1
|
Mizunoe Y, Kumagai M, Fukai H, Hachiya K, Otani Y, Nozaki Y, Tezuka K, Kobayashi M, Haeno H, Saeki K, Murayama Y, Shimano H, Higami Y. Caloric restriction alters NCOA2 splicing to regulate lipid metabolism in subcutaneous white adipose tissue. Biochem Biophys Res Commun 2025; 765:151871. [PMID: 40267838 DOI: 10.1016/j.bbrc.2025.151871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 04/17/2025] [Accepted: 04/21/2025] [Indexed: 04/25/2025]
Abstract
Caloric restriction (CR) promotes longevity and metabolic health by modulating gene expression and cellular processes. However, the role of alternative mRNA splicing in CR-induced metabolic adaptation remains underexplored. In this study, we analyzed RNA sequencing data from the subcutaneous white adipose tissue of CR mice. We identified 6058 differentially expressed genes, with significant upregulation of lipid metabolism pathway genes, such as Elovl6, Fasn, and Srebp1c. We also detected 400 CR-associated alternative splicing events, with the skipped exon and retained intron events predominantly affecting lipid biosynthesis and energy metabolism. Among these events, Ncoa2, a nuclear receptor coactivator involved in lipid metabolism, exhibited increased exon 13 inclusion under CR, favoring the expression of the full-length isoform. Functional assays revealed that full-length NCOA2 enhanced PPARγ-mediated transcriptional activation, while the truncated Δ-NCOA2 isoform exhibited altered coactivator activity. Δ-NCOA2 was found to lack an LXXL motif critical for nuclear receptor interactions, potentially modifying its function. Taken together, these findings indicate that CR-induced alternative splicing fine-tunes metabolic and transcriptional networks, thereby contributing to lipid homeostasis and energy adaptation. Our study highlights a novel regulatory layer by which CR modulates metabolism through coordinated transcriptional and splicing alterations, offering new insights into the molecular mechanisms underlying the beneficial effects of CR on aging and metabolic health. Further investigations are warranted to determine the tissue-specificity of the CR-induced splicing changes and their potential implications for metabolic disorders and lifespan extension.
Collapse
Affiliation(s)
- Yuhei Mizunoe
- Laboratory of Molecular Pathology and Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo, 125-8585, Japan.
| | - Mitsuki Kumagai
- Laboratory of Molecular Pathology and Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo, 125-8585, Japan.
| | - Hiroto Fukai
- Laboratory of Molecular Pathology and Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo, 125-8585, Japan.
| | - Kazuki Hachiya
- Laboratory of Molecular Pathology and Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo, 125-8585, Japan.
| | - Yuina Otani
- Laboratory of Molecular Pathology and Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo, 125-8585, Japan.
| | - Yuka Nozaki
- Laboratory of Molecular Pathology and Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo, 125-8585, Japan.
| | - Kyo Tezuka
- Laboratory of Molecular Pathology and Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo, 125-8585, Japan.
| | - Masaki Kobayashi
- Department of Nutrition and Food Science, Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo, 112-8610, Japan; Institute for Human Life Science, Ochanomizu University, Bunkyo-ku, Tokyo, 112-8610, Japan.
| | - Hiroshi Haeno
- Research Institute for Biomedical Sciences (RIBS), Tokyo University of Science, Noda, Chiba, 278-0022, Japan.
| | - Koichi Saeki
- Research Institute for Biomedical Sciences (RIBS), Tokyo University of Science, Noda, Chiba, 278-0022, Japan.
| | - Yuki Murayama
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki, 305-8575, Japan.
| | - Hitoshi Shimano
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki, 305-8575, Japan.
| | - Yoshikazu Higami
- Laboratory of Molecular Pathology and Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo, 125-8585, Japan; Division of Cell Fate Regulation, Research Institute for Biomedical Science (RIBS), Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo, 125-8585, Japan.
| |
Collapse
|
2
|
Tang X, Xia X, Liu Y, Hong X, Huang Y, Li G, Liang Y, Wang X, Pang H, Yang Y. Alternative splicing fine-tunes prey shift of Coccinellini lady beetles to non-target insect. BMC Genomics 2025; 26:472. [PMID: 40355858 PMCID: PMC12067713 DOI: 10.1186/s12864-025-11641-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Accepted: 04/25/2025] [Indexed: 05/15/2025] Open
Abstract
BACKGROUND Coccinellini lady beetles have been applied as biological control agent of aphids, however, not all of these species are obligately aphidophagous. Thus, a comprehensive understanding of the molecular mechanisms behind predaceous specificity of Coccinellini lady beetles can provide important clues for evaluating their performance and ecological risk assessment in biological control. Post-transcriptional regulations act a key role in shaping organisms' rapid adaptation to changing environment, yet, little is known about their role in the acclimation of Coccinellini lady beetles to non-target preys. RESULTS In this study, we conducted a genome-wide investigation to alternative splicing (AS) dynamics in three Coccinellini species Propylea japonica, Coccinella septempunctata and Harmonia axyridis in response to feeding shift from natural prey bean aphids (Megoura japonica) to non-target insect citrus mealybugs (Planococcus citri). Compared to aphid-feeding, all three lady beetles were subject to substantial splicing changes when preying on mealybugs. Most of these differentially spliced genes (DSGs) were not differentially expressed, and regulated different pathways from differentially expressed genes, indicating the functionally nonredundant role of AS. The DSGs were primarily associated with energy derivation, organ formation and development, chemosensation and immune responses, which may promote tolerance of lady beetles to nutrient deprivation and pathogen challenges induced by prey shift. The lady beetles feeding on mealybugs moreover downregulated the generation of splicing products containing premature termination codons (PTCs) for the genes involved in energy derivation and stimulus responses, to fine-tune their protein expression and rationalize energy allocation. CONCLUSION These findings unraveled the functional significance of AS reprogramming in modulating acclimation of Coccinellini lady beetles to prey shift from aphids to non-target insects and provided new genetic clues for evaluating their ecological safety as biological control agents.
Collapse
Affiliation(s)
- Xuefei Tang
- School of Ecology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
- College of Forestry, Henan Agricultural University, Zhengzhou, 450002, Henan, China
| | - Xinhui Xia
- School of Ecology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Yuqi Liu
- School of Ecology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Xiyao Hong
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China
| | - Yuhao Huang
- School of Ecology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Guannan Li
- School of Ecology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Yuansen Liang
- School of Ecology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Xueqing Wang
- School of Ecology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Hong Pang
- School of Ecology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, 518107, China.
| | - Yuchen Yang
- School of Ecology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, 518107, China.
| |
Collapse
|
3
|
Clark JP, Rhoads TW, McIlwain SJ, Polewski MA, Pavelec DM, Colman RJ, Anderson RM. Caloric restriction reprograms adipose tissues in rhesus monkeys. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.03.641286. [PMID: 40093109 PMCID: PMC11908232 DOI: 10.1101/2025.03.03.641286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Caloric restriction (CR) is a dietary intervention that delays the onset of age-related diseases and enhances survival in diverse organisms, and although changes in adipose tissues have been implicated in the beneficial effects of CR the molecular details are unknown. Here we show shared and depot-specific adaptations to life-long CR in subcutaneous and visceral adipose depots taken from advanced age male rhesus monkeys. Differential gene expression and pathway analysis identified key differences between the depots in metabolic, immune, and inflammatory pathways. In response to CR, RNA processing and proteostasis-related pathways were enriched in both depots but changes in metabolic, growth, and inflammatory pathways were depot-specific. Commonalities and differences that distinguish adipose depots are shared among monkeys and humans and the response to CR is highly conserved. These data reveal depot-specificity in adipose tissue adaptation that likely reflects differences in function and contribution to age-related disease vulnerability.
Collapse
Affiliation(s)
- Josef P Clark
- Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States, 53705
| | - Timothy W Rhoads
- Department of Nutritional Sciences, University of Wisconsin-Madison, United States, 53706
| | - Sean J McIlwain
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, Wisconsin, United States, 53792
- Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin, United States, 53792
| | - Michael A Polewski
- Department of Animal Sciences, University of Wisconsin-Madison, Madison, WI, USA, 53706
| | - Derek M Pavelec
- Biotechnology Center, University of Wisconsin-Madison, Madison, Wisconsin, United States, 53706
| | - Ricki J Colman
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States, 53715
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin, United States, 53705
| | - Rozalyn M Anderson
- Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States, 53705
- William S. Middleton Memorial Veterans Hospital, Geriatric Research, Education, and Clinical Center, Madison, Wisconsin, United States, 53705
| |
Collapse
|
4
|
Sun Y, Pang Y, Wu X, Zhu R, Wang L, Tian M, He X, Liu D, Yang X. Landscape of alternative splicing and polyadenylation during growth and development of muscles in pigs. Commun Biol 2024; 7:1607. [PMID: 39627472 PMCID: PMC11614907 DOI: 10.1038/s42003-024-07332-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 11/28/2024] [Indexed: 12/06/2024] Open
Abstract
Alternative polyadenylation (APA) is emerging as a post-transcriptional regulatory mechanism, similar as that of alternative splicing (AS), and plays a prominent role in regulating gene expression and increasing the complexity of the transcriptome and proteome. We use polyadenylation selected long-read isoform sequencing to obtain full-length transcript sequences in porcine muscles at five developmental stages. We identify numerous novel transcripts unannotated in the existing pig genome, including transcripts mapping to known and unknown gene loci, and widespread transcript diversity in porcine muscles. The top 100 most isoformic genes are mainly enriched in Gene Ontology terms related to muscle growth and development. It is revealed that intron retention/exon inclusion and the usage of distal polyadenylation site (PAS) are associated with ageing through analyzing changes of AS and PAS during muscle development. We also identify developmental changes in major transcripts and major PASs. Furthermore, genes/transcripts important for muscle development are identified. The results confirm the importance of AS and APA in pig muscles, substantially increasing transcriptional diversity and showing an important mechanism underlying gene regulation in muscles.
Collapse
Affiliation(s)
- Yuanlu Sun
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China
| | - Yu Pang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China
| | - Xiaoxu Wu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China
| | - Rongru Zhu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China
| | - Liang Wang
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China
| | - Ming Tian
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China
| | - Xinmiao He
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China
| | - Di Liu
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China.
| | - Xiuqin Yang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
5
|
Anczukow O, Allain FHT, Angarola BL, Black DL, Brooks AN, Cheng C, Conesa A, Crosse EI, Eyras E, Guccione E, Lu SX, Neugebauer KM, Sehgal P, Song X, Tothova Z, Valcárcel J, Weeks KM, Yeo GW, Thomas-Tikhonenko A. Steering research on mRNA splicing in cancer towards clinical translation. Nat Rev Cancer 2024; 24:887-905. [PMID: 39384951 DOI: 10.1038/s41568-024-00750-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/27/2024] [Indexed: 10/11/2024]
Abstract
Splicing factors are affected by recurrent somatic mutations and copy number variations in several types of haematologic and solid malignancies, which is often seen as prima facie evidence that splicing aberrations can drive cancer initiation and progression. However, numerous spliceosome components also 'moonlight' in DNA repair and other cellular processes, making their precise role in cancer difficult to pinpoint. Still, few would deny that dysregulated mRNA splicing is a pervasive feature of most cancers. Correctly interpreting these molecular fingerprints can reveal novel tumour vulnerabilities and untapped therapeutic opportunities. Yet multiple technological challenges, lingering misconceptions, and outstanding questions hinder clinical translation. To start with, the general landscape of splicing aberrations in cancer is not well defined, due to limitations of short-read RNA sequencing not adept at resolving complete mRNA isoforms, as well as the shallow read depth inherent in long-read RNA-sequencing, especially at single-cell level. Although individual cancer-associated isoforms are known to contribute to cancer progression, widespread splicing alterations could be an equally important and, perhaps, more readily actionable feature of human cancers. This is to say that in addition to 'repairing' mis-spliced transcripts, possible therapeutic avenues include exacerbating splicing aberration with small-molecule spliceosome inhibitors, targeting recurrent splicing aberrations with synthetic lethal approaches, and training the immune system to recognize splicing-derived neoantigens.
Collapse
Affiliation(s)
- Olga Anczukow
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA.
| | - Frédéric H-T Allain
- Department of Biology, Eidgenössische Technische Hochschule (ETH), Zürich, Switzerland
| | | | - Douglas L Black
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, CA, USA
| | - Angela N Brooks
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Chonghui Cheng
- Department of Molecular and Human Genetics, Lester & Sue Breast Center, Baylor College of Medicine, Houston, TX, USA
| | - Ana Conesa
- Institute for Integrative Systems Biology, Spanish National Research Council, Paterna, Spain
| | - Edie I Crosse
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Eduardo Eyras
- Shine-Dalgarno Centre for RNA Innovation, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Ernesto Guccione
- Department of Oncological Sciences, Mount Sinai School of Medicine, New York, NY, USA
| | - Sydney X Lu
- Department of Medicine, Stanford Medical School, Palo Alto, CA, USA
| | - Karla M Neugebauer
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT, USA
| | - Priyanka Sehgal
- Division of Cancer Pathobiology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Xiao Song
- Department of Neurology, Northwestern University, Chicago, IL, USA
| | - Zuzana Tothova
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Juan Valcárcel
- Centre for Genomic Regulation, Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - Kevin M Weeks
- Department of Chemistry, University of North Carolina, Chapel Hill, NC, USA
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Andrei Thomas-Tikhonenko
- Division of Cancer Pathobiology, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Department of Pathology & Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
6
|
Liu Y, Xia X, Ren W, Hong X, Tang X, Pang H, Yang Y. Alternative splicing perspective to prey preference of environmentally friendly biological agent Cryptolaemus montrouzieri. BMC Genomics 2024; 25:967. [PMID: 39407100 PMCID: PMC11481726 DOI: 10.1186/s12864-024-10870-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Cryptolaemus montrouzieri (Coccinellidae) is widely utilized as biological control agents in modern agriculture. A comprehensive understanding of its food preference can help guide mass rearing and safety management during field application of pest control. Although some studies have paid attentions to the impacts of prey shift on C. montrouzieri, little is known regarding the role of post-transcriptional regulations in its acclimation to unnatural preys. RESULTS We performed a genome-wide investigation on alternative splicing dynamics in C. montrouzieri in response to the predation transition from natural prey to unnatural ones. When feeding on undesired diets, 402-764 genes were differentially alternative spliced in C. montrouzieri. It is noteworthy that the majority of these genes (> 87%) were not differentially expressed, and these differentially spliced genes regulated distinct biological processes from differentially expressed genes, such as organ development and morphogenesis, locomotory behavior, and homeostasis processes. These suggested the functionally nonredendant role of alternative splicing in modulating physiological and metabolic responses of C. montrouzieri to the shift to undesired preys. In addition, the individuals feeding on aphids were subject to a lower level of changes in splicing than other alternative diets, which might be because of the similar chemical and microbial compositions. Our study further suggested a putative coupling of alternative splicing and nonsense-mediated decay (AS-NMD), which may play an important role in fine-tuning the protein repertoire of C. montrouzieri, and promoting its acclimation to predation changes. CONCLUSION These findings highlight the key role of alternative splicing in modulating the acclimation of ladybirds to prey shift and provide new genetic clues for the future application of ladybirds in biocontrol.
