1
|
Bhattarai S, Hakkim FL, Day CA, Grigore F, Langfald A, Entin I, Hinchcliffe EH, Robinson JP. H3F3A K27M mutations drive a repressive transcriptome by modulating chromatin accessibility independent of H3K27me3 in Diffuse Midline Glioma. Epigenetics Chromatin 2025; 18:23. [PMID: 40287708 PMCID: PMC12032731 DOI: 10.1186/s13072-025-00585-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Accepted: 04/05/2025] [Indexed: 04/29/2025] Open
Abstract
BACKGROUND Heterozygous histone H3.3K27M mutation is a primary oncogenic driver of Diffuse Midline Glioma (DMG). H3.3K27M inhibits the Polycomb Repressive Complex 2 (PRC2) methyltransferase activity, leading to global reduction and redistribution of the repressive H3 lysine 27 tri-methylation (H3K27me3). This epigenomic rewiring is thought to promote gliomagenesis, but the precise role of K27M in gene regulation and tumorigenesis remains incompletely understood. RESULTS We established isogenic DMG patient-derived cell lines using CRISPR-Cas9 editing to create H3.3 wild-type (WT), H3.3K27M, and combinations with EZH2 and EZH1 co-deletion, thereby eliminating PRC2 function and H3K27me3. RNA-seq and ATAC-seq analysis revealed that K27M exerts a novel epigenetic effect independent of PRC2 inhibition. While PRC2 loss led to widespread gene induction including HOX gene clusters, and activation of biological pathways, K27M induced a balanced gene deregulation with an overall repressive effect on pathway activity. Genes uniquely affected by K27M, independent of PRC2 loss, showed concordant changes in chromatin accessibility, with upregulated genes becoming more accessible. Importantly, xenografts of H3.3K27M/EZH1/2 WT cells formed tumors, whereas /EZH1/2 knockout cells did not, demonstrating a PRC2-independent role of K27M in tumorigenesis. CONCLUSION Our findings reveal that the H3.3K27M mutation alters chromatin accessibility and uniquely deregulates gene expression independent of H3K27 methylation loss. These PRC2-independent functions of K27M contribute to changes in biological pathway activity and are necessary for tumor development, highlighting novel mechanisms of K27M-driven gliomagenesis.
Collapse
Affiliation(s)
- Suraj Bhattarai
- The Hormel Institute, University of Minnesota, 801 16th Avenue NE, Austin, MN, 55912, USA
| | - Faruck L Hakkim
- The Hormel Institute, University of Minnesota, 801 16th Avenue NE, Austin, MN, 55912, USA
| | - Charles A Day
- The Hormel Institute, University of Minnesota, 801 16th Avenue NE, Austin, MN, 55912, USA
- Neuro-Oncology Training Program, Mayo Clinic, Rochester, MN, USA
| | - Florina Grigore
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN, USA
| | - Alyssa Langfald
- The Hormel Institute, University of Minnesota, 801 16th Avenue NE, Austin, MN, 55912, USA
| | - Igor Entin
- The Hormel Institute, University of Minnesota, 801 16th Avenue NE, Austin, MN, 55912, USA
| | - Edward H Hinchcliffe
- The Hormel Institute, University of Minnesota, 801 16th Avenue NE, Austin, MN, 55912, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - James P Robinson
- The Hormel Institute, University of Minnesota, 801 16th Avenue NE, Austin, MN, 55912, USA.
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
2
|
Huang T, Radley A, Yanagida A, Ren Z, Carlisle F, Tahajjodi S, Kim D, O'Neill P, Clarke J, Lancaster MA, Heckhausen Z, Zhuo J, de Sousa JPA, Hajkova P, von Meyenn F, Imai H, Nakauchi H, Guo G, Smith A, Masaki H. Inhibition of PRC2 enables self-renewal of blastoid-competent naive pluripotent stem cells from chimpanzee. Cell Stem Cell 2025; 32:627-639.e8. [PMID: 40015279 DOI: 10.1016/j.stem.2025.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 10/11/2024] [Accepted: 02/04/2025] [Indexed: 03/01/2025]
Abstract
Naive pluripotent stem cells (PSCs) are counterparts of early epiblast in the mammalian embryo. Mouse and human naive PSCs differ in self-renewal requirements and extraembryonic lineage potency. Here, we investigated the generation of chimpanzee naive PSCs. Colonies generated by resetting or reprogramming failed to propagate. We discovered that self-renewal is enabled by inhibition of Polycomb repressive complex 2 (PRC2). Expanded cells show global transcriptome proximity to human naive PSCs and embryo pre-implantation epiblast, with shared expression of a subset of pluripotency transcription factors. Chimpanzee naive PSCs can transition to multilineage competence or can differentiate into trophectoderm and hypoblast, forming tri-lineage blastoids. They thus provide a higher primate comparative model for studying pluripotency and early embryogenesis. Genetic deletions confirm that PRC2 mediates growth arrest. Further, inhibition of PRC2 overcomes a roadblock to feeder-free propagation of human naive PSCs. Therefore, excess deposition of chromatin modification H3K27me3 is an unexpected barrier to naive PSC self-renewal.
Collapse
Affiliation(s)
- Tao Huang
- Living Systems Institute, University of Exeter, Exeter EX4 4QD, UK
| | - Arthur Radley
- Living Systems Institute, University of Exeter, Exeter EX4 4QD, UK
| | - Ayaka Yanagida
- Department of Veterinary Anatomy, The University of Tokyo, Tokyo 113-8657, Japan; Division of Stem Cell Therapy, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Zhili Ren
- Living Systems Institute, University of Exeter, Exeter EX4 4QD, UK
| | | | | | - Dongwan Kim
- Stem Cell Therapy Division, Institute of Integrated Research, Institute of Science, Tokyo 113-8510, Japan
| | - Paul O'Neill
- University of Exeter Sequencing Facility, University of Exeter, Exeter EX4 4QD, UK
| | - James Clarke
- Wellcome-MRC Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK
| | - Madeline A Lancaster
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - Zoe Heckhausen
- MRC Laboratory of Medical Sciences (LMS), Du Cane Rd, London W12 0HS, UK; Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, W12 0NN, UK
| | - Jingran Zhuo
- Department of Health Sciences and Technology, ETH Zurich, 8603 Schwerzenbach, Switzerland
| | | | - Petra Hajkova
- MRC Laboratory of Medical Sciences (LMS), Du Cane Rd, London W12 0HS, UK; Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, W12 0NN, UK
| | - Ferdinand von Meyenn
- Department of Health Sciences and Technology, ETH Zurich, 8603 Schwerzenbach, Switzerland
| | - Hiroo Imai
- Department of Cellular and Molecular Biology, Center for the Evolutionary Origins of Human Behavior, Kyoto University, Inuyama, Aichi 484-8506, Japan
| | - Hiromitsu Nakauchi
- Division of Stem Cell Therapy, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan; Stem Cell Therapy Division, Institute of Integrated Research, Institute of Science, Tokyo 113-8510, Japan; Institute for Stem Cell Biology and Regenerative Medicine, Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ge Guo
- Living Systems Institute, University of Exeter, Exeter EX4 4QD, UK
| | - Austin Smith
- Living Systems Institute, University of Exeter, Exeter EX4 4QD, UK.
| | - Hideki Masaki
- Division of Stem Cell Therapy, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan; Stem Cell Therapy Division, Institute of Integrated Research, Institute of Science, Tokyo 113-8510, Japan.
| |
Collapse
|
3
|
Mätlik K, Govek EE, Hatten ME. Histone bivalency in CNS development. Genes Dev 2025; 39:428-444. [PMID: 39880657 PMCID: PMC11960699 DOI: 10.1101/gad.352306.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Neuronal maturation is guided by changes in the chromatin landscape that control developmental gene expression programs. Histone bivalency, the co-occurrence of activating and repressive histone modifications, has emerged as an epigenetic feature of developmentally regulated genes during neuronal maturation. Although initially associated with early embryonic development, recent studies have shown that histone bivalency also exists in differentiated and mature neurons. In this review, we discuss methods to study bivalency in specific populations of neurons and summarize emerging studies on the function of bivalency in central nervous system neuronal maturation and in adult neurons.
Collapse
Affiliation(s)
- Kärt Mätlik
- Laboratory of Developmental Neurobiology, The Rockefeller University, New York, New York 10065, USA;
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn 12618, Estonia
| | - Eve-Ellen Govek
- Laboratory of Developmental Neurobiology, The Rockefeller University, New York, New York 10065, USA
| | - Mary E Hatten
- Laboratory of Developmental Neurobiology, The Rockefeller University, New York, New York 10065, USA;
| |
Collapse
|
4
|
Cardamone F, Piva A, Löser E, Eichenberger B, Romero-Mulero MC, Zenk F, Shields EJ, Cabezas-Wallscheid N, Bonasio R, Tiana G, Zhan Y, Iovino N. Chromatin landscape at cis-regulatory elements orchestrates cell fate decisions in early embryogenesis. Nat Commun 2025; 16:3007. [PMID: 40148291 PMCID: PMC11950382 DOI: 10.1038/s41467-025-57719-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 03/03/2025] [Indexed: 03/29/2025] Open
Abstract
The establishment of germ layers during early development is crucial for body formation. The Drosophila zygote serves as a model for investigating these transitions in relation to the chromatin landscape. However, the cellular heterogeneity of the blastoderm embryo poses a challenge for gaining mechanistic insights. Using 10× Multiome, we simultaneously analyzed the in vivo epigenomic and transcriptomic states of wild-type, E(z)-, and CBP-depleted embryos during zygotic genome activation at single-cell resolution. We found that pre-zygotic H3K27me3 safeguards tissue-specific gene expression by modulating cis-regulatory elements. Furthermore, we demonstrate that CBP is essential for cell fate specification functioning as a transcriptional activator by stabilizing transcriptional factors binding at key developmental genes. Surprisingly, while CBP depletion leads to transcriptional arrest, chromatin accessibility continues to progress independently through the retention of stalled RNA Polymerase II. Our study reveals fundamental principles of chromatin-mediated gene regulation essential for establishing and maintaining cellular identities during early embryogenesis.
Collapse
Affiliation(s)
- Francesco Cardamone
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- International Max Planck Research School of Immunobiology, Epigenetics and Metabolism (IMPRS-IEM), Freiburg, Germany
| | - Annamaria Piva
- Department of Experimental Oncology, European Institute of Oncology, IRCCS, Milan, Italy
| | - Eva Löser
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Bastian Eichenberger
- Department of Experimental Oncology, European Institute of Oncology, IRCCS, Milan, Italy
| | - Mari Carmen Romero-Mulero
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Fides Zenk
- Epigenomics of Neurodevelopment, Brain Mind Institute, School of Life Sciences, EPFL - Ecole Polytechnique Federal Lusanne, Ecublens, Switzerland
| | - Emily J Shields
- Epigenetics Institute, Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Urology and Institute of Neuropathology, Medical Center-University of Freiburg, Freiburg, Germany
| | - Nina Cabezas-Wallscheid
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- Laboratory of Stem Cell Biology and Ageing, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH Zürich), Zürich, Switzerland
- Centre for Integrative Biological Signalling Studies (CIBSS), Freiburg, Germany
| | - Roberto Bonasio
- Epigenetics Institute, Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Guido Tiana
- Università degli Studi di Milano and INFN, Milan, Italy
| | - Yinxiu Zhan
- Department of Experimental Oncology, European Institute of Oncology, IRCCS, Milan, Italy.
| | - Nicola Iovino
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.
| |
Collapse
|
5
|
Wan G, Li S, Tang Q, Qiu H, Zhang Q, Yu L. An updated patent review of EZH2 inhibitors (2024-present). Expert Opin Ther Pat 2025:1-14. [PMID: 40116819 DOI: 10.1080/13543776.2025.2483399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 02/26/2025] [Accepted: 03/19/2025] [Indexed: 03/23/2025]
Abstract
INTRODUCTION EZH2 forms the PRC2 complex with SUZ12 and EED. As a crucial catalytic subunit of PRC2, EZH2 modifies histone H3K27 via its SET domain, resulting in chromatin condensation and suppressing the transcription of related target genes. EZH2 not only functions in PRC2-dependent transcriptional repression but can also activate gene expression in PRC2-independent circumstances or regulate the activity of downstream genes via its own activating mutations. On the basis of the critical role of EZH2 in cancer, the development of inhibitors targeting EZH2 provides a new strategy for cancer therapy. AREAS COVERED The purpose of this review is to summarize the molecular mechanisms of EZH2 inhibitors and emphasize the research progress on EZH2 inhibitors published in the patent literature in recent years. The literature and patent databases of PubMed, Web of Science, SCIFinder, WIPO, USPTO, EPO, and CNIPA were combined to search for more effective EZH2 inhibitors. EXPERT OPINION Recently, a wide range of structurally diverse EZH2 inhibitors, particularly EZH2 degraders, have been identified. These EZH2 modulators have demonstrated significant potential in treating various diseases, with cancer being a primary focus. The development of small molecules targeting EZH2 with distinct pharmacological effects is poised with numerous opportunities.
Collapse
Affiliation(s)
- Guoquan Wan
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, China
| | - Siyan Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, China
| | - Qifan Tang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, China
| | - Huapei Qiu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, China
| | - Qiangsheng Zhang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Luoting Yu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, China
| |
Collapse
|
6
|
Kim SM, Kwon EJ, Oh JY, Kim HS, Park S, Jang G, Tae Do J, Kim KT, Cha HJ. AMPK activation by glycogen expenditure primes the exit of naïve pluripotency. EMBO Rep 2025; 26:1504-1527. [PMID: 39962227 PMCID: PMC11933299 DOI: 10.1038/s44319-025-00384-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 12/21/2024] [Accepted: 01/20/2025] [Indexed: 03/26/2025] Open
Abstract
Embryonic and epiblast stem cells in pre-and post-implantation embryos are characterized by their naïve and primed states, respectively which represent distinct phases of pluripotency. Thus, cellular transition from naïve-to-primed pluripotency recapitulates a drastic metabolic and cellular remodeling after implantation to adapt to changes in extracellular conditions. Here, we found that inhibition of AMPK occurs during naïve transition with two conventional inhibitors of the MEK1 and GSK3β pathways. The accumulation of glycogen due to iGSK3β is responsible for AMPK inhibition, which accounts for high de novo fatty acid synthesis in naïve (ESCs). The knockout of glycogen synthase 1 in naïve ESCs; GKO, resulting in a drastic glycogen loss, leads to a robust AMPK activation and lowers the level of fatty acids. GKO loses cellular characteristics of naïve ESCs and rapidly transitioned to a primed state. The characteristics of GKO are restored by the simultaneous AMPK KO. These findings suggest that high glycogen in epiblast within pre-implantation blastocyst may act as a signaling molecule for timely activation of AMPK, thus ultimately contributing to transition to post-implantation stage epiblast.
