1
|
Wendt C, de Medeiros FC, Gonçalves RP, Nudelman F, Klautau M, Farina M, Rossi AL. Calcium carbonate deposition in the spicules of the sponge Heteropia glomerosa (Porifera, Calcarea). J Struct Biol 2025; 217:108210. [PMID: 40378937 DOI: 10.1016/j.jsb.2025.108210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 05/12/2025] [Accepted: 05/12/2025] [Indexed: 05/19/2025]
Abstract
We investigated the biomineralization process of calcium carbonate deposition in the spicules of the calcareous sponge Heteropia glomerosa (Porifera, Calcarea). The finely polished spicules, composed of Mg-calcite, present a pattern of concentric lines spaced 400 nm apart when observed by scanning electron microscopy. We showed by electron backscattered diffraction that the whole spicule length has the same crystallographic orientation. Still, misorientation of up to 1.8° in adjacent regions (∼ 2 µm) and a continuous increase in the misalignment of up to 4.5° in regions separated by 300 µm were present. The sponge cells (mainly sclerocytes and pinacocytes) near the mineralization zone contain a high number of vesicles rich in calcium, which could be involved in the spicule biomineralization. We showed by electron and ion microscopies that the spicule growth occurs through the addition calcium carbonate granules, which form near the membrane of the sclerocyte, the cell responsible for biomineralization. The granules were deposited layer by layer on the surface of the spicule, increasing the biomineral thickness. Domains of 1-3 µm containing facets partially connected and surrounded by organic material were observed in an intermediate stage of the spicule growth. Misorientation between these domains was approximately 2°, similar to the misorientation obtained by electron backscattered diffraction, indicating that the spicule is formed by the addition of granules fusing in a predominant orientation.
Collapse
Affiliation(s)
- Camila Wendt
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Av. Carlos Chagas Filho, 373, Rio de Janeiro 21941-590, Brazil
| | - Fernanda C de Medeiros
- Brazilian Center for Research in Physics, Xavier Sigaud 150, 22290-180 Rio de Janeiro, Brazil
| | - Raquel P Gonçalves
- Brazilian Center for Research in Physics, Xavier Sigaud 150, 22290-180 Rio de Janeiro, Brazil
| | - Fabio Nudelman
- School of Chemistry, University of Edinburgh, Joseph Black Building, The King's Buildings, David Brewster Road, Edinburgh EH9 3FJ, UK
| | - Michelle Klautau
- Biology Institute, Federal University of Rio de Janeiro, Av. Carlos Chagas Filho, 791, Rio de Janeiro 21941-599, Brazil
| | - Marcos Farina
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Av. Carlos Chagas Filho, 373, Rio de Janeiro 21941-590, Brazil
| | - André L Rossi
- Brazilian Center for Research in Physics, Xavier Sigaud 150, 22290-180 Rio de Janeiro, Brazil.
| |
Collapse
|
2
|
Zhao R, Amstad E. Bio-Informed Porous Mineral-Based Composites. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2401052. [PMID: 39221524 PMCID: PMC11840473 DOI: 10.1002/smll.202401052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/19/2024] [Indexed: 09/04/2024]
Abstract
Certain biominerals, such as sea sponges and echinoderm skeletons, display a fascinating combination of mechanical properties and adaptability due to the well-defined structures spanning various length scales. These materials often possess high density normalized mechanical properties because they contain well-defined pores. The density-normalized mechanical properties of synthetic minerals are often inferior because the pores are stochastically distributed, resulting in an inhomogeneous stress distribution. The mechanical properties of synthetic materials are limited by the degree of structural and compositional control currently available fabrication methods offer. In the first part of this review, examples of structural elements nature uses to impart exceptional density normalized Young's moduli to its porous biominerals are showcased. The second part highlights recent advancements in the fabrication of bio-informed mineral-based composites possessing pores with diameters that span a wide range of length scales. The influence of the processing of mineral-based composites on their structures and mechanical properties is summarized. Thereby, it is aimed at encouraging further research directed to the sustainable, energy-efficient fabrication of synthetic lightweight yet stiff mineral-based composites.
Collapse
Affiliation(s)
- Ran Zhao
- Soft Materials LaboratoryInstitute of MaterialsÉcole Polytechnique Fédérale de Lausanne (EPFL)Lausanne1015Switzerland
| | - Esther Amstad
- Swiss National Center for Competence in Research (NCCR) Bio‐inspired materialsUniversity of FribourgChemin des Verdiers 4Fribourg1700Switzerland
| |
Collapse
|
3
|
Stolarski J, Coronado I, Potocka M, Janiszewska K, Mazur M, Baronnet A, Cruz JA, Grauby O, Meibom A. Post-mortem recrystallization of biogenic amorphous calcium carbonate guided by the inherited macromolecular framework. Sci Rep 2024; 14:17304. [PMID: 39068177 PMCID: PMC11283521 DOI: 10.1038/s41598-024-68037-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 07/18/2024] [Indexed: 07/30/2024] Open
Abstract
In contrast to abiotically formed carbonates, biogenetic carbonates have been observed to be nanocomposite, organo-mineral structures, the basic build-blocks of which are particles of quasi-uniform size (10-100 nm) organized into complex higher-order hierarchical structures, typically with highly controlled crystal-axis alignments. Some of these characteristics serve as criteria for inferring a biological origin and the state of preservation of fossil carbonate materials, and to determine whether the biomineralization process was biologically induced or controlled. Here we show that a calcium storage structure formed by the American lobster, a gastrolith initially consisting of amorphous calcium carbonate (ACC) and amorphous calcium phosphate (ACP), post-mortem can crystallize into (thus secondary) calcite with structural properties strongly influenced by the inherited organic matrix. This secondary calcite meets many structural criteria for biominerals (thus called the biomorphic calcite), but differs in trace element distributions (e.g., P and Mg). Such observations refine the capability to determine whether a fossil carbonates can be attributed to biogenic processes, with implications for the record of life on Earth and other terrestrial planets.