Collapse
Affiliation(s)
- Yuqi Liu
- School of Ecology, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Xinhui Xia
- School of Ecology, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Wenxu Ren
- School of Ecology, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Xiyao Hong
- School of Life Science, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Xuefei Tang
- School of Ecology, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Hong Pang
- School of Ecology, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Yuchen Yang
- School of Ecology, Sun Yat-Sen University, Shenzhen, 518107, China.
| |
Collapse
|
7
|
Cornwell AB, Zhang Y, Thondamal M, Johnson DW, Thakar J, Samuelson AV. The C. elegans Myc-family of transcription factors coordinate a dynamic adaptive response to dietary restriction. GeroScience 2024; 46:4827-4854. [PMID: 38878153 PMCID: PMC11336136 DOI: 10.1007/s11357-024-01197-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 05/08/2024] [Indexed: 06/25/2024] Open
Abstract
Dietary restriction (DR), the process of decreasing overall food consumption over an extended period of time, has been shown to increase longevity across evolutionarily diverse species and delay the onset of age-associated diseases in humans. In Caenorhabditis elegans, the Myc-family transcription factors (TFs) MXL-2 (Mlx) and MML-1 (MondoA/ChREBP), which function as obligate heterodimers, and PHA-4 (orthologous to FOXA) are both necessary for the full physiological benefits of DR. However, the adaptive transcriptional response to DR and the role of MML-1::MXL-2 and PHA-4 remains elusive. We identified the transcriptional signature of C. elegans DR, using the eat-2 genetic model, and demonstrate broad changes in metabolic gene expression in eat-2 DR animals, which requires both mxl-2 and pha-4. While the requirement for these factors in DR gene expression overlaps, we found many of the DR genes exhibit an opposing change in relative gene expression in eat-2;mxl-2 animals compared to wild-type, which was not observed in eat-2 animals with pha-4 loss. Surprisingly, we discovered more than 2000 genes synthetically dysregulated in eat-2;mxl-2, out of which the promoters of down-regulated genes were substantially enriched for PQM-1 and ELT-1/3 GATA TF binding motifs. We further show functional deficiencies of the mxl-2 loss in DR outside of lifespan, as eat-2;mxl-2 animals exhibit substantially smaller brood sizes and lay a proportion of dead eggs, indicating that MML-1::MXL-2 has a role in maintaining the balance between resource allocation to the soma and to reproduction under conditions of chronic food scarcity. While eat-2 animals do not show a significantly different metabolic rate compared to wild-type, we also find that loss of mxl-2 in DR does not affect the rate of oxygen consumption in young animals. The gene expression signature of eat-2 mutant animals is consistent with optimization of energy utilization and resource allocation, rather than induction of canonical gene expression changes associated with acute metabolic stress, such as induction of autophagy after TORC1 inhibition. Consistently, eat-2 animals are not substantially resistant to stress, providing further support to the idea that chronic DR may benefit healthspan and lifespan through efficient use of limited resources rather than broad upregulation of stress responses, and also indicates that MML-1::MXL-2 and PHA-4 may have distinct roles in promotion of benefits in response to different pro-longevity stimuli.
Collapse
Affiliation(s)
- Adam B Cornwell
- Department of Biomedical Genetics, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY, 14642, USA
| | - Yun Zhang
- Department of Biomedical Genetics, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY, 14642, USA
| | - Manjunatha Thondamal
- Department of Biomedical Genetics, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY, 14642, USA
- MURTI Centre and Department of Biotechnology, School of Technology, Gandhi Institute of Technology and Management (GITAM), Visakhapatnam, Andhra Pradesh, 530045, India
| | - David W Johnson
- Department of Biomedical Genetics, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY, 14642, USA
- Department of Math and Science, Genesee Community College, One College Rd, Batavia, NY, 14020, USA
| | - Juilee Thakar
- Department of Biomedical Genetics, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY, 14642, USA
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY, 14642, USA
- Department of Microbiology and Immunology, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY, 14642, USA
| | - Andrew V Samuelson
- Department of Biomedical Genetics, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY, 14642, USA.
| |
Collapse
|
8
|
Williams DE, King K, Jackson R, Kuehner F, Arnoldy C, Marroquin JN, Tobey I, Banka A, Ragonese S, Van Doorslaer K. PRMT1 Modulates Alternative Splicing to Enhance HPV18 mRNA Stability and Promote the Establishment of Infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.26.614592. [PMID: 39386465 PMCID: PMC11463397 DOI: 10.1101/2024.09.26.614592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Only persistent HPV infections lead to the development of cancer. Thus, understanding the virus-host interplay that influences the establishment of viral infection has important implications for HPV biology and human cancers. The ability of papillomaviruses to establish in cells requires the strict temporal regulation of viral gene expression in sync with cellular differentiation. This control primarily happens at the level of RNA splicing and polyadenylation. However, the details of how this spatio-temporal regulation is achieved still need to be fully understood. Until recently, it has been challenging to study the early events of the HPV lifecycle following infection. We used a single-cell genomics approach to identify cellular factors involved in viral infection and establishment. We identify protein arginine N-methyltransferase 1 (PRMT1) as an important factor in viral infection of primary human cervical cells. PRMT1 is the main cellular enzyme responsible for asymmetric dimethylation of cellular proteins. PRMT1 is an enzyme responsible for catalyzing the methylation of arginine residues on various proteins, which influences processes such as RNA processing, transcriptional regulation, and signal transduction. In this study, we show that HPV18 infection leads to increased PRMT1 levels across the viral lifecycle. PRMT1 is critical for the establishment of a persistent infection in primary cells. Mechanistically, PRMT1 inhibition leads to a highly dysregulated viral splicing pattern. Specifically, reduced PRMT1 activity leads to intron retention and a change in the E6 and E7 expression ratio. In the absence of PRMT1, viral transcripts are destabilized and subject to degradation via the nonsense-mediated decay (NMD) pathway. These findings highlight PRMT1 as a critical regulator of the HPV18 lifecycle, particularly in RNA processing, and position it as a potential therapeutic target for persistent HPV18 infections.
Collapse
Affiliation(s)
- David E.J. Williams
- Cancer Biology Graduate Interdisciplinary Program, University of Arizona, Tucson, Arizona, USA
- Medical Scientist Training M.D.-Ph.D. Program, University of Arizona, Tucson, AZ, USA
| | - Kelly King
- The Department of Immunobiology, University of Arizona Tucson, Arizona, USA
| | - Robert Jackson
- The Department of Immunobiology, University of Arizona Tucson, Arizona, USA
| | - Franziska Kuehner
- The Department of Immunobiology, University of Arizona Tucson, Arizona, USA
| | - Christina Arnoldy
- The Department of Immunobiology, University of Arizona Tucson, Arizona, USA
| | | | - Isabelle Tobey
- Cancer Biology Graduate Interdisciplinary Program, University of Arizona, Tucson, Arizona, USA
- The Department of Immunobiology, University of Arizona Tucson, Arizona, USA
| | - Amy Banka
- The Department of Immunobiology, University of Arizona Tucson, Arizona, USA
- Microbiology Graduate program, University of Arizona, Tucson, Arizona, USA
| | - Sofia Ragonese
- The Department of Immunobiology, University of Arizona Tucson, Arizona, USA
- Molecular and cellular Biology, University of Arizona, Tucson, Arizona, USA
| | - Koenraad Van Doorslaer
- Cancer Biology Graduate Interdisciplinary Program, University of Arizona, Tucson, Arizona, USA
- The Department of Immunobiology, University of Arizona Tucson, Arizona, USA
- Microbiology Graduate program, University of Arizona, Tucson, Arizona, USA
- The BIO5 Institute, The Department of Immunobiology, Genetics Graduate Interdisciplinary Program, UA Cancer Center, University of Arizona Tucson, Arizona, USA
| |
Collapse
|
9
|
Konwar C, Maini J, Saluja D. Understanding Longevity: SIN-3 and DAF-16 Revealed as Independent Players in Lifespan Regulation. J Gerontol A Biol Sci Med Sci 2024; 79:glae160. [PMID: 38894529 DOI: 10.1093/gerona/glae160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Indexed: 06/21/2024] Open
Abstract
Aging is the process of gradual physio-biochemical deterioration. Although aging is inevitable, healthy aging is the key to individual and communal well-being. Therefore, it is essential to understand the regulation of aging. SIN-3/Sin-3 is a unique regulatory protein that regulates aging without DNA-binding activity. It functions by establishing multiple protein interactions. To understand the functional mechanism of this transcriptional regulator, the Caenorhabditis elegans protein interactome was assessed for SIN-3 interactions. DAF-16/FOXO emerged as one of the leading contenders for SIN-3-mediated regulation of aging. This study looks at the concerted role of SIN-3 and DAF-16 proteins in lifespan regulation. Phenotypic profiling for the mutants of these genes shows the functional accord between these 2 proteins with similar functions in stress response and vital biological processes. However, there were no significant physical interactions when checked for protein-protein interaction between SIN-3 and DAF-16 proteins. C. elegans genomics and transcriptomics data also indicated the possibilities of concerted gene regulation. This genetic regulation is more likely related to SIN-3 dominance on DAF-16 function. Overall, SIN-3 and DAF-16 proteins have strong functional interactions that ensure healthy aging. The influence of SIN-3 on DAF-16-mediated stress response is one of their convergence points in longevity regulation.
Collapse
Affiliation(s)
- Chandrika Konwar
- Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India
- Biology and Bioengineering Division, Tianqiao and Chrissy Chen Institute of Neuroscience, California Institute of Technology, Pasadena, California, USA
| | - Jayant Maini
- Department of Biotechnology, School of Engineering and Technology, Manav Rachna International Institute of Research and Studies, Faridabad, Haryana, India
| | - Daman Saluja
- Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India
- Delhi School of Public Health, IoE, University of Delhi, Delhi, India
| |
Collapse
|
10
|
Fair B, Buen Abad Najar CF, Zhao J, Lozano S, Reilly A, Mossian G, Staley JP, Wang J, Li YI. Global impact of unproductive splicing on human gene expression. Nat Genet 2024; 56:1851-1861. [PMID: 39223315 PMCID: PMC11387194 DOI: 10.1038/s41588-024-01872-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 07/16/2024] [Indexed: 09/04/2024]
Abstract
Alternative splicing (AS) in human genes is widely viewed as a mechanism for enhancing proteomic diversity. AS can also impact gene expression levels without increasing protein diversity by producing 'unproductive' transcripts that are targeted for rapid degradation by nonsense-mediated decay (NMD). However, the relative importance of this regulatory mechanism remains underexplored. To better understand the impact of AS-NMD relative to other regulatory mechanisms, we analyzed population-scale genomic data across eight molecular assays, covering various stages from transcription to cytoplasmic decay. We report threefold more unproductive splicing compared with prior estimates using steady-state RNA. This unproductive splicing compounds across multi-intronic genes, resulting in 15% of transcript molecules from protein-coding genes being unproductive. Leveraging genetic variation across cell lines, we find that GWAS trait-associated loci explained by AS are as often associated with NMD-induced expression level differences as with differences in protein isoform usage. Our findings suggest that much of the impact of AS is mediated by NMD-induced changes in gene expression rather than diversification of the proteome.
Collapse
Affiliation(s)
- Benjamin Fair
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL, USA
| | | | - Junxing Zhao
- Department of Medicinal Chemistry, University of Kansas, Lawrence, KS, USA
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Stephanie Lozano
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL, USA
- Center for Neuroscience, University of California Davis, Davis, CA, USA
| | - Austin Reilly
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Gabriela Mossian
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Jonathan P Staley
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL, USA
| | - Jingxin Wang
- Department of Medicinal Chemistry, University of Kansas, Lawrence, KS, USA
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Yang I Li
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL, USA.
