1
|
Cyrta J, Masliah‐Planchon J, Hoare O, Brillet R, Andrianteranagna M, Sohier P, Cardoen L, Bouchoucha Y, Filser M, Goncalves A, Caly M, Fréneaux P, Stefanaki K, Pefkianaki M, Moschovi M, Matet A, Cassoux N, Lumbroso‐Le Rouic L, Gauthier‐Villars M, Stern M, Vincent‐Salomon A, Rodrigues M, Bourdeaut F. SMARCB1-deficient malignant melanocytic uveal tumours: a new neural crest-derived tumour entity with SMARCB1-related germline predisposition. J Pathol 2025; 265:357-371. [PMID: 39853675 PMCID: PMC11794973 DOI: 10.1002/path.6390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 11/20/2024] [Accepted: 12/11/2024] [Indexed: 01/26/2025]
Abstract
Rhabdoid tumours (RT) are an aggressive malignancy affecting <2-year-old infants, characterised by biallelic loss-of-function alterations in SWI/SNF-related BAF chromatin remodelling complex subunit B1 (SMARCB1) in nearly all cases. Germline SMARCB1 alterations are found in ~30% of patients and define the RT Predisposition Syndrome type 1 (RTPS1). Uveal melanoma (UVM), the most common primary intraocular cancer in adults, does not harbour SMARCB1 alterations. We report two cases of a previously undescribed intraocular malignancy that shared some features with UVM and RT, but was also distinct from these entities. Both female patients, aged 23 and 14 years, underwent enucleation, and the tumours were subjected to comprehensive genomic, DNA methylation, and transcriptomic profiling. Pathological examination showed large, amelanotic intraocular tumours with epithelioid features, expressing melanocytic markers [S100P, SOX10, Melan-A, PMEL (HMB45), TYR] as seen using immunohistochemistry (IHC), but with little or no melanin production. Both tumours harboured biallelic loss-of-function SMARCB1 alterations, associated with loss of SMARCB1 (BAF47/INI1) expression on IHC. Their genomic profiles were atypical both for UVM and for RT, and no pathogenic variants were found in other genes tested, including those recurrently altered in UVM. In both patients, a germline SMARCB1 variant was found. However, there was no relevant family history of cancer. Transcriptome and methylome profiling suggested that these tumours were distinct from RT, UVM, and skin melanomas. RNAseq confirmed expression of early and late genes related to melanocytic differentiation. The first patient died of metastatic disease 16 months after diagnosis, the second was disease-free 10 months after completion of treatment. In summary, we report two cases of a previously undescribed, aggressive SMARCB1-deficient intraocular malignancy with melanocytic differentiation, which occurs in young patients, is distinct from UVM and RT, and expands the RTPS1 spectrum. © 2025 The Author(s). The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Joanna Cyrta
- Department of Pathology, Institut CuriePSL Research UniversityParisFrance
| | | | - Owen Hoare
- SIREDO Oncology Center (Care, Innovation and Research for Children and AYA with Cancer), Institut CurieUniversité Paris CitéParisFrance
| | - Riwan Brillet
- Department of Genetics, Institut CuriePSL Research UniversityParisFrance
| | - Mamy Andrianteranagna
- SIREDO Oncology Center (Care, Innovation and Research for Children and AYA with Cancer), Institut CurieUniversité Paris CitéParisFrance
| | - Pierre Sohier
- Department of Pathology, Hôpital Cochin, AP‐HPUniversité Paris CitéParisFrance
| | | | - Yassine Bouchoucha
- SIREDO Oncology Center (Care, Innovation and Research for Children and AYA with Cancer), Institut CurieUniversité Paris CitéParisFrance
| | - Mathilde Filser
- Department of Genetics, Institut CuriePSL Research UniversityParisFrance
| | - Andreia Goncalves
- Department of Pathology, Institut CuriePSL Research UniversityParisFrance
| | - Martial Caly
- Department of Pathology, Institut CuriePSL Research UniversityParisFrance
| | - Paul Fréneaux
- Department of Pathology, Institut CuriePSL Research UniversityParisFrance
| | | | | | - Maria Moschovi
- Pediatric Hematology/Oncology Unit, First Department of PediatricsNational and Kapodistrian University of Athens, Agia Sofia Children's HospitalAthensGreece
| | - Alexandre Matet
- Department of Ocular Oncology, Institut CurieUniversité Paris CitéParisFrance
| | - Nathalie Cassoux
- Department of Ocular Oncology, Institut CurieUniversité Paris CitéParisFrance
| | | | | | - Marc‐Henri Stern
- Department of Genetics, Institut CuriePSL Research UniversityParisFrance
- INSERM U830, DNA Repair and Uveal Melanoma (D.R.U.M.), Institut CuriePSL Research UniversityParisFrance
| | | | - Manuel Rodrigues
- INSERM U830, DNA Repair and Uveal Melanoma (D.R.U.M.), Institut CuriePSL Research UniversityParisFrance
- Department of Medical OncologyInstitut CurieParisFrance
| | - Franck Bourdeaut
- SIREDO Oncology Center (Care, Innovation and Research for Children and AYA with Cancer), Institut CurieUniversité Paris CitéParisFrance
| |
Collapse
|
2
|
Shen L, Shen H, Wang T, Chen G, Yu Z, Liu F. Analysis of ABCC3 in glioma progression: implications for prognosis, immunotherapy, and drug resistance. Discov Oncol 2025; 16:179. [PMID: 39948325 PMCID: PMC11825434 DOI: 10.1007/s12672-025-01895-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Accepted: 02/03/2025] [Indexed: 02/16/2025] Open
Abstract
As a primary brain cancer, glioma presents significant challenges in treatment and prognosis. Identifying reliable biomarkers is crucial for improving patient outcomes. This study focuses on the ABCC3 gene, exploring its function as a standalone predictive indictor and its correlation with immune infiltration and resistance to chemotherapy in glioma. A multi-faceted approach was adopted for this analysis. We scrutinized the RNA expression patterns of the ABCC3 gene across a spectrum of cancer types, with a concentrated focus on glioma. Our methodological arsenal included bioinformatics analysis, immunohistochemistry (ICH), western blot (WB), and cell counting Kit-8 (CCK8) assays. These techniques were instrumental in gauging the prognostic impact of ABCC3 and elucidating its associations with immune cell infiltration and chemotherapy resistance. The investigation revealed a significant elevated levels of ABCC3 in high grade glioma (HGG) tissues compared to lower grade glioma (LGG) tissues. Notably, upregulation of ABCC3 were associated with a shorter overall survival in patients with glioma. Furthermore, ABCC3 emerged as an independent factor in prognostication, with predictive capability for 1-, 3-, and 5-year survival rates. As far as immune response is concerned, ABCC3's expression correlates positively with the expression of several immune cells and checkpoint genes. The study also uncovered the role of ABCC3 in drug resistance, particularly regarding temozolomide (TMZ), a primary therapeutic agent in glioma treatment. The study reveals ABCC3 as a significant biomarker in glioma, associated with lower survival, enhanced immune infiltration, and increased resistance to chemotherapy. These findings emphasize its promise as a novel target for glioma therapies.
Collapse
Affiliation(s)
- Liang Shen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, 188 Shizi Street, Suzhou, 215006, China
- Institute of Stroke Research, Soochow University, Suzhou, 215006, China
- Department of Neurosurgery, The Second Peoples's Hospital of Changzhou, the Third Affiliated Hospital of Nanjing Medical University, 64 Gehu Road, Changzhou, 213000, China
| | - Haitao Shen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, 188 Shizi Street, Suzhou, 215006, China
- Institute of Stroke Research, Soochow University, Suzhou, 215006, China
| | - Tong Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, 188 Shizi Street, Suzhou, 215006, China
- Institute of Stroke Research, Soochow University, Suzhou, 215006, China
| | - Gang Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, 188 Shizi Street, Suzhou, 215006, China.
- Institute of Stroke Research, Soochow University, Suzhou, 215006, China.
| | - Zhengquan Yu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, 188 Shizi Street, Suzhou, 215006, China
- Institute of Stroke Research, Soochow University, Suzhou, 215006, China
| | - Fang Liu
- Department of Neurosurgery, The Second Peoples's Hospital of Changzhou, the Third Affiliated Hospital of Nanjing Medical University, 64 Gehu Road, Changzhou, 213000, China.
| |
Collapse
|
3
|
Devarajan A, Seah C, Zhang JY, Vasan V, Feng R, Chapman EK, Shigematsu T, Bederson J, Shrivastava RK. A four-hit mechanism is sufficient for meningioma development. J Neurooncol 2025; 171:599-607. [PMID: 39586894 DOI: 10.1007/s11060-024-04877-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 11/01/2024] [Indexed: 11/27/2024]
Abstract
PURPOSE Meningiomas are central nervous system tumors whose incidence increases with age. Benign meningioma pathogenesis involves germline or somatic mutation of target genes, such as NF2, leading to clonal expansion. We used an established cancer epidemiology model to investigate the number of rate-limiting steps sufficient for benign meningioma development. METHODS Incidence data was obtained from the Surveillance, Epidemiology and End Results Program (SEER) for nonmalignant meningioma from 2004 to 2020. Age-adjusted incidence rates per 100,000 person-years were divided into 5-year bands. This was repeated for vestibular schwannomas as a negative control. The Armitage-Doll methodology was applied. Mathematical solutions correcting for volatile tumor microenvironments were applied to fit higher-order models using polynomial regression when appropriate. A 75:25 training:test split was utilized for validation. RESULTS 222,509 cases of benign meningiomas were identified. We noted strong linear relationships between log-transformed incidence and age across the cohort and multiple subpopulations: male, white, black, Hispanic, Asian/Pacific Islander, and American Indian subpopulations all demonstrated R2 = 0.99. Slopes were between 3.1 and 3.4, suggesting a four-step process for benign meningioma development. Female patients exhibited nonlinear deviations, but the corrected model demonstrated R2 = 0.99 with a four-hit pathway. This model performed robustly on test data with R2 = 0.99. Vestibular schwannomas demonstrated a slope of 2.1 with R2 = 0.99, suggesting a separate three-step process. CONCLUSION Four mutations are uniquely required for the development of benign meningiomas. Correcting for volatile tumor microenvironments reliably accounted for nonlinear deviations in behavior. Further studies are warranted to elucidate genomic findings suggestive of key mutations in this pathway.
Collapse
Affiliation(s)
- Alex Devarajan
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Carina Seah
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jack Y Zhang
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Vikram Vasan
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Rui Feng
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Emily K Chapman
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Tomoyoshi Shigematsu
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Joshua Bederson
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Raj K Shrivastava
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
4
|
Wang X, Zhu R, Yu P, Qi S, Zhong Z, Jin R, Wang Y, Gu Y, Ye D, Chen K, Shu Y, Wang Y, Yu FX. WWC proteins-mediated compensatory mechanism restricts schwannomatosis driven by NF2 loss of function. SCIENCE ADVANCES 2025; 11:eadp4765. [PMID: 39841844 PMCID: PMC11753430 DOI: 10.1126/sciadv.adp4765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 12/17/2024] [Indexed: 01/24/2025]
Abstract
NF2-related schwannomatosis, previously known as neurofibromatosis type 2, is a genetic disorder characterized by nerve tumors due to NF2 gene mutations. Mice with Nf2 deletion develop schwannomas slowly with low penetrance, hence inconvenient for preclinical studies. Here, we show that NF2, by recruiting E3 ubiquitin ligases β-TrCP1/2, promotes WWC1-3 ubiquitination and degradation. In NF2 mutated cells, WWC1-3 accumulation is a compensatory mechanism to prevent YAP/TAZ hyperactivation and rapid tumorigenesis. Accordingly, we generate a synthetic mouse model with complete penetrance and short latency by concurrently deleting Nf2 and Wwc1/2 in Schwann cells. This model closely resembles NF2-related schwannomatosis in patients, as confirmed by histological and single-cell transcriptome analysis. Moreover, a cell line from mouse schwannomas and a syngeneic tumor model in immune-competent mice are established. Furthermore, a screen using established models has identified candidate drugs that effectively suppress schwannoma progression. Hence, this work has developed rapid and transplantable models that will facilitate both basic and translational research on NF2-related schwannomatosis.
Collapse
Affiliation(s)
- Xueying Wang
- Institute of Pediatrics, Children’s Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Rui Zhu
- Institute of Pediatrics, Children’s Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Pengcheng Yu
- Institute of Pediatrics, Children’s Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Sixian Qi
- Institute of Pediatrics, Children’s Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhenxing Zhong
- Institute of Pediatrics, Children’s Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ruxin Jin
- Institute of Pediatrics, Children’s Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yu Wang
- Institute of Pediatrics, Children’s Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yuan Gu
- Institute of Pediatrics, Children’s Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Dan Ye
- Huashan Hospital and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Kang Chen
- Department of Obstetrics and Gynecology and Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
| | - Yilai Shu
- ENT Institute and Otorhinolaryngology Department of Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Yi Wang
- Department of Neurology, Children’s Hospital of Fudan University, National Children’s Medical Center, Fudan University, Shanghai, China
| | - Fa-Xing Yu
- Institute of Pediatrics, Children’s Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
5
|
Hino U, Tamura R, Toda M. Optimal Delivery of Pain Management in Schwannomatosis: A Literature Review. Ther Clin Risk Manag 2025; 21:61-68. [PMID: 39839825 PMCID: PMC11748755 DOI: 10.2147/tcrm.s362794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 01/04/2025] [Indexed: 01/23/2025] Open
Abstract
Non-NF2 schwannomatosis is a rare syndrome characterized by multiple benign schwannomas that primarily affect nerve sheaths, with chronic, treatment-resistant pain as the most common symptom. No protocol has been established for pain management, and pharmacotherapies, including molecular target therapies, are being evaluated. Neuromodulation therapies such as scrambler therapy and surgical options are also employed; however, surgery may lead to persistent or recurrent pain caused by nerve damage or tumor recurrence. The lack of accurate animal models hampers understanding of pain mechanisms and tumor development, necessitating further basic research and clinical trials to improve treatment strategies.
Collapse
Affiliation(s)
- Utaro Hino
- Department of Neurosurgery, Saiseikai Yokohamashi Tobu Hospital, Kanagawa, Japan
| | - Ryota Tamura
- Department of Neurosurgery, Keio University School of Medicine, Tokyo, Japan
| | - Masahiro Toda
- Department of Neurosurgery, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
6
|
Nouri SH, Nitturi V, Ledbetter E, English CW, Lau S, Klisch TJ, Patel AJ. Role of NF2 Mutation in the Development of Eleven Different Cancers. Cancers (Basel) 2024; 17:64. [PMID: 39796693 PMCID: PMC11720051 DOI: 10.3390/cancers17010064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 12/18/2024] [Accepted: 12/27/2024] [Indexed: 01/13/2025] Open
Abstract
Background/Objectives: With the rise in prevalence of diagnostic genetic techniques like RNA sequencing and whole exome sequencing (WES), as well as biological treatment regiments for cancer therapy, several genes have been implicated in carcinogenesis. This review aims to update our understanding of the Neurofibromatosis 2 (NF2) gene and its role in the pathogenesis of various cancers. Methods: A comprehensive search of five online databases yielded 43 studies that highlighted the effect of sporadic NF2 mutations on several cancers, including sporadic meningioma, ependymoma, schwannoma, mesothelioma, breast cancer, hepatocellular carcinoma, prostate cancer, glioblastoma, thyroid cancer, and melanoma. Of note were key biological pathways implicated in cancer formation resulting from sporadic NF2 mutations. Results: NF2 gene mutations are implicated in over 11 different cancers, including several CNS tumors, soli-organ tumors, and skin cancer. NF2 acts as a driver mutation in some cancers, as a non-driver mutation in some cancers, and has simple associated mutations with other cancers. In terms of biological pathway involvement, 8 of the 11 cancers with NF2 mutations show evidence of Hippo signaling cascade involvement. Conclusions: Several cancers characterized by mutations in the NF2 gene have associations with the Hippo signaling pathway. However, future studies remain to be done to further elucidate the role of the Hippo signaling pathway in the carcinogenesis of human NF2-mutant tumors. The findings of this review provide insights into the role of NF2 mutations in cancers, Hippo signaling in NF2-mutant cancers, and current gaps in our knowledge regarding the two.