Collapse
Affiliation(s)
- Jarosław Stolarski
- Institute of Paleobiology, Polish Academy of Sciences, Twarda 51/55, 00818, Warsaw, Poland.
| | - Ismael Coronado
- Faculty of Biological and Environmental Sciences, University of Leon, Campus of Vegazana S/N, 24071, Leon, Spain
| | - Marta Potocka
- Department of Antarctic Biology, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02106, Warsaw, Poland
| | - Katarzyna Janiszewska
- Institute of Paleobiology, Polish Academy of Sciences, Twarda 51/55, 00818, Warsaw, Poland
| | - Maciej Mazur
- Department of Chemistry, University of Warsaw, Pasteura 1, 02093, Warsaw, Poland
| | - Alain Baronnet
- UMR 7325, CINaM, CNRS - Aix Marseille Université, 13288, Marseille, France
| | - Juncal A Cruz
- Faculty of Biological and Environmental Sciences, University of Leon, Campus of Vegazana S/N, 24071, Leon, Spain
| | - Olivier Grauby
- UMR 7325, CINaM, CNRS - Aix Marseille Université, 13288, Marseille, France
| | - Anders Meibom
- Laboratory for Biological Geochemistry, School of Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Center for Advanced Surface Analysis, Institute of Earth Sciences, Université de Lausanne, CH-1015, Lausanne, Switzerland
| |
Collapse
|
4
|
Schmidt CA, Tambutté E, Venn AA, Zou Z, Castillo Alvarez C, Devriendt LS, Bechtel HA, Stifler CA, Anglemyer S, Breit CP, Foust CL, Hopanchuk A, Klaus CN, Kohler IJ, LeCloux IM, Mezera J, Patton MR, Purisch A, Quach V, Sengkhammee JS, Sristy T, Vattem S, Walch EJ, Albéric M, Politi Y, Fratzl P, Tambutté S, Gilbert PUPA. Myriad Mapping of nanoscale minerals reveals calcium carbonate hemihydrate in forming nacre and coral biominerals. Nat Commun 2024; 15:1812. [PMID: 38418834 PMCID: PMC10901822 DOI: 10.1038/s41467-024-46117-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 02/14/2024] [Indexed: 03/02/2024] Open
Abstract
Calcium carbonate (CaCO3) is abundant on Earth, is a major component of marine biominerals and thus of sedimentary and metamorphic rocks and it plays a major role in the global carbon cycle by storing atmospheric CO2 into solid biominerals. Six crystalline polymorphs of CaCO3 are known-3 anhydrous: calcite, aragonite, vaterite, and 3 hydrated: ikaite (CaCO3·6H2O), monohydrocalcite (CaCO3·1H2O, MHC), and calcium carbonate hemihydrate (CaCO3·½H2O, CCHH). CCHH was recently discovered and characterized, but exclusively as a synthetic material, not as a naturally occurring mineral. Here, analyzing 200 million spectra with Myriad Mapping (MM) of nanoscale mineral phases, we find CCHH and MHC, along with amorphous precursors, on freshly deposited coral skeleton and nacre surfaces, but not on sea urchin spines. Thus, biomineralization pathways are more complex and diverse than previously understood, opening new questions on isotopes and climate. Crystalline precursors are more accessible than amorphous ones to other spectroscopies and diffraction, in natural and bio-inspired materials.
Collapse
Affiliation(s)
- Connor A Schmidt
- Department of Physics, University of Wisconsin, Madison, WI, 53706, USA
| | - Eric Tambutté
- Department of Marine Biology, Centre Scientifique de Monaco, 98000, Monaco, Principality of Monaco
| | - Alexander A Venn
- Department of Marine Biology, Centre Scientifique de Monaco, 98000, Monaco, Principality of Monaco
| | - Zhaoyong Zou
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| | | | - Laurent S Devriendt
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Hans A Bechtel
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Cayla A Stifler
- Department of Physics, University of Wisconsin, Madison, WI, 53706, USA
| | | | - Carolyn P Breit
- Department of Physics, University of Wisconsin, Madison, WI, 53706, USA
| | - Connor L Foust
- Department of Physics, University of Wisconsin, Madison, WI, 53706, USA
| | - Andrii Hopanchuk
- Department of Physics, University of Wisconsin, Madison, WI, 53706, USA
| | - Connor N Klaus
- Department of Physics, University of Wisconsin, Madison, WI, 53706, USA
| | - Isaac J Kohler
- Department of Physics, University of Wisconsin, Madison, WI, 53706, USA
| | | | - Jaiden Mezera
- Department of Physics, University of Wisconsin, Madison, WI, 53706, USA
| | - Madeline R Patton
- Department of Physics, University of Wisconsin, Madison, WI, 53706, USA
| | - Annie Purisch
- Department of Physics, University of Wisconsin, Madison, WI, 53706, USA
| | - Virginia Quach
- Department of Physics, University of Wisconsin, Madison, WI, 53706, USA
| | | | - Tarak Sristy
- Department of Physics, University of Wisconsin, Madison, WI, 53706, USA
| | - Shreya Vattem
- Department of Physics, University of Wisconsin, Madison, WI, 53706, USA
| | - Evan J Walch
- Department of Physics, University of Wisconsin, Madison, WI, 53706, USA
| | - Marie Albéric
- Sorbonne Université/CNRS, Laboratoire de chimie de la matière condensée, 75005, Paris, France
| | - Yael Politi
- B CUBE - Center for Molecular Bioengineering, Technische Universität Dresden, 01307, Dresden, Germany
| | - Peter Fratzl
- Max Planck Institute of Colloids and Interfaces, 14476, Potsdam, Germany
| | - Sylvie Tambutté
- Department of Marine Biology, Centre Scientifique de Monaco, 98000, Monaco, Principality of Monaco
| | - Pupa U P A Gilbert
- Department of Physics, University of Wisconsin, Madison, WI, 53706, USA.
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
- Departments of Chemistry, Materials Science and Engineering, and Geoscience, University of Wisconsin, Madison, WI, 53706, USA.
| |
Collapse
|
5
|
Zambare N, Arey B, Qafoku O, Koirala KP, Kovarik L, Dohnalkova A. Novel Focused Ion Beam Liftouts for Spatial Characterization of Spherical Biominerals With Transmission Electron Microscopy. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2023; 29:1467-1473. [PMID: 37488814 DOI: 10.1093/micmic/ozad031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/06/2023] [Accepted: 02/22/2023] [Indexed: 07/26/2023]
Abstract
Focused ion beam (FIB) is frequently used to prepare electron- and X-ray-beam-transparent thin sections of samples, called lamellae. Typically, lamellae are prepared from only a subregion of a sample. In this paper, we present a novel approach for FIB lamella preparation of microscopic samples, wherein the entire cross-section of the whole sample can be investigated. The approach was demonstrated using spherical, porous, and often hollow microprecipitates of biologically precipitated calcium carbonate. The microprecipitate morphology made these biogenic samples more fragile and challenging than materials commonly investigated using FIB lamellae. Our method enables the appropriate orientation of the lamellae required for further electron/X-ray analyses after attachment to the transmission electron microscopy (TEM) grid post and facilitates more secure adhesion onto the grid post. We present evidence of autofluorescence in bacterially precipitated vaterite using this lamella preparation method coupled with TEM selected area diffraction. This innovative approach allows studying biomineralization at the micro to nano scales, which can provide novel insights into bacterial responses to microenvironmental conditions.
