqian Yang
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Yanbo Yang
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Jing Gong
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, P.R. China.,College of Biomedicine and Health, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Qing-Yong Yang
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, P.R. China.,College of Agriculture, Shihezi University, Xinjiang 832003, P.R. China
| | - Xiaohui Niu
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, P.R. China
| |
Collapse
|
34
|
Wang Y, Jiang B, Dymerski R, Xu X, Weng Y. Quantitative trait loci for horticulturally important traits defining the Sikkim cucumber, Cucumis sativus var. sikkimensis. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:229-247. [PMID: 32997165 DOI: 10.1007/s00122-020-03693-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 09/18/2020] [Indexed: 06/11/2023]
Abstract
QTL mapping identified simply inherited genes and quantitative trait loci underlying morphologically characteristic traits of the Sikkim cucumber, which reveals their genetic basis during crop evolution. The data suggest the Sikkim cucumber as an ecotype of cultivated cucumber not worthy of formal taxonomic recognition. The Sikkim cucumber, Cucumis sativus var. sikkimensis, is featured with some morphological traits like black spine, brown fruit with fine and heavy netting, as well as large hollow in mature fruit. Despite its establishment as a botanical variety ~ 150 years ago, and its wide use as an important source of disease resistances in cucumber breeding, little is known about its taxonomic status and genetic basis of those characteristic traits. Here we reported QTL mapping with segregating populations derived from two Sikkim-type inbred lines, WI7088D and WI7120, and identification of 48 QTL underlying phenotypic variation for 18 horticulturally important traits. We found that the fruit spine and skin colors in the two populations were controlled by the previously cloned pleiotropic B (black spine) locus. The fruit netting in WI7088D and WI7120 was controlled by the well-known H (Heavy netting) and a novel Rs (Russet skin) locus, which was delimited to a 271-kb region on Chr5 and ~ 736-kb region on Chr1, respectively. A single major-effect QTL was detected for flowering time in each population (ft1.1 for WI7088D and ft6.2 for WI7120). Fifteen, six and five QTL were identified for fruit size, hollow size and flesh thickness variation in the two populations, respectively. No major structural changes were found between the Sikkim and cultivated cucumbers. Except for the rare allele at the Rs locus, there seem no private QTL/alleles identified from this study supporting the Sikkim cucumber as an ecotype of C. sativus, not worthy of formal taxonomic recognition.
Collapse
Affiliation(s)
- Yuhui Wang
- Horticulture Department, University of Wisconsin - Madison, Madison, WI, 53706, USA
| | - Biao Jiang
- Horticulture Department, University of Wisconsin - Madison, Madison, WI, 53706, USA
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Ronald Dymerski
- Horticulture Department, University of Wisconsin - Madison, Madison, WI, 53706, USA
| | - Xuewen Xu
- Horticulture Department, University of Wisconsin - Madison, Madison, WI, 53706, USA
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Yiqun Weng
- Horticulture Department, University of Wisconsin - Madison, Madison, WI, 53706, USA.
- USDA-ARS Vegetable Crops Research Unit, Madison, WI, 53705, USA.
| |
Collapse
|
35
|
Liu X, Lu H, Liu P, Miao H, Bai Y, Gu X, Zhang S. Identification of Novel Loci and Candidate Genes for Cucumber Downy Mildew Resistance Using GWAS. PLANTS 2020; 9:plants9121659. [PMID: 33260843 PMCID: PMC7768435 DOI: 10.3390/plants9121659] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/16/2020] [Accepted: 11/24/2020] [Indexed: 11/16/2022]
Abstract
Downy mildew (DM) is one of the most serious diseases in cucumber. Multiple quantitative trait loci (QTLs) for DM resistance have been detected in a limited number of cucumber accessions. In this study we applied genome-wide association analysis (GWAS) to detected genetic loci for DM resistance in a core germplasm (CG) of cucumber lines that represent diverse origins and ecotypes. Phenotypic data on responses to DM infection were collected in four field trials across three years, 2014, 2015, and 2016. With the resequencing data of these CG lines, GWAS for DM resistance was performed and detected 18 loci that were distributed on all the seven cucumber chromosomes. Of these 18 loci, only six (dmG1.4, dmG4.1, dmG4.3, dmG5.2, dmG7.1, and dmG7.2) were detected in two experiments, and were considered as loci with a stable effect on DM resistance. Further, 16 out of the 18 loci colocalized with the QTLs that were reported in previous studies and two loci, dmG2.1 and dmG7.1, were novel ones identified only in this study. Based on the annotation of homologous genes in Arabidopsis and pairwise LD correlation analysis, several candidate genes were identified as potential causal genes underlying the stable and novel loci, including Csa1G575030 for dmG1.4, Csa2G060360 for dmG2.1, Csa4G064680 for dmG4.1, Csa5G606470 for dmG5.2, and Csa7G004020 for dmG7.1. This study shows that the CG germplasm is a very valuable resource carrying known and novel QTLs for DM resistance. The potential of using these CG lines for future allele-mining of candidate genes was discussed in the context of breeding cucumber with resistance to DM.
Collapse
Affiliation(s)
- Xiaoping Liu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (X.L.); (H.L.); (P.L.); (H.M.)
| | - Hongwei Lu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (X.L.); (H.L.); (P.L.); (H.M.)
| | - Panna Liu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (X.L.); (H.L.); (P.L.); (H.M.)
| | - Han Miao
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (X.L.); (H.L.); (P.L.); (H.M.)
| | - Yuling Bai
- Plant Breeding, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
- Correspondence: (Y.B.); (X.G.); (S.Z.)
| | - Xingfang Gu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (X.L.); (H.L.); (P.L.); (H.M.)
- Correspondence: (Y.B.); (X.G.); (S.Z.)
| | - Shengping Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (X.L.); (H.L.); (P.L.); (H.M.)
