1
|
Go GE, Kim D. Advancing biosensing through super-resolution fluorescence microscopy. Biosens Bioelectron 2025; 278:117374. [PMID: 40112521 DOI: 10.1016/j.bios.2025.117374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 03/01/2025] [Accepted: 03/11/2025] [Indexed: 03/22/2025]
Abstract
Advancement of super-resolution fluorescence microscopy (SRM) has recently allowed applications to the biosensing by offering significant advantages over conventional methods. Its nanoscale spatial resolution and single-molecule sensitivity allow visualization and quantification of biomolecular targets without the need of signal amplification steps typically required in traditional biosensing methods. Moreover, recent innovations in probe design and imaging protocols have expanded SRM capabilities to enable dynamic biosensing in living cells, revealing molecular processes in their native cellular contexts. In this review, we discuss these applications of various SRM techniques to biosensing by highlighting their unique capabilities in providing spatial distribution information and high molecular sensitivity. We address several challenges that must be overcome for the broader application of SRM-based biosensing. Finally, we discuss perspectives on future directions for advancing this field towards practical applications.
Collapse
Affiliation(s)
- Ga-Eun Go
- Department of Chemistry, Hanyang University, Seoul, 04763, Republic of Korea
| | - Doory Kim
- Department of Chemistry, Hanyang University, Seoul, 04763, Republic of Korea; Research Institute for Convergence of Basic Science, Institute of Nano Science and Technology, and Research Institute for Natural Sciences, Hanyang University, Seoul, 04763, Republic of Korea.
| |
Collapse
|
2
|
Gest AM, Sahan AZ, Zhong Y, Lin W, Mehta S, Zhang J. Molecular Spies in Action: Genetically Encoded Fluorescent Biosensors Light up Cellular Signals. Chem Rev 2024; 124:12573-12660. [PMID: 39535501 PMCID: PMC11613326 DOI: 10.1021/acs.chemrev.4c00293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 09/07/2024] [Accepted: 09/20/2024] [Indexed: 11/16/2024]
Abstract
Cellular function is controlled through intricate networks of signals, which lead to the myriad pathways governing cell fate. Fluorescent biosensors have enabled the study of these signaling pathways in living systems across temporal and spatial scales. Over the years there has been an explosion in the number of fluorescent biosensors, as they have become available for numerous targets, utilized across spectral space, and suited for various imaging techniques. To guide users through this extensive biosensor landscape, we discuss critical aspects of fluorescent proteins for consideration in biosensor development, smart tagging strategies, and the historical and recent biosensors of various types, grouped by target, and with a focus on the design and recent applications of these sensors in living systems.
Collapse
Affiliation(s)
- Anneliese
M. M. Gest
- Department
of Pharmacology, University of California,
San Diego, La Jolla, California 92093, United States
| | - Ayse Z. Sahan
- Department
of Pharmacology, University of California,
San Diego, La Jolla, California 92093, United States
- Biomedical
Sciences Graduate Program, University of
California, San Diego, La Jolla, California 92093, United States
| | - Yanghao Zhong
- Department
of Pharmacology, University of California,
San Diego, La Jolla, California 92093, United States
| | - Wei Lin
- Department
of Pharmacology, University of California,
San Diego, La Jolla, California 92093, United States
| | - Sohum Mehta
- Department
of Pharmacology, University of California,
San Diego, La Jolla, California 92093, United States
| | - Jin Zhang
- Department
of Pharmacology, University of California,
San Diego, La Jolla, California 92093, United States
- Shu
Chien-Gene Lay Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, United States
- Department
of Chemistry and Biochemistry, University
of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
3
|
Xie X, Liu Z, Xiang X, Wang S, Gao Z, Xu L, Ding F, Li Q. Mapping Endocytic Vesicular Acidification with a pH-Responsive DNA Nanomachine. Chembiochem 2024; 25:e202400363. [PMID: 39166897 DOI: 10.1002/cbic.202400363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 08/15/2024] [Accepted: 08/19/2024] [Indexed: 08/23/2024]
Abstract
Mapping the endocytic vesicular acidification process is of prior importance to better understand the health and pathological processes of cells. Herein, by integrating a pH-sensitive i-motif and a pair of fluorescence resonance energy transfer (FRET) into a tetrahedral DNA framework (TDF), we develop a pH-responsive DNA nanomachine, allowing for efficient sensing of pH from 7.0 to 5.5 via the pH-triggered spatial proximity modulation of FRET. The inheriting endo-lysosome-targeting ability of TDF enables spatiotemporal tracking of endocytic vesicle acidification during the endosomal maturation process. Analysis of pH-dependent FRET response at single fluorescent spot level reveals the significant difference of endocytic vesicular acidification between normal and cancer cells. The performance of pH-responsive DNA nanomachine underlines its potential for studies on vesicle acidification-related pathologies as a universal platform.
Collapse
Affiliation(s)
- Xiaodong Xie
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 20024, China
| | - Zhiyuan Liu
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 20024, China
| | - Xuelin Xiang
- Department of Liver Surgery, Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Institute of Transplantation, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Shaopeng Wang
- Department of Liver Surgery, Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Institute of Transplantation, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Zhaoshuai Gao
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 20024, China
| | - Lifeng Xu
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 20024, China
| | - Fei Ding
- Department of Liver Surgery, Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Institute of Transplantation, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Qian Li
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 20024, China
- WLA Laboratories, World Laureates Association, Shanghai, 201203, China
| |
Collapse
|
4
|
Wachta I, Balasubramanian K. Electroanalytical Strategies for Local pH Sensing at Solid-Liquid Interfaces and Biointerfaces. ACS Sens 2024; 9:4450-4468. [PMID: 39231377 PMCID: PMC11443533 DOI: 10.1021/acssensors.4c01391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/02/2024] [Accepted: 08/28/2024] [Indexed: 09/06/2024]
Abstract
Obtaining analytical information about chemical species at interfaces is fundamentally important to improving our understanding of chemical reactions and biological processes. pH at solid-liquid interfaces is found to deviate from the bulk solution value, for example, in electrocatalytic reactions at surfaces or during the corrosion of metals. Also, in the vicinity of living cells, metabolic reactions or cellular responses cause changes in pH at the extracellular interface. In this review, we collect recent progress in the development of sensors with the capability to detect pH at or close to solid-liquid and bio interfaces, with spatial and time resolution. After the two main principles of pH detection are presented, the different classes of molecules and materials that are used as active components in these sensors are described. The review then focuses on the reported electroanalytical techniques for local pH sensing. As application examples, we discuss model studies that exploit local pH sensing in the area of electrocatalysis, corrosion, and cellular interfaces. We conclude with a discussion of key challenges for wider use of this analytical approach, which shows promise to improve the mechanistic understanding of reactions and processes at realistic interfaces.
Collapse
Affiliation(s)
- Isabell Wachta
- Department of Chemistry and
School of Analytical Sciences Adlershof (SALSA), Humboldt-Universität zu Berlin, 10099 Berlin, Germany
| | - Kannan Balasubramanian
- Department of Chemistry and
School of Analytical Sciences Adlershof (SALSA), Humboldt-Universität zu Berlin, 10099 Berlin, Germany
| |
Collapse
|
5
|
Gui R, Jin H. Organic fluorophores-based molecular probes with dual-fluorescence ratiometric responses to in-vitro/in-vivo pH for biosensing, bioimaging and biotherapeutics applications. Talanta 2024; 275:126171. [PMID: 38703479 DOI: 10.1016/j.talanta.2024.126171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/19/2024] [Accepted: 04/25/2024] [Indexed: 05/06/2024]
Abstract
In recent years, organic fluorophores-based molecular probes with dual-fluorescence ratiometric responses to in-vitro/in-vivo pH (DFR-MPs-pH) have been attracting much interest in fundamental application research fields. More and more scientific publications have reported the exploration of various DFR-MPs-pH systems that have unique dual-fluorescence ratiometry as the signal output, in-built and signal self-calibration functions to improve precise detection of targets. DFR-MPs-pH systems possess high-performance applications in biosensing, bioimaging and biomedicine fields. This review has comprehensively summarized recent advances of DFR-MPs-pH for the first time. First of all, the compositions and types of DFR-MPs-pH are introduced by summarizing different organic fluorophores-based molecule systems. Then, construction strategies are analyzed based on specific components, structures, properties and functions of DFR-MPs-pH. Afterward, biosensing and bioimaging applications are discussed in detail, primarily referring to pH sensing and imaging detection at the levels of living cells and small animals. Finally, biomedicine applications are fully summarized, majorly involving bio-toxicity evaluation, bio-distribution, biomedical diagnosis and therapeutics. Meanwhile, the current status, challenges and perspectives are rationally commented after detailed discussions of representative and state-of-the-art studies. Overall, this present review is comprehensive, in-time and in-depth, and can facilitate the following further exploration of new and versatile DFR-MPs-pH systems toward rational design, facile preparation, superior properties, adjustable functions and highly efficient applications in promising fields.
Collapse
Affiliation(s)
- Rijun Gui
- College of Chemistry and Chemical Engineering, Intellectual Property Research Institute, Qingdao University, Shandong, 266071, PR China.
| | - Hui Jin
- College of Chemistry and Chemical Engineering, Intellectual Property Research Institute, Qingdao University, Shandong, 266071, PR China
| |
Collapse
|
6
|
Ma J, Sun R, Xia K, Xia Q, Liu Y, Zhang X. Design and Application of Fluorescent Probes to Detect Cellular Physical Microenvironments. Chem Rev 2024; 124:1738-1861. [PMID: 38354333 DOI: 10.1021/acs.chemrev.3c00573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
The microenvironment is indispensable for functionality of various biomacromolecules, subcellular compartments, living cells, and organisms. In particular, physical properties within the biological microenvironment could exert profound effects on both the cellular physiology and pathology, with parameters including the polarity, viscosity, pH, and other relevant factors. There is a significant demand to directly visualize and quantitatively measure the fluctuation in the cellular microenvironment with spatiotemporal resolution. To satisfy this need, analytical methods based on fluorescence probes offer great opportunities due to the facile, sensitive, and dynamic detection that these molecules could enable in varying biological settings from in vitro samples to live animal models. Herein, we focus on various types of small molecule fluorescent probes for the detection and measurement of physical parameters of the microenvironment, including pH, polarity, viscosity, mechanical force, temperature, and electron potential. For each parameter, we primarily describe the chemical mechanisms underlying how physical properties are correlated with changes of various fluorescent signals. This review provides both an overview and a perspective for the development of small molecule fluorescent probes to visualize the dynamic changes in the cellular environment, to expand the knowledge for biological process, and to enrich diagnostic tools for human diseases.
