1
|
Gao S, Wang F, Wang S, Diao J, Lan S, Xu Y, Lyu X, Kang H, Yao Y. Ethylene modulates the phenylpropanoid pathway by enhancing VvMYB14 expression via the ERF5-melatonin-ERF104 pathway in grape seeds. HORTICULTURE RESEARCH 2025; 12:uhaf061. [PMID: 40271451 PMCID: PMC12017797 DOI: 10.1093/hr/uhaf061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 02/16/2025] [Indexed: 04/25/2025]
Abstract
The interaction between ethylene and melatonin in the regulation of polyphenol metabolism and the underlying mechanism remain largely unclear. This work demonstrated that ethylene treatment increased melatonin biosynthesis by inducing the VvASMT expression in grape seeds. Ethylene-induced VvERF5 transactivated VvASMT via binding to the ethylene response element in its promoter. VvERF5 overexpression led to an increase in melatonin biosynthesis while its suppression generated the opposite results in grape seeds, calli, and/or Arabidopsis seeds. A melatonin-responsive element (MTRE) was identified, and melatonin-induced VvERF104 was found to bind to the MTRE of the VvMYB14 promoter and activate its expression. VvMYB14 overexpression widely modified the expression of genes in the phenylpropanoid pathway and phenolic compound content in grape seeds. DNA affinity purification sequencing revealed that the MEME-1 motif was the most likely binding sites of VvMYB14. VvPAL, VvC4H, and VvCHS were verified to be the target genes of VvMYB14. Additionally, the overexpression of VvERF5 or VvERF104 increased the expression of VvPAL, VvC4H, and VvCHS, as well as the levels of the corresponding metabolites. Moreover, the roles of VvERF5, VvASMT, and VvERF104 in mediating ethylene-induced changes in the phenylpropanoid pathway were elucidated using their suppressing seeds. Collectively, ethylene increased the VvMYB14 expression via the pathway of ERF5-melatonin-ERF104 and thereby modified the phenylpropanoid pathway.
Collapse
Affiliation(s)
- Shiwei Gao
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huang-Huai Region, Ministry of Agriculture, College of Horticulture Science and Engineering, Shandong Agricultural University, No.61 Daizong Street, Tai-An 271018, Shandong, China
| | - Fei Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huang-Huai Region, Ministry of Agriculture, College of Horticulture Science and Engineering, Shandong Agricultural University, No.61 Daizong Street, Tai-An 271018, Shandong, China
| | - Shengnan Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huang-Huai Region, Ministry of Agriculture, College of Horticulture Science and Engineering, Shandong Agricultural University, No.61 Daizong Street, Tai-An 271018, Shandong, China
| | - Jiapeng Diao
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huang-Huai Region, Ministry of Agriculture, College of Horticulture Science and Engineering, Shandong Agricultural University, No.61 Daizong Street, Tai-An 271018, Shandong, China
| | - Shuxia Lan
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huang-Huai Region, Ministry of Agriculture, College of Horticulture Science and Engineering, Shandong Agricultural University, No.61 Daizong Street, Tai-An 271018, Shandong, China
| | - Yujiao Xu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huang-Huai Region, Ministry of Agriculture, College of Horticulture Science and Engineering, Shandong Agricultural University, No.61 Daizong Street, Tai-An 271018, Shandong, China
| | - Xinning Lyu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huang-Huai Region, Ministry of Agriculture, College of Horticulture Science and Engineering, Shandong Agricultural University, No.61 Daizong Street, Tai-An 271018, Shandong, China
| | - Hui Kang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huang-Huai Region, Ministry of Agriculture, College of Horticulture Science and Engineering, Shandong Agricultural University, No.61 Daizong Street, Tai-An 271018, Shandong, China
| | - Yuxin Yao
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huang-Huai Region, Ministry of Agriculture, College of Horticulture Science and Engineering, Shandong Agricultural University, No.61 Daizong Street, Tai-An 271018, Shandong, China
| |
Collapse
|
2
|
Li C, Yu Q, Si Y, Liang Y, Lin S, Yang G, Liu W, Ji Y, Wang A. Melatonin suppresses ethylene biosynthesis by inhibiting transcription factor MdREM10 during apple fruit ripening. HORTICULTURE RESEARCH 2025; 12:uhaf020. [PMID: 40196037 PMCID: PMC11975395 DOI: 10.1093/hr/uhaf020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 01/08/2025] [Indexed: 04/09/2025]
Abstract
Ethylene, a plant hormone, is essential for apple (Malus domestica) ripening. The precise molecular mechanism by which melatonin (MT) influences ethylene biosynthesis during apple fruit ripening remains unclear. This study found that exogenous MT treatment inhibited ethylene production and postponed apple fruit ripening. The endogenous MT content of apple fruits exhibited an inverse correlation with ethylene production during fruit ripening, suggesting that MT functions as a ripening suppressor in apple fruits. MT treatment suppressed the expression of key ethylene biosynthesis genes, MdACS1 and MdACO1, during apple fruit ripening. MT treatment decreased the expression levels of transcription factors MdREM10 and MdZF32. MdREM10 binds to the MdERF3 promoter, enhancing its expression and subsequently promoting MdACS1 transcription. Furthermore, MdREM10 directly bound to the MdZF32 promoter, promoting its transcription. MdZF32 directly bound to the MdACO1 promoter, inducing its expression. The findings suggested that MT suppresses ethylene biosynthesis and fruit ripening by inhibiting MdREM10, which indirectly promotes MdACS1 transcription via MdERF3 upregulation, and MdACO1 transcription via MdZF32 upregulation.
Collapse
Affiliation(s)
- Chen Li
- Key Laboratory of Fruit Postharvest Biology (Liaoning Province), College of Horticulture, Shenyang Agricultural University, No. 120, Dongling Road, Maganqiao Street, Shenhe District, Shenyang 110866, China
| | - Qian Yu
- Key Laboratory of Fruit Storage and Processing (Liaoning Province), Chinese Academy of Agricultural Sciences Research Institute of Pomology, No. 98, Xinghai South Street, Wenquan Street, Xingcheng 125100, China
| | - Yajing Si
- Key Laboratory of Fruit Postharvest Biology (Liaoning Province), College of Horticulture, Shenyang Agricultural University, No. 120, Dongling Road, Maganqiao Street, Shenhe District, Shenyang 110866, China
| | - Yuling Liang
- Key Laboratory of Fruit Postharvest Biology (Liaoning Province), College of Horticulture, Shenyang Agricultural University, No. 120, Dongling Road, Maganqiao Street, Shenhe District, Shenyang 110866, China
| | - Shijiao Lin
- Key Laboratory of Fruit Postharvest Biology (Liaoning Province), College of Horticulture, Shenyang Agricultural University, No. 120, Dongling Road, Maganqiao Street, Shenhe District, Shenyang 110866, China
| | - Guangxin Yang
- Key Laboratory of Fruit Postharvest Biology (Liaoning Province), College of Horticulture, Shenyang Agricultural University, No. 120, Dongling Road, Maganqiao Street, Shenhe District, Shenyang 110866, China
| | - Weiting Liu
- Key Laboratory of Fruit Postharvest Biology (Liaoning Province), College of Horticulture, Shenyang Agricultural University, No. 120, Dongling Road, Maganqiao Street, Shenhe District, Shenyang 110866, China
| | - Yinglin Ji
- Key Laboratory of Fruit Postharvest Biology (Liaoning Province), College of Horticulture, Shenyang Agricultural University, No. 120, Dongling Road, Maganqiao Street, Shenhe District, Shenyang 110866, China
| | - Aide Wang
- Key Laboratory of Fruit Postharvest Biology (Liaoning Province), College of Horticulture, Shenyang Agricultural University, No. 120, Dongling Road, Maganqiao Street, Shenhe District, Shenyang 110866, China
| |
Collapse
|
3
|
Li Y, Kong L, Mu H, Wang J, Li F, Kuang Y, Duan W, Fan P, Yuan L, Liang Z, Wang L. Transcriptome analysis and functional identification of transfer RNA-derived fragments in grape leaves exposed to UV-C radiation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 219:109425. [PMID: 39718286 DOI: 10.1016/j.plaphy.2024.109425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/09/2024] [Accepted: 12/17/2024] [Indexed: 12/25/2024]
Abstract
Transfer RNA-derived fragments (tRFs) are noncoding small RNAs derived from transfer RNAs (tRNAs) in microorganisms, animals and plants. In plants, tRFs are known to respond to environmental stimuli, including heat, oxidative stress and UV radiation; however, their specific functions in horticultural plants, such as grapevine, remain poorly understood. In this study, we used RNA-seq to identify differentially expressed genes (DEGs) in grape leaves exposed to UV-C radiation. A total of 1329 and 8055 of genes were differentially expression after 1 and 6 h of UV-C treatment, respectively. We identified a large number of secondary metabolism-related genes in the DEGs, including genes involved in stilbene and flavonoid biosynthesis. Noticeably, the stilbene biosynthesis-related gene was induced earlier than the other genes in the phenylalanine metabolic pathway. We also conducted small RNA-seq and identified differentially expressed (DE) miRNAs and their targets. To explore whether the tRFs involved in UV-C response, further analysis of the small RNA-seq data revealed 23 down-regulated and 41 up-regulated DE tRFs. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) showed that the target genes of these tRFs are involved in multiple biological processing, including hormone signal transduction and metabolite synthesis. To validate the function of tRFs, tRF39 and tRF45 were selected and overexpressed in tobacco leaves, and the expression levels of their target genes were inhibited. Our study suggests that the tRFs may regulate multiple biological processes in response to UV-C exposure in grapevine. Our findings provide a foundation for further elucidating the regulatory mechanisms of tRFs in horticultural crops.
Collapse
Affiliation(s)
- Yang Li
- Beijing Key Laboratory of Grape Science and Enology and State Key Laboratory of Plant Diversity and Specilaty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China; Chinese National Botany Garden, Beijing, 100093, China.
| | - Lingchao Kong
- Beijing Key Laboratory of Grape Science and Enology and State Key Laboratory of Plant Diversity and Specilaty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Chinese National Botany Garden, Beijing, 100093, China.
| | - Huayuan Mu
- Beijing Key Laboratory of Grape Science and Enology and State Key Laboratory of Plant Diversity and Specilaty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Chinese National Botany Garden, Beijing, 100093, China.
| | - Jiayu Wang
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Furui Li
- Beijing Key Laboratory of Grape Science and Enology and State Key Laboratory of Plant Diversity and Specilaty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Chinese National Botany Garden, Beijing, 100093, China.
| | - Yangfu Kuang
- Beijing Key Laboratory of Grape Science and Enology and State Key Laboratory of Plant Diversity and Specilaty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China; Chinese National Botany Garden, Beijing, 100093, China.
| | - Wei Duan
- Beijing Key Laboratory of Grape Science and Enology and State Key Laboratory of Plant Diversity and Specilaty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China; Chinese National Botany Garden, Beijing, 100093, China.
| | - Peige Fan
- Beijing Key Laboratory of Grape Science and Enology and State Key Laboratory of Plant Diversity and Specilaty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China; Chinese National Botany Garden, Beijing, 100093, China.
| | - Ling Yuan
- Department of Plant and Soil Sciences, Kentucky Tobacco Research and Development Center, University of Kentucky, Kentucky, 40546, USA.
| | - Zhenchang Liang
- Beijing Key Laboratory of Grape Science and Enology and State Key Laboratory of Plant Diversity and Specilaty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China; Chinese National Botany Garden, Beijing, 100093, China.
| | - Lijun Wang
- Beijing Key Laboratory of Grape Science and Enology and State Key Laboratory of Plant Diversity and Specilaty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China; Chinese National Botany Garden, Beijing, 100093, China.