- Correspondence: (Y.B.); (X.G.); (S.Z.)
| |
Collapse
|
36
|
Aguado E, García A, Iglesias-Moya J, Romero J, Wehner TC, Gómez-Guillamón ML, Picó B, Garcés-Claver A, Martínez C, Jamilena M. Mapping a Partial Andromonoecy Locus in Citrullus lanatus Using BSA-Seq and GWAS Approaches. FRONTIERS IN PLANT SCIENCE 2020; 11:1243. [PMID: 32973825 PMCID: PMC7466658 DOI: 10.3389/fpls.2020.01243] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/29/2020] [Indexed: 05/11/2023]
Abstract
The sexual expression of watermelon plants is the result of the distribution and occurrence of male, female, bisexual and hermaphrodite flowers on the main and secondary stems. Plants can be monoecious (producing male and female flowers), andromonoecious (producing male and hermaphrodite flowers), or partially andromonoecious (producing male, female, bisexual, and hermaphrodite flowers) within the same plant. Sex determination of individual floral buds and the distribution of the different flower types on the plant, are both controlled by ethylene. A single missense mutation in the ethylene biosynthesis gene CitACS4, is able to promote the conversion of female into hermaphrodite flowers, and therefore of monoecy (genotype MM) into partial andromonoecy (genotype Mm) or andromonoecy (genotype mm). We phenotyped and genotyped, for the M/m locus, a panel of 207 C. lanatus accessions, including five inbreds and hybrids, and found several accessions that were repeatedly phenotyped as PA (partially andromonoecious) in several locations and different years, despite being MM. A cosegregation analysis between a SNV in CitACS4 and the PA phenotype, demonstrated that the occurrence of bisexual and hermaphrodite flowers in a PA line is not dependent on CitACS4, but conferred by an unlinked recessive gene which we called pa. Two different approaches were performed to map the pa gene in the genome of C. lanatus: bulk segregant analysis sequencing (BSA-seq) and genome wide association analysis studies (GWAS). The BSA-seq study was performed using two contrasting bulks, the monoecious M-bulk and the partially andromonoecious PA-bulk, each one generated by pooling DNA from 20 F2 plants. For GWAS, 122 accessions from USDA gene bank, already re-sequenced by genotyping by sequencing (GBS), were used. The combination of the two approaches indicates that pa maps onto a genomic region expanding across 32.24-36.44 Mb in chromosome 1 of watermelon. Fine mapping narrowed down the pa locus to a 867 Kb genomic region containing 101 genes. A number of candidate genes were selected, not only for their function in ethylene biosynthesis and signalling as well as their role in flower development and sex determination, but also by the impact of the SNPs and indels differentially detected in the two sequenced bulks.
Collapse
Affiliation(s)
- Encarnación Aguado
- Department of Biology and Geology, Research Centers CIAIMBITAL and CeiA3, University of Almería, Almería, Spain
| | - Alicia García
- Department of Biology and Geology, Research Centers CIAIMBITAL and CeiA3, University of Almería, Almería, Spain
| | - Jessica Iglesias-Moya
- Department of Biology and Geology, Research Centers CIAIMBITAL and CeiA3, University of Almería, Almería, Spain
| | - Jonathan Romero
- Department of Biology and Geology, Research Centers CIAIMBITAL and CeiA3, University of Almería, Almería, Spain
| | - Todd C. Wehner
- Departament of Horticultural Science, North Carolina State University, Raleigh, NC, United States
| | | | - Belén Picó
- COMAV—Universidad Politécnica de Valencia, Valencia, Spain
| | | | - Cecilia Martínez
- Department of Biology and Geology, Research Centers CIAIMBITAL and CeiA3, University of Almería, Almería, Spain
| | - Manuel Jamilena
- Department of Biology and Geology, Research Centers CIAIMBITAL and CeiA3, University of Almería, Almería, Spain
| |
Collapse
|
37
|
Xu X, Wei C, Liu Q, Qu W, Qi X, Xu Q, Chen X. The major-effect quantitative trait locus Fnl7.1 encodes a late embryogenesis abundant protein associated with fruit neck length in cucumber. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:1598-1609. [PMID: 31916321 PMCID: PMC7292543 DOI: 10.1111/pbi.13326] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 12/06/2019] [Indexed: 06/03/2023]
Abstract
Fruit neck length (FNL) is an important quality trait in cucumber because it directly affects its market value. However, its genetic basis remains largely unknown. We identified a candidate gene for FNL in cucumber using a next-generation sequencing-based bulked segregant analysis in F2 populations, derived from a cross between Jin5-508 (long necked) and YN (short necked). A quantitative trait locus (QTL) on chromosome 7, Fnl7.1, was identified through a genome-wide comparison of single nucleotide polymorphisms between long and short FNL F2 pools, and it was confirmed by traditional QTL mapping in multiple environments. Fine genetic mapping, sequences alignment and gene expression analysis revealed that CsFnl7.1 was the most likely candidate Fnl7.1 locus, which encodes a late embryogenesis abundant protein. The increased expression of CsFnl7.1 in long-necked Jin5-508 may be attributed to mutations in the promoter region upstream of the gene body. The function of CsFnl7.1 in FNL control was confirmed by its overexpression in transgenic cucumbers. CsFnl7.1 regulates fruit neck development by modulating cell expansion. Probably, this is achieved through the direct protein-protein interactions between CsFnl7.1 and a dynamin-related protein CsDRP6 and a germin-like protein CsGLP1. Geographical distribution differences of the FNL phenotype were found among the different cucumber types. The East Asian and Eurasian cucumber accessions were highly enriched with the long-necked and short-necked phenotypes, respectively. A further phylogenetic analysis revealed that the Fnl7.1 locus might have originated from India. Thus, these data support that the CsFnl7.1 has an important role in increasing cucumber FNL.