- Department of Human Genetics, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
11
|
Li H, Sun X, Lv Y, Wei G, Ni T, Qin W, Jin H, Jia Q. Downregulation of Splicing Factor PTBP1 Curtails FBXO5 Expression to Promote Cellular Senescence in Lung Adenocarcinoma. Curr Issues Mol Biol 2024; 46:7730-7744. [PMID: 39057099 PMCID: PMC11276454 DOI: 10.3390/cimb46070458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/08/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Polypyrimidine tract-binding protein 1 (PTBP1) plays an essential role in splicing and post-transcriptional regulation. Moreover, PTBP1 has been implicated as a causal factor in tumorigenesis. However, the involvement of PTBP1 in cellular senescence, a key biological process in aging and cancer suppression, remains to be clarified. Here, it is shown that PTBP1 is associated with the facilitation of tumor growth and the prognosis in lung adenocarcinoma (LUAD). PTBP1 exhibited significantly increased expression in various cancer types including LUAD and showed consistently decreased expression in multiple cellular senescence models. Suppression of PTBP1 induced cellular senescence in LUAD cells. In terms of molecular mechanisms, the silencing of PTBP1 enhanced the skipping of exon 3 in F-box protein 5 (FBXO5), resulting in the generation of a less stable RNA splice variant, FBXO5-S, which subsequently reduces the overall FBXO5 expression. Additionally, downregulation of FBXO5 was found to induce senescence in LUAD. Collectively, these findings illustrate that PTBP1 possesses an oncogenic function in LUAD through inhibiting senescence, and that targeting aberrant splicing mediated by PTBP1 has therapeutic potential in cancer treatment.
Collapse
Affiliation(s)
- Haoyu Li
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China; (H.L.); (X.S.); (Y.L.); (W.Q.); (H.J.)
| | - Xiaoxiao Sun
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China; (H.L.); (X.S.); (Y.L.); (W.Q.); (H.J.)
| | - Yuanyuan Lv
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China; (H.L.); (X.S.); (Y.L.); (W.Q.); (H.J.)
| | - Gang Wei
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Human Phenome Institute, School of Life Sciences, Fudan University, Shanghai 200438, China; (G.W.); (T.N.)
| | - Ting Ni
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Human Phenome Institute, School of Life Sciences, Fudan University, Shanghai 200438, China; (G.W.); (T.N.)
| | - Wenxin Qin
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China; (H.L.); (X.S.); (Y.L.); (W.Q.); (H.J.)
| | - Haojie Jin
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China; (H.L.); (X.S.); (Y.L.); (W.Q.); (H.J.)
| | - Qi Jia
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China; (H.L.); (X.S.); (Y.L.); (W.Q.); (H.J.)
| |
Collapse
|
12
|
Mazuecos L, Artigas-Jerónimo S, Pintado C, Gómez O, Rubio B, Arribas C, Andrés A, Villar M, Gallardo N. Central leptin signaling deficiency induced by leptin receptor antagonist leads to hypothalamic proteomic remodeling. Life Sci 2024; 346:122649. [PMID: 38626868 DOI: 10.1016/j.lfs.2024.122649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 04/07/2024] [Accepted: 04/11/2024] [Indexed: 04/20/2024]
Abstract
AIMS Leptin irresponsiveness, which is often associated with obesity, can have significant impacts on the hypothalamic proteome of individuals, including those who are lean. While mounting evidence on leptin irresponsiveness has focused on obese individuals, understanding the early molecular and proteomic changes associated with deficient hypothalamic leptin signaling in lean individuals is essential for early intervention and prevention of metabolic disorders. Leptin receptor antagonists block the binding of leptin to its receptors, potentially reducing its effects and used in cases where excessive leptin activity might be harmful. MATERIALS AND METHODS In this work, we blocked the central actions of leptin in lean male adult Wistar rat by chronically administering intracerebroventricularly the superactive leptin receptor antagonist (SLA) (D23L/L39A/D40A/F41A) and investigated its impact on the hypothalamic proteome using label-free sequential window acquisition of all theoretical fragment ion spectra mass spectrometry (SWATH-MS) for quantitative proteomics. KEY FINDINGS Our results show an accumulation of proteins involved in mRNA processing, mRNA stability, and translation in the hypothalamus of SLA-treated rats. Conversely, hypothalamic leptin signaling deficiency reduces the representation of proteins implicated in energy metabolism, neural circuitry, and neurotransmitter release. SIGNIFICANCE The alterations in the adult rat hypothalamic proteome contribute to dysregulate appetite, metabolism, and energy balance, which are key factors in the development and progression of obesity and related metabolic disorders. Additionally, using bioinformatic analysis, we identified a series of transcription factors that are potentially involved in the upstream regulatory mechanisms responsible for the observed signature.
Collapse
Affiliation(s)
- Lorena Mazuecos
- Biochemistry Section, Faculty of Sciences and Chemical Technologies, University of Castilla-La Mancha, Avda. Camilo Jose Cela 10, 13071 Ciudad Real, Spain; DOE, Regional Center for Biomedical Research (CRIB), Castilla-La Mancha, Spain
| | - Sara Artigas-Jerónimo
- Biochemistry Section, Faculty of Sciences and Chemical Technologies, University of Castilla-La Mancha, Avda. Camilo Jose Cela 10, 13071 Ciudad Real, Spain; DOE, Regional Center for Biomedical Research (CRIB), Castilla-La Mancha, Spain
| | - Cristina Pintado
- Biochemistry Section, Faculty of Environmental Sciences and Biochemistry, University of Castilla-La Mancha, Avda. Carlos III s/n, 45071 Toledo, Spain; DOE, Regional Center for Biomedical Research (CRIB), Castilla-La Mancha, Spain
| | - Oscar Gómez
- Biochemistry Section, Faculty of Environmental Sciences and Biochemistry, University of Castilla-La Mancha, Avda. Carlos III s/n, 45071 Toledo, Spain; DOE, Regional Center for Biomedical Research (CRIB), Castilla-La Mancha, Spain
| | - Blanca Rubio
- Biochemistry Section, Faculty of Sciences and Chemical Technologies, University of Castilla-La Mancha, Avda. Camilo Jose Cela 10, 13071 Ciudad Real, Spain; DOE, Regional Center for Biomedical Research (CRIB), Castilla-La Mancha, Spain
| | - Carmen Arribas
- Biochemistry Section, Faculty of Environmental Sciences and Biochemistry, University of Castilla-La Mancha, Avda. Carlos III s/n, 45071 Toledo, Spain; DOE, Regional Center for Biomedical Research (CRIB), Castilla-La Mancha, Spain
| | - Antonio Andrés
- Biochemistry Section, Faculty of Sciences and Chemical Technologies, University of Castilla-La Mancha, Avda. Camilo Jose Cela 10, 13071 Ciudad Real, Spain; DOE, Regional Center for Biomedical Research (CRIB), Castilla-La Mancha, Spain
| | - Margarita Villar
- Biochemistry Section, Faculty of Sciences and Chemical Technologies, University of Castilla-La Mancha, Avda. Camilo Jose Cela 10, 13071 Ciudad Real, Spain; SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005 Ciudad Real, Spain.
| | - Nilda Gallardo
- Biochemistry Section, Faculty of Sciences and Chemical Technologies, University of Castilla-La Mancha, Avda. Camilo Jose Cela 10, 13071 Ciudad Real, Spain; DOE, Regional Center for Biomedical Research (CRIB), Castilla-La Mancha, Spain.
| |
Collapse
|
13
|
Ma Z, Sharma R, Rogers AN. Physiological Consequences of Nonsense-Mediated Decay and Its Role in Adaptive Responses. Biomedicines 2024; 12:1110. [PMID: 38791071 PMCID: PMC11117581 DOI: 10.3390/biomedicines12051110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 04/30/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
The evolutionarily conserved nonsense-mediated mRNA decay (NMD) pathway is a quality control mechanism that degrades aberrant mRNA containing one or more premature termination codons (PTCs). Recent discoveries indicate that NMD also differentially regulates mRNA from wild-type protein-coding genes despite lacking PTCs. Together with studies showing that NMD is involved in development and adaptive responses that influence health and longevity, these findings point to an expanded role of NMD that adds a new layer of complexity in the post-transcriptional regulation of gene expression. However, the extent of its control, whether different types of NMD play different roles, and the resulting physiological outcomes remain unclear and need further elucidation. Here, we review different branches of NMD and what is known of the physiological outcomes associated with this type of regulation. We identify significant gaps in the understanding of this process and the utility of genetic tools in accelerating progress in this area.
Collapse
Affiliation(s)
- Zhengxin Ma
- MDI Biological Laboratory, Bar Harbor, ME 04609, USA
| | - Ratna Sharma
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA;
| | | |
Collapse
|
14
|
Lee GY, Ham S, Sohn J, Kwon HC, Lee SJV. Meta-analysis of the transcriptome identifies aberrant RNA processing as common feature of aging in multiple species. Mol Cells 2024; 47:100047. [PMID: 38508494 PMCID: PMC11026732 DOI: 10.1016/j.mocell.2024.100047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/07/2024] [Accepted: 03/12/2024] [Indexed: 03/22/2024] Open
Abstract
Aging is accompanied by the gradual deregulation of the transcriptome. However, whether age-dependent changes in the transcriptome are evolutionarily conserved or diverged remains largely unexplored. Here, we performed a meta-analysis examining the age-dependent changes in the transcriptome using publicly available datasets of 11 representative metazoans, ranging from Caenorhabditis elegans to humans. To identify the transcriptomic changes associated with aging, we analyzed various aspects of the transcriptome, including genome composition, RNA processing, and functional consequences. The use of introns and novel splice sites tended to increase with age, particularly in the brain. In addition, our analysis suggests that the age-dependent accumulation of premature termination codon-containing transcripts is a common feature of aging across multiple animal species. Using C. elegans as a test model, we showed that several splicing factors that are evolutionarily conserved and age-dependently downregulated were required to maintain a normal lifespan. Thus, aberrant RNA processing appears to be associated with aging and a short lifespan in various species.
Collapse
Affiliation(s)
- Gee-Yoon Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
| | - Seokjin Ham
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
| | - Jooyeon Sohn
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
| | - Hyunwoo C Kwon
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
| | - Seung-Jae V Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea.
| |
Collapse
|
15
|
Badia-Bringué G, Lavín JL, Casais R, Alonso-Hearn M. Alternative splicing of pre-mRNA modulates the immune response in Holstein cattle naturally infected with Mycobacterium avium subsp. paratuberculosis. Front Immunol 2024; 15:1354500. [PMID: 38495873 PMCID: PMC10940349 DOI: 10.3389/fimmu.2024.1354500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/09/2024] [Indexed: 03/19/2024] Open
Abstract
Little is known about the role of alternative splicing (AS) in regulating gene expression in Mycobacteria-infected individuals in distinct stages of infection. Pre-mRNA AS consists of the removal of introns and the assembly of exons contained in eukaryotic genes. AS events can influence transcript stability or structure with important physiological consequences. Using RNA-Seq data from peripheral blood (PB) and ileocecal valve (ICV) samples collected from Holstein cattle with focal and diffuse paratuberculosis (PTB)-associated histopathological lesions in gut tissues and without lesions (controls), we detected differential AS profiles between the infected and control groups. Four of the identified AS events were experimentally validated by reverse transcription-digital droplet PCR (RT-ddPCR). AS events in several genes correlated with changes in gene expression. In the ICV of animals with diffuse lesions, for instance, alternatively spliced genes correlated with changes in the expression of genes involved in endocytosis, antigen processing and presentation, complement activation, and several inflammatory and autoimmune diseases in humans. Taken together, our results identified common mechanisms of AS involvement in the pathogenesis of PTB and human diseases and shed light on novel diagnostic and therapeutic interventions to control these diseases.
Collapse
Affiliation(s)
- Gerard Badia-Bringué
- Department of Animal Health, NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, Spain
- Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Leioa, Bizkaia, Spain
| | - José Luis Lavín
- Department of Applied Mathematics, NEIKER- Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, Spain
| | - Rosa Casais
- Center of Animal Biotechnology, Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), Deva, Spain
| | - Marta Alonso-Hearn
- Department of Animal Health, NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, Spain
| |
Collapse
|
16
|
Gómez-Montalvo J, de Obeso Fernández del Valle A, De la Cruz Gutiérrez LF, Gonzalez-Meljem JM, Scheckhuber CQ. Replicative aging in yeast involves dynamic intron retention patterns associated with mRNA processing/export and protein ubiquitination. MICROBIAL CELL (GRAZ, AUSTRIA) 2024; 11:69-78. [PMID: 38414808 PMCID: PMC10897858 DOI: 10.15698/mic2024.02.816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/25/2024] [Accepted: 02/01/2024] [Indexed: 02/29/2024]
Abstract
Saccharomyces cerevisiae (baker's yeast) has yielded relevant insights into some of the basic mechanisms of organismal aging. Among these are genomic instability, oxidative stress, caloric restriction and mitochondrial dysfunction. Several genes are known to have an impact on the aging process, with corresponding mutants exhibiting short- or long-lived phenotypes. Research dedicated to unraveling the underlying cellular mechanisms can support the identification of conserved mechanisms of aging in other species. One of the hitherto less studied fields in yeast aging is how the organism regulates its gene expression at the transcriptional level. To our knowledge, we present the first investigation into alternative splicing, particularly intron retention, during replicative aging of S. cerevisiae. This was achieved by utilizing the IRFinder algorithm on a previously published RNA-seq data set by Janssens et al. (2015). In the present work, 44 differentially retained introns in 43 genes were identified during replicative aging. We found that genes with altered intron retention do not display significant changes in overall transcript levels. It was possible to functionally assign distinct groups of these genes to the cellular processes of mRNA processing and export (e.g., YRA1) in early and middle-aged yeast, and protein ubiquitination (e.g., UBC5) in older cells. In summary, our work uncovers a previously unexplored layer of the transcriptional program of yeast aging and, more generally, expands the knowledge on the occurrence of alternative splicing in baker's yeast.