Collapse
Affiliation(s)
- Junbao Ma
- Department of Chemistry and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, Zhejiang Province, China
- Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310030, Zhejiang Province, China
| | - Rui Sun
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
- University of the Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Kaifu Xia
- Department of Chemistry and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, Zhejiang Province, China
- Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310030, Zhejiang Province, China
| | - Qiuxuan Xia
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
- University of the Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Yu Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, Chinese Academy of Sciences Dalian Liaoning 116023, China
| | - Xin Zhang
- Department of Chemistry and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, Zhejiang Province, China
- Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| |
Collapse
|
7
|
Lesiak L, Dadina N, Zheng S, Schelvis M, Schepartz A. A Bright, Photostable, and Far-Red Dye That Enables Multicolor, Time-Lapse, and Super-Resolution Imaging of Acidic Organelles. ACS CENTRAL SCIENCE 2024; 10:19-27. [PMID: 38292604 PMCID: PMC10823512 DOI: 10.1021/acscentsci.3c01173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/15/2023] [Accepted: 11/21/2023] [Indexed: 02/01/2024]
Abstract
Lysosomes have long been known for their acidic lumens and efficient degradation of cellular byproducts. In recent years, it has become clear that their function is far more sophisticated, involving multiple cell signaling pathways and interactions with other organelles. Unfortunately, their acidic interior, fast dynamics, and small size make lysosomes difficult to image with fluorescence microscopy. Here we report a far-red small molecule, HMSiR680-Me, that fluoresces only under acidic conditions, causing selective labeling of acidic organelles in live cells. HMSiR680-Me can be used alongside other far-red dyes in multicolor imaging experiments and is superior to existing lysosome probes in terms of photostability and maintaining cell health and lysosome motility. We demonstrate that HMSiR680-Me is compatible with overnight time-lapse experiments as well as time-lapse super-resolution microscopy with a frame rate of 1.5 fps for at least 1000 frames. HMSiR680-Me can also be used alongside silicon rhodamine dyes in a multiplexed super-resolution microscopy experiment to visualize interactions between mitochondria and lysosomes with only a single excitation laser and simultaneous depletion. We envision this dye permitting a more detailed study of the role of lysosomes in dynamic cellular processes and disease.
Collapse
Affiliation(s)
- Lauren Lesiak
- Department
of Chemistry, University of California,
Berkeley, Berkeley, California 94720, United States
| | - Neville Dadina
- Department
of Chemistry, University of California,
Berkeley, Berkeley, California 94720, United States
| | - Shuai Zheng
- Department
of Chemistry, University of California,
Berkeley, Berkeley, California 94720, United States
| | - Marianne Schelvis
- Department
of Chemistry, University of California,
Berkeley, Berkeley, California 94720, United States
| | - Alanna Schepartz
- Department
of Chemistry, University of California,
Berkeley, Berkeley, California 94720, United States
- Department
of Molecular and Cell Biology, University
of California, Berkeley, Berkeley, California 94720, United States
- California
Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, California 94720, United States
- Chan
Zuckerberg Biohub, San Francisco, San Francisco, California 94158, United States
| |
Collapse
|
8
|
Lesiak L, Dadina N, Zheng S, Schelvis M, Schepartz A. A Bright, Photostable Dye that Enables Multicolor, Time Lapse, and Super-Resolution Imaging of Acidic Organelles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.04.552058. [PMID: 37577591 PMCID: PMC10418513 DOI: 10.1101/2023.08.04.552058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Lysosomes have long been known for their acidic lumen and efficient degradation of cellular byproducts. In recent years it has become clear that their function is far more sophisticated, involving multiple cell signaling pathways and interactions with other organelles. Unfortunately, their acidic interior, fast dynamics, and small size makes lysosomes difficult to image with fluorescence microscopy. Here we report a far-red small molecule, HMSiR680-Me, that fluoresces only under acidic conditions, causing selective labeling of acidic organelles in live cells. HMSiR680-Me can be used alongside other far-red dyes in multicolor imaging experiments and is superior to existing lysosome probes in terms of photostability and maintaining cell health and lysosome motility. We demonstrate that HMSiR680-Me is compatible with overnight time lapse experiments, as well as time lapse super-resolution microscopy with a fast frame rate for at least 1000 frames. HMSiR680-Me can also be used alongside silicon rhodamine dyes in a multiplexed super-resolution microscopy experiment to visualize interactions between the inner mitochondrial membrane and lysosomes with only a single excitation laser and simultaneous depletion. We envision this dye permitting more detailed study of the role of lysosomes in dynamic cellular processes and disease.
Collapse
Affiliation(s)
- Lauren Lesiak
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Neville Dadina
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Shuai Zheng
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Marianne Schelvis
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Alanna Schepartz
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| |
Collapse
|
9
|
Abstract
Super-resolution fluorescence microscopy allows the investigation of cellular structures at nanoscale resolution using light. Current developments in super-resolution microscopy have focused on reliable quantification of the underlying biological data. In this review, we first describe the basic principles of super-resolution microscopy techniques such as stimulated emission depletion (STED) microscopy and single-molecule localization microscopy (SMLM), and then give a broad overview of methodological developments to quantify super-resolution data, particularly those geared toward SMLM data. We cover commonly used techniques such as spatial point pattern analysis, colocalization, and protein copy number quantification but also describe more advanced techniques such as structural modeling, single-particle tracking, and biosensing. Finally, we provide an outlook on exciting new research directions to which quantitative super-resolution microscopy might be applied.
Collapse
Affiliation(s)
- Siewert Hugelier
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; , ,
| | - P L Colosi
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; , ,
| | - Melike Lakadamyali
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; , ,
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
10
|
Qualls-Histed SJ, Nielsen CP, MacGurn JA. Lysosomal trafficking of the glucose transporter GLUT1 requires sequential regulation by TXNIP and ubiquitin. iScience 2023; 26:106150. [PMID: 36890792 PMCID: PMC9986520 DOI: 10.1016/j.isci.2023.106150] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 12/04/2022] [Accepted: 02/02/2023] [Indexed: 02/08/2023] Open
Abstract
Glucose transporters are gatekeepers of cellular glucose metabolism. Understanding how their activity is regulated can provide insight into mechanisms of glucose homeostasis and diseases arising from dysregulation of glucose transport. Glucose stimulates endocytosis of the human glucose transporter GLUT1, but several important questions remain surrounding the intracellular trafficking itinerary of GLUT1. Here, we report that increased glucose availability triggers lysosomal trafficking of GLUT1 in HeLa cells, with a subpopulation of GLUT1 routed through ESCRT-associated late endosomes. This itinerary requires the arrestin-like protein TXNIP, which interacts with both clathrin and E3 ubiquitin ligases to promote GLUT1 lysosomal trafficking. We also find that glucose stimulates GLUT1 ubiquitylation, which promotes its lysosomal trafficking. Our results suggest that excess glucose first triggers TXNIP-mediated endocytosis of GLUT1 and, subsequently, ubiquitylation to promote lysosomal trafficking. Our findings underscore how complex coordination of multiple regulators is required for fine-tuning of GLUT1 stability at the cell surface.
Collapse
Affiliation(s)
- Susan J. Qualls-Histed
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37240 USA
| | - Casey P. Nielsen
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37240 USA
| | - Jason A. MacGurn
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37240 USA
| |
Collapse
|
11
|
Van Thillo T, Van Deuren V, Dedecker P. Smart genetically-encoded biosensors for the chemical monitoring of living systems. Chem Commun (Camb) 2023; 59:520-534. [PMID: 36519509 DOI: 10.1039/d2cc05363b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Genetically-encoded biosensors provide the all-optical and non-invasive visualization of dynamic biochemical events within living systems, which has allowed the discovery of profound new insights. Twenty-five years of biosensor development has steadily improved their performance and has provided us with an ever increasing biosensor repertoire. In this feature article, we present recent advances made in biosensor development and provide a perspective on the future direction of the field.
Collapse
Affiliation(s)
- Toon Van Thillo
- Department of Chemistry, KU Leuven, Celestijnenlaan 200G, 3001 Leuven, Belgium.
| | - Vincent Van Deuren
- Department of Chemistry, KU Leuven, Celestijnenlaan 200G, 3001 Leuven, Belgium.
| | - Peter Dedecker
- Department of Chemistry, KU Leuven, Celestijnenlaan 200G, 3001 Leuven, Belgium.
| |
Collapse
|
12
|
Michelis S, Danglot L, Vauchelles R, Klymchenko AS, Collot M. Imaging and Measuring Vesicular Acidification with a Plasma Membrane-Targeted Ratiometric pH Probe. Anal Chem 2022; 94:5996-6003. [PMID: 35377610 DOI: 10.1021/acs.analchem.2c00574] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Tracking the pH variation of intracellular vesicles throughout the endocytosis pathway is of prior importance to better assess the cell trafficking and metabolism of cells. Small molecular fluorescent pH probes are valuable tools in bioimaging but are generally not targeted to intracellular vesicles or are directly targeted to acidic lysosomes, thus not allowing the dynamic observation of the vesicular acidification. Herein, we designed Mem-pH, a fluorogenic ratiometric pH probe based on chromenoquinoline with appealing photophysical properties, which targets the plasma membrane (PM) of cells and further accumulates in the intracellular vesicles by endocytosis. The exposition of Mem-pH toward the vesicle's lumen allowed to monitor the acidification of the vesicles throughout the endocytic pathway and enabled the measurement of their pH via ratiometric imaging.
Collapse
Affiliation(s)
- Sophie Michelis
- Laboratoire de Bioimagerie et Pathologies, UMR 7021, CNRS/Université de Strasbourg, 74 route du Rhin, 67401 Illkirch-Graffenstaden, France
| | - Lydia Danglot
- Université de Paris, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, Membrane Traffic in Healthy & Diseased Brain, 75014 Paris, France
| | - Romain Vauchelles
- Laboratoire de Bioimagerie et Pathologies, UMR 7021, CNRS/Université de Strasbourg, 74 route du Rhin, 67401 Illkirch-Graffenstaden, France
| | - Andrey S Klymchenko
- Laboratoire de Bioimagerie et Pathologies, UMR 7021, CNRS/Université de Strasbourg, 74 route du Rhin, 67401 Illkirch-Graffenstaden, France
| | - Mayeul Collot
- Laboratoire de Bioimagerie et Pathologies, UMR 7021, CNRS/Université de Strasbourg, 74 route du Rhin, 67401 Illkirch-Graffenstaden, France
| |
Collapse
|
13
|
Rodríguez-Sevilla P, Thompson SA, Jaque D. Multichannel Fluorescence Microscopy: Advantages of Going beyond a Single Emission. ADVANCED NANOBIOMED RESEARCH 2022. [DOI: 10.1002/anbr.202100084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Paloma Rodríguez-Sevilla
- Nanomaterials for Bioimaging Group (NanoBIG) Departamento de Física de Materiales Universidad Autónoma de Madrid C/Francisco Tomás y Valiente 7 Madrid 28049 Spain
| | - Sebastian A. Thompson
- Madrid Institute for Advanced Studies in Nanoscience (IMDEA Nanociencia) C/Faraday 9 Madrid 28049 Spain
- Nanobiotechnology Unit Associated to the National Center for Biotechnology (CNB-CSIC-IMDEA) Madrid 28049 Spain
| | - Daniel Jaque
- Nanomaterials for Bioimaging Group (NanoBIG) Departamento de Física de Materiales Universidad Autónoma de Madrid C/Francisco Tomás y Valiente 7 Madrid 28049 Spain
- Instituto Ramón y Cajal de Investigación Sanitaria Hospital Ramón y Cajal Ctra. Colmenar km. 9,100 Madrid 28034 Spain
| |
Collapse
|
14
|
Richardson DS, Guan W, Matsumoto K, Pan C, Chung K, Ertürk A, Ueda HR, Lichtman JW. TISSUE CLEARING. NATURE REVIEWS. METHODS PRIMERS 2021; 1:84. [PMID: 35128463 PMCID: PMC8815095 DOI: 10.1038/s43586-021-00080-9] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/29/2021] [Indexed: 12/16/2022]
Abstract
Tissue clearing of gross anatomical samples was first described over a century ago and has only recently found widespread use in the field of microscopy. This renaissance has been driven by the application of modern knowledge of optical physics and chemical engineering to the development of robust and reproducible clearing techniques, the arrival of new microscopes that can image large samples at cellular resolution and computing infrastructure able to store and analyze large data volumes. Many biological relationships between structure and function require investigation in three dimensions and tissue clearing therefore has the potential to enable broad discoveries in the biological sciences. Unfortunately, the current literature is complex and could confuse researchers looking to begin a clearing project. The goal of this Primer is to outline a modular approach to tissue clearing that allows a novice researcher to develop a customized clearing pipeline tailored to their tissue of interest. Further, the Primer outlines the required imaging and computational infrastructure needed to perform tissue clearing at scale, gives an overview of current applications, discusses limitations and provides an outlook on future advances in the field.