Collapse
Affiliation(s)
- Shervin Hosseingholi Nouri
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA; (S.H.N.); (V.N.); (E.L.); (C.W.E.); (S.L.); (T.J.K.)
| | - Vijay Nitturi
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA; (S.H.N.); (V.N.); (E.L.); (C.W.E.); (S.L.); (T.J.K.)
| | - Elizabeth Ledbetter
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA; (S.H.N.); (V.N.); (E.L.); (C.W.E.); (S.L.); (T.J.K.)
| | - Collin W. English
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA; (S.H.N.); (V.N.); (E.L.); (C.W.E.); (S.L.); (T.J.K.)
| | - Sean Lau
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA; (S.H.N.); (V.N.); (E.L.); (C.W.E.); (S.L.); (T.J.K.)
| | - Tiemo J. Klisch
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA; (S.H.N.); (V.N.); (E.L.); (C.W.E.); (S.L.); (T.J.K.)
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA
| | - Akash J. Patel
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA; (S.H.N.); (V.N.); (E.L.); (C.W.E.); (S.L.); (T.J.K.)
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA
- Department of Otolaryngology–Head & Neck Surgery, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
7
|
Melfi V, Mohamed T, Colciago A, Fasciani A, De Francesco R, Bettio D, Cerqua C, Boaretto F, Basso E, Ferraresi S, Montini M, Eoli M, Papi L, Trevisson E, Magnaghi V. Typical NF2 and LTZR1 mutations are retained in an immortalized human schwann cell model of schwannomatosis. Heliyon 2024; 10:e38957. [PMID: 39444403 PMCID: PMC11497399 DOI: 10.1016/j.heliyon.2024.e38957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/26/2024] [Accepted: 10/03/2024] [Indexed: 10/25/2024] Open
Abstract
Human SCs play a primary role in SWN, a rare genetic disorder in which patients develop multiple schwannomas. So that, their isolation and immortalization could represent an irreplaceable tool to investigate the disease etiopathology. Although few clones of tumoural SCs have been obtained, unfortunately they present genetic, morphological and biological characteristics that do not fully represent the original cells. Herein we isolated, characterized and immortalized primary SCs from human schwannomas. Our immortalized human SCs present typical NF2 and LTZR1 genetic mutations of SWN and retain original phenotype characteristics, representing a valuable tool for further genetic, functional and biomolecular in vitro studies.
Collapse
Affiliation(s)
- Valentina Melfi
- Dept. of Pharmacological and Biomolecular Science “R. Paoletti” Università degli Studi di Milano, Italy
| | - Tasnim Mohamed
- Dept. of Pharmacological and Biomolecular Science “R. Paoletti” Università degli Studi di Milano, Italy
| | - Alessandra Colciago
- Dept. of Pharmacological and Biomolecular Science “R. Paoletti” Università degli Studi di Milano, Italy
| | | | - Raffaele De Francesco
- Dept. of Pharmacological and Biomolecular Science “R. Paoletti” Università degli Studi di Milano, Italy
- INGM, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy
| | - Daniela Bettio
- Clinical Genetics Unit, Dept. of Women's and Children's Health, University of Padova, Italy
| | - Cristina Cerqua
- Clinical Genetics Unit, Dept. of Women's and Children's Health, University of Padova, Italy
| | - Francesca Boaretto
- Clinical Genetics Unit, Dept. of Women's and Children's Health, University of Padova, Italy
| | - Elisabetta Basso
- Dept. of Neurosurgery, Ospedale Santa Maria della Misericordia, Rovigo, Italy
| | - Stefano Ferraresi
- Dept. of Neurosurgery, Ospedale Santa Maria della Misericordia, Rovigo, Italy
| | - Marco Montini
- Dept. of Experimental and Clinical, Medical Genetics Unit, Biomedical Sciences "Mario Serio," University of Florence, Florence, Italy
| | - Marica Eoli
- Neuro Oncology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Laura Papi
- Dept. of Experimental and Clinical, Medical Genetics Unit, Biomedical Sciences "Mario Serio," University of Florence, Florence, Italy
| | - Eva Trevisson
- Clinical Genetics Unit, Dept. of Women's and Children's Health, University of Padova, Italy
| | - Valerio Magnaghi
- Dept. of Pharmacological and Biomolecular Science “R. Paoletti” Università degli Studi di Milano, Italy
| |
Collapse
|
8
|
Biswas A, Ramdulari AV, Thakur A, Kumar A, G S A, Jana M, Suri V. Successful multimodality management of extrarenal extracranial malignant rhabdoid tumour of the left sciatic nerve mimicking a neurofibroma. Br J Neurosurg 2024; 38:978-982. [PMID: 34553668 DOI: 10.1080/02688697.2021.1981245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 09/12/2021] [Indexed: 10/20/2022]
Abstract
Extrarenal extracranial malignant rhabdoid tumour (MRT) is a rare and highly aggressive tumour representing <1% of paediatric soft tissue malignancies. Only a few cases of MRT of the thigh arising from the sciatic nerve have been reported in medical literature to date. A 5-year-old girl presented with progressively increasing painless lump in the posterior aspect of the left thigh. A contrast-enhanced magnetic resonance imaging (MRI) of the left thigh showed a 4.7 × 5 × 10.5 cm well-marginated, lobulated, homogeneously enhancing lesion in the posterior compartment of the left thigh along the course of the sciatic nerve. She underwent en bloc excision of the left sciatic nerve tumour and end-to-end anastomosis of the left sciatic nerve with a right sural nerve graft. Histopathological and immunohistochemical examination of the surgical specimen revealed a malignant rhabdoid tumour. INI-1 immunoexpression was lost in the tumour cells. The metastatic workup was essentially normal. Subsequently, she received post-operative radiotherapy to the tumour bed (50.4 Gray in 28 fractions over 5.5 weeks) followed by six cycles of multiagent chemotherapy with ICE (Ifosfamide, Carboplatin, and Etoposide) regimen. On the last follow-up visit, 20 months after surgery, she was in complete clinical and radiological response. Aggressive multimodality management comprising radical resection of tumour, post-operative radiotherapy to the tumour bed, and multiagent chemotherapy with ICE regimen can lead to favourable outcomes in patients with this rare tumour.
Collapse
Affiliation(s)
- Ahitagni Biswas
- Department of Radiotherapy & Oncology, All India Institute of Medical Sciences, New Delhi, India
| | - Anjali V Ramdulari
- Department of Radiotherapy & Oncology, All India Institute of Medical Sciences, New Delhi, India
| | - Alok Thakur
- Department of Radiotherapy & Oncology, All India Institute of Medical Sciences, New Delhi, India
| | - Amandeep Kumar
- Department of Neurosurgery, All India Institute of Medical Sciences, New Delhi, India
| | - Anju G S
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Manisha Jana
- Department of Radiodiagnosis, All India Institute of Medical Sciences, New Delhi, India
| | - Vaishali Suri
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
9
|
Stoltze UK, Foss-Skiftesvik J, Hansen TVO, Rasmussen S, Karczewski KJ, Wadt KAW, Schmiegelow K. The evolutionary impact of childhood cancer on the human gene pool. Nat Commun 2024; 15:1881. [PMID: 38424437 PMCID: PMC10904397 DOI: 10.1038/s41467-024-45975-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 02/08/2024] [Indexed: 03/02/2024] Open
Abstract
Germline pathogenic variants associated with increased childhood mortality must be subject to natural selection. Here, we analyze publicly available germline genetic metadata from 4,574 children with cancer [11 studies; 1,083 whole exome sequences (WES), 1,950 whole genome sequences (WGS), and 1,541 gene panel] and 141,456 adults [125,748 WES and 15,708 WGS]. We find that pediatric cancer predisposition syndrome (pCPS) genes [n = 85] are highly constrained, harboring only a quarter of the loss-of-function variants that would be expected. This strong indication of selective pressure on pCPS genes is found across multiple lines of germline genomics data from both pediatric and adult cohorts. For six genes [ELP1, GPR161, VHL and SDHA/B/C], a clear lack of mutational constraint calls the pediatric penetrance and/or severity of associated cancers into question. Conversely, out of 23 known pCPS genes associated with biallelic risk, two [9%, DIS3L2 and MSH2] show significant constraint, indicating that they may monoallelically increase childhood cancer risk. In summary, we show that population genetic data provide empirical evidence that heritable childhood cancer leads to natural selection powerful enough to have significantly impacted the present-day gene pool.
Collapse
Affiliation(s)
- Ulrik Kristoffer Stoltze
- Department of Pediatrics and Adolescent Medicine, Rigshospitalet, Blegdamsvej 9, Copenhagen, The Capital Region, Denmark.
- Department of Clinical Genetics, Rigshospitalet, Blegdamsvej 9, Copenhagen, The Capital Region, Denmark.
- Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Merkin Building, 415 Main St, Cambridge, MA, 02142, USA.
| | - Jon Foss-Skiftesvik
- Department of Pediatrics and Adolescent Medicine, Rigshospitalet, Blegdamsvej 9, Copenhagen, The Capital Region, Denmark
- Department of Neurosurgery, Rigshospitalet, Blegdamsvej 9, Copenhagen, The Capital Region, Denmark
| | - Thomas van Overeem Hansen
- Department of Clinical Genetics, Rigshospitalet, Blegdamsvej 9, Copenhagen, The Capital Region, Denmark
- Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3B, Copenhagen, Denmark
| | - Simon Rasmussen
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Blegdamsvej 3B, Copenhagen, Denmark
- The Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Konrad J Karczewski
- Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Merkin Building, 415 Main St, Cambridge, MA, 02142, USA
- The Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Center for Genomic Medicine, Massachusetts General Hospital, 55 Fruit St, Boston, MA, 02114, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, 55 Fruit St, Boston, MA, 02114, USA
| | - Karin A W Wadt
- Department of Clinical Genetics, Rigshospitalet, Blegdamsvej 9, Copenhagen, The Capital Region, Denmark
- Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3B, Copenhagen, Denmark
| | - Kjeld Schmiegelow
- Department of Pediatrics and Adolescent Medicine, Rigshospitalet, Blegdamsvej 9, Copenhagen, The Capital Region, Denmark.
- Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3B, Copenhagen, Denmark.
| |
Collapse
|
10
|
Staedtke V, Anstett K, Bedwell D, Giovannini M, Keeling K, Kesterson R, Kim Y, Korf B, Leier A, McManus ML, Sarnoff H, Vitte J, Walker JA, Plotkin SR, Wallis D. Gene-targeted therapy for neurofibromatosis and schwannomatosis: The path to clinical trials. Clin Trials 2024; 21:51-66. [PMID: 37937606 DOI: 10.1177/17407745231207970] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Numerous successful gene-targeted therapies are arising for the treatment of a variety of rare diseases. At the same time, current treatment options for neurofibromatosis 1 and schwannomatosis are limited and do not directly address loss of gene/protein function. In addition, treatments have mostly focused on symptomatic tumors, but have failed to address multisystem involvement in these conditions. Gene-targeted therapies hold promise to address these limitations. However, despite intense interest over decades, multiple preclinical and clinical issues need to be resolved before they become a reality. The optimal approaches to gene-, mRNA-, or protein restoration and to delivery to the appropriate cell types remain elusive. Preclinical models that recapitulate manifestations of neurofibromatosis 1 and schwannomatosis need to be refined. The development of validated assays for measuring neurofibromin and merlin activity in animal and human tissues will be critical for early-stage trials, as will the selection of appropriate patients, based on their individual genotypes and risk/benefit balance. Once the safety of gene-targeted therapy for symptomatic tumors has been established, the possibility of addressing a wide range of symptoms, including non-tumor manifestations, should be explored. As preclinical efforts are underway, it will be essential to educate both clinicians and those affected by neurofibromatosis 1/schwannomatosis about the risks and benefits of gene-targeted therapy for these conditions.
Collapse
Affiliation(s)
- Verena Staedtke
- Department of Neurology, Johns Hopkins University, Baltimore, MD, USA
| | - Kara Anstett
- Department of Neurology, NYU Grossman School of Medicine, New York, NY, USA
| | - David Bedwell
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Marco Giovannini
- Department of Head and Neck Surgery, David Geffen School of Medicine at UCLA and Jonsson Comprehensive Cancer Center (JCCC), University of California Los Angeles, Los Angeles, CA, USA
| | - Kim Keeling
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Robert Kesterson
- Department of Cancer Precision Medicine, Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - YooRi Kim
- Gilbert Family Foundation, Detroit, MI, USA
| | - Bruce Korf
- Department of Genetics, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - André Leier
- Department of Genetics, The University of Alabama at Birmingham, Birmingham, AL, USA
| | | | | | - Jeremie Vitte
- Department of Head and Neck Surgery, David Geffen School of Medicine at UCLA and Jonsson Comprehensive Cancer Center (JCCC), University of California Los Angeles, Los Angeles, CA, USA
| | - James A Walker
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Scott R Plotkin
- Department of Neurology and Cancer Center, Massachusetts General Hospital, Boston, MA, USA
| | - Deeann Wallis
- Department of Genetics, The University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
11
|
Lim WC, Marques Da Costa ME, Godefroy K, Jacquet E, Gragert L, Rondof W, Marchais A, Nhiri N, Dalfovo D, Viard M, Labaied N, Khan AM, Dessen P, Romanel A, Pasqualini C, Schleiermacher G, Carrington M, Zitvogel L, Scoazec JY, Geoerger B, Salmon J. Divergent HLA variations and heterogeneous expression but recurrent HLA loss-of- heterozygosity and common HLA-B and TAP transcriptional silencing across advanced pediatric solid cancers. Front Immunol 2024; 14:1265469. [PMID: 38318504 PMCID: PMC10839790 DOI: 10.3389/fimmu.2023.1265469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 11/06/2023] [Indexed: 02/07/2024] Open
Abstract
The human leukocyte antigen (HLA) system is a major factor controlling cancer immunosurveillance and response to immunotherapy, yet its status in pediatric cancers remains fragmentary. We determined high-confidence HLA genotypes in 576 children, adolescents and young adults with recurrent/refractory solid tumors from the MOSCATO-01 and MAPPYACTS trials, using normal and tumor whole exome and RNA sequencing data and benchmarked algorithms. There was no evidence for narrowed HLA allelic diversity but discordant homozygosity and allele frequencies across tumor types and subtypes, such as in embryonal and alveolar rhabdomyosarcoma, neuroblastoma MYCN and 11q subtypes, and high-grade glioma, and several alleles may represent protective or susceptibility factors to specific pediatric solid cancers. There was a paucity of somatic mutations in HLA and antigen processing and presentation (APP) genes in most tumors, except in cases with mismatch repair deficiency or genetic instability. The prevalence of loss-of-heterozygosity (LOH) ranged from 5.9 to 7.7% in HLA class I and 8.0 to 16.7% in HLA class II genes, but was widely increased in osteosarcoma and glioblastoma (~15-25%), and for DRB1-DQA1-DQB1 in Ewing sarcoma (~23-28%) and low-grade glioma (~33-50%). HLA class I and HLA-DR antigen expression was assessed in 194 tumors and 44 patient-derived xenografts (PDXs) by immunochemistry, and class I and APP transcript levels quantified in PDXs by RT-qPCR. We confirmed that HLA class I antigen expression is heterogeneous in advanced pediatric solid tumors, with class I loss commonly associated with the transcriptional downregulation of HLA-B and transporter associated with antigen processing (TAP) genes, whereas class II antigen expression is scarce on tumor cells and occurs on immune infiltrating cells. Patients with tumors expressing sufficient HLA class I and TAP levels such as some glioma, osteosarcoma, Ewing sarcoma and non-rhabdomyosarcoma soft-tissue sarcoma cases may more likely benefit from T cell-based approaches, whereas strategies to upregulate HLA expression, to expand the immunopeptidome, and to target TAP-independent epitopes or possibly LOH might provide novel therapeutic opportunities in others. The consequences of HLA class II expression by immune cells remain to be established. Immunogenetic profiling should be implemented in routine to inform immunotherapy trials for precision medicine of pediatric cancers.
