1
|
Osorio Nieto ME, Hercus JC, Williams KR, Salcedo Rubio DA, Spreeuw CDM, Keum C, Christians JK. Increased locomotor activity does not mitigate the effects of advanced maternal age in a mouse model. Placenta 2025; 167:122-130. [PMID: 40373689 DOI: 10.1016/j.placenta.2025.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 04/14/2025] [Accepted: 05/09/2025] [Indexed: 05/17/2025]
Abstract
INTRODUCTION Advanced maternal age (AMA) increases the risk of pregnancy complications, in part due to impaired placentation. While exercise during pregnancy can improve outcomes, its potential to mitigate the effects of AMA has not been investigated. We evaluated the impact of exercise in a mouse model of AMA. METHODS Females were paired with males at 9 or 34 weeks of age, with one group of aged females having access to running wheels four weeks prior to and during pregnancy. Pregnant females (N = 19 per group) were collected at gestational day (GD) 11.5. Placentas were collected for RNA sequencing (N = 17-20 per group). RESULTS Aged females with access to running wheels had lighter fat depots (1.0 ± 0.1 g) than those without (2.2 ± 0.1 g; p < 0.0001), but did not differ from young females (0.8 ± 0.1 g; p = 0.5). Both groups of aged females had fewer viable conceptuses (without wheels: 4.0 ± 0.5, with wheels: 4.3 ± 0.5) than young mice (8.3 ± 0.5; p < 0.0001 for both comparisons). Fetal crown-rump length was also lower in aged females (without wheels: 5.7 ± 0.2 mm, with wheels: 5.5 ± 0.2 mm, young: 6.6 ± 0.2 mm; p < 0.0001 for both comparisons). Placental expression of only one gene was affected by access to running wheels, but 423 and 967 genes were differentially expressed between young and aged females without and with access to wheels, respectively. Placental transcriptomes suggested delayed placental development in aged females. CONCLUSIONS Our model reproduced previously-reported effects of age on fetal development and placental transcriptomics, but these were not mitigated by increased voluntary locomotor activity, despite a reduction in adiposity. Remarkably, increased voluntary locomotor activity had almost no effects on placental gene expression in aged mice.
Collapse
Affiliation(s)
| | - Jess C Hercus
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Keilan R Williams
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | | | - Caitlin D M Spreeuw
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Cheayeong Keum
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Julian K Christians
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada; Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, BC, Canada; British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada; Women's Health Research Institute, BC Women's Hospital and Health Centre, Vancouver, British Columbia, Canada.
| |
Collapse
|
2
|
Krala A, Tsolova AO, Radford BN, Jadli AS, Zhao X, Blackwell D, Narang A, Dean W, Hemberger M. Phospholipid flippase ATP11A brokers uterine epithelial integrity and function. Proc Natl Acad Sci U S A 2025; 122:e2420617122. [PMID: 40261925 PMCID: PMC12054786 DOI: 10.1073/pnas.2420617122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 03/21/2025] [Indexed: 04/24/2025] Open
Abstract
Uterine adaptations driven by the steroid hormones estrogen and progesterone are pivotal for embryo implantation and, ultimately, for a successful pregnancy. Here, we show in mice that genetic ablation of the membrane lipid flippase Atp11a causes severe deficits in this hormonal response and profound defects in the morphological organization and transcriptional profile of the uterine epithelial compartment where Atp11a is expressed. Atp11a-null uterine epithelial cells lack tight junctions, and the luminal epithelium exhibits profound disruptions to cellular morphology. Interestingly, the specification of luminal epithelial cells remains incomplete as they maintain expression of the normally gland-restricted marker FOXA2. The uterine glands of Atp11a-null females are depleted for progenitor cells marked by SOX9, PAX8, LGR5, and PROM1. Collectively, these findings point to a uterine receptivity deficit that underpins the frequent failure of Atp11a-depleted females to establish a successful pregnancy. Most intriguingly, however, loss of only a single functional Atp11a allele causes a higher frequency of abnormal placental trophoblast differentiation as well as a higher incidence of developmental heart defects in wild-type embryos. These data emphasize the far-reaching impact of uterine dysfunction on reproductive outcome and highlight the importance of the maternal genotype in the etiology of developmental disorders.
Collapse
Affiliation(s)
- Alexa Krala
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, ABT2N 4N1, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, ABT2N 4N1, Canada
| | - Aleksandra O. Tsolova
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, ABT2N 4N1, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, ABT2N 4N1, Canada
| | - Bethany N. Radford
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, ABT2N 4N1, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, ABT2N 4N1, Canada
| | - Anshul S. Jadli
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, ABT2N 4N1, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, ABT2N 4N1, Canada
| | - Xiang Zhao
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, ABT2N 4N1, Canada
- Department of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, Calgary, ABT2N 4N1, Canada
| | - Danielle Blackwell
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, ABT2N 4N1, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, ABT2N 4N1, Canada
| | - Ankita Narang
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, ABT2N 4N1, Canada
| | - Wendy Dean
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, ABT2N 4N1, Canada
- Department of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, Calgary, ABT2N 4N1, Canada
| | - Myriam Hemberger
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, ABT2N 4N1, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, ABT2N 4N1, Canada
| |
Collapse
|
3
|
Riwa S, Alison M, Ann K, Quetrell H, Alan P, Denny S, Denis V, Thomas T. Pregnancy outcomes with increasing maternal age, greater than 40 years, in donor oocyte cycles. Hum Reprod 2025:deaf044. [PMID: 40112875 DOI: 10.1093/humrep/deaf044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 01/13/2025] [Indexed: 03/22/2025] Open
Abstract
STUDY QUESTION Do IVF outcomes differ in patients over the age of 40 using donor oocytes? SUMMARY ANSWER Even with the use of donor oocytes, maternal age appears to have an impact on live birth (LB) rate and perinatal outcomes. WHAT IS KNOWN ALREADY Maternal age has a significant impact on the outcome of IVF, mainly attributed to age-related oocyte chromosomal factors. STUDY DESIGN, SIZE, DURATION This was a retrospective cohort study between 1 January 2015 and 31 December 2021. PARTICIPANTS/MATERIALS, SETTING, METHODS This study included all patients who had a single embryo transfer cycle using donor oocytes during the study period. The study was conducted at a single university-affiliated fertility center. Data on BMI, paternal age, and type of cycle (natural vs programmed) were evaluated in relation to miscarriages and LBs when comparing age groups of 40-44, 45-49, and ≥50. Generalized estimating equation (GEE) models with logit functions were used to control for confounding variables. MAIN RESULTS AND THE ROLE OF CHANCE A total of 1660 single embryo transfer cycles using donor oocytes in patients ≥40 years were performed during the study period. Of these, 969 were in patients aged 40-44, 607 in patients 45-49, and 84 in patients ≥50 years of age. The presence of an LB was significantly lower in patients 45-49 compared to those 40-44 (P = 0.023). The LB rate remained lower in patients >50 but was not statistically significant. This relationship persisted after adjusting for BMI, paternal age, cycle type, and type of oocyte donor (fresh vs frozen oocyte donor) (P = 0.016). Moreover, the birthweight was lower in the older age groups (45-49 and ≥50) compared to the reference group of patients aged 40-44 (P = 0.004). LIMITATIONS, REASONS FOR CAUTION The presence of an LB was lower in patients aged 45-49 and ≥50 compared to 40-44; however, this finding was not statistically significant for the ≥50 age group, likely due to the smaller sample size compared to the other two age groups. The use of preimplantation genetic testing for aneuploidy (PGT-A) was not included since only a minority of patients using donor oocytes underwent PGT-A. The inclusion of both fresh and frozen donor oocytes may also be deemed a limitation, as some studies have indicated better outcomes from fresh compared to frozen donor oocytes. WIDER IMPLICATIONS OF THE FINDINGS Maternal age, beyond its relation to oocyte quality, was shown to affect the achievement of an LB. This is an important finding to include in patient counseling, particularly for those proceeding with donor oocytes. STUDY FUNDING/COMPETING INTEREST(S) No authors report conflicts of interest or disclosures. There was no study funding. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Sabbagh Riwa
- Boston IVF-IVIRMA Global Research Alliance, Waltham, MA, USA
- Department of Obstetrics and Gynecology, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Department of Obstetrics, Gynecology and Reproductive Biology, Harvard Medical School, Boston, MA, USA
| | - Meyers Alison
- Boston IVF-IVIRMA Global Research Alliance, Waltham, MA, USA
| | - Korkidakis Ann
- Boston IVF-IVIRMA Global Research Alliance, Waltham, MA, USA
- Department of Obstetrics and Gynecology, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Department of Obstetrics, Gynecology and Reproductive Biology, Harvard Medical School, Boston, MA, USA
| | - Heyward Quetrell
- Boston IVF-IVIRMA Global Research Alliance, Waltham, MA, USA
- Department of Obstetrics and Gynecology, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Department of Obstetrics, Gynecology and Reproductive Biology, Harvard Medical School, Boston, MA, USA
| | - Penzias Alan
- Boston IVF-IVIRMA Global Research Alliance, Waltham, MA, USA
- Department of Obstetrics and Gynecology, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Department of Obstetrics, Gynecology and Reproductive Biology, Harvard Medical School, Boston, MA, USA
| | - Sakkas Denny
- Boston IVF-IVIRMA Global Research Alliance, Waltham, MA, USA
| | - Vaughan Denis
- Boston IVF-IVIRMA Global Research Alliance, Waltham, MA, USA
- Department of Obstetrics and Gynecology, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Department of Obstetrics, Gynecology and Reproductive Biology, Harvard Medical School, Boston, MA, USA
| | - Toth Thomas
- Boston IVF-IVIRMA Global Research Alliance, Waltham, MA, USA
- Department of Obstetrics and Gynecology, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Department of Obstetrics, Gynecology and Reproductive Biology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
4
|
Gonzalez MB, Andreas E, Winstanley YE, Connaughton HS, Loring KE, Shoubridge C, Robker RL. Maternal aging reduces female fecundity and alters offspring phenotype in a sex-specific manner. Reprod Fertil Dev 2025; 37:RD24164. [PMID: 40048313 DOI: 10.1071/rd24164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 02/15/2025] [Indexed: 05/13/2025] Open
Abstract
Context The age of childbearing in women has increased, with more babies born to women over 30years old than to those in their 20s. However, increasing maternal age is associated with a range of pregnancy and perinatal complications, such as reduced chance of conception, and higher risk of miscarriage or fetal death. Further, epidemiological studies indicate that advanced maternal age is also linked to a higher incidence of metabolic and neurodevelopmental disorders in offspring, such as Type 1 diabetes and autism spectrum disorder (ASD). Aims Mature female mice recapitulate many of the fertility characteristics seen in older women, such as reduced egg number and quality, providing a robust experimental model. This study examined fertility and offspring phenotypes in female mice at the onset of reproductive aging. Methods Firstly, fecundity in mice was measured from 3 to 18months of age. Secondly, reproductive outcomes in aged female mice (12months old) were compared to those of young females (3months of age). Growth of the offspring was assessed, as well as metabolism, behaviour, and immune function in adulthood. Key results Female aging reduced pregnancy rate, litter size and pup survival to weaning. Maternal age did not affect adult offspring immune function; however, female offspring had higher body weights, and male littermates presented dysregulated glucose tolerance and hyperactivity. Conclusions Maternal age affects offspring survival and health in a sex-specific manner. Implications These findings expand our understanding of maternal programming of offspring health, particularly the effects of increased age at pregnancy.
Collapse
Affiliation(s)
- Macarena B Gonzalez
- Robinson Research Institute, School of Biomedicine, University of Adelaide, Adelaide, SA 5005, Australia
| | - Eryk Andreas
- Robinson Research Institute, School of Biomedicine, University of Adelaide, Adelaide, SA 5005, Australia
| | - Yasmyn E Winstanley
- Robinson Research Institute, School of Biomedicine, University of Adelaide, Adelaide, SA 5005, Australia
| | - Haley S Connaughton
- Robinson Research Institute, School of Biomedicine, University of Adelaide, Adelaide, SA 5005, Australia
| | - Karagh E Loring
- Robinson Research Institute, School of Biomedicine, University of Adelaide, Adelaide, SA 5005, Australia
| | - Cheryl Shoubridge
- Robinson Research Institute, School of Biomedicine, University of Adelaide, Adelaide, SA 5005, Australia
| | - Rebecca L Robker
- Robinson Research Institute, School of Biomedicine, University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
5
|
Gong G, Zhang Y, Hu X, Lin X, Liao A. PD-1-Enhanced Treg Cell Senescence in Advanced Maternal Age. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2411613. [PMID: 39716882 PMCID: PMC11809324 DOI: 10.1002/advs.202411613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/27/2024] [Indexed: 12/25/2024]
Abstract
Senescence occurs earlier in the immune system than in solid organs as age increases. Regulatory T (Treg) cells are among the first cells to exhibit signs of aging. However, whether advanced-age pregnancy involves Treg cell aging remains unclear. This study demonstrated that the aging of women is accompanied by aging Treg cells and that PD-1 regulates Treg cell aging. The transfer of young Treg cells can improve the pregnancy outcomes of reproductive-aged mice by reducing the level of IFN-γ, a proinflammatory cytokine secreted by Treg cells in aged mice. Transferring α-PD-1 mAb-treated aged Treg cells increases the level of IL-10, an anti-inflammatory cytokine secreted by Treg cells in reproductive-aged mice. Collectively, these findings suggest a potential therapeutic strategy for preventing adverse pregnancy outcomes in older women.
Collapse
Affiliation(s)
- Guang‐Shun Gong
- Institute of Reproductive HealthCenter for Reproductive MedicineTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030P. R. China
| | - Yu‐Jing Zhang
- Institute of Reproductive HealthCenter for Reproductive MedicineTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030P. R. China
| | - Xiao‐Hui Hu
- Department of Obstetrics and GynecologyFirst Clinical College Union Hospital Huazhong University of Science and TechnologyWuhan430022P. R. China
| | - Xin‐Xiu Lin
- Institute of Reproductive HealthCenter for Reproductive MedicineTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030P. R. China
| | - Ai‐Hua Liao
- Institute of Reproductive HealthCenter for Reproductive MedicineTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030P. R. China
| |
Collapse
|
6
|
Guo S, Pan Q, Chen B, Huang Y, Li S, Gou C, Gao Y. Placental trophoblast aging in advanced maternal age is related to increased oxidative damage and decreased YAP. Front Cell Dev Biol 2025; 13:1479960. [PMID: 39906872 PMCID: PMC11790555 DOI: 10.3389/fcell.2025.1479960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 01/03/2025] [Indexed: 02/06/2025] Open
Abstract
Introduction The advanced maternal age (AMA) pregnancies escalate rapidly, which are frequently linked to higher risks of adverse outcomes. Advanced maternal age (AMA) placenta exhibited premature aging, presumably resulting in trophoblast dysfunction, inadequate placentation. However, the precise reasons and mechanisms of trophoblast aging in AMA placenta remain unclear, posing a significant limitation to provide effective guidance for prenatal healthcare in clinical settings. Notably, the organism shows heightened vulnerability to oxidative damage as it ages. YAP (Yes-associated protein) was reported to play a critical role in regulation of aging and resisting oxidative damage, yet these roles had not been elucidated in the placenta. Therefore, this study explored the relationship between trophoblast cell aging and oxidative injury and YAP in AMA pregnancy, which not only provided an insight into the mechanisms of trophoblast cell aging, but also provide valuable directions for healthcare during AMA pregnancy. Methods In this study, human term placentas were collected from AMA and normal pregnancies for the analysis of aging, oxidative damage and YAP level. HTR8/SVneo cells were manipulated with (hydrogen peroxide) H2O2 to explore the effects of oxidative damage on trophoblast cell senescence and YAP levels. YAP expression in HTR8/SVneo cells was manipulated to investigate its role in trophoblastic senescence and oxidative damage. Results Compared with the control group, the AMA placenta exhibits increased aging biomarkers, which is coupled with an elevation in oxidative damage within placental trophoblast cells and a notable decline in YAP levels. Cellular experiments demonstrated that oxidative damage from H2O2 triggered trophoblast cell senescence and resulted in a reduction of YAP levels. Furthermore, employing molecular modification to silence YAP expression in these cells led to an induction of aging. Conversely, overexpressing YAP ameliorated both trophoblast cell aging and the associated DNA oxidative damage that arised from H2O2. Conclusion The decline of YAP in AMA pregnancy should be responsible for the increased oxidative injury and premature placenta aging, indicating that YAP plays a significant role in combating oxidative damage and delaying aging, thereby providing a new guidance for prenatal care in AMA pregnancies. Maintaining YAP levels or implementing anti-oxidative stress interventions could potentially mitigate the incidence of complications involved AMA pregnancy.