Collapse
Affiliation(s)
- Seong-Min Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Eun-Ji Kwon
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Ji-Young Oh
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Han Sun Kim
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Sunghyouk Park
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Goo Jang
- Laboratory of Theriogenology and Biotechnology, Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Jeong Tae Do
- Department of Stem Cell and Regenerative Biotechnology, KU Institute of Science and Technology, Konkuk University, Seoul, Republic of Korea
| | - Keun-Tae Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea.
| | - Hyuk-Jin Cha
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
7
|
Yang Q, Zhou Z, Li L, Lu R, Hou G, Huang C, Huang J, Li H, Zhang Y, Li J, Zhang Y, Xu A, Chen R, Wang Y, Zhao X, Huang J, Wang Y, Zhao X, Yu J. The NEXT complex regulates H3K27me3 levels to affect cancer progression by degrading G4/U-rich lncRNAs. Nucleic Acids Res 2025; 53:gkaf107. [PMID: 39988317 PMCID: PMC11840553 DOI: 10.1093/nar/gkaf107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 01/13/2025] [Accepted: 02/05/2025] [Indexed: 02/25/2025] Open
Abstract
Polycomb repressive complex 2 (PRC2) is responsible for depositing H3K27me3 and plays essential roles in gene silencing during development and cancer. Meanwhile, the nuclear exosome targeting (NEXT) complex facilitates the degradation of numerous noncoding RNAs in the nucleoplasm. Here we find that the functional deficiency of the NEXT complex leads to an overall decrease in H3K27me3 levels. Specifically, ZCCHC8 depletion results in significant upregulation of nascent long noncoding RNAs (lncRNAs) containing G-quadruplex (G4) and U-Rich motifs (G4/U-Rich lncRNAs). The G4 motif binds to EZH2, blocking the chromatin recruitment of PRC2, while the U-Rich motif is specifically recognized by the NEXT complex for RNA exosome-mediated degradation. In tumor tissues with high ZCCHC8 expression in clear cell renal cell carcinoma (ccRCC) and lung adenocarcinoma (LUAD) patients, the NEXT complex excessively degrades nascent G4/U-Rich lncRNAs. Consequently, PRC2 core subunits are released and recruited to neighboring genomic loci, resulting in increased H3K27me3 levels and downregulation of adjacent genes, including tumor suppressors like SEMA5A and ARID1A. Notably, the EZH2 inhibitor Tazemetostat (EPZ-6438) exhibits greater sensitivity in cells with higher ZCCHC8 expression. Altogether, our findings demonstrate a novel mechanism that the NEXT complex regulates H3K27me3 levels by degrading nascent G4/U-Rich lncRNAs in cancer cells.
Collapse
Affiliation(s)
- Qianqian Yang
- Department of Biochemistry and Molecular Cell Biology & Department of Thoracic Surgery Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine; Shanghai 200025, China
| | - Zihan Zhou
- Department of Biochemistry and Molecular Cell Biology & Department of Thoracic Surgery Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine; Shanghai 200025, China
| | - Lian Li
- Department of Biochemistry and Molecular Cell Biology & Department of Thoracic Surgery Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine; Shanghai 200025, China
| | - Runhui Lu
- Department of Biochemistry and Molecular Cell Biology & Department of Thoracic Surgery Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine; Shanghai 200025, China
| | - Guofang Hou
- Department of Biochemistry and Molecular Cell Biology & Department of Thoracic Surgery Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine; Shanghai 200025, China
| | - Caihu Huang
- Department of Biochemistry and Molecular Cell Biology & Department of Thoracic Surgery Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine; Shanghai 200025, China
| | - Jiayi Huang
- Department of Biochemistry and Molecular Cell Biology & Department of Thoracic Surgery Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine; Shanghai 200025, China
| | - Hongyan Li
- Department of Biochemistry and Molecular Cell Biology & Department of Thoracic Surgery Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine; Shanghai 200025, China
| | - Yafan Zhang
- Department of Biochemistry and Molecular Cell Biology & Department of Thoracic Surgery Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine; Shanghai 200025, China
| | - Junya Li
- Department of Biochemistry and Molecular Cell Biology & Department of Thoracic Surgery Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine; Shanghai 200025, China
| | - Yixin Zhang
- Department of Biochemistry and Molecular Cell Biology & Department of Thoracic Surgery Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine; Shanghai 200025, China
| | - Anan Xu
- Department of Biochemistry and Molecular Cell Biology & Department of Thoracic Surgery Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine; Shanghai 200025, China
| | - Ran Chen
- Department of Biochemistry and Molecular Cell Biology & Department of Thoracic Surgery Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine; Shanghai 200025, China
| | - Yanli Wang
- Department of Biochemistry and Molecular Cell Biology & Department of Thoracic Surgery Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine; Shanghai 200025, China
| | - Xian Zhao
- Department of Biochemistry and Molecular Cell Biology & Department of Thoracic Surgery Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine; Shanghai 200025, China
| | - Jian Huang
- Department of Biochemistry and Molecular Cell Biology & Department of Thoracic Surgery Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine; Shanghai 200025, China
| | - Yiwei Wang
- Department of Urology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Xiaojing Zhao
- Department of Biochemistry and Molecular Cell Biology & Department of Thoracic Surgery Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine; Shanghai 200025, China
| | - Jianxiu Yu
- Department of Biochemistry and Molecular Cell Biology & Department of Thoracic Surgery Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine; Shanghai 200025, China
| |
Collapse
|
8
|
Patriotis AL, Soto-Feliciano Y, Barrows DW, Khan L, Leboeuf M, Lund PJ, Marunde MR, Djomo A, Keogh MC, Carroll TS, Garcia BA, Soshnev AA, Allis CD. The conserved N-terminal SANT1-binding domain (SBD) of EZH2 Regulates PRC2 Activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.04.636462. [PMID: 39975104 PMCID: PMC11838560 DOI: 10.1101/2025.02.04.636462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Polycomb group proteins maintain gene expression patterns established during early development, with Polycomb Repressive Complex 2 (PRC2) methyltransferase a key regulator of cell differentiation, identity and plasticity. Consequently, extensive somatic mutations in PRC2, including gain- or loss- of function (GOF or LOF), are observed in human cancers. The regulation of chromatin structure by PRC2 is critically dependent on its EZH2 (Enhancer of Zeste Homolog 2) subunit, which catalyzes the methylation of histone H3 lysine 27 (H3K27). Recent structural studies of PRC2 revealed extensive conformational changes in the non-catalytic EZH2 N-terminal SANT-Binding Domain (SBD) during PRC2 activation, though the functional significance remains unclear. Here, we investigate how the SBD regulates PRC2 function. The domain is highly conserved in metazoans, dispensable for PRC2 assembly and chromatin localization, yet required for genome-wide histone H3K27 methylation. Further, we show that an intact SBD is necessary for the proliferation of EZH2- addicted lymphomas, and its deletion in the presence of EZH2 GOF mutations inhibits cancer cell growth. These observations provide new insights to the regulation of PRC2 activity in normal development and malignancy.
Collapse
|
9
|
Richard Albert J, Urli T, Monteagudo-Sánchez A, Le Breton A, Sultanova A, David A, Scarpa M, Schulz M, Greenberg MVC. DNA methylation shapes the Polycomb landscape during the exit from naive pluripotency. Nat Struct Mol Biol 2025; 32:346-357. [PMID: 39448850 DOI: 10.1038/s41594-024-01405-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 09/23/2024] [Indexed: 10/26/2024]
Abstract
In mammals, 5-methylcytosine (5mC) and Polycomb repressive complex 2 (PRC2)-deposited histone 3 lysine 27 trimethylation (H3K27me3) are generally mutually exclusive at CpG-rich regions. As mouse embryonic stem cells exit the naive pluripotent state, there is massive gain of 5mC concomitantly with restriction of broad H3K27me3 to 5mC-free, CpG-rich regions. To formally assess how 5mC shapes the H3K27me3 landscape, we profiled the epigenome of naive and differentiated cells in the presence and absence of the DNA methylation machinery. Surprisingly, we found that 5mC accumulation is not required to restrict most H3K27me3 domains. Instead, this 5mC-independent H3K27me3 restriction is mediated by aberrant expression of the PRC2 antagonist Ezhip (encoding EZH inhibitory protein). At the subset of regions where 5mC appears to genuinely supplant H3K27me3, we identified 163 candidate genes that appeared to require 5mC deposition and/or H3K27me3 depletion for their activation in differentiated cells. Using site-directed epigenome editing to directly modulate 5mC levels, we demonstrated that 5mC deposition is sufficient to antagonize H3K27me3 deposition and confer gene activation at individual candidates. Altogether, we systematically measured the antagonistic interplay between 5mC and H3K27me3 in a system that recapitulates early embryonic dynamics. Our results suggest that H3K27me3 restraint depends on 5mC, both directly and indirectly. Our study also implies a noncanonical role of 5mC in gene activation, which may be important not only for normal development but also for cancer progression, as oncogenic cells frequently exhibit dynamic replacement of 5mC for H3K27me3 and vice versa.
Collapse
Affiliation(s)
| | - Teresa Urli
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France
| | - Ana Monteagudo-Sánchez
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France
- Carlos Simon Foundation, INCLIVA Health Research Institute, Valencia, Spain
| | - Anna Le Breton
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France
- Gulbenkian Institute for Molecular Medicine, Lisbon, Portugal
| | - Amina Sultanova
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France
- Development and Disease Research Group, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Angélique David
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France
| | | | - Mathieu Schulz
- Institut Curie, PSL Research University, INSERM U934, CNRS, UMR3215, Paris, France
- Department of Pathology and Cell Biology, Faculty of Medicine, University of Montreal Hospital Research Centre, Montréal, Québec, Canada
| | | |
Collapse
|
10
|
Keady J, Charnigo R, Shaykin JD, Prantzalos ER, Xia M, Denehy E, Bumgardner C, Miller J, Ortinski P, Bardo MT, Turner JR. Behavioral and genetic markers of susceptibility to escalate fentanyl intake. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.12.06.627259. [PMID: 39713469 PMCID: PMC11661085 DOI: 10.1101/2024.12.06.627259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Background The "loss of control" over drug consumption, present in opioid use disorder (OUD) and known as escalation of intake, is well-established in preclinical rodent models. However, little is known about how antecedent behavioral characteristics, such as valuation of hedonic reinforcers prior to drug use, may impact the trajectory of fentanyl intake over time. Moreover, it is unclear if distinct escalation phenotypes may be driven by genetic markers predictive of OUD susceptibility. Methods Male and female Sprague-Dawley rats (n=63) were trained in a sucrose reinforcement task using a progressive ratio schedule. Individual differences in responsivity to sucrose were hypothesized to predict escalation of fentanyl intake. Rats underwent daily 1-h acquisition sessions for i.v. fentanyl self-administration (2.5 μg/kg; FR1) for 7 days, followed by 21 6-h escalation sessions, then tissue from prefrontal cortex was collected for RNA sequencing and qPCR. Latent growth curve and group-based trajectory modeling were used, respectively, to evaluate the association between sucrose reinforcement and fentanyl self-administration and to identify whether distinct escalation phenotypes can be linked to gene expression patterns. Results Sucrose breakpoints were not predictive of fentanyl acquisition nor change during escalation, but did predict fentanyl intake on the first day of extended access to fentanyl. Permutation analyses did not identify associations between behavior and single gene expression when evaluated overall, or between our ascertained phenotypes. However, weighted genome correlation network analysis (WGCNA) and gene set enrichment analysis (GSEA) determined several gene modules linked to escalated fentanyl intake, including genes coding for voltage-gated potassium channels, calcium channels, and genes involved in excitatory synaptic signaling. Transcription factor analyses identified EZH2 and JARID2 as potential transcriptional regulators associated with escalated fentanyl intake. Genome-wide association study (GWAS) term categories were also generated and positively associated with terms relating to substance use disorders. Discussion Escalation of opioid intake is largely distinct from motivation for natural reward, such as sucrose. Further, the gene networks associated with fentanyl escalation suggest that engagement of select molecular pathways distinguish individuals with "addiction prone" behavioral endophenotypes, potentially representing druggable targets for opioid use disorder. Our extended in silico identification of SNPs and transcription factors associated with the "addiction prone" high escalating rats highlights the importance of integrating findings from translational preclinical models. Through a precision medicine approach, our results may aid in the development of patient-centered treatment options for those with OUD.