Collapse
Affiliation(s)
- Neerja Zambare
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA 99354, USA
| | - Bruce Arey
- National Security Directorate, Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA 99354, USA
| | - Odeta Qafoku
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA 99354, USA
| | - Krishna Prasad Koirala
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA 99354, USA
| | - Libor Kovarik
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA 99354, USA
| | - Alice Dohnalkova
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA 99354, USA
| |
Collapse
|
6
|
Dubicka Z, Bojanowski MJ, Bijma J, Bickmeyer U. Mg-rich amorphous to Mg-low crystalline CaCO 3 pathway in foraminifera. Heliyon 2023; 9:e18331. [PMID: 37519760 PMCID: PMC10375801 DOI: 10.1016/j.heliyon.2023.e18331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/13/2023] [Accepted: 07/13/2023] [Indexed: 08/01/2023] Open
Abstract
Calcium carbonate minerals produced by marine organisms play a central role in the global carbon cycle and carbonate sedimentation, which influence the climate by regulating atmospheric CO2 levels. Foraminifera are important marine single-celled organisms that have produced calcite shells for over 300 million years. Here, we present new observations promoting our understanding for foraminiferal biocalcification by studying Amphistegina lessonii. We integrated in vivo confocal autofluorescence and dye fluorescence imaging with elemental analysis of the cell supporting the concept that the calcite shells of foraminifera are produced via deposition of intracellularly formed Mg-rich amorphous calcium carbonate (Mg-ACC) particles that transform into a stable mineral phase. This process is likely accompanied by the activity of endosymbiotic microalgae and seawater-derived endocytic vesicles that provide calcification substrates such as DIC, Ca2+, and Mg2+. The final transformation of semi-liquid amorphous nanoparticles into a crystalline shell was associated with Mg2+ liberation.
Collapse
Affiliation(s)
- Zofia Dubicka
- Ecological Chemistry, Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Bremerhaven, 27-570, Germany
- University of Warsaw, Warsaw, 02-089, Poland
| | | | - Jelle Bijma
- Marine Biogeosciences, Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Bremerhaven, 27-570, Germany
| | - Ulf Bickmeyer
- Ecological Chemistry, Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Bremerhaven, 27-570, Germany
| |
Collapse
|
7
|
Adams A, Daval D, Baumgartner LP, Bernard S, Vennemann T, Cisneros-Lazaro D, Stolarski J, Baronnet A, Grauby O, Guo J, Meibom A. Rapid grain boundary diffusion in foraminifera tests biases paleotemperature records. COMMUNICATIONS EARTH & ENVIRONMENT 2023; 4:144. [PMID: 38665181 PMCID: PMC11041775 DOI: 10.1038/s43247-023-00798-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 04/06/2023] [Indexed: 04/28/2024]
Abstract
The oxygen isotopic compositions of fossil foraminifera tests constitute a continuous proxy record of deep-ocean and sea-surface temperatures spanning the last 120 million years. Here, by incubating foraminifera tests in 18O-enriched artificial seawater analogues, we demonstrate that the oxygen isotopic composition of optically translucent, i.e., glassy, fossil foraminifera calcite tests can be measurably altered at low temperatures through rapid oxygen grain-boundary diffusion without any visible ultrastructural changes. Oxygen grain boundary diffusion occurs sufficiently fast in foraminifera tests that, under normal upper oceanic sediment conditions, their grain boundaries will be in oxygen isotopic equilibrium with the surrounding pore fluids on a time scale of <100 years, resulting in a notable but correctable bias of the paleotemperature record. When applied to paleotemperatures from 38,400 foraminifera tests used in paleoclimate reconstructions, grain boundary diffusion can be shown to bias prior paleotemperature estimates by as much as +0.86 to -0.46 °C. The process is general and grain boundary diffusion corrections can be applied to other polycrystalline biocarbonates composed of small nanocrystallites (<100 nm), such as those produced by corals, brachiopods, belemnites, and molluscs, the fossils of which are all highly susceptible to the effects of grain boundary diffusion.
Collapse
Affiliation(s)
- Arthur Adams
- Laboratory for Biological Geochemistry, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Damien Daval
- ISTerre, Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, IRD, IFSTTAR, 38058 Grenoble, France
| | - Lukas P. Baumgartner
- Institute of Earth Surface Dynamics, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Sylvain Bernard
- Museum National d’Histoire Naturelle, Sorbonne Université, CNRS UMR 7590, IMPMC, 75005 Paris, France
| | - Torsten Vennemann
- Institute of Earth Surface Dynamics, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Deyanira Cisneros-Lazaro
- Laboratory for Biological Geochemistry, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Jarosław Stolarski
- Institute of Paleobiology, Polish Academy of Sciences, PL-00-818 Warsaw, Poland
| | - Alain Baronnet
- CNRS, CINaM, Aix-Marseille Université, 13009 Marseille, France
| | - Olivier Grauby
- CNRS, CINaM, Aix-Marseille Université, 13009 Marseille, France
| | - Jinming Guo
- Laboratory for Biological Geochemistry, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Anders Meibom
- Laboratory for Biological Geochemistry, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
- Center for Advanced Surface Analysis, Institute of Earth Science, University of Lausanne, CH−1015 Lausanne, Switzerland
| |
Collapse
|
8
|
Clark SM, Grigorova V, Colas B, Darwish TA, Wood K, Neuefeind J, Jacob DE. The Kinetics of Aragonite Formation from Solution via Amorphous Calcium Carbonate. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12234151. [PMID: 36500773 PMCID: PMC9739954 DOI: 10.3390/nano12234151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/20/2022] [Accepted: 11/21/2022] [Indexed: 05/05/2023]
Abstract
Magnesium doped Amorphous Calcium Carbonate was synthesised from precursor solutions containing varying amounts of calcium, magnesium, H2O and D2O. The Mg/Ca ratio in the resultant Amorphous Calcium Carbonate was found to vary linearly with the Mg/Ca ratio in the precursor solution. All samples crystallised as aragonite. No Mg was found in the final aragonite crystals. Changes in the Mg to Ca ratio were found to only marginally effect nucleation rates but strongly effect crystal growth rates. These results are consistent with a dissolution-reprecipitation model for aragonite formation via an Amorphous Calcium Carbonate intermediate.