Collapse
Affiliation(s)
- Xuewen Xu
- School of Horticulture and Plant ProtectionYangzhou UniversityYangzhouJiangsuChina
- Joint International Research Laboratory of Agriculture and Agri‐Product Safetythe Ministry of Education of ChinaYangzhou UniversityYangzhouJiangsuChina
| | - Chenxi Wei
- School of Horticulture and Plant ProtectionYangzhou UniversityYangzhouJiangsuChina
| | - Qianya Liu
- School of Horticulture and Plant ProtectionYangzhou UniversityYangzhouJiangsuChina
| | - Wenqing Qu
- School of Horticulture and Plant ProtectionYangzhou UniversityYangzhouJiangsuChina
| | - Xiaohua Qi
- School of Horticulture and Plant ProtectionYangzhou UniversityYangzhouJiangsuChina
| | - Qiang Xu
- School of Horticulture and Plant ProtectionYangzhou UniversityYangzhouJiangsuChina
| | - Xuehao Chen
- School of Horticulture and Plant ProtectionYangzhou UniversityYangzhouJiangsuChina
- Joint International Research Laboratory of Agriculture and Agri‐Product Safetythe Ministry of Education of ChinaYangzhou UniversityYangzhouJiangsuChina
| |
Collapse
|
38
|
Pavan S, Delvento C, Ricciardi L, Lotti C, Ciani E, D'Agostino N. Recommendations for Choosing the Genotyping Method and Best Practices for Quality Control in Crop Genome-Wide Association Studies. Front Genet 2020; 11:447. [PMID: 32587600 PMCID: PMC7299185 DOI: 10.3389/fgene.2020.00447] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 04/14/2020] [Indexed: 12/19/2022] Open
Abstract
High-throughput genotyping boosts genome-wide association studies (GWAS) in crop species, leading to the identification of single-nucleotide polymorphisms (SNPs) associated with economically important traits. Choosing a cost-effective genotyping method for crop GWAS requires careful examination of several aspects, namely, the purpose and the scale of the study, crop-specific genomic features, and technical and economic matters associated with each genotyping option. Once genotypic data have been obtained, quality control (QC) procedures must be applied to avoid bias and false signals in genotype–phenotype association tests. QC for human GWAS has been extensively reviewed; however, QC for crop GWAS may require different actions, depending on the GWAS population type. Here, we review most popular genotyping methods based on next-generation sequencing (NGS) and array hybridization, and report observations that should guide the investigator in the choice of the genotyping method for crop GWAS. We provide recommendations to perform QC in crop species, and deliver an overview of bioinformatics tools that can be used to accomplish all needed tasks. Overall, this work aims to provide guidelines to harmonize those procedures leading to SNP datasets ready for crop GWAS.
Collapse
Affiliation(s)
- Stefano Pavan
- Department of Soil, Plant and Food Science, Section of Genetics and Plant Breeding, University of Bari Aldo Moro, Bari, Italy.,Institute of Biomedical Technologies, National Research Council (CNR), Bari, Italy
| | - Chiara Delvento
- Department of Soil, Plant and Food Science, Section of Genetics and Plant Breeding, University of Bari Aldo Moro, Bari, Italy
| | - Luigi Ricciardi
- Department of Soil, Plant and Food Science, Section of Genetics and Plant Breeding, University of Bari Aldo Moro, Bari, Italy
| | - Concetta Lotti
- Department of Agricultural, Food and Environmental Sciences, University of Foggia, Foggia, Italy
| | - Elena Ciani
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Bari, Italy
| | - Nunzio D'Agostino
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| |
Collapse
|
39
|
Zheng Y, Wu S, Bai Y, Sun H, Jiao C, Guo S, Zhao K, Blanca J, Zhang Z, Huang S, Xu Y, Weng Y, Mazourek M, K Reddy U, Ando K, McCreight JD, Schaffer AA, Burger J, Tadmor Y, Katzir N, Tang X, Liu Y, Giovannoni JJ, Ling KS, Wechter WP, Levi A, Garcia-Mas J, Grumet R, Fei Z. Cucurbit Genomics Database (CuGenDB): a central portal for comparative and functional genomics of cucurbit crops. Nucleic Acids Res 2020; 47:D1128-D1136. [PMID: 30321383 PMCID: PMC6324010 DOI: 10.1093/nar/gky944] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 10/04/2018] [Indexed: 11/17/2022] Open
Abstract
The Cucurbitaceae family (cucurbit) includes several economically important crops, such as melon, cucumber, watermelon, pumpkin, squash and gourds. During the past several years, genomic and genetic data have been rapidly accumulated for cucurbits. To store, mine, analyze, integrate and disseminate these large-scale datasets and to provide a central portal for the cucurbit research and breeding community, we have developed the Cucurbit Genomics Database (CuGenDB; http://cucurbitgenomics.org) using the Tripal toolkit. The database currently contains all available genome and expressed sequence tag (EST) sequences, genetic maps, and transcriptome profiles for cucurbit species, as well as sequence annotations, biochemical pathways and comparative genomic analysis results such as synteny blocks and homologous gene pairs between different cucurbit species. A set of analysis and visualization tools and user-friendly query interfaces have been implemented in the database to facilitate the usage of these large-scale data by the community. In particular, two new tools have been developed in the database, a ‘SyntenyViewer’ to view genome synteny between different cucurbit species and an ‘RNA-Seq’ module to analyze and visualize gene expression profiles. Both tools have been packed as Tripal extension modules that can be adopted in other genomics databases developed using the Tripal system.