Collapse
Affiliation(s)
- Douglas S. Richardson
- Harvard Center for Biological Imaging, Harvard University, Cambridge, MA, USA
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Webster Guan
- Department of Chemical Engineering, MIT, Cambridge, MA, USA
| | - Katsuhiko Matsumoto
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics Research, Osaka, Japan
| | - Chenchen Pan
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig Maximilians University of Munich, Munich, Germany
- Graduate School of Systemic Neurosciences (GSN), Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Kwanghun Chung
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Picower Institute for Learning and Memory, MIT, Cambridge, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA
- Broad Institute of Harvard University and MIT, Cambridge, MA, USA
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, Republic of Korea
- Nano Biomedical Engineering (Nano BME) Graduate Program, Yonsei-IBS Institute, Yonsei University, Seoul, Republic of Korea
| | - Ali Ertürk
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig Maximilians University of Munich, Munich, Germany
- Graduate School of Systemic Neurosciences (GSN), Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Hiroki R. Ueda
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics Research, Osaka, Japan
| | - Jeff W. Lichtman
- Harvard Center for Biological Imaging, Harvard University, Cambridge, MA, USA
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
- Center for Brain Science, Harvard University, Cambridge, MA, USA
| |
Collapse
|
15
|
Yang S, Tan X, Tang L, Yang Q. Near-Infrared-II Bioimaging for in Vivo Quantitative Analysis. Front Chem 2021; 9:763495. [PMID: 34869206 PMCID: PMC8634491 DOI: 10.3389/fchem.2021.763495] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/11/2021] [Indexed: 12/16/2022] Open
Abstract
Near-Infrared-II (NIR-II) bioimaging is a newly emerging visualization modality in real-time investigations of biological processes research. Owning to advances in reducing photon scattering and low tissue autofluorescence levels in NIR-II region (1,000-1700 nm), NIR-II bioimaging affords high resolution with increasing tissue penetration depth, and it shows greater application potential for in vivo detection to obtain more detailed qualitative and quantitative parameters. Herein, this review summarizes recent progresses made on NIR-II bioimaging for quantitative analysis. These emergences of various NIR-II fluorescence, photoacoustic (PA), luminescence lifetime imaging probes and their quantitative analysis applications are comprehensively discussed, and perspectives on potential challenges facing in this direction are also raised.
Collapse
Affiliation(s)
- Sha Yang
- The First Affiliated Hospital and Center for Molecular Imaging Probe, Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, China
- Department of Pathology and Tumor Pathology Research Group, Xiangnan University, Chenzhou, China
| | - Xiaofeng Tan
- The First Affiliated Hospital and Center for Molecular Imaging Probe, Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, China
| | - Li Tang
- The First Affiliated Hospital and Center for Molecular Imaging Probe, Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, China
| | - Qinglai Yang
- The First Affiliated Hospital and Center for Molecular Imaging Probe, Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
16
|
Lee R, Erstling JA, Hinckley JA, Chapman DV, Wiesner UB. Addressing Particle Compositional Heterogeneities in Super-Resolution-Enhanced Live-Cell Ratiometric pH Sensing with Ultrasmall Fluorescent Core-Shell Aluminosilicate Nanoparticles. ADVANCED FUNCTIONAL MATERIALS 2021; 31:2106144. [PMID: 34899116 PMCID: PMC8659865 DOI: 10.1002/adfm.202106144] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Indexed: 06/13/2023]
Abstract
The interrogation of metabolic parameters like pH in live-cell experiments using optical super-resolution microscopy (SRM) remains challenging. This is due to a paucity of appropriate metabolic probes enabling live-cell SRM-based sensing. Here we introduce ultrasmall fluorescent core-shell aluminosilicate nanoparticle sensors (FAM-ATTO647N aC' dots) that covalently encapsulate a reference dye (ATTO647N) in the core and a pH-sensing moiety (FAM) in the shell. Only the reference dye exhibits optical blinking enabling live-cell stochastic optical reconstruction microscopy (STORM). Using data from cells incubated for 60 minutes with FAM-ATTO647N aC' dots, pixelated information from total internal reflection fluorescence (TIRF) microscopy-based ratiometric sensing can be combined with that from STORM-based localizations via the blinking reference dye in order to enhance the resolution of ratiometric pH sensor maps beyond the optical diffraction limit. A nearest-neighbor interpolation methodology is developed to quantitatively address particle compositional heterogeneity as determined by separate single-particle fluorescence imaging methods. When combined with STORM-based estimates of the number of particles per vesicle, vesicle size, and vesicular motion as a whole, this analysis provides detailed live-cell spatial and functional information, paving the way to a comprehensive mapping and understanding of the spatiotemporal evolution of nanoparticle processing by cells important, e.g. for applications in nanomedicine.
Collapse
Affiliation(s)
- Rachel Lee
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Jacob A Erstling
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States; Department of Biomedical Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Joshua A Hinckley
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States; Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Dana V Chapman
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Ulrich B Wiesner
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
17
|
Yoshida S, Kisley L. Super-resolution fluorescence imaging of extracellular environments. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 257:119767. [PMID: 33862370 DOI: 10.1016/j.saa.2021.119767] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/24/2021] [Accepted: 03/28/2021] [Indexed: 06/12/2023]
Abstract
The extracellular matrix (ECM) is an important biophysical environment that plays a role in a number of physiological processes. The ECM is highly dynamic, with changes occurring as local, nanoscale, physicochemical variations in physical confinement and chemistry from the perspective of biological molecules. The length and time scale of ECM dynamics are challenging to measure with current spectroscopic techniques. Super-resolution fluorescence microscopy has the potential to probe local, nanoscale, physicochemical variations in the ECM. Here, we review super-resolution imaging and analysis methods and their application to study model nanoparticles and biomolecules within synthetic ECM hydrogels and the brain extracellular space (ECS). We provide a perspective of future directions for the field that can move super-resolution imaging of the ECM towards more biomedically-relevant samples. Overall, super-resolution imaging is a powerful tool that can increase our understanding of extracellular environments at new spatiotemporal scales to reveal ECM processes at the molecular-level.
Collapse
Affiliation(s)
- Shawn Yoshida
- Department of Physics, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Lydia Kisley
- Department of Physics, Case Western Reserve University, Cleveland, OH 44106, USA; Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106, USA.
| |
Collapse
|
18
|
The Cutting Edge of Disease Modeling: Synergy of Induced Pluripotent Stem Cell Technology and Genetically Encoded Biosensors. Biomedicines 2021; 9:biomedicines9080960. [PMID: 34440164 PMCID: PMC8392144 DOI: 10.3390/biomedicines9080960] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 08/02/2021] [Indexed: 11/17/2022] Open
Abstract
The development of cell models of human diseases based on induced pluripotent stem cells (iPSCs) and a cell therapy approach based on differentiated iPSC derivatives has provided a powerful stimulus in modern biomedical research development. Moreover, it led to the creation of personalized regenerative medicine. Due to this, in the last decade, the pathological mechanisms of many monogenic diseases at the cell level have been revealed, and clinical trials of various cell products derived from iPSCs have begun. However, it is necessary to reach a qualitatively new level of research with cell models of diseases based on iPSCs for more efficient searching and testing of drugs. Biosensor technology has a great application prospect together with iPSCs. Biosensors enable researchers to monitor ions, molecules, enzyme activities, and channel conformation in live cells and use them in live imaging and drug screening. These probes facilitate the measurement of steady-state concentrations or activity levels and the observation and quantification of in vivo flux and kinetics. Real-time monitoring of drug action in a specific cellular compartment, organ, or tissue type; the ability to screen at the single-cell resolution; and the elimination of the false-positive results caused by low drug bioavailability that is not detected by in vitro testing methods are a few of the benefits of using biosensors in drug screening. Here, we discuss the possibilities of using biosensor technology in combination with cell models based on human iPSCs and gene editing systems. Furthermore, we focus on the current achievements and problems of using these methods.
Collapse
|
19
|
Haris U, Kagalwala HN, Kim YL, Lippert AR. Seeking Illumination: The Path to Chemiluminescent 1,2-Dioxetanes for Quantitative Measurements and In Vivo Imaging. Acc Chem Res 2021; 54:2844-2857. [PMID: 34110136 DOI: 10.1021/acs.accounts.1c00185] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Chemiluminescence is a fascinating phenomenon that evolved in nature and has been harnessed by chemists in diverse ways to improve life. This Account tells the story of our research group's efforts to formulate and manifest spiroadamantane 1,2-dioxetanes with triggerable chemiluminescence for imaging and monitoring important reactive analytes in living cells, animals, and human clinical samples. Analytes like reactive sulfur, oxygen and nitrogen species, as well as pH and hypoxia can be indicators of cellular function or dysfunction and are often implicated in the causes and effects of disease. We begin with a foundation in binding-based and activity-based fluorescence imaging that has provided transformative tools for understanding biological systems. The intense light sources required for fluorescence excitation, however, introduce autofluorescence and light scattering that reduces sensitivity and complicates in vivo imaging. Our work and the work of our collaborators were the first to demonstrate that spiroadamantane 1,2-dioxetanes had sufficient brightness and biological compatibility for in vivo imaging of enzyme activity and reactive analytes like hydrogen sulfide (H2S) inside of living mice. This launched an era of renewed interest in 1,2-dioxetanes that has resulted in a plethora of new chemiluminescence imaging agents developed by groups around the world. Our own research group focused its efforts on reactive sulfur, oxygen, and nitrogen species, pH, and hypoxia, resulting in a large family of bright chemiluminescent 1,2-dioxetanes validated for cell monitoring and in vivo imaging. These chemiluminescent probes feature low background and high sensitivity that have been proven quite useful for studying signaling, for example, the generation of peroxynitrite (ONOO-) in cellular models of immune function and phagocytosis. This high sensitivity has also enabled real-time quantitative reporting of oxygen-dependent enzyme activity and hypoxia in living cells and tumor xenograft models. We reported some of the first ratiometric chemiluminescent 1,2-dioxetane systems for imaging pH and have introduced a powerful kinetics-based approach for quantification of reactive species like azanone (nitroxyl, HNO) and enzyme activity in living cells. These tools have been applied to untangle complex signaling pathways of peroxynitrite production in radiation therapy and as substrates in a split esterase system to provide an enzyme/substrate pair to rival luciferase/luciferin. Furthermore, we have pushed chemiluminescence toward commercialization and clinical translation by demonstrating the ability to monitor airway hydrogen peroxide in the exhaled breath of asthma patients using transiently produced chemiluminescent 1,2-dioxetanedione intermediates. This body of work shows the powerful possibilities that can emerge when working at the interface of light and chemistry, and we hope that it will inspire future scientists to seek out ever brighter and more illuminating ideas.
Collapse
Affiliation(s)
- Uroob Haris
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| | - Husain N. Kagalwala
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| | - Yujin Lisa Kim
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| | - Alexander R. Lippert
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| |
Collapse
|
20
|
Jin E, Yang Q, Ju CW, Chen Q, Landfester K, Bonn M, Müllen K, Liu X, Narita A. A Highly Luminescent Nitrogen-Doped Nanographene as an Acid- and Metal-Sensitive Fluorophore for Optical Imaging. J Am Chem Soc 2021; 143:10403-10412. [PMID: 34224242 PMCID: PMC8283754 DOI: 10.1021/jacs.1c04880] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
![]()
Dibenzo[hi,st]ovalene (DBOV)
has excellent photophysical properties, including strong fluorescence
and high ambient stability. Moreover, the optical blinking properties
of DBOV have enabled optical super-resolution single-molecule localization
microscopy with an imaging resolution beyond the diffraction limit.