| |
Collapse
|
4
|
Chakraborty S, Raychaudhuri SS. Melatonin improves the lead tolerance in Plantago ovata by modulating ROS homeostasis, phytohormone status and expression of stress-responsive genes. PLANT CELL REPORTS 2025; 44:39. [PMID: 39869175 DOI: 10.1007/s00299-025-03424-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 12/31/2024] [Indexed: 01/28/2025]
Abstract
KEY MESSAGE Melatonin increases Pb tolerance in P. ovata seedlings via the regulation of growth and stress-related phytohormones, ROS scavenging and genes responsible for melatonin synthesis, metal chelation, and stress defense. Lead (Pb) is a highly toxic heavy metal that accumulates in plants through soil and air contamination and impairs its plant growth and development. Because of its pharmaceutical importance, improvements in Plantago ovata yield against abiotic stresses are necessary. Melatonin (MEL) is a stress-alleviating biostimulator and our results showed a reduction in Pb induced phytotoxicity by enhancing plant growth attributes and balancing protective osmolytes. Pb-induced reactive oxygen species accumulation, including superoxide and peroxide free radicals and their mitigation through enzymatic antioxidants, was demonstrated in presence of MEL. Cell viability and Pb bioaccumulation were determined to understand the extent of cellular damage. Moreover, MEL increased secondary metabolite (flavonoids and anthocyanins) contents by 2-3-fold at the lowest Pb concentrations. Similar increases in the relative expression of genes (PoPAL and PoPPO), which are responsible for the production of non-enzymatic antioxidants, were observed. Notably, the upregulation of the PoCOMT gene up to 4-fold indicates increased melatonin production, as manifested in the phytomelatonin level. MEL supplementation also increased the auxin (IAA) level by 3-fold in the 100 µM Pb treatment group, while the abscisic acid (ABA) level decreased (1.4-fold) and the expression of PoMYB (a stress-related transcription factor) increased (up to 2.66-fold). Additionally, we found extreme downregulation (up to 18-fold) in the relative expression of PoMT 2 (a metal binding thiol compound) with melatonin treatment, which is otherwise upregulated (by 6-fold) during Pb stress. In the current study, these effects collectively revealed that MEL contribute to enhanced plant growth and Pb stress tolerance.
Collapse
Affiliation(s)
- Shreosi Chakraborty
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, 92, APC Road, Kolkata, 700 009, India
| | - Sarmistha Sen Raychaudhuri
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, 92, APC Road, Kolkata, 700 009, India.
| |
Collapse
|
5
|
Yin J, Li A, Wang Y, Li X, Ning W, Zhou X, Liu J, Sun Z. Melatonin improves cadmium tolerance in Salix viminalis by enhancing amino acid and saccharide metabolism, and increasing polyphenols. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 288:117393. [PMID: 39581114 DOI: 10.1016/j.ecoenv.2024.117393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/06/2024] [Accepted: 11/20/2024] [Indexed: 11/26/2024]
Abstract
As a short-rotation woody plant, Salix viminalis has the potential for phytoremediation of cadmium (Cd), but it has poor tolerance to high Cd concentrations. Melatonin (MEL), a candidate bio-promoter, was considered to play an active role in plant responses to Cd. However, the molecular mechanism by which MEL regulates metabolic processes in plants to defend against Cd stress remain unclear. Transcriptomics and global untargeted metabolomic sequencing were used to investigate the rapid response of S. viminalis to high Cd concentrations during initial growth stage after foliar application of MEL. Four treatments were set up in a pot experiment involving foliar application of MEL on the first day, followed by irrigation with a Cd solution the next day. Significant variations in the relevant defence genes and metabolites in leaves exposed to Cd were observed between willows treated with and without MEL. Foliar application of MEL upregulated sulphur metabolism-related genes such as methionine and S-adenosylmethionine synthases in leaves exposed to Cd; glutamine content, which is the key point of nitrogen assimilation, also increased. Additionally, glycolysis and sucrose metabolic genes, including hexokinase, sucrose synthase, invertase, and the inositol phosphate metabolic gene myo-inositol-1-phosphate synthase were also upregulated in leaves. Moreover, MEL also upregulated genes related to the synthesis of flavonoids, anthocyanins, and proanthocyanins in the leaves. These results demonstrated that MEL improved amino acid and saccharide metabolism in the leaves of S. viminalis in response to Cd. It also improved the antioxidant capacity and Cd tolerance in S. viminalis leaves by enhancing synthetic capacity of polyphenol compounds. MEL may be involved in processes of photorespiration, ethylene metabolism, GABA shunt, nitric oxide metabolism, osmotic adjustment, and the synthesis of glutathione and ascorbate in S. viminalis under Cd stress. This series of metabolic changes in S. viminalis occurred within 24 h of the foliar application of MEL, which provided a sufficient substrate for subsequent defence reactions to cope with Cd stress. Our findings will help elucidate the molecular mechanism by which MEL regulates metabolic processes in plants in response to Cd challenges and guide the application of MEL to improve Cd phytoremediation efficiency.
Collapse
Affiliation(s)
- Jiahui Yin
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding,College of Forestry and Grassland Science, Jilin Agricultural University, Changchun 130118, China
| | - Ao Li
- Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Yuancheng Wang
- Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Xia Li
- College of Agriculture and Bioengineering, Heze University, Heze, Shandong 274000, China
| | - Wei Ning
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding,College of Forestry and Grassland Science, Jilin Agricultural University, Changchun 130118, China
| | - Xinglu Zhou
- Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Junxiang Liu
- Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China.
| | - Zhenyuan Sun
- Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China.
| |
Collapse
|
6
|
Wan X, Zhang Y, Wang G, Liao R, Pan H, Chen C, Han B, Deng H, Song C. Melatonin Affects Peucedanum praeruptorum Vegetative Growth and Coumarin Synthesis by Modulating the Antioxidant System, Photosynthesis, and Endogenous Hormones. J Pineal Res 2024; 76:e70018. [PMID: 39711422 DOI: 10.1111/jpi.70018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/21/2024] [Accepted: 12/02/2024] [Indexed: 12/24/2024]
Abstract
The dried root of Peucedanum praeruptorum is often used medicinally and has high pyran- and furanocoumarin content. Although exogenous melatonin (MT) impacts the regulation of plant growth, stress responses, secondary metabolism, etc., it remains unclear whether MT regulates the vegetative growth and development of P. praeruptorum. Thus, the aim of the current study is to characterize the effects of different exogenous MT concentrations on the physiological functions, photosynthesis, antioxidant systems, hormone induction, and coumarin synthesis of P. praeruptorum. Different MT concentrations exert distinct regulatory effects on P. praeruptorum growth and the expression of genes related to coumarin synthesis. Treatment of P. praeruptorum with low concentrations of MT increases photosynthesis and leaf growth compared to the control, while high concentrations reduce root vitality and elongation and decrease the expression of photosynthetic system genes. Low concentrations of MT also significantly increase antioxidant enzyme activity and photosynthetic pigment content and modulate the levels of IAA, gibberellic acid, salicylic acid, jasmonic acid, abscisic acid, and endogenous MT. Moreover, MT increases the activity of the MT synthesis enzymes tryptophan decarboxylase, tryptophan hydroxylase, tryptamine-5-hydroxylase, serotonin N-acetyltransferase, acetylserotonin O-methyltransferase, and caffeic acid O-methyltransferase, and promotes the accumulation of isoscopoletin, scopoletin, peucedanocoumarin II, praeruptorin A, praeruptorin B, and praeruptorin E. MT also upregulates most genes associated with coumarin synthesis, including PAL1, C4H, 4CL-3, C3H-1, F6H-1, CCoAMT, OMT-1, CYP71AJ1, CYP84A1-1, S8H-1, PT-1, and COSY-1. These findings demonstrate that MT may improve P. praeruptorum growth and development while promoting the synthesis of coumarin components.
Collapse
Affiliation(s)
- Xiaoting Wan
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Dabieshan Academy of Traditional Chinese Medicine, Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, College of Biological and Pharmaceutical Engineering, West Anhui University, Luan, China
| | - Yingyu Zhang
- Henan Key Laboratory of Rare Diseases, Endocrinology and Metabolism Center, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Guoyu Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Dabieshan Academy of Traditional Chinese Medicine, Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, College of Biological and Pharmaceutical Engineering, West Anhui University, Luan, China
| | - Ranran Liao
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Dabieshan Academy of Traditional Chinese Medicine, Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, College of Biological and Pharmaceutical Engineering, West Anhui University, Luan, China
| | - Haoyu Pan
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Cunwu Chen
- Anhui Dabieshan Academy of Traditional Chinese Medicine, Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, College of Biological and Pharmaceutical Engineering, West Anhui University, Luan, China
| | - Bangxing Han
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Dabieshan Academy of Traditional Chinese Medicine, Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, College of Biological and Pharmaceutical Engineering, West Anhui University, Luan, China
| | - Hui Deng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Dabieshan Academy of Traditional Chinese Medicine, Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, College of Biological and Pharmaceutical Engineering, West Anhui University, Luan, China
| | - Cheng Song
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Dabieshan Academy of Traditional Chinese Medicine, Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, College of Biological and Pharmaceutical Engineering, West Anhui University, Luan, China
| |
Collapse
|
7
|
Mou Z, Yuan Y, Wei W, Zhao Y, Wu B, Chen J. Integrative Metabolomic and Transcriptomic Analysis Provides Novel Insights into the Effects of SO 2 on the Postharvest Quality of 'Munage' Table Grapes. Foods 2024; 13:3494. [PMID: 39517277 PMCID: PMC11545366 DOI: 10.3390/foods13213494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 10/28/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Postharvest grapes exhibit a limited shelf life due to susceptibility to rot and deterioration, significantly reducing their nutritional and economic value. Sulfur dioxide (SO2) is a widely recognized preservative for extending grape storage life. This study performed a detailed analysis of 'Munage' table grapes treated with SO2 fumigation, employing transcriptomic and metabolomic approaches. Results indicate that SO2 fumigation significantly extends the shelf life of grapes, as demonstrated by improved visual quality, reduced decay rates, and increased fruit firmness. We identified 309 differentially accumulated metabolites (DAMs) and 1906 differentially expressed genes (DEGs), including 135 transcription factors (TFs). Both DEGs and DAMs showed significant enrichment of flavonoid-related metabolism compared with the control, and the relative content of four flavonoid metabolites (Wogonin-7-O-glucuronide, Acacetin-7-O-glucuronide, Apigenin-7-O-glucuronide, and Baicalein 7-O-glucuronide) were significantly increased in grapes upon SO2 treatment, suggesting that SO2 treatment had a substantial regulatory effect on grape flavonoid metabolism. Importantly, we constructed complex regulatory networks by screening key enzyme genes (e.g., PAL, 4CLs, CHS, CHI2, and UGT88F3) related to the metabolism of target flavonoid, as well as potential regulatory transcription factors (TFs). Overall, our findings offer new insights into the regulatory mechanisms by which SO2 maintains the postharvest quality of table grapes.
Collapse
Affiliation(s)
- Zhenliang Mou
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (Z.M.); (W.W.)
| | - Yuyao Yuan
- Xinjiang Key Laboratory of Processing and Preservation of Agricultural Products, Institute of Agro-Products Storage and Processing, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China;
| | - Wei Wei
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (Z.M.); (W.W.)
| | - Yating Zhao
- College of Food Science and Pharmacy, Xinjiang Agricultural University, Urumqi 830052, China;
| | - Bin Wu
- Xinjiang Key Laboratory of Processing and Preservation of Agricultural Products, Institute of Agro-Products Storage and Processing, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China;
| | - Jianye Chen
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (Z.M.); (W.W.)
| |
Collapse
|
8
|
Xu Y, Wang R, Ma Y, Li M, Bai M, Wei G, Wang J, Feng L. Metabolite and Transcriptome Profiling Analysis Provides New Insights into the Distinctive Effects of Exogenous Melatonin on Flavonoids Biosynthesis in Rosa rugosa. Int J Mol Sci 2024; 25:9248. [PMID: 39273197 PMCID: PMC11395435 DOI: 10.3390/ijms25179248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/23/2024] [Accepted: 08/24/2024] [Indexed: 09/15/2024] Open
Abstract
Although the petals of Rosa rugosa are rich in flavonoids and their bioactivity has a significant impact on human health, the flavonoid content decreases during flower development. In this study, R. rugosa 'Feng hua' was used to investigate the effects of the melatonin foliar spray on enhancing the quality of rose by focusing on major flavonoids. The results showed that the contents of total flavonoids in rose petals at the full bloom stage induced by melatonin obeyed a bell-shaped curve, with a maximum at 0.3 mM, indicating the concentration-dependent up-regulation of flavonoid biosynthesis. In the treatment with 0.3 mM melatonin, metabolomic analyses showed that the concentrations of ten main flavonoids were identified to be increased by melatonin induction, with high levels and increases observed in three flavonols and two anthocyanins. KEGG enrichment of transcriptomic analysis revealed a remarkable enrichment of DEGs in flavonoid and flavonol biosynthesis, such as Rr4CL, RrF3H, and RrANS. Furthermore, functional validation using virus-induced gene silencing technology demonstrated that Rr4CL3 is the crucial gene regulating flavonoid biosynthesis in response to the stimulant of melatonin. This study provides insights into the exogenous melatonin regulation mechanism of biosynthesis of flavonoids, thereby offering potential industrial applications.