Collapse
Affiliation(s)
- Yi Zheng
- Boyce Thompson Institute, Cornell University, Ithaca, NY 14853, USA
| | - Shan Wu
- Boyce Thompson Institute, Cornell University, Ithaca, NY 14853, USA
| | - Yang Bai
- Boyce Thompson Institute, Cornell University, Ithaca, NY 14853, USA
| | - Honghe Sun
- Boyce Thompson Institute, Cornell University, Ithaca, NY 14853, USA.,National Engineering Research Center for Vegetables, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, China
| | - Chen Jiao
- Boyce Thompson Institute, Cornell University, Ithaca, NY 14853, USA
| | - Shaogui Guo
- Boyce Thompson Institute, Cornell University, Ithaca, NY 14853, USA.,National Engineering Research Center for Vegetables, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, China
| | - Kun Zhao
- Boyce Thompson Institute, Cornell University, Ithaca, NY 14853, USA
| | - Jose Blanca
- Institute for the Conservation and Breeding of Agricultural Biodiversity (COMAV-UPV), Universitat Politècnica de València, Valencia 46022, Spain
| | - Zhonghua Zhang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Sanwen Huang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.,Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518124, China
| | - Yong Xu
- National Engineering Research Center for Vegetables, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, China
| | - Yiqun Weng
- U.S. Department of Agriculture-Agricultural Research Service, Vegetable Crops Research Unit, Madison, WI 53706, USA.,Department of Horticulture, University of Wisconsin, Madison, WI 53706, USA
| | - Michael Mazourek
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Umesh K Reddy
- Department of Biology, West Virginia State University, Institute, WV 25112, USA
| | - Kaori Ando
- U.S. Department of Agriculture-Agricultural Research Service, Crop Improvement and Protection Research Unit, Salinas, CA 93905, USA
| | - James D McCreight
- U.S. Department of Agriculture-Agricultural Research Service, Crop Improvement and Protection Research Unit, Salinas, CA 93905, USA
| | - Arthur A Schaffer
- Plant Science Institute, Agricultural Research Organization, The Volcani Center, P.O.B. 6, Bet-Dagan 50250, Israel
| | - Joseph Burger
- Plant Science Institute, Agricultural Research Organization, Newe Yaar Research Center, Ramat Yishai 30095, Israel
| | - Yaakov Tadmor
- Plant Science Institute, Agricultural Research Organization, Newe Yaar Research Center, Ramat Yishai 30095, Israel
| | - Nurit Katzir
- Plant Science Institute, Agricultural Research Organization, Newe Yaar Research Center, Ramat Yishai 30095, Israel
| | - Xuemei Tang
- Boyce Thompson Institute, Cornell University, Ithaca, NY 14853, USA
| | - Yang Liu
- Boyce Thompson Institute, Cornell University, Ithaca, NY 14853, USA.,Horticulture Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - James J Giovannoni
- Boyce Thompson Institute, Cornell University, Ithaca, NY 14853, USA.,U.S. Department of Agriculture-Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, Ithaca, NY 14853, USA
| | - Kai-Shu Ling
- U.S. Department of Agriculture-Agricultural Research Service, U.S. Vegetable Laboratory, 2700 Savannah Highway, Charleston, SC 29414, USA
| | - W Patrick Wechter
- U.S. Department of Agriculture-Agricultural Research Service, U.S. Vegetable Laboratory, 2700 Savannah Highway, Charleston, SC 29414, USA
| | - Amnon Levi
- U.S. Department of Agriculture-Agricultural Research Service, U.S. Vegetable Laboratory, 2700 Savannah Highway, Charleston, SC 29414, USA
| | - Jordi Garcia-Mas
- Centre for Research in Agricultural Genomics CSIC-IRTA-UAB-UB, Barcelona 08193, Spain.,Institut de Recerca i Tecnologia Agroalimentàries, Barcelona 08193, Spain
| | - Rebecca Grumet
- Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA
| | - Zhangjun Fei
- Boyce Thompson Institute, Cornell University, Ithaca, NY 14853, USA.,U.S. Department of Agriculture-Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, Ithaca, NY 14853, USA
| |
Collapse
|
40
|
Li Z, Han Y, Niu H, Wang Y, Jiang B, Weng Y. Gynoecy instability in cucumber ( Cucumis sativus L.) is due to unequal crossover at the copy number variation-dependent Femaleness ( F) locus. HORTICULTURE RESEARCH 2020; 7:32. [PMID: 32194968 PMCID: PMC7072070 DOI: 10.1038/s41438-020-0251-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 01/06/2020] [Accepted: 01/15/2020] [Indexed: 05/06/2023]
Abstract
Cucumber, Cucumis sativus is an important vegetable crop, and gynoecy has played a critical role in yield increase of hybrid cucumber production. Cucumber has a unique genetic system for gynoecious sex expression, which is determined by the copy number variation (CNV)-based, dominant, and dosage-dependent femaleness (F) locus. However, this gynoecy expression system seems unstable since monecious plants could often be found in F-dependent gynoecious cucumber inbreds. We hypothesized that gynoecy instability (gynoecy loss) may be due to unequal crossing over (UCO) during meiosis among repeat units of the CNV. In this study, using high throughput genome resequencing, fiber-FISH and genomic qPCR analyses, we first confirmed and refined the structure of the F locus, which was a CNV of a 30.2-kb tandem repeat. Gynoecious plants contained three genes: CsACS1, CsACS1G, and CsMYB, of which CsACS1G is a duplication of CsACS1 but with a recombinant distal promoter that may contribute to gynoecy sex expression. In two large populations from self-pollinated gynoecious inbred lines, 'gynoecy loss' mutants were identified with similar mutation rates (~0.12%). We show that these monecious mutants have lost CsACS1G. In addition, we identified gynoecious lines in natural populations that carry two copies of CSACS1G. We proposed a model to explain gynoecy instability in F-dependent cucumbers, which is caused by UCO among CSACS1/G units during meiosis. The findings present a convincing case that the phenotypic variation of an economically important trait is associated with the dynamic changes of copy numbers at the F locus. This work also has important implications in cucumber breeding.
Collapse
Affiliation(s)
- Zheng Li
- Horticulture Department, University of Wisconsin, Madison, WI 53706 USA
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100 China
| | - Yonghua Han
- Horticulture Department, University of Wisconsin, Madison, WI 53706 USA
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116 China
| | - Huanhuan Niu
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100 China
| | - Yuhui Wang
- Horticulture Department, University of Wisconsin, Madison, WI 53706 USA
| | - Biao Jiang
- Horticulture Department, University of Wisconsin, Madison, WI 53706 USA
- Vegetable Research Institute, Guangdong Academy of Agricultural Science, Guangzhou, Guangdong 510640 China
| | - Yiqun Weng
- Horticulture Department, University of Wisconsin, Madison, WI 53706 USA
- USDA-ARS, Vegetable Crops Research Unit, Madison, WI 53706 USA
| |
Collapse
|
41
|
Wang S, Li H, Li Y, Li Z, Qi J, Lin T, Yang X, Zhang Z, Huang S. FLOWERING LOCUS T Improves Cucumber Adaptation to Higher Latitudes. PLANT PHYSIOLOGY 2020; 182:908-918. [PMID: 31843803 PMCID: PMC6997709 DOI: 10.1104/pp.19.01215] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 11/22/2019] [Indexed: 05/10/2023]
Abstract
Flowering time plays a crucial role in the geographical adaptation of most crops during domestication. Cucumber (Cucumis sativus) is a major vegetable crop worldwide. From its tropical origin on the southern Asian continent, cucumber has spread over a wide latitudinal cline, but the molecular mechanisms underlying this latitudinal adaptation and the expansion of domesticated cucumber are largely unclear. Here, we report the cloning of two flowering time loci from two distinct cucumber populations and show that two large deletions upstream from FLOWERING LOCUS T (FT) are associated with higher expression of FT and earlier flowering. We determined that the two large deletions are pervasive and occurred independently in Eurasian and East-Asian populations. Nucleotide diversity analysis further revealed that the FT locus region of the cucumber genome contains a signature for a selective sweep during domestication. Our results suggest that large genetic structural variations upstream from FT were selected for and have been important in the geographic spread of cucumber from its tropical origin to higher latitudes.