Various organic and inorganic fluorescent probes have been developed
for super-resolution imaging, but those sensitive to pH and/or metal
ions have remained elusive. Here, we report a diaza-derivative of
DBOV (N-DBOV), synthesized in eight steps with a total yield of 15%.
Nitrogen (N)-bearing zigzag edges were formed through oxidative cyclization
of amino groups in the last step. UV–vis and fluorescence spectroscopy
of N-DBOV revealed its promising optical properties comparable to
those of the parent DBOV, while cyclic voltammetry and density functional
theory calculations highlighted its lower orbital energy levels and
potential n-type semiconductor character. Notably,
in contrast to that of the parent DBOV, the strong luminescence of
N-DBOV is dependent on pH and the presence of heavy metal ions, indicating
the potential of N-DBOV in sensing applications. N-DBOV also exhibited
pH-responsive blinking, which enables pH-sensitive super-resolution
imaging. Therefore, N-DBOV appears to be a highly promising candidate
for fluorescence sensing in biology and environmental analytics.
Collapse
Affiliation(s)
- Enquan Jin
- Max Planck Institute for Polymer Research, Mainz 55128, Germany
| | - Qiqi Yang
- Max Planck Institute for Polymer Research, Mainz 55128, Germany
| | - Cheng-Wei Ju
- Max Planck Institute for Polymer Research, Mainz 55128, Germany.,College of Chemistry, Nankai University, Tianjin 300071, China
| | - Qiang Chen
- Max Planck Institute for Polymer Research, Mainz 55128, Germany
| | | | - Mischa Bonn
- Max Planck Institute for Polymer Research, Mainz 55128, Germany
| | - Klaus Müllen
- Max Planck Institute for Polymer Research, Mainz 55128, Germany.,Institute of Physical Chemistry, Johannes Gutenberg-University, Duesbergweg 10-14, Mainz 55128, Germany
| | - Xiaomin Liu
- Max Planck Institute for Polymer Research, Mainz 55128, Germany
| | - Akimitsu Narita
- Max Planck Institute for Polymer Research, Mainz 55128, Germany.,Organic and Carbon Nanomaterials Unit, Okinawa Institute of Science and Technology Graduate University, Kunigami-gun, Okinawa 904-0495, Japan
| |
Collapse
|
21
|
Ponsford AH, Ryan TA, Raimondi A, Cocucci E, Wycislo SA, Fröhlich F, Swan LE, Stagi M. Live imaging of intra-lysosome pH in cell lines and primary neuronal culture using a novel genetically encoded biosensor. Autophagy 2021; 17:1500-1518. [PMID: 32515674 PMCID: PMC8205096 DOI: 10.1080/15548627.2020.1771858] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 05/06/2020] [Accepted: 05/09/2020] [Indexed: 12/11/2022] Open
Abstract
Disorders of lysosomal physiology have increasingly been found to underlie the pathology of a rapidly growing cast of neurodevelopmental disorders and sporadic diseases of aging. One cardinal aspect of lysosomal (dys)function is lysosomal acidification in which defects trigger lysosomal stress signaling and defects in proteolytic capacity. We have developed a genetically encoded ratiometric probe to measure lysosomal pH coupled with a purification tag to efficiently purify lysosomes for both proteomic and in vitro evaluation of their function. Using our probe, we showed that lysosomal pH is remarkably stable over a period of days in a variety of cell types. Additionally, this probe can be used to determine that lysosomal stress signaling via TFEB is uncoupled from gross changes in lysosomal pH. Finally, we demonstrated that while overexpression of ARL8B GTPase causes striking alkalinization of peripheral lysosomes in HEK293 T cells, peripheral lysosomes per se are no less acidic than juxtanuclear lysosomes in our cell lines.Abbreviations: ARL8B: ADP ribosylation factor like GTPase 8B; ATP: adenosine triphosphate; ATP5F1B/ATPB: ATP synthase F1 subunit beta; ATP6V1A: ATPase H+ transporting V1 subunit A; Baf: bafilomycin A1; BLOC-1: biogenesis of lysosome-related organelles complex 1; BSA: bovine serum albumin; Cos7: African green monkey kidney fibroblast-like cell line; CQ: chloroquine; CTSB: cathepsin B; CYCS: cytochrome c, somatic; DAPI: 4',6-diamidino -2- phenylindole; DIC: differential interference contrast; DIV: days in vitro; DMEM: Dulbecco's modified Eagle's medium; E8: embryonic day 8; EEA1: early endosome antigen 1; EGTA: ethylene glycol-bis(β-aminoethyl ether)-N,N,N',N'-tetraacetic acid; ER: endoplasmic reticulum; FBS: fetal bovine serum; FITC: fluorescein isothiocyanate; GABARAPL2: GABA type A receptor associated protein like 2; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GOLGA2/GM130: golgin A2; GTP: guanosine triphosphate; HEK293T: human embryonic kidney 293 cells, that expresses a mutant version of the SV40 large T antigen; HeLa: Henrietta Lacks-derived cell; HEPES: 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid; HRP: horseradish peroxidase; IGF2R/ciM6PR: insulin like growth factor 2 receptor; LAMP1/2: lysosomal associated membrane protein 1/2; LMAN2/VIP36: lectin, mannose binding 2; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; MTORC1: mechanistic target of rapamycin kinase complex 1; PCR: polymerase chain reaction; PDL: poly-d-lysine; PGK1p: promotor from human phosphoglycerate kinase 1; PIKFYVE: phosphoinositide kinase, FYVE-type zinc finger containing; PPT1/CLN1: palmitoyl-protein thioesterase 1; RPS6KB1/p70: ribosomal protein S6 kinase B1; STAT3: signal transducer and activator of transcription 3; TAX1BP1: Tax1 binding protein 1; TFEB: transcription factor EB; TGN: trans-Golgi network; TGOLN2/TGN46: trans-Golgi network protein 2; TIRF: total internal reflection fluorescence; TMEM106B: transmembrane protein 106B; TOR: target of rapamycin; TRPM2: transient receptor potential cation channel subfamily M member 2; V-ATPase: vacuolar-type proton-translocating ATPase; VPS35: VPS35 retromer complex component.
Collapse
Affiliation(s)
- Amy H. Ponsford
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Thomas A. Ryan
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Andrea Raimondi
- Experimental Imaging Center, San Raffaele Scientific Institute, Milan, Italy
| | - Emanuele Cocucci
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and the Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Susanne A. Wycislo
- Department of Biology/Chemistry, Molecular Membrane Biology Group, University of Osnabrück, Osnabrück, Germany
| | - Florian Fröhlich
- Department of Biology/Chemistry, Molecular Membrane Biology Group, University of Osnabrück, Osnabrück, Germany
- Centre of Cellular Nanoanalytics (CellNanOs), University of Osnabrück, Osnabrück, Osnabrück, Germany
| | - Laura E. Swan
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Massimiliano Stagi
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| |
Collapse
|
22
|
Liu X, Xiang MH, Zhou WJ, Wang F, Chu X, Jiang JH. Clicking of organelle-enriched probes for fluorogenic imaging of autophagic and endocytic fluxes. Chem Sci 2021; 12:5834-5842. [PMID: 34168808 PMCID: PMC8179685 DOI: 10.1039/d0sc07057b] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 03/18/2021] [Indexed: 01/07/2023] Open
Abstract
Autophagy and endocytosis are essential in regulating cellular homeostasis and cancer immunotherapeutic responses. Existing methods for autophagy and endocytosis imaging are susceptible to cellular micro-environmental changes, and direct fluorogenic visualization of their fluxes remains challenging. We develop a novel strategy via clicking of organelle-enriched probes (COP), which comprises a pair of trans-cyclooctenol (TCO) and tetrazine probes separately enriched in lysosomes and mitochondria (in autophagy) or plasma membrane (in endocytosis). These paired probes are merged and boost a fluorogenic click reaction in response to autophagic or endocytic flux that ultimately fuses mitochondria or plasma membrane into lysosomes. We demonstrate that this strategy enables direct visualization of autophagic and endocytic fluxes, and confer insight into correlation of autophagic or endocytic flux to cell surface expression of immunotherapeutic targets such as MHC-I and PD-L1. The COP strategy provides a new paradigm for imaging autophagic and endocytic fluxes, and affords potential for improved cancer immunotherapy using autophagy or endocytosis inhibitors.
Collapse
Affiliation(s)
- Xianjun Liu
- State Key Laboratory of Chemo/Biosensing & Chemometrics, College of Chemistry & Chemical Engineering, Hunan University Changsha 410082 China
| | - Mei-Hao Xiang
- State Key Laboratory of Chemo/Biosensing & Chemometrics, College of Chemistry & Chemical Engineering, Hunan University Changsha 410082 China
| | - Wen-Jing Zhou
- State Key Laboratory of Chemo/Biosensing & Chemometrics, College of Chemistry & Chemical Engineering, Hunan University Changsha 410082 China
| | - Fenglin Wang
- State Key Laboratory of Chemo/Biosensing & Chemometrics, College of Chemistry & Chemical Engineering, Hunan University Changsha 410082 China
| | - Xia Chu
- State Key Laboratory of Chemo/Biosensing & Chemometrics, College of Chemistry & Chemical Engineering, Hunan University Changsha 410082 China
| | - Jian-Hui Jiang
- State Key Laboratory of Chemo/Biosensing & Chemometrics, College of Chemistry & Chemical Engineering, Hunan University Changsha 410082 China
| |
Collapse
|
23
|
Ryan LS, Gerberich J, Haris U, Nguyen D, Mason RP, Lippert AR. Ratiometric pH Imaging Using a 1,2-Dioxetane Chemiluminescence Resonance Energy Transfer Sensor in Live Animals. ACS Sens 2020; 5:2925-2932. [PMID: 32829636 DOI: 10.1021/acssensors.0c01393] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Regulation of physiological pH is integral for proper whole body and cellular function, and disruptions in pH homeostasis can be both a cause and effect of disease. In light of this, many methods have been developed to monitor pH in cells and animals. In this study, we report a chemiluminescence resonance energy transfer (CRET) probe Ratio-pHCL-1, composed of an acrylamide 1,2-dioxetane chemiluminescent scaffold with an appended pH-sensitive carbofluorescein fluorophore. The probe provides an accurate measurement of pH between 6.8 and 8.4, making it a viable tool for measuring pH in biological systems. Further, its ratiometric output is independent of confounding variables. Quantification of pH can be accomplished using both common luminescence spectroscopy and advanced optical imaging methods. Using an IVIS Spectrum, pH can be measured through tissue with Ratio-pHCL-1, which is shown in vitro and calibrated in sacrificed mouse models. Intraperitoneal injections of Ratio-pHCL-1 into live mice show high photon outputs and consistent increases in the flux ratio when measured at pH 6, 7, and 8.
