1
|
Prokopov D, Tunbak H, Leddy E, Drylie B, Camera F, Deniz Ö. Transposable elements as genome regulators in normal and malignant haematopoiesis. Blood Cancer J 2025; 15:87. [PMID: 40328728 PMCID: PMC12056191 DOI: 10.1038/s41408-025-01295-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 04/16/2025] [Accepted: 04/23/2025] [Indexed: 05/08/2025] Open
Abstract
Transposable elements (TEs) constitute over half of the human genome and have played a profound role in genome evolution. While most TEs have lost the ability to transpose, many retain functional elements that serve as drivers of genome innovation, including the emergence of novel genes and regulatory elements. Recent advances in experimental and bioinformatic methods have provided new insights into their roles in human biology, both in health and disease. In this review, we discuss the multifaceted roles of TEs in haematopoiesis, highlighting their contributions to both normal and pathological contexts. TEs influence gene regulation by reshaping gene-regulatory networks, modulating transcriptional activity, and creating novel regulatory elements. These activities play key roles in maintaining normal haematopoietic processes and supporting cellular regeneration. However, in haematological malignancies, TE reactivation can disrupt genomic integrity, induce structural variations, and dysregulate transcriptional programmes, thereby driving oncogenesis. By examining the impact of TE activity on genome regulation and variation, we highlight their pivotal roles in both normal haematopoietic processes and haematological cancers.
Collapse
Affiliation(s)
- Dmitry Prokopov
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
- QMUL Centre for Epigenetics, Queen Mary University of London, London, UK
| | - Hale Tunbak
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
- QMUL Centre for Epigenetics, Queen Mary University of London, London, UK
| | - Eve Leddy
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
- QMUL Centre for Epigenetics, Queen Mary University of London, London, UK
| | - Bryce Drylie
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
- QMUL Centre for Epigenetics, Queen Mary University of London, London, UK
| | - Francesco Camera
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
- QMUL Centre for Epigenetics, Queen Mary University of London, London, UK
| | - Özgen Deniz
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK.
- QMUL Centre for Epigenetics, Queen Mary University of London, London, UK.
| |
Collapse
|
2
|
Farajzadeh M, Fathi M, Jalali P, Mahmoudsalehi Kheshti A, Khodayari S, Hojjat-Farsangi M, Jadidi F. Long noncoding RNAs in acute myeloid leukemia: biomarkers, prognostic indicators, and treatment potential. Cancer Cell Int 2025; 25:131. [PMID: 40188050 PMCID: PMC11972515 DOI: 10.1186/s12935-025-03763-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 03/20/2025] [Indexed: 04/07/2025] Open
Abstract
Long noncoding RNAs (lncRNAs) have been recognized as significant modulators of gene expression and are essential for various biological functions, even though they don't appear to have the ability to encode proteins. Originally considered dark matter, lncRNAs have been recognized as being dysregulated and contributing to the onset, progression, and resistance to treatment of acute myeloid leukemia (AML). AML is a prevalent type of leukemia characterized by the disruption of myeloid cell differentiation, leading to an increased number of immature myeloid progenitor cells. Currently, the need for novel biomarkers and treatment targets to enhance therapeutic alternatives has led to a focus on lncRNAs as possible indicators for prognostic, therapeutic, and diagnostic systems in various human cancers, including AML. Recent research has recognized a limited set of lncRNAs as possible prognostic biomarkers or diagnoses in AML. This review evaluates the key research that highlights the significance of lncRNAs in AML and discusses their roles and impacts on the disease. Furthermore, we intend to underscore the importance of lncRNAs as new and trustworthy markers for the diagnosis, prediction, drug resistance, and targets for treatment in AML.
Collapse
Affiliation(s)
- Maryam Farajzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehrdad Fathi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Pooya Jalali
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Centre, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences,, Tehran, Iran
| | | | - Shahla Khodayari
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Farhad Jadidi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
3
|
Núñez-Martínez HN, Tapia-Urzúa G, Cerecedo-Castillo Á, Peralta-Alvarez C, Guerrero G, Huarte M, Recillas-Targa F. The lncRNA DUBR is regulated by CTCF and coordinates chromatin landscape and gene expression in hematopoietic cells. Nucleic Acids Res 2025; 53:gkaf093. [PMID: 39995041 PMCID: PMC11850227 DOI: 10.1093/nar/gkaf093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/24/2025] [Accepted: 02/03/2025] [Indexed: 02/26/2025] Open
Abstract
Master hematopoietic transcription factors (TFs) and long noncoding RNAs (lncRNAs) coordinate shaping lineage-specific gene expression programs during hematopoietic differentiation. The architectural protein CCCTC-binding factor (CTCF) has emerged as a pivotal regulator of gene expression in cell differentiation. However, the relationship and its regulatory effect of CTCF on lncRNA genes in hematopoiesis remain elusive. We demonstrated that CTCF constrains the lncRNA DUBRtranscription throughout erythroid differentiation. DUBR is highly expressed in human hematopoietic stem and progenitor cells (HSPCs) but depleted in erythroblasts. DUBR perturbation dysregulates hematopoietic-erythroid cell differentiation genes and facilitates genome-wide activation of regulatory elements. A genomic map of RNA occupancy revealed that DUBR associates with a set of genes involved in regulating hematopoietic differentiation, including the erythroid repressor HES1, which targets a subset of regulatory elements of DUBR-dysregulated genes. Our results support the role of DUBR as a regulator of a hematopoietic differentiation gene program by coordinating the expression of genes and influencing their chromatin regulatory landscape.
Collapse
Affiliation(s)
- Hober Nelson Núñez-Martínez
- Instituto de Fisiología Celular, Departamento de Genética Molecular, Universidad Nacional Autónoma de México, 04510, Ciudad de México, México
| | - Gustavo Tapia-Urzúa
- Instituto de Fisiología Celular, Departamento de Genética Molecular, Universidad Nacional Autónoma de México, 04510, Ciudad de México, México
| | - Ángel Josué Cerecedo-Castillo
- Instituto de Fisiología Celular, Departamento de Genética Molecular, Universidad Nacional Autónoma de México, 04510, Ciudad de México, México
| | - Carlos Alberto Peralta-Alvarez
- Instituto de Fisiología Celular, Departamento de Genética Molecular, Universidad Nacional Autónoma de México, 04510, Ciudad de México, México
- Unidad de Bioinformática y Manejo de la Información, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510, Ciudad de México, México
| | - Georgina Guerrero
- Instituto de Fisiología Celular, Departamento de Genética Molecular, Universidad Nacional Autónoma de México, 04510, Ciudad de México, México
| | - Maite Huarte
- Center for Applied Medical Research, Department of Gene Therapy and Regulation of Gene Expression, University of Navarra, Pamplona, 31008, Spain
| | - Félix Recillas-Targa
- Instituto de Fisiología Celular, Departamento de Genética Molecular, Universidad Nacional Autónoma de México, 04510, Ciudad de México, México
| |
Collapse
|
4
|
Hong G, Huo Y, Gao Y, Ma L, Li S, Tian T, Zhong H, Li H. Integration of miRNA expression analysis of purified leukocytes and whole blood reveals blood-borne candidate biomarkers for lung cancer. Epigenetics 2024; 19:2393948. [PMID: 39164937 PMCID: PMC11340745 DOI: 10.1080/15592294.2024.2393948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 08/03/2024] [Accepted: 08/13/2024] [Indexed: 08/22/2024] Open
Abstract
Changes in leukocyte populations may confound the disease-associated miRNA signals in the blood of cancer patients. We aimed to develop a method to detect differentially expressed miRNAs from lung cancer whole blood samples that are not influenced by variations in leukocyte proportions. The Ref-miREO method identifies differential miRNAs unaffected by changes in leukocyte populations by comparing the within-sample relative expression orderings (REOs) of miRNAs from healthy leukocyte subtypes and those from lung cancer blood samples. Over 77% of the differential miRNAs observed between lung cancer and healthy blood samples overlapped with those between myeloid-derived and lymphoid-derived leukocytes, suggesting the potential impact of changes in leukocyte populations on miRNA profile. Ref-miREO identified 16 differential miRNAs that target 19 lung adenocarcinoma-related genes previously linked to leukocytes. These miRNAs showed enrichment in cancer-related pathways and demonstrated high potential as diagnostic biomarkers, with the LASSO regression models effectively distinguishing between healthy and lung cancer blood or serum samples (all AUC > 0.85). Additionally, 12 of these miRNAs exhibited significant prognostic correlations. The Ref-miREO method offers valuable candidates for circulating biomarker detection in cancer that are not affected by changes in leukocyte populations.
Collapse
Affiliation(s)
- Guini Hong
- School of Medical Information Engineering, Gannan Medical University, Ganzhou, China
| | - Yue Huo
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Yaru Gao
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Liyuan Ma
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Shuang Li
- School of Medical Information Engineering, Gannan Medical University, Ganzhou, China
| | - Tian Tian
- School of Medical Information Engineering, Gannan Medical University, Ganzhou, China
| | - Haijian Zhong
- School of Medical Information Engineering, Gannan Medical University, Ganzhou, China
| | - Hongdong Li
- School of Medical Information Engineering, Gannan Medical University, Ganzhou, China
| |
Collapse
|
5
|
Vici A, Castelli G, Francescangeli F, Cerio A, Pelosi E, Screnci M, Rossi S, Morsilli O, Felli N, Pasquini L, Truglio GI, De Angelis ML, D’Andrea V, Rossi R, Verachi P, Vila F, Marziali G, Giuliani A, Zeuner A. Network Analysis of miRNA and Cytokine Landscape in Human Hematopoiesis. Int J Mol Sci 2024; 25:12305. [PMID: 39596371 PMCID: PMC11595288 DOI: 10.3390/ijms252212305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/13/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
The differentiation/maturation trajectories of different blood cell types stemming from a CD34+ common ancestor takes place in different biologically relevant multidimensional spaces. Here, we generated microRNA and cytokine profiles from highly purified populations of hematopoietic progenitors/precursors derived from cord blood hematopoietic stem/progenitor cells. MicroRNA and cytokine landscapes were then analyzed to find their mutual relationships under the hypothesis that the highly variable miRNome corresponds to the 'force field' driving the goal of a stable phenotype (here corresponding to the cytokine abundance pattern) typical of each cell kind. The high dimensionality and lack of linearity of the hematopoietic process pushed us to adopt a distance-geometry approach to compare different trajectories, while a complex network analysis was instrumental in revealing the fine structure of microRNA-cytokine relations. Importantly, the approach enabled us to identify a limited number of factors (represented either by microRNAs or cytokines) corresponding to crucial nodes responsible for connecting distinct interaction modules. Subtle changes in 'master nodes', keeping the connections between different regulatory networks, may therefore be crucial in influencing hematopoietic differentiation. These findings highlight the extremely interconnected network structures underlying hematopoiesis regulation and identify key factors in the microRNA/cytokine landscape that may be potentially crucial for influencing network stability.
Collapse
Affiliation(s)
- Alessandro Vici
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (A.V.); (G.C.); (F.F.); (A.C.); (E.P.); (S.R.); (N.F.); (M.L.D.A.); (R.R.); (P.V.); (F.V.); (G.M.)
| | - Germana Castelli
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (A.V.); (G.C.); (F.F.); (A.C.); (E.P.); (S.R.); (N.F.); (M.L.D.A.); (R.R.); (P.V.); (F.V.); (G.M.)
| | - Federica Francescangeli
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (A.V.); (G.C.); (F.F.); (A.C.); (E.P.); (S.R.); (N.F.); (M.L.D.A.); (R.R.); (P.V.); (F.V.); (G.M.)
| | - Annamaria Cerio
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (A.V.); (G.C.); (F.F.); (A.C.); (E.P.); (S.R.); (N.F.); (M.L.D.A.); (R.R.); (P.V.); (F.V.); (G.M.)
| | - Elvira Pelosi
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (A.V.); (G.C.); (F.F.); (A.C.); (E.P.); (S.R.); (N.F.); (M.L.D.A.); (R.R.); (P.V.); (F.V.); (G.M.)
| | - Maria Screnci
- Banca Regionale Sangue Cordone Ombelicale, UOC Immunoematologia e Medicina Trasfusionale, Policlinico Umberto I, 00161 Rome, Italy;
| | - Stefania Rossi
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (A.V.); (G.C.); (F.F.); (A.C.); (E.P.); (S.R.); (N.F.); (M.L.D.A.); (R.R.); (P.V.); (F.V.); (G.M.)
| | - Ornella Morsilli
- Department of Cardiovascular, Endocrine-Metabolic Diseases and Ageing, Istituto Superiore di Sanità, 00161 Rome, Italy;
| | - Nadia Felli
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (A.V.); (G.C.); (F.F.); (A.C.); (E.P.); (S.R.); (N.F.); (M.L.D.A.); (R.R.); (P.V.); (F.V.); (G.M.)
| | - Luca Pasquini
- Core Facilities, Istituto Superiore di Sanità, 00161 Rome, Italy;
| | | | - Maria Laura De Angelis
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (A.V.); (G.C.); (F.F.); (A.C.); (E.P.); (S.R.); (N.F.); (M.L.D.A.); (R.R.); (P.V.); (F.V.); (G.M.)
| | - Vito D’Andrea
- Department of Surgery, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy;
| | - Rachele Rossi
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (A.V.); (G.C.); (F.F.); (A.C.); (E.P.); (S.R.); (N.F.); (M.L.D.A.); (R.R.); (P.V.); (F.V.); (G.M.)
| | - Paola Verachi
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (A.V.); (G.C.); (F.F.); (A.C.); (E.P.); (S.R.); (N.F.); (M.L.D.A.); (R.R.); (P.V.); (F.V.); (G.M.)
| | - Frenki Vila
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (A.V.); (G.C.); (F.F.); (A.C.); (E.P.); (S.R.); (N.F.); (M.L.D.A.); (R.R.); (P.V.); (F.V.); (G.M.)
- Department of Surgery, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy;
| | - Giovanna Marziali
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (A.V.); (G.C.); (F.F.); (A.C.); (E.P.); (S.R.); (N.F.); (M.L.D.A.); (R.R.); (P.V.); (F.V.); (G.M.)
| | - Alessandro Giuliani
- Environment and Health Department, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Ann Zeuner
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (A.V.); (G.C.); (F.F.); (A.C.); (E.P.); (S.R.); (N.F.); (M.L.D.A.); (R.R.); (P.V.); (F.V.); (G.M.)
| |
Collapse
|
6
|
Dahariya S, Enright A, Kumar S, Gutti RK. Deciphering Transcriptomic Variations in Hematopoietic Lineages: HSCs, EBs, and MKs. Int J Mol Sci 2024; 25:10073. [PMID: 39337559 PMCID: PMC11431954 DOI: 10.3390/ijms251810073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/14/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
In the realm of hematopoiesis, hematopoietic stem cells (HSCs) serve as pivotal entities responsible for generating various blood cell types, initiating both the myeloid and lymphoid branches within the hematopoietic lineage. This intricate process is marked by genetic variations that underscore the crucial role of genes in regulating cellular functions and interactions. Recognizing the significance of genetic factors in this context, this article delves into a genetic perspective, aiming to unravel the biological factors that govern the transition from one cell's fate to another within the hematopoietic system. To gain deeper insights into the genetic traits of three distinct blood cell types-HSCs, erythroblasts (EBs), and megakaryocytes (MKs)-we conducted a comprehensive transcriptomic analysis. Leveraging diverse hematopoietic cell datasets from healthy individuals, sourced from The BLUEPRINT consortium, our investigation targeted the identification of genetic variants responsible for changes in gene expression levels and epigenetic modifications across the entire human genome in each of these cell types. The total number of normalized expressed transcripts includes 14,233 novel trinity lncRNAs, 13,749 mRNAs, and 3092 lncRNAs. This scrutiny revealed a total of 31,074 transcripts, with a notable revelation that 14,233 of them were previously unidentified or novel lncRNAs, highlighting a substantial reservoir of genetic information yet to be explored. Examining their expression across distinct lineages further unveiled 2845 differentially expressed (DE) mRNAs and 354 DE long noncoding RNAs (lncRNAs) notably enriched among the three distinct blood cell types: HSCs, EBs, and MKs. Our investigation extended beyond mRNA to focus on the dynamic expression of lncRNAs, revealing a well-defined pattern that played a significant role in regulating differentiation and cell-fate specification. This coordination of lncRNA dynamics extended to aberrations in both mRNA and lncRNA transcriptomes within HSCs, EBs, and MKs. We specifically characterized lncRNAs with preferential expression in HSCs, as well as in various downstream differentiated lineage progenitors of EBs and MKs, providing a comprehensive perspective on lncRNAs in human hematopoietic cells. Notably, the expression of lncRNAs exhibited substantial cell-to-cell variation, a phenomenon discernible only through single-cell analysis. The comparative analysis undertaken in this study provides valuable insights into the distinctive genetic signatures guiding the differentiation of these crucial hematopoietic cell types.