Collapse
Affiliation(s)
- Song Guo
- Department of Obstetrics and Gynecology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qihao Pan
- Department of Obstetrics and Gynecology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Baokang Chen
- Department of Obstetrics and Gynecology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yijuan Huang
- Department of Obstetrics and Gynecology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Si Li
- Department of Obstetrics and Gynecology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chenyu Gou
- Department of Obstetrics and Gynecology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yu Gao
- Department of Obstetrics and Gynecology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
7
|
Zhang J, Hu H, Zhu Y, Jin Y, Zhang H, Fan R, Ye Y, Xin X, Li D. Bushen Jianpi Tiaoxue Decoction (BJTD) ameliorates oxidative stress and apoptosis induced by uterus ageing through activation of the SIRT1/NRF2 pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 136:156288. [PMID: 39631297 DOI: 10.1016/j.phymed.2024.156288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 09/29/2024] [Accepted: 11/22/2024] [Indexed: 12/07/2024]
Abstract
BACKGROUND Uterus ageing is a crucial factor contributing to decreased fertility in older women and is also implicated in menstrual disorders, endometritis, and adenomyosis. Bushen Jianpi Tiaoxue Decoction (BJTD) is a traditional Chinese medicine formulation used to ameliorate endocrine disorders in the female reproductive system and finds extensive application in ageing-related endometrial diseases. However, the mechanisms underlying its improvement of uterus ageing have not been thoroughly investigated. PURPOSE To explore the potential components and mechanisms of BJTD in ameliorating uterus ageing through network pharmacology, in vivo, and in vitro experiments. METHODS Morphological changes were observed using hematoxylin and eosin staining, collagen deposition was assessed using Masson staining, and apoptotic-related molecules were detected using Western blot. After determining the modeling doses, BJTD intervention was administered at two doses, and the expression of oxidative stress and apoptosis-related genes and proteins was measured. The levels of cellular apoptosis were evaluated using the TUNEL assay kit and Annexin V/FITC-PI assay kit. The main components of BJTD were determined by UPLC-MS, and the potential targets and mechanisms of BJTD action were explored using network pharmacology and molecular docking. BJTD-Containing Serum (BJTD-S) was extracted and applied in vitro experiments using human endometrial stroma cells (hESC) to preliminarily identify the pathways affected. RESULTS We demonstrated that modeling with 600 mg/kg/day D-Gal for 5 weeks significantly increased collagen deposition in uterine tissues, particularly in the glands and stroma. Additionally, it significantly elevated the levels of TNF-α and IL-1β and increased the expression of p53 and BAX while decreasing BCL-2 expression. BJTD significantly reduced the increased levels of TNF-α and IL-1β induced by D-Gal, and modulated oxidative stress markers such as SOD, MDA, GSH-Px, and T-AOC. BJTD also inhibited the cascade activation of apoptosis induced by D-Gal, suppressing the expression of cleaved-Caspase 8, cleaved-Caspase 3, and BAX. SIRT1 is a potential target of BJTD action. In vitro experiments showed that BJTD-S significantly improved D-Gal-induced apoptosis in hESC cells, and the expression levels of SIRT1, NRF2, and HO-1 were significantly decreased in D-Gal-induced hESC, and BJTD-S significantly increased their expression. CONCLUSION BJTD can ameliorate oxidative stress and cell apoptosis levels in D-Gal-induced uterine aging, and its active ingredients can activate the SIRT1/NRF2 pathway to exert its effects. Importantly, our study provides novel insights into the molecular mechanisms by which traditional Chinese medicine influence uterus ageing. By specifically targeting the SIRT1/NRF2 pathway, BJTD presents a unique therapeutic approach that has not been extensively explored in previous studies, marking a significant advancement in the treatment of uterus ageing.
Collapse
Affiliation(s)
- Jiacheng Zhang
- Department of Traditional Chinese Medicine, Peking University Third Hospital, Beijing, China
| | - Hangqi Hu
- Department of Traditional Chinese Medicine, Peking University Third Hospital, Beijing, China
| | - Yutian Zhu
- Department of Traditional Chinese Medicine, Peking University Third Hospital, Beijing, China
| | - Yuxin Jin
- Department of Traditional Chinese Medicine, Peking University Third Hospital, Beijing, China
| | - Haolin Zhang
- Department of Traditional Chinese Medicine, Peking University Third Hospital, Beijing, China
| | - Ruiwen Fan
- Department of Traditional Chinese Medicine, Peking University Third Hospital, Beijing, China
| | - Yang Ye
- Department of Traditional Chinese Medicine, Peking University Third Hospital, Beijing, China.
| | - Xiyan Xin
- Department of Traditional Chinese Medicine, Peking University Third Hospital, Beijing, China.
| | - Dong Li
- Department of Traditional Chinese Medicine, Peking University Third Hospital, Beijing, China.
| |
Collapse
|
8
|
Ziętek MM, Jaszczyk A, Stankiewicz AM, Sampino S. Prenatal gene-environment interactions mediate the impact of advanced maternal age on mouse offspring behavior. Sci Rep 2024; 14:31733. [PMID: 39738558 PMCID: PMC11685589 DOI: 10.1038/s41598-024-82070-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 12/02/2024] [Indexed: 01/02/2025] Open
Abstract
Autism spectrum disorders encompass diverse neurodevelopmental conditions marked by alterations in social communication and repetitive behaviors. Advanced maternal age is associated with an increased risk of bearing children affected by autism but the etiological factors underlying this association are not well known. Here, we investigated the effects of advanced maternal age on offspring health and behavior in two genetically divergent mouse strains: the BTBR T+ Itpr3tf/J (BTBR) mouse model of idiopathic autism, and the C57BL/6 J (B6) control strain, as a model of genetic variability. In both strains, advanced maternal age negatively affected female reproductive and pregnancy outcomes, and perturbed placental and fetal growth, and the expression of genes in the fetal brain tissues. Postnatally, advanced maternal age had strain-dependent effects on offspring sociability, learning skills, and the occurrence of perseverative behaviors, varying between male and female offspring. These findings disentangle the relationship between genetic determinants and maternal age-related factors in shaping the emergence of autism-like behaviors in mice, highlighting the interplay between maternal age, genetic variability, and prenatal programming, in the occurrence of neurodevelopmental disorders.
Collapse
Affiliation(s)
- Marta Marlena Ziętek
- Department of Experimental Embryology, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzębiec, Poland
| | - Aneta Jaszczyk
- Department of Animal Behavior and Welfare, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzębiec, Poland
| | - Adrian Mateusz Stankiewicz
- Department of Animal Behavior and Welfare, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzębiec, Poland
| | - Silvestre Sampino
- Department of Experimental Embryology, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzębiec, Poland.
| |
Collapse
|
9
|
Bagchi IC, Bagchi MK. Maternal-fetal mechanisms underlying adaptation to hypoxia during early pregnancy. Trends Endocrinol Metab 2024; 35:1091-1099. [PMID: 39079778 DOI: 10.1016/j.tem.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 07/07/2024] [Accepted: 07/09/2024] [Indexed: 12/06/2024]
Abstract
During the process of implantation, the embryo first attaches to the uterine epithelium and then invades the underlying stroma, resulting in the transformation of the stroma into a secretory tissue that surrounds the embryo. An intricate dialogue allows the developing embryo and the maternal tissue to be in constant communication with each other. In many mammals, including humans, embryo implantation and early pregnancy events take place in a low-oxygen environment regulated by hypoxia-inducible transcription factors. The mechanisms by which maternal and embryonic tissue compartments adapt to hypoxia are essential for the success of pregnancy outcomes. In this review we highlight recent work describing signaling pathways that operate in the hypoxic uterus to facilitate embryo implantation and promote the successful establishment of pregnancy.
Collapse
Affiliation(s)
- Indrani C Bagchi
- Departments of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Carle R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| | - Milan K Bagchi
- Carle R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
10
|
Balough JL, Dipali SS, Velez K, Kumar TR, Duncan FE. Hallmarks of female reproductive aging in physiologic aging mice. NATURE AGING 2024; 4:1711-1730. [PMID: 39672896 DOI: 10.1038/s43587-024-00769-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 10/28/2024] [Indexed: 12/15/2024]
Abstract
The female reproductive axis is one of the first organ systems to age, which has consequences for fertility and overall health. Here, we provide a comprehensive overview of the biological process of female reproductive aging across reproductive organs, tissues and cells based on research with widely used physiologic aging mouse models, and describe the mechanisms that underpin these phenotypes. Overall, aging is associated with dysregulation of the hypothalamic-pituitary-ovarian axis, perturbations of the ovarian stroma, reduced egg quantity and quality, and altered uterine morphology and function that contributes to reduced capacity for fertilization and impaired embryo development. Ultimately, these age-related phenotypes contribute to altered pregnancy outcomes and adverse consequences in offspring. Conserved mechanisms of aging, as well as those unique to the reproductive system, underlie these phenotypes. The knowledge of such mechanisms will lead to development of therapeutics to extend female reproductive longevity and support endocrine function and overall health.
Collapse
Affiliation(s)
- Julia L Balough
- Center for Reproductive Longevity and Equality, Buck Institute for Research on Aging, Novato, CA, USA
| | - Shweta S Dipali
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Karen Velez
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - T Rajendra Kumar
- Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Francesca E Duncan
- Center for Reproductive Longevity and Equality, Buck Institute for Research on Aging, Novato, CA, USA.
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
11
|
Li C, Qian Z, Zhang H, Ge X, Chen L, Xue M, Tang T, He Z, Zheng L, Cao C, Zhang K, Ma R, Yao B. O-GlcNAc participates in the meiosis of aging oocytes by mediating mitochondrial function. Reproduction 2024; 168:e240138. [PMID: 39405070 PMCID: PMC11623119 DOI: 10.1530/rep-24-0138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 10/15/2024] [Indexed: 11/15/2024]
Abstract
IN BRIEF O-GlcNAc plays an important role in many age-related diseases. This study shows that O-GlcNAc participates in oocyte aging and that reducing O-GlcNAc levels in aging oocytes improves oocyte quality. ABSTRACT With an increase in the mean age at parturition worldwide, female reproductive aging has become a key health problem. Advanced maternal age is reflected by decreased oocyte quality; however, the molecular mechanisms of oocyte aging are uncharacterized. O-linked N-acetylglucosamine (O-GlcNAc), a dynamic posttranslational modification, plays a critical role in the development of many age-related diseases; yet, it remains unclear whether and how O-GlcNAc participates in oocyte aging. Here, we found that global O-GlcNAc was elevated in normal biological aging mice oocytes (9 months), which were characterized by meiotic maturation failure and impaired mitochondrial function. Specifically, O-GlcNAc targeted the mitochondrial fission protein dynamic-related protein 1 to mediate mitochondrial distribution in the process of aging. Using the O-GlcNAcase (OGA) pharmacological inhibitor Thiamet-G and Oga knockdown (Oga-KD) to mimic the age-related high O-GlcNAc in young oocytes from 6-8 week-old mice mimicked the phenotype of oocyte aging. Moreover, reducing O-GlcNAc levels in aging oocytes restored spindle organization to improve oocyte quality. Our results demonstrate that O-GlcNAc is a key regulator of meiotic maturation that participates in the progression of oocyte aging.
Collapse
Affiliation(s)
- Chuwei Li
- Department of Reproductive Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Zhang Qian
- Department of Reproductive Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Hong Zhang
- Department of Reproductive Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Xie Ge
- Department of Reproductive Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
- Center of Reproductive Medicine, Jinling Hospital, Nanjing Medical University, Nanjing, China
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Li Chen
- Department of Reproductive Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
- Center of Reproductive Medicine, Jinling Hospital, Nanjing Medical University, Nanjing, China
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Mengqi Xue
- Department of Reproductive Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Ting Tang
- Department of Reproductive Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Zhaowanyue He
- Department of Reproductive Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Lu Zheng
- Department of Reproductive Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Chun Cao
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Kemei Zhang
- Center of Reproductive Medicine, Jinling Hospital, Nanjing Medical University, Nanjing, China
| | - Rujun Ma
- Department of Reproductive Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
- Center of Reproductive Medicine, Jinling Hospital, Nanjing Medical University, Nanjing, China
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Bing Yao
- Department of Reproductive Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
- Center of Reproductive Medicine, Jinling Hospital, Nanjing Medical University, Nanjing, China
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
12
|
Ye X, Baker PN, Tong C. The updated understanding of advanced maternal age. FUNDAMENTAL RESEARCH 2024; 4:1719-1728. [PMID: 39734537 PMCID: PMC11670706 DOI: 10.1016/j.fmre.2023.09.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 06/29/2023] [Accepted: 09/21/2023] [Indexed: 12/31/2024] Open
Abstract
The rising rates of pregnancies associated with advanced maternal age (AMA) have created unique challenges for healthcare systems worldwide. The elevated risk of poor maternal outcomes among AMA pregnancies is only partially understood and hotly debated. Specifically, AMA is associated with reduced fertility and an increased incidence of pregnancy complications. Finding a balance between global fertility policy, socioeconomic development and health care optimization ultimately depends on female fertility. Therefore, there is an urgent need to develop technologies and identify effective interventions. Support strategies should include prepregnancy screening, intervention and postpartum maintenance. Although some reviews have considered the relationship between AMA and adverse pregnancy outcomes, no previous work has comprehensively considered the long-term health effects of AMA on mothers. In this review, we will begin by presenting the current knowledge of global health issues associated with AMA and the effects of advanced age on the female reproductive system, endocrine metabolism, and placental function. We will then discuss physiological alterations, pregnancy complications, and long-term health problems caused by AMA.
Collapse
Affiliation(s)
- Xuan Ye
- National Clinical Research Center for Child Health and Disorder, Children's Hospital of Chongqing Medical University, Chongqing 401122, China
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Philip N. Baker
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- College of Life Sciences, University of Leicester, Leicester LE1 7RH, UK
| | - Chao Tong
- National Clinical Research Center for Child Health and Disorder, Children's Hospital of Chongqing Medical University, Chongqing 401122, China
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
13
|
Chen TS, Kuo PL, Yu T, Wu MH. IVF and obstetric outcomes among women of advanced maternal age (≥45 years) using donor eggs. Reprod Biomed Online 2024; 49:104291. [PMID: 39116639 DOI: 10.1016/j.rbmo.2024.104291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/21/2024] [Accepted: 05/20/2024] [Indexed: 08/10/2024]
Abstract
RESEARCH QUESTION Does very advanced maternal age (VAMA; age ≥45 years) influence obstetric outcomes among women using donor oocytes in IVF? DESIGN This retrospective cohort study analysed data from a nationwide IVF registry in Taiwan, focusing on IVF cycles involving women aged 45 years and older using donated oocytes between 2007 and 2016. The study assessed cumulative live birth rates (CLBR) and secondary outcomes such as clinical pregnancy, miscarriage, live birth and twin pregnancy rates, alongside perinatal outcomes such as Caesarean section rates, pre-eclampsia, gestational diabetes and birthweight. RESULTS The study included 1226 embryo transfer cycles from 745 women, with a stable live birth rate of about 40% across the study period. The CLBR was slightly lower in women aged 50 years and older (54.2%) compared with those aged 45-46 years (58.0%), but these differences were not statistically significant (P = 0.647). Secondary outcomes and perinatal outcomes did not significantly differ across age groups. Regression analysis suggested a non-significant trend towards a decrease in live birth rate and birthweight with increasing maternal age. The study also found that single-embryo transfer (SET) minimized the risk of twin pregnancies without significantly affecting live birth rates. CONCLUSIONS IVF with donor oocytes remains a viable option for women of VAMA, with consistent live birth rates across age groups. However, the study underscores the importance of elective SET to reduce the risk of twin pregnancies and associated adverse outcomes. Further research is needed to explore the impact of other factors such as paternal age and embryo development stage on IVF success in this population.
