1
|
Ma H, Li C, Li S, Zhao Y, Ma W, Wang R, Guo N, Yao W, Yin X. Deciphering Grape Berry Peel Resistance to Botrytis cinerea: A Transcriptomic and Metabolomic Perspective. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:11435-11451. [PMID: 40262121 DOI: 10.1021/acs.jafc.4c12810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
The fruit peel serves as the frontline defense of grapes against pathogens like Botrytis cinerea, yet its defense mechanisms remain poorly understood. This study reveals novel resistance mechanisms underlying peel immunity through comparative transcriptomic and metabolomic analysis of Vitis amurensis "Bei Binghong" (BH) and V. vinifera "Red Globe" (RG). The analysis identified 1277 differentially expressed genes (DEGs) and 38 differentially accumulated metabolites (DAMs), primarily associated with secondary metabolic processes and plant hormone signaling pathways. Weighted gene coexpression network analysis (WGCNA) uncovered three key modules and several novel hub genes. Crucially, transcriptomic profiling identified VaWRKY20 as a central regulator. Postinfection, upregulated genes and metabolites were involved in salicylic acid (SA), lignin, and stilbene biosynthesis in BH, as well as enhanced resistance through overexpression of VaWRKY20. A conceptual model for V. amurensis defense against B. cinerea was proposed, providing novel insights into grapevine defense mechanisms.
Collapse
Affiliation(s)
- Hongyi Ma
- College of Enology and Horticulture, Ningxia University, Yinchuan 750021, China
| | - Chengnan Li
- College of Enology and Horticulture, Ningxia University, Yinchuan 750021, China
| | - Shan Li
- College of Enology and Horticulture, Ningxia University, Yinchuan 750021, China
| | - Yulei Zhao
- College of Enology and Horticulture, Ningxia University, Yinchuan 750021, China
| | - Wenling Ma
- College of Enology and Horticulture, Ningxia University, Yinchuan 750021, China
| | - Rui Wang
- College of Enology and Horticulture, Ningxia University, Yinchuan 750021, China
| | - Ningning Guo
- College of Enology and Horticulture, Ningxia University, Yinchuan 750021, China
| | - Wenkong Yao
- College of Enology and Horticulture, Ningxia University, Yinchuan 750021, China
| | - Xiao Yin
- College of Enology and Horticulture, Ningxia University, Yinchuan 750021, China
| |
Collapse
|
2
|
Liu S, Dai L, Qu G, Lu X, Pan H, Fu X, Dong A, Yang L. Integrative transcriptome and WGCNA analysis reveal key genes mainly in response to Alternaria alternata in Populus simonii × P. nigra. FRONTIERS IN PLANT SCIENCE 2025; 16:1540718. [PMID: 40034158 PMCID: PMC11873080 DOI: 10.3389/fpls.2025.1540718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 01/27/2025] [Indexed: 03/05/2025]
Abstract
In order to explore the molecular mechanisms of Populus simonii × P. nigra response to stress and screen for genes conferring resistance to Alternaria alternata, we carried out measurements of physiological and biochemical indices and transcriptomic sequence analysis of leaves of Populus simonii × P. nigra inoculated with A. alternata. The results showed that the variation trends of multiple hormone contents and enzyme activities were broadly similar at different time points, with H2O2, SA, JA, PPO, SOD, PAL and POD showing a trend of increasing and then decrease after inoculation with the pathogen. The contents of H2O2 peaked on the second day and subsequently declined. The contents of SA and JA, as well as the enzymatic activities of SOD, PAL, and POD, reached their maxima on the third day before exhibiting a downward tendency. In contrast, the activity of PPO peaked on the fourth day. Whereas ABA content continued to increase until the fifth day and CAT content decreased and then increased. We subsequently identified 14,997 differentially expressed genes (DEGs) among the transcriptomic sequences(|log2FoldChange| > 1 and FDR value < 0.05), with genes encoding members of the ERF, MYB, bZIP, and WRKY transcription factor families being differentially expressed. Gene modules that were significantly associated with the ABA, PAL, JA, and SOD activity were identified using weighted gene co-expression network analysis (WGCNA). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis showed that these genes were mainly related to biological stress, signal transduction, cell wall, and photosynthesis. Within these modules, we also identified hub genes in the regulatory network, including GLK1/2 transcriptional activators, 14-3-3 proteins, cytosine 5 methyltransferases, and a variety of proteins associated with photosynthesis and respiration. This study showed that these hub genes, which play a pivotal role in the co-expression network, which may indicate a potential role in defense process of Populus simonii × P. nigra against A. alternata. Additionally, we analyzed the gene expression regulation and defense mechanisms of Populus simonii × P. nigra adversity stress, providing new insights into how plants respond to biological stress.
Collapse
Affiliation(s)
- Siyuan Liu
- Key Laboratory of Biodiversity, Institute of Natural Resources and Ecology, Heilongjiang Academy of Sciences, Harbin, China
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- College of Forestry, Northeast Forestry University, Harbin, China
| | - Lijuan Dai
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Guanzheng Qu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Xinming Lu
- Key Laboratory of Biodiversity, Institute of Natural Resources and Ecology, Heilongjiang Academy of Sciences, Harbin, China
| | - Hong Pan
- Key Laboratory of Biodiversity, Institute of Natural Resources and Ecology, Heilongjiang Academy of Sciences, Harbin, China
| | - Xiaoyu Fu
- Key Laboratory of Biodiversity, Institute of Natural Resources and Ecology, Heilongjiang Academy of Sciences, Harbin, China
| | - Airong Dong
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- College of Forestry, Northeast Forestry University, Harbin, China
| | - Libin Yang
- Key Laboratory of Biodiversity, Institute of Natural Resources and Ecology, Heilongjiang Academy of Sciences, Harbin, China
| |
Collapse
|
3
|
Liu D, Luo C, Dai R, Huang X, Chen X, He L, Mao H, Li J, Zhang L, Yang QY, Mei Z. AMIR: a multi-omics data platform for Asteraceae plants genetics and breeding research. Nucleic Acids Res 2025; 53:D1563-D1575. [PMID: 39377391 PMCID: PMC11701549 DOI: 10.1093/nar/gkae833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/28/2024] [Accepted: 09/16/2024] [Indexed: 10/09/2024] Open
Abstract
As the largest family of dicotyledon, the Asteraceae family comprises a variety of economically important crops, ornamental plants and numerous medicinal herbs. Advancements in genomics and transcriptomic have revolutionized research in Asteraceae species, generating extensive omics data that necessitate an efficient platform for data integration and analysis. However, existing databases face challenges in mining genes with specific functions and supporting cross-species studies. To address these gaps, we introduce the Asteraceae Multi-omics Information Resource (AMIR; https://yanglab.hzau.edu.cn/AMIR/), a multi-omics hub for the Asteraceae plant community. AMIR integrates diverse omics data from 74 species, encompassing 132 genomes, 4 408 432 genes annotated across seven different perspectives, 3897 transcriptome sequencing samples spanning 131 organs, tissues and stimuli, 42 765 290 unique variants and 15 662 metabolites genes. Leveraging these data, AMIR establishes the first pan-genome, comparative genomics and transcriptome system for the Asteraceae family. Furthermore, AMIR offers user-friendly tools designed to facilitate extensive customized bioinformatics analyses. Two case studies demonstrate AMIR's capability to provide rapid, reproducible and reliable analysis results. In summary, by integrating multi-omics data of Asteraceae species and developing powerful analytical tools, AMIR significantly advances functional genomics research and contributes to breeding practices of Asteraceae.