Collapse
Affiliation(s)
- Swati Dahariya
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad 500019, Telangana, India
| | - Anton Enright
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK
| | - Santosh Kumar
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad 500019, Telangana, India
| | - Ravi Kumar Gutti
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad 500019, Telangana, India
| |
Collapse
|
7
|
Cheng X, Shihabudeen Haider Ali MS, Baki VB, Moran M, Su H, Sun X. Multifaceted roles of Meg3 in cellular senescence and atherosclerosis. Atherosclerosis 2024; 392:117506. [PMID: 38518516 PMCID: PMC11088985 DOI: 10.1016/j.atherosclerosis.2024.117506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 02/11/2024] [Accepted: 03/05/2024] [Indexed: 03/24/2024]
Abstract
BACKGROUND AND AIMS Long noncoding RNAs are involved in the pathogenesis of atherosclerosis. As long noncoding RNAs maternally expressed gene 3 (Meg3) prevents cellular senescence of hepatic vascular endothelium and obesity-induced insulin resistance, we decided to examine its role in cellular senescence and atherosclerosis. METHODS AND RESULTS By analyzing our data and human and mouse data from the Gene Expression Omnibus database, we found that Meg3 expression was reduced in humans and mice with cardiovascular disease, indicating its potential role in atherosclerosis. In Ldlr-/- mice fed a Western diet for 12 weeks, Meg3 silencing by chemically modified antisense oligonucleotides attenuated the formation of atherosclerotic lesions by 34.9% and 20.1% in male and female mice, respectively, revealed by en-face Oil Red O staining, which did not correlate with changes in plasma lipid profiles. Real-time quantitative PCR analysis of cellular senescence markers p21 and p16 revealed that Meg3 deficiency aggravates hepatic cellular senescence but not cellular senescence at aortic roots. Human Meg3 transgenic mice were generated to examine the role of Meg3 gain-of-function in the development of atherosclerosis induced by PCSK9 overexpression. Meg3 overexpression promotes atherosclerotic lesion formation by 29.2% in Meg3 knock-in mice independent of its effects on lipid profiles. Meg3 overexpression inhibits hepatic cellular senescence, while it promotes aortic cellular senescence likely by impairing mitochondrial function and delaying cell cycle progression. CONCLUSIONS Our data demonstrate that Meg3 promotes the formation of atherosclerotic lesions independent of its effects on plasma lipid profiles. In addition, Meg3 regulates cellular senescence in a tissue-specific manner during atherosclerosis. Thus, we demonstrated that Meg3 has multifaceted roles in cellular senescence and atherosclerosis.
Collapse
Affiliation(s)
- Xiao Cheng
- Department of Biochemistry, University of Nebraska - Lincoln, Beadle Center, 1901 Vine St, Lincoln, NE, 68588, USA
| | | | - Vijaya Bhaskar Baki
- Department of Biochemistry, University of Nebraska - Lincoln, Beadle Center, 1901 Vine St, Lincoln, NE, 68588, USA
| | - Matthew Moran
- Department of Biochemistry, University of Nebraska - Lincoln, Beadle Center, 1901 Vine St, Lincoln, NE, 68588, USA
| | - Huabo Su
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA; Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Xinghui Sun
- Department of Biochemistry, University of Nebraska - Lincoln, Beadle Center, 1901 Vine St, Lincoln, NE, 68588, USA; Nebraska Center for the Prevention of Obesity Diseases Through Dietary Molecules, University of Nebraska - Lincoln, USA.
| |
Collapse
|
8
|
Ghahramani Almanghadim H, Karimi B, Poursalehi N, Sanavandi M, Atefi Pourfardin S, Ghaedi K. The biological role of lncRNAs in the acute lymphocytic leukemia: An updated review. Gene 2024; 898:148074. [PMID: 38104953 DOI: 10.1016/j.gene.2023.148074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/29/2023] [Accepted: 12/08/2023] [Indexed: 12/19/2023]
Abstract
The cause of leukemia, a common malignancy of the hematological system, is unknown. The structure of long non-coding RNAs (lncRNAs) is similar to mRNA but no ability to encode proteins. Numerous malignancies, including different forms of leukemia, are linked to Lnc-RNAs. It is verified that the carcinogenesis and growth of a variety of human malignancies are significantly influenced by aberrant lncRNA expression. The body of evidence linking various types of lncRNAs to the etiology of leukemia has dramatically increased during the past ten years. Some lncRNAs are therefore anticipated to function as novel therapeutic targets, diagnostic biomarkers, and clinical outcome predictions. Additionally, these lncRNAs may provide new therapeutic options and insight into the pathophysiology of diseases, particularly leukemia. Thus, this review outlines the present comprehension of leukemia-associated lncRNAs.
Collapse
Affiliation(s)
| | - Bahareh Karimi
- Department of Cellular and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Negareh Poursalehi
- Department of Medical Biotechnology, School of Medicine Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | | | | | - Kamran Ghaedi
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Hezar Jerib Ave., Azadi Sq., 81746-73441 Isfahan, Iran.
| |
Collapse
|
9
|
Barwe SP, Kolb EA, Gopalakrishnapillai A. Down syndrome and leukemia: An insight into the disease biology and current treatment options. Blood Rev 2024; 64:101154. [PMID: 38016838 DOI: 10.1016/j.blre.2023.101154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/31/2023] [Accepted: 11/19/2023] [Indexed: 11/30/2023]
Abstract
Children with Down syndrome (DS) have a 10- to 20-fold greater predisposition to develop acute leukemia compared to the general population, with a skew towards myeloid leukemia (ML-DS). While ML-DS is known to be a subtype with good outcome, patients who relapse face a dismal prognosis. Acute lymphocytic leukemia in DS (DS-ALL) is considered to have poor prognosis. The relapse rate is high in DS-ALL compared to their non-DS counterparts. We have a better understanding about the mutational spectrum of DS leukemia. Studies using animal, embryonic stem cell- and induced pluripotent stem cell-based models have shed light on the mechanism by which these mutations contribute to disease initiation and progression. In this review, we list the currently available treatment strategies for DS-leukemias along with their outcome with emphasis on challenges with chemotherapy-related toxicities in children with DS. We focus on the mechanisms of initiation and progression of leukemia in children with DS and highlight the novel molecular targets with greater success in preclinical trials that have the potential to progress to the clinic.
Collapse
Affiliation(s)
- Sonali P Barwe
- Lisa Dean Moseley Institute for Cancer and Blood Disorders, Nemours Children's Health, Wilmington, Delaware, 19803, USA
| | - E Anders Kolb
- Lisa Dean Moseley Institute for Cancer and Blood Disorders, Nemours Children's Health, Wilmington, Delaware, 19803, USA
| | - Anilkumar Gopalakrishnapillai
- Lisa Dean Moseley Institute for Cancer and Blood Disorders, Nemours Children's Health, Wilmington, Delaware, 19803, USA.
| |
Collapse
|
10
|
Li W, Lv Y, Sun Y. Roles of non-coding RNA in megakaryocytopoiesis and thrombopoiesis: new target therapies in ITP. Platelets 2023; 34:2157382. [PMID: 36550091 DOI: 10.1080/09537104.2022.2157382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Noncoding RNAs (ncRNAs) are a group of RNA molecules that cannot encode proteins, and a better understanding of the complex interaction networks coordinated by ncRNAs will provide a theoretical basis for the development of therapeutics targeting the regulatory effects of ncRNAs. Platelets are produced upon the differentiation of hematopoietic stem cells into megakaryocytes, 1011 per day, and are renewed every 8-9 days. The process of thrombopoiesis is affected by multiple factors, in which ncRNAs also exert a significant regulatory role. This article reviewed the regulatory roles of ncRNAs, mainly microRNAs (miRNAs), circRNAs (circular RNAs), and long non-coding RNAs (lncRNAs), in thrombopoiesis in recent years as well as their roles in primary immune thrombocytopenia (ITP).
Collapse
Affiliation(s)
- Wuquan Li
- College of Pharmacy, Binzhou Medical University, Yantai, China
| | - Yan Lv
- College of Life Science, Yantai University, Yantai, China
| | - Yeying Sun
- College of Pharmacy, Binzhou Medical University, Yantai, China
| |
Collapse
|
11
|
Suzuki T, Sakai S, Ota K, Yoshida M, Uchida C, Niida H, Suda T, Kitagawa M, Ohhata T. Expression of Tumor Suppressor FHIT Is Regulated by the LINC00173-SNAIL Axis in Human Lung Adenocarcinoma. Int J Mol Sci 2023; 24:17011. [PMID: 38069335 PMCID: PMC10707390 DOI: 10.3390/ijms242317011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) play a critical role in a variety of human diseases such as cancer. Here, to elucidate a novel function of a lncRNA called LINC00173, we investigated its binding partner, target gene, and its regulatory mechanism in lung adenocarcinoma, including the A549 cell line and patients. In the A549 cell line, RNA immunoprecipitation (RIP) assays revealed that LINC00173 efficiently binds to SNAIL. RNA-seq and RT-qPCR analyses revealed that the expression of FHIT was decreased upon LINC00173 depletion, indicating that FHIT is a target gene of LINC00173. Overexpression of SNAIL suppressed and depletion of SNAIL increased the expression of FHIT, indicating that SNAIL negatively regulates FHIT. The downregulation of FHIT expression upon LINC00173 depletion was restored by additional SNAIL depletion, revealing a LINC00173-SNAIL-FHIT axis for FHIT regulation. Data from 501 patients with lung adenocarcinoma also support the existence of a LINC00173-SNAIL-FHIT axis, as FHIT expression correlated positively with LINC00173 (p = 1.75 × 10-6) and negatively with SNAIL (p = 7.00 × 10-5). Taken together, we propose that LINC00173 positively regulates FHIT gene expression by binding to SNAIL and inhibiting its function in human lung adenocarcinoma. Thus, this study sheds light on the LINC00173-SNAIL-FHIT axis, which may be a key mechanism for carcinogenesis and progression in human lung adenocarcinoma.
Collapse
Grants
- 19H03501 Ministry of Education, Culture, Sports, Science and Technology of Japan
- 22H02901 Ministry of Education, Culture, Sports, Science and Technology of Japan
- 20K07569 Ministry of Education, Culture, Sports, Science and Technology of Japan
- NA Project Mirai Cancer Research Grants, the Princes Takamatsu Cancer Research Foundation
- NA The Smoking Research Foundation
- NA Hamamatsu University School of Medicine Grant-in-Aid
Collapse
Affiliation(s)
- Takahito Suzuki
- Department of Molecular Biology, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | - Satoshi Sakai
- Department of Molecular Biology, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | - Kosuke Ota
- Department of Molecular Biology, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | - Mika Yoshida
- Department of Molecular Biology, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | - Chiharu Uchida
- Advanced Research Facilities & Services, Preeminent Medical Photonics Education & Research Center, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | - Hiroyuki Niida
- Department of Molecular Biology, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | - Takafumi Suda
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | - Masatoshi Kitagawa
- Department of Molecular Biology, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | - Tatsuya Ohhata
- Department of Molecular Biology, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| |
Collapse
|
12
|
Connerty P, Lock RB. The tip of the iceberg-The roles of long noncoding RNAs in acute myeloid leukemia. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1796. [PMID: 37267628 PMCID: PMC10909534 DOI: 10.1002/wrna.1796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/03/2023] [Accepted: 05/03/2023] [Indexed: 06/04/2023]
Abstract
Long noncoding RNAs (lncRNAs) are traditionally defined as RNA transcripts longer than 200 nucleotides that have no protein coding potential. LncRNAs have been identified to be dysregulated in various types of cancer, including the deadly hematopoietic cancer-acute myeloid leukemia (AML). Currently, survival rates for AML have reached a plateau necessitating new therapeutic targets and biomarkers to improve treatment options and survival from the disease. Therefore, the identification of lncRNAs as novel biomarkers and therapeutic targets for AML has major benefits. In this review, we assess the key studies which have recently identified lncRNAs as important molecules in AML and summarize the current knowledge of lncRNAs in AML. We delve into examples of the specific roles of lncRNA action in AML such as driving proliferation, differentiation block and therapy resistance as well as their function as tumor suppressors and utility as biomarkers. This article is categorized under: RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Patrick Connerty
- Children's Cancer Institute, Lowy Cancer Research CentreUNSW SydneySydneyNew South WalesAustralia
- School of Clinical MedicineUNSW Medicine & Health, UNSW SydneySydneyNew South WalesAustralia
- University of New South Wales Centre for Childhood Cancer ResearchUNSW SydneySydneyNew South WalesAustralia
| | - Richard B. Lock
- Children's Cancer Institute, Lowy Cancer Research CentreUNSW SydneySydneyNew South WalesAustralia
- School of Clinical MedicineUNSW Medicine & Health, UNSW SydneySydneyNew South WalesAustralia
- University of New South Wales Centre for Childhood Cancer ResearchUNSW SydneySydneyNew South WalesAustralia
| |
Collapse
|
13
|
Ng M, Verboon L, Issa H, Bhayadia R, Vermunt MW, Winkler R, Schüler L, Alejo O, Schuschel K, Regenyi E, Borchert D, Heuser M, Reinhardt D, Yaspo ML, Heckl D, Klusmann JH. Myeloid leukemia vulnerabilities embedded in long noncoding RNA locus MYNRL15. iScience 2023; 26:107844. [PMID: 37766974 PMCID: PMC10520325 DOI: 10.1016/j.isci.2023.107844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 05/02/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
The noncoding genome presents a largely untapped source of new biological insights, including thousands of long noncoding RNA (lncRNA) loci. While lncRNA dysregulation has been reported in myeloid malignancies, their functional relevance remains to be systematically interrogated. We performed CRISPRi screens of lncRNA signatures from normal and malignant hematopoietic cells and identified MYNRL15 as a myeloid leukemia dependency. Functional dissection suggests an RNA-independent mechanism mediated by two regulatory elements embedded in the locus. Genetic perturbation of these elements triggered a long-range chromatin interaction and downregulation of leukemia dependency genes near the gained interaction sites, as well as overall suppression of cancer dependency pathways. Thus, this study describes a new noncoding myeloid leukemia vulnerability and mechanistic concept for myeloid leukemia. Importantly, MYNRL15 perturbation caused strong and selective impairment of leukemia cells of various genetic backgrounds over normal hematopoietic stem and progenitor cells in vitro, and depletion of patient-derived xenografts in vivo.