Collapse
Affiliation(s)
- Ta-Sheng Chen
- Department of Gynaecology and Gynaecology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Pao-Lin Kuo
- Department of Gynaecology and Gynaecology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Obstetrics and Gynecology, E-Da Hospital, Kaohsiung, Taiwan
| | - Tsung Yu
- Department of Public Health, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Meng-Hsing Wu
- Department of Gynaecology and Gynaecology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
14
|
Kubota K. Molecular approaches to mammalian uterine receptivity for conceptus implantation. J Reprod Dev 2024; 70:207-212. [PMID: 38763760 PMCID: PMC11310385 DOI: 10.1262/jrd.2024-022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 04/20/2024] [Indexed: 05/21/2024] Open
Abstract
Mammalian reproduction is more inefficient than expected and embryo/conceptus implantation into the maternal endometrium is considered to be a rate-limiting process. Although extensive physiological and structural diversity exists among mammalian species, the basic molecular mechanisms underlying successful implantation are conserved. The extensive use of genetically engineered mouse models has provided considerable information on uterine receptivity for embryo implantation. The molecular mechanisms and cellular processes identified thus far require further validation in other mammalian species. In this review, representative ovarian steroid hormone-induced signaling pathways controlling uterine adaptation are presented based on the results of rodent studies. Selected examples of functional conservation in mammals, such as humans and cattle, are briefly described. To date, molecular therapeutic trials for fertility improvement have not been conducted. Considerable efforts are required to provide further understanding of these molecular mechanisms. Such understanding will contribute to the development of reliable clinical diagnostics and therapeutics for implantation failure, leading to reproductive success in a wide variety of mammals in the future.
Collapse
Affiliation(s)
- Kaiyu Kubota
- Division of Advanced Feeding Technology Research, Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization (NARO), Tochigi 329-2793, Japan
- Present: Research Promotion Office, Core Technology Research Headquaters, National Agriculture and Food Research Organization (NARO), Ibaraki 305-8517, Japan
| |
Collapse
|
15
|
Walewska E, Makowczenko KG, Witek K, Laniecka E, Molcan T, Alvarez-Sanchez A, Kelsey G, Perez-Garcia V, Galvão AM. Fetal growth restriction and placental defects in obese mice are associated with impaired decidualisation: the role of increased leptin signalling modulators SOCS3 and PTPN2. Cell Mol Life Sci 2024; 81:329. [PMID: 39090270 PMCID: PMC11335253 DOI: 10.1007/s00018-024-05336-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 04/05/2024] [Accepted: 06/28/2024] [Indexed: 08/04/2024]
Abstract
Decidualisation of the endometrium is a key event in early pregnancy, which enables embryo implantation. Importantly, the molecular processes impairing decidualisation in obese mothers are yet to be characterised. We hypothesise that impaired decidualisation in obese mice is mediated by the upregulation of leptin modulators, the suppressor of cytokine signalling 3 (SOCS3) and the protein tyrosine phosphatase non-receptor type 2 (PTPN2), together with the disruption of progesterone (P4)-signal transducer and activator of transcription (STAT3) signalling. After feeding mice with chow diet (CD) or high-fat diet (HFD) for 16 weeks, we confirmed the downregulation of P4 and oestradiol (E2) steroid receptors in decidua from embryonic day (E) 6.5 and decreased proliferation of stromal cells from HFD. In vitro decidualised mouse endometrial stromal cells (MESCs) and E6.5 deciduas from the HFD showed decreased expression of decidualisation markers, followed by the upregulation of SOCS3 and PTPN2 and decreased phosphorylation of STAT3. In vivo and in vitro leptin treatment of mice and MESCs mimicked the results observed in the obese model. The downregulation of Socs3 and Ptpn2 after siRNA transfection of MESCs from HFD mice restored the expression level of decidualisation markers. Finally, DIO mice placentas from E18.5 showed decreased labyrinth development and vascularisation and fetal growth restricted embryos. The present study revealed major defects in decidualisation in obese mice, characterised by altered uterine response to E2 and P4 steroid signalling. Importantly, altered hormonal response was associated with increased expression of leptin signalling modulators SOCS3 and PTPN2. Elevated levels of SOCS3 and PTPN2 were shown to molecularly affect decidualisation in obese mice, potentially disrupting the STAT3-PR regulatory molecular hub.
Collapse
Affiliation(s)
- Edyta Walewska
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Olsztyn, Poland
| | - Karol G Makowczenko
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Olsztyn, Poland
| | - Krzysztof Witek
- Laboratory of Cell and Tissue Analysis and Imaging, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Olsztyn, Poland
| | - Elżbieta Laniecka
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Olsztyn, Poland
| | - Tomasz Molcan
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Olsztyn, Poland
| | - Andrea Alvarez-Sanchez
- Molecular Mechanisms of Placental Invasion, Centro de Investigación Príncipe Felipe, Eduardo Primo Yúfera 3, 46012, Valencia, Spain
| | - Gavin Kelsey
- Epigenetics Programme, The Babraham Institute, Cambridge, CB22 3AT, UK.
- Centre for Trophoblast Research, University of Cambridge, Cambridge, CB2 3EG, UK.
| | - Vicente Perez-Garcia
- Molecular Mechanisms of Placental Invasion, Centro de Investigación Príncipe Felipe, Eduardo Primo Yúfera 3, 46012, Valencia, Spain.
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), 28049, Madrid, Spain.
| | - António M Galvão
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Olsztyn, Poland.
- Epigenetics Programme, The Babraham Institute, Cambridge, CB22 3AT, UK.
- Centre for Trophoblast Research, University of Cambridge, Cambridge, CB2 3EG, UK.
- Department of Comparative Biomedical Sciences, Royal Veterinary College, 4 Royal College Street, London, NW1 0TU, UK.
| |
Collapse
|
16
|
Liu X, Wei X, Wu J, Xu Y, Hu J, Qin C, Chen C, Lin Y. CBLL1 promotes endometrial stromal cell senescence via inhibiting PTEN in recurrent spontaneous abortion. FASEB J 2024; 38:e23833. [PMID: 39012313 DOI: 10.1096/fj.202400972r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/05/2024] [Accepted: 07/09/2024] [Indexed: 07/17/2024]
Abstract
Recurrent spontaneous abortion (RSA) is a common pregnancy-related disorder. Cbl proto-oncogene like 1 (CBLL1) is an E3 ubiquitin ligase, which has been reported to vary with the menstrual cycle in the endometrium. However, whether CBLL1 is involved in the occurrence and development of RSA remains unclear. This study aimed to investigate the effects of CBLL1 on RSA. We analyzed the expression of CBLL1 in the decidua of RSA patients, as well as its functional effects on cellular senescence, oxidative stress, and proliferation of human endometrial stromal cells (HESCs). RNA sequencing was employed to identify a key downstream target gene regulated by CBLL1. We found that CBLL1 was upregulated in the decidua of RSA patients. Additionally, overexpression of CBLL1 promoted HESC senescence, increased oxidative stress levels, and inhibited proliferation. Phosphatase and tensin homolog located on chromosome 10 (PTEN) was identified as one of the important downstream target genes of CBLL1. In vivo experiments demonstrated that CBLL1 overexpression in the endometrium caused higher embryo absorption rate in mice. Consequently, elevated CBLL1 expression is a potential cause of RSA, representing a novel therapeutic target for RSA.
Collapse
Affiliation(s)
- Xueqing Liu
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
- Institute of Birth Defects and Rare Diseases, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaowei Wei
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
- Institute of Birth Defects and Rare Diseases, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jiayi Wu
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
- Institute of Birth Defects and Rare Diseases, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yichi Xu
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
- Institute of Birth Defects and Rare Diseases, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jianing Hu
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
- Institute of Birth Defects and Rare Diseases, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chuanmei Qin
- Department of Obstetrics and Gynecology, the Sixth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Cailian Chen
- Department of Automation, Shanghai Jiao Tong University, Key Laboratory of System Control and Information Processing, Ministry of Education of China, Shanghai, China
| | - Yi Lin
- Department of Obstetrics and Gynecology, the Sixth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
17
|
Tindal K, Cousins FL, Ellery SJ, Palmer KR, Gordon A, Filby CE, Gargett CE, Vollenhoven B, Davies-Tuck ML. Investigating Menstruation and Adverse Pregnancy Outcomes: Oxymoron or New Frontier? A Narrative Review. J Clin Med 2024; 13:4430. [PMID: 39124698 PMCID: PMC11312851 DOI: 10.3390/jcm13154430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/19/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
Not discounting the important foetal or placental contribution, the endometrium is a key determinant of pregnancy outcomes. Given the inherently linked processes of menstruation, pregnancy and parturition with the endometrium, further understanding of menstruation will help to elucidate the maternal contribution to pregnancy. Endometrial health can be assessed via menstrual history and menstrual fluid, a cyclically shed, easily and non-invasively accessible biological sample that represents the distinct, heterogeneous composition of the endometrial environment. Menstrual fluid has been applied to the study of endometriosis, unexplained infertility and early pregnancy loss; however, it is yet to be examined regarding adverse pregnancy outcomes. These adverse outcomes, including preeclampsia, foetal growth restriction (FGR), spontaneous preterm birth and perinatal death (stillbirth and neonatal death), lay on a spectrum of severity and are often attributed to placental dysfunction. The source of this placental dysfunction is largely unknown and may be due to underlying endometrial abnormalities or endometrial interactions during placentation. We present existing evidence for the endometrial contribution to adverse pregnancy outcomes and propose that a more comprehensive understanding of menstruation can provide insight into the endometrial environment, offering great potential value as a diagnostic tool to assess pregnancy risk. As yet, this concept has hardly been explored.
Collapse
Affiliation(s)
- Kirstin Tindal
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia (C.E.G.); (M.L.D.-T.)
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC 3168, Australia; (K.R.P.); (B.V.)
- NHMRC Centre for Research Excellence (CRE) in Stillbirth, Brisbane, QLD 4101, Australia;
| | - Fiona L. Cousins
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia (C.E.G.); (M.L.D.-T.)
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC 3168, Australia; (K.R.P.); (B.V.)
| | - Stacey J. Ellery
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia (C.E.G.); (M.L.D.-T.)
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC 3168, Australia; (K.R.P.); (B.V.)
| | - Kirsten R. Palmer
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC 3168, Australia; (K.R.P.); (B.V.)
- Women’s and Newborn Program, Monash Health, Clayton, VIC 3168, Australia
| | - Adrienne Gordon
- NHMRC Centre for Research Excellence (CRE) in Stillbirth, Brisbane, QLD 4101, Australia;
- Central Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
| | - Caitlin E. Filby
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC 3168, Australia; (K.R.P.); (B.V.)
| | - Caroline E. Gargett
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia (C.E.G.); (M.L.D.-T.)
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC 3168, Australia; (K.R.P.); (B.V.)
| | - Beverley Vollenhoven
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC 3168, Australia; (K.R.P.); (B.V.)
- Women’s and Newborn Program, Monash Health, Clayton, VIC 3168, Australia
| | - Miranda L. Davies-Tuck
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia (C.E.G.); (M.L.D.-T.)
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC 3168, Australia; (K.R.P.); (B.V.)
- NHMRC Centre for Research Excellence (CRE) in Stillbirth, Brisbane, QLD 4101, Australia;
| |
Collapse
|
18
|
Kawamura K, Matsumura Y, Kawamura T, Araki H, Hamada N, Kuramoto K, Yagi H, Onoyama I, Asanoma K, Kato K. Endometrial senescence is mediated by interleukin 17 receptor B signaling. Cell Commun Signal 2024; 22:363. [PMID: 39010112 PMCID: PMC11247761 DOI: 10.1186/s12964-024-01740-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 07/06/2024] [Indexed: 07/17/2024] Open
Abstract
BACKGROUND We previously identified Il17RB, a member of the IL17 superfamily, as a candidate marker gene for endometrial aging. While IL17RB has been linked to inflammation and malignancies in several organ systems, its function in the endometrium has not been investigated and is thus poorly understood. In the present study, we performed a functional analysis of this receptor with the aim of determining the effects of its age-associated overexpression on the uterine environment. METHODS We analyzed IL17RB-related signaling pathways and downstream gene expression in an immortalized human endometrial glandular epithelial cell line ("hEM") forced to express the receptor via lentiviral transduction ("IL17RB-hEM"). We also prepared endometrial organoids from human endometrial tissue sourced from hysterectomy patients ("patient-derived EOs") and exposed them to cytokines that are upregulated by IL17RB expression to investigate changes in organoid-forming capacity and senescence markers. We analyzed RNA-seq data (GEO accession number GSE132886) from our previous study to identify the signaling pathways associated with altered IL17RB expression. We also analyzed the effects of the JNK pathway on organoid-forming capacity. RESULTS Stimulation with interleukin 17B enhanced the NF-κB pathway in IL17RB-hEM, resulting in significantly elevated expression of the genes encoding the senescence associated secretory phenotype (SASP) factors IL6, IL8, and IL1β. Of these cytokines, IL1β inhibited endometrial organoid growth. Bioinformatics analysis showed that the JNK signaling pathway was associated with age-related variation in IL17RB expression. When IL17RB-positive cells were cultured in the presence of IL17B, their organoid-forming capacity was slightly but non-significantly lower than in unexposed IL17RB-positive cells, but when IL17B was paired with a JNK inhibitor (SP600125), it was restored to control levels. Further, IL1β exposure significantly reduced organoid-forming capacity and increased p21 expression in endometrial organoids relative to non-exposure (control), but when IL1β was paired with SP600125, both indicators were restored to levels comparable to the control condition. CONCLUSIONS We have revealed an association between IL17RB, whose expression increases in the endometrial glandular epithelium with advancing age, and cellular senescence. Using human endometrial organoids as in vitro model, we found that IL1β inhibits cell proliferation and leads to endometrial senescence via the JNK pathway.
Collapse
Affiliation(s)
- Keiko Kawamura
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yumiko Matsumura
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Teruhiko Kawamura
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Hiromitsu Araki
- Department of Business and Technology Management, Faculty of Economics, Kyushu University, Fukuoka, Japan
| | - Norio Hamada
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Kazutaka Kuramoto
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Hiroshi Yagi
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Ichiro Onoyama
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Kazuo Asanoma
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Kiyoko Kato
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka, 812-8582, Japan.
| |
Collapse
|
19
|
Xu Z, Liu N, Gao L, Yu D. Application of Chromosomal Microarray Analysis in Genetic Reasons of Miscarriage Tissues. Appl Clin Genet 2024; 17:85-93. [PMID: 38835973 PMCID: PMC11149622 DOI: 10.2147/tacg.s461674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 05/14/2024] [Indexed: 06/06/2024] Open
Abstract
Background The potential causes of miscarriage are very complex, including genetic, immune, infectious, and endocrine factors. 50%-60% of miscarriages are caused by chromosomal abnormalities. Chromosomal microarray analysis (CMA) is a key tool in this context, capable of detecting not only copy number variations (CNV) but also loss of heterozygosity (LOH). CMA has been used as a tool to investigate the genetic reasons for miscarriage. Methods In our study, chromosomal microarray analysis (CMA) conducted 1220 miscarriage villous tissues. The results from this technology were used to identify the genetic reasons for miscarriage and evaluated strategies for subsequent pre-pregnancy planning. Results Here, the abnormality rate of miscarriage was 56.07%(684/1220). The aneuploidy rate accounted for 81.14%(555/684), and was significantly higher in group >35-year-old age. The second most common genetic reason for miscarriage was polyploidy, accounting for 10.09%(69/684). Additionally, we discovered loss of heterozygosity (LOH) in a small percentage of cases, accounting for 2.20%(15/684) reason for miscarriage genetic reasons, due to the advantage of CMA can detect isodisomy (a kind of uniparental disomy). 45 cases (6.58%) with copy number variants, which due to the CMA can detect copy number variations. Conclusion Our study indicated that miscarriage villous tissues should be performed genetic analysis, seek help from professional genetic counseling.