Collapse
Affiliation(s)
- Dongxu Liu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Agricultural Bioinformatics and Hubei Engineering Technology Research Center of Agricultural Big Data, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Chengfang Luo
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Agricultural Bioinformatics and Hubei Engineering Technology Research Center of Agricultural Big Data, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Rui Dai
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Agricultural Bioinformatics and Hubei Engineering Technology Research Center of Agricultural Big Data, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaoyan Huang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Agricultural Bioinformatics and Hubei Engineering Technology Research Center of Agricultural Big Data, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiang Chen
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Agricultural Bioinformatics and Hubei Engineering Technology Research Center of Agricultural Big Data, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Lin He
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Hongxia Mao
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Agricultural Bioinformatics and Hubei Engineering Technology Research Center of Agricultural Big Data, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiawei Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Agricultural Bioinformatics and Hubei Engineering Technology Research Center of Agricultural Big Data, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Linna Zhang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Agricultural Bioinformatics and Hubei Engineering Technology Research Center of Agricultural Big Data, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Qing-Yong Yang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Agricultural Bioinformatics and Hubei Engineering Technology Research Center of Agricultural Big Data, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
- Yazhouwan National Laboratory, Sanya 572025, China
| | - Zhinan Mei
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
4
|
Yang M, Zhou C, Kuang R, Wu X, Liu C, He H, Wei Y. Transcription factor CpWRKY50 enhances anthracnose resistance by promoting jasmonic acid signaling in papaya. PLANT PHYSIOLOGY 2024; 196:2856-2870. [PMID: 39250752 DOI: 10.1093/plphys/kiae479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/15/2024] [Accepted: 07/15/2024] [Indexed: 09/11/2024]
Abstract
Colletotrichum brevisporum is an important fungal pathogen that causes anthracnose and has led to serious postharvest losses of papaya (Carica papaya L.) fruit in recent years. WRKY transcription factors (TFs) play vital roles in regulating plant resistance to pathogens, but their functions in papaya anthracnose resistance need further exploration. In this study, we identified a WRKY TF, CpWRKY50, which belongs to the WRKY IIc subfamily. During infection with C. brevisporum, expression of CpWRKY50 in anthracnose-resistant papaya cultivars was significantly higher than that in susceptible cultivars. CpWRKY50 was induced by methyl jasmonate, and CpWRKY50 localized in the nucleus. In yeast, full-length CpWRKY50 had transactivation activity, but CpWRKY50 variants truncated at the N or C termini did not. CpWRKY50 positively regulated papaya resistance to C. brevisporum, as demonstrated by transient overexpression of CpWRKY50 in papaya and heterologous expression of CpWRKY50 in tomato. Moreover, endogenous jasmonic acid (JA) and JA-isoleucine levels in the fruits of transgenic tomato OE lines were higher than in wild type both before and after inoculation with C. brevisporum, indicating that increased CpWRKY50 expression promotes JA accumulation. Furthermore, our results revealed CpWRKY50 directly binds to W-box motifs (TTGACC) in the promoters of two JA signaling-related genes, CpMYC2 and pathogenesis-related 4 CpPR4, thereby activating their expression. Our data support that CpWRKY50 positively regulates anthracnose resistance in papaya by promoting JA signaling. These results broaden our understanding of papaya disease resistance mechanisms and will facilitate the genetic improvement of papaya through molecular breeding.
Collapse
Affiliation(s)
- Min Yang
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Science and Technology Research on Fruit Trees, Guangzhou 510640, China
| | - Chenping Zhou
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Science and Technology Research on Fruit Trees, Guangzhou 510640, China
| | - Ruibin Kuang
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Science and Technology Research on Fruit Trees, Guangzhou 510640, China
| | - Xiaming Wu
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Science and Technology Research on Fruit Trees, Guangzhou 510640, China
| | - Chuanhe Liu
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Science and Technology Research on Fruit Trees, Guangzhou 510640, China
| | - Han He
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Science and Technology Research on Fruit Trees, Guangzhou 510640, China
| | - Yuerong Wei
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Science and Technology Research on Fruit Trees, Guangzhou 510640, China
| |
Collapse
|
5
|
Zhang Q, Luo N, Dai X, Lin J, Ahmad B, Chen Q, Lei Y, Wen Z. Ectopic and transient expression of VvDIR4 gene in Arabidopsis and grapes enhances resistance to anthracnose via affecting hormone signaling pathways and lignin production. BMC Genomics 2024; 25:895. [PMID: 39342082 PMCID: PMC11439227 DOI: 10.1186/s12864-024-10830-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 09/24/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND DIR (Dirigent) proteins play important roles in the biosynthesis of lignin and lignans and are involved in various processes such as plant growth, development, and stress responses. However, there is less information about VvDIR proteins in grapevine (Vitis vinifera L). RESULTS In this study, we used bioinformatics methods to identify members of the DIR gene family in grapevine and identified 18 VvDIR genes in grapevine. These genes were classified into 5 subfamilies based on phylogenetic analysis. In promoter analysis, various plant hormones, stress, and light-responsive cis-elements were detected. Expression profiling of all genes following Colletotrichum gloeosporioides infection and phytohormones (salicylic acid (SA) and jasmonic acid (JA)) application suggested significant upregulation of 17 and 6 VvDIR genes, respectively. Further, we overexpressed the VvDIR4 gene in Arabidopsis thaliana and grapes for functional analysis. Ectopic expression of VvDIR4 in A. thaliana and transient expression in grapes increased resistance against C. gloeosporioides and C. higginsianum, respectively. Phenotypic observations showed small disease lesions in transgenic plants. Further, the expression patterns of genes having presumed roles in SA and JA signaling pathways were also influenced. Lignin contents were measured before and after C. higginsianum infection; the transgenic A. thaliana lines showed higher lignin content than wild-type, and a significant increase was observed after C. higginsianum infection. CONCLUSIONS Based on the findings, we surmise that VvDIR4 is involved in hormonal and lignin synthesis pathways which regulate resistance against anthracnose. Our study provides novel insights into the function of VvDIR genes and new candidate genes for grapevine disease resistance breeding programs.