Collapse
Affiliation(s)
- Jack Keady
- College of Pharmacy, University of Kentucky, University of Kentucky, Lexington, KY 40506, USA
| | - Richard Charnigo
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40506, USA
| | - Jakob D Shaykin
- College of Pharmacy, University of Kentucky, University of Kentucky, Lexington, KY 40506, USA
- Department of Psychology, University of Kentucky, University of Kentucky, Lexington, KY 40506, USA
| | - Emily R Prantzalos
- College of Pharmacy, University of Kentucky, University of Kentucky, Lexington, KY 40506, USA
| | - Mengfan Xia
- Department of Neuroscience, University of Kentucky, University of Kentucky, Lexington, KY 40506, USA
| | - Emily Denehy
- Department of Psychology, University of Kentucky, University of Kentucky, Lexington, KY 40506, USA
| | - Cody Bumgardner
- Department of Pathology and Laboratory Medicine, University of Kentucky, Lexington, KY 40506, USA
- Division of Biomedical Informatics, Department of Internal Medicine, University of Kentucky, Lexington, KY 40506, USA
| | - Justin Miller
- Department of Pathology and Laboratory Medicine, University of Kentucky, Lexington, KY 40506, USA
- Division of Biomedical Informatics, Department of Internal Medicine, University of Kentucky, Lexington, KY 40506, USA
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40506, USA
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, KY 40506, USA
| | - Pavel Ortinski
- Department of Neuroscience, University of Kentucky, University of Kentucky, Lexington, KY 40506, USA
| | - Michael T Bardo
- Department of Psychology, University of Kentucky, University of Kentucky, Lexington, KY 40506, USA
| | - Jill R Turner
- College of Pharmacy, University of Kentucky, University of Kentucky, Lexington, KY 40506, USA
| |
Collapse
|
11
|
Shi X, Li Y, Zhou H, Hou X, Yang J, Malik V, Faiola F, Ding J, Bao X, Modic M, Zhang W, Chen L, Mahmood SR, Apostolou E, Yang FC, Xu M, Xie W, Huang X, Chen Y, Wang J. DDX18 coordinates nucleolus phase separation and nuclear organization to control the pluripotency of human embryonic stem cells. Nat Commun 2024; 15:10803. [PMID: 39738032 PMCID: PMC11685540 DOI: 10.1038/s41467-024-55054-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 11/26/2024] [Indexed: 01/01/2025] Open
Abstract
Pluripotent stem cells possess a unique nuclear architecture characterized by a larger nucleus and more open chromatin, which underpins their ability to self-renew and differentiate. Here, we show that the nucleolus-specific RNA helicase DDX18 is essential for maintaining the pluripotency of human embryonic stem cells. Using techniques such as Hi-C, DNA/RNA-FISH, and biomolecular condensate analysis, we demonstrate that DDX18 regulates nucleolus phase separation and nuclear organization by interacting with NPM1 in the granular nucleolar component, driven by specific nucleolar RNAs. Loss of DDX18 disrupts nucleolar substructures, impairing centromere clustering and perinucleolar heterochromatin (PNH) formation. To probe this further, we develop NoCasDrop, a tool enabling precise nucleolar targeting and controlled liquid condensation, which restores centromere clustering and PNH integrity while modulating developmental gene expression. This study reveals how nucleolar phase separation dynamics govern chromatin organization and cell fate, offering fresh insights into the molecular regulation of stem cell pluripotency.
Collapse
Affiliation(s)
- Xianle Shi
- Department of Medicine, Columbia Center for Human Development and Stem Cell Therapies, Columbia University Irving Medical Center, New York, NY, USA
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Yanjing Li
- Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Shanghai, China
| | - Hongwei Zhou
- Department of Medicine, Columbia Center for Human Development and Stem Cell Therapies, Columbia University Irving Medical Center, New York, NY, USA
| | - Xiukun Hou
- Department of Thyroid and Neck Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Jihong Yang
- Department of Medicine, Columbia Center for Human Development and Stem Cell Therapies, Columbia University Irving Medical Center, New York, NY, USA
| | - Vikas Malik
- Department of Medicine, Columbia Center for Human Development and Stem Cell Therapies, Columbia University Irving Medical Center, New York, NY, USA
| | - Francesco Faiola
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Junjun Ding
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Xichen Bao
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Miha Modic
- The Francis Crick Institute and University College London, London, UK
| | - Weiyu Zhang
- College of Life Sciences, Nankai University, Tianjin, China
| | - Lingyi Chen
- College of Life Sciences, Nankai University, Tianjin, China
| | - Syed Raza Mahmood
- Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Effie Apostolou
- Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Feng-Chun Yang
- Department of Molecular Medicine/Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Mingjiang Xu
- Department of Molecular Medicine/Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Wei Xie
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Xin Huang
- Department of Medicine, Columbia Center for Human Development and Stem Cell Therapies, Columbia University Irving Medical Center, New York, NY, USA
| | - Yong Chen
- Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.
| | - Jianlong Wang
- Department of Medicine, Columbia Center for Human Development and Stem Cell Therapies, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
12
|
Rosen BP, Li QV, Cho HS, Liu D, Yang D, Graff S, Yan J, Luo R, Verma N, Damodaran JR, Kale HT, Kaplan SJ, Beer MA, Sidoli S, Huangfu D. Parallel genome-scale CRISPR-Cas9 screens uncouple human pluripotent stem cell identity versus fitness. Nat Commun 2024; 15:8966. [PMID: 39419994 PMCID: PMC11487130 DOI: 10.1038/s41467-024-53284-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 10/08/2024] [Indexed: 10/19/2024] Open
Abstract
Pluripotent stem cells have remarkable self-renewal capacity: the ability to proliferate indefinitely while maintaining the pluripotent identity essential for their ability to differentiate into almost any cell type in the body. To investigate the interplay between these two aspects of self-renewal, we perform four parallel genome-scale CRISPR-Cas9 loss-of-function screens interrogating stem cell fitness in hPSCs and the dissolution of primed pluripotent identity during early differentiation. These screens distinguish genes with distinct roles in pluripotency regulation, including mitochondrial and metabolism regulators crucial for stem cell fitness, and chromatin regulators that control pluripotent identity during early differentiation. We further identify a core set of genes controlling both stem cell fitness and pluripotent identity, including a network of chromatin factors. Here, unbiased screening and comparative analyses disentangle two interconnected aspects of pluripotency, provide a valuable resource for exploring pluripotent stem cell identity versus cell fitness, and offer a framework for categorizing gene function.
Collapse
Affiliation(s)
- Bess P Rosen
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, USA
| | - Qing V Li
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Tessera Therapeutics, Somerville, MA, USA
| | - Hyein S Cho
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
| | - Dingyu Liu
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Dapeng Yang
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
| | - Sarah Graff
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jielin Yan
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Renhe Luo
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nipun Verma
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT, USA
| | | | - Hanuman T Kale
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
| | - Samuel J Kaplan
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, USA
| | - Michael A Beer
- Department of Biomedical Engineering and McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Simone Sidoli
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Danwei Huangfu
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA.
| |
Collapse
|
13
|
Liang Z, Huang T, Li W, Ma Z, Wang K, Zhai Z, Fan Y, Fu Y, Wang X, Qin Y, Wang B, Zhao C, Kuang J, Pei D. ALKBH5 governs human endoderm fate by regulating the DKK1/4-mediated Wnt/β-catenin activation. Nucleic Acids Res 2024; 52:10879-10896. [PMID: 39166492 PMCID: PMC11472173 DOI: 10.1093/nar/gkae707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 06/25/2024] [Accepted: 08/03/2024] [Indexed: 08/23/2024] Open
Abstract
N6-methyladenonsine (m6A) is ubiquitously distributed in mammalian mRNA. However, the precise involvement of m6A in early development has yet to be fully elucidated. Here, we report that deletion of the m6A demethylase ALKBH5 in human embryonic stem cells (hESCs) severely impairs definitive endoderm (DE) differentiation. ALKBH5-/- hESCs fail to undergo the primitive streak (PS) intermediate transition that precedes endoderm specification. Mechanistically, we show that ALKBH5 deficiency induces m6A hypermethylation around the 3' untranslated region (3'UTR) of GATA6 transcripts and destabilizes GATA6 mRNA in a YTHDF2-dependent manner. Moreover, GATA6 binds to the promoters of critical regulatory genes involved in Wnt/β-catenin signaling transduction, including the canonical Wnt antagonist DKK1 and DKK4, which are unexpectedly repressed upon the dysregulation of GATA6 mRNA metabolism. Remarkably, DKK1 and DKK4 both exhibit a pleiotropic effect in modulating the Wnt/β-catenin cascade and guard the endogenous signaling activation underlying DE formation as potential downstream targets of the ALKBH5-GATA6 regulation. Here, we unravel a role of ALKBH5 in human endoderm formation in vitro by modulating the canonical Wnt signaling logic through the previously unrecognized functions of DKK1/4, thus capturing a more comprehensive role of m6A in early human embryogenesis.
Collapse
Affiliation(s)
- Zechuan Liang
- College of Life Sciences, Zhejiang University, Hangzhou, China
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China
| | - Tao Huang
- College of Life Sciences, Zhejiang University, Hangzhou, China
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China
| | - Wei Li
- CAS Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhaoyi Ma
- College of Life Sciences, Zhejiang University, Hangzhou, China
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China
| | - Kaipeng Wang
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China
- Fudan Unversity, Shanghai, China
| | - Ziwei Zhai
- CAS Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yixin Fan
- CAS Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yu Fu
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China
- Fudan Unversity, Shanghai, China
| | - Xiaomin Wang
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China
| | - Yue Qin
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
| | - Bo Wang
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China
- Zhejiang University of Science and Technology School of Information and Electronic Engineering, Hangzhou, China
- Zhejiang Key Laboratory of Biomedical Intelligent Computing Technology, Hangzhou, China
| | - Chengchen Zhao
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China
- Zhejiang Key Laboratory of Biomedical Intelligent Computing Technology, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, Zhejiang, China
| | - Junqi Kuang
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, Zhejiang, China
| | - Duanqing Pei
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, Zhejiang, China
| |
Collapse
|
14
|
Hossain I, Priam P, Reynoso SC, Sahni S, Zhang XX, Côté L, Doumat J, Chik C, Fu T, Lessard JA, Pastor WA. ZIC2 and ZIC3 promote SWI/SNF recruitment to safeguard progression towards human primed pluripotency. Nat Commun 2024; 15:8539. [PMID: 39358345 PMCID: PMC11447223 DOI: 10.1038/s41467-024-52431-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 09/03/2024] [Indexed: 10/04/2024] Open
Abstract
The primed epiblast acts as a transitional stage between the relatively homogeneous naïve epiblast and the gastrulating embryo. Its formation entails coordinated changes in regulatory circuits driven by transcription factors and epigenetic modifications. Using a multi-omic approach in human embryonic stem cell models across the spectrum of peri-implantation development, we demonstrate that the transcription factors ZIC2 and ZIC3 have overlapping but essential roles in opening primed-specific enhancers. Together, they are essential to facilitate progression to and maintain primed pluripotency. ZIC2/3 accomplish this by recruiting SWI/SNF to chromatin and loss of ZIC2/3 or degradation of SWI/SNF both prevent enhancer activation. Loss of ZIC2/3 also results in transcriptome changes consistent with perturbed Polycomb activity and a shift towards the expression of genes linked to differentiation towards the mesendoderm. Additionally, we find an intriguing dependency on the transcriptional machinery for sustained recruitment of ZIC2/3 over a subset of primed-hESC specific enhancers. Taken together, ZIC2 and ZIC3 regulate highly dynamic lineage-specific enhancers and collectively act as key regulators of human primed pluripotency.
Collapse
Affiliation(s)
| | - Pierre Priam
- Institute for Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, QC, Canada
- Department of Pathology and Cellular Biology, Faculty of Medicine, University of Montreal, Montreal, QC, Canada
| | - Sofia C Reynoso
- Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - Sahil Sahni
- Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - Xiao X Zhang
- Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - Laurence Côté
- Institute for Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, QC, Canada
- Department of Pathology and Cellular Biology, Faculty of Medicine, University of Montreal, Montreal, QC, Canada
| | - Joelle Doumat
- Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - Candus Chik
- Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - Tianxin Fu
- Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - Julie A Lessard
- Institute for Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, QC, Canada
- Department of Pathology and Cellular Biology, Faculty of Medicine, University of Montreal, Montreal, QC, Canada
| | - William A Pastor
- Department of Biochemistry, McGill University, Montreal, QC, Canada.
- The Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, QC, Canada.
| |
Collapse
|
15
|
Rosen BP, Li QV, Cho HS, Liu D, Yang D, Graff S, Yan J, Luo R, Verma N, Damodaran JR, Kale HT, Kaplan SJ, Beer MA, Sidoli S, Huangfu D. Parallel genome-scale CRISPR-Cas9 screens uncouple human pluripotent stem cell identity versus fitness. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.03.539283. [PMID: 37205540 PMCID: PMC10187244 DOI: 10.1101/2023.05.03.539283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Pluripotent stem cells are defined by their self-renewal capacity, which is the ability of the stem cells to proliferate indefinitely while maintaining the pluripotent identity essential for their ability to differentiate into any somatic cell lineage. However, understanding the mechanisms that control stem cell fitness versus the pluripotent cell identity is challenging. To investigate the interplay between these two aspects of pluripotency, we performed four parallel genome-scale CRISPR-Cas9 loss-of-function screens interrogating stem cell fitness in hPSC self-renewal conditions, and the dissolution of the primed pluripotency identity during early differentiation. Comparative analyses led to the discovery of genes with distinct roles in pluripotency regulation, including mitochondrial and metabolism regulators crucial for stem cell fitness, and chromatin regulators that control pluripotent identity during early differentiation. We further discovered a core set of factors that control both stem cell fitness and pluripotent identity, including a network of chromatin factors that safeguard pluripotency. Our unbiased and systematic screening and comparative analyses disentangle two interconnected aspects of pluripotency, provide rich datasets for exploring pluripotent cell identity versus cell fitness, and offer a valuable model for categorizing gene function in broad biological contexts.
Collapse
|
16
|
Shan Y, Zhang Y, Wei Y, Zhang C, Lin H, He J, Wang J, Guo W, Li H, Chen Q, Zhou T, Xing Q, Liu Y, Chen J, Pan G. METTL3/METTL14 maintain human nucleoli integrity by mediating SUV39H1/H2 degradation. Nat Commun 2024; 15:7186. [PMID: 39169036 PMCID: PMC11339338 DOI: 10.1038/s41467-024-51742-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 08/14/2024] [Indexed: 08/23/2024] Open
Abstract
Nucleoli are fundamentally essential sites for ribosome biogenesis in cells and formed by liquid-liquid phase separation (LLPS) for a multilayer condensate structure. How the nucleoli integrity is maintained remains poorly understood. Here, we reveal that METTL3/METTL14, the typical methyltransferase complex catalyzing N6-methyladnosine (m6A) on mRNAs maintain nucleoli integrity in human embryonic stem cells (hESCs). METTL3/METTL14 deficiency impairs nucleoli and leads to the complete loss of self-renewal in hESCs. We further show that SUV39H1/H2 protein, the methyltransferases catalyzing H3K9me3 were dramatically elevated in METTL3/METTL14 deficient cells, which causes an accumulation and infiltration of H3K9me3 across the whole nucleolus and impairs the LLPS. Mechanistically, METTL3/METTL14 complex serves as an essential adapter for CRL4 E3 ubiquitin ligase targeting SUV39H1/H2 for polyubiquitination and proteasomal degradation and therefore prevents H3K9me3 accumulation in nucleoli. Together, these findings uncover a previously unknown role of METTL3/METTL14 to maintain nucleoli integrity by facilitating SUV39H1/H2 degradation in human cells.
Collapse
Affiliation(s)
- Yongli Shan
- Key Laboratory of Immune Response and Immunotherapy, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China.