Collapse
Affiliation(s)
- Michelle Ng
- Department of Pediatric Hematology and Oncology, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Lonneke Verboon
- Department of Pediatrics, Goethe University Frankfurt, 60323 Frankfurt (Main), Germany
- Frankfurt Cancer Institute, Goethe University Frankfurt, 60323 Frankfurt (Main), Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Hasan Issa
- Department of Pediatrics, Goethe University Frankfurt, 60323 Frankfurt (Main), Germany
- Frankfurt Cancer Institute, Goethe University Frankfurt, 60323 Frankfurt (Main), Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Raj Bhayadia
- Department of Pediatrics, Goethe University Frankfurt, 60323 Frankfurt (Main), Germany
- Frankfurt Cancer Institute, Goethe University Frankfurt, 60323 Frankfurt (Main), Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Marit Willemijn Vermunt
- Department of Pediatrics, Goethe University Frankfurt, 60323 Frankfurt (Main), Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Robert Winkler
- Department of Pediatrics, Goethe University Frankfurt, 60323 Frankfurt (Main), Germany
- Frankfurt Cancer Institute, Goethe University Frankfurt, 60323 Frankfurt (Main), Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Leah Schüler
- Department of Pediatrics, Goethe University Frankfurt, 60323 Frankfurt (Main), Germany
- Frankfurt Cancer Institute, Goethe University Frankfurt, 60323 Frankfurt (Main), Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Oriol Alejo
- Department of Pediatric Hematology and Oncology, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Konstantin Schuschel
- Department of Pediatrics, Goethe University Frankfurt, 60323 Frankfurt (Main), Germany
- Frankfurt Cancer Institute, Goethe University Frankfurt, 60323 Frankfurt (Main), Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Eniko Regenyi
- Department of Pediatric Hematology and Oncology, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
- Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Dorit Borchert
- Department of Pediatric Hematology and Oncology, Hannover Medical School, 30625 Hannover, Germany
| | - Michael Heuser
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, 30625 Hannover, Germany
| | - Dirk Reinhardt
- Clinic for Pediatrics III, University Hospital Essen, 45147 Essen, Germany
| | - Marie-Laure Yaspo
- Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Dirk Heckl
- Institute for Experimental Pediatric Hematology and Oncology, Goethe University Frankfurt, 60323 Frankfurt (Main), Germany
| | - Jan-Henning Klusmann
- Department of Pediatrics, Goethe University Frankfurt, 60323 Frankfurt (Main), Germany
- Frankfurt Cancer Institute, Goethe University Frankfurt, 60323 Frankfurt (Main), Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz and German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
14
|
Miao J, Chen B, Xiao Y, Huang R, Xiao X, Lu S, Zhang L, Wang X, Ouyang Y, Chen X, Chen Q, Xiang Y, Guo X, Deng X, Wang L, Mai H, Zhao C. Long noncoding RNA LINC00173 induces radioresistance in nasopharyngeal carcinoma via inhibiting CHK2/P53 pathway. Cancer Gene Ther 2023; 30:1249-1259. [PMID: 37258811 DOI: 10.1038/s41417-023-00634-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 05/04/2023] [Accepted: 05/19/2023] [Indexed: 06/02/2023]
Abstract
Radiotherapy is the backbone of nasopharyngeal carcinoma (NPC), nearly 11-17% NPC patients suffered local relapse and 18-37% suffered distant metastasis mainly due to radioresistance. Therefore, the key of improving patients' survivals is to investigate the mechanism of radioresistance. In this study, we revealed that the expression level of long intergenic nonprotein coding RNA 173 (LINC00173) was significantly increased in the radioresistant NPC patients' tumour tissues compared with the radiosensitive patients by RNA-sequencing, which also predict poor prognosis in NPC. Overexpression of LINC00173 induced radioresistance of NPC cells in vitro and in vivo. Mechanistically, LINC00173 bound with checkpoint kinase 2 (CHK2) in nucleus, and impaired the irradiation-induced CHK2 phosphorylation, then suppressed the activation of P53 signalling pathway, which eventually inhibiting apoptosis and leading to radioresistance in NPC cells. In summary, LINC00173 decreases the occurrence of apoptosis through inhibiting the CHK2/P53 pathway, leads to NPC radioresistance and could be considered as a novel predictor and therapeutic target in NPC.
Collapse
Affiliation(s)
- Jingjing Miao
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, 510060, China
| | - Boyu Chen
- Department of Experimental Research, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, 510060, China
| | - Yunyun Xiao
- Department of Experimental Research, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, 510060, China
| | - Runda Huang
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, 510060, China
| | - Xiao Xiao
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, 510060, China
| | - Shunzhen Lu
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, 510060, China
| | - Lu Zhang
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, 510060, China
| | - Xuguang Wang
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, 510060, China
| | - Ying Ouyang
- Department of Experimental Research, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, 510060, China
| | - Xiangfu Chen
- Department of Experimental Research, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, 510060, China
| | - Qiuyan Chen
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, 510060, China
| | - Yanqun Xiang
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, 510060, China
| | - Xiang Guo
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, 510060, China
| | - Xiaowu Deng
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, 510060, China
| | - Lin Wang
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, 510060, China.
| | - Haiqiang Mai
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, 510060, China.
| | - Chong Zhao
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, 510060, China.
| |
Collapse
|
15
|
Amin W, Nishio S, Honjo T, Kobayashi M. Necessity of HuR/ELAVL1 for the activation-induced cytidine deaminase-dependent decrease in topoisomerase 1 in antibody diversification. Int Immunol 2023; 35:361-375. [PMID: 37086201 DOI: 10.1093/intimm/dxad011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 04/17/2023] [Indexed: 04/23/2023] Open
Abstract
Activation-induced cytidine deaminase (AID)-dependent DNA cleavage is the initial event of antibody gene-diversification processes such as class switch recombination (CSR) and somatic hypermutation (SHM). We previously reported the requirement of an AID-dependent decrease of topoisomerase 1 (Top1) for efficient DNA cleavage, but the underlying molecular mechanism has remained elusive. This study focuses on HuR/ELAVL1, a protein that binds to AU-rich elements in RNA. HuR-knockout (KO) CH12 cells derived from murine B lymphoma cells were found to have lower CSR and hypermutation efficiencies due to decreased AID-dependent DNA cleavage levels. The HuR-KO CH12 cells do not show impairment in cell cycles and Myc expression, which have been reported in HuR-reduced spleen B cells. Furthermore, drugs that scavenge reactive oxygen species (ROS) do not rescue the lower CSR in HuR-KO CH12 cells, meaning that ROS or decreased c-Myc protein amount is not the reason for the deficiencies of CSR and hypermutation in HuR-KO CH12 cells. We show that HuR binds to Top1 mRNA and that complete deletion of HuR abolishes AID-dependent repression of Top1 protein synthesis in CH12 cells. Additionally, reduction of CSR to IgG3 in HuR-KO cells is rescued by knockdown of Top1, indicating that elimination of the AID-dependent Top1 decrease is the cause of the inefficiency of DNA cleavage, CSR and hypermutation in HuR-KO cells. These results show that HuR is required for initiation of antibody diversification and acquired immunity through the regulation of AID-dependent DNA cleavage by repressing Top1 protein synthesis.
Collapse
Affiliation(s)
- Wajid Amin
- Department of Immunology and Genomic Medicine, Center for Cancer Immunotherapy and Immunobiology, Graduate School of Medicine, Kyoto University, 606-8501, Kyoto, Japan
| | - Shoki Nishio
- Department of Immunology and Genomic Medicine, Center for Cancer Immunotherapy and Immunobiology, Graduate School of Medicine, Kyoto University, 606-8501, Kyoto, Japan
| | - Tasuku Honjo
- Department of Immunology and Genomic Medicine, Center for Cancer Immunotherapy and Immunobiology, Graduate School of Medicine, Kyoto University, 606-8501, Kyoto, Japan
| | - Maki Kobayashi
- Department of Immunology and Genomic Medicine, Center for Cancer Immunotherapy and Immunobiology, Graduate School of Medicine, Kyoto University, 606-8501, Kyoto, Japan
| |
Collapse
|
16
|
Farrar JE, Smith JL, Othus M, Huang BJ, Wang YC, Ries R, Hylkema T, Pogosova-Agadjanyan EL, Challa S, Leonti A, Shaw TI, Triche TJ, Gamis AS, Aplenc R, Kolb EA, Ma X, Stirewalt DL, Alonzo TA, Meshinchi S. Long Noncoding RNA Expression Independently Predicts Outcome in Pediatric Acute Myeloid Leukemia. J Clin Oncol 2023; 41:2949-2962. [PMID: 36795987 PMCID: PMC10414715 DOI: 10.1200/jco.22.01114] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 12/15/2022] [Accepted: 01/17/2023] [Indexed: 02/18/2023] Open
Abstract
PURPOSE Optimized strategies for risk classification are essential to tailor therapy for patients with biologically distinctive disease. Risk classification in pediatric acute myeloid leukemia (pAML) relies on detection of translocations and gene mutations. Long noncoding RNA (lncRNA) transcripts have been shown to associate with and mediate malignant phenotypes in acute myeloid leukemia (AML) but have not been comprehensively evaluated in pAML. METHODS To identify lncRNA transcripts associated with outcomes, we evaluated the annotated lncRNA landscape by transcript sequencing of 1,298 pediatric and 96 adult AML specimens. Upregulated lncRNAs identified in the pAML training set were used to establish a regularized Cox regression model of event-free survival (EFS), yielding a 37 lncRNA signature (lncScore). Discretized lncScores were correlated with initial and postinduction treatment outcomes using Cox proportional hazards models in validation sets. Predictive model performance was compared with standard stratification methods by concordance analysis. RESULTS Training set cases with positive lncScores had 5-year EFS and overall survival rates of 26.7% and 42.7%, respectively, compared with 56.9% and 76.3% with negative lncScores (hazard ratio, 2.48 and 3.16; P < .001). Pediatric validation cohorts and an adult AML group yielded comparable results in magnitude and significance. lncScore remained independently prognostic in multivariable models, including key factors used in preinduction and postinduction risk stratification. Subgroup analysis suggested that lncScores provide additional outcome information in heterogeneous subgroups currently classified as indeterminate risk. Concordance analysis showed that lncScore adds to overall classification accuracy with at least comparable predictive performance to current stratification methods that rely on multiple assays. CONCLUSION Inclusion of the lncScore enhances predictive power of traditional cytogenetic and mutation-defined stratification in pAML with potential, as a single assay, to replace these complex stratification schemes with comparable predictive accuracy.
Collapse
Affiliation(s)
- Jason E. Farrar
- Department of Pediatrics, Arkansas Children's Research Institute, University of Arkansas for Medical Sciences, Little Rock, AR
| | - Jenny L. Smith
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Megan Othus
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Benjamin J. Huang
- Department of Pediatrics, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA
| | | | - Rhonda Ries
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Tiffany Hylkema
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | | | - Sneha Challa
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Amanda Leonti
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Timothy I. Shaw
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL
| | - Timothy J. Triche
- Center for Epigenetics, Van Andel Research Institute, Grand Rapids, MI
| | - Alan S. Gamis
- Department of Pediatrics, Children's Mercy Hospitals and Clinics, Kansas City, MO
| | - Richard Aplenc
- Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA
| | - E. Anders Kolb
- Nemours Center for Cancer and Blood Disorders and Alfred I. DuPont Hospital for Children, Wilmington, DE
| | - Xiaotu Ma
- Department of Computational Biology, St Jude Children's Research Hospital, Memphis, TN
| | - Derek L. Stirewalt
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Todd A. Alonzo
- Children's Oncology Group, Monrovia, CA
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA
| | - Soheil Meshinchi
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
- Department of Pediatrics, University of Washington, Seattle, WA
| |
Collapse
|
17
|
Zhou Q, Shu X, Chai Y, Liu W, Li Z, Xi Y. The non-coding competing endogenous RNAs in acute myeloid leukemia: biological and clinical implications. Biomed Pharmacother 2023; 163:114807. [PMID: 37150037 DOI: 10.1016/j.biopha.2023.114807] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 04/28/2023] [Accepted: 04/30/2023] [Indexed: 05/09/2023] Open
Abstract
Acute myeloid leukemia (AML) is a hematologic carcinoma that has seen a considerable improvement in patient prognosis because of genetic diagnostics and molecularly-targeted therapies. Nevertheless, recurrence and drug resistance remain significant obstacles to leukemia treatment. It is critical to investigate the underlying molecular mechanisms and find solutions. Non-coding RNAs (ncRNAs), such as microRNAs (miRNAs), circular RNAs, long non-coding RNAs, and pseudogenes, have been found to be crucial components in driving cancer. The competing endogenous RNA (ceRNA) mechanism has expanded the complexity of miRNA-mediated gene regulation. A great deal of literature has shown that ncRNAs are essential to the biological functions of the ceRNA network (ceRNET). NcRNAs can compete for the same miRNA response elements to influence miRNA-target RNA interactions. Recent evidence suggests that ceRNA might be a potential biomarker and therapeutic strategy. So far, however, there have been no comprehensive studies on ceRNET about AML. What is not yet clear is the clinical application of ceRNA in AML. This study attempts to summarize the development of research on the related ceRNAs in AML and the roles of ncRNAs in ceRNET. We also briefly describe the mechanisms of ceRNA and ceRNET. What's more significant is that we explore the clinical value of ceRNAs to provide accurate diagnostic and prognostic biomarkers as well as therapeutic targets. Finally, limitations and prospects are considered.
Collapse
Affiliation(s)
- Qi Zhou
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China
| | - Xiaojun Shu
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China; Department of Vascular Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Yihong Chai
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China
| | - Wenling Liu
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China
| | - Zijian Li
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China; Department of Hematology, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Yaming Xi
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China; Department of Hematology, The First Hospital of Lanzhou University, Lanzhou, Gansu, China.
| |
Collapse
|
18
|
Gialesaki S, Bräuer-Hartmann D, Issa H, Bhayadia R, Alejo-Valle O, Verboon L, Schmell AL, Laszig S, Regényi E, Schuschel K, Labuhn M, Ng M, Winkler R, Ihling C, Sinz A, Glaß M, Hüttelmaier S, Matzk S, Schmid L, Strüwe FJ, Kadel SK, Reinhardt D, Yaspo ML, Heckl D, Klusmann JH. RUNX1 isoform disequilibrium promotes the development of trisomy 21-associated myeloid leukemia. Blood 2023; 141:1105-1118. [PMID: 36493345 PMCID: PMC10023736 DOI: 10.1182/blood.2022017619] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 11/08/2022] [Accepted: 11/22/2022] [Indexed: 12/14/2022] Open
Abstract
Gain of chromosome 21 (Hsa21) is among the most frequent aneuploidies in leukemia. However, it remains unclear how partial or complete amplifications of Hsa21 promote leukemogenesis and why children with Down syndrome (DS) (ie, trisomy 21) are particularly at risk of leukemia development. Here, we propose that RUNX1 isoform disequilibrium with RUNX1A bias is key to DS-associated myeloid leukemia (ML-DS). Starting with Hsa21-focused CRISPR-CRISPR-associated protein 9 screens, we uncovered a strong and specific RUNX1 dependency in ML-DS cells. Expression of the RUNX1A isoform is elevated in patients with ML-DS, and mechanistic studies using murine ML-DS models and patient-derived xenografts revealed that excess RUNX1A synergizes with the pathognomonic Gata1s mutation during leukemogenesis by displacing RUNX1C from its endogenous binding sites and inducing oncogenic programs in complex with the MYC cofactor MAX. These effects were reversed by restoring the RUNX1A:RUNX1C equilibrium in patient-derived xenografts in vitro and in vivo. Moreover, pharmacological interference with MYC:MAX dimerization using MYCi361 exerted strong antileukemic effects. Thus, our study highlights the importance of alternative splicing in leukemogenesis, even on a background of aneuploidy, and paves the way for the development of specific and targeted therapies for ML-DS, as well as for other leukemias with Hsa21 aneuploidy or RUNX1 isoform disequilibrium.