Collapse
Affiliation(s)
- Qimeng Zhang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Ning Luo
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xicheng Dai
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jinhui Lin
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, 350013, China
| | - Bilal Ahmad
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Afairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Qingxi Chen
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yan Lei
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, 350013, China.
| | - Zhifeng Wen
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
6
|
Song LY, Xu CQ, Zhang LD, Li J, Jiang LW, Ma DN, Guo ZJ, Wang Q, Wang XX, Zheng HL. Trehalose along with ABA promotes the salt tolerance of Avicennia marina by regulating Na + transport. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:2349-2362. [PMID: 38981025 DOI: 10.1111/tpj.16921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/06/2024] [Accepted: 06/26/2024] [Indexed: 07/11/2024]
Abstract
Mangroves grow in tropical/subtropical intertidal habitats with extremely high salt tolerance. Trehalose and trehalose-6-phosphate (T6P) have an alleviating function against abiotic stress. However, the roles of trehalose in the salt tolerance of salt-secreting mangrove Avicennia marina is not documented. Here, we found that trehalose was significantly accumulated in A. marina under salt treatment. Furthermore, exogenous trehalose can enhance salt tolerance by promoting the Na+ efflux from leaf salt gland and root to reduce the Na+ content in root and leaf. Subsequently, eighteen trehalose-6-phosphate synthase (AmTPS) and 11 trehalose-6-phosphate phosphatase (AmTPP) genes were identified from A. marina genome. Abscisic acid (ABA) responsive elements were predicted in AmTPS and AmTPP promoters by cis-acting elements analysis. We further identified AmTPS9A, as an important positive regulator, that increased the salt tolerance of AmTPS9A-overexpressing Arabidopsis thaliana by altering the expressions of ion transport genes and mediating Na+ efflux from the roots of transgenic A. thaliana under NaCl treatments. In addition, we also found that ABA could promote the accumulation of trehalose, and the application of exogenous trehalose significantly promoted the biosynthesis of ABA in both roots and leaves of A. marina. Ultimately, we confirmed that AmABF2 directly binds to the AmTPS9A promoter in vitro and in vivo. Taken together, we speculated that there was a positive feedback loop between trehalose and ABA in regulating the salt tolerance of A. marina. These findings provide new understanding to the salt tolerance of A. marina in adapting to high saline environment at trehalose and ABA aspects.
Collapse
Affiliation(s)
- Ling-Yu Song
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361102, People's Republic of China
| | - Chao-Qun Xu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361102, People's Republic of China
| | - Lu-Dan Zhang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361102, People's Republic of China
- Houji Laboratory in Shanxi Province, Shanxi Agricultural University, Taiyuan, Shanxi, 030000, People's Republic of China
| | - Jing Li
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361102, People's Republic of China
| | - Li-Wei Jiang
- College of Horticulture, Henan Agricultural University, Zhengzhou, Henan, 450046, People's Republic of China
| | - Dong-Na Ma
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361102, People's Republic of China
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
| | - Ze-Jun Guo
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361102, People's Republic of China
| | - Qian Wang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361102, People's Republic of China
| | - Xiu-Xiu Wang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361102, People's Republic of China
| | - Hai-Lei Zheng
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361102, People's Republic of China
| |
Collapse
|
7
|
Hamsa S, Rajarammohan S, Aswal M, Kumar M, Kaur J. Transcriptome responses of Arabidopsis to necrotrophic fungus Alternaria brassicae reveal pathways and candidate genes associated with resistance. PLANT MOLECULAR BIOLOGY 2024; 114:68. [PMID: 38842571 DOI: 10.1007/s11103-024-01453-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 04/11/2024] [Indexed: 06/07/2024]
Abstract
Alternaria leaf blight (ALB), caused by a necrotrophic fungus Alternaria brassicae is a serious disease of oleiferous Brassicas resulting in significant yield losses worldwide. No robust resistance against A. brassicae has been identified in the Brassicas. Natural accessions of Arabidopsis show a spectrum of responses to A. brassicae ranging from high susceptibility to complete resistance. To understand the molecular mechanisms of resistance/ susceptibility, we analysed the comparative changes in the transcriptome profile of Arabidopsis accessions with contrasting responses- at different time points post-infection. Differential gene expression, GO enrichment, pathway enrichment, and weighted gene co-expression network analysis (WGCNA) revealed reprogramming of phenylpropanoid biosynthetic pathway involving lignin, hydroxycinnamic acids, scopoletin, anthocyanin genes to be highly associated with resistance against A. brassicae. T-DNA insertion mutants deficient in the biosynthesis of coumarin scopoletin exhibited enhanced susceptibility to A. brassicae. The supplementation of scopoletin to medium or exogenous application resulted in a significant reduction in the A. brassicae growth. Our study provides new insights into the transcriptome dynamics in A. brassicae-challenged Arabidopsis and demonstrates the involvement of coumarins in plant immunity against the Brassica pathogen A. brassicae.
Collapse
Affiliation(s)
- S Hamsa
- Department of Genetics, University of Delhi, South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - Sivasubramanian Rajarammohan
- Centre for Genetic Manipulation of Crop Plants, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
- Agricultural Biotechnology Division, National Agri-Food Biotechnology Institute, SAS Nagar, Mohali, Punjab, India
| | - Manisha Aswal
- Department of Biophysics, University of Delhi, South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - Manish Kumar
- Department of Biophysics, University of Delhi, South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - Jagreet Kaur
- Department of Genetics, University of Delhi, South Campus, Benito Juarez Road, New Delhi, 110021, India.
- Centre for Genetic Manipulation of Crop Plants, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India.
| |
Collapse
|
8
|
Wu X, Li J, Song LY, Zeng LL, Guo ZJ, Ma DN, Wei MY, Zhang LD, Wang XX, Zheng HL. NADPH oxidase-dependent H 2O 2 production mediates salicylic acid-induced salt tolerance in mangrove plant Kandelia obovata by regulating Na +/K + and redox homeostasis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:1119-1135. [PMID: 38308390 DOI: 10.1111/tpj.16660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 01/12/2024] [Accepted: 01/22/2024] [Indexed: 02/04/2024]
Abstract
Salicylic acid (SA) is known to enhance salt tolerance in plants. However, the mechanism of SA-mediated response to high salinity in halophyte remains unclear. Using electrophysiological and molecular biological methods, we investigated the role of SA in response to high salinity in mangrove species, Kandelia obovata, a typical halophyte. Exposure of K. obovata roots to high salinity resulted in a rapid increase in endogenous SA produced by phenylalanine ammonia lyase pathway. The application of exogenous SA improved the salt tolerance of K. obovata, which depended on the NADPH oxidase-mediated H2O2. Exogenous SA and H2O2 increased Na+ efflux and reduced K+ loss by regulating the transcription levels of Na+ and K+ transport-related genes, thus reducing the Na+/K+ ratio in the salt-treated K. obovata roots. In addition, exogenous SA-enhanced antioxidant enzyme activity and its transcripts, and the expressions of four genes related to AsA-GSH cycle as well, then alleviated oxidative damages in the salt-treated K. obovata roots. However, the above effects of SA could be reversed by diphenyleneiodonium chloride (the NADPH oxidase inhibitor) and paclobutrazol (a SA biosynthesis inhibitor). Collectively, our results demonstrated that SA-induced salt tolerance of K. obovata depends on NADPH oxidase-generated H2O2 that affects Na+/K+ and redox homeostasis in response to high salinity.