Collapse
Affiliation(s)
- Lucas S. Ryan
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| | - Jeni Gerberich
- Prognostic Imaging Research Laboratory (PIRL), Pre-clinical Imaging Section, Department of Radiology, UT Southwestern Medical Center, Dallas, Texas 75390-9058, United States
| | - Uroob Haris
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| | - Daphne Nguyen
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| | - Ralph P. Mason
- Prognostic Imaging Research Laboratory (PIRL), Pre-clinical Imaging Section, Department of Radiology, UT Southwestern Medical Center, Dallas, Texas 75390-9058, United States
| | - Alexander R. Lippert
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
- Center for Drug Discovery, Design, and Delivery (CD4), Southern Methodist University, Dallas, Texas 75275-0314, United States
- Center for Global Health Impact (CGHI), Southern Methodist University, Dallas, Texas 75275-0314, United States
| |
Collapse
|
24
|
Nagpal S, Luong TDN, Sadqi M, Muñoz V. Downhill (Un)Folding Coupled to Binding as a Mechanism for Engineering Broadband Protein Conformational Transducers. ACS Synth Biol 2020; 9:2427-2439. [PMID: 32822536 DOI: 10.1021/acssynbio.0c00190] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Canonical proteins fold and function as conformational switches that toggle between their folded (on) and unfolded (off) states, a mechanism that also provides the basis for engineering transducers for biosensor applications. One of the limitations of such transducers, however, is their relatively narrow operational range, limited to ligand concentrations 20-fold below or above their C50. Previously, we discovered that certain fast-folding proteins lose/gain structure gradually (downhill folding), which led us to postulate their operation as conformational rheostats capable of processing inputs/outputs in analog fashion. Conformational rheostats could make transducers with extended sensitivity. Here we investigate this hypothesis by engineering pH transducing into the naturally pH insensitive, downhill folding protein gpW. Particularly, we engineered histidine grafts into its hydrophobic core to induce unfolding via histidine ionization. We designed and tested the effects of ionization via computational modeling and studied experimentally the four most promising single grafts and two double grafts. All tested mutants become reversible pH transducers in the 4-9 range, and their response increases proportionally to how buried the histidine graft is. Importantly, the pH-dependent reversible (un)folding occurs in rheostatic fashion, so the engineered transducers can detect up to 6 orders of magnitude in [H+] for single grafts, and even more for double grafts. Our results demonstrate that downhill (un)folding coupled to binding produces the gradual, analog responses to the ligand (here H+) that are expected of conformational rheostats, and which make them a powerful mechanism for engineering transducers with sensitivity over many orders of magnitude in ligand concentration (broadband).
Collapse
Affiliation(s)
- Suhani Nagpal
- Bioengineering Graduate Program, University of California at Merced, Merced, 95343 California, United States
- NSF-CREST Center for Cellular and Biomolecular Machines (CCBM), University of California at Merced, Merced, 95343 California, United States
| | - Thinh D. N. Luong
- NSF-CREST Center for Cellular and Biomolecular Machines (CCBM), University of California at Merced, Merced, 95343 California, United States
- Chemistry and Chemical Biology Graduate Program, University of California at Merced, Merced, 95343 California, United States
| | - Mourad Sadqi
- NSF-CREST Center for Cellular and Biomolecular Machines (CCBM), University of California at Merced, Merced, 95343 California, United States
- Department of Bioengineering, University of California at Merced, Merced, 95343 California, United States
| | - Victor Muñoz
- Bioengineering Graduate Program, University of California at Merced, Merced, 95343 California, United States
- NSF-CREST Center for Cellular and Biomolecular Machines (CCBM), University of California at Merced, Merced, 95343 California, United States
- Chemistry and Chemical Biology Graduate Program, University of California at Merced, Merced, 95343 California, United States
- Department of Bioengineering, University of California at Merced, Merced, 95343 California, United States
| |
Collapse
|
25
|
Tsai ES, Joud F, Wiesholler LM, Hirsch T, Hall EAH. Upconversion nanoparticles as intracellular pH messengers. Anal Bioanal Chem 2020; 412:6567-6581. [PMID: 32613570 PMCID: PMC7442772 DOI: 10.1007/s00216-020-02768-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 06/07/2020] [Accepted: 06/11/2020] [Indexed: 02/02/2023]
Abstract
Upconversion nanoparticles (UCNPs) should be particularly well suited for measurement inside cells because they can be imaged down to submicrometer dimensions in near real time using fluorescence microscopy, and they overcome problems, such as photobleaching, autofluorescence, and deep tissue penetration, that are commonly encountered in cellular imaging applications. In this study, the performance of an UCNP modified with a pH-sensitive dye (pHAb) is studied. The dye (emission wavelength 580 nm) was attached in a polyethylene imine (PEI) coating on the UCNP and excited via the 540-nm UCNP emission under 980-nm excitation. The UC resonance energy transfer efficiencies at different pHs ranged from 25 to 30% and a Förster distance of 2.56 nm was predicted from these results. Human neuroblastoma SH-SY5Y cells, equilibrated with nigericin H+/K+ ionophore to equalize the intra- and extracellular pH' showed uptake of the UCNP-pHAb conjugate particles and, taking the ratio of the intensity collected from the pHAb emission channel (565-630 nm) to that from the UCNP red emission channel (640-680 nm), produced a sigmoidal pH response curve with an apparent pKa for the UCNP-pHAb of ~ 5.1. The UCNP-pHAb were shown to colocalize with LysoBrite dye, a lysosome marker. Drug inhibitors such as chlorpromazine (CPZ) and nystatin (NYS) that interfere with clathrin-mediated endocytosis and caveolae-mediated endocytosis, respectively, were investigated to elucidate the mechanism of nanoparticle uptake into the cell. This preliminary study suggests that pH indicator-modified UCNPs such as UCNP-pHAb can report pH in SH-SY5Y cells and that the incorporation of the nanoparticles into the cell occurs via clathrin-mediated endocytosis. Graphical abstract.
Collapse
Affiliation(s)
- Evaline S Tsai
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Dr., Cambridge, CB3 0AS, UK
| | - Fadwa Joud
- Cancer Research UK Cambridge Institute, University of Cambridge, LiKa Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK
| | - Lisa M Wiesholler
- Institute of Analytical Chemistry, University of Regensburg, Universitätsstr. 31, 93053, Regensburg, Germany
| | - Thomas Hirsch
- Institute of Analytical Chemistry, University of Regensburg, Universitätsstr. 31, 93053, Regensburg, Germany
| | - Elizabeth A H Hall
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Dr., Cambridge, CB3 0AS, UK.
| |
Collapse
|
26
|
Luo M, Li X, Ding L, Baryshnikov G, Shen S, Zhu M, Zhou L, Zhang M, Lu J, Ågren H, Wang X, Zhu L. Integrating Time‐Resolved Imaging Information by Single‐Luminophore Dual Thermally Activated Delayed Fluorescence. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202009077] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Mengkai Luo
- State Key Laboratory of Molecular Engineering of Polymers Department of Macromolecular Science Fudan University Shanghai 200438 China
| | - Xuping Li
- State Key Laboratory of Molecular Engineering of Polymers Department of Macromolecular Science Fudan University Shanghai 200438 China
- Key Laboratory of Coal Science and Technology Ministry of Education and Shanxi Province Taiyuan University of Technology Taiyuan 030024 China
| | - Longjiang Ding
- Department of Chemistry Fudan University Shanghai 200438 China
| | - Gleb Baryshnikov
- Division of Theoretical Chemistry and Biology School of Biotechnology KTH Royal Institute of Technology 10691 Stockholm Sweden
| | - Shen Shen
- State Key Laboratory of Molecular Engineering of Polymers Department of Macromolecular Science Fudan University Shanghai 200438 China
| | - Mingjie Zhu
- State Key Laboratory of Molecular Engineering of Polymers Department of Macromolecular Science Fudan University Shanghai 200438 China
| | - Lulu Zhou
- State Key Laboratory of Molecular Engineering of Polymers Department of Macromolecular Science Fudan University Shanghai 200438 China
| | - Man Zhang
- State Key Laboratory of Molecular Engineering of Polymers Department of Macromolecular Science Fudan University Shanghai 200438 China
| | - Jianjun Lu
- Key Laboratory of Coal Science and Technology Ministry of Education and Shanxi Province Taiyuan University of Technology Taiyuan 030024 China
| | - Hans Ågren
- Division of Theoretical Chemistry and Biology School of Biotechnology KTH Royal Institute of Technology 10691 Stockholm Sweden
| | - Xu‐dong Wang
- Department of Chemistry Fudan University Shanghai 200438 China
| | - Liangliang Zhu
- State Key Laboratory of Molecular Engineering of Polymers Department of Macromolecular Science Fudan University Shanghai 200438 China
| |
Collapse
|
27
|
Luo M, Li X, Ding L, Baryshnikov G, Shen S, Zhu M, Zhou L, Zhang M, Lu J, Ågren H, Wang X, Zhu L. Integrating Time‐Resolved Imaging Information by Single‐Luminophore Dual Thermally Activated Delayed Fluorescence. Angew Chem Int Ed Engl 2020; 59:17018-17025. [DOI: 10.1002/anie.202009077] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Indexed: 12/31/2022]
Affiliation(s)
- Mengkai Luo
- State Key Laboratory of Molecular Engineering of Polymers Department of Macromolecular Science Fudan University Shanghai 200438 China
| | - Xuping Li
- State Key Laboratory of Molecular Engineering of Polymers Department of Macromolecular Science Fudan University Shanghai 200438 China
- Key Laboratory of Coal Science and Technology Ministry of Education and Shanxi Province Taiyuan University of Technology Taiyuan 030024 China
| | - Longjiang Ding
- Department of Chemistry Fudan University Shanghai 200438 China
| | - Gleb Baryshnikov
- Division of Theoretical Chemistry and Biology School of Biotechnology KTH Royal Institute of Technology 10691 Stockholm Sweden
| | - Shen Shen
- State Key Laboratory of Molecular Engineering of Polymers Department of Macromolecular Science Fudan University Shanghai 200438 China
| | - Mingjie Zhu
- State Key Laboratory of Molecular Engineering of Polymers Department of Macromolecular Science Fudan University Shanghai 200438 China
| | - Lulu Zhou
- State Key Laboratory of Molecular Engineering of Polymers Department of Macromolecular Science Fudan University Shanghai 200438 China
| | - Man Zhang
- State Key Laboratory of Molecular Engineering of Polymers Department of Macromolecular Science Fudan University Shanghai 200438 China
| | - Jianjun Lu
- Key Laboratory of Coal Science and Technology Ministry of Education and Shanxi Province Taiyuan University of Technology Taiyuan 030024 China
| | - Hans Ågren
- Division of Theoretical Chemistry and Biology School of Biotechnology KTH Royal Institute of Technology 10691 Stockholm Sweden
| | - Xu‐dong Wang
- Department of Chemistry Fudan University Shanghai 200438 China
| | - Liangliang Zhu
- State Key Laboratory of Molecular Engineering of Polymers Department of Macromolecular Science Fudan University Shanghai 200438 China
| |
Collapse
|
28
|
Plasmonic Metasensors Based on 2D Hybrid Atomically Thin Perovskite Nanomaterials. NANOMATERIALS 2020; 10:nano10071289. [PMID: 32629982 PMCID: PMC7407500 DOI: 10.3390/nano10071289] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/23/2020] [Accepted: 06/29/2020] [Indexed: 12/18/2022]
Abstract
In this work, we have designed highly sensitive plasmonic metasensors based on atomically thin perovskite nanomaterials with a detection limit up to 10−10 refractive index units (RIU) for the target sample solutions. More importantly, we have improved phase singularity detection with the Goos–Hänchen (GH) effect. The GH shift is known to be closely related to optical phase signal changes; it is much more sensitive and sharp than the phase signal in the plasmonic condition, while the experimental measurement setup is much more compact than that of the commonly used interferometer scheme to exact the phase signals. Here, we have demonstrated that plasmonic sensitivity can reach a record-high value of 1.2862 × 109 µm/RIU with the optimum configurations for the plasmonic metasensors. The phase singularity-induced GH shift is more than three orders of magnitude larger than those achievable in other metamaterial schemes, including Ag/TiO2 hyperbolic multilayer metamaterials (HMMs), metal–insulator–metal (MIM) multilayer waveguides with plasmon-induced transparency (PIT), and metasurface devices with a large phase gradient. GH sensitivity has been improved by more than 106 times with the atomically thin perovskite metasurfaces (1.2862 × 109 µm/RIU) than those without (918.9167 µm/RIU). The atomically thin perovskite nanomaterials with high absorption rates enable precise tuning of the depth of the plasmonic resonance dip. As such, one can optimize the structure to reach near zero-reflection at the resonance angle and the associated sharp phase singularity, which leads to a strongly enhanced GH lateral shift at the sensor interface. By integrating the 2D perovskite nanolayer into a metasurface structure, a strong localized electric field enhancement can be realized and GH sensitivity was further improved to 1.5458 × 109 µm/RIU. We believe that this enhanced electric field together with the significantly improved GH shift would enable single molecular or even submolecular detection for hard-to-identify chemical and biological markers, including single nucleotide mismatch in the DNA sequence, toxic heavy metal ions, and tumor necrosis factor-α (TNFα).