Collapse
Affiliation(s)
- Wan Ching Lim
- INSERM U1015, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
- Bioinformatics Platform, AMMICA, INSERM US23/CNRS UMS3655, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
- School of Data Sciences, Perdana University, Kuala Lumpur, Malaysia
| | | | - Karine Godefroy
- Department of Pathology and Laboratory Medicine, Translational Research Laboratory and Biobank, AMMICA, INSERM US23/CNRS UMS3655, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
| | - Eric Jacquet
- Institut de Chimie des Substances Naturelles, CNRS UPR2301, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Loren Gragert
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA, United States
| | - Windy Rondof
- INSERM U1015, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
- Bioinformatics Platform, AMMICA, INSERM US23/CNRS UMS3655, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
| | - Antonin Marchais
- INSERM U1015, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
- Bioinformatics Platform, AMMICA, INSERM US23/CNRS UMS3655, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
| | - Naima Nhiri
- Institut de Chimie des Substances Naturelles, CNRS UPR2301, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Davide Dalfovo
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Mathias Viard
- Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD, United States
- Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States
| | - Nizar Labaied
- Department of Pathology and Laboratory Medicine, Translational Research Laboratory and Biobank, AMMICA, INSERM US23/CNRS UMS3655, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
| | - Asif M. Khan
- School of Data Sciences, Perdana University, Kuala Lumpur, Malaysia
| | - Philippe Dessen
- Bioinformatics Platform, AMMICA, INSERM US23/CNRS UMS3655, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
| | - Alessandro Romanel
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Claudia Pasqualini
- INSERM U1015, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
- Department of Pediatric and Adolescent Oncology, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
| | - Gudrun Schleiermacher
- INSERM U830, Recherche Translationnelle en Oncologie Pédiatrique (RTOP), and SIREDO Oncology Center (Care, Innovation and Research for Children and AYA with Cancer), PSL Research University, Institut Curie, Paris, France
| | - Mary Carrington
- Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD, United States
- Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States
- Ragon Institute of Massachusetts General Hospital, MIT and Harvard University, Cambridge, MA, United States
| | - Laurence Zitvogel
- INSERM U1015, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
| | - Jean-Yves Scoazec
- Department of Pathology and Laboratory Medicine, Translational Research Laboratory and Biobank, AMMICA, INSERM US23/CNRS UMS3655, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
| | - Birgit Geoerger
- INSERM U1015, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
- Department of Pediatric and Adolescent Oncology, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
| | - Jerome Salmon
- INSERM U1015, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
| |
Collapse
|
12
|
Huhtala L, Karabiyik G, Rautajoki KJ. Development and epigenetic regulation of Atypical teratoid/rhabdoid tumors in the context of cell-of-origin and halted cell differentiation. Neurooncol Adv 2024; 6:vdae162. [PMID: 39465218 PMCID: PMC11502914 DOI: 10.1093/noajnl/vdae162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024] Open
Abstract
Atypical teratoid/rhabdoid tumors (AT/RTs) are aggressive brain tumors primarily observed in infants. The only characteristic, recurrent genetic aberration of AT/RTs is biallelic inactivation of SMARCB1 (or SMARCA4). These genes are members of the mSWI/SNF chromatin-remodeling complex, which regulates various developmental processes, including neural differentiation. This review explores AT/RT subgroups regarding their distinct SMARCB1 loss-of-function mechanisms, molecular features, and patient characteristics. Additionally, it addresses the ongoing debate about the oncogenic relevance of cell-of-origin, examining the influence of developmental stage and lineage commitment of the seeding cell on tumor malignancy and other characteristics. Epigenetic dysregulation, particularly through the regulation of histone modifications and DNA hypermethylation, has been shown to play an integral role in AT/RTs' malignancy and differentiation blockage, maintaining cells in a poorly differentiated state via the insufficient activation of differentiation-related genes. Here, the differentiation blockage and its contribution to malignancy are also explored in a cellular context. Understanding these mechanisms and AT/RT heterogeneity is crucial for therapeutic improvements against AT/RTs.
Collapse
Affiliation(s)
- Laura Huhtala
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere University Hospital, Tampere, Finland
| | - Goktug Karabiyik
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere University Hospital, Tampere, Finland
| | - Kirsi J Rautajoki
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere University Hospital, Tampere, Finland
| |
Collapse
|
13
|
Lomeli C. S, Kristin B. A. Epigenetic regulation of craniofacial development and disease. Birth Defects Res 2024; 116:e2271. [PMID: 37964651 PMCID: PMC10872612 DOI: 10.1002/bdr2.2271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/13/2023] [Accepted: 10/24/2023] [Indexed: 11/16/2023]
Abstract
BACKGROUND The formation of the craniofacial complex relies on proper neural crest development. The gene regulatory networks (GRNs) and signaling pathways orchestrating this process have been extensively studied. These GRNs and signaling cascades are tightly regulated as alterations to any stage of neural crest development can lead to common congenital birth defects, including multiple syndromes affecting facial morphology as well as nonsyndromic facial defects, such as cleft lip with or without cleft palate. Epigenetic factors add a hierarchy to the regulation of transcriptional networks and influence the spatiotemporal activation or repression of specific gene regulatory cascades; however less is known about their exact mechanisms in controlling precise gene regulation. AIMS In this review, we discuss the role of epigenetic factors during neural crest development, specifically during craniofacial development and how compromised activities of these regulators contribute to congenital defects that affect the craniofacial complex.
Collapse
Affiliation(s)
- Shull Lomeli C.
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Artinger Kristin B.
- Department of Diagnostic and Biological Sciences, University of Minnesota School of Dentistry, Minneapolis, MN, USA
| |
Collapse
|
14
|
Liu NQ, Paassen I, Custers L, Zeller P, Teunissen H, Ayyildiz D, He J, Buhl JL, Hoving EW, van Oudenaarden A, de Wit E, Drost J. SMARCB1 loss activates patient-specific distal oncogenic enhancers in malignant rhabdoid tumors. Nat Commun 2023; 14:7762. [PMID: 38040699 PMCID: PMC10692191 DOI: 10.1038/s41467-023-43498-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 11/10/2023] [Indexed: 12/03/2023] Open
Abstract
Malignant rhabdoid tumor (MRT) is a highly malignant and often lethal childhood cancer. MRTs are genetically defined by bi-allelic inactivating mutations in SMARCB1, a member of the BRG1/BRM-associated factors (BAF) chromatin remodeling complex. Mutations in BAF complex members are common in human cancer, yet their contribution to tumorigenesis remains in many cases poorly understood. Here, we study derailed regulatory landscapes as a consequence of SMARCB1 loss in the context of MRT. Our multi-omics approach on patient-derived MRT organoids reveals a dramatic reshaping of the regulatory landscape upon SMARCB1 reconstitution. Chromosome conformation capture experiments subsequently reveal patient-specific looping of distal enhancer regions with the promoter of the MYC oncogene. This intertumoral heterogeneity in MYC enhancer utilization is also present in patient MRT tissues as shown by combined single-cell RNA-seq and ATAC-seq. We show that loss of SMARCB1 activates patient-specific epigenetic reprogramming underlying MRT tumorigenesis.
Collapse
Affiliation(s)
- Ning Qing Liu
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, the Netherlands
- Department of Hematology, Erasmus Medical Center (MC) Cancer Institute, Rotterdam, the Netherlands
| | - Irene Paassen
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Lars Custers
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Peter Zeller
- Oncode Institute, Utrecht, the Netherlands
- Hubrecht Institute-KNAW, Utrecht, the Netherlands
- University Medical Center Utrecht, Utrecht, the Netherlands
| | - Hans Teunissen
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Dilara Ayyildiz
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Jiayou He
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Juliane Laura Buhl
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | | | - Alexander van Oudenaarden
- Oncode Institute, Utrecht, the Netherlands
- Hubrecht Institute-KNAW, Utrecht, the Netherlands
- University Medical Center Utrecht, Utrecht, the Netherlands
| | - Elzo de Wit
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, the Netherlands.
| | - Jarno Drost
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands.
- Oncode Institute, Utrecht, the Netherlands.
| |
Collapse
|
15
|
du Chatinier A, Velilla IQ, Meel MH, Hoving EW, Hulleman E, Metselaar DS. Microglia in pediatric brain tumors: The missing link to successful immunotherapy. Cell Rep Med 2023; 4:101246. [PMID: 37924816 PMCID: PMC10694606 DOI: 10.1016/j.xcrm.2023.101246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 08/10/2023] [Accepted: 09/26/2023] [Indexed: 11/06/2023]
Abstract
Brain tumors are the leading cause of cancer-related mortality in children. Despite the development of immunotherapeutic strategies for adult brain tumors, progress in pediatric neuro-oncology has been hindered by the complex and poorly understood nature of the brain's immune system during early development, a phase that is critical for the onset of many pediatric brain tumors. A defining characteristic of these tumors is the abundance of microglia, the resident immune cells of the central nervous system. In this review, we explore the concept of microglial diversity across brain regions and throughout development and discuss how their maturation stage may contribute to tumor growth in children. We also summarize the current knowledge on the roles of microglia in common pediatric brain tumor entities and provide examples of myeloid-based immunotherapeutic strategies. Our review underscores the importance of microglial plasticity in pediatric brain tumors and its significance for developing effective immunotherapeutic strategies.
Collapse
Affiliation(s)
- Aimée du Chatinier
- Department of Neuro-oncology, Princess Máxima Center for Paediatric Oncology, Heidelberglaan 25, 3584CS Utrecht, the Netherlands
| | - Irene Querol Velilla
- Department of Neuro-oncology, Princess Máxima Center for Paediatric Oncology, Heidelberglaan 25, 3584CS Utrecht, the Netherlands
| | - Michaël Hananja Meel
- Department of Neuro-oncology, Princess Máxima Center for Paediatric Oncology, Heidelberglaan 25, 3584CS Utrecht, the Netherlands
| | - Eelco Wieger Hoving
- Department of Neuro-oncology, Princess Máxima Center for Paediatric Oncology, Heidelberglaan 25, 3584CS Utrecht, the Netherlands
| | - Esther Hulleman
- Department of Neuro-oncology, Princess Máxima Center for Paediatric Oncology, Heidelberglaan 25, 3584CS Utrecht, the Netherlands
| | - Dennis Serge Metselaar
- Department of Neuro-oncology, Princess Máxima Center for Paediatric Oncology, Heidelberglaan 25, 3584CS Utrecht, the Netherlands.
| |
Collapse
|
16
|
Lobón-Iglesias MJ, Andrianteranagna M, Han ZY, Chauvin C, Masliah-Planchon J, Manriquez V, Tauziede-Espariat A, Turczynski S, Bouarich-Bourimi R, Frah M, Dufour C, Blauwblomme T, Cardoen L, Pierron G, Maillot L, Guillemot D, Reynaud S, Bourneix C, Pouponnot C, Surdez D, Bohec M, Baulande S, Delattre O, Piaggio E, Ayrault O, Waterfall JJ, Servant N, Beccaria K, Dangouloff-Ros V, Bourdeaut F. Imaging and multi-omics datasets converge to define different neural progenitor origins for ATRT-SHH subgroups. Nat Commun 2023; 14:6669. [PMID: 37863903 PMCID: PMC10589300 DOI: 10.1038/s41467-023-42371-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 10/09/2023] [Indexed: 10/22/2023] Open
Abstract
Atypical teratoid rhabdoid tumors (ATRT) are divided into MYC, TYR and SHH subgroups, suggesting diverse lineages of origin. Here, we investigate the imaging of human ATRT at diagnosis and the precise anatomic origin of brain tumors in the Rosa26-CreERT2::Smarcb1flox/flox model. This cross-species analysis points to an extra-cerebral origin for MYC tumors. Additionally, we clearly distinguish SHH ATRT emerging from the cerebellar anterior lobe (CAL) from those emerging from the basal ganglia (BG) and intra-ventricular (IV) regions. Molecular characteristics point to the midbrain-hindbrain boundary as the origin of CAL SHH ATRT, and to the ganglionic eminence as the origin of BG/IV SHH ATRT. Single-cell RNA sequencing on SHH ATRT supports these hypotheses. Trajectory analyses suggest that SMARCB1 loss induces a de-differentiation process mediated by repressors of the neuronal program such as REST, ID and the NOTCH pathway.
Collapse
Affiliation(s)
- María-Jesús Lobón-Iglesias
- INSERM U830, Laboratory of Translational Research In Pediatric Oncology, PSL Research University, SIREDO Oncology center, Institut Curie Research Center, Paris, France
| | - Mamy Andrianteranagna
- INSERM U830, Laboratory of Translational Research In Pediatric Oncology, PSL Research University, SIREDO Oncology center, Institut Curie Research Center, Paris, France
- INSERM U900, Bioinformatics, Biostatistics, Epidemiology and Computational Systems Unit, Institut Curie, Mines Paris Tech, PSL Research University, Institut Curie Research Center, Paris, France
| | - Zhi-Yan Han
- INSERM U830, Laboratory of Translational Research In Pediatric Oncology, PSL Research University, SIREDO Oncology center, Institut Curie Research Center, Paris, France
| | - Céline Chauvin
- INSERM U830, Laboratory of Translational Research In Pediatric Oncology, PSL Research University, SIREDO Oncology center, Institut Curie Research Center, Paris, France
| | - Julien Masliah-Planchon
- Somatic Genetic Unit, Department of Pathology and Diagnostic and Theranostic Medecine, Institut Curie Hospital, Paris, France
| | - Valeria Manriquez
- INSERM U932, Immunity and Cancer, PSL Research University, Institut Curie Research Center, Paris, France
| | - Arnault Tauziede-Espariat
- Department of Neuropathology, GHU Paris-Psychiatry and Neurosciences, Sainte-Anne Hospital, Paris, France
- Paris Psychiatry and Neurosciences Institute (IPNP), UMR S1266, INSERM, IMA-BRAIN, Paris, France
| | - Sandrina Turczynski
- INSERM U830, Laboratory of Translational Research In Pediatric Oncology, PSL Research University, SIREDO Oncology center, Institut Curie Research Center, Paris, France
| | - Rachida Bouarich-Bourimi
- INSERM U830, Laboratory of Translational Research In Pediatric Oncology, PSL Research University, SIREDO Oncology center, Institut Curie Research Center, Paris, France
| | - Magali Frah
- INSERM U830, Laboratory of Translational Research In Pediatric Oncology, PSL Research University, SIREDO Oncology center, Institut Curie Research Center, Paris, France
| | - Christelle Dufour
- Department of Children and Adolescents Oncology, Gustave Roussy, Paris Saclay University, Villejuif, France
| | - Thomas Blauwblomme
- Department of Pediatric Neurosurgery-AP-HP, Necker Sick Kids Hospital, Université de Paris, Paris, France
| | | | - Gaelle Pierron
- Somatic Genetic Unit, Department of Pathology and Diagnostic and Theranostic Medecine, Institut Curie Hospital, Paris, France
| | - Laetitia Maillot
- Somatic Genetic Unit, Department of Pathology and Diagnostic and Theranostic Medecine, Institut Curie Hospital, Paris, France
| | - Delphine Guillemot
- Somatic Genetic Unit, Department of Pathology and Diagnostic and Theranostic Medecine, Institut Curie Hospital, Paris, France
| | - Stéphanie Reynaud
- Somatic Genetic Unit, Department of Pathology and Diagnostic and Theranostic Medecine, Institut Curie Hospital, Paris, France
| | - Christine Bourneix
- Somatic Genetic Unit, Department of Pathology and Diagnostic and Theranostic Medecine, Institut Curie Hospital, Paris, France
| | - Célio Pouponnot
- CNRS UMR 3347, INSERM U1021, Institut Curie, PSL Research University, Université Paris-Saclay, Orsay, France
| | - Didier Surdez
- INSERM U830, Diversity and Plasticity of Childhood Tumors Lab, PSL Research University, SIREDO Oncology Center, Institut Curie Research Center, Paris, France
- Balgrist University Hospital, Faculty of Medicine, University of Zurich (UZH), Zurich, Switzerland
| | - Mylene Bohec
- Institut Curie, PSL University, Single Cell Initiative, ICGex Next-Generation Sequencing Platform, PSL University, 75005, Paris, France
| | - Sylvain Baulande
- Institut Curie, PSL University, Single Cell Initiative, ICGex Next-Generation Sequencing Platform, PSL University, 75005, Paris, France
| | - Olivier Delattre
- Somatic Genetic Unit, Department of Pathology and Diagnostic and Theranostic Medecine, Institut Curie Hospital, Paris, France
- INSERM U830, Diversity and Plasticity of Childhood Tumors Lab, PSL Research University, SIREDO Oncology Center, Institut Curie Research Center, Paris, France
| | - Eliane Piaggio
- INSERM U932, Immunity and Cancer, PSL Research University, Institut Curie Research Center, Paris, France
| | - Olivier Ayrault
- CNRS UMR 3347, INSERM U1021, Institut Curie, PSL Research University, Université Paris-Saclay, Orsay, France
| | - Joshua J Waterfall
- INSERM U830, Integrative Functional Genomics of Cancer Lab, PSL Research University, Institut Curie Research Center, Paris, France
- Department of Translational Research, PSL Research University, Institut Curie Research Center, Paris, France
| | - Nicolas Servant
- INSERM U900, Bioinformatics, Biostatistics, Epidemiology and Computational Systems Unit, Institut Curie, Mines Paris Tech, PSL Research University, Institut Curie Research Center, Paris, France
| | - Kevin Beccaria
- Department of Pediatric Neurosurgery-AP-HP, Necker Sick Kids Hospital, Université de Paris, Paris, France
| | - Volodia Dangouloff-Ros
- Pediatric Radiology Department, AP-HP, Necker Sick Kids Hospital and Paris Cite Universiy INSERM 1299 and UMR 1163, Institut Imagine, Paris, France
| | - Franck Bourdeaut
- INSERM U830, Laboratory of Translational Research In Pediatric Oncology, PSL Research University, SIREDO Oncology center, Institut Curie Research Center, Paris, France.