Collapse
Affiliation(s)
- Sofia Gialesaki
- Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - Daniela Bräuer-Hartmann
- Pediatric Hematology and Oncology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Hasan Issa
- Department of Pediatrics, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Raj Bhayadia
- Department of Pediatrics, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Oriol Alejo-Valle
- Pediatric Hematology and Oncology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Lonneke Verboon
- Department of Pediatrics, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Anna-Lena Schmell
- Department of Pediatrics, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Stephanie Laszig
- Department of Pediatrics, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Enikő Regényi
- Pediatric Hematology and Oncology, Martin Luther University Halle-Wittenberg, Halle, Germany
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Konstantin Schuschel
- Department of Pediatrics, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Maurice Labuhn
- Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - Michelle Ng
- Pediatric Hematology and Oncology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Robert Winkler
- Department of Pediatrics, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Christian Ihling
- Department of Pharmaceutical Chemistry and Bioanalytics, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Andrea Sinz
- Department of Pharmaceutical Chemistry and Bioanalytics, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Markus Glaß
- Institute of Molecular Medicine, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Stefan Hüttelmaier
- Institute of Molecular Medicine, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Sören Matzk
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Lena Schmid
- Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | | | - Sofie-Katrin Kadel
- Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - Dirk Reinhardt
- Pediatric Hematology and Oncology, Pediatrics III, University Hospital Essen, Essen, Germany
| | | | - Dirk Heckl
- Pediatric Hematology and Oncology, Martin Luther University Halle-Wittenberg, Halle, Germany
- Dirk Heckl, Pediatric Hematology and Oncology, Martin Luther University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120 Halle, Germany;
| | - Jan-Henning Klusmann
- Department of Pediatrics, Goethe University Frankfurt, Frankfurt am Main, Germany
- Frankfurt Cancer Institute, Goethe University, Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Correspondence: Jan-Henning Klusmann, Department of Pediatrics, Goethe University Frankfurt, Theodor Stern Kai 7, 60590 Frankfurt, Germany;
| |
Collapse
|
19
|
Tao X, Li Y, Fan S, Wu L, Xin J, Su Y, Xian X, Huang Y, Huang R, Fang W, Liu Z. Downregulation of Linc00173 increases BCL2 mRNA stability via the miR-1275/PROCA1/ZFP36L2 axis and induces acquired cisplatin resistance of lung adenocarcinoma. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2023; 42:12. [PMID: 36627670 PMCID: PMC9830831 DOI: 10.1186/s13046-022-02560-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 12/04/2022] [Indexed: 01/12/2023]
Abstract
BACKGROUND LINC00173 had been reported as a cisplatin (cis-diamminedichloroplatinum, DDP) chemotherapy-resistant inducer in small-cell lung cancer (SCLC) and lung squamous cell carcinoma (LUSC). This study aimed to display reverse data for LINC00173 as a DDP chemosensitivity-inducing factor in lung adenocarcinoma (LUAD). METHODS LINC00173 was screened from the Gene Expression Omnibus database (GSE43493). The expression level of LINC00173 in LUAD tissues and cell lines was detected using in situ hybridization and quantitative reverse transcription-polymerase chain reaction. Colony formation, cell viability, half-maximal inhibitory concentration, flow cytometry, and xenograft mouse model were used to evaluate the role of LINC00173 in the chemosensitivity of LUAD to DDP. The mechanism of LINC00173 in DDP resistance by mediating miR-1275/PROCA1/ZFP36L2 axis to impair BCL2 mRNA stability was applied, and co-immunoprecipitation, chromatin immunoprecipitation, RNA antisense purification, RNA immunoprecipitation, and luciferase reporter assays were performed. RESULTS LINC00173 downregulation in patients with DDP-resistant LUAD was correlated with poor prognosis. Further, LINC00173 expression was significantly reduced in DDP-resistant LUAD cells and DDP-treated human LUAD tissues. Suppressed LINC00173 expression in LUAD cells enhanced DDP chemoresistance in vivo and in vitro, while restored LINC00173 expression in DDP-resistant LUAD cells markedly regained chemosensitivity to DDP. Mechanistically, DDP-resistant LUAD cells activated PI3K/AKT signal and further elevated the c-Myc expression. The c-Myc, as an oncogenic transcriptional factor, bound to the promoter of LINC00173 and suppressed its expression. The reduced LINC00173 expression attenuated the adsorption of oncogenic miR-1275, downregulating the expression of miR-1275 target gene PROCA1. PROCA1 played a potential tumor-suppressive role inducing cell apoptosis and DDP chemosensitivity via recruiting ZFP36L2 to bind to the 3' untranslated region of BCL2, reducing the stability of BCL2 mRNA and thus activating the apoptotic signal. CONCLUSIONS This study demonstrated a novel and critical role of LINC00173. It was transcriptionally repressed by DDP-activated PI3K/AKT/c-Myc signal in LUAD, promoting DDP-acquired chemotherapeutic resistance by regulating miR-1275 to suppress PROCA1/ZFP36L2-induced BCL2 degradation, which led to apoptotic signal reduction. These data were not consistent with the previously described role of LINC00173 in SCLC or LUSC, which suggested that LINC00173 could play fine-tuned DDP resistance roles in different pathological subtypes of lung cancer. This study demonstrated that the diminished expression of LINC00173 might serve as an indicator of DDP-acquired resistance in LUAD.
Collapse
Affiliation(s)
- Xingyu Tao
- grid.410737.60000 0000 8653 1072Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, 511436 China
| | - Yang Li
- grid.410737.60000 0000 8653 1072Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, 511436 China
| | - Songqing Fan
- grid.452708.c0000 0004 1803 0208The Second Xiangya Hospital of Central South University, Changsha, 410008 China
| | - Liyang Wu
- grid.410737.60000 0000 8653 1072Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, 511436 China
| | - Jianyang Xin
- grid.410737.60000 0000 8653 1072Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, 511436 China
| | - Yun Su
- grid.410737.60000 0000 8653 1072Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, 511436 China
| | - Xiaoyang Xian
- grid.410737.60000 0000 8653 1072Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, 511436 China
| | - Yingying Huang
- grid.410737.60000 0000 8653 1072Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, 511436 China
| | - Rongquan Huang
- grid.410737.60000 0000 8653 1072Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, 511436 China
| | - Weiyi Fang
- grid.284723.80000 0000 8877 7471Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515 China ,grid.284723.80000 0000 8877 7471Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510315 China
| | - Zhen Liu
- grid.284723.80000 0000 8877 7471Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510315 China ,grid.410737.60000 0000 8653 1072Department of Pathology, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436 China
| |
Collapse
|
20
|
Lieske A, Agyeman-Duah E, Selich A, Dörpmund N, Talbot SR, Schambach A, Maetzig T. A pro B cell population forms the apex of the leukemic hierarchy in Hoxa9/Meis1-dependent AML. Leukemia 2023; 37:79-90. [PMID: 36517672 PMCID: PMC9883166 DOI: 10.1038/s41375-022-01775-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 12/15/2022]
Abstract
Relapse is a major challenge to therapeutic success in acute myeloid leukemia (AML) and can be partly associated with heterogeneous leukemic stem cell (LSC) properties. In the murine Hoxa9/Meis1-dependent (H9M) AML model, LSC potential lies in three defined immunophenotypes, including Lin-cKit+ progenitor cells (Lin-), Gr1+CD11b+cKit+ myeloid cells, and lymphoid cells (Lym+). Previous reports demonstrated their interconversion and distinct drug sensitivities. In contrast, we here show that H9M AML is hierarchically organized. We, therefore, tracked the developmental potential of LSC phenotypes. This unexpectedly revealed a substantial fraction of Lin- LSCs that failed to regenerate Lym+ LSCs, and that harbored reduced leukemogenic potential. However, Lin- LSCs capable of producing Lym+ LSCs as well as Lym+ LSCs triggered rapid disease development suggestive of their high relapse-driving potential. Transcriptional analyses revealed that B lymphoid master regulators, including Sox4 and Bach2, correlated with Lym+ LSC development and presumably aggressive disease. Lentiviral overexpression of Sox4 and Bach2 induced dedifferentiation of H9M cells towards a lineage-negative state in vitro as the first step of lineage conversion. This work suggests that the potency to initiate a partial B lymphoid primed transcriptional program as present in infant AML correlates with aggressive disease and governs the H9M LSC hierarchy.
Collapse
Affiliation(s)
- Anna Lieske
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
- Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - Eric Agyeman-Duah
- Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - Anton Selich
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Nicole Dörpmund
- Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - Steven R Talbot
- Institute for Laboratory Animal Science, Hannover Medical School, Hannover, Germany
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Tobias Maetzig
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.
- Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
21
|
Nelson TM, Ghosh S, Postler TS. L-RAPiT: A Cloud-Based Computing Pipeline for the Analysis of Long-Read RNA Sequencing Data. Int J Mol Sci 2022; 23:15851. [PMID: 36555493 PMCID: PMC9781625 DOI: 10.3390/ijms232415851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/07/2022] [Accepted: 12/11/2022] [Indexed: 12/15/2022] Open
Abstract
Long-read sequencing (LRS) has been adopted to meet a wide variety of research needs, ranging from the construction of novel transcriptome annotations to the rapid identification of emerging virus variants. Amongst other advantages, LRS preserves more information about RNA at the transcript level than conventional high-throughput sequencing, including far more accurate and quantitative records of splicing patterns. New studies with LRS datasets are being published at an exponential rate, generating a vast reservoir of information that can be leveraged to address a host of different research questions. However, mining such publicly available data in a tailored fashion is currently not easy, as the available software tools typically require familiarity with the command-line interface, which constitutes a significant obstacle to many researchers. Additionally, different research groups utilize different software packages to perform LRS analysis, which often prevents a direct comparison of published results across different studies. To address these challenges, we have developed the Long-Read Analysis Pipeline for Transcriptomics (L-RAPiT), a user-friendly, free pipeline requiring no dedicated computational resources or bioinformatics expertise. L-RAPiT can be implemented directly through Google Colaboratory, a system based on the open-source Jupyter notebook environment, and allows for the direct analysis of transcriptomic reads from Oxford Nanopore and PacBio LRS machines. This new pipeline enables the rapid, convenient, and standardized analysis of publicly available or newly generated LRS datasets.
Collapse
|
22
|
Guan X, Sun Y, Zhang C. LncRNAs in blood cells: Roles in cell development and potential pathogenesis in hematological malignancies. Crit Rev Oncol Hematol 2022; 180:103849. [DOI: 10.1016/j.critrevonc.2022.103849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 09/11/2022] [Accepted: 10/12/2022] [Indexed: 11/24/2022] Open
|
23
|
Long Intergenic Non-Protein Coding RNA 173 in Human Cancers. Cancers (Basel) 2022; 14:cancers14235923. [PMID: 36497407 PMCID: PMC9737410 DOI: 10.3390/cancers14235923] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/23/2022] [Accepted: 11/25/2022] [Indexed: 12/05/2022] Open
Abstract
Long non-coding RNAs belong to non-coding RNAs (ncRNAs) with a length of more than 200 nucleotides and limited protein-coding ability. Growing research has clarified that dysregulated lncRNAs are correlated with the development of various complex diseases, including cancer. LINC00173 has drawn researchers' attention as one of the recently discovered lncRNAs. Aberrant expression of LINC00173 affects the initiation and progression of human cancers. In the present review, we summarize the recent considerable research on LINC00173 in 11 human cancers. Through the summary of the abnormal expression of LINC00173 and its potential molecular regulation mechanism in cancers, this article indicates that LINC00173 may serve as a potential diagnostic biomarker and a target for drug therapy, thus providing novel clues for future related research.
Collapse
|
24
|
Huang W, Sun YM, Pan Q, Fang K, Chen XT, Zeng ZC, Chen TQ, Zhu SX, Huang LB, Luo XQ, Wang WT, Chen YQ. The snoRNA-like lncRNA LNC-SNO49AB drives leukemia by activating the RNA-editing enzyme ADAR1. Cell Discov 2022; 8:117. [PMID: 36316318 PMCID: PMC9622897 DOI: 10.1038/s41421-022-00460-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 08/18/2022] [Indexed: 01/24/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) are usually 5' capped and 3' polyadenylated, similar to most typical mRNAs. However, recent studies revealed a type of snoRNA-related lncRNA with unique structures, leading to questions on how they are processed and how they work. Here, we identify a novel snoRNA-related lncRNA named LNC-SNO49AB containing two C/D box snoRNA sequences, SNORD49A and SNORD49B; and show that LNC-SNO49AB represents an unreported type of lncRNA with a 5'-end m7G and a 3'-end snoRNA structure. LNC-SNO49AB was found highly expressed in leukemia patient samples, and silencing LNC-SNO49AB dramatically suppressed leukemia progression in vitro and in vivo. Subcellular location indicated that the LNC-SNO49AB is mainly located in nucleolus and interacted with the nucleolar protein fibrillarin. However, we found that LNC-SNO49AB does not play a role in 2'-O-methylation regulation, a classical function of snoRNA; instead, its snoRNA structure affected the lncRNA stability. We further demonstrated that LNC-SNO49AB could directly bind to the adenosine deaminase acting on RNA 1(ADAR1) and promoted its homodimerization followed by a high RNA A-to-I editing activity. Transcriptome profiling shows that LNC-SNO49AB and ADAR1 knockdown respectively share very similar patterns of RNA modification change in downstream signaling pathways, especially in cell cycle pathways. These findings suggest a previously unknown class of snoRNA-related lncRNAs, which function via a manner in nucleolus independently on snoRNA-guide rRNA modification. This is the first report that a lncRNA regulates genome-wide RNA A-to-I editing by enhancing ADAR1 dimerization to facilitate hematopoietic malignancy, suggesting that LNC-SNO49AB may be a novel target in therapy directed to leukemia.
Collapse
Affiliation(s)
- Wei Huang
- grid.12981.330000 0001 2360 039XGuangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong China
| | - Yu-Meng Sun
- grid.12981.330000 0001 2360 039XGuangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong China
| | - Qi Pan
- grid.12981.330000 0001 2360 039XGuangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong China
| | - Ke Fang
- grid.12981.330000 0001 2360 039XGuangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong China
| | - Xiao-Tong Chen
- grid.12981.330000 0001 2360 039XGuangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong China
| | - Zhan-Cheng Zeng
- grid.12981.330000 0001 2360 039XGuangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong China
| | - Tian-Qi Chen
- grid.12981.330000 0001 2360 039XGuangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong China
| | - Shun-Xin Zhu
- grid.12981.330000 0001 2360 039XGuangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong China
| | - Li-Bin Huang
- grid.412615.50000 0004 1803 6239The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong China
| | - Xue-Qun Luo
- grid.412615.50000 0004 1803 6239The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong China
| | - Wen-Tao Wang
- grid.12981.330000 0001 2360 039XGuangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong China
| | - Yue-Qin Chen
- grid.12981.330000 0001 2360 039XGuangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong China
| |
Collapse
|
25
|
Al-Habsi M, Chamoto K, Matsumoto K, Nomura N, Zhang B, Sugiura Y, Sonomura K, Maharani A, Nakajima Y, Wu Y, Nomura Y, Menzies R, Tajima M, Kitaoka K, Haku Y, Delghandi S, Yurimoto K, Matsuda F, Iwata S, Ogura T, Fagarasan S, Honjo T. Spermidine activates mitochondrial trifunctional protein and improves antitumor immunity in mice. Science 2022; 378:eabj3510. [DOI: 10.1126/science.abj3510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Spermidine (SPD) delays age-related pathologies in various organisms. SPD supplementation overcame the impaired immunotherapy against tumors in aged mice by increasing mitochondrial function and activating CD8
+
T cells. Treatment of naïve CD8
+
T cells with SPD acutely enhanced fatty acid oxidation. SPD conjugated to beads bound to the mitochondrial trifunctional protein (MTP). In the MTP complex, synthesized and purified from
Escherichia coli
, SPD bound to the α and β subunits of MTP with strong affinity and allosterically enhanced their enzymatic activities. T cell–specific deletion of the MTP α subunit abolished enhancement of programmed cell death protein 1 (PD-1) blockade immunotherapy by SPD, indicating that MTP is required for SPD-dependent T cell activation.