- Nanfang Hospital, Southern Medical University, Guangzhou, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Center for Cell Lineage and Cell Therapy, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.
| | - Yanqi Zhang
- Key Laboratory of Immune Response and Immunotherapy, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Center for Cell Lineage and Cell Therapy, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yanxing Wei
- Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Cong Zhang
- Key Laboratory of Immune Response and Immunotherapy, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Center for Cell Lineage and Cell Therapy, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Huaisong Lin
- Key Laboratory of Immune Response and Immunotherapy, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Center for Cell Lineage and Cell Therapy, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | | | - Junwei Wang
- Key Laboratory of Immune Response and Immunotherapy, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Center for Cell Lineage and Cell Therapy, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Wenjing Guo
- Key Laboratory of Immune Response and Immunotherapy, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Center for Cell Lineage and Cell Therapy, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Heying Li
- Key Laboratory of Immune Response and Immunotherapy, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Center for Cell Lineage and Cell Therapy, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Qianyu Chen
- Key Laboratory of Immune Response and Immunotherapy, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Center for Cell Lineage and Cell Therapy, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Tiancheng Zhou
- Key Laboratory of Immune Response and Immunotherapy, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Center for Cell Lineage and Cell Therapy, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Qi Xing
- Key Laboratory of Immune Response and Immunotherapy, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Center for Cell Lineage and Cell Therapy, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yancai Liu
- Key Laboratory of Immune Response and Immunotherapy, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Center for Cell Lineage and Cell Therapy, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Jiekai Chen
- Key Laboratory of Immune Response and Immunotherapy, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Center for Cell Lineage and Cell Therapy, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Guangjin Pan
- Key Laboratory of Immune Response and Immunotherapy, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Center for Cell Lineage and Cell Therapy, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Chinese Academy of Sciences, Hong Kong, Hong Kong.
- GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.
| |
Collapse
|
17
|
Nacev BA, Dabas Y, Paul MR, Pacheco C, Mitchener M, Perez Y, Fang Y, Soshnev AA, Barrows D, Carroll T, Socci ND, St Jean SC, Tiwari S, Gruss MJ, Monette S, Tap WD, Garcia BA, Muir T, Allis CD. Cancer-associated Histone H3 N-terminal arginine mutations disrupt PRC2 activity and impair differentiation. Nat Commun 2024; 15:5155. [PMID: 38886411 PMCID: PMC11183192 DOI: 10.1038/s41467-024-49486-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 06/06/2024] [Indexed: 06/20/2024] Open
Abstract
Dysregulated epigenetic states are a hallmark of cancer and often arise from genetic alterations in epigenetic regulators. This includes missense mutations in histones, which, together with associated DNA, form nucleosome core particles. However, the oncogenic mechanisms of most histone mutations are unknown. Here, we demonstrate that cancer-associated histone mutations at arginines in the histone H3 N-terminal tail disrupt repressive chromatin domains, alter gene regulation, and dysregulate differentiation. We find that histone H3R2C and R26C mutants reduce transcriptionally repressive H3K27me3. While H3K27me3 depletion in cells expressing these mutants is exclusively observed on the minor fraction of histone tails harboring the mutations, the same mutants recurrently disrupt broad H3K27me3 domains in the chromatin context, including near developmentally regulated promoters. H3K27me3 loss leads to de-repression of differentiation pathways, with concordant effects between H3R2 and H3R26 mutants despite different proximity to the PRC2 substrate, H3K27. Functionally, H3R26C-expressing mesenchymal progenitor cells and murine embryonic stem cell-derived teratomas demonstrate impaired differentiation. Collectively, these data show that cancer-associated H3 N-terminal arginine mutations reduce PRC2 activity and disrupt chromatin-dependent developmental functions, a cancer-relevant phenotype.
Collapse
Affiliation(s)
- Benjamin A Nacev
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA.
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA.
- UPMC Hillman Cancer Center, Pittsburgh, PA, 15213, USA.
| | - Yakshi Dabas
- Laboratory of Chromatin Biology and Epigenetics, The Rockefeller University, New York, NY, 10065, USA
| | - Matthew R Paul
- Bioinformatics Resource Center, The Rockefeller University, New York, NY, 10065, USA
| | - Christian Pacheco
- Laboratory of Chromatin Biology and Epigenetics, The Rockefeller University, New York, NY, 10065, USA
| | - Michelle Mitchener
- Department of Chemistry, Princeton University, Princeton, NJ, 08544, USA
| | - Yekaterina Perez
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Yan Fang
- Laboratory of Chromatin Biology and Epigenetics, The Rockefeller University, New York, NY, 10065, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Alexey A Soshnev
- Laboratory of Chromatin Biology and Epigenetics, The Rockefeller University, New York, NY, 10065, USA
- Department of Neuroscience, Developmental and Regenerative Biology, The University of Texas at San Antonio, San Antonio, TX, 78249, USA
| | - Douglas Barrows
- Bioinformatics Resource Center, The Rockefeller University, New York, NY, 10065, USA
| | - Thomas Carroll
- Bioinformatics Resource Center, The Rockefeller University, New York, NY, 10065, USA
| | - Nicholas D Socci
- Bioinformatics Core, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Samantha C St Jean
- Laboratory of Comparative Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Sagarika Tiwari
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA, 15213, USA
| | - Michael J Gruss
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA, 15213, USA
| | - Sebastien Monette
- Laboratory of Comparative Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - William D Tap
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Benjamin A Garcia
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Tom Muir
- Department of Chemistry, Princeton University, Princeton, NJ, 08544, USA
| | - C David Allis
- Laboratory of Chromatin Biology and Epigenetics, The Rockefeller University, New York, NY, 10065, USA
| |
Collapse
|
18
|
Zhang C, Shan Y, Lin H, Zhang Y, Xing Q, Zhu J, Zhou T, Lin A, Chen Q, Wang J, Pan G. HBO1 determines SMAD action in pluripotency and mesendoderm specification. Nucleic Acids Res 2024; 52:4935-4949. [PMID: 38421638 PMCID: PMC11109972 DOI: 10.1093/nar/gkae158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/11/2024] [Accepted: 02/20/2024] [Indexed: 03/02/2024] Open
Abstract
TGF-β signaling family plays an essential role to regulate fate decisions in pluripotency and lineage specification. How the action of TGF-β family signaling is intrinsically executed remains not fully elucidated. Here, we show that HBO1, a MYST histone acetyltransferase (HAT) is an essential cell intrinsic determinant for TGF-β signaling in human embryonic stem cells (hESCs). HBO1-/- hESCs fail to response to TGF-β signaling to maintain pluripotency and spontaneously differentiate into neuroectoderm. Moreover, HBO1 deficient hESCs show complete defect in mesendoderm specification in BMP4-triggered gastruloids or teratomas. Molecularly, HBO1 interacts with SMAD4 and co-binds the open chromatin labeled by H3K14ac and H3K4me3 in undifferentiated hESCs. Upon differentiation, HBO1/SMAD4 co-bind and maintain the mesoderm genes in BMP4-triggered mesoderm cells while lose chromatin occupancy in neural cells induced by dual-SMAD inhibition. Our data reveal an essential role of HBO1, a chromatin factor to determine the action of SMAD in both human pluripotency and mesendoderm specification.
Collapse
Affiliation(s)
- Cong Zhang
- Key Laboratory of Immune Response and Immunotherapy, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530,China; Guangzhou Medical University, Guangzhou 511436, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Center for Cell Lineage and Cell Therapy, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530, China
- GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530, China
| | - Yongli Shan
- Key Laboratory of Immune Response and Immunotherapy, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530,China; Guangzhou Medical University, Guangzhou 511436, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Center for Cell Lineage and Cell Therapy, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530, China
- GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530, China
| | - Huaisong Lin
- Key Laboratory of Immune Response and Immunotherapy, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530,China; Guangzhou Medical University, Guangzhou 511436, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Center for Cell Lineage and Cell Therapy, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530, China
- GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530, China
| | - Yanqi Zhang
- Key Laboratory of Immune Response and Immunotherapy, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530,China; Guangzhou Medical University, Guangzhou 511436, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Center for Cell Lineage and Cell Therapy, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530, China
- GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530, China
| | - Qi Xing
- Key Laboratory of Immune Response and Immunotherapy, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530,China; Guangzhou Medical University, Guangzhou 511436, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Center for Cell Lineage and Cell Therapy, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530, China
- GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530, China
| | - Jinmin Zhu
- Key Laboratory of Immune Response and Immunotherapy, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530,China; Guangzhou Medical University, Guangzhou 511436, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Center for Cell Lineage and Cell Therapy, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530, China
- GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530, China
| | - Tiancheng Zhou
- Key Laboratory of Immune Response and Immunotherapy, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530,China; Guangzhou Medical University, Guangzhou 511436, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Center for Cell Lineage and Cell Therapy, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530, China
- GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530, China
| | - Aiping Lin
- Key Laboratory of Immune Response and Immunotherapy, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530,China; Guangzhou Medical University, Guangzhou 511436, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Center for Cell Lineage and Cell Therapy, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530, China
- GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530, China
| | - Qianyu Chen
- Key Laboratory of Immune Response and Immunotherapy, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530,China; Guangzhou Medical University, Guangzhou 511436, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Center for Cell Lineage and Cell Therapy, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530, China
- GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530, China
| | - Junwei Wang
- Key Laboratory of Immune Response and Immunotherapy, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530,China; Guangzhou Medical University, Guangzhou 511436, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Center for Cell Lineage and Cell Therapy, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530, China
- GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530, China
| | - Guangjin Pan
- Key Laboratory of Immune Response and Immunotherapy, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530,China; Guangzhou Medical University, Guangzhou 511436, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Chinese Academy of Sciences, Hong Kong
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Center for Cell Lineage and Cell Therapy, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530, China
- GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530, China
| |
Collapse
|
19
|
Bhattarai S, Hakkim FL, Day CA, Grigore F, Langfald A, Entin I, Hinchcliffe EH, Robinson JP. H3F3A K27M Mutations Drives a Repressive Transcriptome by Modulating Chromatin Accessibility, Independent of H3K27me3 in Diffuse Midline Glioma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.16.594522. [PMID: 38798502 PMCID: PMC11118475 DOI: 10.1101/2024.05.16.594522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Background Heterozygous histone H3.3K27M mutation is a primary oncogenic driver of Diffuse Midline Glioma (DMG). H3.3K27M inhibits the Polycomb Repressive Complex 2 (PRC2) methyltransferase complex, leading to a global reduction and redistributing of the repressive H3 lysine 27 tri-methylation. This rewiring of the epigenome is thought to promote gliomagenesis. Methods We established novel, isogenic DMG patient-derived cell lines that have been CRISPR-Cas9 edited to H3.3 WT or H3.3K27M alone and in combination with EZH2 and EZH1 co-deletion, inactivating PRC2 methyltransferase activity of PRC2 and eliminating H3K27me3. Results RNA-seq and ATAC-seq analysis of these cells revealed that K27M has a novel epigenetic effect that appears entirely independent of its effects on PRC2 function. While the loss of the PRC2 complex led to a systemic induction of gene expression (including HOX gene clusters) and upregulation of biological pathways, K27M led to a balanced gene deregulation but having an overall repressive effect on the biological pathways. Importantly, the genes uniquely deregulated by the K27M mutation, independent of methylation loss, are closely associated with changes in chromatin accessibility, with upregulated genes becoming more accessible. Notably, the PRC2- independent function of K27M appears necessary for tumorigenesis as xenografts of our H3.3K27M/EZH1/2 WT cells developed into tumors, while H3.3/EZH1/2 KO cells did not. Conclusion We demonstrate that K27M mutation alters chromatin accessibility and uniquely deregulates genes, independent of K27 methylation. We further show the mutation's role in altering biological pathways and its necessity for tumor development. Key Points We revealed genes regulated by H3.3K27M mutation and PRC2 in DMG.H3.3K27M mutation alters chromosome accessibility independent of H3K27me3.PRC2-independent effects of K27M mutation are crucial for tumor development. Importance of the Study This study is the first to demonstrate that H3F3A K27M mutations drive a repressive transcriptome by modulating chromatin accessibility independently of H3K27 trimethylation in Diffuse Midline Glioma (DMG). By isolating the effects of H3.3 K27me3 loss from those of the K27M mutation, we identified common and unique genes and pathways affected by each. We found that genes uniquely deregulated by K27M showed increased chromatin accessibility and upregulated gene expression, unlike other gene subsets affected by PRC2 knockout. Importantly, we determined the PRC2-independent function of K27M is also essential for tumorigenesis, as xenografts of H3.3 K27M/PRC2 WT cell lines formed tumors, while H3.3WT/PRC2 WT and K27M/PRC2 knockout cells did not. This research builds upon and advances prior studies, such as those identifying EZH2 as a therapeutic target in H3.3K27M DMGs, by revealing critical new pathways for gliomagenesis. The translational significance lies in identifying novel therapeutic targets against this aggressive pediatric cancer.
Collapse
|
20
|
Guo P, Lim RC, Rajawasam K, Trinh T, Sun H, Zhang H. A methylation-phosphorylation switch controls EZH2 stability and hematopoiesis. eLife 2024; 13:e86168. [PMID: 38346162 PMCID: PMC10901513 DOI: 10.7554/elife.86168] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 02/11/2024] [Indexed: 02/29/2024] Open
Abstract
The Polycomb Repressive Complex 2 (PRC2) methylates H3K27 to regulate development and cell fate by transcriptional silencing. Alteration of PRC2 is associated with various cancers. Here, we show that mouse Kdm1a deletion causes a dramatic reduction of PRC2 proteins, whereas mouse null mutation of L3mbtl3 or Dcaf5 results in PRC2 accumulation and increased H3K27 trimethylation. The catalytic subunit of PRC2, EZH2, is methylated at lysine 20 (K20), promoting EZH2 proteolysis by L3MBTL3 and the CLR4DCAF5 ubiquitin ligase. KDM1A (LSD1) demethylates the methylated K20 to stabilize EZH2. K20 methylation is inhibited by AKT-mediated phosphorylation of serine 21 in EZH2. Mouse Ezh2K20R/K20R mutants develop hepatosplenomegaly associated with high GFI1B expression, and Ezh2K20R/K20R mutant bone marrows expand hematopoietic stem cells and downstream hematopoietic populations. Our studies reveal that EZH2 is regulated by methylation-dependent proteolysis, which is negatively controlled by AKT-mediated S21 phosphorylation to establish a methylation-phosphorylation switch to regulate the PRC2 activity and hematopoiesis.