- Department of Pediatric Oncology, SIREDO Oncology Center, Institut Curie Hospital, Paris, and Université de Paris, Paris, France.
| |
Collapse
|
17
|
Witkowski L, Nichols KE, Jongmans M, van Engelen N, de Krijger RR, Herrera-Mullar J, Tytgat L, Bahrami A, Mar Fan H, Davidson AL, Robertson T, Anderson M, Hasselblatt M, Plon SE, Foulkes WD. Germline pathogenic SMARCA4 variants in neuroblastoma. J Med Genet 2023; 60:987-992. [PMID: 36813544 PMCID: PMC10570933 DOI: 10.1136/jmg-2022-108854] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 02/06/2023] [Indexed: 02/24/2023]
Abstract
Heterozygous germline pathogenic variants (GPVs) in SMARCA4, the gene encoding the ATP-dependent chromatin remodelling protein SMARCA4 (previously known as BRG1), predispose to several rare tumour types, including small cell carcinoma of the ovary, hypercalcaemic type, atypical teratoid and malignant rhabdoid tumour, and uterine sarcoma. The increase in germline testing of SMARCA4 in recent years has revealed putative GPVs affecting SMARCA4 in patients with other cancer types. Here we describe 11 patients with neuroblastoma (NBL), including 4 previously unreported cases, all of whom were found to harbour heterozygous germline variants in SMARCA4 Median age at diagnosis was 5 years (range 2 months-26 years); nine were male; and eight of nine cases had tumour location information in the adrenal gland. Eight of the germline variants were expected to result in loss of function of SMARCA4 (large deletion, truncating and canonical splice variants), while the remaining four were missense variants. Loss of heterozygosity of the wild-type SMARCA4 allele was found in all eight cases where somatic testing was performed, supporting the notion that SMARCA4 functions as a classic tumour suppressor. Altogether, these findings strongly suggest that NBL should be included in the spectrum of SMARCA4-associated tumours.
Collapse
Affiliation(s)
- Leora Witkowski
- Core Molecular Diagnostic Laboratory, McGill University Health Centre, Montreal, Québec, Canada
- Department of Human Genetics, McGill University, Montreal, Québec, Canada
| | - Kim E Nichols
- Department of Oncology, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Marjolijn Jongmans
- Department of Genetics, University Medical Centre Utrecht, Utrecht, The Netherlands
| | | | - Ronald R de Krijger
- Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Department of Pathology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | | | - Lieve Tytgat
- Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Armita Bahrami
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Helen Mar Fan
- Genetic Health Queensland, The University of Queensland, Brisbane, Queensland, Australia
- Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Aimee L Davidson
- Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Thomas Robertson
- Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
- Pathology Queensland, Queensland Health, Brisbane, Queensland, Australia
| | | | - Martin Hasselblatt
- Institute of Neuropathology, University Hospital Münster, Münster, Germany
| | - Sharon E Plon
- Department of Pediatrics/Hematology-Oncology, Baylor College of Medicine, Houston, Texas, USA
| | - William D Foulkes
- Lady Davis Institute and Segal Cancer Centre, Sir Mortimer B Davis Jewish General Hospital, Montreal, Québec, Canada
- Research Institute of the McGill University Health Centre, Montreal, Québec, Canada
| |
Collapse
|
18
|
Fountain DM, Sauka-Spengler T. The SWI/SNF Complex in Neural Crest Cell Development and Disease. Annu Rev Genomics Hum Genet 2023; 24:203-223. [PMID: 37624665 DOI: 10.1146/annurev-genom-011723-082913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2023]
Abstract
While the neural crest cell population gives rise to an extraordinary array of derivatives, including elements of the craniofacial skeleton, skin pigmentation, and peripheral nervous system, it is today increasingly recognized that Schwann cell precursors are also multipotent. Two mammalian paralogs of the SWI/SNF (switch/sucrose nonfermentable) chromatin-remodeling complexes, BAF (Brg1-associated factors) and PBAF (polybromo-associated BAF), are critical for neural crest specification during normal mammalian development. There is increasing evidence that pathogenic variants in components of the BAF and PBAF complexes play central roles in the pathogenesis of neural crest-derived tumors. Transgenic mouse models demonstrate a temporal window early in development where pathogenic variants in Smarcb1 result in the formation of aggressive, poorly differentiated tumors, such as rhabdoid tumors. By contrast, later in development, homozygous inactivation of Smarcb1 requires additional pathogenic variants in tumor suppressor genes to drive the development of differentiated adult neoplasms derived from the neural crest, which have a comparatively good prognosis in humans.
Collapse
Affiliation(s)
- Daniel M Fountain
- MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford, United Kingdom; ,
| | - Tatjana Sauka-Spengler
- MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford, United Kingdom; ,
- Stowers Institute for Medical Research, Kansas City, Missouri, USA
| |
Collapse
|
19
|
Dang DD, Rosenblum JS, Shah AH, Zhuang Z, Doucet-O’Hare TT. Epigenetic Regulation in Primary CNS Tumors: An Opportunity to Bridge Old and New WHO Classifications. Cancers (Basel) 2023; 15:2511. [PMID: 37173979 PMCID: PMC10177493 DOI: 10.3390/cancers15092511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/22/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Originally approved in 1979, a specific grading classification for central nervous system (CNS) tumors was devised by the World Health Organization (WHO) in an effort to guide cancer treatment and better understand prognosis. These "blue books" have since undergone several iterations based on tumor location, advancements in histopathology, and most recently, diagnostic molecular pathology in its fifth edition. As new research methods have evolved to elucidate complex molecular mechanisms of tumorigenesis, a need to update and integrate these findings into the WHO grading scheme has become apparent. Epigenetic tools represent an area of burgeoning interest that encompasses all non-Mendelian inherited genetic features affecting gene expression, including but not limited to chromatin remodeling complexes, DNA methylation, and histone regulating enzymes. The SWItch/Sucrose non-fermenting (SWI/SNF) chromatin remodeling complex is the largest mammalian family of chromatin remodeling proteins and is estimated to be altered in 20-25% of all human malignancies; however, the ways in which it contributes to tumorigenesis are not fully understood. We recently discovered that CNS tumors with SWI/SNF mutations have revealed an oncogenic role for endogenous retroviruses (ERVs), remnants of exogenous retroviruses that integrated into the germline and are inherited like Mendelian genes, several of which retain open reading frames for proteins whose expression putatively contributes to tumor formation. Herein, we analyzed the latest WHO classification scheme for all CNS tumors with documented SWI/SNF mutations and/or aberrant ERV expression, and we summarize this information to highlight potential research opportunities that could be integrated into the grading scheme to better delineate diagnostic criteria and therapeutic targets.
Collapse
Affiliation(s)
- Danielle D. Dang
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jared S. Rosenblum
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ashish H. Shah
- Section of Virology and Immunotherapy, Department of Neurosurgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Zhengping Zhuang
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tara T. Doucet-O’Hare
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
20
|
Paassen I, Williams J, Ríos Arceo C, Ringnalda F, Mercer KS, Buhl JL, Moreno N, Federico A, Franke NE, Kranendonk M, Upadhyaya SA, Kerl K, van de Wetering M, Clevers H, Kool M, Hoving EW, Roussel MF, Drost J. Atypical teratoid/rhabdoid tumoroids reveal subgroup-specific drug vulnerabilities. Oncogene 2023; 42:1661-1671. [PMID: 37020038 PMCID: PMC10181938 DOI: 10.1038/s41388-023-02681-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 03/15/2023] [Accepted: 03/23/2023] [Indexed: 04/07/2023]
Abstract
Atypical teratoid/rhabdoid tumors (ATRTs) represent a rare, but aggressive pediatric brain tumor entity. They are genetically defined by alterations in the SWI/SNF chromatin remodeling complex members SMARCB1 or SMARCA4. ATRTs can be further classified in different molecular subgroups based on their epigenetic profiles. Although recent studies suggest that the different subgroups have distinct clinical features, subgroup-specific treatment regimens have not been developed thus far. This is hampered by the lack of pre-clinical in vitro models representative of the different molecular subgroups. Here, we describe the establishment of ATRT tumoroid models from the ATRT-MYC and ATRT-SHH subgroups. We demonstrate that ATRT tumoroids retain subgroup-specific epigenetic and gene expression profiles. High throughput drug screens on our ATRT tumoroids revealed distinct drug sensitivities between and within ATRT-MYC and ATRT-SHH subgroups. Whereas ATRT-MYC universally displayed high sensitivity to multi-targeted tyrosine kinase inhibitors, ATRT-SHH showed a more heterogeneous response with a subset showing high sensitivity to NOTCH inhibitors, which corresponded to high expression of NOTCH receptors. Our ATRT tumoroids represent the first pediatric brain tumor organoid model, providing a representative pre-clinical model which enables the development of subgroup-specific therapies.
Collapse
Affiliation(s)
- Irene Paassen
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS, Utrecht, the Netherlands
- Oncode Institute, Heidelberglaan 25, 3584 CS, Utrecht, the Netherlands
| | - Justin Williams
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Carla Ríos Arceo
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS, Utrecht, the Netherlands
- Oncode Institute, Heidelberglaan 25, 3584 CS, Utrecht, the Netherlands
| | - Femke Ringnalda
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS, Utrecht, the Netherlands
- Oncode Institute, Heidelberglaan 25, 3584 CS, Utrecht, the Netherlands
| | - Kimberly Shea Mercer
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Juliane L Buhl
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS, Utrecht, the Netherlands
- Oncode Institute, Heidelberglaan 25, 3584 CS, Utrecht, the Netherlands
| | - Natalia Moreno
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, Münster, Germany
| | - Aniello Federico
- Hopp Children's Cancer Center (KiTZ), 69120, Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center DKFZ and German Cancer Consortium DKTK, 69120, Heidelberg, Germany
| | - Niels E Franke
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS, Utrecht, the Netherlands
| | - Mariette Kranendonk
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS, Utrecht, the Netherlands
| | | | - Kornelius Kerl
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, Münster, Germany
| | - Marc van de Wetering
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS, Utrecht, the Netherlands
- Oncode Institute, Heidelberglaan 25, 3584 CS, Utrecht, the Netherlands
| | - Hans Clevers
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS, Utrecht, the Netherlands
- Oncode Institute, Heidelberglaan 25, 3584 CS, Utrecht, the Netherlands
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center, 3584 CT, Utrecht, the Netherlands
- Pharma, Research and Early Development (pRED) of F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Marcel Kool
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS, Utrecht, the Netherlands
- Hopp Children's Cancer Center (KiTZ), 69120, Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center DKFZ and German Cancer Consortium DKTK, 69120, Heidelberg, Germany
| | - Eelco W Hoving
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS, Utrecht, the Netherlands
| | - Martine F Roussel
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jarno Drost
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS, Utrecht, the Netherlands.
- Oncode Institute, Heidelberglaan 25, 3584 CS, Utrecht, the Netherlands.
| |
Collapse
|
21
|
Walhart TA, Vacca B, Hepperla AJ, Hamad SH, Petrongelli J, Wang Y, McKean EL, Moksa M, Cao Q, Yip S, Hirst M, Weissman BE. SMARCB1 Loss in Poorly Differentiated Chordomas Drives Tumor Progression. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:456-473. [PMID: 36657718 PMCID: PMC10123523 DOI: 10.1016/j.ajpath.2022.12.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/08/2022] [Accepted: 12/20/2022] [Indexed: 01/18/2023]
Abstract
Poorly differentiated (PD) chordoma, a rare, aggressive tumor originating from notochordal tissue, shows loss of SMARCB1 expression, a core component of the Switch/Sucrose Non-Fermentable (SWI/SNF) chromatin remodeling complexes. To determine the impact of SMARCB1 re-expression on cell growth and gene expression, two SMARCB1-negative PD chordoma cell lines with an inducible SMARCB1 expression system were generated. After 72 hours of induction of SMARCB1, both SMARCB1-negative PD chordoma cell lines continued to proliferate. This result contrasted with those observed with SMARCB1-negative rhabdoid cell lines in which SMARCB1 re-expression caused the rapid inhibition of growth. We found that the lack of growth inhibition may arise from the loss of CDKN2A (p16INK4A) expression in PD chordoma cell lines. RNA-sequencing of cell lines after SMARCB1 re-expression showed a down-regulation for rRNA and RNA processing as well as metabolic processing and increased expression of genes involved in cell adhesion, cell migration, and development. Taken together, these data establish that SMARCB1 re-expression in PD chordomas alters the repertoire of SWI/SNF complexes, perhaps restoring those associated with cellular differentiation. These novel findings support a model in which SMARCB1 inactivation blocks the conversion of growth-promoting SWI/SNF complexes to differentiation-inducing ones, and they implicate SMARCB1 loss as a late event in tumorigenic progression. Importantly, the absence of growth inhibition after SMARCB1 restoration creates a unique opportunity to identify therapeutic vulnerabilities.
Collapse
Affiliation(s)
- Tara A Walhart
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina
| | - Bryanna Vacca
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina; Curriculum in Toxicology and Environmental Medicine, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina
| | - Austin J Hepperla
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina
| | - Samera H Hamad
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina; Curriculum in Toxicology and Environmental Medicine, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina
| | - James Petrongelli
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina
| | - Yemin Wang
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Department of Molecular Oncology, British Columbia Cancer Research Institute, Vancouver, British Columbia, Canada
| | - Erin L McKean
- Department of Otolaryngology and Neurosurgery, University of Michigan, Ann Arbor, Michigan
| | - Michelle Moksa
- Department of Microbiology & Immunology, Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada; Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, British Columbia, Canada
| | - Qi Cao
- Department of Microbiology & Immunology, Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada; Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, British Columbia, Canada
| | - Stephen Yip
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Department of Molecular Oncology, British Columbia Cancer Research Institute, Vancouver, British Columbia, Canada
| | - Martin Hirst
- Department of Microbiology & Immunology, Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada; Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, British Columbia, Canada
| | - Bernard E Weissman
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina; Curriculum in Toxicology and Environmental Medicine, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina; Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina.
| |
Collapse
|
22
|
Sarkar S, Throckmorton W, Bingham R, Msaouel P, Genovese G, Slopis J, Rao P, Sadighi Z, Herzog CE. Renal Cell Carcinoma Unclassified with Medullary Phenotype in a Patient with Neurofibromatosis Type 2. Curr Oncol 2023; 30:3355-3365. [PMID: 36975468 PMCID: PMC10047671 DOI: 10.3390/curroncol30030255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/11/2023] [Accepted: 03/12/2023] [Indexed: 03/15/2023] Open
Abstract
We present, to our knowledge, the first reported case of germline neurofibromatosis Type 2 (NF2) associated with renal cell carcinoma unclassified with medullary phenotype (RCCU-MP) with somatic loss by immunohistochemistry of the SMARCB1 tumor suppressor gene located centromeric to NF2 on chromosome 22q. Our patient is a 15-year-old with germline neurofibromatosis Type 2 (NF2) confirmed by pathogenic mutation of c.-854-??46+??deletion. Her NF2 history is positive for a right optic nerve sheath meningioma, CNIII schwannoma requiring radiation therapy and post gross total resection of right frontotemporal anaplastic meningioma followed by radiation. At age 15 she developed new onset weight loss and abdominal pain due to RCCU-MP. Hemoglobin electrophoresis was negative for sickle hemoglobinopathy. Chemotherapy (cisplatin, gemcitabine and paclitaxel) was initiated followed by radical resection. Given the unique renal pathology of a high grade malignancy with loss of SMARCB1 expression via immunohistochemistry, and history of meningioma with MLH1 loss of expression and retained expression of PMS2, MSH2 and MSH6, further germline genetic testing was sent for SMARCB1 and mismatch repair syndromes. Germline testing was negative for mutation in SMARCB1. Therefore, this is the first reported case of RCCU-MP associated with germline NF2 mutation. This suggests the importance of closer surveillance in the adolescent and young adult population with NF2 with any suspicious findings of malignancy outside of the usual scope of practice with NF2.