Collapse
Affiliation(s)
- Jesús Gómez-Montalvo
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey, N.L., México
| | | | | | - Jose Mario Gonzalez-Meljem
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey, N.L., México
| | | |
Collapse
|
17
|
Napier-Jameson R, Marx O, Norris A. A pair of RNA binding proteins inhibit ion transporter expression to maintain lifespan. Genetics 2024; 226:iyad212. [PMID: 38112749 PMCID: PMC10847721 DOI: 10.1093/genetics/iyad212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/07/2023] [Accepted: 12/11/2023] [Indexed: 12/21/2023] Open
Abstract
Regulation of lifespan by transcription factors has been well established. More recently, a role for RNA binding proteins (RBPs) in regulating lifespan has also emerged. In both cases, a major challenge is to determine which regulatory targets are functionally responsible for the observed lifespan phenotype. We recently identified a pair of neuronal RBPs, exc-7/ELAVL and mbl-1/Muscleblind, which in Caenorhabditis elegans display synthetic (nonadditive) lifespan defects: single mutants do not affect lifespan, but exc-7; mbl-1 double mutants have strongly reduced lifespan. Such a strong synthetic phenotype represented an opportunity to use transcriptomics to search for potential causative targets that are synthetically regulated. Focus on such genes would allow us to narrow our target search by ignoring the hundreds of genes altered only in single mutants, and provide a shortlist of synthetically regulated candidate targets that might be responsible for the double mutant phenotype. We identified a small handful of genes synthetically dysregulated in double mutants and systematically tested each candidate gene for functional contribution to the exc-7; mbl-1 lifespan phenotype. We identified 1 such gene, the ion transporter nhx-6, which is highly upregulated in double mutants. Overexpression of nhx-6 causes reduced lifespan, and deletion of nhx-6 in an exc-7; mbl-1 background partially restores both lifespan and healthspan. Together, these results reveal that a pair of RBPs mediate lifespan in part by inhibiting expression of an ion transporter, and provide a template for how synthetic phenotypes (including lifespan) can be dissected at the transcriptomic level to reveal potential causative genes.
Collapse
Affiliation(s)
- Rebekah Napier-Jameson
- Department of Biological Sciences, Southern Methodist University, 6501 Airline Rd, Dallas, TX 75205, USA
| | - Olivia Marx
- Department of Biological Sciences, Southern Methodist University, 6501 Airline Rd, Dallas, TX 75205, USA
| | - Adam Norris
- Department of Biological Sciences, Southern Methodist University, 6501 Airline Rd, Dallas, TX 75205, USA
| |
Collapse
|
18
|
Ananthamohan K, Stelzer JE, Sadayappan S. Hypertrophic cardiomyopathy in MYBPC3 carriers in aging. THE JOURNAL OF CARDIOVASCULAR AGING 2024; 4:9. [PMID: 38406555 PMCID: PMC10883298 DOI: 10.20517/jca.2023.29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Hypertrophic cardiomyopathy (HCM) is characterized by abnormal thickening of the myocardium, leading to arrhythmias, heart failure, and elevated risk of sudden cardiac death, particularly among the young. This inherited disease is predominantly caused by mutations in sarcomeric genes, among which those in the cardiac myosin binding protein-C3 (MYBPC3) gene are major contributors. HCM associated with MYBPC3 mutations usually presents in the elderly and ranges from asymptomatic to symptomatic forms, affecting numerous cardiac functions and presenting significant health risks with a spectrum of clinical manifestations. Regulation of MYBPC3 expression involves various transcriptional and translational mechanisms, yet the destiny of mutant MYBPC3 mRNA and protein in late-onset HCM remains unclear. Pathogenesis related to MYBPC3 mutations includes nonsense-mediated decay, alternative splicing, and ubiquitin-proteasome system events, leading to allelic imbalance and haploinsufficiency. Aging further exacerbates the severity of HCM in carriers of MYBPC3 mutations. Advancements in high-throughput omics techniques have identified crucial molecular events and regulatory disruptions in cardiomyocytes expressing MYBPC3 variants. This review assesses the pathogenic mechanisms that promote late-onset HCM through the lens of transcriptional, post-transcriptional, and post-translational modulation of MYBPC3, underscoring its significance in HCM across carriers. The review also evaluates the influence of aging on these processes and MYBPC3 levels during HCM pathogenesis in the elderly. While pinpointing targets for novel medical interventions to conserve cardiac function remains challenging, the emergence of personalized omics offers promising avenues for future HCM treatments, particularly for late-onset cases.
Collapse
Affiliation(s)
- Kalyani Ananthamohan
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Julian E. Stelzer
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH 45267, USA
| | - Sakthivel Sadayappan
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, Cincinnati, OH 45267, USA
| |
Collapse
|
19
|
Baralle M, Romano M. Age-Related Alternative Splicing: Driver or Passenger in the Aging Process? Cells 2023; 12:2819. [PMID: 38132139 PMCID: PMC10742131 DOI: 10.3390/cells12242819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/01/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023] Open
Abstract
Alternative splicing changes are closely linked to aging, though it remains unclear if they are drivers or effects. As organisms age, splicing patterns change, varying gene isoform levels and functions. These changes may contribute to aging alterations rather than just reflect declining RNA quality control. Three main splicing types-intron retention, cassette exons, and cryptic exons-play key roles in age-related complexity. These events modify protein domains and increase nonsense-mediated decay, shifting protein isoform levels and functions. This may potentially drive aging or serve as a biomarker. Fluctuations in splicing factor expression also occur with aging. Somatic mutations in splicing genes can also promote aging and age-related disease. The interplay between splicing and aging has major implications for aging biology, though differentiating correlation and causation remains challenging. Declaring a splicing factor or event as a driver requires comprehensive evaluation of the associated molecular and physiological changes. A greater understanding of how RNA splicing machinery and downstream targets are impacted by aging is essential to conclusively establish the role of splicing in driving aging, representing a promising area with key implications for understanding aging, developing novel therapeutical options, and ultimately leading to an increase in the healthy human lifespan.
Collapse
Affiliation(s)
- Marco Baralle
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34149 Trieste, Italy;
| | - Maurizio Romano
- Department of Life Sciences, University of Trieste, Via A. Valerio 28, 34127 Trieste, Italy
| |
Collapse
|
20
|
Das JK, Banskota N, Candia J, Griswold ME, Orenduff M, de Cabo R, Corcoran DL, Das SK, De S, Huffman KM, Kraus VB, Kraus WE, Martin C, Racette SB, Redman LM, Schilling B, Belsky D, Ferrucci L. Calorie restriction modulates the transcription of genes related to stress response and longevity in human muscle: The CALERIE study. Aging Cell 2023; 22:e13963. [PMID: 37823711 PMCID: PMC10726900 DOI: 10.1111/acel.13963] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/28/2023] [Accepted: 08/01/2023] [Indexed: 10/13/2023] Open
Abstract
The lifespan extension induced by 40% caloric restriction (CR) in rodents is accompanied by postponement of disease, preservation of function, and increased stress resistance. Whether CR elicits the same physiological and molecular responses in humans remains mostly unexplored. In the CALERIE study, 12% CR for 2 years in healthy humans induced minor losses of muscle mass (leg lean mass) without changes of muscle strength, but mechanisms for muscle quality preservation remained unclear. We performed high-depth RNA-Seq (387-618 million paired reads) on human vastus lateralis muscle biopsies collected from the CALERIE participants at baseline, 12- and 24-month follow-up from the 90 CALERIE participants randomized to CR and "ad libitum" control. Using linear mixed effect model, we identified protein-coding genes and splicing variants whose expression was significantly changed in the CR group compared to controls, including genes related to proteostasis, circadian rhythm regulation, DNA repair, mitochondrial biogenesis, mRNA processing/splicing, FOXO3 metabolism, apoptosis, and inflammation. Changes in some of these biological pathways mediated part of the positive effect of CR on muscle quality. Differentially expressed splicing variants were associated with change in pathways shown to be affected by CR in model organisms. Two years of sustained CR in humans positively affected skeletal muscle quality, and impacted gene expression and splicing profiles of biological pathways affected by CR in model organisms, suggesting that attainable levels of CR in a lifestyle intervention can benefit muscle health in humans.
Collapse
Affiliation(s)
- Jayanta Kumar Das
- Longitudinal Studies Section, Translation Gerontology BranchNational Institute on Aging, National Institutes of HealthBaltimoreMarylandUSA
| | - Nirad Banskota
- Computational Biology and Genomics CoreNational Institute on Aging, National Institutes of HealthBaltimoreMarylandUSA
| | - Julián Candia
- Longitudinal Studies Section, Translation Gerontology BranchNational Institute on Aging, National Institutes of HealthBaltimoreMarylandUSA
| | | | - Melissa Orenduff
- Duke Molecular Physiology Institute and Department of MedicineDuke University School of MedicineDurhamNorth CarolinaUSA
| | - Rafael de Cabo
- Translation Gerontology Branch, National Institute on AgingNational Institutes of HealthBaltimoreMarylandUSA
| | - David L. Corcoran
- Department of GeneticsUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Sai Krupa Das
- Energy Metabolism, Jean Mayer USDA Human Nutrition Research Center on AgingTufts UniversityBostonMassachusettsUSA
| | - Supriyo De
- Computational Biology and Genomics CoreNational Institute on Aging, National Institutes of HealthBaltimoreMarylandUSA
| | - Kim Marie Huffman
- Duke Molecular Physiology Institute and Department of MedicineDuke University School of MedicineDurhamNorth CarolinaUSA
| | - Virginia B. Kraus
- Duke Molecular Physiology Institute and Department of MedicineDuke University School of MedicineDurhamNorth CarolinaUSA
| | - William E. Kraus
- Duke Molecular Physiology Institute and Department of MedicineDuke University School of MedicineDurhamNorth CarolinaUSA
| | - Corby K. Martin
- Pennington Biomedical Research CenterLouisiana State UniversityBaton RougeLouisianaUSA
| | - Susan B. Racette
- College of Health SolutionsArizona State UniversityPhoenixArizonaUSA
| | - Leanne M. Redman
- Pennington Biomedical Research CenterLouisiana State UniversityBaton RougeLouisianaUSA
| | | | - Daniel W. Belsky
- Department of Epidemiology & Butler Columbia Aging CenterColumbia University Mailman School of Public HealthNew York CityNew YorkUSA
| | - Luigi Ferrucci
- Longitudinal Studies Section, Translation Gerontology BranchNational Institute on Aging, National Institutes of HealthBaltimoreMarylandUSA
| |
Collapse
|
21
|
Kwon HC, Bae Y, Lee SJV. The Role of mRNA Quality Control in the Aging of Caenorhabditis elegans. Mol Cells 2023; 46:664-671. [PMID: 37968980 PMCID: PMC10654458 DOI: 10.14348/molcells.2023.0103] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/17/2023] [Accepted: 09/02/2023] [Indexed: 11/17/2023] Open
Abstract
The proper maintenance of mRNA quality that is regulated by diverse surveillance pathways is essential for cellular homeostasis and is highly conserved among eukaryotes. Here, we review findings regarding the role of mRNA quality control in the aging and longevity of Caenorhabditis elegans, an outstanding model for aging research. We discuss the recently discovered functions of the proper regulation of nonsense-mediated mRNA decay, ribosome-associated quality control, and mRNA splicing in the aging of C. elegans. We describe how mRNA quality control contributes to longevity conferred by various regimens, including inhibition of insulin/insulin-like growth factor 1 (IGF-1) signaling, dietary restriction, and reduced mechanistic target of rapamycin signaling. This review provides valuable information regarding the relationship between the mRNA quality control and aging in C. elegans, which may lead to insights into healthy longevity in complex organisms, including humans.
Collapse
Affiliation(s)
- Hyunwoo C. Kwon
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| | - Yunkyu Bae
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| | - Seung-Jae V. Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| |
Collapse
|
22
|
Cornwell A, Zhang Y, Thondamal M, Johnson DW, Thakar J, Samuelson AV. The C. elegans Myc-family of transcription factors coordinate a dynamic adaptive response to dietary restriction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.22.568222. [PMID: 38045350 PMCID: PMC10690244 DOI: 10.1101/2023.11.22.568222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Dietary restriction (DR), the process of decreasing overall food consumption over an extended period of time, has been shown to increase longevity across evolutionarily diverse species and delay the onset of age-associated diseases in humans. In Caenorhabditis elegans, the Myc-family transcription factors (TFs) MXL-2 (Mlx) and MML-1 (MondoA/ChREBP), which function as obligate heterodimers, and PHA-4 (orthologous to forkhead box transcription factor A) are both necessary for the full physiological benefits of DR. However, the adaptive transcriptional response to DR and the role of MML-1::MXL-2 and PHA-4 remains elusive. We identified the transcriptional signature of C. elegans DR, using the eat-2 genetic model, and demonstrate broad changes in metabolic gene expression in eat-2 DR animals, which requires both mxl-2 and pha-4. While the requirement for these factors in DR gene expression overlaps, we found many of the DR genes exhibit an opposing change in relative gene expression in eat-2;mxl-2 animals compared to wild-type, which was not observed in eat-2 animals with pha-4 loss. We further show functional deficiencies of the mxl-2 loss in DR outside of lifespan, as eat-2;mxl-2 animals exhibit substantially smaller brood sizes and lay a proportion of dead eggs, indicating that MML-1::MXL-2 has a role in maintaining the balance between resource allocation to the soma and to reproduction under conditions of chronic food scarcity. While eat-2 animals do not show a significantly different metabolic rate compared to wild-type, we also find that loss of mxl-2 in DR does not affect the rate of oxygen consumption in young animals. The gene expression signature of eat-2 mutant animals is consistent with optimization of energy utilization and resource allocation, rather than induction of canonical gene expression changes associated with acute metabolic stress -such as induction of autophagy after TORC1 inhibition. Consistently, eat-2 animals are not substantially resistant to stress, providing further support to the idea that chronic DR may benefit healthspan and lifespan through efficient use of limited resources rather than broad upregulation of stress responses, and also indicates that MML-1::MXL-2 and PHA-4 may have different roles in promotion of benefits in response to different pro-longevity stimuli.