Collapse
Affiliation(s)
- Pengfei Guo
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Las Vegas, United States
| | - Rebecca C Lim
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Las Vegas, United States
| | - Keshari Rajawasam
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Las Vegas, United States
| | - Tiffany Trinh
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Las Vegas, United States
| | - Hong Sun
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Las Vegas, United States
| | - Hui Zhang
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Las Vegas, United States
| |
Collapse
|
21
|
Zhang J, Wang T, Shi R, Zhao Y, Zhang Y, Zhang C, Xing Q, Zhou T, Shan Y, Yao H, Zhang X, Pan G. YTHDF1 facilitates PRC1-mediated H2AK119ub in human ES cells. J Cell Physiol 2024; 239:152-165. [PMID: 37991435 DOI: 10.1002/jcp.31152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 09/25/2023] [Accepted: 10/18/2023] [Indexed: 11/23/2023]
Abstract
Polycomb repressive complexes (PRCs) play critical roles in cell fate decisions during normal development as well as disease progression through mediating histone modifications such as H3K27me3 and H2AK119ub. How exactly PRCs recruited to chromatin remains to be fully illuminated. Here, we report that YTHDF1, the N6-methyladenine (m6 A) RNA reader that was previously known to be mainly cytoplasmic, associates with RNF2, a PRC1 protein that mediates H2AK119ub in human embryonic stem cells (hESCs). A portion of YTHDF1 localizes in the nuclei and associates with RNF2/H2AK119ub on a subset of gene loci related to neural development functions. Knock-down YTHDF1 attenuates H2AK119ub modification on these genes and promotes neural differentiation in hESCs. Our findings provide a noncanonical mechanism that YTHDF1 participates in PRC1 functions in hESCs.
Collapse
Affiliation(s)
- Jingyuan Zhang
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Department of Basic Science Research, Guangzhou Laboratory, Guangzhou, China
| | - Tianyu Wang
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Ruona Shi
- University of Chinese Academy of Sciences, Beijing, China
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
| | - Yuan Zhao
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yanqi Zhang
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Cong Zhang
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Qi Xing
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Tiancheng Zhou
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yongli Shan
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Hongjie Yao
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Department of Basic Science Research, Guangzhou Laboratory, Guangzhou, China
| | - Xiaofei Zhang
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Guangjin Pan
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
22
|
Xu L, Wang Y, Wang G, Guo S, Yu D, Feng Q, Hu K, Chen G, Li B, Xu Z, Jia X, Lu Y, Zhang H, Gao X, Chang S, Wang H, Wu X, Song D, Yang G, Zhu H, Zhou J, Zhan F, Zhu W, Shi J. Aberrant activation of TRIP13-EZH2 signaling axis promotes stemness and therapy resistance in multiple myeloma. Leukemia 2023; 37:1576-1579. [PMID: 37157015 DOI: 10.1038/s41375-023-01925-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 04/24/2023] [Accepted: 04/28/2023] [Indexed: 05/10/2023]
Affiliation(s)
- Li Xu
- Department of Hematology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Yingcong Wang
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Guanli Wang
- Department of Hematology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Shushan Guo
- Department of Hematology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Dandan Yu
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Qilin Feng
- Department of Hematology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Ke Hu
- Department of Hematology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Gege Chen
- Department of Hematology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Bo Li
- CAS Key Laboratory of Receptor Research; State Key Laboratory of Drug Research; Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Zhijian Xu
- CAS Key Laboratory of Receptor Research; State Key Laboratory of Drug Research; Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Xinyan Jia
- Department of Hematology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Yumeng Lu
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Hui Zhang
- Department of Hematology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Xuejie Gao
- Department of Hematology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Shuaikang Chang
- Department of Hematology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Huaping Wang
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Xiaosong Wu
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Dongliang Song
- Department of Hematology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Guang Yang
- Department of Hematology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Huabin Zhu
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Jinfeng Zhou
- Department of Hematology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Fenghuang Zhan
- Myeloma Center, Winthrop P. Rockefeller Cancer Institute, Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Weiliang Zhu
- CAS Key Laboratory of Receptor Research; State Key Laboratory of Drug Research; Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Jumei Shi
- Department of Hematology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China.
| |
Collapse
|
23
|
Sullivan AE. Epigenetic Control of Cell Potency and Fate Determination during Mammalian Gastrulation. Genes (Basel) 2023; 14:1143. [PMID: 37372324 PMCID: PMC10298296 DOI: 10.3390/genes14061143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/18/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
Pluripotent embryonic stem cells have a unique and characteristic epigenetic profile, which is critical for differentiation to all embryonic germ lineages. When stem cells exit the pluripotent state and commit to lineage-specific identities during the process of gastrulation in early embryogenesis, extensive epigenetic remodelling mediates both the switch in cellular programme and the loss of potential to adopt alternative lineage programmes. However, it remains to be understood how the stem cell epigenetic profile encodes pluripotency, or how dynamic epigenetic regulation helps to direct cell fate specification. Recent advances in stem cell culture techniques, cellular reprogramming, and single-cell technologies that can quantitatively profile epigenetic marks have led to significant insights into these questions, which are important for understanding both embryonic development and cell fate engineering. This review provides an overview of key concepts and highlights exciting new advances in the field.
Collapse
Affiliation(s)
- Adrienne E. Sullivan
- Quantitative Stem Cell Biology Lab, Francis Crick Institute, London NW1 1AT, UK;
- Adelaide Centre for Epigenetics, School of Biomedicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide 5000, Australia
- South Australian immunoGENomics Cancer Institute (SAiGENCI), Faculty of Health and Medical Sciences, University of Adelaide, Adelaide 5000, Australia
| |
Collapse
|
24
|
Meers MP, Llagas G, Janssens DH, Codomo CA, Henikoff S. Multifactorial profiling of epigenetic landscapes at single-cell resolution using MulTI-Tag. Nat Biotechnol 2023; 41:708-716. [PMID: 36316484 PMCID: PMC10188359 DOI: 10.1038/s41587-022-01522-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/21/2022] [Indexed: 11/09/2022]
Abstract
Chromatin profiling at locus resolution uncovers gene regulatory features that define cell types and developmental trajectories, but it remains challenging to map and compare different chromatin-associated proteins in the same sample. Here we describe Multiple Target Identification by Tagmentation (MulTI-Tag), an antibody barcoding approach for profiling multiple chromatin features simultaneously in single cells. We optimized MulTI-Tag to retain high sensitivity and specificity, and we demonstrate detection of up to three histone modifications in the same cell: H3K27me3, H3K4me1/2 and H3K36me3. We apply MulTI-Tag to resolve distinct cell types and developmental trajectories; to distinguish unique, coordinated patterns of active and repressive element regulatory usage associated with differentiation outcomes; and to uncover associations between histone marks. Multifactorial epigenetic profiling holds promise for comprehensively characterizing cell-specific gene regulatory landscapes in development and disease.
Collapse
Affiliation(s)
- Michael P Meers
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Geneva Llagas
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Derek H Janssens
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Christine A Codomo
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Steven Henikoff
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
25
|
Yu Y, Li X, Jiao R, Lu Y, Jiang X, Li X. H3K27me3-H3K4me1 transition at bivalent promoters instructs lineage specification in development. Cell Biosci 2023; 13:66. [PMID: 36991495 DOI: 10.1186/s13578-023-01017-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 03/20/2023] [Indexed: 03/31/2023] Open
Abstract
BACKGROUND Bivalent genes, of which promoters are marked by both H3K4me3 (trimethylation of histone H3 on lysine 4) and H3K27me3 (trimethylation of histone H3 on lysine 27), play critical roles in development and tumorigenesis. Monomethylation on lysine 4 of histone H3 (H3K4me1) is commonly associated with enhancers, but H3K4me1 is also present at promoter regions as an active bimodal or a repressed unimodal pattern. Whether the co-occurrence of H3K4me1 and bivalent marks at promoters plays regulatory role in development is largely unknown. RESULTS We report that in the process of lineage differentiation, bivalent promoters undergo H3K27me3-H3K4me1 transition, the loss of H3K27me3 accompanies by bimodal pattern loss or unimodal pattern enrichment of H3K4me1. More importantly, this transition regulates tissue-specific gene expression to orchestrate the development. Furthermore, knockout of Eed (Embryonic Ectoderm Development) or Suz12 (Suppressor of Zeste 12) in mESCs (mouse embryonic stem cells), the core components of Polycomb repressive complex 2 (PRC2) which catalyzes H3K27 trimethylation, generates an artificial H3K27me3-H3K4me1 transition at partial bivalent promoters, which leads to up-regulation of meso-endoderm related genes and down-regulation of ectoderm related genes, thus could explain the observed neural ectoderm differentiation failure upon retinoic acid (RA) induction. Finally, we find that lysine-specific demethylase 1 (LSD1) interacts with PRC2 and contributes to the H3K27me3-H3K4me1 transition in mESCs. CONCLUSIONS These findings suggest that H3K27me3-H3K4me1 transition plays a key role in lineage differentiation by regulating the expression of tissue specific genes, and H3K4me1 pattern in bivalent promoters could be modulated by LSD1 via interacting with PRC2.
Collapse
Affiliation(s)
- Yue Yu
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Xinjie Li
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Rui Jiao
- The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Yang Lu
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Xuan Jiang
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China.
| | - Xin Li
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China.
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China.
| |
Collapse
|
26
|
Glutamine Metabolism in Cancer Stem Cells: A Complex Liaison in the Tumor Microenvironment. Int J Mol Sci 2023; 24:ijms24032337. [PMID: 36768660 PMCID: PMC9916789 DOI: 10.3390/ijms24032337] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/19/2023] [Accepted: 01/21/2023] [Indexed: 01/26/2023] Open
Abstract
In this review we focus on the role of glutamine in control of cancer stem cell (CSC) fate. We first provide an overview of glutamine metabolism, and then summarize relevant studies investigating how glutamine metabolism modulates the CSC compartment, concentrating on solid tumors. We schematically describe how glutamine in CSC contributes to several metabolic pathways, such as redox metabolic pathways, ATP production, non-essential aminoacids and nucleotides biosynthesis, and ammonia production. Furthermore, we show that glutamine metabolism is a key regulator of epigenetic modifications in CSC. Finally, we briefly discuss how cancer-associated fibroblasts, adipocytes, and senescent cells in the tumor microenvironment may indirectly influence CSC fate by modulating glutamine availability. We aim to highlight the complexity of glutamine's role in CSC, which supports our knowledge about metabolic heterogeneity within the CSC population.
Collapse
|
27
|
Zhang C, Lin H, Zhang Y, Xing Q, Zhang J, Zhang D, Liu Y, Chen Q, Zhou T, Wang J, Shan Y, Pan G. BRPF1 bridges H3K4me3 and H3K23ac in human embryonic stem cells and is essential to pluripotency. iScience 2023; 26:105939. [PMID: 36711238 PMCID: PMC9874078 DOI: 10.1016/j.isci.2023.105939] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 10/04/2022] [Accepted: 01/04/2023] [Indexed: 01/07/2023] Open
Abstract
Post-translational modifications (PTMs) on histones play essential roles in cell fate decisions during development. However, how these PTMs are recognized and coordinated remains to be fully illuminated. Here, we show that BRPF1, a multi-histone binding module protein, is essential for pluripotency in human embryonic stem cells (ESCs). BRPF1, H3K4me3, and H3K23ac substantially co-occupy the open chromatin and stemness genes in hESCs. BRPF1 deletion impairs H3K23ac in hESCs and leads to closed chromatin accessibility on stemness genes and hESC differentiation as well. Deletion of the N terminal or PHD-zinc knuckle-PHD (PZP) module in BRPF1 completely impairs its functions in hESCs while PWWP module deletion partially impacts the function. In sum, we reveal BRPF1, the multi-histone binding module protein that bridges the crosstalk between different histone modifications in hESCs to maintain pluripotency.
Collapse
Affiliation(s)
- Cong Zhang
- CAS Key Laboratory of Regenerative Biology, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China,University of Chinese Academy of Sciences, Beijing 100049, China,CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Huaisong Lin
- CAS Key Laboratory of Regenerative Biology, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China,CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Yanqi Zhang
- CAS Key Laboratory of Regenerative Biology, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China,University of Chinese Academy of Sciences, Beijing 100049, China,CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Qi Xing
- CAS Key Laboratory of Regenerative Biology, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China,University of Chinese Academy of Sciences, Beijing 100049, China,CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Jingyuan Zhang
- CAS Key Laboratory of Regenerative Biology, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China,University of Chinese Academy of Sciences, Beijing 100049, China,CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Di Zhang
- CAS Key Laboratory of Regenerative Biology, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China,University of Chinese Academy of Sciences, Beijing 100049, China,CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Yancai Liu
- CAS Key Laboratory of Regenerative Biology, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China,Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Qianyu Chen
- CAS Key Laboratory of Regenerative Biology, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China,CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Tiancheng Zhou
- CAS Key Laboratory of Regenerative Biology, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China,CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Junwei Wang
- CAS Key Laboratory of Regenerative Biology, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China,CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Yongli Shan
- CAS Key Laboratory of Regenerative Biology, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China,CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China,Corresponding author
| | - Guangjin Pan
- CAS Key Laboratory of Regenerative Biology, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China,University of Chinese Academy of Sciences, Beijing 100049, China,CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China,Key Lab for Rare & Uncommon Diseases of Shandong Province, Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji’nan, Shandong 250117, China,Corresponding author
| |
Collapse
|
28
|
Furlan G, Huyghe A, Combémorel N, Lavial F. Molecular versatility during pluripotency progression. Nat Commun 2023; 14:68. [PMID: 36604434 PMCID: PMC9814743 DOI: 10.1038/s41467-022-35775-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 12/22/2022] [Indexed: 01/07/2023] Open
Abstract
A challenge during development is to ensure lineage segregation while preserving plasticity. Using pluripotency progression as a paradigm, we review how developmental transitions are coordinated by redeployments, rather than global resettings, of cellular components. We highlight how changes in response to extrinsic cues (FGF, WNT, Activin/Nodal, Netrin-1), context- and stoichiometry-dependent action of transcription factors (Oct4, Nanog) and reconfigurations of epigenetic regulators (enhancers, promoters, TrxG, PRC) may confer robustness to naïve to primed pluripotency transition. We propose the notion of Molecular Versatility to regroup mechanisms by which molecules are repurposed to exert different, sometimes opposite, functions in close stem cell configurations.