Collapse
Affiliation(s)
- Yong Xu
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Ruotong Wang
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Yuanxiao Ma
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Meng Li
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Mengjuan Bai
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Guo Wei
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Jianwen Wang
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Liguo Feng
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
9
|
Zeng R, Chen T, Li X, Cao J, Li J, Xu X, Zhang L, Chen Y. Integrated physiological, transcriptomic and metabolomic analyses reveal the mechanism of peanut kernel weight reduction under waterlogging stress. PLANT, CELL & ENVIRONMENT 2024; 47:3198-3214. [PMID: 38722055 DOI: 10.1111/pce.14936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 04/16/2024] [Accepted: 04/19/2024] [Indexed: 07/12/2024]
Abstract
Waterlogging stress (WS) hinders kernel development and directly reduces peanut yield; however, the mechanism of kernel filling in response to WS remains unknown. The waterlogging-sensitive variety Huayu 39 was subjected to WS for 3 days at 7 days after the gynophores touched the ground (DAG). We found that WS affected kernel filling at 14, 21, and 28 DAG. WS decreased the average filling rate and kernel dry weight, while transcriptome sequencing and widely targeted metabolomic analysis revealed that WS inhibited the gene expression in starch and sucrose metabolism, which reduced sucrose input and transformation ability. Additionally, genes related to ethylene and melatonin synthesis and the accumulation of tryptophan and methionine were upregulated in response to WS. WS upregulated the expression of the gene encoding tryptophan decarboxylase (AhTDC), and overexpression of AhTDC in Arabidopsis significantly reduced the seed length, width, and weight. Therefore, WS reduced the kernel-filling rate, leading to a reduction in the 100-kernel weight. This survey informs the development of measures that alleviate the negative impact of WS on peanut yield and quality and provides a basis for exploring high-yield and high-quality cultivation, molecular-assisted breeding, and waterlogging prevention in peanut farming.
Collapse
Affiliation(s)
- Ruier Zeng
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agronomy, South China Agricultural University, Guangzhou, China
| | - Tingting Chen
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agronomy, South China Agricultural University, Guangzhou, China
| | - Xi Li
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agronomy, South China Agricultural University, Guangzhou, China
| | - Jing Cao
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agronomy, South China Agricultural University, Guangzhou, China
| | - Jie Li
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agronomy, South China Agricultural University, Guangzhou, China
| | - Xueyu Xu
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agronomy, South China Agricultural University, Guangzhou, China
| | - Lei Zhang
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agronomy, South China Agricultural University, Guangzhou, China
| | - Yong Chen
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agronomy, South China Agricultural University, Guangzhou, China
| |
Collapse
|
10
|
Aghdam MS, Arnao MB. Phytomelatonin: From Intracellular Signaling to Global Horticulture Market. J Pineal Res 2024; 76:e12990. [PMID: 39030989 DOI: 10.1111/jpi.12990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/25/2024] [Accepted: 07/03/2024] [Indexed: 07/22/2024]
Abstract
Melatonin (N-acetyl-5-methoxytryptamine), a well-known mammalian hormone, has been having a great relevance in the Plant World in recent years. Many of its physiological actions in plants are leading to possible features of agronomic interest, especially those related to improvements in tolerance to stressors and in the postharvest life of fruits and vegetables. Thus, through the exogenous application of melatonin or by modifying the endogenous biosynthesis of phytomelatonin, some change can be made in the functional levels of melatonin in tissues and their responses. Also, acting in the respective phytomelatonin biosynthesis enzymes, regulating the expression of tryptophan decarboxylase (TDC), tryptamine 5-hydroxylase (T5H), serotonin N-acetyltransferase (SNAT), N-acetylserotonin O-methyltransferase (ASMT), and caffeic acid O-methyltransferase (COMT), and recently the possible action of deacetylases on some intermediates offers promising opportunities for improving fruits and vegetables in postharvest and its marketability. Other regulators/effectors such as different transcription factors, protein kinases, phosphatases, miRNAs, protein-protein interactions, and some gasotransmitters such as nitric oxide or hydrogen sulfide were also considered in an exhaustive vision. Other interesting aspects such as the role of phytomelatonin in autophagic responses, the posttranslational reprogramming by protein-phosphorylation, ubiquitylation, SUMOylation, PARylation, persulfidation, and nitrosylation described in the phytomelatonin-mediated responses were also discussed, including the relationship of phytomelatonin and several plant hormones, for chilling injury and fungal decay alleviating. The current data about the phytomelatonin receptor in plants (CAND2/PMTR1), the effect of UV-B light and cold storage on the postharvest damage are presented and discussed. All this on the focus of a possible new action in the preservation of the quality of fruits and vegetables.
Collapse
Affiliation(s)
| | - Marino B Arnao
- Phytohormones and Plant Development Laboratory, Department of Plant Biology (Plant Physiology), Faculty of Biology, University of Murcia, Murcia, Spain
| |
Collapse
|
11
|
Wang P, Meng F, Yang Y, Ding T, Liu H, Wang F, Li A, Zhang Q, Li K, Fan S, Li B, Ma Z, Zhang T, Zhou Y, Zhao H, Wang X. De novo assembling a high-quality genome sequence of Amur grape ( Vitis amurensis Rupr .) gives insight into Vitis divergence and sex determination. HORTICULTURE RESEARCH 2024; 11:uhae117. [PMID: 38919553 PMCID: PMC11197301 DOI: 10.1093/hr/uhae117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 04/09/2024] [Indexed: 06/27/2024]
Abstract
To date, there has been no high-quality sequence for genomes of the East Asian grape species, hindering biological and breeding efforts to improve grape cultivars. This study presents ~522 Mb of the Vitis amurensis (Va) genome sequence containing 27 635 coding genes. Phylogenetic analysis indicated that Vitis riparia (Vr) may have first split from the other two species, Va and Vitis vinifera (Vv). Divergent numbers of duplicated genes reserved among grapes suggests that the core eudicot-common hexaploidy (ECH) and the subsequent genome instability still play a non-negligible role in species divergence and biological innovation. Prominent accumulation of sequence variants might have improved cold resistance in Va, resulting in a more robust network of regulatory cold resistance genes, explaining why it is extremely cold-tolerant compared with Vv and Vr. In contrast, Va has preserved many fewer nucleotide binding site (NBS) disease resistance genes than the other grapes. Notably, multi-omics analysis identified one trans-cinnamate 4-monooxygenase gene positively correlated to the resveratrol accumulated during Va berry development. A selective sweep analysis revealed a hypothetical Va sex-determination region (SDR). Besides, a PPR-containing protein-coding gene in the hypothetical SDR may be related to sex determination in Va. The content and arrangement order of genes in the putative SDR of female Va were similar to those of female Vv. However, the putative SDR of female Va has lost one flavin-containing monooxygenase (FMO) gene and contains one extra protein-coding gene uncharacterized so far. These findings will improve the understanding of Vitis biology and contribute to the improvement of grape breeding.
Collapse
Affiliation(s)
| | - Fanbo Meng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yiming Yang
- Institute of Special Animal and Plant Sciences of CAAS, Changchun 130000, China
| | | | - Huiping Liu
- Shandong Academy of Grape, Jinan 250100, China
| | | | - Ao Li
- Shandong Academy of Grape, Jinan 250100, China
| | | | - Ke Li
- Shandong Academy of Grape, Jinan 250100, China
| | - Shutian Fan
- Institute of Special Animal and Plant Sciences of CAAS, Changchun 130000, China
| | - Bo Li
- Shandong Academy of Grape, Jinan 250100, China
| | - Zhiyao Ma
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000, China
| | - Tianhao Zhang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000, China
| | - Yongfeng Zhou
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000, China
| | | | - Xiyin Wang
- North China University of Science and Technology, Tangshan 063000, China
| |
Collapse
|
12
|
Liu M, Wang C, Ji H, Sun M, Liu T, Wang J, Cao H, Zhu Q. Ethylene biosynthesis and signal transduction during ripening and softening in non-climacteric fruits: an overview. FRONTIERS IN PLANT SCIENCE 2024; 15:1368692. [PMID: 38736445 PMCID: PMC11082881 DOI: 10.3389/fpls.2024.1368692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/08/2024] [Indexed: 05/14/2024]
Abstract
In recent years, the ethylene-mediated ripening and softening of non-climacteric fruits have been widely mentioned. In this paper, recent research into the ethylene-mediated ripening and softening of non-climacteric fruits is summarized, including the involvement of ethylene biosynthesis and signal transduction. In addition, detailed studies on how ethylene interacts with other hormones to regulate the ripening and softening of non-climacteric fruits are also reviewed. These findings reveal that many regulators of ethylene biosynthesis and signal transduction are linked with the ripening and softening of non-climacteric fruits. Meanwhile, the perspectives of future research on the regulation of ethylene in non-climacteric fruit are also proposed. The overview of the progress of ethylene on the ripening and softening of non-climacteric fruit will aid in the identification and characterization of key genes associated with ethylene perception and signal transduction during non-climacteric fruit ripening and softening.
Collapse
Affiliation(s)
- Meiying Liu
- Key Laboratory of Biochemistry and Molecular Biology in University of Shandong, School of Advanced Agricultural Sciences, Weifang University, Weifang, China
- College of Enology, Northwest A&F University, Yangling, Shaanxi, China
| | - Chaoran Wang
- College of Agriculture & Forestry Technology, Weifang Vocational College, Weifang, China
| | - Hongliang Ji
- Key Laboratory of Biochemistry and Molecular Biology in University of Shandong, School of Advanced Agricultural Sciences, Weifang University, Weifang, China
| | - Maoxiang Sun
- Key Laboratory of Biochemistry and Molecular Biology in University of Shandong, School of Advanced Agricultural Sciences, Weifang University, Weifang, China
| | - Tongyu Liu
- Key Laboratory of Biochemistry and Molecular Biology in University of Shandong, School of Advanced Agricultural Sciences, Weifang University, Weifang, China
| | - Jiahao Wang
- Key Laboratory of Biochemistry and Molecular Biology in University of Shandong, School of Advanced Agricultural Sciences, Weifang University, Weifang, China
| | - Hui Cao
- Key Laboratory of Biochemistry and Molecular Biology in University of Shandong, School of Advanced Agricultural Sciences, Weifang University, Weifang, China
| | - Qinggang Zhu
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
13
|
Jian S, Wan S, Lin Y, Zhong C. Nitrogen Sources Reprogram Carbon and Nitrogen Metabolism to Promote Andrographolide Biosynthesis in Andrographis paniculata (Burm.f.) Nees Seedlings. Int J Mol Sci 2024; 25:3990. [PMID: 38612797 PMCID: PMC11012798 DOI: 10.3390/ijms25073990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/23/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024] Open
Abstract
Carbon (C) and nitrogen (N) metabolisms participate in N source-regulated secondary metabolism in medicinal plants, but the specific mechanisms involved remain to be investigated. By using nitrate (NN), ammonium (AN), urea (UN), and glycine (GN), respectively, as sole N sources, we found that N sources remarkably affected the contents of diterpenoid lactone components along with C and N metabolisms reprograming in Andrographis paniculata, as compared to NN, the other three N sources raised the levels of 14-deoxyandrographolide, andrographolide, dehydroandrographolide (except UN), and neoandrographolide (except AN) with a prominent accumulation of farnesyl pyrophosphate (FPP). These N sources also raised the photosynthetic rate and the levels of fructose and/or sucrose but reduced the activities of phosphofructokinase (PFK), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), phosphoenolpyruvate carboxylase (PEPC) and pyruvate dehydrogenase (PDH). Conversely, phosphoenolpyruvate carboxykinase (PEPCK) and malate enzyme (ME) activities were upregulated. Simultaneously, citrate, cis-aconitate and isocitrate levels declined, and N assimilation was inhibited. These results indicated that AN, UN and GN reduced the metabolic flow of carbohydrates from glycolysis into the TCA cycle and downstream N assimilation. Furthermore, they enhanced arginine and GABA metabolism, which increased C replenishment of the TCA cycle, and increased ethylene and salicylic acid (SA) levels. Thus, we proposed that the N sources reprogrammed C and N metabolism, attenuating the competition of N assimilation for C, and promoting the synthesis and accumulation of andrographolide through plant hormone signaling. To obtain a higher production of andrographolide in A. paniculata, AN fertilizer is recommended in its N management.