Collapse
Affiliation(s)
- Zhen Xu
- Center for Medical Genetics and Prenatal Diagnosis, Shandong Provincial Maternal and Child Health Care Hospital, Affiliated to Qingdao University, Jinan, Shandong, 250000, People's Republic of China
- Shandong Medicine and Health Key Laboratory of Birth Defect Prevention and Genetic Medicine, Jinan, Shandong, People's Republic of China
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Jinan, Shandong, People's Republic of China
| | - Na Liu
- Center for Medical Genetics and Prenatal Diagnosis, Shandong Provincial Maternal and Child Health Care Hospital, Affiliated to Qingdao University, Jinan, Shandong, 250000, People's Republic of China
- Shandong Medicine and Health Key Laboratory of Birth Defect Prevention and Genetic Medicine, Jinan, Shandong, People's Republic of China
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Jinan, Shandong, People's Republic of China
| | - Lu Gao
- Center for Medical Genetics and Prenatal Diagnosis, Shandong Provincial Maternal and Child Health Care Hospital, Affiliated to Qingdao University, Jinan, Shandong, 250000, People's Republic of China
- Shandong Medicine and Health Key Laboratory of Birth Defect Prevention and Genetic Medicine, Jinan, Shandong, People's Republic of China
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Jinan, Shandong, People's Republic of China
| | - Dongyi Yu
- Center for Medical Genetics and Prenatal Diagnosis, Shandong Provincial Maternal and Child Health Care Hospital, Affiliated to Qingdao University, Jinan, Shandong, 250000, People's Republic of China
- Shandong Medicine and Health Key Laboratory of Birth Defect Prevention and Genetic Medicine, Jinan, Shandong, People's Republic of China
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Jinan, Shandong, People's Republic of China
| |
Collapse
|
20
|
Sun R, Feng J, Wang J. Underlying Mechanisms and Treatment of Cellular Senescence-Induced Biological Barrier Interruption and Related Diseases. Aging Dis 2024; 15:612-639. [PMID: 37450933 PMCID: PMC10917536 DOI: 10.14336/ad.2023.0621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/21/2023] [Indexed: 07/18/2023] Open
Abstract
Given its increasing prevalence, aging is of great concern to researchers worldwide. Cellular senescence is a physiological or pathological cellular state caused by aging and a prominent risk factor for the interruption of the integrity and functionality of human biological barriers. Health barriers play an important role in maintaining microenvironmental homeostasis within the body. The senescence of barrier cells leads to barrier dysfunction and age-related diseases. Cellular senescence has been reported to be a key target for the prevention of age-related barrier diseases, including Alzheimer's disease, Parkinson's disease, age-related macular degeneration, diabetic retinopathy, and preeclampsia. Drugs such as metformin, dasatinib, quercetin, BCL-2 inhibitors, and rapamycin have been shown to intervene in cellular senescence and age-related diseases. In this review, we conclude that cellular senescence is involved in age-related biological barrier impairment. We further outline the cellular pathways and mechanisms underlying barrier impairment caused by cellular senescence and describe age-related barrier diseases associated with senescent cells. Finally, we summarize the currently used anti-senescence pharmacological interventions and discuss their therapeutic potential for preventing age-related barrier diseases.
Collapse
Affiliation(s)
- Ruize Sun
- Department of Neurology, Shengjing Hospital, Affiliated Hospital of China Medical University, Shenyang, China
| | - Juan Feng
- Department of Neurology, Shengjing Hospital, Affiliated Hospital of China Medical University, Shenyang, China
| | - Jue Wang
- Department of Neurology, Shengjing Hospital, Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
21
|
Qiao QF, Wang LQ, Yu DE, Li N, Xu QJ, Zhou YJ. Effect of beta-cypermethrin on the reproductive capacity of female mice in advanced age. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 107:104410. [PMID: 38423490 DOI: 10.1016/j.etap.2024.104410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/07/2024] [Accepted: 02/26/2024] [Indexed: 03/02/2024]
Abstract
The aim of the present study was to investigate whether exposure to pesticides beta-cypermethrin (β-CYP) harms the reproductive capacity of advanced-age female mice. The results evidenced that peri-implantation β-CYP exposure significantly reduced the number of fetuses per advanced-age female in the first litter, and the number and weight of implantation sites. The levels of decidualization markers were significantly reduced in β-CYP-administered advanced-age mice. Lower expression of Pcna, Cdk6, Foxo1, Ki67, and p62 protein and mRNA was found in the decidua of β-CYP-treated advanced-age mice. The levels of Bax, cleaved caspase-3, Lc3a/b, Atg, mTOR, and p-mTOR protein, and the ratio of p-mTOR/mTOR protein expression were clearly downregulated by peri-implantation β-CYP exposure. These results indicated that peri-implantation β-CYP exposure may elevate the decline in reproductive capacity of early pregnant mice in advanced age.
Collapse
Affiliation(s)
- Qian-Feng Qiao
- International School of Public Health and One Health, Hainan Medical University, Hainan Province 571199, People's Republic of China
| | - Li-Qing Wang
- Maternal, Child and Adolescent Health, International School of Public Health and One Health, Hainan Medical University, Hainan Province 571199, People's Republic of China
| | - De-E Yu
- International School of Public Health and One Health, Hainan Medical University, Hainan Province 571199, People's Republic of China
| | - Na Li
- International School of Public Health and One Health, Hainan Medical University, Hainan Province 571199, People's Republic of China
| | - Qiong-Jun Xu
- International School of Public Health and One Health, Hainan Medical University, Hainan Province 571199, People's Republic of China
| | - Yong-Jiang Zhou
- Heinz Mehlhorn Academician Workstation, Maternal, Child and Adolescent Health, International School of Public Health and One Health, Hainan Medical University, Hainan Province 571199, People's Republic of China.
| |
Collapse
|
22
|
Wei S, Tang W, Chen D, Xiong J, Xue L, Dai Y, Guo Y, Wu C, Dai J, Wu M, Wang S. Multiomics insights into the female reproductive aging. Ageing Res Rev 2024; 95:102245. [PMID: 38401570 DOI: 10.1016/j.arr.2024.102245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/22/2024] [Accepted: 02/20/2024] [Indexed: 02/26/2024]
Abstract
The human female reproductive lifespan significantly diminishes with age, leading to decreased fertility, reduced fertility quality and endocrine function disorders. While many aspects of aging in general have been extensively documented, the precise mechanisms governing programmed aging in the female reproductive system remain elusive. Recent advancements in omics technologies and computational capabilities have facilitated the emergence of multiomics deep phenotyping. Through the application and refinement of various high-throughput omics methods, a substantial volume of omics data has been generated, deepening our comprehension of the pathogenesis and molecular underpinnings of reproductive aging. This review highlights current and emerging multiomics approaches for investigating female reproductive aging, encompassing genomics, epigenomics, transcriptomics, proteomics, metabolomics, and microbiomics. We elucidate their influence on fundamental cell biology and translational research in the context of reproductive aging, address the limitations and current challenges associated with multiomics studies, and offer a glimpse into future prospects.
Collapse
Affiliation(s)
- Simin Wei
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, China; Ministry of Education, Key Laboratory of Cancer Invasion and Metastasis, Wuhan, China
| | - Weicheng Tang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, China; Ministry of Education, Key Laboratory of Cancer Invasion and Metastasis, Wuhan, China
| | - Dan Chen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, China; Ministry of Education, Key Laboratory of Cancer Invasion and Metastasis, Wuhan, China
| | - Jiaqiang Xiong
- Department of Obstetrics and Gynecology, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Liru Xue
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, China; Ministry of Education, Key Laboratory of Cancer Invasion and Metastasis, Wuhan, China
| | - Yun Dai
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, China; Ministry of Education, Key Laboratory of Cancer Invasion and Metastasis, Wuhan, China
| | - Yican Guo
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, China; Ministry of Education, Key Laboratory of Cancer Invasion and Metastasis, Wuhan, China
| | - Chuqing Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, China; Ministry of Education, Key Laboratory of Cancer Invasion and Metastasis, Wuhan, China
| | - Jun Dai
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, China; Ministry of Education, Key Laboratory of Cancer Invasion and Metastasis, Wuhan, China.
| | - Meng Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, China; Ministry of Education, Key Laboratory of Cancer Invasion and Metastasis, Wuhan, China.
| | - Shixuan Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, China; Ministry of Education, Key Laboratory of Cancer Invasion and Metastasis, Wuhan, China.
| |
Collapse
|
23
|
Yen IW, Kuo CH, Lin MW, Tai YY, Chen KY, Chen SC, Lin CH, Hsu CY, Lee CN, Lin SY, Li HY, Fan KC. Advanced maternal age-related clustering of metabolic abnormalities is associated with risks of adverse pregnancy outcomes. J Formos Med Assoc 2024; 123:325-330. [PMID: 38097427 DOI: 10.1016/j.jfma.2023.11.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 03/16/2024] Open
Abstract
AIMS Advanced maternal age (AMA) is correlated with higher risk of adverse pregnancy outcomes while the pathophysiology remains unclear. Our study aimed to investigate whether AMA is linked to the clustering of metabolic abnormalities, which in turn is associated with an increased risk of adverse pregnancy outcomes. METHOD A total of 857 pregnant woman were recruited in a prospective cohort at National Taiwan University Hospital, from November 2013 to April 2018. Metabolic abnormalities during pregnancy were defined as following: fasting plasma glucose ≥92 mg/dl, body mass index (BMI) ≥24 kg/m2, plasma high-density lipoprotein cholesterol <50 mg/dl, hyper-triglyceridemia (≥140 mg/dl in the first trimester or ≥220 mg/dl in the second trimester), and blood pressure ≥130/85 mmHg. RESULT Incidence of large for gestational age (LGA), primary caesarean section (CS), and the presence of any adverse pregnancy outcome increased with age. The advanced-age group tended to have more metabolic abnormalities in both the first and the second trimesters. There was a significant association between the number of metabolic abnormalities in the first and the second trimesters and the incidence of LGA, gestational hypertension or preeclampsia, primary CS, preterm birth, and the presence of any adverse pregnancy outcome, adjusted for maternal age. CONCLUSION AMA is associated with clustering of metabolic abnormalities during pregnancy, and clustering of metabolic abnormalities is correlated with increased risk of adverse pregnancy outcomes.
Collapse
Affiliation(s)
- I-Weng Yen
- Department of Internal Medicine, National Taiwan University Hospital Hsin-Chu Branch, No. 2, Sec. 1, Shengyi Rd., Zhubei City, Hsinchu County, Taiwan; National Taiwan University College of Medicine Graduate Institute of Clinical Medicine, No. 1, Section 1, Ren'ai Road, Taipei, Taiwan
| | - Chun-Heng Kuo
- National Taiwan University College of Medicine Graduate Institute of Clinical Medicine, No. 1, Section 1, Ren'ai Road, Taipei, Taiwan; Department of Internal Medicine, Fu Jen Catholic University Hospital, Fu Jen Catholic University, No. 69, Guizi Rd, New Taipei City, Taiwan
| | - Ming-Wei Lin
- Department of Obstetrics and Gynecology, National Taiwan University Hospital Hsin-Chu Branch, No. 2, Sec. 1, Shengyi Rd., Zhubei City, Hsinchu County, Taiwan
| | - Yi-Yun Tai
- Department of Obstetrics and Gynecology, National Taiwan University Hospital, No.7, Zhongshan S. Rd, Taipei, Taiwan
| | - Kuan-Yu Chen
- Ansn Clinic, No. 128, Zhongzheng Road, East District, Hsinchu City, Taiwan
| | - Szu-Chieh Chen
- Good Liver Clinic, 9F., No.30, Gongyuan Road, Taipei, Taiwan
| | - Chia-Hung Lin
- National Taiwan University College of Medicine Graduate Institute of Clinical Medicine, No. 1, Section 1, Ren'ai Road, Taipei, Taiwan; Department of Internal Medicine, National Taiwan University Hospital, No.7, Zhongshan S. Rd, Taipei, Taiwan
| | - Chih-Yao Hsu
- Department of Internal Medicine, Taipei City Hospital, Ren-Ai Branch, No.10, Section 4, Ren'ai Road, Taipei, Taiwan
| | - Chien-Nan Lee
- Department of Obstetrics and Gynecology, National Taiwan University Hospital, No.7, Zhongshan S. Rd, Taipei, Taiwan
| | - Shin-Yu Lin
- Department of Obstetrics and Gynecology, National Taiwan University Hospital, No.7, Zhongshan S. Rd, Taipei, Taiwan
| | - Hung-Yuan Li
- Department of Internal Medicine, National Taiwan University Hospital, No.7, Zhongshan S. Rd, Taipei, Taiwan
| | - Kang-Chih Fan
- Department of Internal Medicine, National Taiwan University Hospital Hsin-Chu Branch, No. 2, Sec. 1, Shengyi Rd., Zhubei City, Hsinchu County, Taiwan; National Taiwan University College of Medicine Graduate Institute of Clinical Medicine, No. 1, Section 1, Ren'ai Road, Taipei, Taiwan.
| |
Collapse
|
24
|
Qin CM, Wei XW, Wu JY, Liu XQ, Lin Y. Decreased NSD2 impairs stromal cell proliferation in human endometrium via reprogramming H3K36me2. Reproduction 2024; 167:e230254. [PMID: 38236723 PMCID: PMC10895284 DOI: 10.1530/rep-23-0254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 01/18/2024] [Indexed: 02/17/2024]
Abstract
In brief The proliferation of the endometrium is regulated by histone methylation. This study shows that decreased NSD2 impairs proliferative-phase endometrial stromal cell proliferation in patients with recurrent implantation failure via epigenetic reprogramming of H3K36me2 methylation on the promoter region of MCM7. Abstract Recurrent implantation failure (RIF) is a formidable challenge in assisted reproductive technology because of its unclear molecular mechanism. Impaired human endometrial stromal cell (HESC) proliferation disrupts the rhythm of the menstrual cycle, resulting in devastating disorders between the embryo and the endometrium. The molecular function of histone methylation enzymes in modulating HESC proliferation remains largely uncharacterized. Herein, we found that the levels of histone methyltransferase nuclear receptor binding SET domain protein 2 (NSD2) and the dimethylation of lysine 36 on histone H3 are decreased significantly in the proliferative-phase endometrium of patients with RIF. Knockdown of NSD2 in an HESC cell line markedly impaired cell proliferation and globally reduced H3K36me2 binding to chromatin, leading to altered expression of many genes. Transcriptomic analyses revealed that cell cycle-related gene sets were downregulated in the endometrium of patients with RIF and in NSD2‑knockdown HESCs. Furthermore, RNA-sequencing and CUT&Tag sequencing analysis suggested that NSD2 knockdown reduced the binding of H3K36me2 to the promoter region of cell cycle marker gene MCM7 (encoding minichromosome maintenance complex component 7) and downregulated its expression. The interaction of H3K36me2 with the MCM7 promoter was verified using chromatin immunoprecipitation-quantitative real-time PCR. Our results demonstrated a unifying epigenome-scale mechanism by which decreased NSD2 impairs endometrial stromal cell proliferation in the proliferative-phase endometrium of patients with RIF.
Collapse
Affiliation(s)
- Chuan-Mei Qin
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
- Institute of Birth Defects and Rare Diseases, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiao-Wei Wei
- Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jia-Yi Wu
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
- Institute of Birth Defects and Rare Diseases, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xue-Qing Liu
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
- Institute of Birth Defects and Rare Diseases, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yi Lin
- Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
25
|
Wang Y, Gong Y, Xu Y, Wang X, Shan S, Cheng G, Zhang B. Maternal age-specific risks for adverse birth weights according to gestational weight gain: a prospective cohort in Chinese women older than 30. BMC Pregnancy Childbirth 2024; 24:36. [PMID: 38182970 PMCID: PMC10768087 DOI: 10.1186/s12884-023-06231-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/27/2023] [Indexed: 01/07/2024] Open
Abstract
BACKGROUND It is unclear whether the effects of abnormal gestational weight gain (GWG) on birth outcomes are differently in women with different maternal ages. This study aimed to investigate maternal age-specific association between GWG and adverse birth weights in Chinese women older than 30. METHODS 19,854 mother-child dyads were selected from a prospective cohort study in Southwest China between 2019 and 2022. Logistic regression model was used to assess the association between GWG, which defined by the 2009 Institute of Medicine guidelines, and adverse birth weights including large- and small-for-gestational-age (LGA and SGA), stratified by maternal age (31-34 years and ≥ 35 years). RESULTS In both maternal age groups, excessive and insufficient GWG were associated with increased odds of LGA and SGA, respectively. After women were categorized by pre-pregnancy body mass index, the associations remained significant in women aged 31-34 years, whereas for women aged ≥ 35 years, the association between excessive GWG and the risk of LGA was only significant in normal weight and overweight/obese women, and the significant effect of insufficient GWG on the risk of SGA was only observed in underweight and overweight/obese women. Moreover, among overweight/obese women, the magnitude of the association between insufficient GWG and the risk of SGA was greater in those aged ≥ 35 years (31-34 years: OR 2.08, 95% CI 1.19-3.55; ≥35 years: OR 2.65, 95% CI 1.47-4.74), while the impact of excessive GWG on the risk of LGA was more pronounced in those aged 31-34 years (31-34 years: OR 2.18, 95% CI 1.68-2.88; ≥35 years: OR 1.71, 95% CI 1.30-2.25). CONCLUSIONS The stronger associations between abnormal GWG and adverse birth weights were mainly observed in women aged 31-34 years, and more attention should be paid to this age group.