Collapse
Affiliation(s)
- Giacomo Furlan
- Cellular reprogramming, stem cells and oncogenesis laboratory - Equipe labellisée La Ligue Contre le Cancer - LabEx Dev2Can - Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, 69008, France
- Lunenfeld-Tanenbaum Research Institute, University of Toronto, Toronto, ON, Canada
| | - Aurélia Huyghe
- Cellular reprogramming, stem cells and oncogenesis laboratory - Equipe labellisée La Ligue Contre le Cancer - LabEx Dev2Can - Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, 69008, France
| | - Noémie Combémorel
- Cellular reprogramming, stem cells and oncogenesis laboratory - Equipe labellisée La Ligue Contre le Cancer - LabEx Dev2Can - Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, 69008, France
| | - Fabrice Lavial
- Cellular reprogramming, stem cells and oncogenesis laboratory - Equipe labellisée La Ligue Contre le Cancer - LabEx Dev2Can - Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, 69008, France.
| |
Collapse
|
29
|
Brocchetti S, Conforti P. Differentiation of hPSCs to Study PRC2 Role in Cell-Fate Specification and Neurodevelopment. Methods Mol Biol 2023; 2655:211-220. [PMID: 37212999 DOI: 10.1007/978-1-0716-3143-0_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Several studies highlighted the importance of the polycomb repressive complex 2 (PRC2) already at the beginning of development. Although the crucial function of PRC2 in regulating lineage commitment and cell-fate specification has been well-established, the in vitro study of the exact mechanisms for which H3K27me3 is indispensable for proper differentiation is still challenging. In this chapter, we report a well-established and reproducible differentiation protocol to generate striatal medium spiny neurons as a tool to explore PRC2 role in brain development.
Collapse
Affiliation(s)
| | - Paola Conforti
- Laboratory of Stem Cell Biology and Pharmacology of Neurodegenerative Diseases, Department of Biosciences, University of Milan and INGM, Istituto Nazionale di Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy.
| |
Collapse
|
30
|
Macrae TA, Fothergill-Robinson J, Ramalho-Santos M. Regulation, functions and transmission of bivalent chromatin during mammalian development. Nat Rev Mol Cell Biol 2023; 24:6-26. [PMID: 36028557 DOI: 10.1038/s41580-022-00518-2] [Citation(s) in RCA: 85] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2022] [Indexed: 12/25/2022]
Abstract
Cells differentiate and progress through development guided by a dynamic chromatin landscape that mediates gene expression programmes. During development, mammalian cells display a paradoxical chromatin state: histone modifications associated with gene activation (trimethylated histone H3 Lys4 (H3K4me3)) and with gene repression (trimethylated H3 Lys27 (H3K27me3)) co-occur at promoters of developmental genes. This bivalent chromatin modification state is thought to poise important regulatory genes for expression or repression during cell-lineage specification. In this Review, we discuss recent work that has expanded our understanding of the molecular basis of bivalent chromatin and its contributions to mammalian development. We describe the factors that establish bivalency, especially histone-lysine N-methyltransferase 2B (KMT2B) and Polycomb repressive complex 2 (PRC2), and consider evidence indicating that PRC1 shapes bivalency and may contribute to its transmission between generations. We posit that bivalency is a key feature of germline and embryonic stem cells, as well as other types of stem and progenitor cells. Finally, we discuss the relevance of bivalent chromtin to human development and cancer, and outline avenues of future research.
Collapse
Affiliation(s)
- Trisha A Macrae
- Medical Scientist Training Program, University of California, San Francisco, San Francisco, CA, USA.
| | - Julie Fothergill-Robinson
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Miguel Ramalho-Santos
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada.
| |
Collapse
|
31
|
Epigenetic factor competition reshapes the EMT landscape. Proc Natl Acad Sci U S A 2022; 119:e2210844119. [PMID: 36215492 PMCID: PMC9586264 DOI: 10.1073/pnas.2210844119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The emergence of and transitions between distinct phenotypes in isogenic cells can be attributed to the intricate interplay of epigenetic marks, external signals, and gene-regulatory elements. These elements include chromatin remodelers, histone modifiers, transcription factors, and regulatory RNAs. Mathematical models known as gene-regulatory networks (GRNs) are an increasingly important tool to unravel the workings of such complex networks. In such models, epigenetic factors are usually proposed to act on the chromatin regions directly involved in the expression of relevant genes. However, it has been well-established that these factors operate globally and compete with each other for targets genome-wide. Therefore, a perturbation of the activity of a regulator can redistribute epigenetic marks across the genome and modulate the levels of competing regulators. In this paper, we propose a conceptual and mathematical modeling framework that incorporates both local and global competition effects between antagonistic epigenetic regulators, in addition to local transcription factors, and show the counterintuitive consequences of such interactions. We apply our approach to recent experimental findings on the epithelial-mesenchymal transition (EMT). We show that it can explain the puzzling experimental data, as well as provide verifiable predictions.
Collapse
|
32
|
Kong X, Yan K, Deng P, Fu H, Sun H, Huang W, Jiang S, Dai J, Zhang QC, Liu JJG, Xi Q. LncRNA-Smad7 mediates cross-talk between Nodal/TGF-β and BMP signaling to regulate cell fate determination of pluripotent and multipotent cells. Nucleic Acids Res 2022; 50:10526-10543. [PMID: 36134711 PMCID: PMC9561265 DOI: 10.1093/nar/gkac780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 08/14/2022] [Accepted: 09/01/2022] [Indexed: 11/12/2022] Open
Abstract
Transforming growth factor β (TGF-β) superfamily proteins are potent regulators of cellular development and differentiation. Nodal/Activin/TGF-β and BMP ligands are both present in the intra- and extracellular milieu during early development, and cross-talk between these two branches of developmental signaling is currently the subject of intense research focus. Here, we show that the Nodal induced lncRNA-Smad7 regulates cell fate determination via repression of BMP signaling in mouse embryonic stem cells (mESCs). Depletion of lncRNA-Smad7 dramatically impairs cardiomyocyte differentiation in mESCs. Moreover, lncRNA-Smad7 represses Bmp2 expression through binding with the Bmp2 promoter region via (CA)12-repeats that forms an R-loop. Importantly, Bmp2 knockdown rescues defects in cardiomyocyte differentiation induced by lncRNA-Smad7 knockdown. Hence, lncRNA-Smad7 antagonizes BMP signaling in mESCs, and similarly regulates cell fate determination between osteocyte and myocyte formation in C2C12 mouse myoblasts. Moreover, lncRNA-Smad7 associates with hnRNPK in mESCs and hnRNPK binds at the Bmp2 promoter, potentially contributing to Bmp2 expression repression. The antagonistic effects between Nodal/TGF-β and BMP signaling via lncRNA-Smad7 described in this work provides a framework for understanding cell fate determination in early development.
Collapse
Affiliation(s)
- Xiaohui Kong
- MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Kun Yan
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Pujuan Deng
- School of Life Sciences, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing 100084, China
| | - Haipeng Fu
- MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Hongyao Sun
- Joint Graduate Program of Peking-Tsinghua-NIBS, Tsinghua University, Beijing 100084, China
| | - Wenze Huang
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China.,MOE Key Laboratory of Bioinformatics, Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Shuangying Jiang
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Junbiao Dai
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Qiangfeng Cliff Zhang
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China.,MOE Key Laboratory of Bioinformatics, Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jun-Jie Gogo Liu
- School of Life Sciences, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing 100084, China
| | - Qiaoran Xi
- MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
33
|
Sasaki N, Hirano K, Shichi Y, Itakura Y, Ishiwata T, Toyoda M. PRC2-dependent regulation of ganglioside expression during dedifferentiation contributes to the proliferation and migration of vascular smooth muscle cells. Front Cell Dev Biol 2022; 10:1003349. [PMID: 36313564 PMCID: PMC9606594 DOI: 10.3389/fcell.2022.1003349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 09/30/2022] [Indexed: 11/13/2022] Open
Abstract
Phenotypic switching between contractile (differentiated state) and proliferative (dedifferentiated state) vascular smooth muscle cells (VSMCs) is a hallmark of vascular remodeling that contributes to atherosclerotic diseases. Gangliosides, a group of glycosphingolipids, have been detected in atherosclerotic lesions and are suspected to contribute to the disease process. However, the underlying mechanism, specifically with respect to their role in VSMC phenotype switching, is not clear. In this study, we sought to reveal the endogenous expression of gangliosides and their functional significance in VSMCs during atherosclerosis. We found that switching from the contractile to proliferative phenotype was accompanied by upregulation of a- and b-series gangliosides, which in turn, were regulated by polycomb repressor complex 2 (PRC2). Downregulation of ganglioside expression using an siRNA targeting ST3GAL5, which is required for the synthesis of a- and b-series gangliosides, attenuated the proliferation and migration of dedifferentiated VSMCs. Therefore, we concluded that the increased expression of a- and b-series gangliosides via PRC2 activity during dedifferentiation is involved in the proliferation and migration of VSMCs. Gangliosides may be an effective target in VSMCs for atherosclerosis prevention and treatment.
Collapse
Affiliation(s)
- Norihiko Sasaki
- Department of Geriatric Medicine (Vascular Medicine), Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
- *Correspondence: Norihiko Sasaki, ; Masashi Toyoda,
| | - Kazumi Hirano
- Molecular Neurophysiology Research Group, Biomedical Research Institute, The National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki, Japan
| | - Yuuki Shichi
- Division of Aging and Carcinogenesis, Research Team for Geriatric Pathology, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Yoko Itakura
- Department of Geriatric Medicine (Vascular Medicine), Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Toshiyuki Ishiwata
- Division of Aging and Carcinogenesis, Research Team for Geriatric Pathology, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Masashi Toyoda
- Department of Geriatric Medicine (Vascular Medicine), Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
- *Correspondence: Norihiko Sasaki, ; Masashi Toyoda,
| |
Collapse
|
34
|
Lan X, Ding S, Zhang T, Yi Y, Li C, Jin W, Chen J, Liang K, Wang H, Jiang W. PCGF6 controls neuroectoderm specification of human pluripotent stem cells by activating SOX2 expression. Nat Commun 2022; 13:4601. [PMID: 35933409 PMCID: PMC9357003 DOI: 10.1038/s41467-022-32295-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 07/25/2022] [Indexed: 11/28/2022] Open
Abstract
Polycomb group (PcG) proteins are known to repress developmental genes during embryonic development and tissue homeostasis. Here, we report that PCGF6 controls neuroectoderm specification of human pluripotent stem cells (PSCs) by activating SOX2 gene. Human PSCs with PCGF6 depletion display impaired neuroectoderm differentiation coupled with increased mesendoderm outcomes. Transcriptome analysis reveals that de-repression of the WNT/β-catenin signaling pathway is responsible for the differentiation of PSC toward the mesendodermal lineage. Interestingly, PCGF6 and MYC directly interact and co-occupy a distal regulatory element of SOX2 to activate SOX2 expression, which likely accounts for the regulation in neuroectoderm differentiation. Supporting this notion, genomic deletion of the SOX2-regulatory element phenocopies the impaired neuroectoderm differentiation, while overexpressing SOX2 rescues the neuroectoderm phenotype caused by PCGF6-depletion. Together, our study reveals that PCGF6 can function as lineage switcher between mesendoderm and neuroectoderm in human PSCs by both suppression and activation mechanisms.
Collapse
Affiliation(s)
- Xianchun Lan
- Department of Biological Repositories, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, RNA Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| | - Song Ding
- Department of Biological Repositories, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, RNA Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| | - Tianzhe Zhang
- Department of Biological Repositories, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, RNA Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| | - Ying Yi
- Department of Biological Repositories, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, RNA Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| | - Conghui Li
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Wenwen Jin
- Department of Biological Repositories, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, RNA Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| | - Jian Chen
- Chinese Institute for Brain Research (Beijing), Research Unit of Medical Neurobiology, Chinese Academy of Medical Sciences, 102206, Beijing, China
| | - Kaiwei Liang
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Hengbin Wang
- Department of Internal Medicine, Division of Hematology, Oncology, and Palliative Care, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Wei Jiang
- Department of Biological Repositories, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, RNA Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China.
- Human Genetics Resource Preservation Center of Wuhan University, Wuhan, China.
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China.
| |
Collapse
|
35
|
Zhang SF, Dai SK, Du HZ, Wang H, Li XG, Tang Y, Liu CM. The epigenetic state of EED-Gli3-Gli1 regulatory axis controls embryonic cortical neurogenesis. Stem Cell Reports 2022; 17:2064-2080. [PMID: 35931079 PMCID: PMC9481917 DOI: 10.1016/j.stemcr.2022.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 11/16/2022] Open
Abstract
Mutations in the embryonic ectoderm development (EED) cause Weaver syndrome, but whether and how EED affects embryonic brain development remains elusive. Here, we generated a mouse model in which Eed was deleted in the forebrain to investigate the role of EED. We found that deletion of Eed decreased the number of upper-layer neurons but not deeper-layer neurons starting at E16.5. Transcriptomic and genomic occupancy analyses revealed that the epigenetic states of a group of cortical neurogenesis-related genes were altered in Eed knockout forebrains, followed by a decrease of H3K27me3 and an increase of H3K27ac marks within the promoter regions. The switching of H3K27me3 to H3K27ac modification promoted the recruitment of RNA-Pol2, thereby enhancing its expression level. The small molecule activator SAG or Ptch1 knockout for activating Hedgehog signaling can partially rescue aberrant cortical neurogenesis. Taken together, we proposed a novel EED-Gli3-Gli1 regulatory axis that is critical for embryonic brain development.