Collapse
Affiliation(s)
- Shenhao Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, China
- Lingnan Guangdong Laboratory of Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Hongbo Li
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of Ministry of Agriculture, Sino-Dutch Joint Lab of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yangyang Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Zheng Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Jianjian Qi
- Inner Mongolia Potato Engineering and Technology Research Centre, Inner Mongolia University, Hohhot 010021, China
| | - Tao Lin
- College of Horticulture, China Agricultural University, Beijing 100094, China
| | - Xueyong Yang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of Ministry of Agriculture, Sino-Dutch Joint Lab of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhonghua Zhang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of Ministry of Agriculture, Sino-Dutch Joint Lab of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Sanwen Huang
- Lingnan Guangdong Laboratory of Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| |
Collapse
|
42
|
Liu M, Hu X, Wang X, Zhang J, Peng X, Hu Z, Liu Y. Constructing a Core Collection of the Medicinal Plant Angelica biserrata Using Genetic and Metabolic Data. FRONTIERS IN PLANT SCIENCE 2020; 11:600249. [PMID: 33424898 PMCID: PMC7785966 DOI: 10.3389/fpls.2020.600249] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 12/02/2020] [Indexed: 05/16/2023]
Abstract
Angelica biserrata is an important medicinal plant in Chinese traditional medicine. Its roots, which are known as Duhuo in Chinese, are broadly applied to treat inflammation, arthritis, and headache. With increasing market demand, the wild resources of A. biserrata have been overexploited, and conservation, assessment of genetic resources and breeding for this species is needed. Here, we sequenced the transcriptome of A. biserrata and developed simple sequence repeat (SSR) markers from it to construct a core collection based on 208 samples collected from Changyang-related regions. A total of 132 alleles were obtained for 17 SSR loci used with the polymorphic information content (PIC) ranging from 0.44 to 0.83. Abundant genetic diversity was inferred by Shannon's information index (1.51), observed (0.57) and expected heterozygosity (0.72). The clustering analysis resulted into two sample groups and analysis of molecular variance (AMOVA) showed only 6% genetic variation existed among populations. A further metabolic analysis of these samples revealed the main coumarin contents, such as osthole and columbianadin. According to the genetic and metabolic data, we adopted the least distance stepwise sampling strategy to construct seven preliminary core collections, of which the 20CC collection, which possessed 42 A. biserrata individuals accounting for 90.20% of the genetic diversity of the original germplasm, represented the best core collection. This study will contribute to the conservation and management of A. biserrata wild germplasm resources and provide a material basis for future selection and breeding of this medicinal plant.
Collapse
Affiliation(s)
- Man Liu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Xin Hu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Xu Wang
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Jingjing Zhang
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Xubing Peng
- Hubei Kangnong Seed Co., Ltd., Yichang, China
| | - Zhigang Hu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
- *Correspondence: Zhigang Hu,
| | - Yifei Liu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
- Yifei Liu,
| |
Collapse
|
43
|
Soleimani B, Lehnert H, Keilwagen J, Plieske J, Ordon F, Naseri Rad S, Ganal M, Beier S, Perovic D. Comparison Between Core Set Selection Methods Using Different Illumina Marker Platforms: A Case Study of Assessment of Diversity in Wheat. FRONTIERS IN PLANT SCIENCE 2020; 11:1040. [PMID: 32754184 PMCID: PMC7381318 DOI: 10.3389/fpls.2020.01040] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 06/24/2020] [Indexed: 05/16/2023]
Abstract
Collections of plant genetic resources stored in genebanks are an important source of genetic diversity for improvement in plant breeding programs and for conservation of natural variation. The establishment of reduced representative collections from a large set of genotypes is a valuable tool that provides cost-effective access to the diversity present in the whole set. Software like Core Hunter 3 is available to generate high quality core sets. In addition, general clustering approaches, e.g., k-medoids, are available to subdivide a large data set into small groups with maximum genetic diversity between groups. Illumina genotyping platforms are a very efficient tool for the assessment of genetic diversity of plant genetic resources. The accumulation of genotyping data over time using commercial genotyping platforms raises the question of how such huge amount of information can be efficiently used for creating core collections. In the present study, after developing a 15K wheat Infinium array with 12,908 SNPs and genotyping a set of 479 hexaploid winter wheat lines (Triticum aestivum), a larger data set was created by merging 411 lines previously genotyped with the 90K iSelect array. Overlaying the markers from the 15K and 90K arrays enabled the identification of a common set of 12,806 markers, suggesting that the 15K array is a valuable and cost-effective resource for plant breeding programs. Finally, we selected genetically diverse core sets out of these 890 wheat genotypes derived from five collections based on the common markers from the 15K and 90K SNP arrays. Two different approaches, k-medoids and Core Hunter 3 were compared,and k-medoids was identified as an efficient method for selecting small core sets out of a large collection of genotypes while retaining the genetic diversity of the original population.
Collapse
Affiliation(s)
- Behnaz Soleimani
- Federal Research Centre for Cultivated Plants, Institute for Resistance Research and Stress Tolerance, Julius Kuehn Institute, Quedlinburg, Germany
| | - Heike Lehnert
- Institute for Biosafety in Plant Biotechnology, Julius Kuehn Institute, Quedlinburg, Germany
| | - Jens Keilwagen
- Institute for Biosafety in Plant Biotechnology, Julius Kuehn Institute, Quedlinburg, Germany
| | | | - Frank Ordon
- Federal Research Centre for Cultivated Plants, Institute for Resistance Research and Stress Tolerance, Julius Kuehn Institute, Quedlinburg, Germany
| | - Sara Naseri Rad
- Department of Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
| | | | - Sebastian Beier
- Department of Breeding Research, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
| | - Dragan Perovic
- Federal Research Centre for Cultivated Plants, Institute for Resistance Research and Stress Tolerance, Julius Kuehn Institute, Quedlinburg, Germany
- *Correspondence: Dragan Perovic,
| |
Collapse
|
44
|
Liu B, Guan D, Zhai X, Yang S, Xue S, Chen S, Huang J, Ren H, Liu X. Selection footprints reflect genomic changes associated with breeding efforts in 56 cucumber inbred lines. HORTICULTURE RESEARCH 2019; 6:127. [PMID: 31754434 PMCID: PMC6856066 DOI: 10.1038/s41438-019-0209-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 09/01/2019] [Accepted: 10/13/2019] [Indexed: 06/10/2023]
Abstract
Cucumber selective breeding over recent decades has dramatically increased productivity and quality, but the genomic characterizations and changes associated with this breeding history remain unclear. Here, we analyzed the genome resequencing data of 56 artificially selected cucumber inbred lines that exhibit various phenotypes to detect trait-associated sequence variations that reflect breeding improvement. We found that the 56 cucumber lines could be assigned to group 1 and group 2, and the two groups formed a distinctive genetic structure due to the breeding history involving hybridization and selection. Differentially selected regions were identified between group 1 and group 2, with implications for genomic-selection breeding signatures. These regions included known quantitative trait loci or genes that were reported to be associated with agronomic traits. Our results advance knowledge of cucumber genomics, and the 56 selected inbred lines could be good germplasm resources for breeding.