Collapse
Affiliation(s)
- Sanila Sarkar
- MD Anderson Cancer Care Center, University of Texas, Houston, TX 77030, USA
| | | | | | - Pavlos Msaouel
- MD Anderson Cancer Care Center, University of Texas, Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|
23
|
Yin Z, Wu L, Zhang Y, Sun Y, Chen JW, Subudhi S, Ho W, Lee GY, Wang A, Gao X, Ren J, Zhu C, Zhang N, Ferraro GB, Muzikansky A, Zhang L, Stemmer-Rachamimov A, Mao J, Plotkin SR, Xu L. Co-Targeting IL-6 and EGFR signaling for the treatment of schwannomatosis and associated pain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.06.527377. [PMID: 36798353 PMCID: PMC9934519 DOI: 10.1101/2023.02.06.527377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Patients with Schwannomatosis (SWN) overwhelmingly present with intractable, debilitating chronic pain. There are no effective therapies to treat SWN. The drivers of pain response and tumor progression in SWN are not clear. The pain is not proportionally linked to tumor size and is not always relieved by tumor resection, suggesting that mechanisms other than mechanical nerve compression exist to cause pain. SWN research is limited by the lack of clinically-relevant models. Here, we established novel patient-derived xenograft (PDX) models, dorsal root ganglia (DRG) imaging model, and combined with single-cell resolution intravital imaging and RNASeq, we discovered: i) schwannomas on the peripheral nerve cause macrophage influx into the DRG, via secreting HMGB1 to directly stimulate DRG neurons to express CCL2, the key macrophage chemokine, ii) once recruited, macrophages cause pain response via overproduction of IL-6, iii) IL-6 blockade in a therapeutic setting significantly reduces pain but has modest efficacy on tumor growth, iv) EGF signaling is a potential driver of schwannoma growth and escape mechanism from anti-IL6 treatment, and v) combined IL-6 and EGFR blockade simultaneously controlled pain and tumor growth in SWN models. Our findings prompted the initiation of phase II clinical trial ( NCT05684692 ) for pain relief in patients with SWN.
Collapse
|
24
|
Neyazi S, Altendorf L, Schwetje D, Göbel C, Schoof M, Holdhof D, Schüller U. Generation of new transgenic SMARCA4-deficient mouse models results in neuromuscular weakness and paralysis of limbs. Brain Pathol 2022; 33:e13146. [PMID: 36582072 PMCID: PMC10154361 DOI: 10.1111/bpa.13146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 12/19/2022] [Indexed: 12/31/2022] Open
Affiliation(s)
- Sina Neyazi
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Research Institute Children's Cancer Center Hamburg, Hamburg, Germany.,Department of Pediatric Oncology, Dana-Farber Cancer Institute Boston, Massachusetts, USA
| | - Lea Altendorf
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Research Institute Children's Cancer Center Hamburg, Hamburg, Germany
| | - Dora Schwetje
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Research Institute Children's Cancer Center Hamburg, Hamburg, Germany.,Research Group Anatomy, School of Medicine and Health Studies, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Carolin Göbel
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Research Institute Children's Cancer Center Hamburg, Hamburg, Germany
| | - Melanie Schoof
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Research Institute Children's Cancer Center Hamburg, Hamburg, Germany
| | - Dörthe Holdhof
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Research Institute Children's Cancer Center Hamburg, Hamburg, Germany
| | - Ulrich Schüller
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Research Institute Children's Cancer Center Hamburg, Hamburg, Germany.,Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
25
|
Becklin KL, Draper GM, Madden RA, Kluesner MG, Koga T, Huang M, Weiss WA, Spector LG, Largaespada DA, Moriarity BS, Webber BR. Developing Bottom-Up Induced Pluripotent Stem Cell Derived Solid Tumor Models Using Precision Genome Editing Technologies. CRISPR J 2022; 5:517-535. [PMID: 35972367 PMCID: PMC9529369 DOI: 10.1089/crispr.2022.0032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 07/29/2022] [Indexed: 11/13/2022] Open
Abstract
Advances in genome and tissue engineering have spurred significant progress and opportunity for innovation in cancer modeling. Human induced pluripotent stem cells (iPSCs) are an established and powerful tool to study cellular processes in the context of disease-specific genetic backgrounds; however, their application to cancer has been limited by the resistance of many transformed cells to undergo successful reprogramming. Here, we review the status of human iPSC modeling of solid tumors in the context of genetic engineering, including how base and prime editing can be incorporated into "bottom-up" cancer modeling, a term we coined for iPSC-based cancer models using genetic engineering to induce transformation. This approach circumvents the need to reprogram cancer cells while allowing for dissection of the genetic mechanisms underlying transformation, progression, and metastasis with a high degree of precision and control. We also discuss the strengths and limitations of respective engineering approaches and outline experimental considerations for establishing future models.
Collapse
Affiliation(s)
- Kelsie L. Becklin
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
| | - Garrett M. Draper
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
| | - Rebecca A. Madden
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
| | - Mitchell G. Kluesner
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
| | - Tomoyuki Koga
- Ludwig Cancer Research San Diego Branch, La Jolla, California, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
- Department of Neurosurgery, University of Minnesota, Minneapolis, Minnesota, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
| | - Miller Huang
- Department of Pediatrics, University of Southern California, Los Angeles, California, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
- Cancer and Blood Disease Institute, Children's Hospital Los Angeles and The Saban Research Institute, Los Angeles, California, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
| | - William A. Weiss
- Departments of Neurology, Pediatrics, Neurosurgery, Brain Tumor Research Center, and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California, USA; and Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
- Departments of Pediatrics, Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
| | - Logan G. Spector
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
| | - David A. Largaespada
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
| | - Branden S. Moriarity
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
| | - Beau R. Webber
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
26
|
Allaf A, Victoria B, Rosario R, Misztal C, Humayun Gultekin S, Dinh CT, Fernandez-Valle C. WP1066 induces cell death in a schwannomatosis patient-derived schwannoma cell line. Cold Spring Harb Mol Case Stud 2022; 8:mcs.a006178. [PMID: 35732500 PMCID: PMC9235848 DOI: 10.1101/mcs.a006178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 04/08/2022] [Indexed: 11/24/2022] Open
Abstract
Schwannomatosis is a rare genetic disorder that predisposes individuals to development of multiple schwannomas mainly in spinal and peripheral nerves and to debilitating chronic pain often unrelated to any schwannoma. Pathogenic variants of two genes, SMARCB1 and LZTR1, are causal in familial cases. However, many schwannomatosis patients lack mutations in these genes. Surgery is the standard treatment for schwannomas but leaves patients with increasing neurological deficits. Pain management is a daily struggle controlled by the use of multiple analgesic and anti-inflammatory drugs. There is a need for both nonsurgical treatment to manage tumor growth and nonaddictive, nonsedative pain control. Because standard clinical trials are exceedingly difficult for patients with rare disorders, precision medicine approaches offer the possibility of bespoke therapeutic regimens to control tumor growth. As a proof of principle, we obtained a bio-specimen of paraspinal schwannoma from a schwannomatosis patient with a germline point mutation in the SMARCB1/INI gene. We created an hTERT immortalized cell line and tested the ability of targeted small molecules with efficacy in neurofibromatosis type 2-related schwannomas to reduce cell viability and induce cell death. We identified WP1066, a STAT3 inhibitor, currently in phase 2 clinical trials for pediatric and adult brain tumors as a lead compound. It reduced cell viability and STAT-3 phosphorylation and induced expression of markers for both necroptosis and caspase-dependent cell death. The results demonstrate feasibility in creating patient-derived cell lines for use in precision medicine studies.
Collapse
Affiliation(s)
- Abdulrahman Allaf
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida (UCF), Orlando, Florida 32816, USA
| | - Berta Victoria
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida (UCF), Orlando, Florida 32816, USA
| | - Rosa Rosario
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida (UCF), Orlando, Florida 32816, USA
| | - Carly Misztal
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
| | - Sakir Humayun Gultekin
- Department of Pathology, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
| | - Christine T Dinh
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
| | - Cristina Fernandez-Valle
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida (UCF), Orlando, Florida 32816, USA
| |
Collapse
|
27
|
Koss J, Bohnet-Joschko S. Social media mining to support drug repurposing: Exploring long-COVID self-medication reported by Reddit users (Preprint). JMIR Form Res 2022; 6:e39582. [PMID: 36007131 PMCID: PMC9531770 DOI: 10.2196/39582] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/27/2022] [Accepted: 08/09/2022] [Indexed: 11/24/2022] Open
Abstract
Background Since the beginning of the COVID-19 pandemic, over 480 million people have been infected and more than 6 million people have died from COVID-19 worldwide. In some patients with acute COVID-19, symptoms manifest over a longer period, which is also called “long-COVID.” Unmet medical needs related to long-COVID are high, since there are no treatments approved. Patients experiment with various medications and supplements hoping to alleviate their suffering. They often share their experiences on social media. Objective The aim of this study was to explore the feasibility of social media mining methods to extract important compounds from the perspective of patients. The goal is to provide an overview of different medication strategies and important agents mentioned in Reddit users’ self-reports to support hypothesis generation for drug repurposing, by incorporating patients’ experiences. Methods We used named-entity recognition to extract substances representing medications or supplements used to treat long-COVID from almost 70,000 posts on the “/r/covidlonghaulers” subreddit. We analyzed substances by frequency, co-occurrences, and network analysis to identify important substances and substance clusters. Results The named-entity recognition algorithm achieved an F1 score of 0.67. A total of 28,447 substance entities and 5789 word co-occurrence pairs were extracted. “Histamine antagonists,” “famotidine,” “magnesium,” “vitamins,” and “steroids” were the most frequently mentioned substances. Network analysis revealed three clusters of substances, indicating certain medication patterns. Conclusions This feasibility study indicates that network analysis can be used to characterize the medication strategies discussed in social media. Comparison with existing literature shows that this approach identifies substances that are promising candidates for drug repurposing, such as antihistamines, steroids, or antidepressants. In the context of a pandemic, the proposed method could be used to support drug repurposing hypothesis development by prioritizing substances that are important to users.
Collapse
Affiliation(s)
- Jonathan Koss
- Department of Management and Entrepreneurship, Faculty of Management, Economics and Society, Witten/Herdecke University, Witten, Germany
| | - Sabine Bohnet-Joschko
- Department of Management and Entrepreneurship, Faculty of Management, Economics and Society, Witten/Herdecke University, Witten, Germany
| |
Collapse
|
28
|
Galzignato PF, Chirumbolo S, Cestaro W, Scapinello A, Bertossi D, Nocini R. Surgical and histological evidence of case reports showing Schwannomas in the nasal area. Int J Surg Case Rep 2022; 94:107165. [PMID: 35658317 PMCID: PMC9093009 DOI: 10.1016/j.ijscr.2022.107165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/01/2022] [Accepted: 05/01/2022] [Indexed: 11/29/2022] Open
Abstract
INTRODUCTION AND IMPORTANCE Schwannomas are benign neurogenic neoplasms with an uncommon involvement of the nasal cavity and paranasal sinus, which usually appear as a painless formation. We report two cases of nasal schwannoma that was successfully treated by surgical excision with satisfactory functional outcomes. The aim of this study is to discuss the clinical assessment and imaging, (CT, MRI) differential diagnosis, histological examination, surgical approaches of this rarely encountered neoplasm in the sinus-nasal area. CASE PRESENTATION Case 1: a 53 years-old Caucasian male, hospitalized in the ENT Department with a 5-month progressive history of right nasal obstruction without epistaxis was diagnosed as a Schwannoma following clinical, histology and ENT endoscopy examination. Case 2: a 45 years-old Caucasian male with asymptomatic swelling arising 4 months before in the nasal tip area with progressive nasal deformity, diagnosed as a schwannoma and analyzed with MRI. CLINICAL DISCUSSION Case 1: The patient had an uneventful post-operative course and a follow-up examination at 36 months showed no recurrence of the neoplasm with satisfactory functional result. Case 2: The patient had an uneventful post-operative course and a follow-up examination at 5 years showed no recurrence of the neoplasm and satisfactory aesthetic result. CONCLUSIONS Schwannomas arising from sinonasal area are extremely rare, painless and with slow-growing evolution. The surgical option and histologic analysis are mandatory for a correct diagnosis.
Collapse
Affiliation(s)
- Pier Francesco Galzignato
- Department of Surgery, Dentistry, Paediatrics and Gynaecology-Unit of Oral and Maxillofacial Surgery, University of Verona, Verona, Italy
| | - Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy.
| | - Walter Cestaro
- ENT Consultant, Head and Neck Department, ULSS 2 Marca Trevigiana, Treviso, Italy
| | | | - Dario Bertossi
- Department of Surgery, Dentistry, Paediatrics and Gynaecology-Unit of Oral and Maxillofacial Surgery, University of Verona, Verona, Italy
| | - Riccardo Nocini
- Department of Surgery, Dentistry, Gynaecology, and Paediatrics, Unit of Otorhinolaryngology, University of Verona, Verona, Italy
| |
Collapse
|
29
|
Graf M, Interlandi M, Moreno N, Holdhof D, Göbel C, Melcher V, Mertins J, Albert TK, Kastrati D, Alfert A, Holsten T, de Faria F, Meisterernst M, Rossig C, Warmuth-Metz M, Nowak J, Meyer Zu Hörste G, Mayère C, Nef S, Johann P, Frühwald MC, Dugas M, Schüller U, Kerl K. Single-cell transcriptomics identifies potential cells of origin of MYC rhabdoid tumors. Nat Commun 2022; 13:1544. [PMID: 35318328 PMCID: PMC8941154 DOI: 10.1038/s41467-022-29152-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 02/26/2022] [Indexed: 11/30/2022] Open
Abstract
Rhabdoid tumors (RT) are rare and highly aggressive pediatric neoplasms. Their epigenetically-driven intertumoral heterogeneity is well described; however, the cellular origin of RT remains an enigma. Here, we establish and characterize different genetically engineered mouse models driven under the control of distinct promoters and being active in early progenitor cell types with diverse embryonic onsets. From all models only Sox2-positive progenitor cells give rise to murine RT. Using single-cell analyses, we identify distinct cells of origin for the SHH and MYC subgroups of RT, rooting in early stages of embryogenesis. Intra- and extracranial MYC tumors harbor common genetic programs and potentially originate from fetal primordial germ cells (PGCs). Using PGC specific Smarcb1 knockout mouse models we validate that MYC RT originate from these progenitor cells. We uncover an epigenetic imbalance in MYC tumors compared to PGCs being sustained by epigenetically-driven subpopulations. Importantly, treatments with the DNA demethylating agent decitabine successfully impair tumor growth in vitro and in vivo. In summary, our work sheds light on the origin of RT and supports the clinical relevance of DNA methyltransferase inhibitors against this disease. Rhabdoid tumors (RT) are aggressive paediatric cancers with yet unknown cells of origin. Here, the authors establish genetically engineered mouse models of RT and, using single-cell RNA-seq and epigenomics, identify potential cells of origin for the SHH and MYC subtypes.