Collapse
Affiliation(s)
- Shuang-Feng Zhang
- School of Life Sciences, University of Science and Technology of China, Hefei 230027, China; State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Shang-Kun Dai
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Hong-Zhen Du
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Hui Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Xing-Guo Li
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
| | - Yi Tang
- Department of Neurology, Innovation Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, Beijing 100053, China.
| | - Chang-Mei Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China.
| |
Collapse
|
36
|
Kurniawan F, Prasanth SG. A BEN-domain protein and polycomb complex work coordinately to regulate transcription. Transcription 2022; 13:82-87. [PMID: 35904285 PMCID: PMC9467525 DOI: 10.1080/21541264.2022.2105128] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022] Open
Abstract
Transcription regulation is an important mechanism that controls pluripotency and differentiation. Transcription factors dictate cell fate decisions by functioning cooperatively with chromatin regulators. We have recently demonstrated that BEND3 (BANP, E5R and Nac1 domain) protein regulates the expression of differentiation-associated genes by modulating the chromatin architecture at promoters. We highlight the collaboration of BEND3 with the polycomb repressive complex in coordinating transcription repression and propose a model highlighting the relevance of the BEND3-PRC2 axis in gene regulation and chromatin organization.Abbreviations: BEND3, BANP, E5R and Nac1 domain; rDNA, ribosomal DNA; PRC2, Polycomb Repressive Complex 2; H3K27me3, Histone H3 Lysine 27 methylation; PcG, Polycomb group.
Collapse
Affiliation(s)
- Fredy Kurniawan
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL,USA
| | - Supriya G Prasanth
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL,USA
| |
Collapse
|
37
|
Lian WS, Wu RW, Ko JY, Chen YS, Wang SY, Yu CP, Jahr H, Wang FS. Histone H3K27 demethylase UTX compromises articular chondrocyte anabolism and aggravates osteoarthritic degeneration. Cell Death Dis 2022; 13:538. [PMID: 35676242 PMCID: PMC9178009 DOI: 10.1038/s41419-022-04985-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/24/2022] [Accepted: 05/26/2022] [Indexed: 01/21/2023]
Abstract
Epigenome alteration in chondrocytes correlates with osteoarthritis (OA) development. H3K27me3 demethylase UTX regulates tissue homeostasis and deterioration, while its role was not yet studied in articulating joint tissue in situ. We now uncovered that increased UTX and H3K27me3 expression in articular chondrocytes positively correlated with human knee OA. Forced UTX expression upregulated the H3K27me3 enrichment at transcription factor Sox9 promoter, inhibiting key extracellular matrix molecules collagen II, aggrecan, and glycosaminoglycan in articular chondrocytes. Utx overexpression in knee joints aggravated the signs of OA, including articular cartilage damage, synovitis, osteophyte formation, and subchondral bone loss in mice. Chondrocyte-specific Utx knockout mice developed thicker articular cartilage than wild-type mice and showed few gonarthrotic symptoms during destabilized medial meniscus- and collagenase-induced joint injury. In vitro, Utx loss changed H3K27me3-binding epigenomic landscapes, which contributed to mitochondrial activity, cellular senescence, and cartilage development. Insulin-like growth factor 2 (Igf2) and polycomb repressive complex 2 (PRC2) core components Eed and Suz12 were, among others, functional target genes of Utx. Specifically, Utx deletion promoted Tfam transcription, mitochondrial respiration, ATP production and Igf2 transcription but inhibited Eed and Suz12 expression. Igf2 blockade or forced Eed or Suz12 expression increased H3K27 trimethylation and H3K27me3 enrichment at Sox9 promoter, compromising Utx loss-induced extracellular matrix overproduction. Taken together, UTX repressed articular chondrocytic activity, accelerating cartilage loss during OA. Utx loss promoted cartilage integrity through epigenetic stimulation of mitochondrial biogenesis and Igf2 transcription. This study highlighted a novel noncanonical role of Utx, in concert with PRC2 core components, in controlling H3K27 trimethylation and articular chondrocyte anabolism and OA development.
Collapse
Affiliation(s)
- Wei-Shiung Lian
- grid.145695.a0000 0004 1798 0922Core Laboratory for Phenomics and Diagnostics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan ,grid.145695.a0000 0004 1798 0922Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan ,grid.145695.a0000 0004 1798 0922Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Re-Wen Wu
- grid.145695.a0000 0004 1798 0922Department of Orthopedic Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Jih-Yang Ko
- grid.145695.a0000 0004 1798 0922Department of Orthopedic Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yu-Shan Chen
- grid.145695.a0000 0004 1798 0922Core Laboratory for Phenomics and Diagnostics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan ,grid.145695.a0000 0004 1798 0922Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan ,grid.145695.a0000 0004 1798 0922Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Shao-Yu Wang
- grid.145695.a0000 0004 1798 0922Core Laboratory for Phenomics and Diagnostics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan ,grid.145695.a0000 0004 1798 0922Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan ,grid.145695.a0000 0004 1798 0922Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chun-Ping Yu
- grid.506939.0Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Holger Jahr
- grid.412301.50000 0000 8653 1507Department of Anatomy and Cell Biology, University Hospital RWTH Aachen, Aachen, Germany ,grid.412966.e0000 0004 0480 1382Department of Orthopedic Surgery, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Feng-Sheng Wang
- grid.145695.a0000 0004 1798 0922Core Laboratory for Phenomics and Diagnostics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan ,grid.145695.a0000 0004 1798 0922Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan ,grid.145695.a0000 0004 1798 0922Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| |
Collapse
|
38
|
PRC2 shields the potency of human stem cells. Nat Cell Biol 2022; 24:806-808. [PMID: 35697784 DOI: 10.1038/s41556-022-00937-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
39
|
Integrated multi-omics reveal polycomb repressive complex 2 restricts human trophoblast induction. Nat Cell Biol 2022; 24:858-871. [PMID: 35697783 PMCID: PMC9203278 DOI: 10.1038/s41556-022-00932-w] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 05/05/2022] [Indexed: 12/19/2022]
Abstract
Human naive pluripotent stem cells have unrestricted lineage potential. Underpinning this property, naive cells are thought to lack chromatin-based lineage barriers. However, this assumption has not been tested. Here we define the chromatin-associated proteome, histone post-translational modifications and transcriptome of human naive and primed pluripotent stem cells. Our integrated analysis reveals differences in the relative abundance and activities of distinct chromatin modules. We identify a strong enrichment of polycomb repressive complex 2 (PRC2)-associated H3K27me3 in the chromatin of naive pluripotent stem cells and H3K27me3 enrichment at promoters of lineage-determining genes, including trophoblast regulators. PRC2 activity acts as a chromatin barrier restricting the differentiation of naive cells towards the trophoblast lineage, whereas inhibition of PRC2 promotes trophoblast-fate induction and cavity formation in human blastoids. Together, our results establish that human naive pluripotent stem cells are not epigenetically unrestricted, but instead possess chromatin mechanisms that oppose the induction of alternative cell fates. Two side-by-side papers report that H3K27me3 deposited by polycomb repressive complex 2 represents an epigenetic barrier that restricts naive human pluripotent cell differentiation into alternative lineages including trophoblasts.
Collapse
|
40
|
Kumar B, Navarro C, Winblad N, Schell JP, Zhao C, Weltner J, Baqué-Vidal L, Salazar Mantero A, Petropoulos S, Lanner F, Elsässer SJ. Polycomb repressive complex 2 shields naïve human pluripotent cells from trophectoderm differentiation. Nat Cell Biol 2022; 24:845-857. [PMID: 35637409 PMCID: PMC9203276 DOI: 10.1038/s41556-022-00916-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 04/13/2022] [Indexed: 12/12/2022]
Abstract
The first lineage choice in human embryo development separates trophectoderm from the inner cell mass. Naïve human embryonic stem cells are derived from the inner cell mass and offer possibilities to explore how lineage integrity is maintained. Here, we discover that polycomb repressive complex 2 (PRC2) maintains naïve pluripotency and restricts differentiation to trophectoderm and mesoderm lineages. Through quantitative epigenome profiling, we found that a broad gain of histone H3 lysine 27 trimethylation (H3K27me3) is a distinct feature of naïve pluripotency. We define shared and naïve-specific bivalent promoters featuring PRC2-mediated H3K27me3 concomitant with H3K4me3. Naïve bivalency maintains key trophectoderm and mesoderm transcription factors in a transcriptionally poised state. Inhibition of PRC2 forces naïve human embryonic stem cells into an 'activated' state, characterized by co-expression of pluripotency and lineage-specific transcription factors, followed by differentiation into either trophectoderm or mesoderm lineages. In summary, PRC2-mediated repression provides a highly adaptive mechanism to restrict lineage potential during early human development.
Collapse
Affiliation(s)
- Banushree Kumar
- Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- Ming Wai Lau Centre for Reparative Medicine, Stockholm node, Karolinska Institutet, Stockholm, Sweden
| | - Carmen Navarro
- Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- Ming Wai Lau Centre for Reparative Medicine, Stockholm node, Karolinska Institutet, Stockholm, Sweden
| | - Nerges Winblad
- Ming Wai Lau Centre for Reparative Medicine, Stockholm node, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
- Division of Obstetrics and Gynecology, Karolinska Universitetssjukhuset, Stockholm, Sweden
| | - John P Schell
- Ming Wai Lau Centre for Reparative Medicine, Stockholm node, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
- Division of Obstetrics and Gynecology, Karolinska Universitetssjukhuset, Stockholm, Sweden
| | - Cheng Zhao
- Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
- Division of Obstetrics and Gynecology, Karolinska Universitetssjukhuset, Stockholm, Sweden
| | - Jere Weltner
- Ming Wai Lau Centre for Reparative Medicine, Stockholm node, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
- Division of Obstetrics and Gynecology, Karolinska Universitetssjukhuset, Stockholm, Sweden
| | - Laura Baqué-Vidal
- Ming Wai Lau Centre for Reparative Medicine, Stockholm node, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
- Division of Obstetrics and Gynecology, Karolinska Universitetssjukhuset, Stockholm, Sweden
| | - Angelo Salazar Mantero
- Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- Ming Wai Lau Centre for Reparative Medicine, Stockholm node, Karolinska Institutet, Stockholm, Sweden
| | - Sophie Petropoulos
- Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
- Division of Obstetrics and Gynecology, Karolinska Universitetssjukhuset, Stockholm, Sweden
- Département de Médecine, Université de Montréal, Montreal, Canada
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Axe Immunopathologie, Montreal, Canada
| | - Fredrik Lanner
- Ming Wai Lau Centre for Reparative Medicine, Stockholm node, Karolinska Institutet, Stockholm, Sweden.
- Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden.
- Division of Obstetrics and Gynecology, Karolinska Universitetssjukhuset, Stockholm, Sweden.
| | - Simon J Elsässer
- Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.
- Ming Wai Lau Centre for Reparative Medicine, Stockholm node, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
41
|
Construction of a human embryonic stem cell line with RNF1-deficient by CRISPR/Cas9 technology. Stem Cell Res 2022; 62:102809. [DOI: 10.1016/j.scr.2022.102809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 04/19/2022] [Accepted: 05/05/2022] [Indexed: 11/19/2022] Open
|
42
|
Chrysanthou S, Tang Q, Lee J, Taylor SJ, Zhao Y, Steidl U, Zheng D, Dawlaty M. The DNA dioxygenase Tet1 regulates H3K27 modification and embryonic stem cell biology independent of its catalytic activity. Nucleic Acids Res 2022; 50:3169-3189. [PMID: 35150568 PMCID: PMC8989540 DOI: 10.1093/nar/gkac089] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/21/2022] [Accepted: 01/26/2022] [Indexed: 11/23/2022] Open
Abstract
Tet enzymes (Tet1/2/3) oxidize 5-methylcytosine to promote DNA demethylation and partner with chromatin modifiers to regulate gene expression. Tet1 is highly expressed in embryonic stem cells (ESCs), but its enzymatic and non-enzymatic roles in gene regulation are not dissected. We have generated Tet1 catalytically inactive (Tet1m/m) and knockout (Tet1-/-) ESCs and mice to study these functions. Loss of Tet1, but not loss of its catalytic activity, caused aberrant upregulation of bivalent (H3K4me3+; H3K27me3+) developmental genes, leading to defects in differentiation. Wild-type and catalytic-mutant Tet1 occupied similar genomic loci which overlapped with H3K27 tri-methyltransferase PRC2 and the deacetylase complex Sin3a at promoters of bivalent genes and with the helicase Chd4 at active genes. Loss of Tet1, but not loss of its catalytic activity, impaired enrichment of PRC2 and Sin3a at bivalent promoters leading to reduced H3K27 trimethylation and deacetylation, respectively, in absence of any changes in DNA methylation. Tet1-/-, but not Tet1m/m, embryos expressed higher levels of Gata6 and were developmentally delayed. Thus, the critical functions of Tet1 in ESCs and early development are mediated through its non-catalytic roles in regulating H3K27 modifications to silence developmental genes, and are more important than its catalytic functions in DNA demethylation.
Collapse
Affiliation(s)
- Stephanie Chrysanthou
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, 1301 Morris Park Ave, Bronx, NY 10461, USA
- Department of Genetics, Albert Einstein College of Medicine, 1301 Morris Park Ave, Bronx, NY 10461, USA
- Department of Developmental & Molecular Biology, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461, USA
| | - Qin Tang
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, 1301 Morris Park Ave, Bronx, NY 10461, USA
- Department of Genetics, Albert Einstein College of Medicine, 1301 Morris Park Ave, Bronx, NY 10461, USA
- Department of Developmental & Molecular Biology, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461, USA
| | - Joun Lee
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, 1301 Morris Park Ave, Bronx, NY 10461, USA
- Department of Genetics, Albert Einstein College of Medicine, 1301 Morris Park Ave, Bronx, NY 10461, USA
- Department of Developmental & Molecular Biology, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461, USA
| | - Samuel J Taylor
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, 1301 Morris Park Ave, Bronx, NY 10461, USA
- Department of Cell Biology, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY, 10461, USA
- Department of Medicine, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY, 10461, USA
| | - Yilin Zhao
- Department of Genetics, Albert Einstein College of Medicine, 1301 Morris Park Ave, Bronx, NY 10461, USA
| | - Ulrich Steidl
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, 1301 Morris Park Ave, Bronx, NY 10461, USA
- Department of Cell Biology, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY, 10461, USA
- Department of Medicine, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY, 10461, USA
- Albert Einstein Cancer Center, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461, USA
| | - Deyou Zheng
- Department of Genetics, Albert Einstein College of Medicine, 1301 Morris Park Ave, Bronx, NY 10461, USA
- Departments of Neurology and Neuroscience, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461, USA
| | - Meelad M Dawlaty
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, 1301 Morris Park Ave, Bronx, NY 10461, USA
- Department of Genetics, Albert Einstein College of Medicine, 1301 Morris Park Ave, Bronx, NY 10461, USA
- Department of Developmental & Molecular Biology, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461, USA
| |
Collapse
|
43
|
Bölicke N, Albert M. Polycomb-mediated gene regulation in human brain development and neurodevelopmental disorders. Dev Neurobiol 2022; 82:345-363. [PMID: 35384339 DOI: 10.1002/dneu.22876] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/09/2022] [Accepted: 03/28/2022] [Indexed: 12/17/2022]
Abstract
The neocortex is considered the seat of higher cognitive function in humans. It develops from a sheet of neural progenitor cells, most of which eventually give rise to neurons. This process of cell fate determination is controlled by precise temporal and spatial gene expression patterns that in turn are affected by epigenetic mechanisms including Polycomb group (PcG) regulation. PcG proteins assemble in multiprotein complexes and catalyze repressive posttranslational histone modifications. Their association with neurodevelopmental disease and various types of cancer of the central nervous system, as well as observations in mouse models, has implicated these epigenetic modifiers in controlling various stages of cortex development. The precise mechanisms conveying PcG-associated transcriptional repression remain incompletely understood and are an active field of research. PcG activity appears to be highly context-specific, raising the question of species-specific differences in the regulation of neural stem and progenitor regulation. In this review, we will discuss our growing understanding of how PcG regulation affects human cortex development, based on studies in murine model systems, but focusing mostly on findings obtained from examining impaired PcG activity in the context of human neurodevelopmental disorders and cancer. Furthermore, we will highlight relevant experimental approaches for functional investigations of PcG regulation in human cortex development.