Collapse
Affiliation(s)
- Muna Al-Habsi
- Division of Immunology and Genomic Medicine, Center for Cancer Immunotherapy and Immunobiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- National Genetic Center, Ministry of Health, Muscat, Oman
- Division of Integrated High-Order Regulatory Systems, Center for Cancer Immunotherapy and Immunobiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kenji Chamoto
- Division of Immunology and Genomic Medicine, Center for Cancer Immunotherapy and Immunobiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ken Matsumoto
- Department of Developmental Neurobiology, Institute of Development, Aging and Cancer, Tohoku University, Miyagi, Japan
| | - Norimichi Nomura
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Baihao Zhang
- Laboratory for Mucosal Immunity, Center for Integrative Medical Sciences, RIKEN Yokohama Institute, Yokohama, Japan
| | - Yuki Sugiura
- Department of Biochemistry, Keio University, Tokyo, Japan
| | - Kazuhiro Sonomura
- Center for Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Life Science Research Center, Technology Research Laboratory, Shimadzu Corporation, Kyoto, Japan
| | - Aprilia Maharani
- Division of Immunology and Genomic Medicine, Center for Cancer Immunotherapy and Immunobiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yuka Nakajima
- Division of Immunology and Genomic Medicine, Center for Cancer Immunotherapy and Immunobiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yibo Wu
- YCI Laboratory for Next-Generation Proteomics, Center for Integrative Medical Sciences, RIKEN Yokohama Institute, Yokohama, Japan
- Chemical Biology Mass Spectrometry Platform, Faculty of Science, University of Geneva, Geneva, Switzerland
| | - Yayoi Nomura
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Rosemary Menzies
- Division of Immunology and Genomic Medicine, Center for Cancer Immunotherapy and Immunobiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masaki Tajima
- Division of Integrated High-Order Regulatory Systems, Center for Cancer Immunotherapy and Immunobiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Koji Kitaoka
- Division of Immunology and Genomic Medicine, Center for Cancer Immunotherapy and Immunobiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yasuharu Haku
- Division of Immunology and Genomic Medicine, Center for Cancer Immunotherapy and Immunobiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Sara Delghandi
- Division of Immunology and Genomic Medicine, Center for Cancer Immunotherapy and Immunobiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Keiko Yurimoto
- Division of Immunology and Genomic Medicine, Center for Cancer Immunotherapy and Immunobiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Fumihiko Matsuda
- Center for Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - So Iwata
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Toshihiko Ogura
- Department of Developmental Neurobiology, Institute of Development, Aging and Cancer, Tohoku University, Miyagi, Japan
| | - Sidonia Fagarasan
- Division of Integrated High-Order Regulatory Systems, Center for Cancer Immunotherapy and Immunobiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Laboratory for Mucosal Immunity, Center for Integrative Medical Sciences, RIKEN Yokohama Institute, Yokohama, Japan
| | - Tasuku Honjo
- Division of Immunology and Genomic Medicine, Center for Cancer Immunotherapy and Immunobiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
26
|
Single-cell RNA sequencing uncovers the nuclear decoy lincRNA PIRAT as a regulator of systemic monocyte immunity during COVID-19. Proc Natl Acad Sci U S A 2022; 119:e2120680119. [PMID: 35998224 PMCID: PMC9457492 DOI: 10.1073/pnas.2120680119] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
SARS-CoV-2–infected patients often display characteristic changes in the production of immune mediators that trigger life-threatening courses of COVID-19. The underlying molecular mechanisms are not yet fully understood. Here, we used single-cell RNA sequencing to investigate the involvement of the emerging class of long regulatory RNA in COVID-19. Our data reveal that a previously unknown regulatory RNA in the nucleus of immune cells is altered after SARS-CoV-2 infection. The degradation of this RNA removes a natural brake on the production of critical immune mediators that can promote the development of severe COVID-19. We believe that therapeutic intervention in this nuclear RNA circuit could counteract the overproduction of disease-causing immune mediators and protect against severe COVID-19. The systemic immune response to viral infection is shaped by master transcription factors, such as NF-κB, STAT1, or PU.1. Although long noncoding RNAs (lncRNAs) have been suggested as important regulators of transcription factor activity, their contributions to the systemic immunopathologies observed during SARS-CoV-2 infection have remained unknown. Here, we employed a targeted single-cell RNA sequencing approach to reveal lncRNAs differentially expressed in blood leukocytes during severe COVID-19. Our results uncover the lncRNA PIRAT (PU.1-induced regulator of alarmin transcription) as a major PU.1 feedback-regulator in monocytes, governing the production of the alarmins S100A8/A9, key drivers of COVID-19 pathogenesis. Knockout and transgene expression, combined with chromatin-occupancy profiling, characterized PIRAT as a nuclear decoy RNA, keeping PU.1 from binding to alarmin promoters and promoting its binding to pseudogenes in naïve monocytes. NF-κB–dependent PIRAT down-regulation during COVID-19 consequently releases a transcriptional brake, fueling alarmin production. Alarmin expression is additionally enhanced by the up-regulation of the lncRNA LUCAT1, which promotes NF-κB–dependent gene expression at the expense of targets of the JAK-STAT pathway. Our results suggest a major role of nuclear noncoding RNA networks in systemic antiviral responses to SARS-CoV-2 in humans.
Collapse
|
27
|
Emmrich S, Trapp A, Tolibzoda Zakusilo F, Straight ME, Ying AK, Tyshkovskiy A, Mariotti M, Gray S, Zhang Z, Drage MG, Takasugi M, Klusmann J, Gladyshev VN, Seluanov A, Gorbunova V. Characterization of naked mole-rat hematopoiesis reveals unique stem and progenitor cell patterns and neotenic traits. EMBO J 2022; 41:e109694. [PMID: 35694726 PMCID: PMC9340489 DOI: 10.15252/embj.2021109694] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 05/03/2022] [Accepted: 05/06/2022] [Indexed: 12/13/2022] Open
Abstract
Naked mole rats (NMRs) are the longest-lived rodents yet their stem cell characteristics remain enigmatic. Here, we comprehensively mapped the NMR hematopoietic landscape and identified unique features likely contributing to longevity. Adult NMRs form red blood cells in spleen and marrow, which comprise a myeloid bias toward granulopoiesis together with decreased B-lymphopoiesis. Remarkably, youthful blood and marrow single-cell transcriptomes and cell compositions are largely maintained until at least middle age. Similar to primates, the primitive stem and progenitor cell (HSPC) compartment is marked by CD34 and THY1. Stem cell polarity is seen for Tubulin but not CDC42, and is not lost until 12 years of age. HSPC respiration rates are as low as in purified human stem cells, in concert with a strong expression signature for fatty acid metabolism. The pool of quiescent stem cells is higher than in mice, and the cell cycle of hematopoietic cells is prolonged. By characterizing the NMR hematopoietic landscape, we identified resilience phenotypes such as an increased quiescent HSPC compartment, absence of age-related decline, and neotenic traits likely geared toward longevity.
Collapse
Affiliation(s)
| | | | | | | | - Albert K Ying
- Division of GeneticsDepartment of MedicineBrigham and Women’s HospitalHarvard Medical SchoolBostonMAUSA
| | - Alexander Tyshkovskiy
- Division of GeneticsDepartment of MedicineBrigham and Women’s HospitalHarvard Medical SchoolBostonMAUSA
| | - Marco Mariotti
- Division of GeneticsDepartment of MedicineBrigham and Women’s HospitalHarvard Medical SchoolBostonMAUSA
| | - Spencer Gray
- Department of BiologyUniversity of RochesterRochesterNYUSA
| | - Zhihui Zhang
- Department of BiologyUniversity of RochesterRochesterNYUSA
| | - Michael G Drage
- Pathology and Laboratory MedicineUniversity of Rochester Medical CenterRochesterNYUSA
| | | | - Jan‐Henning Klusmann
- Pediatric Hematology and OncologyMartin‐Luther‐University Halle‐WittenbergHalleGermany
| | - Vadim N Gladyshev
- Division of GeneticsDepartment of MedicineBrigham and Women’s HospitalHarvard Medical SchoolBostonMAUSA
| | | | - Vera Gorbunova
- Department of BiologyUniversity of RochesterRochesterNYUSA
| |
Collapse
|
28
|
Zhu H, Ma Q, Wang X. Comment on "Diagnostic and prognostic significance of long noncoding RNA LINC00173 in patients with melanoma". Rev Assoc Med Bras (1992) 2022; 68:741. [PMID: 35766682 PMCID: PMC9575897 DOI: 10.1590/1806-9282.20220370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 03/26/2022] [Indexed: 11/24/2022] Open
Affiliation(s)
- Hong Zhu
- Tai'an City Central Hospital, Department of Nursing - Tai'an, China
| | - Qian Ma
- Tai'an City Central Hospital, Department of Structural Heart Disease and Arrhythmia - Tai'an, China
| | - Xianguo Wang
- Tai'an Cancer Prevention and Treatment Institute - Tai'an, China
| |
Collapse
|
29
|
Zhou L. Comment on "Diagnosis of long noncoding RNA LINC00173 in patients with melanoma is controversial". Rev Assoc Med Bras (1992) 2022; 68:744. [PMID: 35766684 PMCID: PMC9575882 DOI: 10.1590/1806-9282.20220351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 03/14/2022] [Indexed: 11/22/2022] Open
Affiliation(s)
- Lingling Zhou
- Taizhou University, School of Medicine - Taizhou, China
| |
Collapse
|
30
|
Qi F, Wang X, Zhao S, Wang C, Sun R, Wang H, Du P, Wang J, Wang X, Jiang G. miR‑let‑7c‑3p targeting on Egr‑1 contributes to the committed differentiation of leukemia cells into monocyte/macrophages. Oncol Lett 2022; 24:273. [PMID: 35782903 PMCID: PMC9247672 DOI: 10.3892/ol.2022.13393] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 05/19/2022] [Indexed: 11/06/2022] Open
Abstract
In preliminary experiments, it was found that the expression of early growth response-1 (Egr-1) was upregulated during the committed differentiation of leukemia cells into monocytes/macrophages. The cross-analysis of gene chip detection and database prediction indicated that Egr-1 was associated with upstream microRNA (miR)-let-7c-3p, thus the present study focused on the role of the miR-let-7c-3p/Egr-1 signaling axis in the committed differentiation of leukemia cells into monocytes/macrophages. Phorbol 12-myristate 13-acetate (PMA) was used to induce the directed differentiation of human K562 leukemia cells into monocytes/macrophages and the differentiation of K562 leukemia cells was determined by cell morphology observation and expression of differentiation antigens CD11b and CD14 by flow cytometry. The expression levels of Egr-1 and miR-let-7c-3p were detected by reverse transcription-quantitative PCR and the protein expression of Egr-1 was detected by western blotting. The effect of Egr-1 on the differentiation of K562 cells was detected by short interfering (si)RNA interference assay. A dual-luciferase reporter assay was used to detect target binding of miR-let-7c-3p on the 3′UTR of Egr-1. Cell transfection of miR-let-7c-3p mimics and inhibitors was used to modulate the expression of miR-let-7c-3p, as indicated by RT-qPCR assays. Western blotting was also used to examine the effect of miR-let-7c-3p on Egr-1 expression. The PMA-induced differentiation of K562 cells was transfected with miR-let-7c-3p and the expression of differentiation antigen was detected by flow cytometry. A differentiation model of K562 leukemia cells into monocytes/macrophages was induced by PMA, which was indicated by morphological observations and upregulation of CD11b and CD14 antigens. The gene or protein expression of Egr-1 was significantly higher compared with that of the control group, while the expression of miR-let-7c-3p was significantly lower compared with that of the control group. siRNA interference experiments showed that the expression of cell differentiation antigen CD14 in the 100 µg/ml PMA + si-Egr-1 group was significantly lower compared with that in the 100 µg/ml PMA + si-ctrl group. The dual luciferase reporter gene results showed that the luciferase activity of the co-transfected mimic and Egr-1 WT groups was significantly lower than that of the NC control group, while the luciferase activity of the co-transfected mimic and Egr-1 MUT groups was comparable to that of the NC control group. Therefore, the dual-luciferase reporter gene assay confirmed that miR-let-7c-3p can target Egr-1. Western blotting showed that the expression of Egr-1 following transfection with miR-let-7c-3p inhibitor was significantly higher compared with that of the negative control and the expression of Egr-1 after transfection with miR-let-7c-3p mimic was significantly lower than that of the negative control. Following exposure to PMA, the expressions of CD11b and CD14 in the miR-let-7c-3p inhibitor group were significantly higher than those in the miR-let-7c-3p NC group, as indicated by CD11b and CD14 respectively. In conclusion, miR-let-7c-3p could bind to the 3′UTR of Egr-1 and negatively regulated Egr-1 expression. The miR-let-7c-3p/Egr-1 signaling axis was closely associated with the committed differentiation of K562 cells from leukemia cells to monocytes/macrophages.
Collapse
Affiliation(s)
- Fu Qi
- Department of Immunology, Binzhou Medical University, Yantai, Shandong 264000, P.R. China
| | - Xinping Wang
- Department of Laboratory Medicine, Yantai Hospital of Traditional Chinese Medicine, Yantai, Shandong 264000, P.R. China
| | - Shouzhen Zhao
- School of Life Science and Technology, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Chaozhe Wang
- Department of Immunology, Binzhou Medical University, Yantai, Shandong 264000, P.R. China
| | - Ruijing Sun
- Department of Immunology, Binzhou Medical University, Yantai, Shandong 264000, P.R. China
| | - Huan Wang
- School of Life Science and Technology, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Pengchao Du
- Department of Immunology, Binzhou Medical University, Yantai, Shandong 264000, P.R. China
| | - Jing Wang
- Department of Cellular Immunology, Shandong Yinfeng Academy of Life Science, Jinan, Shandong 250109, P.R. China
| | - Xidi Wang
- Laboratory of Precision Medicine, Zhangqiu District People's Hospital of Jinan Affiliated to Jining Medical University, Jinan, Shandong 250200, P.R. China
| | - Guosheng Jiang
- Department of Immunology, Binzhou Medical University, Yantai, Shandong 264000, P.R. China
| |
Collapse
|
31
|
May-Hau DI, Bárcenas-López DA, Núñez-Enríquez JC, Bekker-Méndez VC, Beltrán-Anaya FO, Jiménez-Hernández E, Ortíz-Maganda MP, Guerra-Castillo FX, Medina-Sanson A, Flores-Lujano J, Martín-Trejo JA, Peñaloza-González JG, Velázquez-Aviña MM, Torres-Nava JR, Hernández-Echáurregui GA, Espinosa-Elizondo RM, Gutiérrez-Rivera MDL, Sanchez-Hernandez R, Pérez-Saldívar ML, Flores-Villegas LV, Merino-Pasaye LE, Duarte-Rodríguez DA, Mata-Rocha M, Sepúlveda-Robles OA, Rosas-Vargas H, Hidalgo-Miranda A, Mejía-Aranguré JM, Jiménez-Morales S. Underexpression of LINC00173 in TCF3/PBX1-Positive Cases Is Associated With Poor Prognosis in Children With B-Cell Precursor Acute Lymphoblastic Leukemia. Front Oncol 2022; 12:887766. [PMID: 35719952 PMCID: PMC9201104 DOI: 10.3389/fonc.2022.887766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/21/2022] [Indexed: 11/13/2022] Open
Abstract
Background B-cell precursor acute lymphoblastic leukemia (BCP-ALL) is the most frequent pediatric cancer worldwide. Despite improvements in treatment regimens, approximately 20% of the cases cannot be cured, highlighting the necessity for identifying new biomarkers to improve the current clinical and molecular risk stratification schemes. We aimed to investigate whether LINC00173 is a biomarker in ALL and to explore its expression level in other human cancer types. Methods A nested case-control study including Mexican children with BCP-ALL was conducted. LINC00173 expression was evaluated by qRT-PCR using hydrolysis probes. To validate our findings, RNA-seq expression data from BCP-ALL and normal tissues were retrieved from Therapeutically Applicable Research to Generate Effective Treatments (TARGET) and Genotype-Tissue Expression (GTEx) repositories, respectively. LINC00173 expression was also evaluated in solid tumors by downloading available data from The Cancer Genome Atlas (TCGA). Results A lower expression of LINC00173 in BCP-ALL cases compared to normal subjects was observed (p < 0.05). ALL patients who carry the TCF3/PBX1 fusion gene displayed lower expression of LINC00173 in contrast to other BCP-ALL molecular subtypes (p < 0.04). LINC00173 underexpression was associated with a high risk to relapse (HR = 1.946, 95% CI = 1.213-3.120) and die (HR = 2.073, 95% CI = 1.211-3.547). Patients with TCF3/PBX1 and underexpression of LINC00173 had the worst prognosis (DFS: HR = 12.24, 95% CI = 5.04-29.71; OS: HR = 11.19, 95% CI = 26-32). TCGA data analysis revealed that underexpression of LINC00173 is also associated with poor clinical outcomes in six new reported tumor types. Conclusion Our findings suggest that LINC00173 is a biomarker of poor prognosis in BCP-ALL and other types of cancer. We observed an association between the expression of LINC00173 and TCF3/PBX1 and the risk to relapse and die in BCP-ALL, which is worse in TCF3/PBX1-positive cases displaying underexpression of LINC00173. Experimental studies are needed to provide insight into the LINC00173 and TCF3/PBX relationship.