Collapse
Affiliation(s)
- Monika Graf
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, 48149, Münster, Germany
| | - Marta Interlandi
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, 48149, Münster, Germany.,Institute of Medical Informatics, University of Münster, 48149, Münster, Germany
| | - Natalia Moreno
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, 48149, Münster, Germany
| | - Dörthe Holdhof
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany.,Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany
| | - Carolin Göbel
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany.,Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany
| | - Viktoria Melcher
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, 48149, Münster, Germany
| | - Julius Mertins
- Department of Neurology, Schlosspark-Klinik, 14059, Berlin, Germany.,Institute of Molecular Tumor Biology, University of Münster, 48149, Münster, Germany
| | - Thomas K Albert
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, 48149, Münster, Germany
| | - Dennis Kastrati
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, 48149, Münster, Germany
| | - Amelie Alfert
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, 48149, Münster, Germany
| | - Till Holsten
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany.,Institute of Molecular Tumor Biology, University of Münster, 48149, Münster, Germany
| | - Flavia de Faria
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, 48149, Münster, Germany.,Department of Pediatric Hematology and Oncology, Children's Hospital of Brasìlia, 70684-831, Brasìlia, Brazil
| | - Michael Meisterernst
- Institute of Molecular Tumor Biology, University of Münster, 48149, Münster, Germany
| | - Claudia Rossig
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, 48149, Münster, Germany
| | - Monika Warmuth-Metz
- Neuroradiological Reference Center, University Hospital Würzburg, Würzburg, Germany
| | - Johannes Nowak
- Neuroradiological Reference Center, University Hospital Würzburg, Würzburg, Germany.,SRH Poliklinik Gera GmbH, Radiological Practice Gotha, Gotha, Germany
| | - Gerd Meyer Zu Hörste
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, 48149, Münster, Germany
| | - Chloe Mayère
- Department of Genetic Medicine and Development, University of Geneva, 1211, Geneva, Switzerland.,iGE3, Institute of Genetics and Genomics of Geneva, University of Geneva, 1211, Geneva, Switzerland
| | - Serge Nef
- Department of Genetic Medicine and Development, University of Geneva, 1211, Geneva, Switzerland.,iGE3, Institute of Genetics and Genomics of Geneva, University of Geneva, 1211, Geneva, Switzerland
| | - Pascal Johann
- Swabian Children's Cancer Center, Paediatric and Adolescent Medicine, University Medical Center Augsburg, 86156, Augsburg, Germany.,Division of Pediatric Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Michael C Frühwald
- Swabian Children's Cancer Center, Paediatric and Adolescent Medicine, University Medical Center Augsburg, 86156, Augsburg, Germany
| | - Martin Dugas
- Institute of Medical Informatics, University of Münster, 48149, Münster, Germany.,Institute of Medical Informatics, Heidelberg University Hospital, Heidelberg, Germany
| | - Ulrich Schüller
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany.,Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany.,Research Institute Children's Cancer Center, 20251, Hamburg, Germany
| | - Kornelius Kerl
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, 48149, Münster, Germany.
| |
Collapse
|
30
|
Behling F, Bersali I, Santacroce A, Hempel J, Kandilaris K, Schittenhelm J, Tatagiba M. Transition of a vestibular schwannoma to a malignant peripheral nerve sheath tumor with loss of H3K27 trimethylation after radiosurgery-a case report and review of the literature. Neurosurg Rev 2022; 45:915-922. [PMID: 34392463 PMCID: PMC8827336 DOI: 10.1007/s10143-021-01620-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/17/2021] [Accepted: 07/30/2021] [Indexed: 01/19/2023]
Affiliation(s)
- Felix Behling
- Department of Neurosurgery, Eberhard-Karls University of Tübingen, Hoppe-Seyler Street 3, 72076, Tübingen, Germany.
- Comprehensive Cancer Center Tübingen, Eberhard-Karls University, Tübingen, Germany.
| | - Imane Bersali
- Department of Neurosurgery, Eberhard-Karls University of Tübingen, Hoppe-Seyler Street 3, 72076, Tübingen, Germany
| | - Antonio Santacroce
- Department of Neurosurgery, St. Barbara-Klinik Hamm-Heessen, Hamm, Germany
| | - Johann Hempel
- Comprehensive Cancer Center Tübingen, Eberhard-Karls University, Tübingen, Germany
- Department of Diagnostic and Interventional Neuroradiology, Eberhard-Karls University, Tübingen, Germany
| | - Kosmas Kandilaris
- Comprehensive Cancer Center Tübingen, Eberhard-Karls University, Tübingen, Germany
- Department of Neuropathology, Eberhard-Karls University, Tübingen, Germany
| | - Jens Schittenhelm
- Comprehensive Cancer Center Tübingen, Eberhard-Karls University, Tübingen, Germany
- Department of Neuropathology, Eberhard-Karls University, Tübingen, Germany
| | - Marcos Tatagiba
- Department of Neurosurgery, Eberhard-Karls University of Tübingen, Hoppe-Seyler Street 3, 72076, Tübingen, Germany
- Comprehensive Cancer Center Tübingen, Eberhard-Karls University, Tübingen, Germany
| |
Collapse
|
31
|
Kotch C, Fisher MJ, Lin F, Zhong Y, Gallo D, Fan Z, Chen J, Santi M, Li MM. Atypical teratoid rhabdoid tumor in a child with neurofibromatosis type 2: A novel dual diagnosis. Cancer Genet 2021; 262-263:1-4. [PMID: 34972035 DOI: 10.1016/j.cancergen.2021.12.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 09/24/2021] [Accepted: 12/20/2021] [Indexed: 11/28/2022]
Abstract
Neurofibromatosis type 2 (NF2) is a genetic disorder characterized by the development of tumors of the nervous system and is associated with NF2 gene alterations. Atypical teratoid rhabdoid tumor (ATRT) is a malignant central nervous system tumor that occurs primarily in children less than 3 years of age. The majority of cases of ATRT demonstrate genomic alterations of SMARCB1, a core member of the SWI/SNF chromatin-remodeling complex and tumor suppressor gene. SMARCB1 inactivation in ATRT is occasionally associated with somatic NF2 deletion; however, concurrent germline NF2 mutations have not been reported. Herein, we describe the case of a 3-year-old patient who presented with an intracranial mass. Next generation sequencing analysis of tumor identified homozygous deletions of the entire SMARCB1 gene and exon 7 to exon 14 of NF2 gene with whole chromosome 22 loss of heterozygosity (LOH). Multiplex Ligation-dependent Probe Amplification (MLPA) assay performed on blood identified a germline heterozygous intragenic deletion of NF2 exon 7 to exon 14; a somatic chromosome 22 LOH led to the homozygous deletion. SMARCB1 MLPA assay of blood showed no deletion. This cascade represents a novel, "four-hit" mechanism of SMARCB1 inactivation resulting in ATRT and the first known dual diagnosis of NF2 and ATRT.
Collapse
Affiliation(s)
- Chelsea Kotch
- Department of Pediatrics, Division of Oncology, Children's Hospital of Philadelphia, 3615 Civic Center Blvd, Philadelphia, PA 19104, United States; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.
| | - Michael J Fisher
- Department of Pediatrics, Division of Oncology, Children's Hospital of Philadelphia, 3615 Civic Center Blvd, Philadelphia, PA 19104, United States; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Fumin Lin
- Department of Pathology and Laboratory Medicine, Division of Genomic Diagnostics, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Yiming Zhong
- Department of Pathology and Laboratory Medicine, Division of Genomic Diagnostics, Children's Hospital of Philadelphia, Philadelphia, PA, United States; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Dan Gallo
- Department of Pathology and Laboratory Medicine, Division of Genomic Diagnostics, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Zhiqian Fan
- Department of Pathology and Laboratory Medicine, Division of Genomic Diagnostics, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Jiani Chen
- Department of Pathology and Laboratory Medicine, Division of Genomic Diagnostics, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Mariarita Santi
- Division of Anatomic Pathology, Children's Hospital of Philadelphia, Philadelphia, PA, United States; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Marilyn M Li
- Department of Pediatrics, Division of Oncology, Children's Hospital of Philadelphia, 3615 Civic Center Blvd, Philadelphia, PA 19104, United States; Department of Pathology and Laboratory Medicine, Division of Genomic Diagnostics, Children's Hospital of Philadelphia, Philadelphia, PA, United States; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
32
|
Tessier Cloutier B, Kleinman CL, Foulkes WD. SWI/SNF-deficient undifferentiated malignancies: where to draw the line †. J Pathol 2021; 256:139-142. [PMID: 34767264 DOI: 10.1002/path.5836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/03/2021] [Accepted: 11/10/2021] [Indexed: 11/08/2022]
Abstract
Alterations in chromatin remodelling genes are increasingly recognised as drivers of undifferentiated malignancies. In atypical teratoid/rhabdoid tumours (ATRT) and extracranial rhabdoid tumours (ECRT), inactivation of SMARCB1 underlies >95% of cases. In the remainder, the culprit is another SWI-SNF family member, SMARCA4. By contrast, in small cell carcinoma of the ovary hypercalcemic type (SCCOHT), SMARCA4 deficiency is by far the most common driver mechanism, while SMARCB1 alterations are rarely seen. It is unclear why alterations are so heavily weighted towards one or another subunit based on site alone, but both have become essential markers for the diagnosis and management of these undifferentiated lesions. Core SMARCA4-deficient undifferentiated malignancies share an aggressive clinical course and show an overlapping morphologic phenotype. In their study, Andrianteranagna and colleagues used DNA methylation and gene expression profiling to compare two subsets of SMARCA4-deficient malignancies diagnosed as SCCOHT and ECRT. Their work gives further insight into the subtle molecular spectrum of SMARCA4-deficient tumours, and their distinction from ATRT and ECRT with SMARCB1 inactivation. The characterisation of these molecular features is likely to play an important role in the future as we try to establish a clinically meaningful framework for the diagnosis and management of these lesions. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
| | - Claudia L Kleinman
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada.,Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | - William D Foulkes
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada.,Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada.,Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| |
Collapse
|
33
|
Atypical Teratoid Rhabdoid Tumours Are Susceptible to Panobinostat-Mediated Differentiation Therapy. Cancers (Basel) 2021; 13:cancers13205145. [PMID: 34680294 PMCID: PMC8534272 DOI: 10.3390/cancers13205145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/07/2021] [Accepted: 10/11/2021] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Atypical teratoid rhabdoid tumour (ATRT) is an aggressive undifferentiated malignancy of the central nervous system in children. A defining feature of ATRT is the loss of the SMARCB1 gene that is essential for regulating gene expression required for normal developmental processes. We show that treatment of human ATRT cell models with the histone deacetylate inhibitor, panobinostat, inhibits tumour growth, reactivates the expression of developmental genes, and drives neuronal differentiation. These results demonstrate the therapeutic potential of panobinostat for the treatment of ATRT. Abstract Atypical teratoid rhabdoid tumour (ATRT) is a rare but highly aggressive undifferentiated solid tumour arising in the central nervous system and predominantly affecting infants and young children. ATRT is exclusively characterized by the inactivation of SMARCB1, a member of the SWI/SNF chromatin remodelling complex that is essential for the regulation of large sets of genes required for normal development and differentiation. Histone deacetylase inhibitors (HDACi) are a promising anticancer therapy and are able to mimic the normal acetylation functions of SMARCB1 in SMARCB1-deficient cells and drive multilineage differentiation in extracranial rhabdoid tumours. However, the potential efficacy of HDACi in ATRT is unknown. Here, we show that human ATRT cells are highly responsive to the HDACi panobinostat and that sustained treatment leads to growth arrest, increased cell senescence, decreased clonogenicity and induction of a neurogenesis gene-expression profile. Furthermore, in an orthotopic ATRT xenograft model, continuous panobinostat treatment inhibits tumour growth, increases survival and drives neuronal differentiation as shown by the expression of the neuronal marker, TUJ1. Collectively, this preclinical study supports the therapeutic potential of panobinostat-mediated differentiation therapy for ATRT.
Collapse
|
34
|
Evolution and Phylogeny of MicroRNAs - Protocols, Pitfalls, and Problems. Methods Mol Biol 2021. [PMID: 34432281 DOI: 10.1007/978-1-0716-1170-8_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2023]
Abstract
MicroRNAs are important regulators in many eukaryotic lineages. Typical miRNAs have a length of about 22nt and are processed from precursors that form a characteristic hairpin structure. Once they appear in a genome, miRNAs are among the best-conserved elements in both animal and plant genomes. Functionally, they play an important role in particular in development. In contrast to protein-coding genes, miRNAs frequently emerge de novo. The genomes of animals and plants harbor hundreds of mutually unrelated families of homologous miRNAs that tend to be persistent throughout evolution. The evolution of their genomic miRNA complement closely correlates with important morphological innovation. In addition, miRNAs have been used as valuable characters in phylogenetic studies. An accurate and comprehensive annotation of miRNAs is required as a basis to understand their impact on phenotypic evolution. Since experimental data on miRNA expression are limited to relatively few species and are subject to unavoidable ascertainment biases, it is inevitable to complement miRNA sequencing by homology based annotation methods. This chapter reviews the state of the art workflows for homology based miRNA annotation, with an emphasis on their limitations and open problems.
Collapse
|
35
|
SMARCB1 deletion in atypical teratoid rhabdoid tumors results in human endogenous retrovirus K (HML-2) expression. Sci Rep 2021; 11:12893. [PMID: 34145313 PMCID: PMC8213802 DOI: 10.1038/s41598-021-92223-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 05/27/2021] [Indexed: 12/19/2022] Open
Abstract
Atypical Teratoid Rhabdoid Tumor (AT/RT) is a rare pediatric central nervous system cancer often characterized by deletion or mutation of SMARCB1, a tumor suppressor gene. In this study, we found that SMARCB1 regulates Human Endogenous Retrovirus K (HERV-K, subtype HML-2) expression. HML-2 is a repetitive element scattered throughout the human genome, encoding several intact viral proteins that have been associated with stem cell maintenance and tumorigenesis. We found HML-2 env expression in both the intracellular and extracellular compartments in all AT/RT cell lines (n = 4) and in 95% of AT/RT patient tissues (n = 37) evaluated. SMARCB1 knock-down in neural stem cells (NSCs) led to an upregulation of HML-2 transcription. We found that SMARCB1 binds adjacent to the HML-2 promoter, repressing its transcription via chromatin immunoprecipitation; restoration of SMARCB1 expression in AT/RT cell lines significantly downregulated HML-2 expression. Further, targeted downregulation of HML-2 transcription via CRISPR-dCas9 coupled with suppressor proteins led to cellular dispersion, decreased proliferation, and cell death in vitro. HML-2 knock-down with shRNA, siRNA, and CRISPR-dCas9 significantly decreased Ras expression as measured by qRT-PCR, suggesting that HML-2 modulates MAPK/ERK signaling in AT/RT cells. Overexpression of NRAS was sufficient to restore cellular proliferation, and MYC, a transcription factor downstream of NRAS, was bound to the HERV-K LTR significantly more in the absence of SMARCB1 expression in AT/RT cells. We show a mechanism by which these undifferentiated tumors remain pluripotent, and we demonstrate that their formation is aided by aberrant HML-2 activation, which is dependent on SMARCB1 and its interaction with MYC.
Collapse
|
36
|
Large contribution of copy number alterations in early stage of Papillary Thyroid Carcinoma. Comput Biol Med 2021; 135:104584. [PMID: 34171638 DOI: 10.1016/j.compbiomed.2021.104584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/10/2021] [Accepted: 06/13/2021] [Indexed: 11/23/2022]
Abstract
Papillary Thyroid Carcinoma (PTC) accounts for approximately 85% of patients with thyroid cancer. Despite its indolent nature, progression to higher stages is expected in a subgroup of patients. Hence, genomic characterization of the early stages of PTC may help to identify this subgroup, leading to better clinical management. Here, we conducted a comprehensive mutational and somatic copy number alteration (SCNA) investigation on 277 stage one PTC from TCGA. SCNA analysis revealed amplification and deletion of several cancer related genes. We found amplification of 60 oncogenes (Oncs), from which 15 were recurrently observed. Deletion of 58 tumor suppressors (TSs) was also detected. MAPK, PI3K-Akt, Rap1 and Ras were the signaling pathways with large numbers of amplified Oncs. On the other hand, deleted TSs belonged mostly to cell cycle, PI3K-Akt, mTOR and cellular senescence pathways. This suggests that despite heterogeneity in SCNA events, the final results would be the activation/deactivation of a few cancer signaling pathways. Of note, despite large amounts of heterogeneity in stage one PTC, recurrent broad deletion on Chr22 was detected in 21 individuals, leading to deletion of several tumor suppressors. In parallel, the oncogenic/pathogenic mutations in the RTK-RAS and PI3k-Akt pathways were detected. However, no pathogenic mutation was identified in known tumor suppressor genes. In order to identify a potential subgroup of BRAF (V600E) positive patients, who might progress to higher stages, low frequency mutations accompanying BRAF (V600E) were also identified. In conclusion, our findings imply that SCNA have a substantial contribution to early stages of PTC. Experimental validation of the observed genomic alterations could help to stratify patients at the time of diagnosis, and to move toward precision medicine in PTC.