Collapse
Affiliation(s)
- Xuan Wu
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361102, P.R. China
| | - Jing Li
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361102, P.R. China
| | - Ling-Yu Song
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361102, P.R. China
| | - Lin-Lan Zeng
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361102, P.R. China
| | - Ze-Jun Guo
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361102, P.R. China
| | - Dong-Na Ma
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361102, P.R. China
| | - Ming-Yue Wei
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361102, P.R. China
| | - Lu-Dan Zhang
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361102, P.R. China
| | - Xiu-Xiu Wang
- College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361005, P.R. China
| | - Hai-Lei Zheng
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361102, P.R. China
| |
Collapse
|
9
|
Saberi Riseh R, Gholizadeh Vazvani M, Vatankhah M, Kennedy JF. Chitin-induced disease resistance in plants: A review. Int J Biol Macromol 2024; 266:131105. [PMID: 38531527 DOI: 10.1016/j.ijbiomac.2024.131105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/15/2024] [Accepted: 03/21/2024] [Indexed: 03/28/2024]
Abstract
Chitin is composed of N-acetylglucosamine units. Chitin a polysaccharide found in the cell walls of fungi and exoskeletons of insects and crustaceans, can elicit a potent defense response in plants. Through the activation of defense genes, stimulation of defensive compound production, and reinforcement of physical barriers, chitin enhances the plant's ability to defend against pathogens. Chitin-based treatments have shown efficacy against various plant diseases caused by fungal, bacterial, viral, and nematode pathogens, and have been integrated into sustainable agricultural practices. Furthermore, chitin treatments have demonstrated additional benefits, such as promoting plant growth and improving tolerance to abiotic stresses. Further research is necessary to optimize treatment parameters, explore chitin derivatives, and conduct long-term field studies. Continued efforts in these areas will contribute to the development of innovative and sustainable strategies for disease management in agriculture, ultimately leading to improved crop productivity and reduced reliance on chemical pesticides.
Collapse
Affiliation(s)
- Roohallah Saberi Riseh
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, 7718897111 Rafsanjan, Iran.
| | - Mozhgan Gholizadeh Vazvani
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, 7718897111 Rafsanjan, Iran
| | - Masoumeh Vatankhah
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, 7718897111 Rafsanjan, Iran
| | - John F Kennedy
- Chembiotech Laboratories Ltd, WR15 8FF Tenbury Wells, United Kingdom.
| |
Collapse
|
10
|
Seliem MK, Taha NA, El-Feky NI, Abdelaal K, El-Ramady H, El-Mahrouk ME, Bayoumi YA. Evaluation of Five Chrysanthemum morifolium Cultivars against Leaf Blight Disease Caused by Alternaria alternata at Rooting and Seedling Growth Stages. PLANTS (BASEL, SWITZERLAND) 2024; 13:252. [PMID: 38256805 PMCID: PMC10820434 DOI: 10.3390/plants13020252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/12/2024] [Accepted: 01/13/2024] [Indexed: 01/24/2024]
Abstract
During the winter of 2018, leaf blight on florist's daisy (Chrysanthemum morifolium L.) was noticed in Egypt. The disease, which was identified as caused by Alternaria alternata, was widely spread and led to serious damage for the exportation sector of this crop. Therefore, a study was conducted to better understand what can be conducted to minimize the problem in the future. Isolates were gathered and evaluated on five chrysanthemum cultivars (i.e., 'Feeling Green Dark', 'Talitha', 'Chrystal Regan', 'Arctic queen', and 'Podolsk Purple') grown in a greenhouse. The objectives were to isolate and identify the phytopathogen and detect the resistant degree of these cultivars with emphasis on the early growth stages of the crop. The results showed that 'Podolsk Purple' was the most resistant cultivar against the different isolates during the rooting and seedling growth stages. 'Chrystal Regan' was very susceptible to the different isolates. In addition, the isolate from 'Feeling Green Dark' was the strongest, which negatively affected the chlorophyll content and its fluorescence parameters besides other measured vegetative and anatomical features. The findings indicated that the best anatomical characters of the stem and leaf, like the thickness of cuticle and cortex, stem diameter, xylem vessel diameter, and thickness of epidermis as well as lamina thickness were recorded in the 'Podolsk Purple' cultivar. This study highlighted that by using the right cultivars, chrysanthemum can be cultivated during the winter season under Egyptian conditions. These results can be a part of solution to overcome the leaf blight caused by A. alternata on chrysanthemum during the early growing stages.
Collapse
Affiliation(s)
- Mayada K. Seliem
- Ornamental and Floriculture Department, Horticulture Research Institute, El-Sabahia, Alexandria 21599, Egypt;
| | - Naglaa A. Taha
- Plant Pathology Research Institute, Agriculture Research Center, Giza 12619, Egypt; (N.A.T.); (N.I.E.-F.)
| | - Nahla I. El-Feky
- Plant Pathology Research Institute, Agriculture Research Center, Giza 12619, Egypt; (N.A.T.); (N.I.E.-F.)
| | - Khaled Abdelaal
- EPCRS Excellence Center, Plant Pathology and Biotechnology Lab., Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt;
| | - Hassan El-Ramady
- Soil and Water Department, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
| | - Mohammed E. El-Mahrouk
- Horticulture Department, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt;
| | - Yousry A. Bayoumi
- Horticulture Department, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt;
| |
Collapse
|
11
|
Zhang S, Miao W, Liu Y, Jiang J, Chen S, Chen F, Guan Z. Jasmonate signaling drives defense responses against Alternaria alternata in chrysanthemum. BMC Genomics 2023; 24:553. [PMID: 37723458 PMCID: PMC10507968 DOI: 10.1186/s12864-023-09671-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 09/12/2023] [Indexed: 09/20/2023] Open
Abstract
BACKGROUND Black spot disease caused by the necrotrophic fungus Alternaria spp. is one of the most devastating diseases affecting Chrysanthemum morifolium. There is currently no effective way to prevent chrysanthemum black spot. RESULTS We revealed that pre-treatment of chrysanthemum leaves with the methy jasmonate (MeJA) significantly reduces their susceptibility to Alternaria alternata. To understand how MeJA treatment induces resistance, we monitored the dynamics of metabolites and the transcriptome in leaves after MeJA treatment following A. alternata infection. JA signaling affected the resistance of plants to pathogens through cell wall modification, Ca2+ regulation, reactive oxygen species (ROS) regulation, mitogen-activated protein kinase cascade and hormonal signaling processes, and the accumulation of anti-fungal and anti-oxidant metabolites. Furthermore, the expression of genes associated with these functions was verified by reverse transcription quantitative PCR and transgenic assays. CONCLUSION Our findings indicate that MeJA pre-treatment could be a potential orchestrator of a broad-spectrum defense response that may help establish an ecologically friendly pest control strategy and offer a promising way of priming plants to induce defense responses against A. alternata.