Collapse
Affiliation(s)
- Simon M. Clark
- School of Engineering, Faculty of Science and Engineering, Macquarie University, North Macquarie Park, Shellharbour, NSW 2109, Australia
- Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organisation, Locked Bag 2001, Kirrawee DC, Sydney, NSW 2232, Australia
- Correspondence:
| | - Vili Grigorova
- School of Engineering, Faculty of Science and Engineering, Macquarie University, North Macquarie Park, Shellharbour, NSW 2109, Australia
| | - Bruno Colas
- School of Engineering, Faculty of Science and Engineering, Macquarie University, North Macquarie Park, Shellharbour, NSW 2109, Australia
- Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organisation, Locked Bag 2001, Kirrawee DC, Sydney, NSW 2232, Australia
| | - Tamim A. Darwish
- National Deuteration Facility, Australian Nuclear Science and Technology Organisation, Kirrawee DC, Sydney, NSW 2232, Australia
| | - Kathleen Wood
- Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organisation, Locked Bag 2001, Kirrawee DC, Sydney, NSW 2232, Australia
| | - Joerg Neuefeind
- Spallation Neutron Source, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Dorrit E. Jacob
- Research School of Earth Sciences, The Australian National University, Canberra, ACT 2600, Australia
| |
Collapse
|
9
|
Yi L, Zou B, Xie L, Zhang R. A novel bifunctional protein PNU7 in CaCO3 polymorph formation: Vaterite stabilization and surface energy minimization. Int J Biol Macromol 2022; 222:2796-2807. [DOI: 10.1016/j.ijbiomac.2022.10.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 10/06/2022] [Accepted: 10/07/2022] [Indexed: 11/05/2022]
|
10
|
Luo W, Jiang R, Ren G, Jin C. Hic12, a novel acidic matrix protein promotes the transformation of calcite into vaterite in Hyriopsis cumingii. Comp Biochem Physiol B Biochem Mol Biol 2022; 261:110755. [PMID: 35580805 DOI: 10.1016/j.cbpb.2022.110755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 05/06/2022] [Accepted: 05/11/2022] [Indexed: 11/27/2022]
Abstract
Shell acidic matrix proteins are widely considered to be essential for shell formation given their low affinity and high loading for calcium ion. In the present study, a novel matrix protein, hic12, was isolated from the mantle of Hyriopsis cumingii. High expression in tissue and positive signals with in situ hybridization were detected in the mantle center and mantle pallium, indicating that hic12 mainly participated in the biomineralization of the shell nacreous layer. The expression pattern of hic12 in the pearl sac during early pearl formation indicated that it was involved in pearl biomineralization. Moreover, the recombinant protein, rGST-Hic12, was successfully expressed and purified. The addition of rGST-Hic12 could accelerate the calcium carbonate deposition rate, change the morphology of crystals, and promote the conversion of calcite to vaterite. These results may provide new insights into the molecular mechanisms of aragonite mollusk shell formation.
Collapse
Affiliation(s)
- Wen Luo
- School of Life Science, Shaoxing University, Huancheng West Road 508, Shaoxing 312000, PR China
| | - Rui Jiang
- School of Life Science, Shaoxing University, Huancheng West Road 508, Shaoxing 312000, PR China
| | - Gang Ren
- School of Life Science, Shaoxing University, Huancheng West Road 508, Shaoxing 312000, PR China
| | - Can Jin
- School of Life Science, Shaoxing University, Huancheng West Road 508, Shaoxing 312000, PR China.
| |
Collapse
|
11
|
The nano- and meso-scale structure of amorphous calcium carbonate. Sci Rep 2022; 12:6870. [PMID: 35477728 PMCID: PMC9046151 DOI: 10.1038/s41598-022-10627-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 03/23/2022] [Indexed: 11/30/2022] Open
Abstract
Understanding the underlying processes of biomineralization is crucial to a range of disciplines allowing us to quantify the effects of climate change on marine organisms, decipher the details of paleoclimate records and advance the development of biomimetic materials. Many biological minerals form via intermediate amorphous phases, which are hard to characterize due to their transient nature and a lack of long-range order. Here, using Monte Carlo simulations constrained by X-ray and neutron scattering data together with model building, we demonstrate a method for determining the structure of these intermediates with a study of amorphous calcium carbonate (ACC) which is a precursor in the bio-formation of crystalline calcium carbonates. We find that ACC consists of highly ordered anhydrous nano-domains of approx. 2 nm that can be described as nanocrystalline. These nano-domains are held together by an interstitial net-like matrix of water molecules which generate, on the mesoscale, a heterogeneous and gel-like structure of ACC. We probed the structural stability and dynamics of our model on the nanosecond timescale by molecular dynamics simulations. These simulations revealed a gel-like and glassy nature of ACC due to the water molecules and carbonate ions in the interstitial matrix featuring pronounced orientational and translational flexibility. This allows for viscous mobility with diffusion constants four to five orders of magnitude lower than those observed in solutions. Small and ultra-small angle neutron scattering indicates a hierarchically-ordered organization of ACC across length scales that allow us, based on our nano-domain model, to build a comprehensive picture of ACC formation by cluster assembly from solution. This contribution provides a new atomic-scale understanding of ACC and provides a framework for the general exploration of biomineralization and biomimetic processes.
Collapse
|
12
|
Gilbert PUPA, Bergmann KD, Boekelheide N, Tambutté S, Mass T, Marin F, Adkins JF, Erez J, Gilbert B, Knutson V, Cantine M, Hernández JO, Knoll AH. Biomineralization: Integrating mechanism and evolutionary history. SCIENCE ADVANCES 2022; 8:eabl9653. [PMID: 35263127 PMCID: PMC8906573 DOI: 10.1126/sciadv.abl9653] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Calcium carbonate (CaCO3) biomineralizing organisms have played major roles in the history of life and the global carbon cycle during the past 541 Ma. Both marine diversification and mass extinctions reflect physiological responses to environmental changes through time. An integrated understanding of carbonate biomineralization is necessary to illuminate this evolutionary record and to understand how modern organisms will respond to 21st century global change. Biomineralization evolved independently but convergently across phyla, suggesting a unity of mechanism that transcends biological differences. In this review, we combine CaCO3 skeleton formation mechanisms with constraints from evolutionary history, omics, and a meta-analysis of isotopic data to develop a plausible model for CaCO3 biomineralization applicable to all phyla. The model provides a framework for understanding the environmental sensitivity of marine calcifiers, past mass extinctions, and resilience in 21st century acidifying oceans. Thus, it frames questions about the past, present, and future of CaCO3 biomineralizing organisms.