Collapse
Affiliation(s)
- Adam Cornwell
- Department of Biomedical Genetics, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Yun Zhang
- Department of Biomedical Genetics, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Manjunatha Thondamal
- Department of Biomedical Genetics, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA
- Department of Biological Sciences, GITAM University, Andhra Pradesh, India
| | - David W Johnson
- Department of Biomedical Genetics, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA
- Department of Math and Science, Genesee Community College, One College Rd Batavia, NY 14020, USA
| | - Juilee Thakar
- Department of Biomedical Genetics, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA
- Department of Microbiology and Immunology, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Andrew V Samuelson
- Department of Biomedical Genetics, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA
| |
Collapse
|
23
|
Fair B, Najar CBA, Zhao J, Lozano S, Reilly A, Mossian G, Staley JP, Wang J, Li YI. Global impact of aberrant splicing on human gene expression levels. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.13.557588. [PMID: 37745605 PMCID: PMC10515962 DOI: 10.1101/2023.09.13.557588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Alternative splicing (AS) is pervasive in human genes, yet the specific function of most AS events remains unknown. It is widely assumed that the primary function of AS is to diversify the proteome, however AS can also influence gene expression levels by producing transcripts rapidly degraded by nonsense-mediated decay (NMD). Currently, there are no precise estimates for how often the coupling of AS and NMD (AS-NMD) impacts gene expression levels because rapidly degraded NMD transcripts are challenging to capture. To better understand the impact of AS on gene expression levels, we analyzed population-scale genomic data in lymphoblastoid cell lines across eight molecular assays that capture gene regulation before, during, and after transcription and cytoplasmic decay. Sequencing nascent mRNA transcripts revealed frequent aberrant splicing of human introns, which results in remarkably high levels of mRNA transcripts subject to NMD. We estimate that ~15% of all protein-coding transcripts are degraded by NMD, and this estimate increases to nearly half of all transcripts for lowly-expressed genes with many introns. Leveraging genetic variation across cell lines, we find that GWAS trait-associated loci explained by AS are similarly likely to associate with NMD-induced expression level differences as with differences in protein isoform usage. Additionally, we used the splice-switching drug risdiplam to perturb AS at hundreds of genes, finding that ~3/4 of the splicing perturbations induce NMD. Thus, we conclude that AS-NMD substantially impacts the expression levels of most human genes. Our work further suggests that much of the molecular impact of AS is mediated by changes in protein expression levels rather than diversification of the proteome.
Collapse
Affiliation(s)
- Benjamin Fair
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Carlos Buen Abad Najar
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Junxing Zhao
- Department of Medicinal Chemistry, University of Kansas, Lawrence, KS 66047, USA
| | - Stephanie Lozano
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL 60637, USA
- Present address: Center for Neuroscience, University of California Davis, Davis, CA 95618, USA
| | - Austin Reilly
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Gabriela Mossian
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Jonathan P Staley
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA
| | - Jingxin Wang
- Department of Medicinal Chemistry, University of Kansas, Lawrence, KS 66047, USA
| | - Yang I Li
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL 60637, USA
- Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
24
|
Lee S, Jung H, Choi S, Cho N, Kim EM, Kim KK. Intron retention decreases METTL3 expression by inhibiting mRNA export to the cytoplasm. BMB Rep 2023; 56:514-519. [PMID: 37357537 PMCID: PMC10547966 DOI: 10.5483/bmbrep.2023-0069] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/20/2023] [Accepted: 06/20/2023] [Indexed: 10/19/2023] Open
Abstract
Methyltransferase-like 3 (METTL3), a key component of the m6A methyltransferase complex, regulates the splicing, nuclear transport, stability, and translation of its target genes. However, the mechanism underlying the regulation of METTL3 expression by alternative splicing (AS) remains unknown. We analyzed the expression pattern of METTL3 after AS in human tissues and confirmed the expression of an isoform retaining introns 8 and 9 (METTL3-IR). We confirmed the different intracellular localizations of METTL3-IR and METTL3 proteins using immunofluorescence microscopy. Furthermore, the endogenous expression of METTL3-IR at the protein level was different from that at the mRNA level. We found that 3'-UTR generation by intron retention (IR) inhibited the export of METTL3-IR mRNA to the cytoplasm, which in turn suppressed protein expression. To the best of our knowledge, this is the first study to confirm the regulation of METTL3 gene expression by AS, providing evidence that the suppression of METTL3 protein expression by IR is an integral part of the mechanism by which 3'-UTR generation regulates protein expression via inhibition of RNA export to the cytoplasm. [BMB Reports 2023; 56(9): 514-519].
Collapse
Affiliation(s)
- Sangsoo Lee
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon 34134, Korea
| | - Haesoo Jung
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon 34134, Korea
| | - Sunkyung Choi
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon 34134, Korea
| | - Namjoon Cho
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon 34134, Korea
| | - Eun-Mi Kim
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon 34114, Korea
| | - Kee Kwang Kim
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon 34134, Korea
| |
Collapse
|
25
|
Lee S, Jung H, Choi S, Cho N, Kim EM, Kim KK. Intron retention decreases METTL3 expression by inhibiting mRNA export to the cytoplasm. BMB Rep 2023; 56:514-519. [PMID: 37357537 PMCID: PMC10547966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/20/2023] [Accepted: 06/20/2023] [Indexed: 06/27/2023] Open
Abstract
Methyltransferase-like 3 (METTL3), a key component of the m6A methyltransferase complex, regulates the splicing, nuclear transport, stability, and translation of its target genes. However, the mechanism underlying the regulation of METTL3 expression by alternative splicing (AS) remains unknown. We analyzed the expression pattern of METTL3 after AS in human tissues and confirmed the expression of an isoform retaining introns 8 and 9 (METTL3-IR). We confirmed the different intracellular localizations of METTL3-IR and METTL3 proteins using immunofluorescence microscopy. Furthermore, the endogenous expression of METTL3-IR at the protein level was different from that at the mRNA level. We found that 3'-UTR generation by intron retention (IR) inhibited the export of METTL3-IR mRNA to the cytoplasm, which in turn suppressed protein expression. To the best of our knowledge, this is the first study to confirm the regulation of METTL3 gene expression by AS, providing evidence that the suppression of METTL3 protein expression by IR is an integral part of the mechanism by which 3'-UTR generation regulates protein expression via inhibition of RNA export to the cytoplasm. [BMB Reports 2023; 56(9): 514-519].
Collapse
Affiliation(s)
- Sangsoo Lee
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon 34134, Korea
| | - Haesoo Jung
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon 34134, Korea
| | - Sunkyung Choi
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon 34134, Korea
| | - Namjoon Cho
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon 34134, Korea
| | - Eun-Mi Kim
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon 34114, Korea
| | - Kee Kwang Kim
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon 34134, Korea
| |
Collapse
|
26
|
Napier-Jameson R, Marx O, Norris A. A pair of RNA binding proteins inhibit ion transporter expression to maintain lifespan. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.10.540279. [PMID: 37214828 PMCID: PMC10197639 DOI: 10.1101/2023.05.10.540279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Regulation of lifespan by transcription factors has been well established. More recently a role for RNA binding proteins (RBPs) in regulating lifespan has also emerged. In both cases, a major challenge is to determine which regulatory targets are functionally responsible for the observed lifespan phenotype. We recently identified a pair of RBPs, exc-7/ELAVL and mbl-1/Muscleblind, which display synthetic (non-additive) lifespan defects: single mutants do not affect lifespan, but exc-7; mbl-1 double mutants have strongly reduced lifespan. Such a strong synthetic phenotype represented an opportunity to use transcriptomics to search for potential causative targets that are synthetically regulated. Focus on such genes would allow us to narrow our target search by ignoring the hundreds of genes altered only in single mutants, and provide a shortlist of synthetically-regulated candidate targets that might be responsible for the double mutant phenotype. We identified a small handful of genes synthetically dysregulated in double mutants and systematically tested each candidate gene for functional contribution to the exc-7; mbl-1 lifespan phenotype. We identified one such gene, the ion transporter nhx-6, which is highly upregulated in double mutants. Overexpression of nhx-6 causes reduced lifespan, and deletion of nhx-6 in an exc-7; mbl-1 background partially restores both lifespan and healthspan. Together, these results reveal that a pair of RBPs mediate lifespan in part by inhibiting expression of an ion transporter, and provide a template for how synthetic phenotypes (including lifespan) can be dissected at the transcriptomic level to reveal potential causative genes.
Collapse
|
27
|
Sharma H, Pani T, Dasgupta U, Batra J, Sharma RD. Prediction of transcript structure and concentration using RNA-Seq data. Brief Bioinform 2023; 24:6995379. [PMID: 36682028 DOI: 10.1093/bib/bbad022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/25/2022] [Accepted: 01/06/2023] [Indexed: 01/23/2023] Open
Abstract
Alternative splicing (AS) is a key post-transcriptional modification that helps in increasing protein diversity. Almost 90% of the protein-coding genes in humans are known to undergo AS and code for different transcripts. Some transcripts are associated with diseases such as breast cancer, lung cancer and glioblastoma. Hence, these transcripts can serve as novel therapeutic and prognostic targets for drug discovery. Herein, we have developed a pipeline, Finding Alternative Splicing Events (FASE), as the R package that includes modules to determine the structure and concentration of transcripts using differential AS. To predict the correct structure of expressed transcripts in given conditions, FASE combines the AS events with the information of exons, introns and junctions using graph theory. The estimated concentration of predicted transcripts is reported as the relative expression in terms of log2CPM. Using FASE, we were able to identify several unique transcripts of EMILIN1 and SLK genes in the TCGA-BRCA data, which were validated using RT-PCR. The experimental study demonstrated consistent results, which signify the high accuracy and precision of the developed methods. In conclusion, the developed pipeline, FASE, can efficiently predict novel transcripts that are missed in general transcript-level differential expression analysis. It can be applied selectively from a single gene to simple or complex genome even in multiple experimental conditions for the identification of differential AS-based biomarkers, prognostic targets and novel therapeutics.
Collapse
Affiliation(s)
- Harsh Sharma
- Amity Institute of Integrative Sciences and Health, Amity University Haryana, Gurugram 122413, India
| | - Trishna Pani
- Amity Institute of Integrative Sciences and Health, Amity University Haryana, Gurugram 122413, India
| | - Ujjaini Dasgupta
- Amity Institute of Integrative Sciences and Health, Amity University Haryana, Gurugram 122413, India
| | - Jyotsna Batra
- School of Biomedical Sciences, Institute of Health and Biomedical Innovation (IHBI), Translational Research Institute, Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - Ravi Datta Sharma
- Amity Institute of Integrative Sciences and Health, Amity University Haryana, Gurugram 122413, India
| |
Collapse
|
28
|
Nahálková J. A new view on functions of the lysine demalonylase activity of SIRT5. Life Sci 2023; 320:121572. [PMID: 36921688 DOI: 10.1016/j.lfs.2023.121572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/02/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023]
Abstract
AIMS The specificity of the lysine demalonylation substrates of the pharmaceutically attractive tumor promoter/suppressor SIRT5 is not comprehensively clarified. The present study re-analyses publicly available data and highlights potentially pharmaceutically interesting outcomes by the use of bioinformatics. MATERIALS AND METHODS The interaction networks of SIRT5 malonylome from the wild-type and ob/ob (obese pre-diabetic type) mice were subjected to the pathway enrichment and gene function prediction analysis using GeneMania (3.5.2) application run under Cytoscape (3.9.1) environment. KEY FINDINGS The analysis in the wild-type mice revealed the involvement of SIRT5 malonylome in Eukaryotic translation elongation (ETE; the nodes EF1A1, EEF2, EEF1D, and EEF1G), Amino acid and derivative metabolism (AADM), and Selenoamino acid metabolism (SAM). The tumor promoter/suppressor activity of SIRT5 is mediated through the tumor promoter substrates included in AADM (GLUD1, SHMT1, ACAT1), and the tumor suppressor substrates involved in AADM and SAM (ALDH9A1, BHMT, GNMT). Selen stimulates the expression of SIRT5 and other sirtuins. SIRT5 in turn regulates the selenocysteine synthesis, which creates a regulatory loop. The analysis of SIRT5 malonylome in pre-diabetic ob/ob mice identifies the mTORC1 pathway as a mechanism, which facilitates SIRT5 functions. The comparison of the outcomes of SIRT5 malonylome, succinylome, and glutarylome analysis disclosed several differences. SIGNIFICANCE The analysis showed additional aspects of SIRT5 malonylome functions besides the control of glucose metabolism. It defined several unique substrates and pathways, and it showed differences compared to other enzymatic activities of SIRT5, which could be used for pharmaceutical benefits.