Collapse
Affiliation(s)
- Shuhuan Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration On Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing, 210014, Jiangsu, China
| | - Weihao Miao
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration On Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing, 210014, Jiangsu, China
| | - Ye Liu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration On Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing, 210014, Jiangsu, China
| | - Jiafu Jiang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration On Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing, 210014, Jiangsu, China
| | - Sumei Chen
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration On Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing, 210014, Jiangsu, China
| | - Fadi Chen
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration On Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing, 210014, Jiangsu, China
| | - Zhiyong Guan
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration On Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing, 210014, Jiangsu, China.
| |
Collapse
|
12
|
Tao C, Wang Z, Liu S, Lv N, Deng X, Xiong W, Shen Z, Zhang N, Geisen S, Li R, Shen Q, Kowalchuk GA. Additive fungal interactions drive biocontrol of Fusarium wilt disease. THE NEW PHYTOLOGIST 2023; 238:1198-1214. [PMID: 36740577 DOI: 10.1111/nph.18793] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
Host-associated fungi can help protect plants from pathogens, and empirical evidence suggests that such microorganisms can be manipulated by introducing probiotic to increase disease suppression. However, we still generally lack the mechanistic knowledge of what determines the success of probiotic application, hampering the development of reliable disease suppression strategies. We conducted a three-season consecutive microcosm experiment in which we amended banana Fusarium wilt disease-conducive soil with Trichoderma-amended biofertilizer or lacking this inoculum. High-throughput sequencing was complemented with cultivation-based methods to follow changes in fungal microbiome and explore potential links with plant health. Trichoderma application increased banana biomass by decreasing disease incidence by up to 72%, and this effect was attributed to changes in fungal microbiome, including the reduction in Fusarium oxysporum density and enrichment of pathogen-suppressing fungi (Humicola). These changes were accompanied by an expansion in microbial carbon resource utilization potential, features that contribute to disease suppression. We further demonstrated the disease suppression actions of Trichoderma-Humicola consortia, and results suggest niche overlap with pathogen and induction of plant systemic resistance may be mechanisms driving the observed biocontrol effects. Together, we demonstrate that fungal inoculants can modify the composition and functioning of the resident soil fungal microbiome to suppress soilborne disease.
Collapse
Affiliation(s)
- Chengyuan Tao
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, The Key Laboratory of Plant Immunity, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- The Sanya Institute of Nanjing Agricultural University, Sanya, Hainan, 572000, China
| | - Zhe Wang
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, The Key Laboratory of Plant Immunity, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- The Sanya Institute of Nanjing Agricultural University, Sanya, Hainan, 572000, China
| | - Shanshan Liu
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, The Key Laboratory of Plant Immunity, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Nana Lv
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, The Key Laboratory of Plant Immunity, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Xuhui Deng
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, The Key Laboratory of Plant Immunity, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Wu Xiong
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, The Key Laboratory of Plant Immunity, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Zongzhuan Shen
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, The Key Laboratory of Plant Immunity, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- The Sanya Institute of Nanjing Agricultural University, Sanya, Hainan, 572000, China
| | - Nan Zhang
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, The Key Laboratory of Plant Immunity, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Stefan Geisen
- Department of Terrestrial Ecology, Netherlands Institute for Ecology (NIOO-KNAW), Wageningen, 6708 PB, the Netherlands
- Laboratory of Nematology, Wageningen University, Wageningen, 6700 AA, the Netherlands
| | - Rong Li
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, The Key Laboratory of Plant Immunity, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- The Sanya Institute of Nanjing Agricultural University, Sanya, Hainan, 572000, China
| | - Qirong Shen
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, The Key Laboratory of Plant Immunity, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - George A Kowalchuk
- Ecology and Biodiversity Group, Department of Biology, Institute of Environmental Biology, Utrecht University, Utrecht, 3584 CH, the Netherlands
| |
Collapse
|
13
|
Ding Y, Wang X, Wang D, Jiang L, Xie J, Wang T, Song L, Zhao X. Identification of CmbHLH Transcription Factor Family and Excavation of CmbHLHs Resistant to Necrotrophic Fungus Alternaria in Chrysanthemum. Genes (Basel) 2023; 14:genes14020275. [PMID: 36833202 PMCID: PMC9957535 DOI: 10.3390/genes14020275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/15/2023] [Accepted: 01/16/2023] [Indexed: 01/22/2023] Open
Abstract
Chrysanthemum morifolium Ramat. 'Huaihuang' is a traditional Chinese medicinal plant. However, a black spot disease caused by Alternaria sp., a typical necrotrophic fungus, has a serious damaging influence on the field growth, yield, and quality of the plant. 'Huaiju 2#' being bred from 'Huaihuang', shows resistance to Alternaria sp. bHLH transcription factor has been widely studied because of their functions in growth development, signal transduction, and abiotic stress. However, the function of bHLH in biotic stress has rarely been studied. To characterize the resistance genes, the CmbHLH family was surveyed in 'Huaiju 2#'. On the basis of the transcriptome database of 'Huaiju 2#' after Alternaria sp. inoculation, with the aid of the Chrysanthemum genome database, 71 CmbHLH genes were identified and divided into 17 subfamilies. Most (64.8%) of the CmbHLH proteins were rich in negatively charged amino acids. CmbHLH proteins are generally hydrophilic proteins with a high aliphatic amino acid content. Among the 71 CmbHLH proteins, five CmbHLHs were significantly upregulated by Alternaria sp. infection, and the expression of CmbHLH18 was the most significant. Furthermore, heterologous overexpression of CmbHLH18 could improve the resistance of Arabidopsis thaliana to necrotrophic fungus Alternaria brassicicola by enhancing callose deposition, preventing spores from entering leaves, reducing ROS accumulation, increasing the activities of antioxidant enzymes and defense enzymes, and promoting their gene expression levels. These results indicate that the five CmbHLHs, especially CmbHLH18, may be considered candidate genes for resistance to necrotrophic fungus. These findings not only increase our understanding of the role CmbHLHs play in biotic stress but also provide a basis by using CmbHLHs to breed a new variety of Chrysanthemum with high resistance to necrotrophic fungus.