Collapse
Affiliation(s)
- Bin Liu
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193 P. R. China
| | - Dailu Guan
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus Universitat Autònoma de Barcelona, Bellaterra, 08193 Spain
| | - Xuling Zhai
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193 P. R. China
| | - Sen Yang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193 P. R. China
| | - Shudan Xue
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193 P. R. China
| | - Shuying Chen
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193 P. R. China
| | - Jing Huang
- Department of Agronomy, College of Agriculture, Purdue University, West Lafayette, IN 47907 USA
| | - Huazhong Ren
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193 P. R. China
| | - Xingwang Liu
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193 P. R. China
| |
Collapse
|
45
|
Zhang C, Win KT, Kim YC, Lee S. Two types of mutations in the HEUKCHEEM gene functioning in cucumber spine color development can be used as signatures for cucumber domestication. PLANTA 2019; 250:1491-1504. [PMID: 31332520 DOI: 10.1007/s00425-019-03244-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 07/18/2019] [Indexed: 05/25/2023]
Abstract
The HEUKCHEEM gene plays an important role in spine color formation. A white spine occurs due to two mutations in HEUKCHEEM and is closely related to the regional distribution of these mutants. Mapping analysis revealed that the HEUKCHEEM gene is co-segregated with the B locus in the regulation of black spine color development in cucumber fruit. HEUKCHEEM induced the expression of the genes involved in the anthocyanin biosynthetic pathway, leading to the accumulation of anthocyanins in black spines. The transiently over-expressed HEUKCHEEM in cucumber and tobacco plants enhanced the expression of anthocyanin biosynthesis-related genes, leading to anthocyanin accumulation. However, two mutations-insertion of the 6994 bp mutator-like transposable element (MULE) sequence into the second intron and one single-nucleotide polymorphism (SNP) of C to T in the second exon of HEUKCHEEM-were identified in white spines, leading to no accumulation of anthocyanin biosynthesis-related gene transcripts and anthocyanins. Furthermore, association analysis using 104 cucumber accessions with different geographical origins revealed that the types of mutations in HEUKCHEEM are strongly linked to geographical origins. The MULE insertion is found extensively in cucumbers with white spines in East Asia and Australia. However, cucumbers with white spines in other areas could be significantly influenced by a single SNP mutation. Our results provide fundamental information on spine color development in cucumber fruits and spine color-based cucumber breeding programs.
Collapse
Affiliation(s)
- Chunying Zhang
- Plant Genomics Laboratory, Department of Bio-resource Engineering, College of Life Sciences, Sejong University, 209 Neungdong-ro, Gwanjing-gu, Seoul, 05006, Republic of Korea
| | - Khin Thanda Win
- Plant Genomics Laboratory, Department of Bio-resource Engineering, College of Life Sciences, Sejong University, 209 Neungdong-ro, Gwanjing-gu, Seoul, 05006, Republic of Korea
| | - Young-Cheon Kim
- Plant Genomics Laboratory, Department of Bio-resource Engineering, College of Life Sciences, Sejong University, 209 Neungdong-ro, Gwanjing-gu, Seoul, 05006, Republic of Korea
| | - Sanghyeob Lee
- Plant Genomics Laboratory, Department of Bio-resource Engineering, College of Life Sciences, Sejong University, 209 Neungdong-ro, Gwanjing-gu, Seoul, 05006, Republic of Korea.
- Plant Engineering Research Institute, Sejong University, 209 Neungdong-ro, Gwanjing-gu, Seoul, 05006, Republic of Korea.
| |
Collapse
|
46
|
Zhao J, Jiang L, Che G, Pan Y, Li Y, Hou Y, Zhao W, Zhong Y, Ding L, Yan S, Sun C, Liu R, Yan L, Wu T, Li X, Weng Y, Zhang X. A Functional Allele of CsFUL1 Regulates Fruit Length through Repressing CsSUP and Inhibiting Auxin Transport in Cucumber. THE PLANT CELL 2019; 31:1289-1307. [PMID: 30979795 PMCID: PMC6588310 DOI: 10.1105/tpc.18.00905] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 03/04/2019] [Accepted: 03/29/2019] [Indexed: 05/03/2023]
Abstract
Fruit length is a prominent agricultural trait during cucumber (Cucumis sativus) domestication and diversifying selection; however, the regulatory mechanisms of fruit elongation remain elusive. We identified two alleles of the FRUITFULL (FUL)-like MADS-box gene CsFUL1 with 3393C/A Single Nucleotide Polymorphism variation among 150 cucumber lines. Whereas CsFUL1A was specifically enriched in the long-fruited East Asian type cucumbers (China and Japan), the CsFUL1C allele was randomly distributed in cucumber populations, including wild and semiwild cucumbers. CsFUL1A knockdown led to further fruit elongation in cucumber, whereas elevated expression of CsFUL1A resulted in significantly shorter fruits. No effect on fruit elongation was detected when CsFUL1C expression was modulated, suggesting that CsFUL1A is a gain-of-function allele in long-fruited cucumber that acts as a repressor during diversifying selection of East Asian cucumbers. Furthermore, CsFUL1A binds to the CArG-box in the promoter region of SUPERMAN, a regulator of cell division and expansion, to repress its expression. Additionally, CsFUL1A inhibits the expression of auxin transporters PIN-FORMED1 (PIN1) and PIN7, resulting in decreases in auxin accumulation in fruits. Together, our work identifies an agriculturally important allele and suggests a strategy for manipulating fruit length in cucumber breeding that involves modulation of CsFUL1A expression.