Collapse
Affiliation(s)
- Yidi Wang
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, and West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Yunhui Gong
- Department of Gynaecology, West China Women's and Children's Hospital, Sichuan University, Chengdu, China
| | - Yujie Xu
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Department of Pediatrics, West China Women's and Children's Hospital, Sichuan University, Chengdu, China
| | - Xiaoyu Wang
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Department of Pediatrics, West China Women's and Children's Hospital, Sichuan University, Chengdu, China
| | - Shufang Shan
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Department of Pediatrics, West China Women's and Children's Hospital, Sichuan University, Chengdu, China
| | - Guo Cheng
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Department of Pediatrics, West China Women's and Children's Hospital, Sichuan University, Chengdu, China.
| | - Ben Zhang
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, and West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
26
|
Tinelli A, Andjić M, Morciano A, Pecorella G, Malvasi A, D’Amato A, Sparić R. Uterine Aging and Reproduction: Dealing with a Puzzle Biologic Topic. Int J Mol Sci 2023; 25:322. [PMID: 38203493 PMCID: PMC10778867 DOI: 10.3390/ijms25010322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/17/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
Uterine aging is the process of the senescence of uterine tissue, observed in all middle-aged mammals. Since the aging-related changes in the uterus are associated with infertility and poor pregnancy outcomes, with a lack of studies discussing uterine aging, authors reviewed uterine aging and its consequences on reproduction. MEDLINE, Scopus, and PubMed searches during the years 1990-2023 were performed using a combination of keywords and terms on such topics. According to the author's evaluation, articles were identified, selected, and included in this narrative review. The aging process has an unfavorable impact on the uterus of mammals. There are different and selected molecular pathways related to uterine aging in humans and animals. Uterine aging impairs the function of the uterine myometrium, neurofibers of the human uterus, and human endometrium. These biological pathways modulate oxidative stress, anti-inflammatory response, inflammation, mitochondrial function, DNA damage repair, etc. All these dysregulations have a role in poorer reproductive performance and pregnancy outcomes in older mammals. The most recent data suggest that uterine aging is accompanied by genetic, epigenetic, metabolic, and immunological changes. Uterine aging has a negative impact on the reproductive performance in mammalian species, but it could be potentially modulated by pharmacological agents, such as quercetin and dasatinib.
Collapse
Affiliation(s)
- Andrea Tinelli
- Department of Obstetrics and Gynecology and CERICSAL (CEntro di RIcercaClinicoSALentino), “Veris delli Ponti Hospital”, 73020 Scorrano, LE, Italy
| | - Mladen Andjić
- Clinic for Gynecology and Obstetrics, University Clinical Centre of Serbia, 11000 Belgrade, Serbia; (M.A.); (R.S.)
| | - Andrea Morciano
- Department of Gynecology and Obstetrics, Pia Fondazione “Card. G. Panico”, 73039 Tricase, LE, Italy;
| | - Giovanni Pecorella
- Department of Obstetrics, Gynecology and Reproductive Medicine, Saarland University, 66421 Homburg, Saar, Germany;
| | - Antonio Malvasi
- Department of Biomedical Sciences and Human Oncology, University of Bari, 70121 Bari, BA, Italy;
| | - Antonio D’Amato
- Unit of Obstetrics and Gynecology, University of Bari, 70121 Bari, BA, Italy;
| | - Radmila Sparić
- Clinic for Gynecology and Obstetrics, University Clinical Centre of Serbia, 11000 Belgrade, Serbia; (M.A.); (R.S.)
- School of Medicine, University of Belgrade, 11080 Belgrade, Serbia
| |
Collapse
|
27
|
Trohl J, Schindler M, Buske M, de Nivelle J, Toto Nienguesso A, Navarrete Santos A. Advanced maternal age leads to changes within the insulin/IGF system and lipid metabolism in the reproductive tract and preimplantation embryo: insights from the rabbit model. Mol Hum Reprod 2023; 29:gaad040. [PMID: 38001038 DOI: 10.1093/molehr/gaad040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 10/16/2023] [Indexed: 11/26/2023] Open
Abstract
Reproductive potential in women declines with age. The impact of ageing on embryo-maternal interactions is still unclear. Rabbits were used as a reproductive model to investigate maternal age-related alterations in reproductive organs and embryos on Day 6 of pregnancy. Blood, ovaries, endometrium, and blastocysts from young (16-20 weeks) and advanced maternal age phase (>108 weeks, old) rabbits were analysed at the mRNA and protein levels to investigate the insulin-like growth factor (IGF) system, lipid metabolism, and stress defence system. Older rabbits had lower numbers of embryos at Day 6 of pregnancy. Plasma insulin and IGF levels were reduced, which was accompanied by paracrine regulation of IGFs and their receptors in ovaries and endometrium. Embryos adapted to hormonal changes as indicated by reduced embryonic IGF1 and 2 levels. Aged reproductive organs increased energy generation from the degradation of fatty acids, leading to higher oxidative stress. Stress markers, including catalase, superoxide dismutase 2, and receptor for advanced glycation end products were elevated in ovaries and endometrium from aged rabbits. Embryonic fatty acid uptake and β-oxidation were increased in both embryonic compartments (embryoblast and trophoblast) in old rabbits, associated with minor changes in the oxidative and glycative stress defence systems. In summary, the insulin/IGF system, lipid metabolism, and stress defence were dysregulated in reproductive tissues of older rabbits, which is consistent with changes in embryonic metabolism and stress defence. These data highlight the crucial influence of maternal age on uterine adaptability and embryo development.
Collapse
Affiliation(s)
- Juliane Trohl
- Department of Anatomy and Cell Biology, Martin Luther University Faculty of Medicine, Halle (Saale), Germany
| | - Maria Schindler
- Department of Anatomy and Cell Biology, Martin Luther University Faculty of Medicine, Halle (Saale), Germany
| | - Maximilian Buske
- Department of Anatomy and Cell Biology, Martin Luther University Faculty of Medicine, Halle (Saale), Germany
| | - Johanna de Nivelle
- Department of Anatomy and Cell Biology, Martin Luther University Faculty of Medicine, Halle (Saale), Germany
| | - Alicia Toto Nienguesso
- Department of Anatomy and Cell Biology, Martin Luther University Faculty of Medicine, Halle (Saale), Germany
| | - Anne Navarrete Santos
- Department of Anatomy and Cell Biology, Martin Luther University Faculty of Medicine, Halle (Saale), Germany
| |
Collapse
|
28
|
Zhang J, Mu F, Guo Z, Cai Z, Zeng X, Du L, Wang F. Chromosome analysis of foetal tissue from 1903 spontaneous abortion patients in 5 regions of China: a retrospective multicentre study. BMC Pregnancy Childbirth 2023; 23:818. [PMID: 38007414 PMCID: PMC10675863 DOI: 10.1186/s12884-023-06108-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 11/04/2023] [Indexed: 11/27/2023] Open
Abstract
BACKGROUND Abnormal foetal tissue chromosome karyotypes are one of the important pathogenic factors for spontaneous abortion (SA). To investigate the age and abnormal foetal karyotypes of 1903 couples who experienced SA. METHODS A retrospective multicentre study collected age and foetal tissue karyotypes CNV-seq data of 1903 SA couples from 6 hospitals in 5 regions from January 2017 to March 2022. The distribution and correlation of abnormal foetal tissue karyotypes were evaluated by using regions and age. RESULTS In our study, 1140 couples (60.5% of the total) had abnormal foetal tissue chromosome karyotypes in all regions. We found that there were differences in the number of abnormal foetal tissue chromosome karyotypes, of which the incidence of trisomy was higher. At the same time, the populations situated in the eastern region had a more triploid (15.5%) distribution, trisomy (58.1%) in the southern region, mosaicism (14.8%) and microduplication (31.7%) in the southwestern region, microdeletion (16.7%) in the northern region. There are variances across areas, and it is more common in the north. The incidence risk of prenatal chromosomal abnormalities varied according to age group. CONCLUSION The findings of this study suggest that the karyotypes of patients with abnormal foetal tissue chromosome abortion in different regions were different. Meanwhile, patients ≥ 35 years old had a higher risk of abnormal foetal tissue chromosome abortion.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Reproductive Medicine, Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - Fangxiang Mu
- Department of Reproductive Medicine, Lanzhou University Second Hospital, Lanzhou, 730030, China
- Obstetrics Department, First Affiliated Hospital of Chongqing Medical University, Chongqing, 400042, China
| | - Zhongjie Guo
- Obstetrics Department, Third Hospital Affiliated to Guangdong Pharmaceutical University, Guangdong, 510410, China
| | - Zhuhua Cai
- Gynaecology Department, Rui'an People's Hospital, Wenzhou, 325207, China
| | - Xianghui Zeng
- Department of Reproductive Medicine, Lanzhou University Second Hospital, Lanzhou, 730030, China
- Department of Reproductive Medicine, Qinghai Provincial People's Hospital, Xining, 810007, China
| | - Lirong Du
- Eugenics Clinical Department, Hebei Reproductive Health Hospital, Shijiazhuang, 050090, China
| | - Fang Wang
- Department of Reproductive Medicine, Lanzhou University Second Hospital, Lanzhou, 730030, China.
| |
Collapse
|
29
|
Thapa R, Druessel L, Ma L, Torry DS, Bany BM. ATOH8 Expression Is Regulated by BMP2 and Plays a Key Role in Human Endometrial Stromal Cell Decidualization. Endocrinology 2023; 165:bqad188. [PMID: 38060684 PMCID: PMC10729865 DOI: 10.1210/endocr/bqad188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Indexed: 12/21/2023]
Abstract
During the secretory phase of the menstrual cycle, elongated fibroblast-like mesenchymal cells in the uterine endometrium begin to transdifferentiate into polygonal epithelioid-like (decidual) cells. This decidualization process continues more broadly during early pregnancy, and the resulting decidual tissue supports successful embryo implantation and placental development. This study was carried out to determine if atonal basic helix-loop-helix transcription factor 8 (ATOH8) plays a role in human endometrial stromal fibroblast (ESF) decidualization. ATOH8 messenger RNA and protein expression levels significantly increased in human ESF cells undergoing in vitro decidualization, with the protein primarily localized to the nucleus. When ATOH8 expression was silenced, the ability of the cells to undergo decidualization was significantly diminished. Overexpression of ATOH8 enhanced the expression of many decidualization markers. Silencing the expression of ATOH8 reduced the expression of FZD4, FOXO1, and several known FOXO1-downstream targets during human ESF cell decidualization. Therefore, ATOH8 may be a major upstream regulator of the WNT/FZD-FOXO1 pathway, previously shown to be critical for human endometrial decidualization. Finally, we explored possible regulators of ATOH8 expression during human ESF decidualization. BMP2 significantly enhanced ATOH8 expression when cells were stimulated to undergo decidualization, while an ALK2/3 inhibitor reduced ATOH8 expression. Finally, although the steroids progesterone plus estradiol did not affect ATOH8 expression, the addition of cyclic adenosine monophosphate (cAMP) analogue alone represented the major effect of ATOH8 expression when cells were stimulated to undergo decidualization. Our results suggest that ATOH8 plays a crucial role in human ESF decidualization and that BMP2 plus cAMP are major regulators of ATOH8 expression.
Collapse
Affiliation(s)
- Rupak Thapa
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
| | - Logan Druessel
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
| | - Liang Ma
- Division of Dermatology, Department of Medicine, Washington University School of Medicine, St Louis, MO 63018, USA
| | - Donald S Torry
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL 62702, USA
| | - Brent M Bany
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
| |
Collapse
|
30
|
Pathare ADS, Loid M, Saare M, Gidlöf SB, Zamani Esteki M, Acharya G, Peters M, Salumets A. Endometrial receptivity in women of advanced age: an underrated factor in infertility. Hum Reprod Update 2023; 29:773-793. [PMID: 37468438 PMCID: PMC10628506 DOI: 10.1093/humupd/dmad019] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/24/2023] [Indexed: 07/21/2023] Open
Abstract
BACKGROUND Modern lifestyle has led to an increase in the age at conception. Advanced age is one of the critical risk factors for female-related infertility. It is well known that maternal age positively correlates with the deterioration of oocyte quality and chromosomal abnormalities in oocytes and embryos. The effect of age on endometrial function may be an equally important factor influencing implantation rate, pregnancy rate, and overall female fertility. However, there are only a few published studies on this topic, suggesting that this area has been under-explored. Improving our knowledge of endometrial aging from the biological (cellular, molecular, histological) and clinical perspectives would broaden our understanding of the risks of age-related female infertility. OBJECTIVE AND RATIONALE The objective of this narrative review is to critically evaluate the existing literature on endometrial aging with a focus on synthesizing the evidence for the impact of endometrial aging on conception and pregnancy success. This would provide insights into existing gaps in the clinical application of research findings and promote the development of treatment options in this field. SEARCH METHODS The review was prepared using PubMed (Medline) until February 2023 with the keywords such as 'endometrial aging', 'receptivity', 'decidualization', 'hormone', 'senescence', 'cellular', 'molecular', 'methylation', 'biological age', 'epigenetic', 'oocyte recipient', 'oocyte donation', 'embryo transfer', and 'pregnancy rate'. Articles in a language other than English were excluded. OUTCOMES In the aging endometrium, alterations occur at the molecular, cellular, and histological levels suggesting that aging has a negative effect on endometrial biology and may impair endometrial receptivity. Additionally, advanced age influences cellular senescence, which plays an important role during the initial phase of implantation and is a major obstacle in the development of suitable senolytic agents for endometrial aging. Aging is also accountable for chronic conditions associated with inflammaging, which eventually can lead to increased pro-inflammation and tissue fibrosis. Furthermore, advanced age influences epigenetic regulation in the endometrium, thus altering the relation between its epigenetic and chronological age. The studies in oocyte donation cycles to determine the effect of age on endometrial receptivity with respect to the rates of implantation, clinical pregnancy, miscarriage, and live birth have revealed contradictory inferences indicating the need for future research on the mechanisms and corresponding causal effects of women's age on endometrial receptivity. WIDER IMPLICATIONS Increasing age can be accountable for female infertility and IVF failures. Based on the complied observations and synthesized conclusions in this review, advanced age has been shown to have a negative impact on endometrial functioning. This information can provide recommendations for future research focusing on molecular mechanisms of age-related cellular senescence, cellular composition, and transcriptomic changes in relation to endometrial aging. Additionally, further prospective research is needed to explore newly emerging therapeutic options, such as the senolytic agents that can target endometrial aging without affecting decidualization. Moreover, clinical trial protocols, focusing on oocyte donation cycles, would be beneficial in understanding the direct clinical implications of endometrial aging on pregnancy outcomes.