Collapse
Affiliation(s)
- Jarmila Nahálková
- Biochemistry, Molecular, and Cell Biology Unit, Biochemworld Co., Snickar-Anders väg 17, 74394 Skyttorp, Uppsala County, Sweden.
| |
Collapse
|
29
|
Identification of Candidate mRNA Isoforms for Prostate Cancer-Risk SNPs Utilizing Iso-eQTL and sQTL Methods. Int J Mol Sci 2022; 23:ijms232012406. [PMID: 36293264 PMCID: PMC9604153 DOI: 10.3390/ijms232012406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 10/09/2022] [Accepted: 10/11/2022] [Indexed: 11/17/2022] Open
Abstract
Single nucleotide polymorphisms (SNPs) impacting the alternative splicing (AS) process (sQTLs) or isoform expression (iso-eQTL) are implicated as important cancer regulatory elements. To find the sQTL and iso-eQTL, we retrieved prostate cancer (PrCa) tissue RNA-seq and genotype data originating from 385 PrCa European patients from The Cancer Genome Atlas. We conducted RNA-seq analysis with isoform-based and splice event-based approaches. The MatrixEQTL was used to identify PrCa-associated sQTLs and iso-eQTLs. The overlap between sQTL and iso-eQTL with GWAS loci and those that are differentially expressed between cancer and normal tissue were identified. The cis-acting associations (FDR < 0.05) for PrCa-risk SNPs identified 42, 123, and 90 PrCa-associated cassette exons, intron retention, and mRNA isoforms belonging to 25, 95, and 83 genes, respectively; while assessment of trans-acting association (FDR < 0.05) yielded 59, 65, and 196 PrCa-associated cassette exons, intron retention and mRNA isoforms belonging to 35, 55, and 181 genes, respectively. The results suggest that functional PrCa-associated SNPs can play a role in PrCa genesis by making an important contribution to the dysregulation of AS and, consequently, impacting the expression of the mRNA isoforms.
Collapse
|
30
|
Huang W, Kew C, Fernandes SDA, Löhrke A, Han L, Demetriades C, Antebi A. Decreased spliceosome fidelity and egl-8 intron retention inhibit mTORC1 signaling to promote longevity. NATURE AGING 2022; 2:796-808. [PMID: 37118503 PMCID: PMC10154236 DOI: 10.1038/s43587-022-00275-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 07/28/2022] [Indexed: 11/09/2022]
Abstract
AbstractChanges in splicing fidelity are associated with loss of homeostasis and aging, yet only a handful of splicing factors have been shown to be causally required to promote longevity, and the underlying mechanisms and downstream targets in these paradigms remain elusive. Surprisingly, we found a hypomorphic mutation within ribonucleoprotein RNP-6/poly(U)-binding factor 60 kDa (PUF60), a spliceosome component promoting weak 3′-splice site recognition, which causes aberrant splicing, elevates stress responses and enhances longevity in Caenorhabditis elegans. Through genetic suppressor screens, we identify a gain-of-function mutation within rbm-39, an RNP-6-interacting splicing factor, which increases nuclear speckle formation, alleviates splicing defects and curtails longevity caused by rnp-6 mutation. By leveraging the splicing changes induced by RNP-6/RBM-39 activities, we uncover intron retention in egl-8/phospholipase C β4 (PLCB4) as a key splicing target prolonging life. Genetic and biochemical evidence show that neuronal RNP-6/EGL-8 downregulates mammalian target of rapamycin complex 1 (mTORC1) signaling to control organismal lifespan. In mammalian cells, PUF60 downregulation also potently and specifically inhibits mTORC1 signaling. Altogether, our results reveal that splicing fidelity modulates lifespan through mTOR signaling.
Collapse
|
31
|
Population Genomics, Transcriptional Response to Heat Shock, and Gut Microbiota of the Hong Kong Oyster Magallana hongkongensis. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2022. [DOI: 10.3390/jmse10020237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The Hong Kong oyster Magallana hongkongensis, previously known as Crassostrea hongkongensis, is a true oyster species native to the estuarine-coast of the Pearl River Delta in southern China. The species—with scientific, ecological, cultural, and nutritional importance—has been farmed for hundreds of years. However, there is only limited information on its genetics, stress adaptation mechanisms, and gut microbiota, restricting the sustainable production and use of oyster resources. Here, we present population structure analysis on M. hongkongensis oysters collected from Deep Bay and Lantau Island in Hong Kong, as well as transcriptome analysis on heat shock responses and the gut microbiota profile of M. hongkongensis oysters collected from Deep Bay. Single nucleotide polymorphisms (SNPs), including those on the homeobox genes and heat shock protein genes, were revealed by the whole genome resequencing. Transcriptomes of oysters incubated at 25 °C and 32 °C for 24 h were sequenced which revealed the heat-induced regulation of heat shock protein pathway genes. Furthermore, the gut microbe community was detected by 16S rRNA sequencing which identified Cyanobacteria, Proteobacteria and Spirochaetes as the most abundant phyla. This study reveals the molecular basis for the adaptation of the oyster M. hongkongensis to environmental conditions.
Collapse
|
32
|
Steward RA, de Jong MA, Oostra V, Wheat CW. Alternative splicing in seasonal plasticity and the potential for adaptation to environmental change. Nat Commun 2022; 13:755. [PMID: 35136048 PMCID: PMC8825856 DOI: 10.1038/s41467-022-28306-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 01/19/2022] [Indexed: 12/15/2022] Open
Abstract
Seasonal plasticity is accomplished via tightly regulated developmental cascades that translate environmental cues into trait changes. Little is known about how alternative splicing and other posttranscriptional molecular mechanisms contribute to plasticity or how these mechanisms impact how plasticity evolves. Here, we use transcriptomic and genomic data from the butterfly Bicyclus anynana, a model system for seasonal plasticity, to compare the extent of differential expression and splicing and test how these axes of transcriptional plasticity differ in their potential for evolutionary change. Between seasonal morphs, we find that differential splicing affects a smaller but functionally unique set of genes compared to differential expression. Further, we find strong support for the novel hypothesis that spliced genes are more susceptible than differentially expressed genes to erosion of genetic variation due to selection on seasonal plasticity. Our results suggest that splicing plasticity is especially likely to experience genetic constraints that could affect the potential of wild populations to respond to rapidly changing environments.
Collapse
Affiliation(s)
| | | | - Vicencio Oostra
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | | |
Collapse
|
33
|
Hao W, Yang Z, Sun Y, Li J, Zhang D, Liu D, Yang X. Characterization of Alternative Splicing Events in Porcine Skeletal Muscles with Different Intramuscular Fat Contents. Biomolecules 2022; 12:biom12020154. [PMID: 35204660 PMCID: PMC8961525 DOI: 10.3390/biom12020154] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/11/2022] [Accepted: 01/14/2022] [Indexed: 02/06/2023] Open
Abstract
Meat quality is one of the most important economic traits in pig breeding and production. Intramuscular fat (IMF) is a major factor that improves meat quality. To better understand the alternative splicing (AS) events underlying meat quality, long-read isoform sequencing (Iso-seq) was used to identify differential (D)AS events between the longissimus thoracis (LT) and semitendinosus (ST), which differ in IMF content, together with short-read RNA-seq. Through Iso-seq analysis, we identified a total of 56,789 novel transcripts covering protein-coding genes, lncRNA, and fusion transcripts that were not previously annotated in pigs. We also identified 456,965 AS events, among which 3930 were DAS events, corresponding to 2364 unique genes. Through integrative analysis of Iso-seq and RNA-seq, we identified 1174 differentially expressed genes (DEGs), among which 122 were DAS genes, i.e., DE-DAS genes. There are 12 overlapped pathways between the top 20 DEGs and DE-DAS genes, as revealed by KEGG (Kyoto Encyclopedia of Genes and Genomes) analysis, indicating that DE-DAS genes play important roles in the differential phenotype of LT and ST. Further analysis showed that upregulated DE-DAS genes are more important than downregulated ones in IMF deposition. Fatty acid degradation and the PPAR (peroxisome proliferator-activated receptor) signaling pathway were found to be the most important pathways regulating the differential fat deposition of the two muscles. The results update the existing porcine genome annotations and provide data for the in-depth exploration of the mechanisms underlying meat quality and IMF deposition.
Collapse
Affiliation(s)
- Wanjun Hao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (W.H.); (Z.Y.); (Y.S.); (J.L.)
| | - Zewei Yang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (W.H.); (Z.Y.); (Y.S.); (J.L.)
| | - Yuanlu Sun
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (W.H.); (Z.Y.); (Y.S.); (J.L.)
| | - Jiaxin Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (W.H.); (Z.Y.); (Y.S.); (J.L.)
| | - Dongjie Zhang
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China;
| | - Di Liu
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China;
- Correspondence: (D.L.); (X.Y.); Tel.: +86-451-8667-7458 (D.L.); +86-451-5519-1738 (X.Y.)
| | - Xiuqin Yang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (W.H.); (Z.Y.); (Y.S.); (J.L.)
- Correspondence: (D.L.); (X.Y.); Tel.: +86-451-8667-7458 (D.L.); +86-451-5519-1738 (X.Y.)
| |
Collapse
|
34
|
Bongiorno R, Colombo MP, Lecis D. Deciphering the nonsense-mediated mRNA decay pathway to identify cancer cell vulnerabilities for effective cancer therapy. J Exp Clin Cancer Res 2021; 40:376. [PMID: 34852841 PMCID: PMC8638473 DOI: 10.1186/s13046-021-02192-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/22/2021] [Indexed: 12/22/2022] Open
Abstract
Nonsense-mediated mRNA decay (NMD) is a highly conserved cellular surveillance mechanism, commonly studied for its role in mRNA quality control because of its capacity of degrading mutated mRNAs that would produce truncated proteins. However, recent studies have proven that NMD hides more complex tasks involved in a plethora of cellular activities. Indeed, it can control the stability of mutated as well as non-mutated transcripts, tuning transcriptome regulation. NMD not only displays a pivotal role in cell physiology but also in a number of genetic diseases. In cancer, the activity of this pathway is extremely complex and it is endowed with both pro-tumor and tumor suppressor functions, likely depending on the genetic context and tumor microenvironment. NMD inhibition has been tested in pre-clinical studies showing favored production of neoantigens by cancer cells, which can stimulate the triggering of an anti-tumor immune response. At the same time, NMD inhibition could result in a pro-tumor effect, increasing cancer cell adaptation to stress. Since several NMD inhibitors are already available in the clinic to treat genetic diseases, these compounds could be redirected to treat cancer patients, pending the comprehension of these variegated NMD regulation mechanisms. Ideally, an effective strategy should exploit the anti-tumor advantages of NMD inhibition and simultaneously preserve its intrinsic tumor suppressor functions. The targeting of NMD could provide a new therapeutic opportunity, increasing the immunogenicity of tumors and potentially boosting the efficacy of the immunotherapy agents now available for cancer treatment.
Collapse
Affiliation(s)
- Roberta Bongiorno
- Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133, Milan, Italy
| | - Mario Paolo Colombo
- Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133, Milan, Italy
| | - Daniele Lecis
- Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133, Milan, Italy.
| |
Collapse
|
35
|
Barroso‐Gil M, Olinger E, Ramsbottom SA, Molinari E, Miles CG, Sayer JA. Update of genetic variants in CEP120 and CC2D2A-With an emphasis on genotype-phenotype correlations, tissue specific transcripts and exploring mutation specific exon skipping therapies. Mol Genet Genomic Med 2021; 9:e1603. [PMID: 33486889 PMCID: PMC8683696 DOI: 10.1002/mgg3.1603] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 12/18/2020] [Accepted: 01/04/2021] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Mutations in ciliary genes cause a spectrum of both overlapping and distinct clinical syndromes (ciliopathies). CEP120 and CC2D2A are paradigmatic examples for this genetic heterogeneity and pleiotropy as mutations in both cause Joubert syndrome but are also associated with skeletal ciliopathies and Meckel syndrome, respectively. The molecular basis for this phenotypical variability is not understood but basal exon skipping likely contributes to tolerance for deleterious mutations via tissue-specific preservation of the amount of expressed functional protein. METHODS We systematically reviewed and annotated genetic variants and clinical presentations reported in CEP120- and CC2D2A-associated disease and we combined in silico and ex vivo approaches to study tissue-specific transcripts and identify molecular targets for exon skipping. RESULTS We confirmed more severe clinical presentations associated with truncating CC2D2A mutations. We identified and confirmed basal exon skipping in the kidney, with possible relevance for organ-specific disease manifestations. Finally, we proposed a multimodal approach to classify exons amenable to exon skipping. By mapping reported variants, 14 truncating mutations in 7 CC2D2A exons were identified as potentially rescuable by targeted exon skipping, an approach that is already in clinical use for other inherited human diseases. CONCLUSION Genotype-phenotype correlations for CC2D2A support the deleteriousness of null alleles and CC2D2A, but not CEP120, offers potential for therapeutic exon skipping approaches.
Collapse
Affiliation(s)
- Miguel Barroso‐Gil
- Translational and Clinical Research InstituteFaculty of Medical SciencesNewcastle UniversityNewcastle Upon TyneUK
| | - Eric Olinger
- Translational and Clinical Research InstituteFaculty of Medical SciencesNewcastle UniversityNewcastle Upon TyneUK
| | - Simon A. Ramsbottom
- Translational and Clinical Research InstituteFaculty of Medical SciencesNewcastle UniversityNewcastle Upon TyneUK
| | - Elisa Molinari
- Translational and Clinical Research InstituteFaculty of Medical SciencesNewcastle UniversityNewcastle Upon TyneUK
| | - Colin G. Miles
- Translational and Clinical Research InstituteFaculty of Medical SciencesNewcastle UniversityNewcastle Upon TyneUK
| | - John A. Sayer
- Translational and Clinical Research InstituteFaculty of Medical SciencesNewcastle UniversityNewcastle Upon TyneUK
- Renal ServicesThe Newcastle upon Tyne Hospitals NHS Foundation TrustNewcastle Upon TyneUK
- NIHR Newcastle Biomedical Research CentreNewcastle UniversityNewcastle Upon TyneUK
| |
Collapse
|
36
|
Karakulak T, Moch H, von Mering C, Kahraman A. Probing Isoform Switching Events in Various Cancer Types: Lessons From Pan-Cancer Studies. Front Mol Biosci 2021; 8:726902. [PMID: 34888349 PMCID: PMC8650491 DOI: 10.3389/fmolb.2021.726902] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 11/01/2021] [Indexed: 12/03/2022] Open
Abstract
Alternative splicing is an essential regulatory mechanism for gene expression in mammalian cells contributing to protein, cellular, and species diversity. In cancer, alternative splicing is frequently disturbed, leading to changes in the expression of alternatively spliced protein isoforms. Advances in sequencing technologies and analysis methods led to new insights into the extent and functional impact of disturbed alternative splicing events. In this review, we give a brief overview of the molecular mechanisms driving alternative splicing, highlight the function of alternative splicing in healthy tissues and describe how alternative splicing is disrupted in cancer. We summarize current available computational tools for analyzing differential transcript usage, isoform switching events, and the pathogenic impact of cancer-specific splicing events. Finally, the strategies of three recent pan-cancer studies on isoform switching events are compared. Their methodological similarities and discrepancies are highlighted and lessons learned from the comparison are listed. We hope that our assessment will lead to new and more robust methods for cancer-specific transcript detection and help to produce more accurate functional impact predictions of isoform switching events.