Collapse
Affiliation(s)
- Shaofen Jian
- National Center for TCM Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning 530023, China; (S.J.); (S.W.); (Y.L.)
- Guangxi Key Laboratory of Medicinal Resource Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning 530023, China
- Guangxi Engineering Research Center of TCM Resource Intelligent Creation, Guangxi Botanical Garden of Medicinal Plants, Nanning 530023, China
| | - Si Wan
- National Center for TCM Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning 530023, China; (S.J.); (S.W.); (Y.L.)
- Guangxi Key Laboratory of Medicinal Resource Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning 530023, China
- Guangxi Engineering Research Center of TCM Resource Intelligent Creation, Guangxi Botanical Garden of Medicinal Plants, Nanning 530023, China
| | - Yang Lin
- National Center for TCM Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning 530023, China; (S.J.); (S.W.); (Y.L.)
- Guangxi Key Laboratory of Medicinal Resource Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning 530023, China
- Guangxi Engineering Research Center of TCM Resource Intelligent Creation, Guangxi Botanical Garden of Medicinal Plants, Nanning 530023, China
| | - Chu Zhong
- National Center for TCM Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning 530023, China; (S.J.); (S.W.); (Y.L.)
- Guangxi Key Laboratory of Medicinal Resource Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning 530023, China
- Guangxi Engineering Research Center of TCM Resource Intelligent Creation, Guangxi Botanical Garden of Medicinal Plants, Nanning 530023, China
| |
Collapse
|
14
|
Gautam H, Khan S, Nidhi, Sofo A, Khan NA. Appraisal of the Role of Gaseous Signaling Molecules in Thermo-Tolerance Mechanisms in Plants. PLANTS (BASEL, SWITZERLAND) 2024; 13:791. [PMID: 38592775 PMCID: PMC10975175 DOI: 10.3390/plants13060791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/19/2024] [Accepted: 03/09/2024] [Indexed: 04/11/2024]
Abstract
A significant threat to the ongoing rise in temperature caused by global warming. Plants have many stress-resistance mechanisms, which is responsible for maintaining plant homeostasis. Abiotic stresses largely increase gaseous molecules' synthesis in plants. The study of gaseous signaling molecules has gained attention in recent years. The role of gaseous molecules, such as nitric oxide (NO), hydrogen sulfide (H2S), carbon dioxide (CO2), carbon monoxide (CO), methane (CH4), and ethylene, in plants under temperature high-temperature stress are discussed in the current review. Recent studies revealed the critical function that gaseous molecules play in controlling plant growth and development and their ability to respond to various abiotic stresses. Here, we provide a thorough overview of current advancements that prevent heat stress-related plant damage via gaseous molecules. We also explored and discussed the interaction of gaseous molecules. In addition, we provided an overview of the role played by gaseous molecules in high-temperature stress responses, along with a discussion of the knowledge gaps and how this may affect the development of high-temperature-resistant plant species.
Collapse
Affiliation(s)
- Harsha Gautam
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh 202002, India
| | - Sheen Khan
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh 202002, India
| | - Nidhi
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh 202002, India
| | - Adriano Sofo
- Department of European and Mediterranean Cultures: Architecture, Environment, Cultural Heritage (DiCEM), University of Basilicata, 75100 Matera, Italy
| | - Nafees A. Khan
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh 202002, India
| |
Collapse
|
15
|
Xing J, Yang W, Xu L, Zhang J, Yang Y, Jiang J, Huang H, Deng L, Li J, Kong W, Chen Y, Mi Q, Gao Q, Li X. Overexpression of NtLHT1 affects the development of leaf morphology and abiotic tolerance in tobacco. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 339:111961. [PMID: 38103697 DOI: 10.1016/j.plantsci.2023.111961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/04/2023] [Accepted: 12/12/2023] [Indexed: 12/19/2023]
Abstract
LYSINE HISTIDINE TRANSPORTER1 (LHT1) is a crucial broad-specificity and high-affinity amino acid transporter affecting the uptake of nitrogen and probably the tolerance to abiotic stress in plants. However, little is known about the phenotypic functions of LHT1 in plant growth and development and abiotic stress tolerance. In this study, we identified the NtLHT1 gene from the tobacco variety Honghuadajinyuan (HD) and determined its important roles in leaf morphological development and plant resistance to abiotic stress. Comprehensive functional analyses using knockout and overexpression transgenic lines (ntlht1 and OE) revealed overexpression of NtLHT1 accelerated leave senescence and increased plant height, leaf number and plant tolerance under cold, salt and drought stresses. In addition, NtLHT1 overexpression significantly decreased the leaf elongation of HD, causing the leaves to change from a long-elliptical shape to an elliptical shape. However silencing NtLHT1 decreased the seed germination rate under NaCl and PEG stresses. Moreover, NtLHT1 significantly affected the contents of various amino acids, such as the neutral, acidic, non-polar and aromatic amino acids, ethylene precursor (ACC), GA3 and IAA in tobacco. These results suggested that the amino acid and ethylene precursor ACC transport activities of NtLHT1 provide fine regulatory function for plant growth and development and plant tolerance to abiotic stress.
Collapse
Affiliation(s)
- Jiaxin Xing
- Technology Center of China Tobacco Yunnan Industrial Co. Ltd., No. 41 Keyi Road, Kunming 650106, China
| | - Wenwu Yang
- Technology Center of China Tobacco Yunnan Industrial Co. Ltd., No. 41 Keyi Road, Kunming 650106, China
| | - Li Xu
- Technology Center of China Tobacco Yunnan Industrial Co. Ltd., No. 41 Keyi Road, Kunming 650106, China
| | - Jianrong Zhang
- Technology Center of China Tobacco Yunnan Industrial Co. Ltd., No. 41 Keyi Road, Kunming 650106, China
| | - Yekun Yang
- Technology Center of China Tobacco Yunnan Industrial Co. Ltd., No. 41 Keyi Road, Kunming 650106, China
| | - Jiarui Jiang
- Technology Center of China Tobacco Yunnan Industrial Co. Ltd., No. 41 Keyi Road, Kunming 650106, China
| | - Haitao Huang
- Technology Center of China Tobacco Yunnan Industrial Co. Ltd., No. 41 Keyi Road, Kunming 650106, China
| | - Lele Deng
- Technology Center of China Tobacco Yunnan Industrial Co. Ltd., No. 41 Keyi Road, Kunming 650106, China
| | - Jing Li
- Technology Center of China Tobacco Yunnan Industrial Co. Ltd., No. 41 Keyi Road, Kunming 650106, China
| | - Weisong Kong
- Technology Center of China Tobacco Yunnan Industrial Co. Ltd., No. 41 Keyi Road, Kunming 650106, China
| | - Yudong Chen
- Technology Center of China Tobacco Yunnan Industrial Co. Ltd., No. 41 Keyi Road, Kunming 650106, China
| | - Qili Mi
- Technology Center of China Tobacco Yunnan Industrial Co. Ltd., No. 41 Keyi Road, Kunming 650106, China.
| | - Qian Gao
- Technology Center of China Tobacco Yunnan Industrial Co. Ltd., No. 41 Keyi Road, Kunming 650106, China.
| | - Xuemei Li
- Technology Center of China Tobacco Yunnan Industrial Co. Ltd., No. 41 Keyi Road, Kunming 650106, China.
| |
Collapse
|
16
|
Fang L, Wang Z, Su L, Gong L, Xin H. Vitis Myb14 confer cold and drought tolerance by activating lipid transfer protein genes expression and reactive oxygen species scavenge. Gene 2024; 890:147792. [PMID: 37714279 DOI: 10.1016/j.gene.2023.147792] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 09/04/2023] [Accepted: 09/08/2023] [Indexed: 09/17/2023]
Abstract
The R2R3 Myb transcription factor exhibits a wide range of functions and participates in various biological processes in plant development, secondary metabolism, and abiotic stress tolerance, among others. Vitis Myb14 initially identified for its involvement in resveratrol synthesis in grapevines. In this study, we investigate its role in abiotic stress tolerance. Significant differences in expression were observed between two grape varieties, Vitis amurensis (Cold-hardy) and V. vinifera (Cold-sentitive), under abiotic and hormone treatments. Both VvMyb14 and VaMyb14 demonstrated responsiveness to cold, drought and high salt treatment, but VaMyb14 exhibited a quicker and more pronounced response. To investigate further, we overexpressed VaMyb14 in A. thalina and found that VaMyb14 OE plants showed significantly enhanced cold and drought tolerance compared to wild-type plants. Additionally, the transgenic lines exhibited increased antioxidant enzyme activity, particularly POD activity, and reduced MDA content. Microarray analysis of VaMyb14 OE plants revealed up-regulation of several ABA metabolism and signal transduction genes, including several LTPs, PP2Cs, RD29B, COR78 and other structural genes, indicating that VaMyb14 has the capacity to reprogram a significant signaling pathway. Furthermore, comparative mRNA sequencing profiling of 35S:VaMyb14 grapevine callus indicated its involvement its function involved in ROS scavenging and ABA signaling. These findings collectively demonstrate that Vitis Myb14 serves as a critical regulator in grapevine stress responses, contributing to improved defense against necrotrophic pathogens, enhanced phytoalexin resveratrol production, and increased drought or cold tolerance.
Collapse
Affiliation(s)
| | - Zeming Wang
- Beijing Key Laboratory of Grape Sciences and Enology, Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, China; Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden/Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China.
| | - Lingye Su
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden/Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China.
| | - Linzhong Gong
- Institute of Fruit Trees and Tea, Hubei Academy of Agricultural Sciences, Wuhan, China.
| | - Haiping Xin
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden/Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China.
| |
Collapse
|
17
|
Arabia A, Muñoz P, Pallarés N, Munné-Bosch S. Experimental approaches in studying active biomolecules modulating fruit ripening: Melatonin as a case study. PLANT PHYSIOLOGY 2023; 192:1747-1767. [PMID: 36805997 PMCID: PMC10315297 DOI: 10.1093/plphys/kiad106] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/19/2023] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
Phytohormones are naturally occurring small organic molecules found at low concentrations in plants. They perform essential functions in growth and developmental processes, from organ initiation to senescence, including fruit ripening. These regulatory molecules are studied using different experimental approaches, such as performing exogenous applications, evaluating endogenous levels, and/or obtaining genetically modified lines. Here, we discuss the advantages and limitations of current experimental approaches used to study active biomolecules modulating fruit ripening, focusing on melatonin. Although melatonin has been implicated in fruit ripening in several model fruit crops, current knowledge is affected by the different experimental approaches used, which have given different and sometimes even contradictory results. The methods of application and the doses used have produced different results in studies based on exogenous applications, while different measurement methods and ways of expressing results explain most of the variability in studies using correlative analyses. Furthermore, studies on genetically modified crops have focused on tomato (Solanum lycopersicum L.) plants only. However, TILLING and CRISPR methodologies are becoming essential tools to complement the results from the experimental approaches described above. This will not only help the scientific community better understand the role of melatonin in modulating fruit ripening, but it will also help develop technological advances to improve fruit yield and quality in major crops. The combination of various experimental approaches will undoubtedly lead to a complete understanding of the function of melatonin in fruit ripening in the near future, so that this knowledge can be effectively transferred to the field.