Collapse
Affiliation(s)
- Amruta D S Pathare
- Department of Obstetrics and Gynaecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Marina Loid
- Department of Obstetrics and Gynaecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
- Competence Centre on Health Technologies, Tartu, Estonia
| | - Merli Saare
- Department of Obstetrics and Gynaecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
- Competence Centre on Health Technologies, Tartu, Estonia
| | - Sebastian Brusell Gidlöf
- Division of Obstetrics and Gynaecology, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institute and Karolinska University Hospital, Stockholm, Sweden
- Department of Gynecology and Reproductive Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Masoud Zamani Esteki
- Division of Obstetrics and Gynaecology, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institute and Karolinska University Hospital, Stockholm, Sweden
- Department of Clinical Genetics, Maastricht University Medical Centre+, Maastricht, The Netherlands
- Department of Genetics and Cell Biology, GROW School for Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands
| | - Ganesh Acharya
- Division of Obstetrics and Gynaecology, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institute and Karolinska University Hospital, Stockholm, Sweden
- Department of Clinical Medicine, Women’s Health and Perinatology Research Group, UiT The Arctic University of Norway, Tromsø, Norway
| | - Maire Peters
- Department of Obstetrics and Gynaecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
- Competence Centre on Health Technologies, Tartu, Estonia
| | - Andres Salumets
- Department of Obstetrics and Gynaecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
- Competence Centre on Health Technologies, Tartu, Estonia
- Division of Obstetrics and Gynaecology, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institute and Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
31
|
van Hoogenhuijze NE, Lahoz Casarramona G, Lensen S, Farquhar C, Kamath MS, Kunjummen AT, Raine-Fenning N, Berntsen S, Pinborg A, Mackens S, Inal ZO, Ng EHY, Mak JSM, Narvekar SA, Martins WP, Steengaard Olesen M, Torrance HL, Mol BW, Eijkemans MJC, Wang R, Broekmans FJM. Endometrial scratching in women undergoing IVF/ICSI: an individual participant data meta-analysis. Hum Reprod Update 2023; 29:721-740. [PMID: 37336552 PMCID: PMC10628489 DOI: 10.1093/humupd/dmad014] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 03/23/2023] [Indexed: 06/21/2023] Open
Abstract
BACKGROUND In IVF/ICSI treatment, the process of embryo implantation is the success rate-limiting step. Endometrial scratching has been suggested to improve this process, but it is unclear if this procedure increases the chance of implantation and live birth (LB) and, if so, for whom, and how the scratch should be performed. OBJECTIVE AND RATIONALE This individual participant data meta-analysis (IPD-MA) aims to answer the question of whether endometrial scratching in women undergoing IVF/ICSI influences the chance of a LB, and whether this effect is different in specific subgroups of women. After its incidental discovery in 2000, endometrial scratching has been suggested to improve embryo implantation. Numerous randomized controlled trials (RCTs) have been conducted, showing contradicting results. Conventional meta-analyses were limited by high within- and between-study heterogeneity, small study samples, and a high risk of bias for many of the trials. Also, the data integrity of several trials have been questioned. Thus, despite numerous RCTs and a multitude of conventional meta-analyses, no conclusion on the clinical effectiveness of endometrial scratching could be drawn. An IPD-MA approach is able to overcome many of these problems because it allows for increased uniformity of outcome definitions, can filter out studies with data integrity concerns, enables a more precise estimation of the true treatment effect thanks to adjustment for participant characteristics and not having to make the assumptions necessary in conventional meta-analyses, and because it allows for subgroup analysis. SEARCH METHODS A systematic literature search identified RCTs on endometrial scratching in women undergoing IVF/ICSI. Authors of eligible studies were invited to share original data for this IPD-MA. Studies were assessed for risk of bias (RoB) and integrity checks were performed. The primary outcome was LB, with a one-stage intention to treat (ITT) as the primary analysis. Secondary analyses included as treated (AT), and the subset of women that underwent an embryo transfer (AT+ET). Treatment-covariate interaction for specific participant characteristics was analyzed in AT+ET. OUTCOMES Out of 37 published and 15 unpublished RCTs (7690 participants), 15 RCTs (14 published, one unpublished) shared data. After data integrity checks, we included 13 RCTs (12 published, one unpublished) representing 4112 participants. RoB was evaluated as 'low' for 10/13 RCTs. The one-stage ITT analysis for scratch versus no scratch/sham showed an improvement of LB rates (odds ratio (OR) 1.29 [95% CI 1.02-1.64]). AT, AT+ET, and low-RoB-sensitivity analyses yielded similar results (OR 1.22 [95% CI 0.96-1.54]; OR 1.25 [95% CI 0.99-1.57]; OR 1.26 [95% CI 1.03-1.55], respectively). Treatment-covariate interaction analysis showed no evidence of interaction with age, number of previous failed embryo transfers, treatment type, or infertility cause. WIDER IMPLICATIONS This is the first meta-analysis based on IPD of more than 4000 participants, and it demonstrates that endometrial scratching may improve LB rates in women undergoing IVF/ICSI. Subgroup analysis for age, number of previous failed embryo transfers, treatment type, and infertility cause could not identify subgroups in which endometrial scratching performed better or worse. The timing of endometrial scratching may play a role in its effectiveness. The use of endometrial scratching in clinical practice should be considered with caution, meaning that patients should be properly counseled on the level of evidence and the uncertainties.
Collapse
Affiliation(s)
- Nienke E van Hoogenhuijze
- Department of Gynaecology & Reproductive Medicine, University Medical Centre Utrecht, Utrecht University, Utrecht, the Netherlands
| | | | - Sarah Lensen
- Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, VIC, Australia
| | - Cindy Farquhar
- Department of Obstetrics and Gynaecology, University of Auckland, Auckland, New Zealand
| | - Mohan S Kamath
- Department of Reproductive Medicine, Christian Medical College, Vellore, Tamil Nadu, India
| | - Aleyamma T Kunjummen
- Department of Reproductive Medicine, Christian Medical College, Vellore, Tamil Nadu, India
| | - Nick Raine-Fenning
- Nurture Fertility, The Fertility Partnership, Nottingham, UK
- School of Medicine, University of Nottingham, Nottingham, UK
| | - Sine Berntsen
- Department of Obstetrics and Gynaecology, Fertility Clinic, Hvidovre, Copenhagen, Denmark
- University Hospital Hvidovre, Hvidovre, Denmark
| | - Anja Pinborg
- Fertility Clinic, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Shari Mackens
- Centre for Reproductive Medicine, Universitair Ziekenhuis Brussel (UZ Brussel), Jette, Belgium
| | - Zeynep Ozturk Inal
- Department of Obstetrics, Konya Education and Research Hospital, Konya, Turkey
| | - Ernest H Y Ng
- Department of Obstetrics and Gynecology, The University of Hong Kong, Queen Mary Hospital, Hong Kong SAR
| | - Jennifer S M Mak
- Department of Obstetrics and Gynaecology, Assisted Reproduction Technology Unit, Prince of Wales Hospital, the Chinese University of Hong Kong 9F, Hong Kong SAR
| | - Sachin A Narvekar
- Department of Reproductive Medicine, Bangalore Assisted Conception Center, Bangalore, Karnataka, India
| | | | | | - Helen L Torrance
- Department of Gynaecology & Reproductive Medicine, University Medical Centre Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Ben W Mol
- Department of Obstetrics and Gynaecology, Monash Medical Centre, Monash University, Clayton, VIC, Australia
- School of Medicine, Medical Sciences and Nutrition, Aberdeen Centre for Women’s Health Research, University of Aberdeen, Aberdeen, UK
| | - Marinus J C Eijkemans
- Department of Data Science and Biostatistics, Julius Center for Health Sciences and Primary Care, University Medical Centre Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Rui Wang
- Department of Obstetrics and Gynaecology, Monash Medical Centre, Monash University, Clayton, VIC, Australia
| | - Frank J M Broekmans
- Department of Gynaecology & Reproductive Medicine, University Medical Centre Utrecht, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
32
|
Zhang Y, Li J, Shi W, Lu L, Zhou Q, Zhang H, Liu R, Pu Y, Yin L. Di(2-ethylhexyl) phthalate induces reproductive toxicity and transgenerational reproductive aging in Caenorhabditis elegans. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 336:122259. [PMID: 37541378 DOI: 10.1016/j.envpol.2023.122259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/22/2023] [Accepted: 07/24/2023] [Indexed: 08/06/2023]
Abstract
With the large-scale production and use of plastic products, the global plastic pollution problem is becoming more and more serious. The plasticizer di (2-ethylhexyl) phthalate (DEHP), which is widely used in the production of plastics, has caused great concern for the health of the population. Exposure of organisms to DEHP can cause a variety of health damage, of which reproductive system damage is an important part. At present, there are still few studies on DEHP in reproductive aging, and it is of great significance to explore the role of DEHP in promoting reproductive aging and its underlying mechanism. In this study, the model organism Caenorhabditis elegans (C. elegans) was used to preliminarily explore the mechanism of DEHP-induced female reproductive senescence. The results showed that DEHP reduced the number of offspring and gonad area of C. elegans, resulting in shortened reproductive and life span, abnormal phenotypes in somatic gonad structure including the Emo phenotype, the BOW phenotype, a twisted gonad arm, and atrophied oocytes. Biochemical studies showed that DEHP promoted oxidative stress and autophagy in C. elegans. Further, we found the decreased number of offspring, malformed somatic gonad structure, oxidative damage and autophagy induced by DEHP in parental worms can be inheritance to the not directly exposed offspring.
Collapse
Affiliation(s)
- Ying Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China.
| | - Jingjing Li
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China.
| | - Wei Shi
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China.
| | - Lu Lu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China.
| | - Qian Zhou
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China.
| | - Hu Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China.
| | - Ran Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China.
| | - Yuepu Pu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China.
| | - Lihong Yin
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China.
| |
Collapse
|
33
|
Suvakov S, Kattah AG, Gojkovic T, Enninga EAL, Pruett J, Jayachandran M, Sousa C, Santos J, Abou Hassan C, Gonzales-Suarez M, Garovic VD. Impact of Aging and Cellular Senescence in the Pathophysiology of Preeclampsia. Compr Physiol 2023; 13:5077-5114. [PMID: 37770190 DOI: 10.1002/cphy.c230003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
The incidence of hypertensive disorders of pregnancy is increasing, which may be due to several factors, including an increased age at pregnancy and more comorbid health conditions during reproductive years. Preeclampsia, the most severe hypertensive disorder of pregnancy, has been associated with an increased risk of future disease, including cardiovascular and kidney diseases. Cellular senescence, the process of cell cycle arrest in response to many physiologic and maladaptive stimuli, may play an important role in the pathogenesis of preeclampsia and provide a mechanistic link to future disease. In this article, we will discuss the pathophysiology of preeclampsia, the many mechanisms of cellular senescence, evidence for the involvement of senescence in the development of preeclampsia, as well as evidence that cellular senescence may link preeclampsia to the risk of future disease. Lastly, we will explore how a better understanding of the role of cellular senescence in preeclampsia may lead to therapeutic trials. © 2023 American Physiological Society. Compr Physiol 13:5077-5114, 2023.
Collapse
Affiliation(s)
- Sonja Suvakov
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Andrea G Kattah
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Tamara Gojkovic
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Elizabeth A L Enninga
- Division of Research, Department of Obstetrics and Gynecology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Jacob Pruett
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Ciria Sousa
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Janelle Santos
- Division of Research, Department of Obstetrics and Gynecology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Coline Abou Hassan
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Vesna D Garovic
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
- Division of Research, Department of Obstetrics and Gynecology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| |
Collapse
|
34
|
Gong GS, Muyayalo KP, Zhang YJ, Lin XX, Liao AH. Flip a coin: cell senescence at the maternal-fetal interface†. Biol Reprod 2023; 109:244-255. [PMID: 37402700 DOI: 10.1093/biolre/ioad071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/23/2023] [Accepted: 06/27/2023] [Indexed: 07/06/2023] Open
Abstract
During pregnancy, cell senescence at the maternal-fetal interface is required for maternal well-being, placental development, and fetal growth. However, recent reports have shown that aberrant cell senescence is associated with multiple pregnancy-associated abnormalities, such as preeclampsia, fetal growth restrictions, recurrent pregnancy loss, and preterm birth. Therefore, the role and impact of cell senescence during pregnancy requires further comprehension. In this review, we discuss the principal role of cell senescence at the maternal-fetal interface, emphasizing its "bright side" during decidualization, placentation, and parturition. In addition, we highlight the impact of its deregulation and how this "dark side" promotes pregnancy-associated abnormalities. Furthermore, we discuss novel and less invasive therapeutic practices associated with the modulation of cell senescence during pregnancy.
Collapse
Affiliation(s)
- Guang-Shun Gong
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. China
| | - Kahindo P Muyayalo
- Department of Obstetrics and Gynecology, University of Kinshasa, Kinshasa, D.R. Congo
| | - Yu-Jing Zhang
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. China
| | - Xin-Xiu Lin
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. China
| | - Ai-Hua Liao
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. China
| |
Collapse
|
35
|
Ziętek MM, Sampino S. Embryonic factors mediate the maternal age-induced programming of offspring postnatal behavior in mice†. Biol Reprod 2023; 109:45-52. [PMID: 37074135 DOI: 10.1093/biolre/ioad044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 04/04/2023] [Accepted: 04/13/2023] [Indexed: 04/20/2023] Open
Abstract
Advanced maternal age is associated with adverse pregnancy and offspring outcomes, including neurodevelopmental disorders. While age-related oocyte and embryonic abnormalities may underlie this association, the aged maternal uterine environment also plays an important role in offspring development and survival. The aim of this study was to evaluate the contribution of maternal age-related embryonic and uterine factors on pregnancy and offspring behavior, by using a model of reciprocal embryo transfer between old and young female mice. Pregnancies were obtained by transferring embryos collected from either old (9-14 months) or young (3-4 months) C57BL/6J female mice to either young or old recipients. The results showed that embryos from old and young donors have comparable developmental potential when transferred to young recipients, whereas no pregnancies were obtained by transferring embryos of young females to old recipients. Moreover, the offspring conceived by aged females displayed altered ultrasonic vocalization and learning skills compared to the progeny of young females, even though they were both prenatally and postnatally fostered by young recipients. These results indicate that maternal factors mostly determine the occurrence of age-related pregnancy complications, whereas the long-term effects of maternal aging on the offspring's behavior could be already established at pre-implantation stages and depend on embryonic factors.
Collapse
Affiliation(s)
- Marta Marlena Ziętek
- Department of Experimental Embryology, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzębiec, Poland
| | - Silvestre Sampino
- Department of Experimental Embryology, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzębiec, Poland
| |
Collapse
|
36
|
Kannan A, Beal JR, Neff AM, Bagchi MK, Bagchi IC. Runx1 regulates critical factors that control uterine angiogenesis and trophoblast differentiation during placental development. PNAS NEXUS 2023; 2:pgad215. [PMID: 37416873 PMCID: PMC10321400 DOI: 10.1093/pnasnexus/pgad215] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/13/2023] [Accepted: 06/21/2023] [Indexed: 07/08/2023]
Abstract
During early pregnancy in humans and rodents, uterine stromal cells undergo a remarkable differentiation to form the decidua, a transient maternal tissue that supports the growing fetus. It is important to understand the key decidual pathways that orchestrate the proper development of the placenta, a key structure at the maternal-fetal interface. We discovered that ablation of expression of the transcription factor Runx1 in decidual stromal cells in a conditional Runx1-null mouse model (Runx1d/d) causes fetal lethality during placentation. Further phenotypic analysis revealed that uteri of pregnant Runx1d/d mice exhibited severely compromised decidual angiogenesis and a lack of trophoblast differentiation and migration, resulting in impaired spiral artery remodeling. Gene expression profiling using uteri from Runx1d/d and control mice revealed that Runx1 directly controls the decidual expression of the gap junction protein connexin 43 (also known as GJA1), which was previously shown to be essential for decidual angiogenesis. Our study also revealed that Runx1 controls the expression of insulin-like growth factor (IGF) 2 and IGF-binding protein 4 (IGFBP4) during early pregnancy. While Runx1 deficiency drastically reduced the production of IGF2 by the decidual cells, we observed concurrent elevated expression of the IGFBP4, which regulates the bioavailability of IGFs, thereby controlling trophoblast differentiation. We posit that dysregulated expression of GJA1, IGF2, and IGFBP4 in Runx1d/d decidua contributes to the observed defects in uterine angiogenesis, trophoblast differentiation, and vascular remodeling. This study therefore provides unique insights into key maternal pathways that control the early phases of maternal-fetal interactions within a critical window during placental development.
Collapse
Affiliation(s)
- Athilakshmi Kannan
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, 2001 S Lincoln, Urbana, IL 61802, USA
| | - Jacob R Beal
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, 407 S Goodwin, Urbana, IL 61801, USA
| | - Alison M Neff
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, 407 S Goodwin, Urbana, IL 61801, USA
| | | | | |
Collapse
|
37
|
Yong HEJ, Watkins OC, Mah TKL, Cracknell-Hazra VKB, Pillai RA, Selvam P, Islam MO, Sharma N, Cazenave-Gassiot A, Bendt AK, Wenk MR, Godfrey KM, Lewis RM, Chan SY. Increasing maternal age associates with lower placental CPT1B mRNA expression and acylcarnitines, particularly in overweight women. Front Physiol 2023; 14:1166827. [PMID: 37275238 PMCID: PMC10232777 DOI: 10.3389/fphys.2023.1166827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/04/2023] [Indexed: 06/07/2023] Open
Abstract
Older pregnant women have increased risks of complications including gestational diabetes and stillbirth. Carnitine palmitoyl transferase (CPT) expression declines with age in several tissues and is linked with poorer metabolic health. Mitochondrial CPTs catalyze acylcarnitine synthesis, which facilitates fatty acid oxidization as fuel. We hypothesized that the placenta, containing maternally-inherited mitochondria, shows an age-related CPT decline that lowers placental acylcarnitine synthesis, increasing vulnerability to pregnancy complications. We assessed CPT1A, CPT1B, CPT1C and CPT2 mRNA expression by qPCR in 77 placentas and quantified 10 medium and long-chain acylcarnitines by LC-MS/MS in a subset of 50 placentas. Older maternal age associated with lower expression of placental CPT1B, but not CPT1A, CPT1C or CPT2. CPT1B expression positively associated with eight acylcarnitines and CPT1C with three acylcarnitines, CPT1A negatively associated with nine acylcarnitines, while CPT2 did not associate with any acylcarnitine. Older maternal age associated with reductions in five acylcarnitines, only in those with BMI≥ 25 kg/m2, and not after adjusting for CPT1B expression. Our findings suggest that CPT1B is the main transferase for placental long-chain acylcarnitine synthesis, and age-related CPT1B decline may underlie decreased placental metabolic flexibility, potentially contributing to pregnancy complications in older women, particularly if they are overweight.