Collapse
|
29
|
Weng C, Fan N, Xu T, Chen H, Li Z, Li Y, Tan H, Fu Q, Ding M. FRET-based polymer materials for detection of cellular microenvironments. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2019.11.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
30
|
Benitez-Martin C, Guadix JA, Pearson JR, Najera F, Perez-Pomares JM, Perez-Inestrosa E. Indolenine-Based Derivatives as Customizable Two-Photon Fluorescent Probes for pH Bioimaging in Living Cells. ACS Sens 2020; 5:1068-1074. [PMID: 32227860 DOI: 10.1021/acssensors.9b02590] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Novel pH probes based on 2-(6-methoxynaphthalen-2-yl)-3,3-dimethyl-3H-indole have been synthesized and characterized. These compounds display excellent "off-on" fluorescence responses to acidic pH especially under two-photon (TP) excitation conditions as well as strong selectivity and sensitivity toward H+. These features are supported by fluorescence quantum yields over 35%, TP cross sections ∼60 GM, and good resistance to photodegradation under acidic conditions. The synthetic versatility of this model allows subcellular targets to be tuned through minor scaffold modifications without affecting its optical characteristics. The effectiveness of the probes' innate photophysical properties and the structural modifications for different pH-related applications are demonstrated in mouse embryonic fibroblast cells.
Collapse
Affiliation(s)
- Carlos Benitez-Martin
- Departamento de Quı́mica Orgánica, Universidad de Málaga-IBIMA, Campus de Teatinos s/n, Málaga 29071, Spain
- Centro Andaluz de Nanomedicina y Biotecnologı́a-BIONAND, Parque Tecnológico de Andalucía, c/Severo Ochoa, 35, 29590 Campanillas, Málaga 29071, Spain
| | - Juan A. Guadix
- Departamento de Biologı́a Animal, Facultad de Ciencias, Universidad de Málaga-IBIMA, Campus de Teatinos s/n, Málaga 29071, Spain
- Centro Andaluz de Nanomedicina y Biotecnologı́a-BIONAND, Parque Tecnológico de Andalucía, c/Severo Ochoa, 35, 29590 Campanillas, Málaga 29071, Spain
| | - John R. Pearson
- Centro Andaluz de Nanomedicina y Biotecnologı́a-BIONAND, Parque Tecnológico de Andalucía, c/Severo Ochoa, 35, 29590 Campanillas, Málaga 29071, Spain
| | - Francisco Najera
- Departamento de Quı́mica Orgánica, Universidad de Málaga-IBIMA, Campus de Teatinos s/n, Málaga 29071, Spain
- Centro Andaluz de Nanomedicina y Biotecnologı́a-BIONAND, Parque Tecnológico de Andalucía, c/Severo Ochoa, 35, 29590 Campanillas, Málaga 29071, Spain
| | - Jose M. Perez-Pomares
- Departamento de Biologı́a Animal, Facultad de Ciencias, Universidad de Málaga-IBIMA, Campus de Teatinos s/n, Málaga 29071, Spain
- Centro Andaluz de Nanomedicina y Biotecnologı́a-BIONAND, Parque Tecnológico de Andalucía, c/Severo Ochoa, 35, 29590 Campanillas, Málaga 29071, Spain
| | - Ezequiel Perez-Inestrosa
- Departamento de Quı́mica Orgánica, Universidad de Málaga-IBIMA, Campus de Teatinos s/n, Málaga 29071, Spain
- Centro Andaluz de Nanomedicina y Biotecnologı́a-BIONAND, Parque Tecnológico de Andalucía, c/Severo Ochoa, 35, 29590 Campanillas, Málaga 29071, Spain
| |
Collapse
|
31
|
Gupta A, Rivera-Molina F, Xi Z, Toomre D, Schepartz A. Endosome motility defects revealed at super-resolution in live cells using HIDE probes. Nat Chem Biol 2020; 16:408-414. [PMID: 32094922 PMCID: PMC7176048 DOI: 10.1038/s41589-020-0479-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 01/15/2020] [Indexed: 12/13/2022]
Abstract
We report new lipid-based, high-density, environmentally sensitive (HIDE) probes that accurately and selectively image endo-lysosomes and their dynamics at super-resolution for extended times. Treatment of live cells with the small molecules DiIC16TCO or DiIC16’TCO followed by in situ tetrazine ligation reaction with the silicon-rhodamine dye SiR-Tz generates the HIDE probes DiIC16-SiR and DiIC16’-SiR in the endo-lysosomal membrane. These new probes support the acquisition of super-resolution videos of organelle dynamics in primary cells for more than 7 minutes with no detectable change in endosome structure or function. Using DiIC16-SiR and DiIC16’-SiR, we describe the first direct evidence of endosome motility defects in cells from patients with Niemann-Pick Type-C disease. In wild-type fibroblasts, the probes reveal distinct but rare inter-endosome kiss-and-run events that cannot be observed using confocal methods. Our results shed new light on the role of NPC1 in organelle motility and cholesterol trafficking.
Collapse
Affiliation(s)
- Aarushi Gupta
- Department of Chemistry, Yale University, New Haven, CT, USA
| | - Felix Rivera-Molina
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | - Zhiqun Xi
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | - Derek Toomre
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA.
| | - Alanna Schepartz
- Department of Chemistry, Yale University, New Haven, CT, USA. .,Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, USA. .,Department of Chemistry, University of California, Berkeley, CA, USA.
| |
Collapse
|
32
|
Bonanno A, Pérez-Herráez I, Zaballos-García E, Pérez-Prieto J. Gold nanoclusters for ratiometric sensing of pH in extremely acidic media. Chem Commun (Camb) 2020; 56:587-590. [DOI: 10.1039/c9cc08539d] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
AuNCs capped with β-nicotinamide adenine dinucleotide phosphate exhibit an outstanding performance as ratiometric, fluorescent pH sensors in extremely acid media (0.6–2.7) and in the 7.0–9.2 pH range; the nanocluster itself is the fluorophore.
Collapse
Affiliation(s)
- Adele Bonanno
- Departamento de Química Orgánica
- Universidad de Valencia
- Av. Vicent Andres Estelles s/n
- Burjassot
- Spain
| | - Irene Pérez-Herráez
- Instituto de Ciencia Molecular (ICMol)
- Universidad de Valencia
- Catedrático José Beltrán 2
- Valencia
- Spain
| | - Elena Zaballos-García
- Departamento de Química Orgánica
- Universidad de Valencia
- Av. Vicent Andres Estelles s/n
- Burjassot
- Spain
| | - Julia Pérez-Prieto
- Instituto de Ciencia Molecular (ICMol)
- Universidad de Valencia
- Catedrático José Beltrán 2
- Valencia
- Spain
| |
Collapse
|
33
|
Liu H, Song W, Gröninger D, Zhang L, Lu Y, Chan KS, Zhou Z, Rurack K, Shen Z. Real-time monitoring of newly acidified organelles during autophagy enabled by reaction-based BODIPY dyes. Commun Biol 2019; 2:442. [PMID: 31815197 PMCID: PMC6883057 DOI: 10.1038/s42003-019-0682-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 10/31/2019] [Indexed: 02/08/2023] Open
Abstract
Real-time monitoring of newly acidified organelles during autophagy in living cells is highly desirable for a better understanding of intracellular degradative processes. Herein, we describe a reaction-based boron dipyrromethene (BODIPY) dye containing strongly electron-withdrawing diethyl 2-cyanoacrylate groups at the α-positions. The probe exhibits intense red fluorescence in acidic organelles or the acidified cytosol while exhibiting negligible fluorescence in other regions of the cell. The underlying mechanism is a nucleophilic reaction at the central meso-carbon of the indacene core, resulting in the loss of π-conjugation entailed by dramatic spectroscopic changes of more than 200 nm between its colorless, non-fluorescent leuco-BODIPY form and its red and brightly emitting form. The reversible transformation between red fluorescent BODIPY and leuco-BODIPY along with negligible cytotoxicity qualifies such dyes for rapid and direct intracellular lysosome imaging and cytosolic acidosis detection simultaneously without any washing step, enabling the real-time monitoring of newly acidified organelles during autophagy.
Collapse
Affiliation(s)
- Hanzhuang Liu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210046 China
| | - Wenting Song
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210046 China
| | - Delia Gröninger
- Chemical and Optical Sensing Division, Bundesanstalt für Materialforschung und -prüfung (BAM), Richard-Willstätter-Str. 11, 12489 Berlin, Germany
| | - Lei Zhang
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 225600 China
| | - Yinghong Lu
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 225600 China
| | - Kin Shing Chan
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210046 China
- Department of Chemistry, The Chinese University of Hong Kong, Hong Kong, China
| | - Zhikuan Zhou
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210046 China
| | - Knut Rurack
- Chemical and Optical Sensing Division, Bundesanstalt für Materialforschung und -prüfung (BAM), Richard-Willstätter-Str. 11, 12489 Berlin, Germany
| | - Zhen Shen
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210046 China
| |
Collapse
|
34
|
Chakraborty S, Nandi S, Bhattacharyya K, Mukherjee S. Time Evolution of Local pH Around a Photo-Acid in Water and a Polymer Hydrogel: Time Resolved Fluorescence Spectroscopy of Pyranine. Chemphyschem 2019; 20:3221-3227. [PMID: 31596029 DOI: 10.1002/cphc.201900845] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 09/19/2019] [Indexed: 12/31/2022]
Abstract
In this work, we propose a new analysis of the time resolved emission spectra of a photo-acid, HA, pyranine (8-hydroxypyrene-1,3,6-trisulphonic acid, HPTS) based on time resolved area normalized emission spectra (TRANES). Presence of an isoemissive point in TRANES confirms the presence of two emissive species (HA and A- ) inside the system in bulk water and inside a co-polymer hydrogel [F127, (PEO)100 -(PPO)70 -(PEO)100 ]. We show that following electronic excitation, the local pH around HPTS, is much lower than the bulk pH presumably because of ejection of proton from the photo-acid in the excited state. With increase in time, the local pH increases and reaches the bulk value. We further, demonstrate that the excited state pKa of HPTS may be estimated from the emission intensities of HA and A- at long time. The time constant for time evolution of pH is ∼630 ps in water, ∼1300 ps in F127 gel and ∼4700 ps in CTAB micelle. The location and local viscosity sensed by the probe is ascertained using fluorescence correlation spectroscopy (FCS) and fluorescence anisotropy decay. The different values of the local viscosity reported by these two methods are reconciled.