Collapse
Affiliation(s)
- Yifeng Ding
- Department of Biological Sciences, College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Xiaomeng Wang
- Department of Biological Sciences, College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Dandan Wang
- Department of Biological Sciences, College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Liwei Jiang
- Department of Biological Sciences, College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Jing Xie
- Department of Biological Sciences, College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Tianle Wang
- Department of Biological Sciences, College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Lingyu Song
- Department of Biological Sciences, College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Xiting Zhao
- Department of Biological Sciences, College of Life Sciences, Henan Normal University, Xinxiang 453007, China
- Engineering Technology Research Center of Nursing and Utilization of Genuine Chinese Crude Drugs in Henan Province, Xinxiang 453007, China
- Engineering Laboratory of Biotechnology for Green Medicinal Plant of Henan Province, Xinxiang 453007, China
- Correspondence: or ; Tel.: +86-182-3739-1085 or +86-135-6988-6182
| |
Collapse
|
14
|
Liang Z, Liu K, Jiang C, Yang A, Yan J, Han X, Zhang C, Cong P, Zhang L. Insertion of a TRIM-like sequence in MdFLS2-1 promoter is associated with its allele-specific expression in response to Alternaria alternata in apple. FRONTIERS IN PLANT SCIENCE 2022; 13:1090621. [PMID: 36643297 PMCID: PMC9834810 DOI: 10.3389/fpls.2022.1090621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
Alternaria blotch disease, caused by Alternaria alternata apple pathotype (AAAP), is one of the major fungal diseases in apple. Early field observations revealed, the anther-derived homozygote Hanfu line (HFTH1) was highly susceptible to AAAP, whereas Hanfu (HF) exhibited resistance to AAAP. To understand the molecular mechanisms underlying the difference in sensitivity of HF and HFTH1 to AAAP, we performed allele-specific expression (ASE) analysis and comparative transcriptomic analysis before and after AAAP inoculation. We reported an important immune gene, namely, MdFLS2, which displayed strong ASE in HF with much lower expression levels of HFTH1-derived alleles. Transient overexpression of the dominant allele of MdFLS2-1 from HF in GL-3 apple leaves could enhance resistance to AAAP and induce expression of genes related to salicylic acid pathway. In addition, MdFLS2-1 was identified with an insertion of an 85-bp terminal-repeat retrotransposon in miniature (TRIM) element-like sequence in the upstream region of the nonreference allele. In contrast, only one terminal direct repeat (TDR) from TRIM-like sequence was present in the upstream region of the HFTH1-derived allele MdFLS2-2. Furthermore, the results of luciferase and β-glucuronidase reporter assays demonstrated that the intact TRIM-like sequence has enhancer activity. This suggested that insertion of the TRIM-like sequence regulates the expression level of the allele of MdFLS2, in turn, affecting the sensitivity of HF and HFTH1 to AAAP.
Collapse
Affiliation(s)
- Zhaolin Liang
- Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Germplasm Resources Utilization), Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Xingcheng, China
| | - Kai Liu
- Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Germplasm Resources Utilization), Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Xingcheng, China
| | - Chunyang Jiang
- Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Germplasm Resources Utilization), Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Xingcheng, China
| | - An Yang
- Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Germplasm Resources Utilization), Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Xingcheng, China
| | - Jiadi Yan
- Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Germplasm Resources Utilization), Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Xingcheng, China
| | - Xiaolei Han
- Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Germplasm Resources Utilization), Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Xingcheng, China
| | - Caixia Zhang
- Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Germplasm Resources Utilization), Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Xingcheng, China
| | - Peihua Cong
- Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Germplasm Resources Utilization), Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Xingcheng, China
| | - Liyi Zhang
- Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Germplasm Resources Utilization), Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Xingcheng, China
| |
Collapse
|
15
|
Mycoviral gene integration converts a plant pathogenic fungus into a biocontrol agent. Proc Natl Acad Sci U S A 2022; 119:e2214096119. [PMID: 36469771 PMCID: PMC9897477 DOI: 10.1073/pnas.2214096119] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2022] Open
Abstract
Mycovirus-infected fungi can suffer from poor growth, attenuated pigmentation, and virulence. However, the molecular mechanisms of how mycoviruses confer these symptoms remain poorly understood. Here, we report a mycovirus Stemphylium lycopersici alternavirus 1 (SlAV1) isolated from a necrotrophic plant pathogen Stemphylium lycopersici that causes altered colony pigmentation and hypovirulence by specifically interfering host biosynthesis of Altersolanol A, a polyketide phytotoxin. SlAV1 significantly down-regulates a fungal polyketide synthase (PKS1), the core enzyme of Altersolanol A biosynthesis. PKS1 deletion mutants do not accumulate Altersolanol A and lose pathogenicity to tomato and lettuce. Transgenic expression of SlAV1 open-reading frame 3 (ORF3) in S. lycopersici inhibits fungal PKS1 expression and Altersolanol A accumulation, leading to symptoms like SlAV1-infected fungal strains. Multiple plant species sprayed with mycelial suspension of S. lycopersici or S. vesicarium strains integrating and expressing ORF3 display enhanced resistance against virulent strains, converting the pathogenic fungi into biocontrol agents. Hence, our study not only proves inhibiting a key enzyme of host phytotoxin biosynthesis as a molecular mechanism underlying SlAV1-mediated hypovirulence of Stemphylium spp., but also demonstrates the potential of mycovirus-gene integrated fungi as a potential biocontrol agent to protect plants from fungal diseases.
Collapse
|
16
|
Mekapogu M, Kwon OK, Song HY, Jung JA. Towards the Improvement of Ornamental Attributes in Chrysanthemum: Recent Progress in Biotechnological Advances. Int J Mol Sci 2022; 23:ijms232012284. [PMID: 36293140 PMCID: PMC9603847 DOI: 10.3390/ijms232012284] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/07/2022] [Accepted: 10/10/2022] [Indexed: 11/15/2022] Open
Abstract
Incessant development and introduction of novel cultivars with improved floral attributes are vital in the dynamic ornamental industry. Chrysanthemum (Chrysanthemum morifolium) is a highly favored ornamental plant, ranking second globally in the cut flower trade, after rose. Development of new chrysanthemum cultivars with improved and innovative modifications in ornamental attributes, including floral color, shape, plant architecture, flowering time, enhanced shelf life, and biotic and abiotic stress tolerance, is a major goal in chrysanthemum breeding. Despite being an economically important ornamental plant, the application of conventional and molecular breeding approaches to various key traits of chrysanthemum is hindered owing to its genomic complexity, heterozygosity, and limited gene pool availability. Although classical breeding of chrysanthemum has resulted in the development of several hundreds of cultivars with various morphological variations, the genetic and transcriptional control of various important ornamental traits remains unclear. The coveted blue colored flowers of chrysanthemums cannot be achieved through conventional breeding and mutation breeding due to technical limitations. However, blue-hued flower has been developed by genetic engineering, and transgenic molecular breeding has been successfully employed, leading to substantial progress in improving various traits. The recent availability of whole-genome sequences of chrysanthemum offers a platform to extensively employ MAS to identify a large number of markers for QTL mapping, and GWAS to dissect the genetic control of complex traits. The combination of NGS, multi-omic platforms, and genome editing technologies has provided a tremendous scope to decipher the molecular and regulatory mechanisms. However, the application and integration of these technologies remain inadequate for chrysanthemum. This review, therefore, details the significance of floral attributes, describes the efforts of recent advancements, and highlights the possibilities for future application towards the improvement of crucial ornamental traits in the globally popular chrysanthemum plant.