Collapse
Affiliation(s)
- Jianyu Zhao
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, MOE Joint International Research Laboratory of Crop Molecular Breeding, China Agricultural University, Beijing 100193, China
- Department of Horticulture, University of Wisconsin, Madison, Wisconsin 53706
| | - Li Jiang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, MOE Joint International Research Laboratory of Crop Molecular Breeding, China Agricultural University, Beijing 100193, China
- Department of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Gen Che
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, MOE Joint International Research Laboratory of Crop Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Yupeng Pan
- Department of Horticulture, University of Wisconsin, Madison, Wisconsin 53706
| | - Yanqiang Li
- Shanghai Center for Plant Stress Biology, Chinese Academy of Sciences, Shanghai 201602, China
| | - Yu Hou
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, MOE Joint International Research Laboratory of Crop Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Wensheng Zhao
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, MOE Joint International Research Laboratory of Crop Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Yanting Zhong
- Department of Plant Nutrition, China Agricultural University, Beijing 100193, China
| | - Lian Ding
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, MOE Joint International Research Laboratory of Crop Molecular Breeding, China Agricultural University, Beijing 100193, China
- Department of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Shuangshuang Yan
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, MOE Joint International Research Laboratory of Crop Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Chengzhen Sun
- College of Horticulture Science and Technology, Hebei Normal University of Science & Technology, Qinhuangdao 066004, China
| | - Renyi Liu
- Shanghai Center for Plant Stress Biology, Chinese Academy of Sciences, Shanghai 201602, China
| | - Liying Yan
- College of Horticulture Science and Technology, Hebei Normal University of Science & Technology, Qinhuangdao 066004, China
| | - Tao Wu
- College of Horticultural and Landscape Architecture, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, China
| | - Xuexian Li
- Department of Plant Nutrition, China Agricultural University, Beijing 100193, China
| | - Yiqun Weng
- Department of Horticulture, University of Wisconsin, Madison, Wisconsin 53706
- USDA-ARS, Vegetable Crops Research Unit, 1575 Linden Drive, Madison, Wisconsin 53706
| | - Xiaolan Zhang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, MOE Joint International Research Laboratory of Crop Molecular Breeding, China Agricultural University, Beijing 100193, China
| |
Collapse
|
47
|
Zheng Y, Wu S, Bai Y, Sun H, Jiao C, Guo S, Zhao K, Blanca J, Zhang Z, Huang S, Xu Y, Weng Y, Mazourek M, K Reddy U, Ando K, McCreight JD, Schaffer AA, Burger J, Tadmor Y, Katzir N, Tang X, Liu Y, Giovannoni JJ, Ling KS, Wechter WP, Levi A, Garcia-Mas J, Grumet R, Fei Z. Cucurbit Genomics Database (CuGenDB): a central portal for comparative and functional genomics of cucurbit crops. Nucleic Acids Res 2019; 47:D1128-D1136. [PMID: 30321383 DOI: 10.1093/nar/gky944s] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 10/04/2018] [Indexed: 05/20/2023] Open
Abstract
The Cucurbitaceae family (cucurbit) includes several economically important crops, such as melon, cucumber, watermelon, pumpkin, squash and gourds. During the past several years, genomic and genetic data have been rapidly accumulated for cucurbits. To store, mine, analyze, integrate and disseminate these large-scale datasets and to provide a central portal for the cucurbit research and breeding community, we have developed the Cucurbit Genomics Database (CuGenDB; http://cucurbitgenomics.org) using the Tripal toolkit. The database currently contains all available genome and expressed sequence tag (EST) sequences, genetic maps, and transcriptome profiles for cucurbit species, as well as sequence annotations, biochemical pathways and comparative genomic analysis results such as synteny blocks and homologous gene pairs between different cucurbit species. A set of analysis and visualization tools and user-friendly query interfaces have been implemented in the database to facilitate the usage of these large-scale data by the community. In particular, two new tools have been developed in the database, a 'SyntenyViewer' to view genome synteny between different cucurbit species and an 'RNA-Seq' module to analyze and visualize gene expression profiles. Both tools have been packed as Tripal extension modules that can be adopted in other genomics databases developed using the Tripal system.