Collapse
Affiliation(s)
- Tülay Karakulak
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
- Swiss Informatics Institute, Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Holger Moch
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
- Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Christian von Mering
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
- Swiss Informatics Institute, Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Abdullah Kahraman
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
- Swiss Informatics Institute, Swiss Institute of Bioinformatics, Lausanne, Switzerland
| |
Collapse
|
37
|
Wilson KA, Chamoli M, Hilsabeck TA, Pandey M, Bansal S, Chawla G, Kapahi P. Evaluating the beneficial effects of dietary restrictions: A framework for precision nutrigeroscience. Cell Metab 2021; 33:2142-2173. [PMID: 34555343 PMCID: PMC8845500 DOI: 10.1016/j.cmet.2021.08.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 08/17/2021] [Accepted: 08/30/2021] [Indexed: 12/12/2022]
Abstract
Dietary restriction (DR) has long been viewed as the most robust nongenetic means to extend lifespan and healthspan. Many aging-associated mechanisms are nutrient responsive, but despite the ubiquitous functions of these pathways, the benefits of DR often vary among individuals and even among tissues within an individual, challenging the aging research field. Furthermore, it is often assumed that lifespan interventions like DR will also extend healthspan, which is thus often ignored in aging studies. In this review, we provide an overview of DR as an intervention and discuss the mechanisms by which it affects lifespan and various healthspan measures. We also review studies that demonstrate exceptions to the standing paradigm of DR being beneficial, thus raising new questions that future studies must address. We detail critical factors for the proposed field of precision nutrigeroscience, which would utilize individualized treatments and predict outcomes using biomarkers based on genotype, sex, tissue, and age.
Collapse
Affiliation(s)
| | - Manish Chamoli
- The Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Tyler A Hilsabeck
- The Buck Institute for Research on Aging, Novato, CA 94945, USA; Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Manish Pandey
- Regional Centre for Biotechnology, Faridabad, Haryana 121001, India
| | - Sakshi Bansal
- Regional Centre for Biotechnology, Faridabad, Haryana 121001, India
| | - Geetanjali Chawla
- Regional Centre for Biotechnology, Faridabad, Haryana 121001, India.
| | - Pankaj Kapahi
- The Buck Institute for Research on Aging, Novato, CA 94945, USA; Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
38
|
John S, Olas JJ, Mueller-Roeber B. Regulation of alternative splicing in response to temperature variation in plants. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:6150-6163. [PMID: 34028544 PMCID: PMC8483784 DOI: 10.1093/jxb/erab232] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 05/21/2021] [Indexed: 05/08/2023]
Abstract
Plants have evolved numerous molecular strategies to cope with perturbations in environmental temperature, and to adjust growth and physiology to limit the negative effects of extreme temperature. One of the strategies involves alternative splicing of primary transcripts to encode alternative protein products or transcript variants destined for degradation by nonsense-mediated decay. Here, we review how changes in environmental temperature-cold, heat, and moderate alterations in temperature-affect alternative splicing in plants, including crops. We present examples of the mode of action of various temperature-induced splice variants and discuss how these alternative splicing events enable favourable plant responses to altered temperatures. Finally, we point out unanswered questions that should be addressed to fully utilize the endogenous mechanisms in plants to adjust their growth to environmental temperature. We also indicate how this knowledge might be used to enhance crop productivity in the future.
Collapse
Affiliation(s)
- Sheeba John
- University of Potsdam, Institute of Biochemistry and Biology, Karl-Liebknecht-Straße, Haus, Potsdam, Germany
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg, Potsdam, Germany
| | - Justyna Jadwiga Olas
- University of Potsdam, Institute of Biochemistry and Biology, Karl-Liebknecht-Straße, Haus, Potsdam, Germany
- Correspondence: or
| | - Bernd Mueller-Roeber
- University of Potsdam, Institute of Biochemistry and Biology, Karl-Liebknecht-Straße, Haus, Potsdam, Germany
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg, Potsdam, Germany
- Center of Plant Systems Biology and Biotechnology (CPSBB), Plovdiv, Bulgaria
- Correspondence: or
| |
Collapse
|
39
|
Lee GY, Sohn J, Lee SJV. Combinatorial Approach Using Caenorhabditis elegans and Mammalian Systems for Aging Research. Mol Cells 2021; 44:425-432. [PMID: 34248055 PMCID: PMC8334350 DOI: 10.14348/molcells.2021.0080] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/21/2021] [Accepted: 05/23/2021] [Indexed: 12/13/2022] Open
Abstract
Aging is associated with functional and structural declines in organisms over time. Organisms as diverse as the nematode Caenorhabditis elegans and mammals share signaling pathways that regulate aging and lifespan. In this review, we discuss recent combinatorial approach to aging research employing C. elegans and mammalian systems that have contributed to our understanding of evolutionarily conserved aging-regulating pathways. The topics covered here include insulin/IGF-1, mechanistic target of rapamycin (mTOR), and sirtuin signaling pathways; dietary restriction; autophagy; mitochondria; and the nervous system. A combinatorial approach employing high-throughput, rapid C. elegans systems, and human model mammalian systems is likely to continue providing mechanistic insights into aging biology and will help develop therapeutics against age-associated disorders.
Collapse
Affiliation(s)
- Gee-Yoon Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| | - Jooyeon Sohn
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| | - Seung-Jae V. Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| |
Collapse
|
40
|
Watabe E, Togo-Ohno M, Ishigami Y, Wani S, Hirota K, Kimura-Asami M, Hasan S, Takei S, Fukamizu A, Suzuki Y, Suzuki T, Kuroyanagi H. m 6 A-mediated alternative splicing coupled with nonsense-mediated mRNA decay regulates SAM synthetase homeostasis. EMBO J 2021; 40:e106434. [PMID: 34152017 DOI: 10.15252/embj.2020106434] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 04/29/2021] [Accepted: 05/07/2021] [Indexed: 12/24/2022] Open
Abstract
Alternative splicing of pre-mRNAs can regulate gene expression levels by coupling with nonsense-mediated mRNA decay (NMD). In order to elucidate a repertoire of mRNAs regulated by alternative splicing coupled with NMD (AS-NMD) in an organism, we performed long-read RNA sequencing of poly(A)+ RNAs from an NMD-deficient mutant strain of Caenorhabditis elegans, and obtained full-length sequences for mRNA isoforms from 259 high-confidence AS-NMD genes. Among them are the S-adenosyl-L-methionine (SAM) synthetase (sams) genes sams-3 and sams-4. SAM synthetase activity autoregulates sams gene expression through AS-NMD in a negative feedback loop. We furthermore find that METT-10, the orthologue of human U6 snRNA methyltransferase METTL16, is required for the splicing regulation in␣vivo, and specifically methylates the invariant AG dinucleotide at the distal 3' splice site (3'SS) in␣vitro. Direct RNA sequencing coupled with machine learning confirms m6 A modification of endogenous sams mRNAs. Overall, these results indicate that homeostasis of SAM synthetase in C. elegans is maintained by alternative splicing regulation through m6 A modification at the 3'SS of the sams genes.
Collapse
Affiliation(s)
- Eichi Watabe
- Laboratory of Gene Expression, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Bunkyo-ku, Tokyo, Japan
| | - Marina Togo-Ohno
- Laboratory of Gene Expression, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Bunkyo-ku, Tokyo, Japan
| | - Yuma Ishigami
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Shotaro Wani
- Laboratory of Gene Expression, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Bunkyo-ku, Tokyo, Japan
| | - Keiko Hirota
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba-shi, Ibaraki, Japan
| | - Mariko Kimura-Asami
- Laboratory of Gene Expression, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Bunkyo-ku, Tokyo, Japan
| | - Sharmin Hasan
- Laboratory of Gene Expression, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Bunkyo-ku, Tokyo, Japan
| | - Satomi Takei
- Laboratory of Gene Expression, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Bunkyo-ku, Tokyo, Japan
| | - Akiyoshi Fukamizu
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba-shi, Ibaraki, Japan
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa-shi, Chiba, Japan
| | - Tsutomu Suzuki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Hidehito Kuroyanagi
- Laboratory of Gene Expression, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Bunkyo-ku, Tokyo, Japan.,Department of Biochemistry, Graduate School of Medicine, University of the Ryukyus, Nishihara-cho, Okinawa, Japan
| |
Collapse
|
41
|
Ho AT, Hurst LD. Effective Population Size Predicts Local Rates but Not Local Mitigation of Read-through Errors. Mol Biol Evol 2021; 38:244-262. [PMID: 32797190 PMCID: PMC7783166 DOI: 10.1093/molbev/msaa210] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
In correctly predicting that selection efficiency is positively correlated with the effective population size (Ne), the nearly neutral theory provides a coherent understanding of between-species variation in numerous genomic parameters, including heritable error (germline mutation) rates. Does the same theory also explain variation in phenotypic error rates and in abundance of error mitigation mechanisms? Translational read-through provides a model to investigate both issues as it is common, mostly nonadaptive, and has good proxy for rate (TAA being the least leaky stop codon) and potential error mitigation via "fail-safe" 3' additional stop codons (ASCs). Prior theory of translational read-through has suggested that when population sizes are high, weak selection for local mitigation can be effective thus predicting a positive correlation between ASC enrichment and Ne. Contra to prediction, we find that ASC enrichment is not correlated with Ne. ASC enrichment, although highly phylogenetically patchy, is, however, more common both in unicellular species and in genes expressed in unicellular modes in multicellular species. By contrast, Ne does positively correlate with TAA enrichment. These results imply that local phenotypic error rates, not local mitigation rates, are consistent with a drift barrier/nearly neutral model.
Collapse
Affiliation(s)
- Alexander T Ho
- Milner Centre for Evolution, University of Bath, Bath, United Kingdom
- Corresponding author: E-mail:
| | - Laurence D Hurst
- Milner Centre for Evolution, University of Bath, Bath, United Kingdom
| |
Collapse
|
42
|
Ziff OJ, Taha DM, Crerar H, Clarke BE, Chakrabarti AM, Kelly G, Neeves J, Tyzack GE, Luscombe NM, Patani R. Reactive astrocytes in ALS display diminished intron retention. Nucleic Acids Res 2021; 49:3168-3184. [PMID: 33684213 PMCID: PMC8034657 DOI: 10.1093/nar/gkab115] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 12/13/2022] Open
Abstract
Reactive astrocytes are implicated in amyotrophic lateral sclerosis (ALS), although the mechanisms controlling reactive transformation are unknown. We show that decreased intron retention (IR) is common to human-induced pluripotent stem cell (hiPSC)-derived astrocytes carrying ALS-causing mutations in VCP, SOD1 and C9orf72. Notably, transcripts with decreased IR and increased expression are overrepresented in reactivity processes including cell adhesion, stress response and immune activation. This was recapitulated in public-datasets for (i) hiPSC-derived astrocytes stimulated with cytokines to undergo reactive transformation and (ii) in vivo astrocytes following selective deletion of TDP-43. We also re-examined public translatome sequencing (TRAP-seq) of astrocytes from a SOD1 mouse model, which revealed that transcripts upregulated in translation significantly overlap with transcripts exhibiting decreased IR. Using nucleocytoplasmic fractionation of VCP mutant astrocytes coupled with mRNA sequencing and proteomics, we identify that decreased IR in nuclear transcripts is associated with enhanced nonsense mediated decay and increased cytoplasmic expression of transcripts and proteins regulating reactive transformation. These findings are consistent with a molecular model for reactive transformation in astrocytes whereby poised nuclear reactivity-related IR transcripts are spliced, undergo nuclear-to-cytoplasmic translocation and translation. Our study therefore provides new insights into the molecular regulation of reactive transformation in astrocytes.