Collapse
Affiliation(s)
- Didier Ismael May-Hau
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica, Mexico City, Mexico.,Programa de Maestría en Investigación Clínica Experimental en Salud, Universidad Nacional Autónoma de Mexico, México City, Mexico
| | - Diego Alberto Bárcenas-López
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica, Mexico City, Mexico.,Programa de Doctorado, Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Juan Carlos Núñez-Enríquez
- Unidad de Investigación Médica en Epidemiología Clínica, Hospital de Pediatría "Dr. Silvestre Frenk Freund", Centro Médico Nacional "Siglo XXI", Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Vilma Carolina Bekker-Méndez
- Unidad de Investigación Médica en Inmunología e Infectología, Hospital de Infectología "Dr. Daniel Méndez Hernández", Centro Médico Nacional "La Raza", Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Fredy Omar Beltrán-Anaya
- Laboratorio de Epidemiología Clínica y Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Mexico
| | - Elva Jiménez-Hernández
- Servicio de Hematología Pediátrica, Hospital General "Gaudencio González Garza", Centro Médico Nacional "La Raza", Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Mónica Patricia Ortíz-Maganda
- Unidad de Investigación Médica en Inmunología e Infectología, Hospital de Infectología "Dr. Daniel Méndez Hernández", Centro Médico Nacional "La Raza", Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Francisco Xavier Guerra-Castillo
- Unidad de Investigación Médica en Inmunología e Infectología, Hospital de Infectología "Dr. Daniel Méndez Hernández", Centro Médico Nacional "La Raza", Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Aurora Medina-Sanson
- Departamento de Hemato-Oncología, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | - Janet Flores-Lujano
- Unidad de Investigación Médica en Epidemiología Clínica, Hospital de Pediatría "Dr. Silvestre Frenk Freund", Centro Médico Nacional "Siglo XXI", Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Jorge Alfonso Martín-Trejo
- Servicio de Hematología Pediátrica, Hospital de Pediatría "Dr. Silvestre Frenk Freund", Centro Médico Nacional "Siglo XXI", Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | | | | | - José Refugio Torres-Nava
- Servicio de Oncología, Hospital Pediátrico de Moctezuma, Secretaría de Salud de la Ciudad de México, Mexico City, Mexico
| | | | | | - María de Lourdes Gutiérrez-Rivera
- Servicio de Oncología Pediátrica, Hospital de Pediatría "Dr. Silvestre Frenk Freund", Centro Médico Nacional "Siglo XXI", Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Rodrigo Sanchez-Hernandez
- Servicio de Oncología Pediátrica, Hospital de Pediatría "Dr. Silvestre Frenk Freund", Centro Médico Nacional "Siglo XXI", Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - María Luisa Pérez-Saldívar
- Unidad de Investigación Médica en Epidemiología Clínica, Hospital de Pediatría "Dr. Silvestre Frenk Freund", Centro Médico Nacional "Siglo XXI", Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Luz Victoria Flores-Villegas
- Servicio de Hematología Pediátrica, Centro Médico Nacional "20 de Noviembre", Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado, Mexico City, Mexico
| | - Laura Elizabeth Merino-Pasaye
- Servicio de Hematología Pediátrica, Centro Médico Nacional "20 de Noviembre", Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado, Mexico City, Mexico
| | - David Aldebarán Duarte-Rodríguez
- Unidad de Investigación Médica en Epidemiología Clínica, Hospital de Pediatría "Dr. Silvestre Frenk Freund", Centro Médico Nacional "Siglo XXI", Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Minerva Mata-Rocha
- Unidad de Investigación Médica en Genética Humana, Hospital de Pediatría "Dr. Silvestre Frenk Freund", Centro Médico Nacional "Siglo XXI", Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Omar Alejandro Sepúlveda-Robles
- Unidad de Investigación Médica en Genética Humana, Hospital de Pediatría "Dr. Silvestre Frenk Freund", Centro Médico Nacional "Siglo XXI", Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Haydeé Rosas-Vargas
- Unidad de Investigación Médica en Genética Humana, Hospital de Pediatría "Dr. Silvestre Frenk Freund", Centro Médico Nacional "Siglo XXI", Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Alfredo Hidalgo-Miranda
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Juan Manuel Mejía-Aranguré
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica, Mexico City, Mexico.,Medicine Faculty, Universidad Autónoma de México, Mexico City, Mexico
| | - Silvia Jiménez-Morales
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| |
Collapse
|
32
|
Camilleri-Robles C, Amador R, Klein CC, Guigó R, Corominas M, Ruiz-Romero M. Genomic and functional conservation of lncRNAs: lessons from flies. Mamm Genome 2022; 33:328-342. [PMID: 35098341 PMCID: PMC9114055 DOI: 10.1007/s00335-021-09939-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 12/09/2021] [Indexed: 12/18/2022]
Abstract
Over the last decade, the increasing interest in long non-coding RNAs (lncRNAs) has led to the discovery of these transcripts in multiple organisms. LncRNAs tend to be specifically, and often lowly, expressed in certain tissues, cell types and biological contexts. Although lncRNAs participate in the regulation of a wide variety of biological processes, including development and disease, most of their functions and mechanisms of action remain unknown. Poor conservation of the DNA sequences encoding for these transcripts makes the identification of lncRNAs orthologues among different species very challenging, especially between evolutionarily distant species such as flies and humans or mice. However, the functions of lncRNAs are unexpectedly preserved among different species supporting the idea that conservation occurs beyond DNA sequences and reinforcing the potential of characterising lncRNAs in animal models. In this review, we describe the features and roles of lncRNAs in the fruit fly Drosophila melanogaster, focusing on genomic and functional comparisons with human and mouse lncRNAs. We also discuss the current state of advances and limitations in the study of lncRNA conservation and future perspectives.
Collapse
Affiliation(s)
- Carlos Camilleri-Robles
- Departament de Genètica, Microbiologia I Estadística, Facultat de Biologia and Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Raziel Amador
- Departament de Genètica, Microbiologia I Estadística, Facultat de Biologia and Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Catalonia, Spain
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology (BIST), Barcelona, Catalonia, Spain
| | - Cecilia C Klein
- Departament de Genètica, Microbiologia I Estadística, Facultat de Biologia and Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Catalonia, Spain
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology (BIST), Barcelona, Catalonia, Spain
| | - Roderic Guigó
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology (BIST), Barcelona, Catalonia, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Catalonia, Spain
| | - Montserrat Corominas
- Departament de Genètica, Microbiologia I Estadística, Facultat de Biologia and Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Marina Ruiz-Romero
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology (BIST), Barcelona, Catalonia, Spain.
| |
Collapse
|
33
|
Neyazi S, Ng M, Heckl D, Klusmann JH. Long noncoding RNAs as regulators of pediatric acute myeloid leukemia. Mol Cell Pediatr 2022; 9:10. [PMID: 35596093 PMCID: PMC9123150 DOI: 10.1186/s40348-022-00142-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 03/30/2022] [Indexed: 11/10/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) are increasingly emerging as regulators across human development and disease, and many have been described in the context of hematopoiesis and leukemogenesis. These studies have yielded new molecular insights into the contribution of lncRNAs to AML development and revealed connections between lncRNA expression and clinical parameters in AML patients. In this mini review, we illustrate the versatile functions of lncRNAs in AML, with a focus on pediatric AML, and present examples that may serve as future therapeutic targets or predictive factors.
Collapse
Affiliation(s)
- Sina Neyazi
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Michelle Ng
- Department of Pediatrics I, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Dirk Heckl
- Department of Pediatrics I, Martin Luther University Halle-Wittenberg, Halle, Germany
| | | |
Collapse
|
34
|
circ_000166/miR-296 Aggravates the Process of Diabetic Renal Fibrosis by Regulating the SGLT2 Signaling Pathway in Renal Tubular Epithelial Cells. DISEASE MARKERS 2022; 2022:6103086. [PMID: 35615399 PMCID: PMC9126678 DOI: 10.1155/2022/6103086] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/08/2022] [Accepted: 02/12/2022] [Indexed: 01/09/2023]
Abstract
Diabetic renal fibrosis is a common cause of end-stage renal disease, and the circRNA-miRNA-mRNA network may play an important role in the progression of diabetic nephropathy- (DN-) induced renal fibrosis. In this study, the role of circ_000166/miR-296/SGLT2 in the process of DN-related renal fibrosis was studied by constructing an animal model of DN renal fibrosis via lentiviral transfection, plasmid transfection, and dual-luciferase reporting techniques. Compared with that of normal controls, the expression of circ_000166 in the kidney tissues of DN renal fibrosis mice substantially increased. Silencing circ_000166 could minimize kidney damage and decrease urine protein levels, thereby inhibiting the progression of renal fibrosis. Moreover, circ_000166 could act as the ceRNA of miR-296 and competitively bind to miR-296, leading to an increase in the expression of the SGLT2 gene regulated by miR-296. Through mutual verification via in vivo and in vitro experiments, miR-296 was overexpressed and SGLT2 was silenced. Results showed that DN renal fibrosis and cell apoptosis were considerably reduced. We postulate that circ_000166/miR-296/SGLT2 may become a new target in the progression of DN renal fibrosis, and the regulation of this pathway may be a promising strategy for clinical treatment of DN renal fibrosis.
Collapse
|
35
|
Vanhooren J, Van Camp L, Depreter B, de Jong M, Uyttebroeck A, Van Damme A, Dedeken L, Dresse MF, van der Werff Ten Bosch J, Hofmans M, Philippé J, De Moerloose B, Lammens T. Deciphering the Non-Coding RNA Landscape of Pediatric Acute Myeloid Leukemia. Cancers (Basel) 2022; 14:2098. [PMID: 35565228 PMCID: PMC9100904 DOI: 10.3390/cancers14092098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 04/20/2022] [Indexed: 02/01/2023] Open
Abstract
Pediatric acute myeloid leukemia (pedAML) is a heterogeneous blood cancer that affects children. Although survival rates have significantly improved over the past few decades, 20-30% of children will succumb due to treatment-related toxicity or relapse. The molecular characterization of the leukemic stem cell, shown to be responsible for relapse, is needed to improve treatment options and survival. Recently, it has become clear that non-coding RNAs, including long non-coding RNAs (lncRNAs) and microRNAs (miRNAs), play a role in the development of human diseases, including pediatric cancer. Nevertheless, non-coding RNA expression data in pedAML are scarce. Here, we explored lncRNA (n = 30,168) and miRNA (n = 627) expression in pedAML subpopulations (leukemic stem cells (LSCs) and leukemic blasts (L-blasts)) and their normal counterparts (hematopoietic stem cells and control myeloblasts). The potential regulatory activity of differentially expressed lncRNAs in LSCs (unique or shared with the L-blast comparison) on miRNAs was assessed. Moreover, pre-ranked gene set enrichment analyses of (anti-) correlated protein-coding genes were performed to predict the functional relevance of the differentially upregulated lncRNAs in LSCs (unique or shared with the L-blast comparison). In conclusion, this study provides a catalog of non-coding RNAs with a potential role in the pathogenesis of pedAML, paving the way for further translational research studies.
Collapse
Affiliation(s)
- Jolien Vanhooren
- Department of Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent University Hospital, 9000 Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, 9000 Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium
| | - Laurens Van Camp
- Department of Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent University Hospital, 9000 Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, 9000 Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium
| | - Barbara Depreter
- Department of Laboratory Hematology, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel, 1050 Brussels, Belgium
| | - Martijn de Jong
- Department of Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent University Hospital, 9000 Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, 9000 Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium
| | - Anne Uyttebroeck
- Department of Pediatrics, University Hospital Gasthuisberg, 3000 Leuven, Belgium
| | - An Van Damme
- Department of Pediatric Hematology Oncology, University Hospital Saint-Luc, 1200 Brussels, Belgium
| | - Laurence Dedeken
- Department of Pediatric Hematology Oncology, Queen Fabiola Children's University Hospital, 1020 Brussels, Belgium
| | - Marie-Françoise Dresse
- Department of Pediatric Hematology Oncology, University Hospital Liège, 4000 Liège, Belgium
| | | | - Mattias Hofmans
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium
- Department of Diagnostic Sciences, Ghent University, 9000 Ghent, Belgium
| | - Jan Philippé
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium
- Department of Diagnostic Sciences, Ghent University, 9000 Ghent, Belgium
| | - Barbara De Moerloose
- Department of Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent University Hospital, 9000 Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, 9000 Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium
| | - Tim Lammens
- Department of Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent University Hospital, 9000 Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, 9000 Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium
| |
Collapse
|
36
|
Gao L, Jiang Z, Han Y, Li Y, Yang X. Regulation of Pyroptosis by ncRNA: A Novel Research Direction. Front Cell Dev Biol 2022; 10:840576. [PMID: 35419365 PMCID: PMC8995973 DOI: 10.3389/fcell.2022.840576] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 03/14/2022] [Indexed: 01/17/2023] Open
Abstract
Pyroptosis is a novel form of programmed cell death (PCD), which is characterized by DNA fragmentation, chromatin condensation, cell swelling and leakage of cell contents. The process of pyroptosis is performed by certain inflammasome and executor gasdermin family member. Previous researches have manifested that pyroptosis is closely related to human diseases (such as inflammatory diseases) and malignant tumors, while the regulation mechanism of pyroptosis is not yet clear. Non-coding RNA (ncRNA) such as microRNA (miRNA), long non-coding RNA (lncRNA) and circular RNA (circRNA) have been widely identified in the genome of eukaryotes and played a paramount role in the development of cell function and fate after transcription. Accumulating evidences support the importance of ncRNA biology in the hallmarks of pyroptosis. However, the associations between ncRNA and pyroptosis are rarely reviewed. In this review, we are trying to summarize the regulation and function of ncRNA in cell pyroptosis, which provides a new research direction and ideas for the study of pyroptosis in different diseases.
Collapse
Affiliation(s)
- Liyuan Gao
- Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Zhitao Jiang
- Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Yi Han
- Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Yang Li
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiang Yang
- Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| |
Collapse
|
37
|
Lift the curtain on long non-coding RNAs in hematological malignancies: Pathogenic elements and potential targets. Cancer Lett 2022; 536:215645. [DOI: 10.1016/j.canlet.2022.215645] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/01/2022] [Accepted: 03/12/2022] [Indexed: 12/19/2022]
|
38
|
Alejo-Valle O, Weigert K, Bhayadia R, Ng M, Issa H, Beyer C, Emmrich S, Schuschel K, Ihling C, Sinz A, Zimmermann M, Wickenhauser C, Flasinski M, Regenyi E, Labuhn M, Reinhardt D, Yaspo ML, Heckl D, Klusmann JH. The megakaryocytic transcription factor ARID3A suppresses leukemia pathogenesis. Blood 2022; 139:651-665. [PMID: 34570885 PMCID: PMC9632760 DOI: 10.1182/blood.2021012231] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 09/03/2021] [Indexed: 11/22/2022] Open
Abstract
Given the plasticity of hematopoietic stem and progenitor cells, multiple routes of differentiation must be blocked in the the pathogenesis of acute myeloid leukemia, the molecular basis of which is incompletely understood. We report that posttranscriptional repression of the transcription factor ARID3A by miR-125b is a key event in the pathogenesis of acute megakaryoblastic leukemia (AMKL). AMKL is frequently associated with trisomy 21 and GATA1 mutations (GATA1s), and children with Down syndrome are at a high risk of developing the disease. The results of our study showed that chromosome 21-encoded miR-125b synergizes with Gata1s to drive leukemogenesis in this context. Leveraging forward and reverse genetics, we uncovered Arid3a as the main miR-125b target behind this synergy. We demonstrated that, during normal hematopoiesis, this transcription factor promotes megakaryocytic differentiation in concert with GATA1 and mediates TGFβ-induced apoptosis and cell cycle arrest in complex with SMAD2/3. Although Gata1s mutations perturb erythroid differentiation and induce hyperproliferation of megakaryocytic progenitors, intact ARID3A expression assures their megakaryocytic differentiation and growth restriction. Upon knockdown, these tumor suppressive functions are revoked, causing a blockade of dual megakaryocytic/erythroid differentiation and subsequently of AMKL. Inversely, restoring ARID3A expression relieves the arrest of megakaryocytic differentiation in AMKL patient-derived xenografts. This work illustrates how mutations in lineage-determining transcription factors and perturbation of posttranscriptional gene regulation can interact to block multiple routes of hematopoietic differentiation and cause leukemia. In AMKL, surmounting this differentiation blockade through restoration of the tumor suppressor ARID3A represents a promising strategy for treating this lethal pediatric disease.