Collapse
Affiliation(s)
- Alba Arabia
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Barcelona 08028, Spain
- Research Institute of Nutrition and Food Safety, University of Barcelona, Barcelona 08028, Spain
| | - Paula Muñoz
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Barcelona 08028, Spain
- Research Institute of Nutrition and Food Safety, University of Barcelona, Barcelona 08028, Spain
| | - Núria Pallarés
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Barcelona 08028, Spain
| | - Sergi Munné-Bosch
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Barcelona 08028, Spain
- Research Institute of Nutrition and Food Safety, University of Barcelona, Barcelona 08028, Spain
| |
Collapse
|
18
|
Pérez-Llorca M, Pollmann S, Müller M. Ethylene and Jasmonates Signaling Network Mediating Secondary Metabolites under Abiotic Stress. Int J Mol Sci 2023; 24:5990. [PMID: 36983071 PMCID: PMC10051637 DOI: 10.3390/ijms24065990] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/12/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Plants are sessile organisms that face environmental threats throughout their life cycle, but increasing global warming poses an even more existential threat. Despite these unfavorable circumstances, plants try to adapt by developing a variety of strategies coordinated by plant hormones, resulting in a stress-specific phenotype. In this context, ethylene and jasmonates (JAs) present a fascinating case of synergism and antagonism. Here, Ethylene Insensitive 3/Ethylene Insensitive-Like Protein1 (EIN3/EIL1) and Jasmonate-Zim Domain (JAZs)-MYC2 of the ethylene and JAs signaling pathways, respectively, appear to act as nodes connecting multiple networks to regulate stress responses, including secondary metabolites. Secondary metabolites are multifunctional organic compounds that play crucial roles in stress acclimation of plants. Plants that exhibit high plasticity in their secondary metabolism, which allows them to generate near-infinite chemical diversity through structural and chemical modifications, are likely to have a selective and adaptive advantage, especially in the face of climate change challenges. In contrast, domestication of crop plants has resulted in change or even loss in diversity of phytochemicals, making them significantly more vulnerable to environmental stresses over time. For this reason, there is a need to advance our understanding of the underlying mechanisms by which plant hormones and secondary metabolites respond to abiotic stress. This knowledge may help to improve the adaptability and resilience of plants to changing climatic conditions without compromising yield and productivity. Our aim in this review was to provide a detailed overview of abiotic stress responses mediated by ethylene and JAs and their impact on secondary metabolites.
Collapse
Affiliation(s)
- Marina Pérez-Llorca
- Department of Biology, Health and the Environment, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
| | - Stephan Pollmann
- Centro de Biotecnología y Genómica de Plantas, Instituto Nacional de Investigación y Tecnología Agraria y Alimentación (INIA/CSIC), Universidad Politécnica de Madrid (UPM), Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Ali-Mentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), 28040 Madrid, Spain
| | - Maren Müller
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
19
|
Mao J, Gao Z, Lin M, Zhang X, Ning X, Gong X, Lu Y, Chen L, Wang X. Targeted multi-platform metabolome analysis and enzyme activity analysis of kiwifruit during postharvest ripening. FRONTIERS IN PLANT SCIENCE 2023; 14:1120166. [PMID: 36959943 PMCID: PMC10028114 DOI: 10.3389/fpls.2023.1120166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Kiwifruit is a climacteric fruit, in which the accumulation of flavor substances mainly occurs at the postharvest ripening stage. However, the dynamic changes in metabolite composition remain poorly understood. Here, targeted multi-platform metabolome analysis based on GC-MS and UPLC-MS/MS and enzyme activity analysis were performed at different postharvest ripening stages of kiwifruit. A total of 12 soluble sugars and 31 organic acids were identified. The main soluble sugars are sucrose, glucose and fructose, which exhibited similar variation tendencies along with the extension of ripening. The main organic acids are citric acid, quinic acid and malic acid, which showed different variation patterns. A total of 48 energy metabolites were identified, which were classified into two groups based on the content variation. The content of substances related to the respiratory metabolic pathway decreased gradually along with postharvest ripening, and there was obvious accumulation of downstream products such as amino acids at the late ripening stage. A total of 35 endogenous hormones were identified, among which seven cytokinins were highly accumulated at the later stage of softening. We further investigated the dynamic changes in the activities of 28 ripening-related enzymes. As a result, the activities of 13 enzymes were highly correlated with changes in starch, total pectin, and soluble sugars, and those of seven enzymes were closely associated with the change in firmness. In conclusion, this study comprehensively describes the dynamic changes in soluble sugars, organic acids, hormones, energy substances, and ripening-related enzyme activities during kiwifruit postharvest ripening, and provides a theoretical basis for the postharvest quality improvement of kiwifruit.
Collapse
Affiliation(s)
- Jipeng Mao
- Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang, Jiangxi, China
| | - Zhu Gao
- Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang, Jiangxi, China
- Jinggangshan Institute of Biotechnology, Jiangxi Academy of Sciences, Ji’an, Jiangxi, China
| | - Mengfei Lin
- Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang, Jiangxi, China
| | - Xiaoli Zhang
- Jinggangshan Institute of Biotechnology, Jiangxi Academy of Sciences, Ji’an, Jiangxi, China
| | - Xinyi Ning
- Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang, Jiangxi, China
- College of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang, Jiangxi, China
| | - Xuchen Gong
- Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang, Jiangxi, China
| | - Yupeng Lu
- Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang, Jiangxi, China
| | - Lu Chen
- Jinggangshan Institute of Biotechnology, Jiangxi Academy of Sciences, Ji’an, Jiangxi, China
| | - Xiaoling Wang
- Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang, Jiangxi, China
| |
Collapse
|
20
|
Li J, Huang T, Xia M, Lu J, Xu X, Liu H, Zhang W. Exogenous melatonin mediates radish ( Raphanus sativus) and Alternaria brassicae interaction in a dose-dependent manner. FRONTIERS IN PLANT SCIENCE 2023; 14:1126669. [PMID: 36923135 PMCID: PMC10009256 DOI: 10.3389/fpls.2023.1126669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
Radish (Raphanus sativus L.) is an economically important vegetable worldwide, but its sustainable production and breeding are highly threatened by blight disease caused by Alternaria brassicae. Melatonin is an important growth regulator that can influence physiological activities in both plants and microbes and stimulate biotic stress resistance in plants. In this study, 0-1500 μM melatonin was exogenously applied to healthy radish seedlings, in vitro incubated A. brassicae, and diseased radish seedlings to determine the effects of melatonin on host, pathogen, and host-pathogen interaction. At sufficient concentrations (0-500 μM), melatonin enhanced growth and immunity of healthy radish seedlings by improving the function of organelles and promoting the biosynthesis of antioxidant enzymes, chitin, organic acid, and defense proteins. Interestingly, melatonin also improved colony growth, development, and virulence of A. brassicae. A strong dosage-dependent effect of melatonin was observed: 50-500 μM promoted host and pathogen vitality and resistance (500 μM was optimal) and 1500 μM inhibited these processes. Significantly less blight was observed on diseased seedlings treated with 500 μM melatonin, indicating that melatonin more strongly enhanced the growth and immunity of radish than it promoted the development and virulence of A. brassicae at this treatment concentration. These effects of MT were mediated by transcriptional changes of key genes as identified by RNA-seq, Dual RNA-seq, and qRT-PCR. The results from this work provide a theoretical basis for the application of melatonin to protect vegetable crops against pathogens.
Collapse
Affiliation(s)
- Jingwei Li
- Institute of Vegetable Industry Technology Research, Guizhou University, Guiyang, China
- College of Agriculture, Guizhou University, Guiyang, China
| | - Tingmin Huang
- Institute of Vegetable Industry Technology Research, Guizhou University, Guiyang, China
- College of Agriculture, Guizhou University, Guiyang, China
| | - Ming Xia
- Institute of Vegetable Industry Technology Research, Guizhou University, Guiyang, China
- College of Agriculture, Guizhou University, Guiyang, China
- School of Computing, Chongqing College of Humanities, Science and Technology, Hechuan, China
| | - Jinbiao Lu
- Institute of Vegetable Industry Technology Research, Guizhou University, Guiyang, China
- College of Agriculture, Guizhou University, Guiyang, China
| | - Xiuhong Xu
- Institute of Vegetable Industry Technology Research, Guizhou University, Guiyang, China
- College of Agriculture, Guizhou University, Guiyang, China
| | - Haiyi Liu
- Institute of Vegetable Industry Technology Research, Guizhou University, Guiyang, China
- College of Agriculture, Guizhou University, Guiyang, China
| | - Wanping Zhang
- Institute of Vegetable Industry Technology Research, Guizhou University, Guiyang, China
- College of Agriculture, Guizhou University, Guiyang, China
| |
Collapse
|
21
|
Zhang X, Ma W, Guan X, Wang F, Fan Z, Gao S, Yao Y. VvMYB14 participates in melatonin-induced proanthocyanidin biosynthesis by upregulating expression of VvMYBPA1 and VvMYBPA2 in grape seeds. HORTICULTURE RESEARCH 2023; 10:uhac274. [PMID: 37533674 PMCID: PMC10390852 DOI: 10.1093/hr/uhac274] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 12/02/2022] [Indexed: 08/04/2023]
Abstract
This work demonstrated that melatonin increases continuously in seeds, particularly seed coats, during berry ripening. Exogenous melatonin treatments significantly increased the proanthocyanidin (PA) content, partially through ethylene signaling, in seed coats. VvMYB14 expression exhibited patterns similar to melatonin accumulation over time, which was largely induced by melatonin treatment in seed coats during berry ripening. Additionally, VvMYB14 bound to the MBS element of the VvMYBPA1 promoter to activate expression. VvMYB14 overexpression largely upregulated expression of VvMYBPA1, VvMYBPA2 and VvLAR1 and increased the PA content in grape seed-derived calli. Similar increases in AtTT2 and AtBAN expression and PA content were found in VvMYB14-overexpressing Arabidopsis seeds. It was also observed that VvMYB14 overexpression increased ethylene production and thereby induced expression of VvERF104, which bound to the ERF element of the VvMYBPA2 promoter and activated its expression. Additionally, VvERF104 suppression reduced the VvMYB14 overexpression-induced increases in expression of VvMYBPA2 and VvLAR1 and PA content. Further experiments revealed that melatonin-induced increases in the expression of VvMYBPA1, VvMYBPA2, VvERF104 and VvLAR1 and PA accumulation were significantly reduced in VvMYB14-suppressing grape calli and leaves. Collectively, VvMYB14 mediates melatonin-induced PA biosynthesis by directly transactivating VvMYBPA1 expression and indirectly upregulating VvMYBPA2 expression via VvERF104.