Collapse
Affiliation(s)
- Pupa U. P. A. Gilbert
- Departments of Physics, Chemistry, Geoscience, and Materials Science, University of Wisconsin-Madison, Madison, WI 53706, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Corresponding author. (P.U.P.A.G.); (A.H.K.)
| | - Kristin D. Bergmann
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Nicholas Boekelheide
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Sylvie Tambutté
- Centre Scientifique de Monaco, Department of Marine Biology, 98000 Monaco, Principality of Monaco
| | - Tali Mass
- University of Haifa, Marine Biology Department, Mt. Carmel, Haifa 31905, Israel
| | - Frédéric Marin
- Université de Bourgogne–Franche-Comté (UBFC), Laboratoire Biogéosciences, UMR CNRS 6282, Bâtiment des Sciences Gabriel, 21000 Dijon, France
| | - Jess F. Adkins
- Geological and Planetary Sciences, California Institute of Technology, MS 100-23, Pasadena, CA 91125, USA
| | - Jonathan Erez
- The Hebrew University of Jerusalem, Institute of Earth Sciences, Jerusalem 91904, Israel
| | - Benjamin Gilbert
- Energy Geoscience Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Vanessa Knutson
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Marjorie Cantine
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Goethe-Universität Frankfurt, 60438 Frankfurt am Main, Germany
| | - Javier Ortega Hernández
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Andrew H. Knoll
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
- Corresponding author. (P.U.P.A.G.); (A.H.K.)
| |
Collapse
|
13
|
Ma Z, Li B, Tang R. Biomineralization: Biomimetic Synthesis of Materials and Biomimetic Regulation of Organisms. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Zaiqiang Ma
- Department of Chemistry, Zhejiang University Hangzhou Zhejiang 310027 China
| | - Benke Li
- Department of Chemistry, Zhejiang University Hangzhou Zhejiang 310027 China
| | - Ruikang Tang
- Department of Chemistry, Zhejiang University Hangzhou Zhejiang 310027 China
- Qiushi Academy for Advanced Studies, Zhejiang University Hangzhou Zhejiang 310027 China
| |
Collapse
|
14
|
Ulrich RN, Guillermic M, Campbell J, Hakim A, Han R, Singh S, Stewart JD, Román-Palacios C, Carroll HM, De Corte I, Gilmore RE, Doss W, Tripati A, Ries JB, Eagle RA. Patterns of Element Incorporation in Calcium Carbonate Biominerals Recapitulate Phylogeny for a Diverse Range of Marine Calcifiers. FRONTIERS IN EARTH SCIENCE 2021; 9:641760. [PMID: 36381649 PMCID: PMC9645792 DOI: 10.3389/feart.2021.641760] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Elemental ratios in biogenic marine calcium carbonates are widely used in geobiology, environmental science, and paleoenvironmental reconstructions. It is generally accepted that the elemental abundance of biogenic marine carbonates reflects a combination of the abundance of that ion in seawater, the physical properties of seawater, the mineralogy of the biomineral, and the pathways and mechanisms of biomineralization. Here we report measurements of a suite of nine elemental ratios (Li/Ca, B/Ca, Na/Ca, Mg/Ca, Zn/Ca, Sr/Ca, Cd/Ca, Ba/Ca, and U/Ca) in 18 species of benthic marine invertebrates spanning a range of biogenic carbonate polymorph mineralogies (low-Mg calcite, high-Mg calcite, aragonite, mixed mineralogy) and of phyla (including Mollusca, Echinodermata, Arthropoda, Annelida, Cnidaria, Chlorophyta, and Rhodophyta) cultured at a single temperature (25°C) and a range of pCO2 treatments (ca. 409, 606, 903, and 2856 ppm). This dataset was used to explore various controls over elemental partitioning in biogenic marine carbonates, including species-level and biomineralization-pathway-level controls, the influence of internal pH regulation compared to external pH changes, and biocalcification responses to changes in seawater carbonate chemistry. The dataset also enables exploration of broad scale phylogenetic patterns of elemental partitioning across calcifying species, exhibiting high phylogenetic signals estimated from both uni- and multivariate analyses of the elemental ratio data (univariate: λ = 0-0.889; multivariate: λ = 0.895-0.99). Comparing partial R 2 values returned from non-phylogenetic and phylogenetic regression analyses echo the importance of and show that phylogeny explains the elemental ratio data 1.4-59 times better than mineralogy in five out of nine of the elements analyzed. Therefore, the strong associations between biomineral elemental chemistry and species relatedness suggests mechanistic controls over element incorporation rooted in the evolution of biomineralization mechanisms.
Collapse
Affiliation(s)
- Robert N. Ulrich
- Department of Earth, Planetary, and Space Sciences, University of California, Los Angeles, Los Angeles, CA, United States
- Institute of the Environment and Sustainability, University of California, Los Angeles, Los Angeles, CA, United States
- Center for Diverse Leadership in Science, University of California, Los Angeles, Los Angeles, CA, United States
| | - Maxence Guillermic
- Department of Earth, Planetary, and Space Sciences, University of California, Los Angeles, Los Angeles, CA, United States
- Institute of the Environment and Sustainability, University of California, Los Angeles, Los Angeles, CA, United States
- Center for Diverse Leadership in Science, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, Los Angeles, CA, United States
| | - Julia Campbell
- Institute of the Environment and Sustainability, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, Los Angeles, CA, United States
| | - Abbas Hakim
- Center for Diverse Leadership in Science, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Rachel Han
- Institute of the Environment and Sustainability, University of California, Los Angeles, Los Angeles, CA, United States
- Center for Diverse Leadership in Science, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, Los Angeles, CA, United States
| | - Shayleen Singh
- Center for Diverse Leadership in Science, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Justin D. Stewart
- Department of Ecological Science, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Cristian Román-Palacios
- Center for Diverse Leadership in Science, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Ecology and Evolutionary Biology, The University of Arizona, Tucson, AZ, United States
| | - Hannah M. Carroll
- Department of Earth, Planetary, and Space Sciences, University of California, Los Angeles, Los Angeles, CA, United States
- Center for Diverse Leadership in Science, University of California, Los Angeles, Los Angeles, CA, United States
| | - Ilian De Corte
- Institute of the Environment and Sustainability, University of California, Los Angeles, Los Angeles, CA, United States
- Center for Diverse Leadership in Science, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, Los Angeles, CA, United States
- Institut Universitaire Européen de la Mer, Plouzané, France
| | - Rosaleen E. Gilmore
- Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, Los Angeles, CA, United States
| | - Whitney Doss
- Department of Earth, Planetary, and Space Sciences, University of California, Los Angeles, Los Angeles, CA, United States
- Institut Universitaire Européen de la Mer, Plouzané, France
| | - Aradhna Tripati
- Department of Earth, Planetary, and Space Sciences, University of California, Los Angeles, Los Angeles, CA, United States
- Institute of the Environment and Sustainability, University of California, Los Angeles, Los Angeles, CA, United States
- Center for Diverse Leadership in Science, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, Los Angeles, CA, United States