Collapse
|
17
|
Huang Y, Ma H, Yue Y, Zhou T, Zhu Z, Wang C. Integrated transcriptomic and transgenic analyses reveal potential mechanisms of poplar resistance to Alternaria alternata infection. BMC PLANT BIOLOGY 2022; 22:413. [PMID: 36008749 PMCID: PMC9404672 DOI: 10.1186/s12870-022-03793-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Populus davidiana × P. bollena is a species of poplar from northeastern China that is characterized by cold resistance and fast growth but now suffers from pathogen infections. Leaf blight caused by Alternaria alternata has become a common poplar disease that causes serious economic impacts, but the molecular mechanisms of resistance to A. alternata in P. davidiana × P. bollena are still unclear. RESULTS In this study, the transcriptomic response of P. davidiana × P. bollena to A. alternata infection was determined via RNA-Seq. Twelve cDNA libraries were generated from RNA isolated from three biological replicates at four time points (0, 2, 3, and 4 d post inoculation), and a total of 5,930 differentially expressed genes (DEGs) were detected (| log2 fold change |≥ 1 and FDR values < 0.05). Functional analysis revealed that the DEGs were mainly enriched for the "plant hormone signal transduction" pathway, followed by the "phenylpropanoid biosynthesis" pathway. In addition, DEGs that encode defense-related proteins and are related to ROS metabolism were also identified. Numerous transcription factors, such as the bHLH, WRKY and MYB families, were also induced by A. alternata infection. Among these DEGs, those related to JA biosynthesis and JA signal transduction were consistently activated. Therefore, the lipoxygenase gene PdbLOX2, which is involved in JA biosynthesis, was selected for functional characterization. Overexpression of PdbLOX2 enhanced the resistance of P. davidiana × P. bollena to A. alternata, whereas silencing this gene enhanced susceptibility to A. alternata infection. CONCLUSIONS These results provide new insight into the molecular mechanisms of poplar resistance to A. alternata infection and provide candidate genes for breeding resistant cultivars using genetic engineering.
Collapse
Affiliation(s)
- Ying Huang
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), 26 Hexing Road, Harbin, 150040 China
| | - Huijun Ma
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), 26 Hexing Road, Harbin, 150040 China
| | - Yuanzhi Yue
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), 26 Hexing Road, Harbin, 150040 China
| | - Tianchang Zhou
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), 26 Hexing Road, Harbin, 150040 China
| | - Zhenyu Zhu
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), 26 Hexing Road, Harbin, 150040 China
| | - Chao Wang
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), 26 Hexing Road, Harbin, 150040 China
| |
Collapse
|
18
|
Overexpression of the Arabidopsis MACPF Protein AtMACP2 Promotes Pathogen Resistance by Activating SA Signaling. Int J Mol Sci 2022; 23:ijms23158784. [PMID: 35955922 PMCID: PMC9369274 DOI: 10.3390/ijms23158784] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/01/2022] [Accepted: 08/03/2022] [Indexed: 11/17/2022] Open
Abstract
Immune response in plants is tightly regulated by the coordination of the cell surface and intracellular receptors. In animals, the membrane attack complex/perforin-like (MACPF) protein superfamily creates oligomeric pore structures on the cell surface during pathogen infection. However, the function and molecular mechanism of MACPF proteins in plant pathogen responses remain largely unclear. In this study, we identified an Arabidopsis MACP2 and investigated the responsiveness of this protein during both bacterial and fungal pathogens. We suggest that MACP2 induces programmed cell death, bacterial pathogen resistance, and necrotrophic fungal pathogen sensitivity by activating the biosynthesis of tryptophan-derived indole glucosinolates and the salicylic acid signaling pathway dependent on the activity of enhanced disease susceptibility 1 (EDS1). Moreover, the response of MACP2 mRNA isoforms upon pathogen attack is differentially regulated by a posttranscriptional mechanism: alternative splicing. In comparison to previously reported MACPFs in Arabidopsis, MACP2 shares a redundant but nonoverlapping role in plant immunity. Thus, our findings provide novel insights and genetic tools for the MACPF family in maintaining SA accumulation in response to pathogens in Arabidopsis.
Collapse
|
19
|
Fu M, Bai Q, Zhang H, Guo Y, Peng Y, Zhang P, Shen L, Hong N, Xu W, Wang G. Transcriptome Analysis of the Molecular Patterns of Pear Plants Infected by Two Colletotrichum fructicola Pathogenic Strains Causing Contrasting Sets of Leaf Symptoms. FRONTIERS IN PLANT SCIENCE 2022; 13:761133. [PMID: 35251071 PMCID: PMC8888856 DOI: 10.3389/fpls.2022.761133] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 01/18/2022] [Indexed: 06/14/2023]
Abstract
Colletotrichum fructicola infects pear leaves, resulting in two major symptoms: tiny black spots (TS) followed by severe early defoliation and big necrotic lesions (BnL) without apparent damage depending on the pathotypes. How the same fungal species causes different symptoms remains unclear. To understand the molecular mechanism underlying the resulting diseases and the diverse symptoms, two C. fructicola pathogenetic strains (PAFQ31 and PAFQ32 responsible for TS and BnL symptoms, respectively) were inoculated on Pyrus pyrifolia leaves and subjected to transcriptome sequencing at the quiescent stage (QS) and necrotrophic stage (NS), respectively. In planta, the genes involved in the salicylic acid (SA) signaling pathway were upregulated at the NS caused by the infection of each strain. In contrast, the ethylene (ET), abscisic acid (ABA), and jasmonic acid (JA) signaling pathways were specifically related to the TS symptoms caused by the infection of strain PAFQ31, corresponding to the yellowish and early defoliation symptoms triggered by the strain infection. Correspondingly, SA was accumulated in similar levels in the leaves infected by each strain at NS, but JA was significantly higher in the PAFQ31-infected as measured using high-performance liquid chromatography. Weighted gene co-expression network analysis also reveals specific genes, pathways, phytohormones, and transcription factors (TFs) associated with the PAFQ31-associated early defoliation. Taken together, these data suggest that specific metabolic pathways were regulated in P. pyrifolia in response to the infection of two C. fructicola pathotypes resulting in the diverse symptoms: JA, ET, and ABA accumulated in the PAFQ31-infected leaves, which negatively affected the chlorophyll metabolism and photosynthesis pathways while positively affecting the expression of senescence-associated TFs and genes, resulted in leaf yellowing and defoliation; whereas SA inhibited JA-induced gene expression in the PAFQ32-infected leaves, which led to hypersensitive response-like reaction and BnL symptoms.