Collapse
Affiliation(s)
- Xiaoqian Zhang
- State Key Laboratory of Crop Biology, Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China
| | - Wanyun Ma
- State Key Laboratory of Crop Biology, Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China
| | - Xueqiang Guan
- Shandong Academy of Grape/Shandong Technology Innovation Center of Wine Grape and Wine, Jinan, Shandong 250100, China
| | - Fei Wang
- State Key Laboratory of Crop Biology, Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China
| | - Zongbao Fan
- State Key Laboratory of Crop Biology, Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China
| | - Shiwei Gao
- State Key Laboratory of Crop Biology, Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China
| | | |
Collapse
|
22
|
Aghdam MS, Mukherjee S, Flores FB, Arnao MB, Luo Z, Corpas FJ. Functions of Melatonin during Postharvest of Horticultural Crops. PLANT & CELL PHYSIOLOGY 2023; 63:1764-1786. [PMID: 34910215 DOI: 10.1093/pcp/pcab175] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 10/11/2021] [Accepted: 12/14/2021] [Indexed: 05/14/2023]
Abstract
Melatonin, a tryptophan-derived molecule, is endogenously generated in animal, plant, fungal and prokaryotic cells. Given its antioxidant properties, it is involved in a myriad of signaling functions associated with various aspects of plant growth and development. In higher plants, melatonin (Mel) interacts with plant regulators such as phytohormones, as well as reactive oxygen and nitrogen species including hydrogen peroxide (H2O2), nitric oxide (NO) and hydrogen sulfide (H2S). It shows great potential as a biotechnological tool to alleviate biotic and abiotic stress, to delay senescence and to conserve the sensory and nutritional quality of postharvest horticultural products which are of considerable economic importance worldwide. This review provides a comprehensive overview of the biochemistry of Mel, whose endogenous induction and exogenous application can play an important biotechnological role in enhancing the marketability and hence earnings from postharvest horticultural crops.
Collapse
Affiliation(s)
- Morteza Soleimani Aghdam
- Department of Horticultural Science, Imam Khomeini International University, Qazvin 34148-96818, Iran
| | - Soumya Mukherjee
- Department of Botany, Jangipur College, University of Kalyani, West Bengal 742213, India
| | - Francisco Borja Flores
- Department of Stress Biology and Plant Pathology, CEBAS-CSIC, Espinardo-Murcia 30100, Spain
| | - Marino B Arnao
- Department of Plant Biology (Plant Physiology), Faculty of Biology, University of Murcia, Murcia 30100, Spain
| | - Zisheng Luo
- College of Biosystems Engineering and Food Science, Key Laboratory of Agro-Products Postharvest Handling Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Francisco J Corpas
- Department of Biochemistry, Cell and Molecular Biology of Plants, Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Estación Experimental del Zaidín, CSIC, C/Profesor Albareda, 1, Granada 18008, Spain
| |
Collapse
|
23
|
Sati H, Khandelwal A, Pareek S. Effect of exogenous melatonin in fruit postharvest, crosstalk with hormones, and defense mechanism for oxidative stress management. FOOD FRONTIERS 2022. [DOI: 10.1002/fft2.180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Hansika Sati
- Department of Agriculture and Environmental Sciences National Institute of Food Technology Entrepreneurship and Management Kundli Sonipat India
| | - Aparna Khandelwal
- Department of Biochemistry Pandit Bhagwat Dayal Sharma Post Graduate Institute of Medical Sciences Rohtak Haryana India
| | - Sunil Pareek
- Department of Agriculture and Environmental Sciences National Institute of Food Technology Entrepreneurship and Management Kundli Sonipat India
| |
Collapse
|
24
|
Chen Q, Hou S, Pu X, Li X, Li R, Yang Q, Wang X, Guan M, Rengel Z. Dark secrets of phytomelatonin. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:5828-5839. [PMID: 35522068 DOI: 10.1093/jxb/erac168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 04/19/2022] [Indexed: 06/14/2023]
Abstract
Phytomelatonin is a newly identified plant hormone, and its primary functions in plant growth and development remain relatively poorly appraised. Phytomelatonin is a master regulator of reactive oxygen species (ROS) signaling and acts as a darkness signal in circadian stomatal closure. Plants exhibit at least three interrelated patterns of interaction between phytomelatonin and ROS production. Exogenous melatonin can induce flavonoid biosynthesis, which might be required for maintenance of antioxidant capacity under stress, after harvest, and in leaf senescence conditions. However, several genetic studies have provided direct evidence that phytomelatonin plays a negative role in the biosynthesis of flavonoids under non-stress conditions. Phytomelatonin delays flowering time in both dicot and monocot plants, probably via its receptor PMTR1 and interactions with the gibberellin, strigolactone, and ROS signaling pathways. Furthermore, phytomelatonin signaling also functions in hypocotyl and shoot growth in skotomorphogenesis and ultraviolet B (UV-B) exposure; the G protein α-subunit (Arabidopsis GPA1 and rice RGA1) and constitutive photomorphogenic1 (COP1) are important signal components during this process. Taken together, these findings indicate that phytomelatonin acts as a darkness signal with important regulatory roles in circadian stomatal closure, flavonoid biosynthesis, flowering, and hypocotyl and shoot growth.
Collapse
Affiliation(s)
- Qi Chen
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Suying Hou
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Xiaojun Pu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Xiaomin Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Rongrong Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Qian Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Xinjia Wang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Miao Guan
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Zed Rengel
- UWA School of Agriculture and Environment, The University of Western Australia, 35 Stirling Highway, Perth WA, Australia
- Institute for Adriatic Crops and Karst Reclamation, Split, Croatia
| |
Collapse
|
25
|
Wang K, Xing Q, Ahammed GJ, Zhou J. Functions and prospects of melatonin in plant growth, yield, and quality. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:5928-5946. [PMID: 35640564 DOI: 10.1093/jxb/erac233] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/23/2022] [Indexed: 05/27/2023]
Abstract
Melatonin (N-acetyl-5-methoxytryptamine) is an indole molecule widely found in animals and plants. It is well known that melatonin improves plant resistance to various biotic and abiotic stresses due to its potent free radical scavenging ability while being able to modulate plant signaling and response pathways through mostly unknown mechanisms. In recent years, an increasing number of studies have shown that melatonin plays a crucial role in improving crop quality and yield by participating in the regulation of various aspects of plant growth and development. Here, we review the effects of melatonin on plant vegetative growth and reproductive development, and systematically summarize its molecular regulatory network. Moreover, the effective concentrations of exogenously applied melatonin in different crops or at different growth stages of the same crop are analysed. In addition, we compare endogenous phytomelatonin concentrations in various crops and different organs, and evaluate a potential function of phytomelatonin in plant circadian rhythms. The prospects of different approaches in regulating crop yield and quality through exogenous application of appropriate concentrations of melatonin, endogenous modification of phytomelatonin metabolism-related genes, and the use of nanomaterials and other technologies to improve melatonin utilization efficiency are also discussed.
Collapse
Affiliation(s)
- Kaixin Wang
- Department of Horticulture/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058, China
- Hainan Institute, Zhejiang University, Sanya 572025, China
| | - Qufan Xing
- Department of Horticulture/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058, China
| | - Golam Jalal Ahammed
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, China
- Henan International Joint Laboratory of Stress Resistance Regulation and Safe Production of Protected Vegetables, Luoyang, 471023, China
| | - Jie Zhou
- Department of Horticulture/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058, China
- Hainan Institute, Zhejiang University, Sanya 572025, China
- Key Laboratory of Horticultural Plants Growth, Development and Quality Improvement, Agricultural Ministry of China, Yuhangtang Road 866, Hangzhou, 310058, China
- Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Linyi, 276000, China
| |
Collapse
|
26
|
Arnao MB, Cano A, Hernández-Ruiz J. Phytomelatonin: an unexpected molecule with amazing performances in plants. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:5779-5800. [PMID: 35029657 DOI: 10.1093/jxb/erac009] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 01/11/2022] [Indexed: 05/14/2023]
Abstract
Phytomelatonin, a multifunctional molecule that has been found to be present in all plants examined to date, has an important role in plants as a modulatory agent (a biostimulator) that improves plant tolerance to both biotic and abiotic stress. We present a review of phytomelatonin that considers its roles in plant metabolism and in particular its interactions with plant hormone network. In the primary metabolism of plants, melatonin improves the rate and efficiency of photosynthesis, as well related factors such as stomatal conductance, intercellular CO2, and Rubisco activity. It has also been shown to down-regulate some senescence transcription factors. Melatonin up-regulates many enzyme transcripts related to carbohydrates (including sucrose and starch), amino acids, and lipid metabolism, optimizing N, P, and S uptake. With respect to the secondary metabolism, clear increases in polyphenol, glucosinolate, terpenoid, and alkaloid contents have been described in numerous melatonin-treated plants. Generally, the most important genes of these secondary biosynthesis pathways have been found to be up-regulated by melatonin. The great regulatory capacity of melatonin is a result of its control of the redox and plant hormone networks. Melatonin acts as a plant master regulator, up-/down-regulating different plant hormone levels and signalling, and is a key player in redox homeostasis. It has the capacity to counteract diverse critical situations such as pathogen infections and abiotic stresses, and provide plants with varying degrees of tolerance. We propose possible future applications of melatonin for crop improvement and post-harvest product preservation.
Collapse
Affiliation(s)
- Marino B Arnao
- Department of Plant Biology (Plant Physiology), Faculty of Biology, University of Murcia, 30100-Murcia, Spain
| | - Antonio Cano
- Department of Plant Biology (Plant Physiology), Faculty of Biology, University of Murcia, 30100-Murcia, Spain
| | - Josefa Hernández-Ruiz
- Department of Plant Biology (Plant Physiology), Faculty of Biology, University of Murcia, 30100-Murcia, Spain
| |
Collapse
|
27
|
Song Z, Yang Q, Dong B, Li N, Wang M, Du T, Liu N, Niu L, Jin H, Meng D, Fu Y. Melatonin enhances stress tolerance in pigeon pea by promoting flavonoid enrichment, particularly luteolin in response to salt stress. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:5992-6008. [PMID: 35727860 DOI: 10.1093/jxb/erac276] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 06/17/2022] [Indexed: 05/27/2023]
Abstract
Melatonin improves plant resistance to multiple stresses by participating in the biosynthesis of metabolites. Flavonoids are an important family of plant secondary metabolites and are widely recognized to be involved in resistance; however, the crosstalk between melatonin and flavonoid is largely unknown. We found that the resistance of pigeon pea (Cajanus cajan) to salt, drought, and heat stresses were significantly enhanced by pre-treatment with melatonin. Combined transcriptome and LC-ESI-MS/MS metabolomics analyses showed that melatonin significantly induced the enrichment of flavonoids and mediated the reprogramming of biosynthetic pathway genes. The highest fold-increase in expression in response to melatonin treatment was observed for the CcF3´H family, which encodes an enzyme that catalyses the biosynthesis of luteolin, and the transcription factor CcPCL1 directly bonded to the CcF3´H-5 promoter to enhance its expression. In addition, salt stress also induced the expression of CcPCL1 and CcF3´H-5, and their overexpression in transgenic plants greatly enhanced salt tolerance by promoting the biosynthesis of luteolin. Overall, our results indicated that pre-treatment of pigeon pea with melatonin promoted luteolin biosynthesis through the CcPCL1 and CcF3´H-5 pathways, resulting in salt tolerance. Our study shows that melatonin enhances plant tolerance to multiple stresses by mediating flavonoid biosynthesis, providing new avenues for studying the crosstalk between melatonin and flavonoids.