- Institut Universitaire Européen de la Mer, Plouzané, France
- American Indian Studies Center, University of California, Los Angeles, Los Angeles, CA, United States
| | - Justin B. Ries
- Department of Marine and Environmental Sciences, Marine Science Center, Northeastern University, Boston, MA, United States
| | - Robert A. Eagle
- Institute of the Environment and Sustainability, University of California, Los Angeles, Los Angeles, CA, United States
- Center for Diverse Leadership in Science, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA, United States
- Institut Universitaire Européen de la Mer, Plouzané, France
| |
Collapse
|
15
|
Yin X, Griesshaber E, Checa A, Nindiyasari-Behal F, Sánchez-Almazo I, Ziegler A, Schmahl WW. Calcite crystal orientation patterns in the bilayers of laminated shells of benthic rotaliid foraminifera. J Struct Biol 2021; 213:107707. [PMID: 33581285 DOI: 10.1016/j.jsb.2021.107707] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 01/26/2021] [Accepted: 02/01/2021] [Indexed: 11/30/2022]
Abstract
Shells of calcifying foraminifera play a major role in marine biogeochemical cycles; fossil shells form important archives for paleoenvironment reconstruction. Despite their importance in many Earth science disciplines, there is still little consensus on foraminiferal shell mineralization. Geochemical, biochemical, and physiological studies showed that foraminiferal shell formation might take place through various and diverse mineralization mechanisms. In this study, we contribute to benthic foraminiferal shell calcification through deciphering crystallite organization within the shells. We base our conclusions on results gained from electron backscattered diffraction (EBSD) measurements and describe microstructure/texture characteristics within the laminated shell walls of the benthic, symbiontic foraminifera: Ammonia tepida, Amphistegina lobifera, Amphistegina lessonii. We highlight crystallite assembly patterns obtained on differently oriented cuts and discuss crystallite sizes, morphologies, interlinkages, orientations, and co-orientation strengths. We show that: (i) crystals within benthic foraminiferal shells are mesocrystals, (ii) have dendritic-fractal morphologies and (iii) interdigitate strongly. Based on crystal size, we (iv) differentiate between the two layers that comprise the shells and demonstrate that (v) crystals in the septa have different assemblies relative to those in the shell walls. We highlight that (vi) at junctions of different shell elements the axis of crystal orientation jumps abruptly such that their assembly in EBSD maps has a bimodal distribution. We prove (vii) extensive twin-formation within foraminiferal calcite; we demonstrate (viii) the presence of two twin modes: 60°/[001] and 77°/~[6 -6 1] and visualize their distributions within the shells. In a broader perspective, we draw conclusions on processes that lead to the observed microstructure/texture patterns.
Collapse
Affiliation(s)
- X Yin
- Department für Geo- und Umweltwissenschaften, Ludwig-Maximilians-Universität München, 80333 Munich, Germany.
| | - E Griesshaber
- Department für Geo- und Umweltwissenschaften, Ludwig-Maximilians-Universität München, 80333 Munich, Germany
| | - A Checa
- Departamento de Estratigrafía y Paleontología, Universidad de Granada, Granada, Spain, and Instituto Andaluz de Ciencias de la Tierra, CSIC-Universidad de Granada, Armilla, Spain
| | | | - I Sánchez-Almazo
- Centro de Instrumentación Científica, Universidad de Granada, 18071 Granada, Spain
| | - A Ziegler
- Zentrale Einrichtung Elektronenmikroskopie, Universität Ulm, 89081 Ulm, Germany
| | - W W Schmahl
- Department für Geo- und Umweltwissenschaften, Ludwig-Maximilians-Universität München, 80333 Munich, Germany
| |
Collapse
|
16
|
Abstract
Until now, all of the ca. 1,800 known modern scleractinian coral species were thought to produce skeletons exclusively of aragonite. Asymbiotic Paraconotrochus antarcticus living in the Southern Ocean is the first example of an extant scleractinian that forms a two-component carbonate skeleton, with an inner structure made of high-Mg calcite and an outer structure composed of aragonite. This discovery adds support to the notion that the coral skeletal formation process is strongly biologically controlled. Mitophylogenomic analysis shows that P. antarcticus represents an ancient scleractinian clade, suggesting that skeletal mineralogy/polymorph of a taxon, once established, is a trait conserved throughout the evolution of that clade. One of the most conserved traits in the evolution of biomineralizing organisms is the taxon-specific selection of skeletal minerals. All modern scleractinian corals are thought to produce skeletons exclusively of the calcium-carbonate polymorph aragonite. Despite strong fluctuations in ocean chemistry (notably the Mg/Ca ratio), this feature is believed to be conserved throughout the coral fossil record, spanning more than 240 million years. Only one example, the Cretaceous scleractinian coral Coelosmilia (ca. 70 to 65 Ma), is thought to have produced a calcitic skeleton. Here, we report that the modern asymbiotic scleractinian coral Paraconotrochus antarcticus living in the Southern Ocean forms a two-component carbonate skeleton, with an inner structure made of high-Mg calcite and an outer structure composed of aragonite. P. antarcticus and Cretaceous Coelosmilia skeletons share a unique microstructure indicating a close phylogenetic relationship, consistent with the early divergence of P. antarcticus within the Vacatina (i.e., Robusta) clade, estimated to have occurred in the Mesozoic (ca. 116 Mya). Scleractinian corals thus join the group of marine organisms capable of forming bimineralic structures, which requires a highly controlled biomineralization mechanism; this capability dates back at least 100 My. Due to its relatively prolonged isolation, the Southern Ocean stands out as a repository for extant marine organisms with ancient traits.
Collapse
|
17
|
van Dijk I, Raitzsch M, Brummer GJA, Bijma J. Novel Method to Image and Quantify Cogwheel Structures in Foraminiferal Shells. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.567231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Most studies designed to better understand biomineralization by foraminifera focus mainly on their shell chemistry in order to retrace processes responsible for element uptake and shell formation. Still, shell formation is a combination of not only chemical and biological processes, but is also limited by structural features. Since the processes involved in the formation of the foraminifera shell remains elusive, new focus has been put on potential structural constraints during shell formation. Revealing structural details of shells of foraminifera might increase our mechanistic understanding of foraminifera calcification, and even explain species-specific differences in element incorporation. Recently, shell structures have been studied in increasingly higher resolution and detail. This paper aims to provide new insights on the structural features on foraminifera shells, so-called cogwheels, which can be observed in the shell wall and at its surface. Here, we present a novel method to image and quantify these cogwheel structures, using field specimens from different environments and ecological groups, including benthic and planktonic species. Application of this method allows for comparing shell structures at specimen and species level, to unravel potential drivers of shell formation.