Collapse
Affiliation(s)
- Min Fu
- Hubei Hongshan Laboratory, Wuhan, China
- State Key Laboratory of Agricultural Microbiology, Wuhan, China
- Key Laboratory of Horticultural Crop (Fruit Trees) Biology and Germplasm Creation of the Ministry of Agriculture, Wuhan, China
- Hubei Key Laboratory of Plant Pathology, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Qing Bai
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Hui Zhang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yashuang Guo
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yuhong Peng
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Pengfei Zhang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Liang Shen
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Ni Hong
- State Key Laboratory of Agricultural Microbiology, Wuhan, China
- Key Laboratory of Horticultural Crop (Fruit Trees) Biology and Germplasm Creation of the Ministry of Agriculture, Wuhan, China
- Hubei Key Laboratory of Plant Pathology, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Wenxing Xu
- Hubei Hongshan Laboratory, Wuhan, China
- State Key Laboratory of Agricultural Microbiology, Wuhan, China
- Key Laboratory of Horticultural Crop (Fruit Trees) Biology and Germplasm Creation of the Ministry of Agriculture, Wuhan, China
- Hubei Key Laboratory of Plant Pathology, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Guoping Wang
- State Key Laboratory of Agricultural Microbiology, Wuhan, China
- Key Laboratory of Horticultural Crop (Fruit Trees) Biology and Germplasm Creation of the Ministry of Agriculture, Wuhan, China
- Hubei Key Laboratory of Plant Pathology, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
20
|
Lu YF, Li DX, Zhang R, Zhao LL, Qiu Z, Du Y, Ji S, Tang DQ. Chemical Antioxidant Quality Markers of Chrysanthemum morifolium Using a Spectrum-Effect Approach. Front Pharmacol 2022; 13:809482. [PMID: 35197853 PMCID: PMC8859431 DOI: 10.3389/fphar.2022.809482] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/19/2022] [Indexed: 11/13/2022] Open
Abstract
Traditionally, the quality evaluation of Chrysanthemum morifolium (CM) cv. (Juhua) attributes its habitats and processing methods, however, this strategy of neglecting bioactive ingredients usually results in deviation of quality evaluation. This study aims to explore the quality marker (Q-marker) based on spectrum-effect relationship and quality control strategy of CMs. The chromatographic fingerprint of 30 flower head samples of CMs from five different habitats including Hang-baiju, Gongju, Huaiju, Taiju and Boju were constructed by high performance liquid chromatography and analyzed through chemometrics methods such as similarity analysis (SA), cluster analysis (CA) and principal component analysis (PCA). The common peaks were quantified by external standard method and relative correction factor method. The in-vitro radical scavenging capacity assays of DPPH·, ·OH and ABTS were carried out. The Q-marker was explored by the correlation analysis between the contents of common peaks and in-vitro radical scavenging capacity, and then used to evaluate the quality of 30 flower head samples of CMs. A total of eight common peaks were appointed in 30 flower head samples of CMs, and their similarities ranged from 0.640 to 0.956. CA results showed that 30 flower head samples of CMs could be divided into five categories with reference to the Euclidean distance of 5. PCA results showed that common peaks played a major role in differential contribution of CMs. The quantification of common peaks hinted that their contents possessed significant variation whether for different accessions or the same accessions of CMs. The correlation analysis showed that chlorogenic acid, 3,5-O-dicaffeoylquinic acid, unknown peak 1, 4,5-O-dicaffeoylquinic acid and kaempferol-3-O-rutinoside could be used as the Q-markers for the quality evaluation of 30 flower head samples of commercially available CMs. The analysis strategy that combines chromatographic fingerprint analysis, multiple ingredients quantification, in-vitro chemical anti-oxidant activity evaluation and spectrum-effect relationship analysis clarified the therapeutic material basis and discovered the Q-markers, which possibly offers a more comprehensive quality assessment of CMs.
Collapse
Affiliation(s)
- Yi-Fan Lu
- The Second Clinical College, Xuzhou Medical University, Xuzhou, China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Ding-Xiang Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Ran Zhang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Lin-Lin Zhao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Zhen Qiu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Yan Du
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Shuai Ji
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
- Department of Pharmaceutical Analysis, Xuzhou Medical University, Xuzhou, China
| | - Dao-Quan Tang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
- Department of Pharmaceutical Analysis, Xuzhou Medical University, Xuzhou, China
- *Correspondence: Dao-Quan Tang,
| |
Collapse
|
21
|
Yang F, Wang H, Zhi C, Chen B, Zheng Y, Qiao L, Gao J, Pan Y, Cheng Z. Garlic Volatile Diallyl Disulfide Induced Cucumber Resistance to Downy Mildew. Int J Mol Sci 2021; 22:ijms222212328. [PMID: 34830208 PMCID: PMC8625977 DOI: 10.3390/ijms222212328] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 01/01/2023] Open
Abstract
Allicin compositions in garlic are used widely as fungicides in modern agriculture, in which diallyl disulfide (DADS) is a major compound. Downy mildew, caused by Pseudoperonospora cubensis (P. cubensis), is one of the most destructive diseases and causes severe yield losses in cucumbers. To explore the potential mechanism of DADS-induced cucumber resistance to downy mildew, cucumber seedlings were treated with DADS and then inoculated with P. cubensis at a 10-day interval. Symptom observation showed that DADS significantly induced cucumber resistance to downy mildew. Furthermore, both lignin and H2O2 were significantly increased by DADS treatment to responding P. cubensis infection. Simultaneously, the enzyme activities of peroxidase (POD) in DADS-treated seedlings were significantly promoted. Meanwhile, both the auxin (IAA) and salicylic acid (SA) contents were increased, and their related differentially expressed genes (DEGs) were up-regulated when treated with DADS. Transcriptome profiling showed that many DEGs were involved in the biological processes of defense responses, in which DEGs on the pathways of 'phenylpropanoid biosynthesis', 'phenylalanine metabolism', 'MAPK signaling', and 'plant hormone signal transduction' were significantly up-regulated in DADS-treated cucumbers uninoculated with the pathogen. Based on the results of several physiological indices and transcriptomes, a potential molecular mechanism of DADS-induced cucumber resistance to downy mildew was proposed and discussed. The results of this study might give new insight into the exploration of the induced resistance mechanism of cucumber to downy mildew and provide useful information for the subsequent mining of resistance genes in cucumber.
Collapse
|
22
|
Wu F, Qi J, Meng X, Jin W. miR319c acts as a positive regulator of tomato against Botrytis cinerea infection by targeting TCP29. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 300:110610. [PMID: 33180702 DOI: 10.1016/j.plantsci.2020.110610] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 07/16/2020] [Accepted: 07/20/2020] [Indexed: 06/11/2023]
Abstract
miR319 family is one of the oldest and most conservative miRNA families in plant and plays an important role in plant development and abiotic stress response. In our previous study, the abundance of sly-miR319c was increased in tomatoes infected by B. cinerea, but the roles and regulatory mechanisms of sly-miR319c in B. cinerea-infected tomato remain unclear. In this study, we confirmed that miR319c was increased in tomato with B. cinerea infection. In contrast, A TCP transcript factor, TCP29, targeted by sly-miR319c was decreased in B. cinerea-infected tomato. Therefore, transgenic Arabidopsis overexpressing sly-miR319c or its target were generated for understanding the biological roles and molecular mechanism of miR319c in B.cinerea-infected plants. Results showed that miR319c overexpression improved the resistance of transgenic plants to B. cinerea, whereas TCP29 overexpression increased the susceptibility of transgenic plant to B. cinerea. So far, TCP transcription factors have been reported mainly in developmental processes. Our data indicate that TCP29 act as a negative regulator to B.cinerea infection. In conclusion, our results indicate that sly-miR319c is a positive regulator of tomato resistance to B. cinerea infection by targeting TCP29.
Collapse
Affiliation(s)
- Fangli Wu
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Jingyi Qi
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Xin Meng
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Weibo Jin
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| |
Collapse
|