Collapse
Affiliation(s)
- Oriol Alejo-Valle
- Pediatric Hematology and Oncology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Karoline Weigert
- Pediatric Hematology and Oncology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Raj Bhayadia
- Pediatric Hematology and Oncology, Department of Pediatrics, Goethe University Frankfurt, Frankfurt (Main), Germany
| | - Michelle Ng
- Pediatric Hematology and Oncology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Hasan Issa
- Pediatric Hematology and Oncology, Department of Pediatrics, Goethe University Frankfurt, Frankfurt (Main), Germany
| | - Christoph Beyer
- Pediatric Hematology and Oncology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Stephan Emmrich
- Department of Biology, University of Rochester, Rochester NY
| | - Konstantin Schuschel
- Pediatric Hematology and Oncology, Department of Pediatrics, Goethe University Frankfurt, Frankfurt (Main), Germany
| | - Christian Ihling
- Department of Pharmaceutical Chemistry and Bioanalytics, Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Andrea Sinz
- Department of Pharmaceutical Chemistry and Bioanalytics, Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Martin Zimmermann
- Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | | | - Marius Flasinski
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, Hospital Tauberbischofsheim, Tauberbischofsheim, Germany
| | - Eniko Regenyi
- Pediatric Hematology and Oncology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Maurice Labuhn
- Institute for Experimental Virology, Twincore, Center for Experimental and Clinical Infection Research, Hannover, Germany; and
| | - Dirk Reinhardt
- Pediatric Hematology and Oncology, Pediatrics III, University Hospital Essen, Essen, Germany
| | | | - Dirk Heckl
- Pediatric Hematology and Oncology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Jan-Henning Klusmann
- Pediatric Hematology and Oncology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
- Pediatric Hematology and Oncology, Department of Pediatrics, Goethe University Frankfurt, Frankfurt (Main), Germany
| |
Collapse
|
39
|
Ye Q, Li N, Zhou K, Liao C. Homo sapiens circular RNA 0003602 (Hsa_circ_0003602) accelerates the tumorigenicity of acute myeloid leukemia by modulating miR-502-5p/IGF1R axis. Mol Cell Biochem 2022; 477:635-644. [PMID: 34988853 DOI: 10.1007/s11010-021-04277-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 10/13/2021] [Indexed: 12/11/2022]
Abstract
Acute myeloid leukemia (AML) has become a worldwide malignant cancer. We intended to investigate the critical roles and mechanism underlying homo sapiens circular RNA 0003602 (hsa_circ_0003602) in AML progression, especially in tumor cell proliferation, migration, invasion, and apoptosis. Real-time PCR was applied to identify the differential expression of hsa_circ_0003602 and miR-502-5p in AML bone marrow tissues and cell lines. In addition, western blot analysis was employed to determine the levels insulin-like growth factor 1 receptor (IGF1R) protein. The biological behaviors were assessed by CCK-8 cell viability assay, flow cytometry assay for apoptosis detection, and Transwell migration and invasion assay. The relationships between target miRNA and downstream mRNA were investigated by bioinformatics, luciferase reporter assay, and biotin-labeled RNA pull-down assay. Hsa_circ_0003602 was upregulated and predicted poor survival in AML. Knockdown of hsa_circ_0003602 in AML cell lines induced the inhibition of proliferation, migration, and invasion and caused apoptosis. Hsa_circ_0003602 sequestered miR-502-5p by functioning as a competitive endogenous RNA (ceRNA), thereby regulating IGF1R expression. Hsa_circ_0003602 acted as a tumor promoter in AML via miR-502-5p/IGF1R axis. Our study provides evidence that hsa_circ_0003602, miR-502-5p, and IGF1R might form a regulatory axis to affect the carcinogenicity of AML cells and provide potential targets for the treatment of AML.
Collapse
MESH Headings
- Carcinogenesis/genetics
- Carcinogenesis/metabolism
- HL-60 Cells
- Humans
- K562 Cells
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- RNA, Circular/genetics
- RNA, Circular/metabolism
- RNA, Neoplasm/genetics
- RNA, Neoplasm/metabolism
- Receptor, IGF Type 1/genetics
- Receptor, IGF Type 1/metabolism
- Signal Transduction
- THP-1 Cells
Collapse
Affiliation(s)
- Qidong Ye
- Department of Pediatrics, Ningbo First Hospital, Ningbo Hospital of Zhejiang University, No. 59 Liuting Street, Ningbo, 315000, Zhejiang Province, People's Republic of China.
| | - Nan Li
- Department of Pediatrics, Ningbo First Hospital, Ningbo Hospital of Zhejiang University, No. 59 Liuting Street, Ningbo, 315000, Zhejiang Province, People's Republic of China
| | - Kai Zhou
- Department of Pediatrics, Ningbo First Hospital, Ningbo Hospital of Zhejiang University, No. 59 Liuting Street, Ningbo, 315000, Zhejiang Province, People's Republic of China
| | - Cong Liao
- Department of Pediatrics, Ningbo First Hospital, Ningbo Hospital of Zhejiang University, No. 59 Liuting Street, Ningbo, 315000, Zhejiang Province, People's Republic of China
| |
Collapse
|
40
|
Ma L, Yang H, Yang X. Identification and integrative analysis of
microRNAs
in myelodysplastic syndromes based on
microRNAs
expression profile. PRECISION MEDICAL SCIENCES 2022. [DOI: 10.1002/prm2.12054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Limin Ma
- Department of Hematology The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology Luoyang Henan Province China
| | - Haiping Yang
- Department of Hematology The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology Luoyang Henan Province China
| | - Xuewen Yang
- Department of Hematology The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology Luoyang Henan Province China
| |
Collapse
|
41
|
Wang K, Liu J, Deng G, Ou Z, Li S, Xu X, Zhang M, Peng X, Chen F. LncSIK1 enhanced the sensitivity of AML cells to retinoic acid by the E2F1/autophagy pathway. Cell Prolif 2022; 55:e13185. [PMID: 35092119 PMCID: PMC8891555 DOI: 10.1111/cpr.13185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/28/2021] [Accepted: 12/30/2021] [Indexed: 11/26/2022] Open
Affiliation(s)
- Ke Wang
- School of PharmacyAnhui Medical UniversityHefeiChina
- Inflammation and Immune Mediated Diseases Laboratory of Anhui ProvinceAnhui Institute of Innovative DrugsHefeiChina
- Anhui Province Key Laboratory of Major Autoimmune DiseasesAnhui Medical UniversityHefeiChina
| | - Jun‐da Liu
- Department of Anesthesiologythe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
| | - Ge Deng
- School of PharmacyAnhui Medical UniversityHefeiChina
- Inflammation and Immune Mediated Diseases Laboratory of Anhui ProvinceAnhui Institute of Innovative DrugsHefeiChina
- Anhui Province Key Laboratory of Major Autoimmune DiseasesAnhui Medical UniversityHefeiChina
| | - Zi‐yao Ou
- School of PharmacyAnhui Medical UniversityHefeiChina
- Inflammation and Immune Mediated Diseases Laboratory of Anhui ProvinceAnhui Institute of Innovative DrugsHefeiChina
- Anhui Province Key Laboratory of Major Autoimmune DiseasesAnhui Medical UniversityHefeiChina
| | - Shu‐fang Li
- School of PharmacyAnhui Medical UniversityHefeiChina
- Inflammation and Immune Mediated Diseases Laboratory of Anhui ProvinceAnhui Institute of Innovative DrugsHefeiChina
- Anhui Province Key Laboratory of Major Autoimmune DiseasesAnhui Medical UniversityHefeiChina
| | - Xiao‐ling Xu
- School of PharmacyAnhui Medical UniversityHefeiChina
- Inflammation and Immune Mediated Diseases Laboratory of Anhui ProvinceAnhui Institute of Innovative DrugsHefeiChina
- Anhui Province Key Laboratory of Major Autoimmune DiseasesAnhui Medical UniversityHefeiChina
| | - Mei‐Ju Zhang
- School of PharmacyAnhui Medical UniversityHefeiChina
- Inflammation and Immune Mediated Diseases Laboratory of Anhui ProvinceAnhui Institute of Innovative DrugsHefeiChina
- Anhui Province Key Laboratory of Major Autoimmune DiseasesAnhui Medical UniversityHefeiChina
| | - Xiao‐Qing Peng
- Department of Obstetrics and Gynecologythe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
| | - Fei‐hu Chen
- School of PharmacyAnhui Medical UniversityHefeiChina
- Inflammation and Immune Mediated Diseases Laboratory of Anhui ProvinceAnhui Institute of Innovative DrugsHefeiChina
- Anhui Province Key Laboratory of Major Autoimmune DiseasesAnhui Medical UniversityHefeiChina
| |
Collapse
|
42
|
Discovery of a novel megakaryopoiesis enhancer, ingenol, promoting thrombopoiesis through PI3K-Akt signaling independent of thrombopoietin. Pharmacol Res 2022; 177:106096. [PMID: 35077844 DOI: 10.1016/j.phrs.2022.106096] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/08/2022] [Accepted: 01/20/2022] [Indexed: 01/09/2023]
Abstract
Thrombocytopenia, a most common complication of radiotherapy and chemotherapy, is an important cause of morbidity and mortality in cancer patients. However, there are still no approved agents for the treatment of radiation- and chemotherapy-induced thrombocytopenia (RIT and CIT, respectively). In this study, a drug screening model for predicting compounds with activity in promoting megakaryocyte (MK) differentiation and platelet production was established based on machine learning (ML), and a natural product ingenol was predicted as a potential active compound. Then, in vitro experiments showed that ingenol significantly promoted MK differentiation in K562 and HEL cells. Furthermore, a RIT mice model and c-MPL knock-out (c-MPL-/-) mice constructed by CRISPR/Cas9 technology were used to assess the therapeutic action of ingenol on thrombocytopenia. The results showed that ingenol accelerated megakaryopoiesis and thrombopoiesis both in RIT mice and c-MPL-/- mice. Next, RNA-sequencing (RNA-seq) was carried out to analyze the gene expression profile induced by ingenol during MK differentiation. Finally, through experimental verifications, we demonstrated that the activation of PI3K/Akt signaling pathway was involved in ingenol-induced MK differentiation. Blocking PI3K/Akt signaling pathway abolished the promotion of ingenol on MK differentiation. Nevertheless, inhibition of TPO/c-MPL signaling pathway could not suppress ingenol-induced MK differentiation. In conclusion, our study builds a drug screening model to discover active compounds against thrombocytopenia, reveals the critical roles of ingenol in promoting MK differentiation and platelet production, and provides a promising avenue for the treatment of RIT.
Collapse
|
43
|
OUP accepted manuscript. Toxicol Sci 2022; 187:311-324. [DOI: 10.1093/toxsci/kfac004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
44
|
Geng Y, Chen J, Chang C, Zhang Y, Duan L, Zhu W, Mou L, Xiong J, Wang D. Systematic Analysis of mRNAs and ncRNAs in BMSCs of Senile Osteoporosis Patients. Front Genet 2021; 12:776984. [PMID: 34987549 PMCID: PMC8721150 DOI: 10.3389/fgene.2021.776984] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/18/2021] [Indexed: 01/12/2023] Open
Abstract
Senile osteoporosis (SOP) is a worldwide age-related disease characterized by the loss of bone mass and decrease in bone strength. Bone mesenchymal stem cells (BMSCs) play an important role in the pathology of senile osteoporosis. Abnormal expression and regulation of non-coding RNA (ncRNA) are involved in a variety of human diseases. In the present study, we aimed to identify differentially expressed mRNAs and ncRNAs in senile osteoporosis patient-derived BMSCs via high-throughput transcriptome sequencing in combination with bioinformatics analysis. As a result, 415 mRNAs, 30 lncRNAs, 6 circRNAs and 27 miRNAs were found to be significantly changed in the senile osteoporosis group. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were applied to analyze the function of differentially expressed mRNAs and ncRNAs. The circRNA–miRNA–mRNA regulatory network was constructed using the cytoHubba plugin based on the Cytoscape software. Interestingly, circRNA008876-miR-150-5p-mRNA was the sole predicted circRNA-miRNA-mRNA network. The differential expression profile of this ceRNA network was further verified by qRT-PCR. The biological function of this network was validated by overexpression and knockdown experiments. In conclusion, circRNA008876-miR-150-5p-mRNA could be an important ceRNA network involved in senile osteoporosis, which provides potential biomarkers and therapeutic targets for senile osteoporosis.