Collapse
Affiliation(s)
- Subhajit Chakraborty
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhopal, 462 066, Madhya Pradesh, India
| | - Somen Nandi
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhopal, 462 066, Madhya Pradesh, India
| | - Kankan Bhattacharyya
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhopal, 462 066, Madhya Pradesh, India
| | - Saptarshi Mukherjee
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhopal, 462 066, Madhya Pradesh, India
| |
Collapse
|
35
|
Sigaeva A, Ong Y, Damle VG, Morita A, van der Laan KJ, Schirhagl R. Optical Detection of Intracellular Quantities Using Nanoscale Technologies. Acc Chem Res 2019; 52:1739-1749. [PMID: 31187980 PMCID: PMC6639779 DOI: 10.1021/acs.accounts.9b00102] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Indexed: 12/11/2022]
Abstract
Optical probes that can be used to measure certain quantities with subcellular resolution give us access to a new level of information at which physics, chemistry, life sciences, and medicine become strongly intertwined. The emergence of these new technologies is owed to great advances in the physical sciences. However, evaluating and improving these methods to new standards requires a joint effort with life sciences and clinical practice. In this Account, we give an overview of the probes that have been developed for measuring a few highly relevant parameters at the subcellular scale: temperature, pH, oxygen, free radicals, inorganic ions, genetic material, and biomarkers. Luminescent probes are available in many varieties, which can be used for measuring temperature, pH, and oxygen. Since they are influenced by virtually any metabolic process in the healthy or diseased cell, these quantities are extremely useful to understand intracellular processes. Probes for them can roughly be divided into molecular dyes with a parameter dependent fluorescence or phosphorescence and nanoparticle platforms. Nanoparticle probes can provide enhanced photostability, measurement quality, and potential for multiple functionalities. Embedding into coatings can improve biocompatibility or prevent nonspecific interactions between the probe and the cellular environment. These qualities need to be matched however with good uptake properties, colloidal properties and eventually intracellular targeting to optimize their practical applicability. Inorganic ions constitute a broad class of compounds or elements, some of which play specific roles in signaling, while others are toxic. Their detection is often difficult due to the cross-talk with similar ions, as well as other parameters. The detection of free radicals, DNA, and biomarkers at extremely low levels has significant potential for biomedical applications. Their presence is linked more directly to physiological and clinical manifestations. Since existing methods for free radical detection are generally poor in sensitivity and spatiotemporal resolution, new reliable methods that are generally applicable can contribute greatly to advancing this topic in biology. Optical methods that detect DNA or RNA and protein biomarkers exist for intracellular applications, but are mostly relevant for the development of rapid point-of-care sample testing. To elucidate the inner workings of cells, focused multidisciplinary research is required to define the validity and limitations of a nanoparticle probe, in both physical and biological terms. Multifunctional platforms and those that are easily made compatible with conventional research equipment have an edge over other techniques in growing the body of research evidencing their versatility.
Collapse
Affiliation(s)
- Alina Sigaeva
- Groningen
University, University Medical
Center Groningen, Antonius
Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Yori Ong
- Groningen
University, University Medical
Center Groningen, Antonius
Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Viraj G. Damle
- Groningen
University, University Medical
Center Groningen, Antonius
Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Aryan Morita
- Groningen
University, University Medical
Center Groningen, Antonius
Deusinglaan 1, 9713 AV Groningen, The Netherlands
- Dept.
Dental Biomedical Sciences, Faculty of Dentistry, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Kiran J. van der Laan
- Groningen
University, University Medical
Center Groningen, Antonius
Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Romana Schirhagl
- Groningen
University, University Medical
Center Groningen, Antonius
Deusinglaan 1, 9713 AV Groningen, The Netherlands
| |
Collapse
|
36
|
Man Z, Lv Z, Xu Z, Cui H, Liao Q, Zheng L, Jin X, He Q, Fu H. Organic nanoparticles with ultrahigh stimulated emission depletion efficiency for low-power STED nanoscopy. NANOSCALE 2019; 11:12990-12996. [PMID: 31264678 DOI: 10.1039/c9nr02781e] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Stimulated emission depletion (STED) nanoscopy is a powerful sub-diffraction imaging tool to probe subcellular structures and organelles. Conventional organic dyes require high STED power (PSTED) to obtain sub-diffraction resolution, leading to serious photo-bleaching. Herein, this study demonstrates highly emissive silica-coated core-shell organic nanoparticles (CSONPs) as a new type of photostable probe with ultrahigh stimulated emission depletion efficiency for low-power super-resolution STED nanoscopy. The CSONPs offer (i) efficient red emission with high solid-state fluorescence quantum yields around 0.6, (ii) large Stokes shift of 150 nm and (iii) high photostability owing to silica shell protection. The stimulated emission depletion efficiency (η) of CSONPs was extremely high up to η = 99% (the highest value reported so far) with a saturation intensity as low as Isat = 0.18 MW cm-2. Moreover, this research demonstrates the super-resolution imaging of living HeLa cells stained using CSONPs with a lateral spatial resolution of 63 nm at an extremely low depletion power of ISTED = 0.89 MW cm-2 and a long-term stability >600 s at η = 80% without obvious fatigue. The excellent and comprehensive performances of the CSONPs are promising for super-resolution imaging in biological applications.
Collapse
Affiliation(s)
- Zhongwei Man
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Capital Normal University, Beijing 100048, China.
| | - Zheng Lv
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Capital Normal University, Beijing 100048, China.
| | - Zhenzhen Xu
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Capital Normal University, Beijing 100048, China.
| | - Hongtu Cui
- Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, the Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, Peking University Health Science Center, Beijing 100191, China.
| | - Qing Liao
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Capital Normal University, Beijing 100048, China.
| | - Lemin Zheng
- Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, the Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, Peking University Health Science Center, Beijing 100191, China.
| | - Xue Jin
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Institute of Molecular Plus, Tianjin Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072, China.
| | - Qihua He
- Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, the Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, Peking University Health Science Center, Beijing 100191, China.
| | - Hongbing Fu
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Capital Normal University, Beijing 100048, China. and Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Institute of Molecular Plus, Tianjin Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
37
|
Mishin AS, Lukyanov KA. Live-Cell Super-resolution Fluorescence Microscopy. BIOCHEMISTRY (MOSCOW) 2019; 84:S19-S31. [PMID: 31213193 DOI: 10.1134/s0006297919140025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Super-resolution fluorescence microscopy (nanoscopy) enables imaging with a spatial resolution much higher than the diffraction limit of optical microscopy. However, the methods of fluorescence nanoscopy are still poorly suitable for studying living cells. In this review, we describe some of methods for nanoscopy and specific fluorescent labeling aimed to decrease the damaging effects of light illumination on live samples.
Collapse
Affiliation(s)
- A S Mishin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia.
| | - K A Lukyanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| |
Collapse
|
38
|
Chasing Uptake: Super-Resolution Microscopy in Endocytosis and Phagocytosis. Trends Cell Biol 2019; 29:727-739. [PMID: 31227311 DOI: 10.1016/j.tcb.2019.05.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/14/2019] [Accepted: 05/23/2019] [Indexed: 11/21/2022]
Abstract
Since their invention about two decades ago, super-resolution microscopes have become a method of choice in cell biology. Owing to a spatial resolution below 50 nm, smaller than the size of most organelles, and an order of magnitude better than the diffraction limit of conventional light microscopes, super-resolution microscopy is a powerful technique for resolving intracellular trafficking. In this review we discuss discoveries in endocytosis and phagocytosis that have been made possible by super-resolution microscopy - from uptake at the plasma membrane, endocytic coat formation, and cytoskeletal rearrangements to endosomal maturation. The detailed visualization of the diverse molecular assemblies that mediate endocytic uptake will provide a better understanding of how cells ingest extracellular material.
Collapse
|
39
|
Larsen MB, Perez Verdaguer M, Schmidt BF, Bruchez MP, Watkins SC, Sorkin A. Generation of endogenous pH-sensitive EGF receptor and its application in high-throughput screening for proteins involved in clathrin-mediated endocytosis. eLife 2019; 8:46135. [PMID: 31066673 PMCID: PMC6533059 DOI: 10.7554/elife.46135] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 05/07/2019] [Indexed: 12/15/2022] Open
Abstract
Previously we used gene-editing to label endogenous EGF receptor (EGFR) with GFP and demonstrate that picomolar concentrations of EGFR ligand drive signaling and endocytosis of EGFR in tumors in vivo (Pinilla-Macua et al., 2017). We now use gene-editing to insert a fluorogen activating protein (FAP) in the EGFR extracellular domain. Binding of the tandem dye pair MG-Bis-SA to FAP-EGFR provides a ratiometric pH-sensitive model with dual fluorescence excitation and a single far-red emission. The excitation ratio of fluorescence intensities was demonstrated to faithfully report the fraction of FAP-EGFR located in acidic endosomal/lysosomal compartments. Coupling native FAP-EGFR expression with the high method sensitivity has allowed development of a high-throughput assay to measure the rates of clathrin-mediated FAP-EGFR endocytosis stimulated with physiological EGF concentrations. The assay was utilized to screen a phosphatase siRNA library. These studies highlight the utility of endogenous pH-sensitive FAP-receptor chimeras in high-throughput analysis of endocytosis.
Collapse
Affiliation(s)
- Mads Breum Larsen
- Department of Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, United States
| | - Mireia Perez Verdaguer
- Department of Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, United States
| | - Brigitte F Schmidt
- Molecular Biosensor and Imaging Center, Carnegie Mellon University, Pittsburgh, United States
| | - Marcel P Bruchez
- Molecular Biosensor and Imaging Center, Carnegie Mellon University, Pittsburgh, United States.,Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, United States.,Department of Chemistry, Carnegie Mellon University, Pittsburgh, United States.,Sharp Edge Laboratories, Pittsburgh, United States
| | - Simon C Watkins
- Department of Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, United States
| | - Alexander Sorkin
- Department of Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, United States
| |
Collapse
|
40
|
Wang S, Liu L, Fan Y, El-Toni AM, Alhoshan MS, Li D, Zhang F. In Vivo High-resolution Ratiometric Fluorescence Imaging of Inflammation Using NIR-II Nanoprobes with 1550 nm Emission. NANO LETTERS 2019; 19:2418-2427. [PMID: 30883136 DOI: 10.1021/acs.nanolett.8b05148] [Citation(s) in RCA: 151] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Quantitatively imaging the spatiotemporal distribution of biological events in living organisms is essential to understand fundamental biological processes. Self-calibrating ratiometric fluorescent probes enable accurate and reliable imaging and sensing, but conventional probes using wavelength of 400-900 nm suffer from extremely low resolution for in vivo application due to the disastrous photon scattering and tissue autofluorescence background. Here, we develop a NIR-IIb (1500-1700 nm) emissive nanoprobe for high-resolution ratiometric fluorescence imaging in vivo. The obtained nanoprobe shows fast ratiometric response to hypochlorous acid (HOCl) with a detection limit down to 500 nM, through an absorption competition-induced emission (ACIE) bioimaging system between lanthanide-based downconversion nanoparticles and Cy7.5 fluorophores. Additionally, we demonstrate the superior spatial resolution of 1550 nm to a penetration depth of 3.5 mm in a scattering tissue phantom, which is 7.1-fold and 2.1-fold higher than that of 1064 and 1344 nm, respectively. With this nanoprobe, clear anatomical structures of lymphatic inflammation in ratiometric channel are observed with a precise resolution of ∼477 μm. This study will motivate the further research on the development of NIR-II probes for high-resolution biosensing in vivo.