Collapse
Affiliation(s)
- Oliver J Ziff
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.,Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK.,National Hospital for Neurology and Neurosurgery, University College London NHS Foundation Trust, London, WC1N 3BG, UK
| | - Doaa M Taha
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.,Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK.,Department of Zoology, Faculty of Science, Alexandria University, Alexandria 21511, Egypt
| | - Hamish Crerar
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.,Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Benjamin E Clarke
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.,Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Anob M Chakrabarti
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.,UCL Genetics Institute, University College London, Gower Street, London WC1E 6BT, UK
| | - Gavin Kelly
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Jacob Neeves
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.,Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Giulia E Tyzack
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.,Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Nicholas M Luscombe
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.,UCL Genetics Institute, University College London, Gower Street, London WC1E 6BT, UK.,Okinawa Institute of Science & Technology Graduate University, Okinawa 904-0495, Japan
| | - Rickie Patani
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.,Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK.,National Hospital for Neurology and Neurosurgery, University College London NHS Foundation Trust, London, WC1N 3BG, UK
| |
Collapse
|
43
|
Angarola BL, Anczuków O. Splicing alterations in healthy aging and disease. WILEY INTERDISCIPLINARY REVIEWS. RNA 2021. [PMID: 33565261 DOI: 10.1002/wrna.1643.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Alternative RNA splicing is a key step in gene expression that allows generation of numerous messenger RNA transcripts encoding proteins of varied functions from the same gene. It is thus a rich source of proteomic and functional diversity. Alterations in alternative RNA splicing are observed both during healthy aging and in a number of human diseases, several of which display premature aging phenotypes or increased incidence with age. Age-associated splicing alterations include differential splicing of genes associated with hallmarks of aging, as well as changes in the levels of core spliceosomal genes and regulatory splicing factors. Here, we review the current known links between alternative RNA splicing, its regulators, healthy biological aging, and diseases associated with aging or aging-like phenotypes. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA Processing > Splicing Regulation/Alternative Splicing.
Collapse
Affiliation(s)
| | - Olga Anczuków
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, USA.,Department of Genetics and Genome Sciences, UConn Health, Farmington, Connecticut, USA.,Institute for Systems Genomics, UConn Health, Farmington, Connecticut, USA
| |
Collapse
|
44
|
Alternative splicing of ceramide synthase 2 alters levels of specific ceramides and modulates cancer cell proliferation and migration in Luminal B breast cancer subtype. Cell Death Dis 2021; 12:171. [PMID: 33568634 PMCID: PMC7876150 DOI: 10.1038/s41419-021-03436-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 01/10/2023]
Abstract
Global dysregulation of RNA splicing and imbalanced sphingolipid metabolism has emerged as promoters of cancer cell transformation. Here, we present specific signature of alternative splicing (AS) events of sphingolipid genes for each breast cancer subtype from the TCGA-BRCA dataset. We show that ceramide synthase 2 (CERS2) undergoes a unique cassette exon event specifically in Luminal B subtype tumors. We validated this exon 8 skipping event in Luminal B cancer cells compared to normal epithelial cells, and in patient-derived tumor tissues compared to matched normal tissues. Differential AS-based survival analysis shows that this AS event of CERS2 is a poor prognostic factor for Luminal B patients. As Exon 8 corresponds to catalytic Lag1p domain, overexpression of AS transcript of CERS2 in Luminal B cancer cells leads to a reduction in the level of very-long-chain ceramides compared to overexpression of protein-coding (PC) transcript of CERS2. We further demonstrate that this AS event-mediated decrease of very-long-chain ceramides leads to enhanced cancer cell proliferation and migration. Therefore, our results show subtype-specific AS of sphingolipid genes as a regulatory mechanism that deregulates sphingolipids like ceramides in breast tumors, and can be explored further as a suitable therapeutic target.
Collapse
|
45
|
Angarola BL, Anczuków O. Splicing alterations in healthy aging and disease. WILEY INTERDISCIPLINARY REVIEWS-RNA 2021; 12:e1643. [PMID: 33565261 DOI: 10.1002/wrna.1643] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 01/05/2021] [Accepted: 01/07/2021] [Indexed: 12/19/2022]
Abstract
Alternative RNA splicing is a key step in gene expression that allows generation of numerous messenger RNA transcripts encoding proteins of varied functions from the same gene. It is thus a rich source of proteomic and functional diversity. Alterations in alternative RNA splicing are observed both during healthy aging and in a number of human diseases, several of which display premature aging phenotypes or increased incidence with age. Age-associated splicing alterations include differential splicing of genes associated with hallmarks of aging, as well as changes in the levels of core spliceosomal genes and regulatory splicing factors. Here, we review the current known links between alternative RNA splicing, its regulators, healthy biological aging, and diseases associated with aging or aging-like phenotypes. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA Processing > Splicing Regulation/Alternative Splicing.
Collapse
Affiliation(s)
| | - Olga Anczuków
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, USA.,Department of Genetics and Genome Sciences, UConn Health, Farmington, Connecticut, USA.,Institute for Systems Genomics, UConn Health, Farmington, Connecticut, USA
| |
Collapse
|
46
|
Muys BR, Anastasakis DG, Claypool D, Pongor L, Li XL, Grammatikakis I, Liu M, Wang X, Prasanth KV, Aladjem MI, Lal A, Hafner M. The p53-induced RNA-binding protein ZMAT3 is a splicing regulator that inhibits the splicing of oncogenic CD44 variants in colorectal carcinoma. Genes Dev 2021; 35:102-116. [PMID: 33334821 PMCID: PMC7778265 DOI: 10.1101/gad.342634.120] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 10/26/2020] [Indexed: 12/16/2022]
Abstract
p53 is an intensely studied tumor-suppressive transcription factor. Recent studies suggest that the RNA-binding protein (RBP) ZMAT3 is important in mediating the tumor-suppressive effects of p53. Here, we globally identify ZMAT3-regulated RNAs and their binding sites at nucleotide resolution in intact colorectal cancer (CRC) cells. ZMAT3 binds to thousands of mRNA precursors, mainly at intronic uridine-rich sequences and affects their splicing. The strongest alternatively spliced ZMAT3 target was CD44, a cell adhesion gene and stem cell marker that controls tumorigenesis. Silencing ZMAT3 increased inclusion of CD44 variant exons, resulting in significant up-regulation of oncogenic CD44 isoforms (CD44v) and increased CRC cell growth that was rescued by concurrent knockdown of CD44v Silencing p53 phenocopied the loss of ZMAT3 with respect to CD44 alternative splicing, suggesting that ZMAT3-mediated regulation of CD44 splicing is vital for p53 function. Collectively, our findings uncover a p53-ZMAT3-CD44 axis in growth suppression in CRC cells.
Collapse
Affiliation(s)
- Bruna R Muys
- Regulatory RNAs and Cancer Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Dimitrios G Anastasakis
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute for Arthritis and Musculoskeletal and Skin Disease, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Duncan Claypool
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute for Arthritis and Musculoskeletal and Skin Disease, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Lörinc Pongor
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Xiao Ling Li
- Regulatory RNAs and Cancer Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Ioannis Grammatikakis
- Regulatory RNAs and Cancer Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Minxue Liu
- Department of Cell and Developmental Biology, Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Xiantao Wang
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute for Arthritis and Musculoskeletal and Skin Disease, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Kannanganattu V Prasanth
- Department of Cell and Developmental Biology, Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Mirit I Aladjem
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Ashish Lal
- Regulatory RNAs and Cancer Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Markus Hafner
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute for Arthritis and Musculoskeletal and Skin Disease, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
47
|
Advances in transcriptome analysis of human brain aging. Exp Mol Med 2020; 52:1787-1797. [PMID: 33244150 PMCID: PMC8080664 DOI: 10.1038/s12276-020-00522-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 09/15/2020] [Accepted: 09/22/2020] [Indexed: 02/07/2023] Open
Abstract
Aging is associated with gradual deterioration of physiological and biochemical functions, including cognitive decline. Transcriptome profiling of brain samples from individuals of varying ages has identified the whole-transcriptome changes that underlie age-associated cognitive declines. In this review, we discuss transcriptome-based research on human brain aging performed by using microarray and RNA sequencing analyses. Overall, decreased synaptic function and increased immune function are prevalent in most regions of the aged brain. Age-associated gene expression changes are also cell dependent and region dependent and are affected by genotype. In addition, the transcriptome changes that occur during brain aging include different splicing events, intersample heterogeneity, and altered levels of various types of noncoding RNAs. Establishing transcriptome-based hallmarks of human brain aging will improve the understanding of cognitive aging and neurodegenerative diseases and eventually lead to interventions that delay or prevent brain aging.
Collapse
|
48
|
Goyala A, Baruah A, Mukhopadhyay A. The genetic paradigms of dietary restriction fail to extend life span in cep-1(gk138) mutant of C. elegans p53 due to possible background mutations. PLoS One 2020; 15:e0241478. [PMID: 33180887 PMCID: PMC7660490 DOI: 10.1371/journal.pone.0241478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 10/15/2020] [Indexed: 11/19/2022] Open
Abstract
Dietary restriction (DR) increases life span and improves health in most model systems tested, including non-human primates. In C. elegans, as in other models, DR leads to reprogramming of metabolism, improvements in mitochondrial health, large changes in expression of cytoprotective genes and better proteostasis. Understandably, multiple global transcriptional regulators like transcription factors FOXO/DAF-16, FOXA/PHA-4, HSF1/HSF-1 and NRF2/SKN-1 are important for DR longevity. Considering the wide-ranging effects of p53 on organismal biology, we asked whether the C. elegans ortholog, CEP-1 is required for DR-mediated longevity assurance. We employed the widely-used TJ1 strain of cep-1(gk138). We show that cep-1(gk138) suppresses the life span extension of two genetic paradigms of DR, but two non-genetic modes of DR remain unaffected in this strain. We find that two aspects of DR, increased autophagy and up-regulation of the expression of cytoprotective xenobiotic detoxification program (cXDP) genes, are dampened in cep-1(gk138). Importantly, we find that background mutation(s) in the strain may be the actual cause for the phenotypic differences that we observed and cep-1 may not be directly involved in genetic DR-mediated longevity assurance in worms. Identifying these mutation(s) may reveal a novel regulator of longevity required specifically by genetic modes of DR.
Collapse
Affiliation(s)
- Anita Goyala
- Molecular Aging Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India
| | - Aiswarya Baruah
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam
| | - Arnab Mukhopadhyay
- Molecular Aging Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India
- * E-mail:
| |
Collapse
|
49
|
Neumann A, Meinke S, Goldammer G, Strauch M, Schubert D, Timmermann B, Heyd F, Preußner M. Alternative splicing coupled mRNA decay shapes the temperature-dependent transcriptome. EMBO Rep 2020; 21:e51369. [PMID: 33140569 PMCID: PMC7726792 DOI: 10.15252/embr.202051369] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 10/02/2020] [Accepted: 10/08/2020] [Indexed: 11/09/2022] Open
Abstract
Mammalian body temperature oscillates with the time of the day and is altered in diverse pathological conditions. We recently identified a body temperature‐sensitive thermometer‐like kinase, which alters SR protein phosphorylation and thereby globally controls alternative splicing (AS). AS can generate unproductive variants which are recognized and degraded by diverse mRNA decay pathways—including nonsense‐mediated decay (NMD). Here we show extensive coupling of body temperature‐controlled AS to mRNA decay, leading to global control of temperature‐dependent gene expression (GE). Temperature‐controlled, decay‐inducing splicing events are evolutionarily conserved and pervasively found within RNA‐binding proteins, including most SR proteins. AS‐coupled poison exon inclusion is essential for rhythmic GE of SR proteins and has a global role in establishing temperature‐dependent rhythmic GE profiles, both in mammals under circadian body temperature cycles and in plants in response to ambient temperature changes. Together, these data identify body temperature‐driven AS‐coupled mRNA decay as an evolutionary ancient, core clock‐independent mechanism to generate rhythmic GE.
Collapse
Affiliation(s)
- Alexander Neumann
- Institute of Chemistry and Biochemistry, Laboratory of RNA Biochemistry, Freie Universität Berlin, Berlin, Germany.,Omiqa Bioinformatics, Berlin, Germany
| | - Stefan Meinke
- Institute of Chemistry and Biochemistry, Laboratory of RNA Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Gesine Goldammer
- Institute of Chemistry and Biochemistry, Laboratory of RNA Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Miriam Strauch
- Institute of Chemistry and Biochemistry, Laboratory of RNA Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Daniel Schubert
- Epigenetics of Plants, Freie Universität Berlin, Berlin, Germany
| | - Bernd Timmermann
- Sequencing Core Facility, Max-Planck-Institute for Molecular Genetics, Berlin, Germany
| | - Florian Heyd
- Institute of Chemistry and Biochemistry, Laboratory of RNA Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Marco Preußner
- Institute of Chemistry and Biochemistry, Laboratory of RNA Biochemistry, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
50
|
Caenorhabditis elegans algn-2 Is Critical for Longevity Conferred by Enhanced Nonsense-Mediated mRNA Decay. iScience 2020; 23:101713. [PMID: 33225240 PMCID: PMC7662852 DOI: 10.1016/j.isci.2020.101713] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/10/2020] [Accepted: 10/16/2020] [Indexed: 11/23/2022] Open
Abstract
Nonsense-mediated mRNA decay (NMD) is a biological surveillance mechanism that eliminates mRNA transcripts with premature termination codons. In Caenorhabditis elegans, NMD contributes to longevity by enhancing RNA quality. Here, we aimed at identifying NMD-modulating factors that are crucial for longevity in C. elegans by performing genetic screens. We showed that knocking down each of algn-2/asparagine-linked glycosylation protein, zip-1/bZIP transcription factor, and C44B11.1/FAS apoptotic inhibitory molecule increased the transcript levels of NMD targets. Among these, algn-2 exhibited an age-dependent decrease in its expression and was required for maintaining normal lifespan and for longevity caused by various genetic interventions. We further demonstrated that upregulation of ALGN-2 by inhibition of daf-2/insulin/IGF-1 receptor contributed to longevity in an NMD-dependent manner. Thus, algn-2, a positive regulator of NMD, plays a crucial role in longevity in C. elegans, likely by enhancing RNA surveillance. Our study will help understand how NMD-mediated mRNA quality control extends animal lifespan. C. elegans algn-2 is a positive regulator of nonsense-mediated mRNA decay (NMD) algn-2 is downregulated during aging and contributes to maintaining normal lifespan algn-2 is required for longevity caused by various genetic interventions Upregulation of ALGN-2 by inhibition of daf-2 promotes longevity via increasing NMD
Collapse
|