Collapse
|
18
|
Nanoscale trace metal imprinting of biocalcification of planktic foraminifers by Toba's super-eruption. Sci Rep 2020; 10:10974. [PMID: 32620909 PMCID: PMC7335162 DOI: 10.1038/s41598-020-67481-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 06/02/2020] [Indexed: 11/12/2022] Open
Abstract
Bioactive metal releases in ocean surface water, such as those by ash falls during volcanic super-eruptions, might have a potentially toxic impact on biocalcifier planktic microorganisms. Nano-XRF imaging with the cutting-edge synchrotron hard X-ray nano-analysis ID16B beamline (ESRF) revealed for the first time a specific Zn- and Mn-rich banding pattern in the test walls of Globorotalia menardii planktic foraminifers extracted from the Young Toba Tuff layer, and thus contemporaneous with Toba’s super-eruption, 74,000 years ago. The intra-test correlation of Zn and Mn patterns at the nanoscale with the layered calcareous microarchitecture, indicates that the incorporation of these metals is syngenetic to the wall growth. The preferential Mn and Zn sequestration within the incipient stages of chamber formation suggests a selective incorporation mechanism providing a resilience strategy to metal pollution in the test building of planktic foraminifers.
Collapse
|
19
|
Guamán-Guevara F, Austin H, Hicks N, Streeter R, Austin WEN. Impacts of ocean acidification on intertidal benthic foraminiferal growth and calcification. PLoS One 2019; 14:e0220046. [PMID: 31433797 PMCID: PMC6703850 DOI: 10.1371/journal.pone.0220046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 07/08/2019] [Indexed: 11/21/2022] Open
Abstract
Foraminifera are expected to be particularly susceptible to future changes in ocean carbonate chemistry as a function of increased atmospheric CO2. Studies in an experimental recirculating seawater system were performed with a dominant benthic foraminiferal species collected from intertidal mudflats. We investigated the experimental impacts of ocean acidification on survival, growth/calcification, morphology and the biometric features of a calcareous species Elphidium williamsoni. Foraminifera were exposed for 6 weeks to four different pH treatments that replicated future scenarios of a high CO2 atmosphere resulting in lower seawater pH. Results revealed that declining seawater pH caused a decline in foraminiferal survival rate and growth/calcification (mainly through test weight reduction). Scanning electron microscopy image analysis of live specimens at the end of the experimental period show changes in foraminiferal morphology with clear signs of corrosion and cracking on the test surface, septal bridges, sutures and feeding structures of specimens exposed to the lowest pH conditions. These findings suggest that the morphological changes observed in shell feeding structures may serve to alter: (1) foraminiferal feeding efficiency and their long-term ecological competitiveness, (2) the energy transferred within the benthic food web with a subsequent shift in benthic community structures and (3) carbon cycling and total CaCO3 production, both highly significant processes in coastal waters. These experimental results open-up the possibility of modelling future impacts of ocean acidification on both calcification and dissolution in benthic foraminifera within mid-latitude intertidal environments, with potential implications for understanding the changing marine carbon cycle.
Collapse
Affiliation(s)
- Fabricio Guamán-Guevara
- School of Geography and Sustainable Development, University of St. Andrews, St Andrews, Scotland
| | - Heather Austin
- School of Geography and Sustainable Development, University of St. Andrews, St Andrews, Scotland
| | - Natalie Hicks
- School of Biological Sciences, University of Essex, Colchester, United Kingdom
| | - Richard Streeter
- School of Geography and Sustainable Development, University of St. Andrews, St Andrews, Scotland
| | - William E. N. Austin
- School of Geography and Sustainable Development, University of St. Andrews, St Andrews, Scotland
- The Scottish Association for Marine Science (SAMS), Oban, Scotland
- * E-mail:
| |
Collapse
|
20
|
Irfan MF, Hossain SMZ, Khalid H, Sadaf F, Al-Thawadi S, Alshater A, Hossain MM, Razzak SA. Optimization of bio-cement production from cement kiln dust using microalgae. ACTA ACUST UNITED AC 2019; 23:e00356. [PMID: 31312609 PMCID: PMC6609786 DOI: 10.1016/j.btre.2019.e00356] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 05/06/2019] [Accepted: 06/23/2019] [Indexed: 11/23/2022]
Abstract
CKD with microalgae sp. Chlorella kessleri is investigated for maximum bio-cement yields. A predictive quadratic model was developed for CaCO3 yield with R2 value of c.a. 92%. Low temperature and high pH were found to be important parameters in RSM study. Under optimal set, a maximum of 96% Ca was extracted experimentally from CKD. FTIR, XRD and EDS analysis confirmed the produced bio-cement compound.
The main aim of this study was to maximize bio-cement (CaCO3) production through a waste feedstock of cement kiln dust (CKD) as a source of calcium by deployment of microalgae sp. Chlorella kessleri. The effect of process parameters such as temperature, pH and time-intervals of microalgae cultivation, were set as criteria that ultimately subscribe to a process of optimization. In this regard, a single factor experiments integrated with response surface methodology (RSM) via central composite design (CCD) was considered. A quadratic model was developed to predict the maximum CaCO3 yield. A ceiling of 25.18 g CaCO3 yield was obtained at an optimal set of 23 °C, pH of 10.63 and day-9 of microalgae culture. Under these optimized conditions, maximum 96% calcium was extracted from CKD. FTIR, XRD and EDS analyses were conducted to characterize the CaCO3 precipitates. Compressive modes of mechanical testing seemed to hold conventional cement complimented by CaCO3 co-presence markedly superior to mere cement performance as far as compressive strength is concerned. The latter criterion exhibited further increase in correspondence with rise in cement to bio-cement ratio. This investigative endeavour at hand offers a simple pivotal platform on the basis of which a scale-up of microalgae-infested bio-cement production might be facilitated in conjunction with the added benefit of alleviation in environmental pollution through cement waste utilization.