Collapse
|
37
|
Krug B, Harutyunyan AS, Deshmukh S, Jabado N. Polycomb repressive complex 2 in the driver's seat of childhood and young adult brain tumours. Trends Cell Biol 2021; 31:814-828. [PMID: 34092471 DOI: 10.1016/j.tcb.2021.05.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 05/12/2021] [Accepted: 05/17/2021] [Indexed: 11/19/2022]
Abstract
Deregulation of the epigenome underlies oncogenesis in numerous primary brain tumours in children and young adults. In this review, we describe how recurrent mutations in isocitrate dehydrogenases or histone 3 variants (oncohistones) in gliomas, expression of the oncohistone mimic enhancer of Zeste homologs inhibiting protein (EZHIP) in a subgroup of ependymoma, and epigenetic alterations in other embryonal tumours promote oncogenicity. We review the proposed mechanisms of cellular transformation, current tumorigenesis models and their link to development. We further stress the narrow developmental windows permissive to their oncogenic potential and how this may stem from converging effects deregulating polycomb repressive complex (PRC)2 function and targets. As altered chromatin states may be reversible, improved understanding of aberrant cancer epigenomes could orient the design of effective therapies.
Collapse
Affiliation(s)
- Brian Krug
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | | | - Shriya Deshmukh
- Division of Experimental Medicine, McGill University, Montreal, QC, Canada
| | - Nada Jabado
- Department of Human Genetics, McGill University, Montreal, QC, Canada; Division of Experimental Medicine, McGill University, Montreal, QC, Canada; Department of Pediatrics, McGill University, Montreal, QC, Canada; The Research Institute of the McGill University Health Center, Montreal, H4A 3J, Canada.
| |
Collapse
|
38
|
Ho B, Johann PD, Grabovska Y, De Dieu Andrianteranagna MJ, Yao F, Frühwald M, Hasselblatt M, Bourdeaut F, Williamson D, Huang A, Kool M. Molecular subgrouping of atypical teratoid/rhabdoid tumors-a reinvestigation and current consensus. Neuro Oncol 2021; 22:613-624. [PMID: 31889194 PMCID: PMC7229260 DOI: 10.1093/neuonc/noz235] [Citation(s) in RCA: 126] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Background Atypical teratoid/rhabdoid tumors (ATRTs) are known to exhibit molecular and clinical heterogeneity even though SMARCB1 inactivation is the sole recurrent genetic event present in nearly all cases. Indeed, recent studies demonstrated 3 molecular subgroups of ATRTs that are genetically, epigenetically, and clinically distinct. As these studies included different numbers of tumors, various subgrouping techniques, and naming, an international working group sought to align previous findings and to reach a consensus on nomenclature and clinicopathological significance of ATRT subgroups. Methods We integrated various methods to perform a meta-analysis on published and unpublished DNA methylation and gene expression datasets of ATRTs and associated clinicopathological data. Results In concordance with previous studies, the analyses identified 3 main molecular subgroups of ATRTs, for which a consensus was reached to name them ATRT-TYR, ATRT-SHH, and ATRT-MYC. The ATRT-SHH subgroup exhibited further heterogeneity, segregating further into 2 subtypes associated with a predominant supratentorial (ATRT-SHH-1) or infratentorial (ATRT-SHH-2) location. For each ATRT subgroup we provide an overview of its main molecular and clinical characteristics, including SMARCB1 alterations and pathway activation. Conclusions The introduction of a common classification, characterization, and nomenclature of ATRT subgroups will facilitate future research and serve as a common ground for subgrouping patient samples and ATRT models, which will aid in refining subgroup-based therapies for ATRT patients.
Collapse
Affiliation(s)
- Ben Ho
- Division of Hematology and Oncology, Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Pascal D Johann
- Hopp Children's Cancer Center, Heidelberg, Germany.,Division of Pediatric Neuro-oncology, German Cancer Research Center and German Cancer Research Consortium, Heidelberg, Germany.,Department of Pediatric Hematology and Oncology, University Hospital Heidelberg, Heidelberg, Germany
| | - Yura Grabovska
- Wolfson Childhood Cancer Research Centre, Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, UK
| | - Mamy Jean De Dieu Andrianteranagna
- Departments of Genetics and of Oncopediatry and Young Adults, Curie Institute, Paris, France.,INSERM U830, Laboratory of Translational Research in Pediatric Oncology, SIREDO Pediatric Oncology Center, Curie Institute, Paris, France
| | - Fupan Yao
- Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Michael Frühwald
- University Children's Hospital Augsburg, Swabian Children's Cancer Center, Augsburg, Germany
| | - Martin Hasselblatt
- Institute of Neuropathology, University Hospital Münster, Münster, Germany
| | - Franck Bourdeaut
- Departments of Genetics and of Oncopediatry and Young Adults, Curie Institute, Paris, France.,INSERM U830, Laboratory of Translational Research in Pediatric Oncology, SIREDO Pediatric Oncology Center, Curie Institute, Paris, France
| | - Daniel Williamson
- Wolfson Childhood Cancer Research Centre, Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, UK
| | - Annie Huang
- Division of Hematology and Oncology, Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Marcel Kool
- Hopp Children's Cancer Center, Heidelberg, Germany.,Division of Pediatric Neuro-oncology, German Cancer Research Center and German Cancer Research Consortium, Heidelberg, Germany
| |
Collapse
|
39
|
Custers L, Khabirova E, Coorens THH, Oliver TRW, Calandrini C, Young MD, Vieira Braga FA, Ellis P, Mamanova L, Segers H, Maat A, Kool M, Hoving EW, van den Heuvel-Eibrink MM, Nicholson J, Straathof K, Hook L, de Krijger RR, Trayers C, Allinson K, Behjati S, Drost J. Somatic mutations and single-cell transcriptomes reveal the root of malignant rhabdoid tumours. Nat Commun 2021; 12:1407. [PMID: 33658498 PMCID: PMC7930245 DOI: 10.1038/s41467-021-21675-6] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 02/05/2021] [Indexed: 11/08/2022] Open
Abstract
Malignant rhabdoid tumour (MRT) is an often lethal childhood cancer that, like many paediatric tumours, is thought to arise from aberrant fetal development. The embryonic root and differentiation pathways underpinning MRT are not firmly established. Here, we study the origin of MRT by combining phylogenetic analyses and single-cell mRNA studies in patient-derived organoids. Comparison of somatic mutations shared between cancer and surrounding normal tissues places MRT in a lineage with neural crest-derived Schwann cells. Single-cell mRNA readouts of MRT differentiation, which we examine by reverting the genetic driver mutation underpinning MRT, SMARCB1 loss, suggest that cells are blocked en route to differentiating into mesenchyme. Quantitative transcriptional predictions indicate that combined HDAC and mTOR inhibition mimic MRT differentiation, which we confirm experimentally. Our study defines the developmental block of MRT and reveals potential differentiation therapies.
Collapse
Affiliation(s)
- Lars Custers
- Princess Máxima Center for Pediatric Oncology, 3584CS, Utrecht, the Netherlands
- Oncode Institute, 3584CS, Utrecht, the Netherlands
| | | | - Tim H H Coorens
- Wellcome Sanger Institute, Hinxton, Saffron Walden, CB10 1SA, UK
| | - Thomas R W Oliver
- Wellcome Sanger Institute, Hinxton, Saffron Walden, CB10 1SA, UK
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, CB2 0QQ, UK
- Department of Pathology, University of Cambridge, Cambridge, CB2 1QP, UK
| | - Camilla Calandrini
- Princess Máxima Center for Pediatric Oncology, 3584CS, Utrecht, the Netherlands
- Oncode Institute, 3584CS, Utrecht, the Netherlands
| | - Matthew D Young
- Wellcome Sanger Institute, Hinxton, Saffron Walden, CB10 1SA, UK
| | | | - Peter Ellis
- Wellcome Sanger Institute, Hinxton, Saffron Walden, CB10 1SA, UK
| | - Lira Mamanova
- Wellcome Sanger Institute, Hinxton, Saffron Walden, CB10 1SA, UK
| | - Heidi Segers
- Department of Pediatric Hemato-Oncology, University Hospital Leuven, Leuven, Belgium
| | - Arie Maat
- Princess Máxima Center for Pediatric Oncology, 3584CS, Utrecht, the Netherlands
| | - Marcel Kool
- Princess Máxima Center for Pediatric Oncology, 3584CS, Utrecht, the Netherlands
- Hopp Children's Cancer Center (KiTZ), 69120, Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center DKFZ and German Cancer Consortium DKTK, 69120, Heidelberg, Germany
| | - Eelco W Hoving
- Princess Máxima Center for Pediatric Oncology, 3584CS, Utrecht, the Netherlands
| | | | - James Nicholson
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, CB2 0QQ, UK
- Department of Paediatrics, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Karin Straathof
- UCL Great Ormond Street Hospital Institute of Child Health Biomedical Research Centre, London, WC1N 1EH, UK
- Great Ormond Street Hospital for Children NHS Foundation Trust, London, WC1N 3JH, UK
| | - Liz Hook
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, CB2 0QQ, UK
- Department of Pathology, University of Cambridge, Cambridge, CB2 1QP, UK
| | - Ronald R de Krijger
- Princess Máxima Center for Pediatric Oncology, 3584CS, Utrecht, the Netherlands
- Department of Pathology, University Medical Center Utrecht, 3584CX, Utrecht, the Netherlands
| | - Claire Trayers
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, CB2 0QQ, UK
| | - Kieren Allinson
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, CB2 0QQ, UK
| | - Sam Behjati
- Wellcome Sanger Institute, Hinxton, Saffron Walden, CB10 1SA, UK.
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, CB2 0QQ, UK.
- Department of Paediatrics, University of Cambridge, Cambridge, CB2 0QQ, UK.
| | - Jarno Drost
- Princess Máxima Center for Pediatric Oncology, 3584CS, Utrecht, the Netherlands.
- Oncode Institute, 3584CS, Utrecht, the Netherlands.
| |
Collapse
|
40
|
Custers L, Paassen I, Drost J. In vitro Modeling of Embryonal Tumors. Front Cell Dev Biol 2021; 9:640633. [PMID: 33718380 PMCID: PMC7952537 DOI: 10.3389/fcell.2021.640633] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 01/25/2021] [Indexed: 01/06/2023] Open
Abstract
A subset of pediatric tumors affects very young children and are thought to arise during fetal life. A common theme is that these embryonal tumors hijack developmental programs, causing a block in differentiation and, as a consequence, unrestricted proliferation. Embryonal tumors, therefore typically maintain an embryonic gene signature not found in their differentiated progeny. Still, the processes underpinning malignant transformation remain largely unknown, which is hampering therapeutic innovation. To gain more insight into these processes, in vitro and in vivo research models are indispensable. However, embryonic development is an extremely dynamic process with continuously changing cellular identities, making it challenging to define cells-of-origin. This is crucial for the development of representative models, as targeting the wrong cell or targeting a cell within an incorrect developmental time window can result in completely different phenotypes. Recent innovations in in vitro cell models may provide more versatile platforms to study embryonal tumors in a scalable manner. In this review, we outline different in vitro models that can be explored to study embryonal tumorigenesis and for therapy development.
Collapse
Affiliation(s)
- Lars Custers
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
- Oncode Institute, Utrecht, Netherlands
| | - Irene Paassen
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
- Oncode Institute, Utrecht, Netherlands
| | - Jarno Drost
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
- Oncode Institute, Utrecht, Netherlands
| |
Collapse
|
41
|
Frühwald MC, Nemes K, Boztug H, Cornips MCA, Evans DG, Farah R, Glentis S, Jorgensen M, Katsibardi K, Hirsch S, Jahnukainen K, Kventsel I, Kerl K, Kratz CP, Pajtler KW, Kordes U, Ridola V, Stutz E, Bourdeaut F. Current recommendations for clinical surveillance and genetic testing in rhabdoid tumor predisposition: a report from the SIOPE Host Genome Working Group. Fam Cancer 2021; 20:305-316. [PMID: 33532948 PMCID: PMC8484234 DOI: 10.1007/s10689-021-00229-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 01/06/2021] [Indexed: 12/28/2022]
Abstract
The rhabdoid tumor (RT) predisposition syndromes 1 and 2 (RTPS1 and 2) are rare genetic conditions rendering young children vulnerable to an increased risk of RT, malignant neoplasms affecting the kidney, miscellaneous soft-part tissues, the liver and the central nervous system (Atypical Teratoid Rhabdoid Tumors, ATRT). Both, RTPS1&2 are due to pathogenic variants (PV) in genes encoding constituents of the BAF chromatin remodeling complex, i.e. SMARCB1 (RTPS1) and SMARCA4 (RTPS2). In contrast to other genetic disorders related to PVs in SMARCB1 and SMARCA4 such as Coffin-Siris Syndrome, RTPS1&2 are characterized by a predominance of truncating PVs, terminating transcription thus explaining a specific cancer risk. The penetrance of RTPS1 early in life is high and associated with a poor survival. However, few unaffected carriers may be encountered. Beyond RT, the tumor spectrum may be larger than initially suspected, and cancer surveillance offered to unaffected carriers (siblings or parents) and long-term survivors of RT is still a matter of discussion. RTPS2 exposes female carriers to an ill-defined risk of small cell carcinoma of the ovaries, hypercalcemic type (SCCOHT), which may appear in prepubertal females. RT surveillance protocols for these rare families have not been established. To address unresolved issues in the care of individuals with RTPS and to propose appropriate surveillance guidelines in childhood, the SIOPe Host Genome working group invited pediatric oncologists and geneticists to contribute to an expert meeting. The current manuscript summarizes conclusions of the panel discussion, including consented statements as well as non-evidence-based proposals for validation in the future.