Collapse
Affiliation(s)
- Yi Zheng
- Boyce Thompson Institute, Cornell University, Ithaca, NY 14853, USA
| | - Shan Wu
- Boyce Thompson Institute, Cornell University, Ithaca, NY 14853, USA
| | - Yang Bai
- Boyce Thompson Institute, Cornell University, Ithaca, NY 14853, USA
| | - Honghe Sun
- Boyce Thompson Institute, Cornell University, Ithaca, NY 14853, USA
- National Engineering Research Center for Vegetables, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, China
| | - Chen Jiao
- Boyce Thompson Institute, Cornell University, Ithaca, NY 14853, USA
| | - Shaogui Guo
- Boyce Thompson Institute, Cornell University, Ithaca, NY 14853, USA
- National Engineering Research Center for Vegetables, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, China
| | - Kun Zhao
- Boyce Thompson Institute, Cornell University, Ithaca, NY 14853, USA
| | - Jose Blanca
- Institute for the Conservation and Breeding of Agricultural Biodiversity (COMAV-UPV), Universitat Politècnica de València, Valencia 46022, Spain
| | - Zhonghua Zhang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Sanwen Huang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518124, China
| | - Yong Xu
- National Engineering Research Center for Vegetables, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, China
| | - Yiqun Weng
- U.S. Department of Agriculture-Agricultural Research Service, Vegetable Crops Research Unit, Madison, WI 53706, USA
- Department of Horticulture, University of Wisconsin, Madison, WI 53706, USA
| | - Michael Mazourek
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Umesh K Reddy
- Department of Biology, West Virginia State University, Institute, WV 25112, USA
| | - Kaori Ando
- U.S. Department of Agriculture-Agricultural Research Service, Crop Improvement and Protection Research Unit, Salinas, CA 93905, USA
| | - James D McCreight
- U.S. Department of Agriculture-Agricultural Research Service, Crop Improvement and Protection Research Unit, Salinas, CA 93905, USA
| | - Arthur A Schaffer
- Plant Science Institute, Agricultural Research Organization, The Volcani Center, P.O.B. 6, Bet-Dagan 50250, Israel
| | - Joseph Burger
- Plant Science Institute, Agricultural Research Organization, Newe Yaar Research Center, Ramat Yishai 30095, Israel
| | - Yaakov Tadmor
- Plant Science Institute, Agricultural Research Organization, Newe Yaar Research Center, Ramat Yishai 30095, Israel
| | - Nurit Katzir
- Plant Science Institute, Agricultural Research Organization, Newe Yaar Research Center, Ramat Yishai 30095, Israel
| | - Xuemei Tang
- Boyce Thompson Institute, Cornell University, Ithaca, NY 14853, USA
| | - Yang Liu
- Boyce Thompson Institute, Cornell University, Ithaca, NY 14853, USA
- Horticulture Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - James J Giovannoni
- Boyce Thompson Institute, Cornell University, Ithaca, NY 14853, USA
- U.S. Department of Agriculture-Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, Ithaca, NY 14853, USA
| | - Kai-Shu Ling
- U.S. Department of Agriculture-Agricultural Research Service, U.S. Vegetable Laboratory, 2700 Savannah Highway, Charleston, SC 29414, USA
| | - W Patrick Wechter
- U.S. Department of Agriculture-Agricultural Research Service, U.S. Vegetable Laboratory, 2700 Savannah Highway, Charleston, SC 29414, USA
| | - Amnon Levi
- U.S. Department of Agriculture-Agricultural Research Service, U.S. Vegetable Laboratory, 2700 Savannah Highway, Charleston, SC 29414, USA
| | - Jordi Garcia-Mas
- Centre for Research in Agricultural Genomics CSIC-IRTA-UAB-UB, Barcelona 08193, Spain
- Institut de Recerca i Tecnologia Agroalimentàries, Barcelona 08193, Spain
| | - Rebecca Grumet
- Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA
| | - Zhangjun Fei
- Boyce Thompson Institute, Cornell University, Ithaca, NY 14853, USA
- U.S. Department of Agriculture-Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, Ithaca, NY 14853, USA
| |
Collapse
|
48
|
Rett-Cadman S, Colle M, Mansfeld B, Barry CS, Wang Y, Weng Y, Gao L, Fei Z, Grumet R. QTL and Transcriptomic Analyses Implicate Cuticle Transcription Factor SHINE as a Source of Natural Variation for Epidermal Traits in Cucumber Fruit. FRONTIERS IN PLANT SCIENCE 2019; 10:1536. [PMID: 31827480 PMCID: PMC6890859 DOI: 10.3389/fpls.2019.01536] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 11/04/2019] [Indexed: 05/11/2023]
Abstract
The fruit surface is a unique tissue with multiple roles influencing fruit development, post-harvest storage and quality, and consumer acceptability. Serving as the first line of protection against herbivores, pathogens, and abiotic stress, the surface can vary markedly among species, cultivars within species, and developmental stage. In this study we explore developmental changes and natural variation of cucumber (Cucumis sativus L.) fruit surface properties using two cucumber lines which vary greatly for these traits and for which draft genomes and a single nucleotide polymorphism (SNP) array are available: Chinese fresh market type, Chinese Long '9930' (CL9930), and pickling type, 'Gy14'. Thin-section samples were prepared from the mid-region of fruit harvested at 0, 4, 8, 12, 16, 20, 24 and 30 days post pollination (dpp), stained with Sudan IV and evaluated for cuticle thickness, depth of wax intercalation between epidermal cells, epidermal cell size and shape, and number and size of lipid droplets. 'Gy14' is characterized by columnar shaped epidermal cells, a 2-3 fold thicker cuticular layer than CL9930, increased cuticular intercalations between cells and a larger number and larger sized lipid droplets. In both lines maximal deposition of cuticle and increase in epidermal size coincided with exponential fruit growth and was largely completed by approximately 16 dpp. Phenotyping and quantitative trait locus mapping (QTL) of fruit sampled from an F7:F8 Gy14 × CL9930 recombinant inbred line (RIL) population identified QTL regions on chromosomes 1, 4 and 5. Strong QTL for epidermal cell height, cuticle thickness, intercalation depth, and diameter of lipid droplets co-localized on chromosome 1. SSR markers on chromosome 1 were used to screen for recombinants in an extended RIL population to refine the QTL region. Further fine mapping by KASP assay combined with gene expression profiling suggested a small number of candidate genes. Tissue specificity, developmental analysis of expression, allelic diversity and gene function implicate the regulatory factor CsSHINE1/WIN1 as a source of natural variation for cucumber fruit epidermal traits.
Collapse
Affiliation(s)
- Stephanie Rett-Cadman
- Department of Horticulture and Graduate Program in Plant Breeding, Genetics and Biotechnology, Michigan State University, East Lansing, MI, United States
| | - Marivi Colle
- Department of Horticulture and Graduate Program in Plant Breeding, Genetics and Biotechnology, Michigan State University, East Lansing, MI, United States
| | - Ben Mansfeld
- Department of Horticulture and Graduate Program in Plant Breeding, Genetics and Biotechnology, Michigan State University, East Lansing, MI, United States
| | - Cornelius S. Barry
- Department of Horticulture and Graduate Program in Plant Breeding, Genetics and Biotechnology, Michigan State University, East Lansing, MI, United States
| | - Yuhui Wang
- Department of Horticulture, University of Wisconsin, Madison, WI, United States
- USDA-ARS, Vegetable Crops Research Unit, Madison, WI, United States
| | - Yiqun Weng
- Department of Horticulture, University of Wisconsin, Madison, WI, United States
- USDA-ARS, Vegetable Crops Research Unit, Madison, WI, United States
| | - Lei Gao
- Boyce Thompson Institute, Cornell University, Ithaca, NY, United States
| | - Zhangjun Fei
- Boyce Thompson Institute, Cornell University, Ithaca, NY, United States
| | - Rebecca Grumet
- Department of Horticulture and Graduate Program in Plant Breeding, Genetics and Biotechnology, Michigan State University, East Lansing, MI, United States
- *Correspondence: Rebecca Grumet,
| |
Collapse
|