Collapse
Affiliation(s)
- Yiyun Geng
- Shenzhen Key Laboratory of Tissue Engineering, Shenzhen Second People’s Hospital (The First Hospital Affiliated to Shenzhen University), Shenzhen, China
- School of Biotechnology and Food Engineering, Changshu Institute of Technology, Suzhou, China
| | - Jinfu Chen
- Shenzhen Key Laboratory of Tissue Engineering, Shenzhen Second People’s Hospital (The First Hospital Affiliated to Shenzhen University), Shenzhen, China
| | - Chongfei Chang
- Shenzhen Key Laboratory of Tissue Engineering, Shenzhen Second People’s Hospital (The First Hospital Affiliated to Shenzhen University), Shenzhen, China
| | - Yifen Zhang
- Shenzhen Key Laboratory of Tissue Engineering, Shenzhen Second People’s Hospital (The First Hospital Affiliated to Shenzhen University), Shenzhen, China
| | - Li Duan
- Shenzhen Key Laboratory of Tissue Engineering, Shenzhen Second People’s Hospital (The First Hospital Affiliated to Shenzhen University), Shenzhen, China
- Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Shenzhen, China
| | - Weimin Zhu
- Shenzhen Key Laboratory of Tissue Engineering, Shenzhen Second People’s Hospital (The First Hospital Affiliated to Shenzhen University), Shenzhen, China
| | - Lisha Mou
- Shenzhen Key Laboratory of Tissue Engineering, Shenzhen Second People’s Hospital (The First Hospital Affiliated to Shenzhen University), Shenzhen, China
| | - Jianyi Xiong
- Shenzhen Key Laboratory of Tissue Engineering, Shenzhen Second People’s Hospital (The First Hospital Affiliated to Shenzhen University), Shenzhen, China
- Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Shenzhen, China
| | - Daping Wang
- Shenzhen Key Laboratory of Tissue Engineering, Shenzhen Second People’s Hospital (The First Hospital Affiliated to Shenzhen University), Shenzhen, China
- Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Shenzhen, China
- *Correspondence: Daping Wang,
| |
Collapse
|
45
|
Porcù E, Benetton M, Bisio V, Da Ros A, Tregnago C, Borella G, Zanon C, Bordi M, Germano G, Manni S, Campello S, Rao DS, Locatelli F, Pigazzi M. The long non-coding RNA CDK6-AS1 overexpression impacts on acute myeloid leukemia differentiation and mitochondrial dynamics. iScience 2021; 24:103350. [PMID: 34816103 PMCID: PMC8591413 DOI: 10.1016/j.isci.2021.103350] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/30/2021] [Accepted: 10/22/2021] [Indexed: 12/17/2022] Open
Abstract
Patients with acute myeloid leukemia (AML) carrying high-risk genetic lesions or high residual disease levels after therapy are particularly exposed to the risk of relapse. Here, we identified the long non-coding RNA CDK6-AS1 able to cluster an AML subgroup with peculiar gene signatures linked to hematopoietic cell differentiation and mitochondrial dynamics. CDK6-AS1 silencing triggered hematopoietic commitment in healthy CD34+ cells, whereas in AML cells the pathological undifferentiated state was rescued. This latter phenomenon derived from RUNX1 transcriptional control, responsible for the stemness of hematopoietic precursors and for the block of differentiation in AML. By CDK6-AS1 silencing in vitro, AML mitochondrial mass decreased with augmented pharmacological sensitivity to mitochondria-targeting drugs. In vivo, the combination of tigecycline and cytarabine reduced leukemia progression in the AML-PDX model with high CDK6-AS1 levels, supporting the concept of a mitochondrial vulnerability. Together, these findings uncover CDK6-AS1 as crucial in myeloid differentiation and mitochondrial mass regulation. CDK6-AS1 acts in concert with CDK6 High CDK6-AS1 levels trigger RUNX1 early differentiation arrest in myeloid cells CDK6-AS1 controls mitochondrial mass of AML blasts CDK6-AS1 levels impact on mitochondrial-targeted agents sensitivity
Collapse
Affiliation(s)
- Elena Porcù
- Pediatric Hematology, Oncology and Hematopoietic Cell&Gene Therapy Division of Women's and Children's Health Department, University-Hospital of Padova, Via N. Giustiniani, 3, 35128 Padova, Italy
| | - Maddalena Benetton
- Pediatric Hematology, Oncology and Hematopoietic Cell&Gene Therapy Division of Women's and Children's Health Department, University-Hospital of Padova, Via N. Giustiniani, 3, 35128 Padova, Italy
| | - Valeria Bisio
- Pediatric Hematology, Oncology and Hematopoietic Cell&Gene Therapy Division of Women's and Children's Health Department, University-Hospital of Padova, Via N. Giustiniani, 3, 35128 Padova, Italy
| | - Ambra Da Ros
- Pediatric Hematology, Oncology and Hematopoietic Cell&Gene Therapy Division of Women's and Children's Health Department, University-Hospital of Padova, Via N. Giustiniani, 3, 35128 Padova, Italy
| | - Claudia Tregnago
- Pediatric Hematology, Oncology and Hematopoietic Cell&Gene Therapy Division of Women's and Children's Health Department, University-Hospital of Padova, Via N. Giustiniani, 3, 35128 Padova, Italy
| | - Giulia Borella
- Pediatric Hematology, Oncology and Hematopoietic Cell&Gene Therapy Division of Women's and Children's Health Department, University-Hospital of Padova, Via N. Giustiniani, 3, 35128 Padova, Italy
| | - Carlo Zanon
- Pediatric Onco-Hematology, Stem Cell Transplant and Gene Therapy Laboratory, Istituto di Ricerca Pediatrica - Città della Speranza, 35127 Padova, Italy
| | - Matteo Bordi
- Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy.,Department of Pediatric Hemato-Oncology and Cell and Gene Therapy, IRCCS Bambino Gesù Children's Hospital, 00143 Rome, Italy
| | - Giuseppe Germano
- Pediatric Onco-Hematology, Stem Cell Transplant and Gene Therapy Laboratory, Istituto di Ricerca Pediatrica - Città della Speranza, 35127 Padova, Italy
| | - Sabrina Manni
- Department of Medicine, Hematology and Clinical Immunology Branch, University of Padova, Padova, and Veneto Institute of Molecular Medicine (VIMM), 35129 Padova, Italy
| | - Silvia Campello
- Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Dinesh S Rao
- Department of Pathology and Laboratory Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Franco Locatelli
- Department of Pediatric Hematology and Oncology, IRCCS Bambino Gesù Children's Hospital, Sapienza University of Rome, 00165 Roma, Italy
| | - Martina Pigazzi
- Pediatric Hematology, Oncology and Hematopoietic Cell&Gene Therapy Division of Women's and Children's Health Department, University-Hospital of Padova, Via N. Giustiniani, 3, 35128 Padova, Italy.,Pediatric Onco-Hematology, Stem Cell Transplant and Gene Therapy Laboratory, Istituto di Ricerca Pediatrica - Città della Speranza, 35127 Padova, Italy
| |
Collapse
|
46
|
Wang J, Uddin MN, Hao JP, Chen R, Xiang YX, Xiong DQ, Wu Y. Identification of Potential Novel Prognosis-Related Genes Through Transcriptome Sequencing, Bioinformatics Analysis, and Clinical Validation in Acute Myeloid Leukemia. Front Genet 2021; 12:723001. [PMID: 34777462 PMCID: PMC8585857 DOI: 10.3389/fgene.2021.723001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 09/23/2021] [Indexed: 12/26/2022] Open
Abstract
Background: Acute Myeloid Leukemia (AML) is a complex and heterogeneous hematologic malignancy. However, the function of prognosis-related signature genes in AML remains unclear. Methods: In the current study, transcriptome sequencing was performed on 15 clinical samples, differentially expressed RNAs were identified using R software. The potential interactions network was constructed by using the common genes between target genes of differentially expressed miRNAs with transcriptome sequencing results. Functional and pathway enrichment analysis was performed to identify candidate gene-mediated aberrant signaling pathways. Hub genes were identified by the cytohubba plugin in Cytoscape software, which then expanded the potential interactions regulatory module for hub genes. TCGA-LAML clinical data were used for the prognostic analysis of the hub genes in the regulatory network, and GVSA analysis was used to identify the immune signature of prognosis-related hub genes. qRT-PCR was used to verify the expression of hub genes in independent clinical samples. Results: We obtained 1,610 differentially expressed lncRNAs, 233 differentially expressed miRNAs, and 2,217 differentially expressed mRNAs from transcriptome sequencing. The potential interactions network is constructed by 12 lncRNAs, 25 miRNAs, and 692 mRNAs. Subsequently, a sub-network including 15 miRNAs as well as 12 lncRNAs was created based on the expanded regulatory modules of 25 key genes. The prognostic analysis results show that CCL5 and lncRNA UCA1 was a significant impact on the prognosis of AML. Besides, we found three potential interactions networks such as lncRNA UCA1/hsa-miR-16-5p/COL4A5, lncRNA UCA1/hsa-miR-16-5p/SPARC, and lncRNA SNORA27/hsa-miR-17-5p/CCL5 may play an important role in AML. Furthermore, the evaluation of the immune infiltration shows that CCL5 is positively correlated with various immune signatures, and lncRNA UCA1 is negatively correlated with the immune signatures. Finally, the result of qRT-PCR showed that CCL5 is down-regulated and lncRNA UCA1 is up-regulated in AML samples separately. Conclusions: In conclusion, we propose that CCL5 and lncRNA UCA1 could be recognized biomarkers for predicting survival prognosis based on constructing competing endogenous RNAs in AML, which will provide us novel insight into developing novel prognostic, diagnostic, and therapeutic for AML.
Collapse
Affiliation(s)
- Jie Wang
- Department of Pharmacy, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China.,School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Md Nazim Uddin
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China.,Institute of Food Science and Technology, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, Bangladesh
| | - Jian-Ping Hao
- Department of Hematology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Rong Chen
- Department of Hematology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Yun-Xia Xiang
- Department of Pharmacy, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Dai-Qin Xiong
- Department of Pharmacy, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Yun Wu
- Department of General Medicine, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| |
Collapse
|
47
|
El-Khazragy N, Abdel Aziz MA, Hesham M, Matbouly S, Mostafa SA, Bakkar A, Abouelnile M, Noufal Y, Mahran NA, Abd Elkhalek MA, Abdelmaksoud MF. Upregulation of leukemia-induced non-coding activator RNA (LUNAR1) predicts poor outcome in pediatric T-acute lymphoblastic leukemia. Immunobiology 2021; 226:152149. [PMID: 34735923 DOI: 10.1016/j.imbio.2021.152149] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 10/12/2021] [Accepted: 10/16/2021] [Indexed: 12/20/2022]
Abstract
T-cell Acute Lymphoblastic Leukemia (T-ALL) accounts for around 10-15% of all lymphoblastic leukemia in children. Previous studies have proven that dysregulation of Leukemia-induced non-coding activator RNA-1 (LUNAR1) expression promotes T-ALL cell growth by enhancing the NOTCH1/IGF-1R signaling pathway. We aimed to investigate the prognostic value of LUNAR1 in pediatric T-ALL, in addition, to find out its association with NOTCH1 and IGF-1R. The LUNAR1, NOTCH1, and IGF-IR gene expression were measured in peripheral blood (PB) samples of l85 children with T-ALL and forty non-leukemic samples as a control group. Cox regression analysis revealed that overexpression of LUNAR1, NOTCH1, and IGF-IR was significantly correlated with poor prognosis, short overall survival, and progression-free survival. We concluded that LUNAR1 could serve as an independent prognostic biomarker for T-ALL in children.
Collapse
Affiliation(s)
- Nashwa El-Khazragy
- Department of Clinical Pathology-Hematology and Ain Shams Medical Research Institute (MASRI), Faculty of Medicine, Ain Shams University, Cairo, Egypt.
| | | | - Manar Hesham
- Department of Chemistry, Faculty of Science, Cairo University, Cairo, Egypt
| | - Safa Matbouly
- Department of Pediatrics, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Sally Abdallah Mostafa
- Medical Biochemistry Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Ashraf Bakkar
- Faculty of Biotechnology, October University for Modern Sciences and Arts, Giza, Egypt
| | - Mariam Abouelnile
- Faculty of Biotechnology, October University for Modern Sciences and Arts, Giza, Egypt
| | - Yassmin Noufal
- Faculty of Biotechnology, October University for Modern Sciences and Arts, Giza, Egypt
| | - Nievin Ahmed Mahran
- Biochemistry Department, Faculty of Dentistry, Sinai University, Kanatra, Egypt
| | - Marwa Ali Abd Elkhalek
- Department of Medical Biochemistry & Molecular Biology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | | |
Collapse
|
48
|
Long noncoding RNAs: Emerging regulators of normal and malignant hematopoiesis. Blood 2021; 138:2327-2336. [PMID: 34482397 DOI: 10.1182/blood.2021011992] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/13/2021] [Indexed: 11/20/2022] Open
Abstract
Genome wide analyses have revealed that long-noncoding RNAs (lncRNAs) are not only passive transcription products, but also major regulators of genome structure and transcription. In particular, lncRNAs exert profound effects on various biological processes, such as chromatin structure, transcription, RNA stability and translation, and protein degradation and localization, which depend on their localization and interacting partners. Recent studies have revealed that thousands of lncRNAs are aberrantly expressed in various cancer types and some of them are associated with malignant transformation. Despite extensive efforts, the diverse functions of lncRNAs and molecular mechanisms in which they act remain elusive. Many hematological disorders and malignancies are primarily resulted from genetic alterations that lead to the dysregulation of gene regulatory networks required for cellular proliferation and differentiation. Consequently, a growing list of lncRNAs has been reported for their involvement in the modulation of hematopoietic gene expression networks and hematopoietic stem and progenitor cell (HS/PC) function. Dysregulation of some of these lncRNAs has been attributed to pathogenesis of hematological malignancies. In this review, we will summarize current advances and knowledge of lncRNAs in gene regulation, focusing on the recent progresses on the role of lncRNAs in CTCF/cohesin mediated three-dimensional (3D) genome organization, and how such genome folding signals in turn regulate transcription, HS/PC function and transformation. The knowledge will provide mechanistic and translational insights into HS/PC biology and myeloid malignancy pathophysiology.
Collapse
|
49
|
Yamamoto K, Goyama S, Asada S, Fujino T, Yonezawa T, Sato N, Takeda R, Tsuchiya A, Fukuyama T, Tanaka Y, Yokoyama A, Toya H, Kon A, Nannya Y, Onoguchi-Mizutani R, Nakagawa S, Hirose T, Ogawa S, Akimitsu N, Kitamura T. A histone modifier, ASXL1, interacts with NONO and is involved in paraspeckle formation in hematopoietic cells. Cell Rep 2021; 36:109576. [PMID: 34433054 DOI: 10.1016/j.celrep.2021.109576] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 05/03/2021] [Accepted: 07/29/2021] [Indexed: 12/13/2022] Open
Abstract
Paraspeckles are membraneless organelles formed through liquid-liquid phase separation and consist of multiple proteins and RNAs, including NONO, SFPQ, and NEAT1. The role of paraspeckles and the component NONO in hematopoiesis remains unknown. In this study, we show histone modifier ASXL1 is involved in paraspeckle formation. ASXL1 forms phase-separated droplets, upregulates NEAT1 expression, and increases NONO-NEAT1 interactions through the C-terminal intrinsically disordered region (IDR). In contrast, a pathogenic ASXL mutant (ASXL1-MT) lacking IDR does not support the interaction of paraspeckle components. Furthermore, paraspeckles are disrupted and Nono localization is abnormal in the cytoplasm of hematopoietic stem and progenitor cells (HSPCs) derived from ASXL1-MT knockin mice. Nono depletion and the forced expression of cytoplasmic NONO impair the repopulating potential of HSPCs, as does ASXL1-MT. Our study indicates a link between ASXL1 and paraspeckle components in the maintenance of normal hematopoiesis.
Collapse
Affiliation(s)
- Keita Yamamoto
- Division of Cellular Therapy, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Susumu Goyama
- Division of Cellular Therapy, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Shuhei Asada
- Division of Cellular Therapy, Institute of Medical Science, The University of Tokyo, Tokyo, Japan; The Institute of Laboratory Animals, Tokyo Women's Medical University, Tokyo, Japan
| | - Takeshi Fujino
- Division of Cellular Therapy, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Taishi Yonezawa
- Division of Cellular Therapy, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Naru Sato
- Division of Cellular Therapy, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Reina Takeda
- Division of Cellular Therapy, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Akiho Tsuchiya
- Division of Cellular Therapy, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Tomofusa Fukuyama
- Division of Cellular Therapy, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yosuke Tanaka
- Division of Cellular Therapy, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Akihiko Yokoyama
- National Cancer Center Tsuruoka Metabolomics Laboratory, Yamagata, Japan
| | - Hikaru Toya
- RNA Biology Laboratory, Faculty of Pharmaceutical Sciences, Hokkaido University, Hokkaido, Japan
| | - Ayana Kon
- Department of Pathology and Tumor Biology, Kyoto University, Kyoto, Japan
| | - Yasuhito Nannya
- Department of Pathology and Tumor Biology, Kyoto University, Kyoto, Japan
| | | | - Shinichi Nakagawa
- RNA Biology Laboratory, Faculty of Pharmaceutical Sciences, Hokkaido University, Hokkaido, Japan
| | - Tetsuro Hirose
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Seishi Ogawa
- Department of Pathology and Tumor Biology, Kyoto University, Kyoto, Japan
| | | | - Toshio Kitamura
- Division of Cellular Therapy, Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
50
|
Yang Q, Kong S, Zheng M, Hong Y, Sun J, Ming X, Gu Y, Shen X, Ju S. Long intergenic noncoding RNA LINC00173 as a potential serum biomarker for diagnosis of non-small-cell lung cancer. Cancer Biomark 2021; 29:441-451. [PMID: 32623390 DOI: 10.3233/cbm-201616] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
BACKGROUND Long intergenic non-coding RNA (lincRNA) belongs to a special type of RNA that is unable to encode proteins but has been proved to play a role in gene regulation and differentially expressed in various malignant tumors. OBJECTIVE In this study, we aimed to identify whether lincRNA LINC00173 was differentially expressed in non-small-cell lung cancer (NSCLC) and whether it could serve as a potential diagnostic biomarker. METHODS The quantification real-time quantitative polymerase chain reaction (qRT-PCR) was used to detect the expression of LINC00173 in serum and cultured cells. For large sample analysis, the lncRNA expression matrix in TCGA database were generated via R software. To evaluate the diagnostic performance of serum LINC00173, the receiver operating characteristic (ROC) curve was used. RESULTS The qRT-PCR analysis showed that the serum LINC00173 expression level in 108 NSCLC patients was higher than that in 91 healthy donors and 55 patients with benign pulmonary disease (BPD). And the area under the curve (AUC) of serum LINC00173 was 0.809 for the diagnosis of NSCLC (95% CI: 0.750-0.868, p< 0.001), 0.670 for BPD (95% CI: 0.584-0.756, P< 0.001), and 0.730 for small-cell lung cancer (SCLC, 95% CI: 0.636-0.825, P< 0.001). Besides, we established a diagnostic model of combined detection of LINC00173, CEA and Cyfra21-1, and found that combined detection of these indicators significantly improved the diagnostic efficiency. Analysis of the Clinicopathological parameters showed that high LINC00173 expression was correlated with histological typing of tumor, tumor metastasis and serum Cyfra21-1 levels. In addition, serum LINC00173 expression decreased in patients who received chemotherapy and rebound in recurrent NSCLC patients. CONCLUSION Serum LINC00173 may prove to be a potential non-invasive auxiliary diagnostic biomarker for NSCLC patients.
Collapse
Affiliation(s)
- Qian Yang
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China.,Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Shan Kong
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China.,Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Ming Zheng
- School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Yuelan Hong
- School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Jing Sun
- School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Xiaotian Ming
- School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Yingqiu Gu
- School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Xianjuan Shen
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Shaoqing Ju
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China.,School of Public Health, Nantong University, Nantong, Jiangsu, China
| |
Collapse
|