Collapse
Affiliation(s)
- Hannah E. J. Yong
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Oliver C. Watkins
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Tania K. L. Mah
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Victoria K. B. Cracknell-Hazra
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom
| | - Reshma Appukuttan Pillai
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Preben Selvam
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Mohammad O. Islam
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Neha Sharma
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Amaury Cazenave-Gassiot
- Department of Biochemistry and Precision Medicine Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Anne K. Bendt
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Markus R. Wenk
- Department of Biochemistry and Precision Medicine Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Keith M. Godfrey
- NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom
- MRC Lifecourse Epidemiology Centre, University of Southampton, Southampton, United Kingdom
| | - Rohan M. Lewis
- NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom
- Institute of Developmental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Shiao-Yng Chan
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
38
|
Ma Y, Hu Y, Ma J. Animal models of the placenta accreta spectrum: current status and further perspectives. Front Endocrinol (Lausanne) 2023; 14:1118168. [PMID: 37223034 PMCID: PMC10200980 DOI: 10.3389/fendo.2023.1118168] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 03/20/2023] [Indexed: 05/25/2023] Open
Abstract
Placenta accreta spectrum disorder (PAS) is a kind of disease of placentation defined as abnormal trophoblast invasion of part or all of the placenta into the myometrium, even penetrating the uterus. Decidual deficiency, abnormal vascular remodeling in the maternal-fetal interface, and excessive invasion by extravillous trophoblast (EVT) cells contribute to its onset. However, the mechanisms and signaling pathways underlying such phenotypes are not fully understood, partly due to the lack of suitable experimental animal models. Appropriate animal models will facilitate the comprehensive and systematic elucidation of the pathogenesis of PAS. Due to the remarkably similar functional placental villous units and hemochorial placentation to humans, the current animal models of PAS are based on mice. There are various mouse models induced by uterine surgery to simulate different phenotypes of PAS, such as excessive invasion of EVT or immune disturbance at the maternal-fetal interface, which could define the pathological mechanism of PAS from the perspective of the "soil." Additionally, genetically modified mouse models could be used to study PAS, which is helpful to exploring the pathogenesis of PAS from the perspectives of both "soil" and "seed," respectively. This review details early placental development in mice, with a focus on the approaches of PAS modeling. Additionally, the strengths, limitations and the applicability of each strategy and further perspectives are summarized to provide the theoretical foundation for researchers to select appropriate animal models for various research purposes. This will help better determine the pathogenesis of PAS and even promote possible therapy.
Collapse
Affiliation(s)
- Yongdan Ma
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
| | - Yongyan Hu
- Laboratory Animal Center, Peking University First Hospital, Beijing, China
| | - Jingmei Ma
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Maternal Fetal Medicine of Gestational Diabetes Mellitus, Beijing, China
| |
Collapse
|
39
|
Wu Y, Li M, Zhang J, Wang S. Unveiling uterine aging: Much more to learn. Ageing Res Rev 2023; 86:101879. [PMID: 36764360 DOI: 10.1016/j.arr.2023.101879] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/22/2023] [Accepted: 02/05/2023] [Indexed: 02/11/2023]
Abstract
Uterine aging is an important factor that impacts fertility, reproductive health, and uterus-related diseases; however, it remains poorly explored. Functionally, these disturbances have been associated with an abnormal hormonal response in the endometrium and decreased endometrial receptivity. Based on emerging evidence, these alterations are mediated via the senescence of endometrial stem cells and impaired decidualization of endometrial stromal cells. Multiple molecular activities may participate in uterine aging, including oxidative stress, inflammation, fibrosis, DNA damage response, and cellular senescence. Over the past decade, several protective strategies targeting these biological processes have afforded promising results, including stem cell therapy, anti-aging drugs, and herbal medicines. However, the currently available evidence is fragmented and scattered. Here, we summarize the most recent findings regarding uterine aging, including functional and structural alterations and potential cellular and molecular mechanisms, and discuss potential protective interventions against uterine aging. Thereby, we hope to provide a comprehensive understanding of the pathophysiological processes and underlying mechanisms associated with uterine aging, as well as improve fecundity and reproductive outcomes in females of advanced reproductive age.
Collapse
Affiliation(s)
- Yaling Wu
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Milu Li
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinjin Zhang
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Shixuan Wang
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
40
|
Kannan A, Beal JR, Neff AM, Bagchi MK, Bagchi IC. Runx1 regulates critical factors that control uterine angiogenesis and trophoblast differentiation during placental development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.21.532831. [PMID: 36993295 PMCID: PMC10055213 DOI: 10.1101/2023.03.21.532831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
UNLABELLED During early pregnancy in humans and rodents, uterine stromal cells undergo a remarkable differentiation to form the decidua, a transient maternal tissue that supports the growing fetus. It is important to understand the key decidual pathways that orchestrate the proper development of the placenta, a key structure at the maternal-fetal interface. We discovered that ablation of expression of the transcription factor Runx1 in decidual stromal cells in a conditional Runx1 -null mouse model ( Runx1 d/d ) causes fetal lethality during placentation. Further phenotypic analysis revealed that uteri of pregnant Runx1 d/d mice exhibited severely compromised decidual angiogenesis, and a lack of trophoblast differentiation and migration, resulting in impaired spiral artery remodeling. Gene expression profiling using uteri from Runx1 d/d and control mice revealed that Runx1 directly controls the decidual expression of the gap junction protein connexin 43 (also known as GJA1), which was previously shown to be essential for decidual angiogenesis. Our study also revealed a critical role of Runx1 in controlling insulin-like growth factor (IGF) signaling at the maternal-fetal interface. While Runx1-deficiency drastically reduced the production of IGF2 by the decidual cells, we observed concurrent elevated expression of the IGF-binding protein 4 (IGFBP4), which regulates the bioavailability of IGFs thereby controlling trophoblast differentiation. We posit that dysregulated expression of GJA1, IGF2, and IGFBP4 in Runx1 d/d decidua contributes to the observed defects in uterine angiogenesis, trophoblast differentiation, and vascular remodeling. This study therefore provides unique insights into key maternal pathways that control the early phases of maternal-fetal interactions within a critical window during placental development. SIGNIFICANCE A clear understanding of the maternal pathways that ensure coordination of uterine differentiation and angiogenesis with embryonic growth during the critical early stages of placenta formation still eludes us. The present study reveals that the transcription factor Runx1 controls a set of molecular, cellular, and integrative mechanisms that mediate maternal adaptive responses controlling uterine angiogenesis, trophoblast differentiation, and resultant uterine vascular remodeling, which are essential steps during placenta development.
Collapse
|
41
|
Griffiths MJ, Marshall SA, Cousins FL, Alesi LR, Higgins J, Giridharan S, Sarma UC, Menkhorst E, Zhou W, Care AS, Donoghue JF, Holdsworth-Carson SJ, Rogers PA, Dimitriadis E, Gargett CE, Robertson SA, Winship AL, Hutt KJ. Radiotherapy exposure directly damages the uterus and causes pregnancy loss. JCI Insight 2023; 8:163704. [PMID: 36946464 PMCID: PMC10070119 DOI: 10.1172/jci.insight.163704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 02/01/2023] [Indexed: 03/23/2023] Open
Abstract
Female cancer survivors are significantly more likely to experience infertility than the general population. It is well established that chemotherapy and radiotherapy can damage the ovary and compromise fertility, yet the ability of cancer treatments to induce uterine damage, and the underlying mechanisms, have been understudied. Here, we show that in mice total-body γ-irradiation (TBI) induced extensive DNA damage and apoptosis in uterine cells. We then transferred healthy donor embryos into ovariectomized adolescent female mice that were previously exposed to TBI to study the impacts of radiotherapy on the uterus independent from effects to ovarian endocrine function. Following TBI, embryo attachment and implantation were unaffected, but fetal resorption was evident at midgestation in 100% of dams, suggesting failed placental development. Consistent with this hypothesis, TBI impaired the decidual response in mice and primary human endometrial stromal cells. TBI also caused uterine artery endothelial dysfunction, likely preventing adequate blood vessel remodeling in early pregnancy. Notably, when pro-apoptotic protein Puma-deficient (Puma-/-) mice were exposed to TBI, apoptosis within the uterus was prevented, and decidualization, vascular function, and pregnancy were restored, identifying PUMA-mediated apoptosis as a key mechanism. Collectively, these data show that TBI damages the uterus and compromises pregnancy success, suggesting that optimal fertility preservation during radiotherapy may require protection of both the ovaries and uterus. In this regard, inhibition of PUMA may represent a potential fertility preservation strategy.
Collapse
Affiliation(s)
- Meaghan J Griffiths
- Department of Anatomy and Developmental Biology, Development and Stem Cells Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, Victoria, Australia
- Gynaecology Research Centre, The Royal Women's Hospital, Parkville, Victoria, Australia
| | - Sarah A Marshall
- Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Fiona L Cousins
- Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Lauren R Alesi
- Department of Anatomy and Developmental Biology, Development and Stem Cells Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Jordan Higgins
- Department of Anatomy and Developmental Biology, Development and Stem Cells Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Saranya Giridharan
- Department of Anatomy and Developmental Biology, Development and Stem Cells Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Urooza C Sarma
- Department of Anatomy and Developmental Biology, Development and Stem Cells Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Ellen Menkhorst
- Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, Victoria, Australia
- Gynaecology Research Centre, The Royal Women's Hospital, Parkville, Victoria, Australia
| | - Wei Zhou
- Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, Victoria, Australia
- Gynaecology Research Centre, The Royal Women's Hospital, Parkville, Victoria, Australia
| | - Alison S Care
- Robinson Research Institute and Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| | - Jacqueline F Donoghue
- Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, Victoria, Australia
- Gynaecology Research Centre, The Royal Women's Hospital, Parkville, Victoria, Australia
| | - Sarah J Holdsworth-Carson
- Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, Victoria, Australia
- Gynaecology Research Centre, The Royal Women's Hospital, Parkville, Victoria, Australia
- Epworth HealthCare, Richmond, Victoria, Australia
| | - Peter Aw Rogers
- Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, Victoria, Australia
- Gynaecology Research Centre, The Royal Women's Hospital, Parkville, Victoria, Australia
| | - Evdokia Dimitriadis
- Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, Victoria, Australia
- Gynaecology Research Centre, The Royal Women's Hospital, Parkville, Victoria, Australia
| | - Caroline E Gargett
- Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Sarah A Robertson
- Robinson Research Institute and Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| | - Amy L Winship
- Department of Anatomy and Developmental Biology, Development and Stem Cells Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Karla J Hutt
- Department of Anatomy and Developmental Biology, Development and Stem Cells Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
42
|
Qin M, Chen W, Hua L, Meng Y, Wang J, Li H, Yang R, Yan L, Qiao J. DNA methylation abnormalities induced by advanced maternal age in villi prime a high-risk state for spontaneous abortion. Clin Epigenetics 2023; 15:44. [PMID: 36945044 PMCID: PMC10029192 DOI: 10.1186/s13148-023-01432-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/20/2023] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND Advanced maternal age (AMA) has increased in many high-income countries in recent decades. AMA is generally associated with a higher risk of various pregnancy complications, and the underlying molecular mechanisms are largely unknown. In the current study, we profiled the DNA methylome of 24 human chorionic villi samples (CVSs) from early pregnancies in AMA and young maternal age (YMA), 11 CVSs from early spontaneous abortion (SA) cases using reduced representation bisulfite sequencing (RRBS), and the transcriptome of 10 CVSs from AMA and YMA pregnancies with mRNA sequencing(mRNA-seq). Single-cell villous transcriptional atlas presented expression patterns of targeted AMA-/SA-related genes. Trophoblast cellular impairment was investigated through the knockdown of GNE expression in HTR8-S/Vneo cells. RESULTS AMA-induced local DNA methylation changes, defined as AMA-related differentially methylated regions (DMRs), may be derived from the abnormal expression of genes involved in DNA demethylation, such as GADD45B. These DNA methylation changes were significantly enriched in the processes involved in NOTCH signaling and extracellular matrix organization and were reflected in the transcriptional alterations in the corresponding biological processes and specific genes. Furthermore, the DNA methylation level of special AMA-related DMRs not only significantly changed in AMA but also showed more excessive defects in CVS from spontaneous abortion (SA), including four AMA-related DMRs whose nearby genes overlapped with AMA-related differentially expressed genes (DEGs) (CDK11A, C19orf71, COL5A1, and GNE). The decreased DNA methylation level of DMR near GNE was positively correlated with the downregulated expression of GNE in AMA. Single-cell atlas further revealed comparatively high expression of GNE in the trophoblast lineage, and knockdown of GNE in HTR8-S/Vneo cells significantly impaired cellular proliferation and migration. CONCLUSION Our study provides valuable resources for investigating AMA-induced epigenetic abnormalities and provides new insights for explaining the increased risks of pregnancy complications in AMA pregnancies.
Collapse
Affiliation(s)
- Meng Qin
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191 China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, 100191 China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191 China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191 China
| | - Wei Chen
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191 China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, 100191 China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191 China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191 China
| | - Lingyue Hua
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191 China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, 100191 China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191 China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191 China
| | - Yan Meng
- Department of Obstetrics and Gynecology, Beijing Jishuitan Hospital, Beijing, 100096 China
| | - Jing Wang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191 China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, 100191 China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191 China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191 China
| | - Hanna Li
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191 China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, 100191 China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191 China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191 China
| | - Rui Yang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191 China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, 100191 China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191 China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191 China
| | - Liying Yan
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191 China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, 100191 China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191 China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191 China
- National Center for Healthcare Quality Management in Obstetrics, Beijing, 100191 China
| | - Jie Qiao
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191 China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, 100191 China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191 China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191 China
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191 China
- Beijing Advanced Innovation Center for Genomics, Beijing, 100871 China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871 China
- Research Units of Comprehensive Diagnosis and Treatment of Oocyte Maturation Arrest, Beijing Jishuitan Hospital, Beijing, 100191 China
| |
Collapse
|
43
|
Ra K, Park SC, Lee BC. Female Reproductive Aging and Oxidative Stress: Mesenchymal Stem Cell Conditioned Medium as a Promising Antioxidant. Int J Mol Sci 2023; 24:ijms24055053. [PMID: 36902477 PMCID: PMC10002910 DOI: 10.3390/ijms24055053] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 02/16/2023] [Accepted: 03/05/2023] [Indexed: 03/09/2023] Open
Abstract
The recent tendency to delay pregnancy has increased the incidence of age-related infertility, as female reproductive competence decreases with aging. Along with aging, a lowered capacity of antioxidant defense causes a loss of normal function in the ovaries and uterus due to oxidative damage. Therefore, advancements have been made in assisted reproduction to resolve infertility caused by reproductive aging and oxidative stress, following an emphasis on their use. The application of mesenchymal stem cells (MSCs) with intensive antioxidative properties has been extensively validated as a regenerative therapy, and proceeding from original cell therapy, the therapeutic effects of stem cell conditioned medium (CM) containing paracrine factors secreted during cell culture have been reported to be as effective as that of direct treatment of source cells. In this review, we summarized the current understanding of female reproductive aging and oxidative stress and present MSC-CM, which could be developed as a promising antioxidant intervention for assisted reproductive technology.
Collapse
Affiliation(s)
- Kihae Ra
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Se Chang Park
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea
- Correspondence: (S.C.P.); (B.C.L.)
| | - Byeong Chun Lee
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
- Correspondence: (S.C.P.); (B.C.L.)
| |
Collapse
|
44
|
The Contribution of the Sheep and the Goat Model to the Study of Ovarian Ageing. BIOLOGY 2023; 12:biology12020270. [PMID: 36829547 PMCID: PMC9953374 DOI: 10.3390/biology12020270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/20/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023]
Abstract
Ovarian ageing stands as the major contributor towards fertility loss. As such, there is an urge for studies addressing the mechanisms that promote ovarian ageing and new strategies aiming to delay it. Recently, the presence of a unique population of multinucleated giant cells has been identified in the ovaries of reproductively aged mice. These cells have been considered hallmarks of ovarian ageing. However, up to date multinucleated giant cells have only been described in the ovaries of the mice. Therefore, the aim of the present work was to evaluate and characterize the presence of such hallmarks of ovarian ageing in the sheep and the goat. In this study, ovaries from juvenile (6 months) and mature animals (18-24 months) were used. The hematoxylin and eosin technique was performed to describe the ovarian morphology and evaluate the ovarian follicle reserve pool. Sudan black B staining and the detection of autofluorescence emission were used to identify and characterize the presence of multinucleated giant cells. Statistical analyses were performed with GraphPad Prism 9.0.0. A decrease in the follicle reserve pool and the presence of multinucleated giant cells, with lipofuscin accumulation and the emission of autofluorescence, were observed in the ovaries of the mature animals of both species. Our results support the interest in the use of the ovine and the caprine model, that share physiological and pathophysiological characteristics with humans, in future studies addressing ovarian ageing.