Collapse
Affiliation(s)
- Shangfeng Wang
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem , Fudan University , Shanghai 200433 , P. R. China
| | - Lu Liu
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem , Fudan University , Shanghai 200433 , P. R. China
| | - Yong Fan
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem , Fudan University , Shanghai 200433 , P. R. China
| | - Ahmed Mohamed El-Toni
- King Abdullah Institute for Nanotechnology , King Saud University , Riyadh 11451 , Saudi Arabia
| | | | - Dandan Li
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem , Fudan University , Shanghai 200433 , P. R. China
| | - Fan Zhang
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem , Fudan University , Shanghai 200433 , P. R. China
| |
Collapse
|
41
|
Chang J, Li H, Li F. Diffusivity and intercalation of electroactive dyes-mediated truly ratiometric homogeneous electrochemical strategy for highly sensitive biosensing. Chem Commun (Camb) 2019; 55:10603-10606. [DOI: 10.1039/c9cc05022a] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A truly ratiometric homogeneous electrochemical biosensor was developed for miRNA detection based on the unique diffusion/intercalation properties of electroactive dyes.
Collapse
Affiliation(s)
- Jiafu Chang
- College of Chemistry
- Chemical Engineering and Materials Science
- Shandong Normal University
- Jinan 250014
- People's Republic of China
| | - Haiyin Li
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao
- People's Republic of China
| | - Feng Li
- College of Chemistry
- Chemical Engineering and Materials Science
- Shandong Normal University
- Jinan 250014
- People's Republic of China
| |
Collapse
|
42
|
Greenwald EC, Mehta S, Zhang J. Genetically Encoded Fluorescent Biosensors Illuminate the Spatiotemporal Regulation of Signaling Networks. Chem Rev 2018; 118:11707-11794. [PMID: 30550275 PMCID: PMC7462118 DOI: 10.1021/acs.chemrev.8b00333] [Citation(s) in RCA: 353] [Impact Index Per Article: 50.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cellular signaling networks are the foundation which determines the fate and function of cells as they respond to various cues and stimuli. The discovery of fluorescent proteins over 25 years ago enabled the development of a diverse array of genetically encodable fluorescent biosensors that are capable of measuring the spatiotemporal dynamics of signal transduction pathways in live cells. In an effort to encapsulate the breadth over which fluorescent biosensors have expanded, we endeavored to assemble a comprehensive list of published engineered biosensors, and we discuss many of the molecular designs utilized in their development. Then, we review how the high temporal and spatial resolution afforded by fluorescent biosensors has aided our understanding of the spatiotemporal regulation of signaling networks at the cellular and subcellular level. Finally, we highlight some emerging areas of research in both biosensor design and applications that are on the forefront of biosensor development.
Collapse
Affiliation(s)
- Eric C Greenwald
- University of California , San Diego, 9500 Gilman Drive, BRFII , La Jolla , CA 92093-0702 , United States
| | - Sohum Mehta
- University of California , San Diego, 9500 Gilman Drive, BRFII , La Jolla , CA 92093-0702 , United States
| | - Jin Zhang
- University of California , San Diego, 9500 Gilman Drive, BRFII , La Jolla , CA 92093-0702 , United States
| |
Collapse
|
43
|
Genetically encoded fluorescent indicators for live cell pH imaging. Biochim Biophys Acta Gen Subj 2018; 1862:2924-2939. [PMID: 30279147 DOI: 10.1016/j.bbagen.2018.09.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 09/17/2018] [Accepted: 09/17/2018] [Indexed: 02/04/2023]
Abstract
BACKGROUND Intracellular pH underlies most cellular processes. There is emerging evidence of a pH-signaling role in plant cells and microorganisms. Dysregulation of pH is associated with human diseases, such as cancer and Alzheimer's disease. SCOPE OF REVIEW In this review, we attempt to provide a summary of the progress that has been made in the field during the past two decades. First, we present an overview of the current state of the design and applications of fluorescent protein (FP)-based pH indicators. Then, we turn our attention to the development and applications of hybrid pH sensors that combine the capabilities of non-GFP fluorophores with the advantages of genetically encoded tags. Finally, we discuss recent advances in multicolor pH imaging and the applications of genetically encoded pH sensors in multiparameter imaging. MAJOR CONCLUSIONS Genetically encoded pH sensors have proven to be indispensable noninvasive tools for selective targeting to different cellular locations. Although a variety of genetically encoded pH sensors have been designed and applied at the single cell level, there is still much room for improvements and future developments of novel powerful tools for pH imaging. Among the most pressing challenges in this area is the design of brighter redshifted sensors for tissue research and whole animal experiments. GENERAL SIGNIFICANCE The design of precise pH measuring instruments is one of the important goals in cell biochemistry and may give rise to the development of new powerful diagnostic tools for various diseases.
Collapse
|
44
|
Arroyo-Olarte RD, Thurow L, Kozjak-Pavlovic V, Gupta N. Illuminating pathogen-host intimacy through optogenetics. PLoS Pathog 2018; 14:e1007046. [PMID: 30001435 PMCID: PMC6042787 DOI: 10.1371/journal.ppat.1007046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The birth and subsequent evolution of optogenetics has resulted in an unprecedented advancement in our understanding of the brain. Its outstanding success does usher wider applications; however, the tool remains still largely relegated to neuroscience. Here, we introduce selected aspects of optogenetics with potential applications in infection biology that will not only answer long-standing questions about intracellular pathogens (parasites, bacteria, viruses) but also broaden the dimension of current research in entwined models. In this essay, we illustrate how a judicious integration of optogenetics with routine methods can illuminate the host–pathogen interactions in a way that has not been feasible otherwise.
Collapse
Affiliation(s)
- Ruben Dario Arroyo-Olarte
- Department of Molecular Parasitology, Faculty of Life Sciences, Humboldt University, Berlin, Germany
| | - Laura Thurow
- Department of Molecular Parasitology, Faculty of Life Sciences, Humboldt University, Berlin, Germany
| | - Vera Kozjak-Pavlovic
- Department of Microbiology, Biocenter, Julius Maximilian University, Würzburg, Germany
| | - Nishith Gupta
- Department of Molecular Parasitology, Faculty of Life Sciences, Humboldt University, Berlin, Germany
- * E-mail:
| |
Collapse
|
45
|
Satake H, Saito A, Sakata T. Elucidation of interfacial pH behaviour at the cell/substrate nanogap for in situ monitoring of cellular respiration. NANOSCALE 2018; 10:10130-10136. [PMID: 29781490 DOI: 10.1039/c8nr02950d] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In situ monitoring of cellular metabolism is useful for elucidating dynamic functions of living cells. In our previous studies, cellular respiration was continuously monitored as a change in pH at the cell/electrode nanoscale interface (i.e., interfacial pH) using an ion-sensitive field-effect transistor (ISFET). However, such interfacial pH behaviour on the nanoscale has not been confirmed using other methods such as fluorescence imaging. In this study, we have clarified the interfacial pH behaviour at a cell/substrate nanogap using a laser scanning confocal fluorescence microscope. The phospholipid fluorescein used as a pH indicator was fixed to the plasma membrane on the external side of a cell by inserting its lipophilic alkyl chain into the membrane, and used to observe the change in interfacial pH. As a result, hydrogen ions generated by cellular respiration were gradually accumulated at the cell/substrate nanogap, resulting in a decrease in pH. Moreover, the interfacial pH between the plasma membrane and the substrate became lower than the pH near the surface of cells not in contact with the substrate. The data obtained in this study support the idea that potentiometric ion sensors such as ISFETs can detect a cellular-metabolism-induced change in pH at a cell/electrode nanogap in real time.
Collapse
Affiliation(s)
- Hiroto Satake
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan 113-8656.
| | | | | |
Collapse
|
46
|
Nandi S, Ghosh S, Bhattacharyya K. Live Cell Microscopy: A Physical Chemistry Approach. J Phys Chem B 2018; 122:3023-3036. [PMID: 29389140 DOI: 10.1021/acs.jpcb.7b11689] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Probing dynamics of intracellular components using physical chemistry techniques is a remarkable bottom-up approach for understanding the structures and functions of a biological cell. In this "Feature Article", we give an overview on local polarity, solvation, viscosity, acid-base property, red-ox processes (thiol-disulfide exchange), and gene silencing at selected intracellular components inside a live cell. Significant differences have been observed between cancer cells and their noncancer counterparts. We demonstrate that thiol-disulfide exchange, calcium oscillation, and gene silencing are manifested in time dependence of fluorescence intensity. We show that fluorescent gold nanoclusters may be used in drug delivery (e.g., doxorubicin) and selective killing of cancer cells. Further, we discuss dynamics and structural changes of DNA quadruplexes and i-motifs, induced by different external conditions (e.g., pH) and additives (e.g., K+ and other target specific small molecules). We demonstrate that peptidomimetic analogues have high specificity over double-stranded DNA for binding with i-motifs and G-quadruplexes. These results may have significant biological implications.
Collapse
Affiliation(s)
- Somen Nandi
- Department of Physical Chemistry , Indian Association for the Cultivation of Science , Jadavpur, Kolkata 700 032 , India
| | - Surajit Ghosh
- Organic & Medicinal Chemistry Division , CSIR-Indian Institute of Chemical Biology , 4, Raja S. C. Mullick Road , Jadavpur, Kolkata , 700 032 West Bengal , India.,Academy of Scientific and Innovative Research (AcSIR) , CSIR-Indian Institute of Chemical Biology Campus , 4 Raja S. C. Mullick Road , Jadavpur, Kolkata 700 032 , India
| | - Kankan Bhattacharyya
- Department of Chemistry , Indian Institute of Science Education and Research Bhopal , Bhopal , 462 066 Madhya Pradesh , India
| |
Collapse
|
47
|
Perkins LA, Yan Q, Schmidt BF, Kolodieznyi D, Saurabh S, Larsen MB, Watkins SC, Kremer L, Bruchez MP. Genetically Targeted Ratiometric and Activated pH Indicator Complexes (TRApHIC) for Receptor Trafficking. Biochemistry 2018; 57:861-871. [PMID: 29283245 DOI: 10.1021/acs.biochem.7b01135] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Fluorescent protein-based pH sensors are useful tools for measuring protein trafficking through pH changes associated with endo- and exocytosis. However, commonly used pH-sensing probes are ubiquitously expressed with their protein of interest throughout the cell, hindering our ability to focus on specific trafficking pools of proteins. We developed a family of excitation ratiometric, activatable pH responsive tandem dyes, consisting of a pH sensitive Cy3 donor linked to a fluorogenic malachite green acceptor. These cell-excluded dyes are targeted and activated upon binding to a genetically expressed fluorogen-activating protein and are suitable for selective labeling of surface proteins for analysis of endocytosis and recycling in live cells using both confocal and superresolution microscopy. Quantitative profiling of the endocytosis and recycling of tagged β2-adrenergic receptor (B2AR) at a single-vesicle level revealed differences among B2AR agonists, consistent with more detailed pharmacological profiling.
Collapse
Affiliation(s)
| | - Qi Yan
- Sharp Edge Laboratories , Pittsburgh, Pennsylvania 15203, United States
| | | | | | - Saumya Saurabh
- Department of Developmental Biology, Stanford University , Stanford, California 94305, United States
| | - Mads Breum Larsen
- Center for Biologic Imaging, Department of Cell Biology and Physiology, School of Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania 15213, United States
| | - Simon C Watkins
- Center for Biologic Imaging, Department of Cell Biology and Physiology, School of Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania 15213, United States
| | - Laura Kremer
- Institute of Human Genetics, Helmholtz Zentrum München , Munich, Germany
| | | |
Collapse
|