Collapse
Affiliation(s)
- Zhihua Song
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing, China
- Ecological Observation and Research Station of Heilongjiang Sanjiang Plain Wetlands, National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| | - Qing Yang
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing, China
- Ecological Observation and Research Station of Heilongjiang Sanjiang Plain Wetlands, National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| | - Biying Dong
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing, China
- Ecological Observation and Research Station of Heilongjiang Sanjiang Plain Wetlands, National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| | - Na Li
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing, China
- Ecological Observation and Research Station of Heilongjiang Sanjiang Plain Wetlands, National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| | - Mengying Wang
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing, China
- Ecological Observation and Research Station of Heilongjiang Sanjiang Plain Wetlands, National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| | - Tingting Du
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing, China
- Ecological Observation and Research Station of Heilongjiang Sanjiang Plain Wetlands, National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| | - Ni Liu
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing, China
- Ecological Observation and Research Station of Heilongjiang Sanjiang Plain Wetlands, National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| | - Lili Niu
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing, China
- Ecological Observation and Research Station of Heilongjiang Sanjiang Plain Wetlands, National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| | - Haojie Jin
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing, China
- Ecological Observation and Research Station of Heilongjiang Sanjiang Plain Wetlands, National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| | - Dong Meng
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing, China
- Ecological Observation and Research Station of Heilongjiang Sanjiang Plain Wetlands, National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| | - Yujie Fu
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing, China
- Ecological Observation and Research Station of Heilongjiang Sanjiang Plain Wetlands, National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| |
Collapse
|
28
|
Batyrshina ZS, Shavit R, Yaakov B, Bocobza S, Tzin V. The transcription factor TaMYB31 regulates the benzoxazinoid biosynthetic pathway in wheat. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:5634-5649. [PMID: 35554544 PMCID: PMC9467655 DOI: 10.1093/jxb/erac204] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 05/10/2022] [Indexed: 05/13/2023]
Abstract
Benzoxazinoids are specialized metabolites that are highly abundant in staple crops, such as maize and wheat. Although their biosynthesis has been studied for several decades, the regulatory mechanisms of the benzoxazinoid pathway remain unknown. Here, we report that the wheat transcription factor MYB31 functions as a regulator of benzoxazinoid biosynthesis genes. A transcriptomic analysis of tetraploid wheat (Triticum turgidum) tissue revealed the up-regulation of two TtMYB31 homoeologous genes upon aphid and caterpillar feeding. TaMYB31 gene silencing in the hexaploid wheat Triticum aestivum significantly reduced benzoxazinoid metabolite levels and led to susceptibility to herbivores. Thus, aphid progeny production, caterpillar body weight gain, and spider mite oviposition significantly increased in TaMYB31-silenced plants. A comprehensive transcriptomic analysis of hexaploid wheat revealed that the TaMYB31 gene is co-expressed with the target benzoxazinoid-encoded Bx genes under several biotic and environmental conditions. Therefore, we analyzed the effect of abiotic stresses on benzoxazinoid levels and discovered a strong accumulation of these compounds in the leaves. The results of a dual fluorescence assay indicated that TaMYB31 binds to the Bx1 and Bx4 gene promoters, thereby activating the transcription of genes involved in the benzoxazinoid pathway. Our finding is the first report of the transcriptional regulation mechanism of the benzoxazinoid pathway in wheat.
Collapse
Affiliation(s)
- Zhaniya S Batyrshina
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben Gurion, 8499000, Israel
| | - Reut Shavit
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben Gurion, 8499000, Israel
| | - Beery Yaakov
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben Gurion, 8499000, Israel
| | - Samuel Bocobza
- Department of Ornamentals and Biotechnology, Institute of Plant Sciences, Agricultural Research Organization, The Volcani Center, 68 Hamakabim Road, 7528809, Rishon LeZion, Israel
| | | |
Collapse
|
29
|
Ethylene Signaling under Stressful Environments: Analyzing Collaborative Knowledge. PLANTS 2022; 11:plants11172211. [PMID: 36079592 PMCID: PMC9460115 DOI: 10.3390/plants11172211] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 11/26/2022]
Abstract
Ethylene is a gaseous plant growth hormone that regulates various plant developmental processes, ranging from seed germination to senescence. The mechanisms underlying ethylene biosynthesis and signaling involve multistep mechanisms representing different control levels to regulate its production and response. Ethylene is an established phytohormone that displays various signaling processes under environmental stress in plants. Such environmental stresses trigger ethylene biosynthesis/action, which influences the growth and development of plants and opens new windows for future crop improvement. This review summarizes the current understanding of how environmental stress influences plants’ ethylene biosynthesis, signaling, and response. The review focuses on (a) ethylene biosynthesis and signaling in plants, (b) the influence of environmental stress on ethylene biosynthesis, (c) regulation of ethylene signaling for stress acclimation, (d) potential mechanisms underlying the ethylene-mediated stress tolerance in plants, and (e) summarizing ethylene formation under stress and its mechanism of action.
Collapse
|
30
|
Wei Y, Zhu B, Ma G, Shao X, Xie H, Cheng X, Zeng H, Shi H. The coordination of melatonin and anti-bacterial activity by EIL5 underlies ethylene-induced disease resistance in cassava. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:683-697. [PMID: 35608142 DOI: 10.1111/tpj.15843] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 05/14/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
Ethylene and melatonin are widely involved in plant development and environmental stress responses. However, the role of their direct relationship in the immune response and the underlying molecular mechanisms in plants remain elusive. Here, we found that Xanthomonas axonopodis pv. manihotis (Xam) infection increased endogenous ethylene levels, which positively modulated plant disease resistance through activating melatonin accumulation in cassava. In addition, the ethylene-responsive transcription factor ETHYLENE INSENSITIVE LIKE5 (MeEIL5), a positive regulator of disease resistance, was essential for ethylene-induced melatonin accumulation and disease resistance in cassava. Notably, the identification of heat stress transcription factor 20 (MeHsf20) as an interacting protein of MeEIL5 indicated the association between ethylene and melatonin in plant disease resistance. MeEIL5 physically interacted with MeHsf20 to promote the transcriptional activation of the gene encoding N-acetylserotonin O-methyltransferase 2 (MeASMT2), thereby improving melatonin accumulation. Moreover, MeEIL5 promoted the physical interaction of MeHsf20 and pathogen-related gene 3 (MePR3), resulting in improved anti-bacterial activity of MePR3. This study illustrates the dual roles of MeEIL5 in fine-tuning MeHsf20-mediated coordination of melatonin biosynthesis and anti-bacterial activity, highlighting the ethylene-responsive MeEIL5 as the integrator of ethylene and melatonin signals in the immune response in cassava.
Collapse
Affiliation(s)
- Yunxie Wei
- Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources (Provincial Ministry Building State Key Laboratory Breeding Base), College of Tropical Crops, Hainan University, Haikou, Hainan, 570228, China
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan, 572025, China
| | - Binbin Zhu
- Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources (Provincial Ministry Building State Key Laboratory Breeding Base), College of Tropical Crops, Hainan University, Haikou, Hainan, 570228, China
| | - Guowen Ma
- Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources (Provincial Ministry Building State Key Laboratory Breeding Base), College of Tropical Crops, Hainan University, Haikou, Hainan, 570228, China
| | - Xiaodie Shao
- Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources (Provincial Ministry Building State Key Laboratory Breeding Base), College of Tropical Crops, Hainan University, Haikou, Hainan, 570228, China
| | - Haoqi Xie
- Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources (Provincial Ministry Building State Key Laboratory Breeding Base), College of Tropical Crops, Hainan University, Haikou, Hainan, 570228, China
| | - Xiao Cheng
- Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources (Provincial Ministry Building State Key Laboratory Breeding Base), College of Tropical Crops, Hainan University, Haikou, Hainan, 570228, China
| | - Hongqiu Zeng
- Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources (Provincial Ministry Building State Key Laboratory Breeding Base), College of Tropical Crops, Hainan University, Haikou, Hainan, 570228, China
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan, 572025, China
| | - Haitao Shi
- Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources (Provincial Ministry Building State Key Laboratory Breeding Base), College of Tropical Crops, Hainan University, Haikou, Hainan, 570228, China
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan, 572025, China
| |
Collapse
|
31
|
Li N, Jiang L, Liu Y, Zou S, Lu M, An H. Metabolomics Combined with Transcriptomics Analysis Revealed the Amino Acids, Phenolic Acids, and Flavonol Derivatives Biosynthesis Network in Developing Rosa roxburghii Fruit. Foods 2022; 11:foods11111639. [PMID: 35681389 PMCID: PMC9180193 DOI: 10.3390/foods11111639] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 02/01/2023] Open
Abstract
Rosa roxburghii Tratt. is a specific fruit with high nutritional value and antioxidative activities. However, the key metabolites and their biosynthesis are still unknown. Herein, a main cultivated variety, ‘Guinong 5’ (Rr5), was chosen to analyze the metabolomics of the three developmental stages of R. roxburghii fruit by liquid chromatography–tandem mass spectrometry (LC-MS/MS). A total of 533 metabolites were identified, of which 339 were significantly altered. Total phenols, flavonoids, and amino acids were significantly correlated to at least one in vitro antioxidant activity. The conjoint Kyoto Encyclopedia of Genes and Genomes (KEGG) co-enrichment analysis of metabolome and transcriptome was focused on amino acid, phenylpropanoid, and flavonoid biosynthesis pathways. The amino acid, phenolic acid, and flavonol biosynthesis networks were constructed with 32 structural genes, 48 RrMYBs, and 23 metabolites. Of these, six RrMYBs correlated to 9–15 metabolites in the network were selected to detect the gene expression in six different R. roxburghii genotypes fruits. Subsequently, 21 key metabolites were identified in the in vitro antioxidant activities in the fruits at various developmental stages or in fruits of different R. roxburghii genotypes. We found that four key RrMYBs were related to the significantly varied amino acids, phenolic acids, and flavonol derivatives in the network during fruit development and the key metabolites in the in vitro antioxidative activities in the fruits of six R. roxburghii genotypes. This finding provided novel insights into the flavonoid, polyphenol, and amino acid synthesis in R. roxburghii.
Collapse
Affiliation(s)
- Nanyu Li
- Agricultural College, Guizhou University, Guiyang 550025, China; (N.L.); (L.J.); (Y.L.); (S.Z.)
- National Forestry and Grassland Administration Engineering Research Center for Rosa roxburghii, Guiyang 550025, China
| | - Lanlan Jiang
- Agricultural College, Guizhou University, Guiyang 550025, China; (N.L.); (L.J.); (Y.L.); (S.Z.)
| | - Yiyi Liu
- Agricultural College, Guizhou University, Guiyang 550025, China; (N.L.); (L.J.); (Y.L.); (S.Z.)
- National Forestry and Grassland Administration Engineering Research Center for Rosa roxburghii, Guiyang 550025, China
| | - Shimei Zou
- Agricultural College, Guizhou University, Guiyang 550025, China; (N.L.); (L.J.); (Y.L.); (S.Z.)
| | - Min Lu
- Agricultural College, Guizhou University, Guiyang 550025, China; (N.L.); (L.J.); (Y.L.); (S.Z.)
- Correspondence: (M.L.); (H.A.)
| | - Huaming An
- National Forestry and Grassland Administration Engineering Research Center for Rosa roxburghii, Guiyang 550025, China
- Correspondence: (M.L.); (H.A.)
| |
Collapse
|
32
|
Integrated Transcriptomics and Nontargeted Metabolomics Analysis Reveal Key Metabolic Pathways in Ganoderma lucidum in Response to Ethylene. J Fungi (Basel) 2022; 8:jof8050456. [PMID: 35628712 PMCID: PMC9146657 DOI: 10.3390/jof8050456] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 04/23/2022] [Accepted: 04/27/2022] [Indexed: 12/13/2022] Open
Abstract
Ganoderic acid (GA) is an important secondary metabolite of Ganoderma lucidum with a diverse array of pharmacological properties. In this study, we found that exogenous ethylene increased the production of endogenous ethylene and ganoderic acid in G. lucidum. However, the mechanism by which ethylene is regulated remains unclear. As a result, we performed a combined transcriptomics and nontargeted metabolomics analysis to evaluate the regulatory mechanism of ethylene. A total of 4070 differentially expressed genes (1835 up-regulated and 2235 down-regulated) and 378 differentially accumulated metabolites (289 up-regulated and 89 down-regulated) were identified in all groups. The transcriptomics and nontargeted metabolomics data revealed that genes involved in the tricarboxylic acid (TCA) cycle, polyamine metabolic pathway, acetyl-CoA carboxylase (ACC) pathway, and triterpenoid metabolism were up-regulated, whereas the metabolic intermediates involved in these metabolic pathways were down-regulated. These findings imply that ethylene potentially accelerates normal glucose metabolism, hence increasing the number of intermediates available for downstream biological processes, including polyamine metabolism, ethylene synthesis pathway, and ganoderic acid biosynthesis. The findings will contribute significantly to our understanding of secondary metabolites biosynthesis in fungi.