Collapse
|
45
|
Zeng S, Liang Y, Lai S, Bi S, Huang L, Li Y, Deng W, Xu P, Liu M, Xiong Z, Chen J, Tu Z, Chen D, Du L. TNFα/TNFR1 signal induces excessive senescence of decidua stromal cells in recurrent pregnancy loss. J Reprod Immunol 2023; 155:103776. [PMID: 36495656 DOI: 10.1016/j.jri.2022.103776] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 10/26/2022] [Accepted: 11/22/2022] [Indexed: 11/26/2022]
Abstract
Defects in decidual response are associated with adverse pregnancy outcomes which includes recurrent pregnancy loss (RPL). It is reported that cellular senescence happens during decidualization and pro-senescent decidual response in the luteal phase endometrium is related to RPL. However, the underlying mechanisms of how excessive decidual senescence takes place in RPL decidua cells remain largely unexplored. The senescent phenotype of RPL decidua and tumor necrosis factor receptor 1(TNFR1) expression were analyzed by using our previously published single-cell sequencing dataset of decidua cells from 6 RPL and 5 matched normal decidua, which were further verified by PCR and WB in decidual tissues. Effects of TNFα on the decidual stromal cells (DSCs) senescence and underlying molecular pathways were analyzed using the in vitro decidualization model of human endometrial stromal cells (HESCs). We showed that decidual stroma cells from RPL patients exhibited transcriptomic features of cellular senescence by analysis of single-cell datasets. The TNFα level and TNFR1 expression were increased in RPL decidua tissues. Furthermore, in vitro cell model demonstrated that increased TNFα induced excessive senescence during decidualization and TNFR1/p53/p16 pathway mediates TNFα-induced stromal senescence. In addition, we also found that the expression of IGFBP1 was regulated by TNFα-TNFR1 interaction during decidualization. Taken together, the present findings suggest that the increased secretion of TNFα induced stromal cell excessive senescence in RPL decidua, which is mediated via TNFR1, and thus provide a possible therapeutic target for the treatment of RPL.
Collapse
Affiliation(s)
- Shanshan Zeng
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Yingyu Liang
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Siying Lai
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Shilei Bi
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Lijun Huang
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Yulian Li
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Weinan Deng
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Pei Xu
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Mingxing Liu
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Zhongtang Xiong
- Department of Pathology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Jingsi Chen
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China; Guangdong Engineering and Technology Research Center of Maternal-Fetal Medicine, Guangzhou 510150, China; Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, Guangzhou, China
| | - Zhaowei Tu
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China; Guangdong Engineering and Technology Research Center of Maternal-Fetal Medicine, Guangzhou 510150, China; Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, Guangzhou, China
| | - Dunjin Chen
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China; Guangdong Engineering and Technology Research Center of Maternal-Fetal Medicine, Guangzhou 510150, China; Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, Guangzhou, China.
| | - Lili Du
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China; Guangdong Engineering and Technology Research Center of Maternal-Fetal Medicine, Guangzhou 510150, China; Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, Guangzhou, China.
| |
Collapse
|
46
|
Dearden L, Ozanne SE. Considerations for designing and analysing inter-generational studies in rodents. Nat Metab 2023; 5:1-4. [PMID: 36609721 DOI: 10.1038/s42255-022-00721-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Laura Dearden
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome MRC Institute of Metabolic Science, Cambridge, UK.
| | - Susan E Ozanne
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome MRC Institute of Metabolic Science, Cambridge, UK.
| |
Collapse
|
47
|
Kokorudz C, Radford BN, Dean W, Hemberger M. Advanced Maternal Age Differentially Affects Embryonic Tissues with the Most Severe Impact on the Developing Brain. Cells 2022; 12:cells12010076. [PMID: 36611870 PMCID: PMC9818809 DOI: 10.3390/cells12010076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/15/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
Advanced maternal age (AMA) poses the single greatest risk to a successful pregnancy. Apart from the impact of AMA on oocyte fitness, aged female mice often display defects in normal placentation. Placental defects in turn are tightly correlated with brain and cardiovascular abnormalities. It therefore follows that placenta, brain and heart development may be particularly susceptible to the impact of AMA. In the current study, we compared global transcriptomes of placentas, brains, hearts, and facial prominences from mid-gestation mouse conceptuses developed in young control (7-13 wks) and aging (43-50 wks) females. We find that AMA increases transcriptional heterogeneity in all tissues, but particularly in fetal brain. Importantly, even overtly normally developed embryos from older females display dramatic expression changes in neurodevelopmental genes. These transcriptomic alterations in the brain are likely induced by defects in placental development. Using trophoblast stem cells (TSCs) as a model, we show that exposure to aging uterine stromal cell-conditioned medium interferes with normal TSC proliferation and causes precocious differentiation, recapitulating many of the defects observed in placentas from aged females. These data highlight the increased risk of AMA on reproductive outcome, with neurodevelopment being the most sensitive to such early perturbations and with potential for lifelong impact.
Collapse
Affiliation(s)
- Caroline Kokorudz
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| | - Bethany N. Radford
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| | - Wendy Dean
- Alberta Children’s Hospital Research Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
- Department of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
- Correspondence: (W.D.); (M.H.)
| | - Myriam Hemberger
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
- Correspondence: (W.D.); (M.H.)
| |
Collapse
|
48
|
Deryabin PI, Borodkina AV. Epigenetic clocks provide clues to the mystery of uterine ageing. Hum Reprod Update 2022; 29:259-271. [PMID: 36515535 DOI: 10.1093/humupd/dmac042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 11/28/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Rising maternal ages and age-related fertility decline are a global challenge for modern reproductive medicine. Clinicians and researchers pay specific attention to ovarian ageing and hormonal insufficiency in this regard. However, uterine ageing is often left out of the picture, with the majority of reproductive clinicians being close to unanimous on the absence of age-related functional decline in the uterine tissues. Therefore, most existing techniques to treat an age-related decline in implantation rates are based primarily on hormonal supplementation and oocyte donation. Solving the issue of uterine ageing might lead to an adjustment to these methods. OBJECTIVE AND RATIONALE A focus on uterine ageing and the possibility of slowing it emerged with the development of the information theory of ageing, which identifies genomic instability and erosion of the epigenetic landscape as important drivers of age-related decline in the functionality of most cells and tissues. Age-related smoothing of this landscape and a decline in tissue function can be assessed by measuring the ticking of epigenetic clocks. Within this review, we explore whether the uterus experiences age-related alterations using this elegant approach. We analyse existing data on epigenetic clocks in the endometrium, highlight approaches to improve the accuracy of the clocks in this cycling tissue, speculate on the endometrial pathologies whose progression might be predicted by the altered speed of epigenetic clocks and discuss the possibilities of slowing down the ticking of these clocks. SEARCH METHODS Data for this review were identified by searches of Medline, PubMed and Google Scholar. References from relevant articles using the search terms 'ageing', 'maternal age', 'female reproduction', 'uterus', 'endometrium', 'implantation', 'decidualization', 'epigenetic clock', 'biological age', 'DNA methylation', 'fertility' and 'infertility' were selected. A total of 95 articles published in English between 1985 and 2022 were included, six of which describe the use of the epigenetic clock to evaluate uterine/endometrium ageing. OUTCOMES Application of the Horvath and DNAm PhenoAge epigenetic clocks demonstrated a poor correlation with chronological age in the endometrium. Several approaches were suggested to enhance the predictive power of epigenetic clocks for the endometrium. The first was to increase the number of samples in the training dataset, as for the Zang clock, or to use more sophisticated clock-building algorithms, as for the AltumAge clock. The second method is to adjust the clocks according to the dynamic nature of the endometrium. Using either approach revealed a strong correlation with chronological age in the endometrium, providing solid evidence for age-related functional decline in this tissue. Furthermore, age acceleration/deceleration, as estimated by epigenetic clocks, might be a promising tool to predict or to gain insights into the origin of various endometrial pathologies, including recurrent implantation failure, cancer and endometriosis. Finally, there are several strategies to slow down or even reverse epigenetic clocks that might be applied to reduce the risk of age-related uterine impairments. WIDER IMPLICATIONS The uterine factor should be considered, along with ovarian issues, to correct for the decline in female fertility with age. Epigenetic clocks can be tested to gain a deeper understanding of various endometrial disorders.
Collapse
Affiliation(s)
- Pavel I Deryabin
- Mechanisms of Cellular Senescence Group, Institute of Cytology of the Russian Academy of Sciences, Saint-Petersburg, Russia
| | - Aleksandra V Borodkina
- Mechanisms of Cellular Senescence Group, Institute of Cytology of the Russian Academy of Sciences, Saint-Petersburg, Russia
| |
Collapse
|
49
|
Rau AR, Youssefzadeh AC, Matsuzaki S, Mandelbaum RS, Ouzounian JG, Matsuo K. Unsuspected placenta accreta spectrum at vaginal delivery: assessment of incidence, characteristics, and maternal morbidity. Am J Obstet Gynecol MFM 2022; 5:100805. [PMID: 36774226 DOI: 10.1016/j.ajogmf.2022.100805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/31/2022] [Accepted: 11/05/2022] [Indexed: 02/11/2023]
Abstract
BACKGROUND Placenta accreta spectrum refers to morbidly adherent trophoblastic tissue invading into the gravid uterus and is associated with significant maternal morbidity. Most cases of placenta accreta spectrum are suspected antenatally, and most patients undergo planned, late-preterm cesarean hysterectomy to reduce the risk of morbidity. Rarely, however, placenta accreta spectrum is incidentally diagnosed at vaginal delivery, but there is a scarcity of data regarding these events. OBJECTIVE This study aimed to examine the incidence, characteristics, and outcomes of pregnant individuals with incidentally diagnosed placenta accreta spectrum at term vaginal delivery. STUDY DESIGN This was a retrospective cohort study investigating the Healthcare Cost and Utilization Project's National Inpatient Sample. The study population was 8,694,669 term vaginal deliveries from January 2016 to December 2019. Exclusion criteria included previous uterine scar, placenta previa, and preterm delivery. Exposure was assigned by the diagnosis of placenta accreta spectrum. The main outcomes were: (1) incidence rate, (2) clinical and pregnancy characteristics, and (3) maternal morbidity related to unsuspected placenta accreta spectrum at vaginal delivery. Multivariable binary logistic regression analysis and inverse probability of treatment weighting were fitted for statistical analysis. RESULTS Unsuspected placenta accreta spectrum was reported in 1 in 3797 vaginal deliveries. In a multivariable analysis, the following were associated with increased likelihood of unsuspected placenta accreta spectrum (all, P<.05): (1) patient factor with older age, (2) uterine factors such as uterine anomaly and uterine myoma, (3) pregnancy factors including early-term delivery and previous recurrent pregnancy losses, and (4) fetal factors of in utero growth restriction and demise. Of those, uterine anomaly had the greatest association with unsuspected placenta accreta spectrum (adjusted odds ratio, 6.23; 95% confidence interval, 4.20-9.26). In a propensity score-weighted model, patients in the unsuspected placenta accreta spectrum group were more likely to have hemorrhage (65.2% vs 4.1%), blood product transfusion (21.3% vs 0.6%), hysterectomy (14.9% vs <0.1%), coagulopathy (2.9% vs 0.1%), and shock (2.9% vs <0.1%) compared with those without placenta accreta spectrum. Patients in the unsuspected placenta accreta spectrum group were also more likely to receive manual removal of the placenta compared with those in the non-placenta accreta spectrum group (25.1% vs 0.6%). CONCLUSION This study suggests that although unsuspected placenta accreta spectrum among patients undergoing term vaginal delivery is rare, it is associated with significant morbidity. The observed association between uterine anomalies and placenta accreta spectrum warrants further investigation.
Collapse
Affiliation(s)
- Alesandra R Rau
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Southern California, Los Angeles, CA (Ms Rau and Drs Youssefzadeh, Matsuzaki, Mandelbaum, and Matsuo); Keck School of Medicine, University of Southern California, Los Angeles, CA (Ms Rau)
| | - Ariane C Youssefzadeh
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Southern California, Los Angeles, CA (Ms Rau and Drs Youssefzadeh, Matsuzaki, Mandelbaum, and Matsuo)
| | - Shinya Matsuzaki
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Southern California, Los Angeles, CA (Ms Rau and Drs Youssefzadeh, Matsuzaki, Mandelbaum, and Matsuo)
| | - Rachel S Mandelbaum
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Southern California, Los Angeles, CA (Ms Rau and Drs Youssefzadeh, Matsuzaki, Mandelbaum, and Matsuo); Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, University of Southern California, Los Angeles, CA (Dr Mandelbaum)
| | - Joseph G Ouzounian
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, University of Southern California, Los Angeles, CA (Dr Ouzounian)
| | - Koji Matsuo
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Southern California, Los Angeles, CA (Ms Rau and Drs Youssefzadeh, Matsuzaki, Mandelbaum, and Matsuo); Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA (Dr Matsuo).
| |
Collapse
|
50
|
Zhang Y, An C, Yu Y, Lin J, Jin L, Li C, Tan T, Yu Y, Fan Y. Epidermal growth factor induces a trophectoderm lineage transcriptome resembling that of human embryos during reconstruction of blastoids from extended pluripotent stem cells. Cell Prolif 2022; 55:e13317. [PMID: 35880490 PMCID: PMC9628219 DOI: 10.1111/cpr.13317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/23/2022] [Accepted: 06/27/2022] [Indexed: 11/29/2022] Open
Abstract
OBJECTIVES This study aims to optimize the human extended pluripotent stem cell (EPSC) to trophectoderm (TE)-like cell induction with addition of EGF and improve the quality of the reconstructing blastoids. MATERIALS AND METHODS TE-like cells were differentiated from human EPSCs. RNA-seq data analysis was performed to compare with TE-like cells from multiple human pluripotent stem cells (hPSCs) and embryos. A small-scale compound selection was performed for optimizing the TE-like cell induction and the efficiency was characterized using TE-lineage markers expression by immunofluorescence stanning. Blastoids were generated by using the optimized TE-like cells and the undifferentiated human EPSCs through three-dimensional culture system. Single-cell RNA sequencing was performed to investigate the lineage segregation of the optimized blastoids to human blastocysts. RESULTS TE-like cells derived from human EPSCs exhibited similar transcriptome with TE cells from embryos. Additionally, TE-like cells from multiple naive hPSCs exhibited heterogeneous gene expression patterns and signalling pathways because of the incomplete silencing of naive-specific genes and loss of imprinting. Furthermore, with the addition of EGF, TE-like cells derived from human EPSCs enhanced the TE lineage-related signalling pathways and exhibited more similar transcriptome to human embryos. Through resembling with undifferentiated human EPSCs, we elevated the quality and efficiency of reconstructing blastoids and separated more lineage cells with precise temporal and spatial expression, especially the PE lineage. CONCLUSION Addition of EGF enhanced TE lineage differentiation and human blastoids reconstruction. The optimized blastoids could be used as a blastocyst model for simulating early embryonic development.
Collapse
Affiliation(s)
- Yingying Zhang
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education InstitutesThe Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhouGuangdongChina
| | - Chenrui An
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education InstitutesThe Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhouGuangdongChina
| | - Yanhong Yu
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education InstitutesThe Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhouGuangdongChina
| | - Jiajing Lin
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education InstitutesThe Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhouGuangdongChina
| | - Long Jin
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education InstitutesThe Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhouGuangdongChina
| | - Chaohui Li
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education InstitutesThe Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhouGuangdongChina
| | - Tao Tan
- Yunnan Key Laboratory of Primate Biomedical Research, Institute of Primate Translational MedicineKunming University of Science and TechnologyKunmingChina
| | - Yang Yu
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center for Reproductive Medicine, Department of Obstetrics and GynecologyPeking University Third HospitalBeijingChina
| | - Yong Fan
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education InstitutesThe Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhouGuangdongChina
| |
Collapse
|