Collapse
Affiliation(s)
- Nora Bölicke
- Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany
| | - Mareike Albert
- Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
44
|
Wu F, Guo T, Sun L, Li F, Yang X. Base Editing of Human Pluripotent Stem Cells for Modeling Long QT Syndrome. Stem Cell Rev Rep 2022; 18:1434-1443. [PMID: 34997921 PMCID: PMC9033722 DOI: 10.1007/s12015-021-10324-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/23/2021] [Indexed: 11/27/2022]
Abstract
Human pluripotent stem cells (hPSCs) have great potential for disease modeling, drug discovery, and regenerative medicine as they can differentiate into many different functional cell types via directed differentiation. However, the application of disease modeling is limited due to a time-consuming and labor-intensive process of introducing known pathogenic mutations into hPSCs. Base editing is a newly developed technology that enables the facile introduction of point mutations into specific loci within the genome of living cells without unwanted genome injured. We describe an optimized stepwise protocol to introduce disease-specific mutations of long QT syndrome (LQTs) into hPSCs. We highlight technical issues, especially those associated with introducing a point mutation to obtain isogenic hPSCs without inserting any resistance cassette and reproducible cardiomyocyte differentiation. Based on the protocol, we succeeded in getting hPSCs carrying LQTs pathogenic mutation with excellent efficiency (31.7% of heterozygous clones, 9.1% of homozygous clones) in less than 20 days. In addition, we also provide protocols to analyze electrophysiological of hPSC-derived cardiomyocytes using multi-electrode arrays. This protocol is also applicable to introduce other disease-specific mutations into hPSCs.
Collapse
Affiliation(s)
- Fujian Wu
- Translational Medicine Collaborative Innovation Center, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen, 518020, China
- Post-doctoral Scientific Research Station of Basic Medicine, Jinan University, Guangzhou, 510632, China
- Guangdong Engineering Technology Research Center of Stem Cell and Cell Therapy, Shenzhen, 518020, China
- Shenzhen Key Laboratory of Stem Cell Research and Clinical Transformation, Shenzhen, 518020, China
| | - Tianwei Guo
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Lixiang Sun
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University & Guangxi Key Laboratory of Precision Medicine in Cardio-cerebrovascular Diseases Control and Prevention & Guangxi Clinical Research Center for Cardio-cerebrovascular Diseases, Nanning, China
| | - Furong Li
- Translational Medicine Collaborative Innovation Center, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen, 518020, China
- Guangdong Engineering Technology Research Center of Stem Cell and Cell Therapy, Shenzhen, 518020, China
- Shenzhen Key Laboratory of Stem Cell Research and Clinical Transformation, Shenzhen, 518020, China
| | - Xiaofei Yang
- Translational Medicine Collaborative Innovation Center, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen, 518020, China.
- Guangdong Engineering Technology Research Center of Stem Cell and Cell Therapy, Shenzhen, 518020, China.
- Shenzhen Key Laboratory of Stem Cell Research and Clinical Transformation, Shenzhen, 518020, China.
| |
Collapse
|
45
|
Suthapot P, Xiao T, Felsenfeld G, Hongeng S, Wongtrakoongate P. The RNA helicases DDX5 and DDX17 facilitate neural differentiation of human pluripotent stem cells NTERA2. Life Sci 2022; 291:120298. [PMID: 35007564 DOI: 10.1016/j.lfs.2021.120298] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 12/21/2021] [Accepted: 12/31/2021] [Indexed: 12/31/2022]
Abstract
AIMS Understanding human neurogenesis is critical toward regenerative medicine for neurodegeneration. However, little is known how neural differentiation is regulated by DEAD box-containing RNA helicases, which comprise a diverse class of RNA remodeling enzymes. MATERIALS AND METHODS ChIP-seq was utilized to identify binding sites of DDX5 and DDX17 in both human pluripotent stem cell (hPSC) line NTERA2 and their retinoic acid-induced neural derivatives. RNA-seq was used to elucidate genes differentially expressed upon depletion of DDX5 and DDX17. Neurosphere assay, flow cytometry, and immunofluorescence staining were performed to test the effect of depletion of the two RNA helicases in neural differentiation. KEY FINDINGS We show here that expression of DDX5 and DDX17 is abundant throughout neural differentiation of NTERA2, and is mostly localized within the nucleus. The two RNA helicases occupy chromatin genome-wide at regions associated with neurogenesis-related genes in both hPSCs and their neural derivatives. Further, both DDX5 and DDX17 are mutually required for controlling transcriptional expression of these genes, but are not important for maintenance of stem cell state of hPSCs. In contrast, they facilitate early neural differentiation of hPSCs, generation of neurospheres from the stem cells, and transcriptional expression of key neurogenic transcription factors such as SOX1 and PAX6 during neural differentiation. Importantly, DDX5 and DDX17 are critical for differentiation of hPSCs toward NESTIN- and TUBB3-positive cells, which represent neural progenitors and mature neurons, respectively. SIGNIFICANCE Collectively, our findings suggest the role of DDX5 and DDX17 in transcriptional regulation of genes involved in neurogenesis, and hence in neural differentiation of hPSCs.
Collapse
Affiliation(s)
- Praewa Suthapot
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Tiaojiang Xiao
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda 20892-0540, MD, USA
| | - Gary Felsenfeld
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda 20892-0540, MD, USA
| | - Suradej Hongeng
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| | - Patompon Wongtrakoongate
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Center for Neuroscience, Faculty of Science, Mahidol University, Bangkok 10400, Thailand.
| |
Collapse
|
46
|
Long B, Shan YL, Sun YL, Wang TY, Li XD, Huang K, Zhang WW, He Y, Wen RJ, Li YH, Mai YC, Feng YS, Zhang T, Kang BQ, Zhang C, Zhu YL, Gu JM, Liu JJ, Zhang XZ, Pan GJ. Vitamin C promotes anti-leukemia of DZNep in acute myeloid leukemia. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166357. [DOI: 10.1016/j.bbadis.2022.166357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 01/11/2022] [Accepted: 01/31/2022] [Indexed: 10/19/2022]
|
47
|
Loh CH, van Genesen S, Perino M, Bark MR, Veenstra GJC. Loss of PRC2 subunits primes lineage choice during exit of pluripotency. Nat Commun 2021; 12:6985. [PMID: 34848733 PMCID: PMC8632979 DOI: 10.1038/s41467-021-27314-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 11/09/2021] [Indexed: 12/11/2022] Open
Abstract
Polycomb Repressive Complex 2 (PRC2) is crucial for the coordinated expression of genes during early embryonic development, catalyzing histone H3 lysine 27 trimethylation. Two distinct PRC2 complexes, PRC2.1 and PRC2.2, contain respectively MTF2 and JARID2 in embryonic stem cells (ESCs). In this study, we explored their roles in lineage specification and commitment, using single-cell transcriptomics and mouse embryoid bodies derived from Mtf2 and Jarid2 null ESCs. We observe that the loss of Mtf2 results in enhanced and faster differentiation towards cell fates from all germ layers, while the Jarid2 null cells are predominantly directed towards early differentiating precursors, with reduced efficiency towards mesendodermal lineages. These effects are caused by derepression of developmental regulators that are poised for activation in pluripotent cells and gain H3K4me3 at their promoters in the absence of PRC2 repression. Upon lineage commitment, the differentiation trajectories are relatively similar to those of wild-type cells. Together, our results uncover a major role for MTF2-containing PRC2.1 in balancing poised lineage-specific gene activation, whereas the contribution of JARID2-containing PRC2 is more selective in nature compared to MTF2. These data explain how PRC2 imposes thresholds for lineage choice during the exit of pluripotency.
Collapse
Affiliation(s)
- Chet H. Loh
- grid.5590.90000000122931605Department of Molecular Developmental Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University, Nijmegen, The Netherlands
| | - Siebe van Genesen
- grid.5590.90000000122931605Department of Molecular Developmental Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University, Nijmegen, The Netherlands
| | - Matteo Perino
- grid.5590.90000000122931605Department of Molecular Developmental Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University, Nijmegen, The Netherlands ,grid.4709.a0000 0004 0495 846XPresent Address: Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Magnus R. Bark
- grid.5590.90000000122931605Department of Molecular Developmental Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University, Nijmegen, The Netherlands
| | - Gert Jan C. Veenstra
- grid.5590.90000000122931605Department of Molecular Developmental Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University, Nijmegen, The Netherlands
| |
Collapse
|
48
|
Abstract
Neurodevelopmental disorders (NDDs) affect about 1% of the population and can be caused by mutations in genes that affect the epigenetic code. There is limited functional understanding of most of these epigenetic modifiers, and we suggest that associated NDDs are caused, in part, by deficits in epigenetic priming, a prepatterning step that alters the genome in preparation to make cells competent to signaling cues. We provide evidence from high-resolution epigenetic and transcriptomic mapping studies to demonstrate how a failure to adequately prime the genome for neural induction could lead to impairment of terminally differentiated cells. This idea provides a framework for NDD pathogenesis and treatment.
Collapse
|
49
|
Zhao Y, Wang T, Zhang Y, Shi L, Zhang C, Zhang J, Yao J, Chen Q, Zhong X, Wei Y, Shan Y, Pan G. Coordination of EZH2 and SOX2 specifies human neural fate decision. CELL REGENERATION 2021; 10:30. [PMID: 34487238 PMCID: PMC8421500 DOI: 10.1186/s13619-021-00092-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 08/10/2021] [Indexed: 11/30/2022]
Abstract
Polycomb repressive complexes (PRCs) are essential in mouse gastrulation and specify neural ectoderm in human embryonic stem cells (hESCs), but the underlying molecular basis remains unclear. Here in this study, by employing an array of different approaches, such as gene knock-out, RNA-seq, ChIP-seq, et al., we uncover that EZH2, an important PRC factor, specifies the normal neural fate decision through repressing the competing meso/endoderm program. EZH2−/− hESCs show an aberrant re-activation of meso/endoderm genes during neural induction. At the molecular level, EZH2 represses meso/endoderm genes while SOX2 activates the neural genes to coordinately specify the normal neural fate. Moreover, EZH2 also supports the proliferation of human neural progenitor cells (NPCs) through repressing the aberrant expression of meso/endoderm program during culture. Together, our findings uncover the coordination of epigenetic regulators such as EZH2 and lineage factors like SOX2 in normal neural fate decision.
Collapse
Affiliation(s)
- Yuan Zhao
- CAS Key Laboratory of Regenerative Biology, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Hong Kong, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.,University of Chinese Academy of Sciences, Beijing, 100049, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
| | - Tianyu Wang
- CAS Key Laboratory of Regenerative Biology, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Hong Kong, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.,University of Chinese Academy of Sciences, Beijing, 100049, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yanqi Zhang
- CAS Key Laboratory of Regenerative Biology, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Hong Kong, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.,University of Chinese Academy of Sciences, Beijing, 100049, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
| | - Liang Shi
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, 250062, Shandong, China
| | - Cong Zhang
- CAS Key Laboratory of Regenerative Biology, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Hong Kong, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.,University of Chinese Academy of Sciences, Beijing, 100049, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jingyuan Zhang
- CAS Key Laboratory of Regenerative Biology, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Hong Kong, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.,University of Chinese Academy of Sciences, Beijing, 100049, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jiao Yao
- CAS Key Laboratory of Regenerative Biology, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Hong Kong, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Qianyu Chen
- CAS Key Laboratory of Regenerative Biology, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Hong Kong, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Xiaofen Zhong
- CAS Key Laboratory of Regenerative Biology, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Hong Kong, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Yanxing Wei
- Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yongli Shan
- CAS Key Laboratory of Regenerative Biology, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Hong Kong, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China. .,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China. .,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China. .,Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China. .,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China.
| | - Guangjin Pan
- CAS Key Laboratory of Regenerative Biology, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Hong Kong, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China. .,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China. .,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China. .,Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, 250062, Shandong, China. .,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China.
| |
Collapse
|
50
|
Histone Modifications in Stem Cell Development and Their Clinical Implications. Stem Cell Reports 2021; 15:1196-1205. [PMID: 33296672 PMCID: PMC7724464 DOI: 10.1016/j.stemcr.2020.11.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 11/03/2020] [Accepted: 11/03/2020] [Indexed: 02/07/2023] Open
Abstract
Human stem cells bear a great potential for multiple therapeutic applications but at the same time constitute a major threat to human health in the form of cancer stem cells. The molecular processes that govern stem cell maintenance or differentiation have been extensively studied in model organisms or cell culture, but it has been difficult to extrapolate these insights to therapeutic applications. Recent advances in the field suggest that local and global changes in histone modifications that affect chromatin structure could influence the capability of cells to either maintain their stem cell identity or differentiate into specialized cell types. The enzymes that regulate these modifications are therefore among the prime targets for potential drugs that can influence and potentially improve the therapeutic application of stem cells. In this review, we discuss recent findings on the role of histone modifications in stem cell regulation and their potential implications for clinical applications.
Collapse
|