Collapse
Affiliation(s)
- M C Frühwald
- Paediatric and Adolescent Medicine, Swabian Children's Cancer Center, University Medical Center Augsburg, Stenglinstraße 2, 86156, Augsburg, Germany.
| | - K Nemes
- Paediatric and Adolescent Medicine, Swabian Children's Cancer Center, University Medical Center Augsburg, Stenglinstraße 2, 86156, Augsburg, Germany
| | - H Boztug
- St. Anna Children's Hospital and Children's Cancer Research Institute, Department of Pediatrics, Medical University of Vienna, Vienna, Austria
| | - M C A Cornips
- Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - D G Evans
- Manchester Centre for Genomic Medicine, Division of Evolution and Genomic Sciences, MAHSC, St Mary's Hospital, Manchester University Hospitals NHS Foundation Trust, University of Manchester, Manchester, UK
| | - R Farah
- Department of Pediatrics, Division of Hematology/Oncology, LAU Medical Center-Rizk Hospital, Ashrafieh, Beirut, Lebanon
| | - S Glentis
- Pediatric Hematology-Oncology Unit, First Department of Pediatrics, National and Kapodistrian University of Athens, "Aghia Sofia" Children's Hospital, Athens, Greece
| | - M Jorgensen
- Great Ormond Street Hospital for Children, NHS Foundation Trust, London, WC1N 3JH, UK
| | - K Katsibardi
- Pediatric Hematology-Oncology Unit, First Department of Pediatrics, National and Kapodistrian University of Athens, "Aghia Sofia" Children's Hospital, Athens, Greece
| | - S Hirsch
- Institute of Human Genetics, Heidelberg University Hospital, Heidelberg, Germany.,Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
| | - K Jahnukainen
- Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - I Kventsel
- Department of Pediatric Hematology-Oncology, The Edmond and Lily Safra Children's Hospital, Chaim Sheba Medical Center, 52621, Tel-Hashomer, Israel
| | - K Kerl
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
| | - C P Kratz
- Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - K W Pajtler
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.,Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany.,Department of Pediatric Oncology, Hematology, and Immunology, University Hospital Heidelberg, Heidelberg, Germany
| | - U Kordes
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - V Ridola
- Department of Pediatric Oncology and Haematology, Mitera Children's Hospital, Athens, Greece
| | - E Stutz
- Department of Oncology, University Children's Hospital, Zurich, Switzerland
| | - F Bourdeaut
- Institut Curie, SIREDO Pediatric Cancer Center, INSERM U830, Laboratory of Translational Research in Pediatric Oncology, Paris Sciences Lettres Research University, Paris, France.
| |
Collapse
|
42
|
Fountain DM, Smith MJ, O'Leary C, Pathmanaban ON, Roncaroli F, Bobola N, King AT, Evans DG. The spatial phenotype of genotypically distinct meningiomas demonstrate potential implications of the embryology of the meninges. Oncogene 2021; 40:875-884. [PMID: 33262459 PMCID: PMC8440207 DOI: 10.1038/s41388-020-01568-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/05/2020] [Accepted: 11/11/2020] [Indexed: 12/29/2022]
Abstract
Meningiomas are the most common primary brain tumor and their incidence and prevalence is increasing. This review summarizes current evidence regarding the embryogenesis of the human meninges in the context of meningioma pathogenesis and anatomical distribution. Though not mutually exclusive, chromosomal instability and pathogenic variants affecting the long arm of chromosome 22 (22q) result in meningiomas in neural-crest cell-derived meninges, while variants affecting Hedgehog signaling, PI3K signaling, TRAF7, KLF4, and POLR2A result in meningiomas in the mesodermal-derived meninges of the midline and paramedian anterior, central, and ventral posterior skull base. Current evidence regarding the common pathways for genetic pathogenesis and the anatomical distribution of meningiomas is presented alongside existing understanding of the embryological origins for the meninges prior to proposing next steps for this work.
Collapse
Affiliation(s)
- Daniel M Fountain
- Geoffrey Jefferson Brain Research Centre, Salford Royal NHS Foundation Trust and the University of Manchester, Manchester, UK.
| | - Miriam J Smith
- Manchester Centre for Genomic Medicine, Manchester Academic Health Sciences Centre (MAHSC), St Mary's Hospital, School of Biological Sciences, Division of Evolution and Genomic Sciences, University of Manchester, Manchester, UK
| | - Claire O'Leary
- Geoffrey Jefferson Brain Research Centre, Salford Royal NHS Foundation Trust and the University of Manchester, Manchester, UK
| | - Omar N Pathmanaban
- Geoffrey Jefferson Brain Research Centre, Salford Royal NHS Foundation Trust and the University of Manchester, Manchester, UK
| | - Federico Roncaroli
- Geoffrey Jefferson Brain Research Centre, Salford Royal NHS Foundation Trust and the University of Manchester, Manchester, UK
| | - Nicoletta Bobola
- School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Andrew T King
- Geoffrey Jefferson Brain Research Centre, Salford Royal NHS Foundation Trust and the University of Manchester, Manchester, UK
| | - Dafydd Gareth Evans
- Manchester Centre for Genomic Medicine, Manchester Academic Health Sciences Centre (MAHSC), St Mary's Hospital, School of Biological Sciences, Division of Evolution and Genomic Sciences, University of Manchester, Manchester, UK
| |
Collapse
|
43
|
Neurofibromatosis Type 2 (NF2) and the Implications for Vestibular Schwannoma and Meningioma Pathogenesis. Int J Mol Sci 2021; 22:ijms22020690. [PMID: 33445724 PMCID: PMC7828193 DOI: 10.3390/ijms22020690] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 12/14/2022] Open
Abstract
Patients diagnosed with neurofibromatosis type 2 (NF2) are extremely likely to develop meningiomas, in addition to vestibular schwannomas. Meningiomas are a common primary brain tumor; many NF2 patients suffer from multiple meningiomas. In NF2, patients have mutations in the NF2 gene, specifically with loss of function in a tumor-suppressor protein that has a number of synonymous names, including: Merlin, Neurofibromin 2, and schwannomin. Merlin is a 70 kDa protein that has 10 different isoforms. The Hippo Tumor Suppressor pathway is regulated upstream by Merlin. This pathway is critical in regulating cell proliferation and apoptosis, characteristics that are important for tumor progression. Mutations of the NF2 gene are strongly associated with NF2 diagnosis, leading to benign proliferative conditions such as vestibular schwannomas and meningiomas. Unfortunately, even though these tumors are benign, they are associated with significant morbidity and the potential for early mortality. In this review, we aim to encompass meningiomas and vestibular schwannomas as they pertain to NF2 by assessing molecular genetics, common tumor types, and tumor pathogenesis.
Collapse
|
44
|
Understanding the epigenetic landscape and cellular architecture of childhood brain tumors. Neurochem Int 2020; 144:104940. [PMID: 33333210 DOI: 10.1016/j.neuint.2020.104940] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/12/2020] [Indexed: 11/22/2022]
Abstract
Pediatric brain tumors are the leading cancer-related cause of death in children and adolescents in the United States, affecting on average 1 in 2000 children per year. Recent advances in cancer genomics have led to profound discoveries about the underlying molecular biology and ontogeny of these tumors. In particular, these studies have revealed epigenetic dysregulation to be one of the main hallmarks of pediatric brain tumorigenesis. In this review, we will highlight a number of important recent findings about the nature of this dysregulation in different types of pediatric brain tumors as well as examine their implications for preclinical research and clinical practice. Specifically, we discuss the emergence of methylation signatures as tools for tumor stratification/classification while also highlighting the importance of mutations that directly affect the epigenome and clarifying their impact on risk stratification and pediatric brain tumor biology. We then incorporate recent advances in our understanding of pediatric brain tumor cellular architecture and emphasize the link between epigenetic dysregulation and the "stalled" development seen in many of these malignant neoplasms. Lastly, we explore recentwork investigating the use of these mutated epigenomic regulators as therapeutic targets and extrapolate their utility in overcoming this "stalling" to halt tumor growth.
Collapse
|
45
|
Destro F, Sharma S, Maestri L, Vella C, Collini P, Riccipetitoni G. Visceral plexiform schwannoma: A case series. Mol Clin Oncol 2020; 14:14. [PMID: 33282289 DOI: 10.3892/mco.2020.2176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 10/10/2020] [Indexed: 01/24/2023] Open
Abstract
Plexiform schwannoma (PS) is a benign tumour of the peripheral nerve sheath that is typically found in the skin. Fewer than 15 cases of visceral PS have been reported to date in both adults and children. We herein discuss a series of 3 patients (2 male and 1 female) with abdominal PS, aged 10-16 years (mean age, 12 years). All the patients had an acute presentation with abdominal pain, which was associated with rectal bleeding in 1 case and with walking difficulties in 1 case. Radiological investigations included abdominal magnetic resonance imaging (MRI) and computed tomography, along with neurofibromatosis screening (cerebral MRI and dermatological evaluation). Complete removal of the mass was possible in 2 of the patients (in 1 case by laparoscopically assisted surgery). Follow-up was uneventful. Abdominal PS is a rare occurrence. Due to its possible association with neurofibromatosis, the diagnosis of PS should prompt an investigation for other manifestations of this disorder.
Collapse
Affiliation(s)
- Francesca Destro
- Department of Paediatric Surgery, Buzzi Children's Hospital, I-20154 Milan, Italy
| | - Shilpa Sharma
- Department of Paediatric Surgery, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Luciano Maestri
- Department of Paediatric Surgery, Buzzi Children's Hospital, I-20154 Milan, Italy
| | - Claudio Vella
- Department of Paediatric Surgery, Buzzi Children's Hospital, I-20154 Milan, Italy
| | - Paola Collini
- Department of Diagnostic Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, I-20133 Milan, Italy
| | | |
Collapse
|
46
|
Chen Z, Li S, Mo J, Hawley E, Wang Y, He Y, Brosseau JP, Shipman T, Clapp DW, Carroll TJ, Le LQ. Schwannoma development is mediated by Hippo pathway dysregulation and modified by RAS/MAPK signaling. JCI Insight 2020; 5:141514. [PMID: 32960816 PMCID: PMC7605536 DOI: 10.1172/jci.insight.141514] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 09/11/2020] [Indexed: 01/19/2023] Open
Abstract
Schwannomas are tumors of the Schwann cells that cause chronic pain, numbness, and potentially life-threatening impairment of vital organs. Despite the identification of causative genes, including NF2 (Merlin), INI1/SMARCB1, and LZTR1, the exact molecular mechanism of schwannoma development is still poorly understood. Several studies have identified Merlin as a key regulator of the Hippo, MAPK, and PI3K signaling pathways; however, definitive evidence demonstrating the importance of these pathways in schwannoma pathogenesis is absent. Here, we provide direct genetic evidence that dysregulation of the Hippo pathway in the Schwann cell lineage causes development of multiple schwannomas in mice. We found that canonical Hippo signaling through the effectors YAP/TAZ is required for schwannomagenesis and that MAPK signaling modifies schwannoma formation. Furthermore, cotargeting YAP/TAZ transcriptional activity and MAPK signaling demonstrated a synergistic therapeutic effect on schwannomas. Our new model provides a tractable platform to dissect the molecular mechanisms underpinning schwannoma formation and the role of combinatorial targeted therapy in schwannoma treatment. Canonical Hippo signaling through the effectors YAP/TAZ is required for the development of peripheral nervous system tumors of Schwann cells, and MAPK signaling modifies schwannoma formation.
Collapse
Affiliation(s)
| | - Stephen Li
- Department of Dermatology and.,Medical Scientist Training Program, University of Texas (UT) Southwestern Medical Center, Dallas, Texas, USA
| | - Juan Mo
- Department of Dermatology and
| | - Eric Hawley
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | | | - Yongzheng He
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | | | | | - D Wade Clapp
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Thomas J Carroll
- Department of Molecular Biology.,Simmons Comprehensive Cancer Center, and
| | - Lu Q Le
- Department of Dermatology and.,Simmons Comprehensive Cancer Center, and.,Comprehensive Neurofibromatosis Clinic, UT Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
47
|
Maurange C. Temporal patterning in neural progenitors: from Drosophila development to childhood cancers. Dis Model Mech 2020; 13:dmm044883. [PMID: 32816915 PMCID: PMC7390627 DOI: 10.1242/dmm.044883] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The developing central nervous system (CNS) is particularly prone to malignant transformation, but the underlying mechanisms remain unresolved. However, periods of tumor susceptibility appear to correlate with windows of increased proliferation, which are often observed during embryonic and fetal stages and reflect stereotypical changes in the proliferative properties of neural progenitors. The temporal mechanisms underlying these proliferation patterns are still unclear in mammals. In Drosophila, two decades of work have revealed a network of sequentially expressed transcription factors and RNA-binding proteins that compose a neural progenitor-intrinsic temporal patterning system. Temporal patterning controls both the identity of the post-mitotic progeny of neural progenitors, according to the order in which they arose, and the proliferative properties of neural progenitors along development. In addition, in Drosophila, temporal patterning delineates early windows of cancer susceptibility and is aberrantly regulated in developmental tumors to govern cellular hierarchy as well as the metabolic and proliferative heterogeneity of tumor cells. Whereas recent studies have shown that similar genetic programs unfold during both fetal development and pediatric brain tumors, I discuss, in this Review, how the concept of temporal patterning that was pioneered in Drosophila could help to understand the mechanisms of initiation and progression of CNS tumors in children.
Collapse
Affiliation(s)
- Cédric Maurange
- Aix Marseille University, CNRS, IBDM, Equipe Labellisée LIGUE Contre le Cancer, Marseille 13009, France
| |
Collapse
|
48
|
Muskens IS, Zhang C, de Smith AJ, Biegel JA, Walsh KM, Wiemels JL. Germline genetic landscape of pediatric central nervous system tumors. Neuro Oncol 2020; 21:1376-1388. [PMID: 31247102 PMCID: PMC6827836 DOI: 10.1093/neuonc/noz108] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Central nervous system (CNS) tumors are the second most common type of cancer among children. Depending on histopathology, anatomic location, and genomic factors, specific subgroups of brain tumors have some of the highest cancer-related mortality rates or result in considerable lifelong morbidity. Pediatric CNS tumors often occur in patients with genetic predisposition, at times revealing underlying cancer predisposition syndromes. Advances in next-generation sequencing (NGS) have resulted in the identification of an increasing number of cancer predisposition genes. In this review, the literature on genetic predisposition to pediatric CNS tumors is evaluated with a discussion of potential future targets for NGS and clinical implications. Furthermore, we explore potential strategies for enhancing the understanding of genetic predisposition of pediatric CNS tumors, including evaluation of non-European populations, pan-genomic approaches, and large collaborative studies.
Collapse
Affiliation(s)
- Ivo S Muskens
- Center for Genetic Epidemiology, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Chenan Zhang
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California
| | - Adam J de Smith
- Center for Genetic Epidemiology, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Jaclyn A Biegel
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, California.,Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, California
| | - Kyle M Walsh
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California.,Department of Neurosurgery, Duke University, Durham, North Carolina
| | - Joseph L Wiemels
- Center for Genetic Epidemiology, Keck School of Medicine, University of Southern California, Los Angeles, California.,Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California
| |
Collapse
|
49
|
Abstract
PURPOSE OF REVIEW Neurofibromatosis type 2 (NF2) is a schwannoma predisposition syndrome, alongside schwannomatosis related to germline LZTR1 and SMARCB1 pathogenic variants. This review highlights their overlapping phenotypes, new insight into NF2 phenotype and treatment outcomes. RECENT FINDINGS Mosaic NF2 is more prevalent than previously thought. Use of next-generation sequencing and tumour testing is needed to differentiate mosaic NF2 and schwannomatosis. Developing NF2 phenotypic insights include vasculopathy with brainstem infarction and vessel stenosis; focal cortical dysplasia in severe phenotypes; swallowing/speech difficulties and continued debate into malignancy in NF2. Proposed are: use of visual evoked potentials to monitor optic nerve sheath meningioma; potential routine magnetic resonance angiogram in adolescence and a genetic score to cohort patients with similar pathogenic_variants, for natural history/treatment outcome studies. Cohort studies found survival analysis to hearing loss and unilateral visual loss in severe mutation groups was 32 and 38 years; active management gave better outcomes than surveillance in spinal ependymoma; gamma knife, bevacizumab and hearing preservation surgery maintained or improved short-term hearing in selected patients, and gamma knife had a good long-term tumour control in mild patients with small tumours. SUMMARY Further long-term outcome studies are needed comparing similar severity patients to allow informed decision making.
Collapse
|
50
|
Abstract
PURPOSE OF REVIEW Altered epigenetics is central to oncogenesis in many pediatric cancers. Aberrant epigenetic states are induced by mutations in histones or epigenetic regulatory genes, aberrant expression of genes regulating chromatin complexes, altered DNA methylation patterns, or dysregulated expression of noncoding RNAs. Developmental contexts of dysregulated epigenetic states are equally important for initiation and progression of many childhood cancers. As an improved understanding of disease-specific roles and molecular consequences of epigenetic alterations in oncogenesis is emerging, targeting these mechanisms of disease in childhood cancers is increasingly becoming important. RECENT FINDINGS In addition to disease-causing epigenetic events, DNA methylation patterns and specific oncohistone mutations are being utilized for the diagnosis of pediatric central nervous system (CNS) and solid tumors. These discoveries have improved the classification of poorly differentiated tumors and laid the foundation for future improved clinical management. On the therapeutic side, the first therapies targeting epigenetic alterations have recently entered clinical trials. Current clinical trials include pharmacological inhibition of histone and DNA modifiers in aggressive types of pediatric cancer. SUMMARY Targeting novel epigenetic vulnerabilities, either by themselves, or coupled with targeting altered transcriptional states, developmental cell states or immunomodulation will result in innovative approaches for treating deadly pediatric cancers.
Collapse
Affiliation(s)
- Eshini Panditharatna
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Broad Institute of Harvard and MIT, Cambridge, MA
| | - Mariella G Filbin
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Broad Institute of Harvard and MIT, Cambridge, MA.,Boston Children's Cancer and Blood Disorder Center, Boston, Massachusetts, USA
| |
Collapse
|