Collapse
|
33
|
Gao T, Liu X, Tan K, Zhang D, Zhu B, Ma F, Li C. Introducing melatonin to the horticultural industry: physiological roles, potential applications, and challenges. HORTICULTURE RESEARCH 2022; 9:uhac094. [PMID: 35873728 PMCID: PMC9297156 DOI: 10.1093/hr/uhac094] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 04/05/2022] [Indexed: 06/08/2023]
Abstract
Melatonin (N-acetyl-5-methoxytryptamine) is an emerging biomolecule that influences horticultural crop growth, flowering, fruit ripening, postharvest preservation, and stress protection. It functions as a plant growth regulator, preservative and antimicrobial agent to promote seed germination, regulate root system architecture, influence flowering and pollen germination, promote fruit production, ensure postharvest preservation, and increase resistance to abiotic and biotic stresses. Here, we highlight the potential applications of melatonin in multiple aspects of horticulture, including molecular breeding, vegetative reproduction, production of virus-free plants, food safety, and horticultural crop processing. We also discuss its effects on parthenocarpy, autophagy, and arbuscular mycorrhizal symbiosis. Together, these many features contribute to the promise of melatonin for improving horticultural crop production and food safety. Effective translation of melatonin to the horticultural industry requires an understanding of the challenges associated with its uses, including the development of economically viable sources.
Collapse
Affiliation(s)
- Tengteng Gao
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xiaomin Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Kexin Tan
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Danni Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Bolin Zhu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | | | - Chao Li
- Corresponding authors. E-mail: ,
| |
Collapse
|
34
|
Wang S, Shi M, Zhang Y, Pan Z, Xie X, Zhang L, Sun P, Feng H, Xue H, Fang C, Zhao J. The R2R3-MYB transcription factor FaMYB63 participates in regulation of eugenol production in strawberry. PLANT PHYSIOLOGY 2022; 188:2146-2165. [PMID: 35043961 PMCID: PMC8968321 DOI: 10.1093/plphys/kiac014] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 12/07/2021] [Indexed: 06/14/2023]
Abstract
The biosynthetic pathway of volatile phenylpropanoids, including 4-allyl-2-methoxyphenol (eugenol), has been investigated in petunia (Petunia hybrida). However, the regulatory network for eugenol accumulation in strawberry (Fragaria × ananassa Duch.) fruit remains unclear. Here, an R2R3-type MYB transcription factor (TF; FaMYB63) was isolated from strawberry by yeast one-hybrid (Y1H) screening using the promoter of the FaEGS1 (eugenol synthase 1 [EGS 1]) gene, which encodes the enzyme responsible for the last step in eugenol biosynthesis. FaMYB63 is phylogenetically distinct from other R2R3-MYB TFs, including FaEOBІІ (EMISSION OF BENZENOID II [EOBII]), which also participates in regulating eugenol biosynthesis in strawberry receptacles. Reverse transcription quantitative PCR (RT-qPCR) assays showed that the expression of FaMYB63 was tissue-specific and consistent with eugenol content through strawberry fruit development, was repressed by abscisic acid, and was activated by auxins (indole-3-acetic acid). Overexpression and RNA interference-mediated silencing of FaMYB63 resulted in marked changes in the transcript levels of the biosynthetic genes FaEGS1, FaEGS2, and FaCAD1 (cinnamyl alcohol dehydrogenase 1 [CAD1]) and, thereby, the accumulation of eugenol. Electrophoretic mobility shift, Y1H, GUS activity, and dual-luciferase activity assays demonstrated that the transcript levels of FaEOBІІ and FaMYB10 were regulated by FaMYB63, but not the other way around. Together, these results demonstrate that FaMYB63 directly activates FaEGS1, FaEGS2, FaCAD1, FaEOBІІ, and FaMYB10 to induce eugenol biosynthesis during strawberry fruit development. These findings deepen the understanding of the regulatory network that influences eugenol metabolism in an edible fruit crop.
Collapse
Affiliation(s)
- Shuaishuai Wang
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Mengyun Shi
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Yang Zhang
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Zhifei Pan
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Xingbin Xie
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Linzhong Zhang
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Peipei Sun
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Huan Feng
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Hao Xue
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | | | | |
Collapse
|
35
|
Tu M, Fang J, Zhao R, Liu X, Yin W, Wang Y, Wang X, Wang X, Fang Y. CRISPR/Cas9-mediated mutagenesis of VvbZIP36 promotes anthocyanin accumulation in grapevine (Vitis vinifera). HORTICULTURE RESEARCH 2022; 9:uhac022. [PMID: 35184164 PMCID: PMC9174745 DOI: 10.1093/hr/uhac022] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/04/2022] [Accepted: 01/24/2022] [Indexed: 05/19/2023]
Abstract
Anthocyanins are plant secondary metabolites that have a variety of biological functions, including pigmentation. The accumulation of anthocyanins is regulated by both transcriptional activators and repressors. Studies have shown that the bZIP family act primarily as positive regulators of anthocyanin biosynthesis, but there are few reports of negative regulation. Here, we report that a grapevine (Vitis vinifera) bZIP gene from group K, VvbZIP36, acts as a negative regulator of anthocyanin biosynthesis. Knocking-out one allele of VvbZIP36 in grapevine utilizing the CRISPR/Cas9 technology promoted anthocyanin accumulation. Correlation analysis of transcriptome and metabolome data showed that, compared with wild type, a range of anthocyanin biosynthesis genes were activated in VvbZIP36 mutant plants, resulting in the accumulation of related metabolites, including naringenin chalcone, naringenin, dihydroflavonols and cyanidin-3-O-glucoside. Furthermore, the synthesis of stilbenes (α-viniferin), lignans and some flavonols (including quercetin-3-O-rhamnoside, kaempferol-3-O-rhamnoside and kaempferol-7-O-rhamnoside) was significantly inhibited and several genes linked to these metabolism, were down-regulated in the mutant plants. In summary, our results demonstrate that VvbZIP36, as a negative regulator of anthocyanin biosynthesis, plays a role in balancing the synthesis of stilbenes (α-viniferin), lignans, flavonols and anthocyanins.
Collapse
Affiliation(s)
- Mingxing Tu
- College of Enology, College of Food Science and Engineering, Viti-viniculture Engineering Technology Center of State Forestry and Grassland Administration, Shaanxi Engineering Research Center for Viti-Viniculture, Heyang Viti-Viniculture Station, Northwest A&F University, Yangling, Shaanxi 712100, China
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jinghao Fang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ruikang Zhao
- College of Enology, College of Food Science and Engineering, Viti-viniculture Engineering Technology Center of State Forestry and Grassland Administration, Shaanxi Engineering Research Center for Viti-Viniculture, Heyang Viti-Viniculture Station, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xingyu Liu
- College of Enology, College of Food Science and Engineering, Viti-viniculture Engineering Technology Center of State Forestry and Grassland Administration, Shaanxi Engineering Research Center for Viti-Viniculture, Heyang Viti-Viniculture Station, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wuchen Yin
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ya Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xianhang Wang
- College of Enology, College of Food Science and Engineering, Viti-viniculture Engineering Technology Center of State Forestry and Grassland Administration, Shaanxi Engineering Research Center for Viti-Viniculture, Heyang Viti-Viniculture Station, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiping Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yulin Fang
- College of Enology, College of Food Science and Engineering, Viti-viniculture Engineering Technology Center of State Forestry and Grassland Administration, Shaanxi Engineering Research Center for Viti-Viniculture, Heyang Viti-Viniculture Station, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
36
|
Hao S, Lu Y, Peng Z, Wang E, Chao L, Zhong S, Yao Y. McMYB4 improves temperature adaptation by regulating phenylpropanoid metabolism and hormone signaling in apple. HORTICULTURE RESEARCH 2021; 8:182. [PMID: 34333543 PMCID: PMC8325679 DOI: 10.1038/s41438-021-00620-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 05/06/2021] [Accepted: 05/20/2021] [Indexed: 05/15/2023]
Abstract
Temperature changes affect apple development and production. Phenylpropanoid metabolism and hormone signaling play a crucial role in regulating apple growth and development in response to temperature changes. Here, we found that McMYB4 is induced by treatment at 28 °C and 18 °C, and McMYB4 overexpression results in flavonol and lignin accumulation in apple leaves. Yeast one-hybrid (Y1H) assays and electrophoretic mobility shift assays (EMSAs) further revealed that McMYB4 targets the promoters of the flavonol biosynthesis genes CHS and FLS and the lignin biosynthesis genes CAD and F5H. McMYB4 expression resulted in higher levels of flavonol and lignin biosynthesis in apple during growth at 28 °C and 18 °C than during growth at 23 °C. At 28 °C and 18 °C, McMYB4 also binds to the AUX/ARF and BRI/BIN promoters to activate gene expression, resulting in acceleration of the auxin and brassinolide signaling pathways. Taken together, our results demonstrate that McMYB4 promotes flavonol biosynthesis and brassinolide signaling, which decreases ROS contents to improve plant resistance and promotes lignin biosynthesis and auxin signaling to regulate plant growth. This study suggests that McMYB4 participates in the abiotic resistance and growth of apple in response to temperature changes by regulating phenylpropanoid metabolism and hormone signaling.
Collapse
Affiliation(s)
- Suxiao Hao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, 102206, China
- Beijing Bei Nong Enterprise Management Co. Ltd, Beijing, 102206, China
- Plant Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, Beijing, 102206, China
- College of Forestry, Beijing Forestry University, Beijing, 100083, China
| | - Yanfen Lu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, 102206, China
- Plant Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, Beijing, 102206, China
| | - Zhen Peng
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, 102206, China
- Plant Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, Beijing, 102206, China
| | - Enying Wang
- Plant Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, Beijing, 102206, China
| | - Linke Chao
- Plant Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, Beijing, 102206, China
| | - Silin Zhong
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, 102206, China.
- College of Life Science, The Chinese University of Hong Kong, Hong Kong, China.
| | - Yuncong Yao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, 102206, China.
- Plant Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China.
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, Beijing, 102206, China.
| |
Collapse
|
37
|
Liu C, Kang H, Wang Y, Yao Y, Gao Z, Du Y. Melatonin Relieves Ozone Stress in Grape Leaves by Inhibiting Ethylene Biosynthesis. FRONTIERS IN PLANT SCIENCE 2021; 12:702874. [PMID: 34394155 PMCID: PMC8355546 DOI: 10.3389/fpls.2021.702874] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/30/2021] [Indexed: 05/30/2023]
Abstract
Ozone (O3) stress severely affects the normal growth of grape (Vitis vinifera L.) leaves. Melatonin (MT) plays a significant role in plant response to various abiotic stresses, but its role in O3 stress and related mechanisms are poorly understood. In order to understand the mechanism of MT in alleviate O3 stress in grape leaves, we perform a transcriptome analyses of grapes leaves under O3 stress with or without MT treatment. Transcriptome analysis showed that the processes of ethylene biosynthesis and signaling were clearly changed in "Cabernet Sauvignon" grapes under O3 and MT treatment. O3 stress induced the expression of genes related to ethylene biosynthesis and signal transduction, while MT treatment significantly inhibited the ethylene response mediated by O3 stress. Further experiments showed that both MT and aminoethoxyvinylglycine (AVG, an inhibitor of ethylene biosynthesis) enhanced the photosynthetic and antioxidant capacities of grape leaves under O3 stress, while ethephon inhibited those capacities. The combined treatment effect of MT and ethylene inhibitor was similar to that of MT alone. Exogenous MT reduced ethylene production in grape leaves under O3 stress, while ethephon and ethylene inhibitors had little effect on the MT content of grape leaves after O3 stress. However, overexpression of VvACO2 (1-aminocyclopropane-1-carboxylate oxidase2) in grape leaves endogenously induced ethylene accumulation and aggravated O3 stress. Overexpression of the MT synthesis gene VvASMT1 (acetylserotonin methyltransferase1) in tobacco (Nicotiana tabacum L.) alleviated O3 stress and reduced ethylene biosynthesis after O3 stress. In summary, MT can alleviate O3 stress in grape leaves by inhibiting ethylene biosynthesis.
Collapse
|