Collapse
Affiliation(s)
- M F Irfan
- Department of Chemical Engineering, College of Engineering, University of Bahrain, Bahrain
| | - S M Z Hossain
- Department of Chemical Engineering, College of Engineering, University of Bahrain, Bahrain
| | - H Khalid
- Department of Chemical Engineering, College of Engineering, University of Bahrain, Bahrain
| | - F Sadaf
- Department of Chemical Engineering, College of Engineering, University of Bahrain, Bahrain
| | - S Al-Thawadi
- Department of Biology, College of Sciences, University of Bahrain, Bahrain
| | - A Alshater
- Department of Chemical Engineering, College of Engineering, University of Bahrain, Bahrain
| | - M M Hossain
- Department of Chemical Engineering, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| | - S A Razzak
- Department of Chemical Engineering, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| |
Collapse
|
21
|
Jiang W, Athanasiadou D, Zhang S, Demichelis R, Koziara KB, Raiteri P, Nelea V, Mi W, Ma JA, Gale JD, McKee MD. Homochirality in biomineral suprastructures induced by assembly of single-enantiomer amino acids from a nonracemic mixture. Nat Commun 2019; 10:2318. [PMID: 31127116 PMCID: PMC6534569 DOI: 10.1038/s41467-019-10383-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Accepted: 05/09/2019] [Indexed: 11/08/2022] Open
Abstract
Since Pasteur first successfully separated right-handed and left-handed tartrate crystals in 1848, the understanding of how homochirality is achieved from enantiomeric mixtures has long been incomplete. Here, we report on a chirality dominance effect where organized, three-dimensional homochiral suprastructures of the biomineral calcium carbonate (vaterite) can be induced from a mixed nonracemic amino acid system. Right-handed (counterclockwise) homochiral vaterite helicoids are induced when the amino acid L-Asp is in the majority, whereas left-handed (clockwise) homochiral morphology is induced when D-Asp is in the majority. Unexpectedly, the Asp that incorporates into the homochiral vaterite helicoids maintains the same enantiomer ratio as that of the initial growth solution, thus showing chirality transfer without chirality amplification. Changes in the degree of chirality of the vaterite helicoids are postulated to result from the extent of majority enantiomer assembly on the mineral surface. These mechanistic insights potentially have major implications for high-level advanced materials synthesis.
Collapse
Affiliation(s)
- Wenge Jiang
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, and Tianjin Collaborative Innovation Center of Chemical Science & Engineering, Tianjin University, Tianjin, P. R. China, 300072
- Faculty of Dentistry, McGill University, Montreal, QC, Canada, H3A 0C7
| | | | - Shaodong Zhang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, P. R. China, 200240
| | - Raffaella Demichelis
- Curtin Institute for Computation, The Institute for Geoscience Research (TIGeR), and School of Molecular and Life Science, Curtin University, GPO Box U1987, Perth, WA, 6845, Australia
| | - Katarzyna B Koziara
- Curtin Institute for Computation, The Institute for Geoscience Research (TIGeR), and School of Molecular and Life Science, Curtin University, GPO Box U1987, Perth, WA, 6845, Australia
| | - Paolo Raiteri
- Curtin Institute for Computation, The Institute for Geoscience Research (TIGeR), and School of Molecular and Life Science, Curtin University, GPO Box U1987, Perth, WA, 6845, Australia
| | - Valentin Nelea
- Faculty of Dentistry, McGill University, Montreal, QC, Canada, H3A 0C7
| | - Wenbo Mi
- Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparation Technology, School of Science, Tianjin University, Tianjin, P. R. China, 300354
| | - Jun-An Ma
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, and Tianjin Collaborative Innovation Center of Chemical Science & Engineering, Tianjin University, Tianjin, P. R. China, 300072
| | - Julian D Gale
- Curtin Institute for Computation, The Institute for Geoscience Research (TIGeR), and School of Molecular and Life Science, Curtin University, GPO Box U1987, Perth, WA, 6845, Australia
| | - Marc D McKee
- Faculty of Dentistry, McGill University, Montreal, QC, Canada, H3A 0C7.
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada, H3A 0C7.
| |
Collapse
|
22
|
DeCarlo TM, Comeau S, Cornwall CE, Gajdzik L, Guagliardo P, Sadekov A, Thillainath EC, Trotter J, McCulloch MT. Investigating marine bio-calcification mechanisms in a changing ocean with in vivo and high-resolution ex vivo Raman spectroscopy. GLOBAL CHANGE BIOLOGY 2019; 25:1877-1888. [PMID: 30689259 PMCID: PMC6916197 DOI: 10.1111/gcb.14579] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 01/20/2019] [Accepted: 01/21/2019] [Indexed: 05/20/2023]
Abstract
Ocean acidification poses a serious threat to marine calcifying organisms, yet experimental and field studies have found highly diverse responses among species and environments. Our understanding of the underlying drivers of differential responses to ocean acidification is currently limited by difficulties in directly observing and quantifying the mechanisms of bio-calcification. Here, we present Raman spectroscopy techniques for characterizing the skeletal mineralogy and calcifying fluid chemistry of marine calcifying organisms such as corals, coralline algae, foraminifera, and fish (carbonate otoliths). First, our in vivo Raman technique is the ideal tool for investigating non-classical mineralization pathways. This includes calcification by amorphous particle attachment, which has recently been controversially suggested as a mechanism by which corals resist the negative effects of ocean acidification. Second, high-resolution ex vivo Raman mapping reveals complex banding structures in the mineralogy of marine calcifiers, and provides a tool to quantify calcification responses to environmental variability on various timescales from days to years. We describe the new insights into marine bio-calcification that our techniques have already uncovered, and we consider the wide range of questions regarding calcifier responses to global change that can now be proposed and addressed with these new Raman spectroscopy tools.
Collapse
Affiliation(s)
- Thomas M. DeCarlo
- Oceans Graduate SchoolThe University of Western AustraliaCrawleyWestern AustraliaAustralia
- Oceans Institute at The University of Western AustraliaCrawleyWestern AustraliaAustralia
- ARC Centre of Excellence for Coral Reef StudiesCrawleyWestern AustraliaAustralia
| | - Steeve Comeau
- Oceans Graduate SchoolThe University of Western AustraliaCrawleyWestern AustraliaAustralia
- Oceans Institute at The University of Western AustraliaCrawleyWestern AustraliaAustralia
- ARC Centre of Excellence for Coral Reef StudiesCrawleyWestern AustraliaAustralia
- Present address:
Sorbonne Université, CNRS‐INSU, Laboratoire d'Océanographie de 30 Villefranche181 chemin du Lazaret, F–06230 Villefranche‐sur‐merFrance
| | - Christopher E. Cornwall
- Oceans Graduate SchoolThe University of Western AustraliaCrawleyWestern AustraliaAustralia
- Oceans Institute at The University of Western AustraliaCrawleyWestern AustraliaAustralia
- ARC Centre of Excellence for Coral Reef StudiesCrawleyWestern AustraliaAustralia
- Present address:
School of Biological SciencesVictoria University of WellingtonWellingtonNew‐Zealand
| | - Laura Gajdzik
- School of Molecular and Life Sciences, TrEnD LaboratoryCurtin UniversityBentleyWestern AustraliaAustralia
| | - Paul Guagliardo
- Centre for Microscopy, Characterisation and AnalysisThe University of Western AustraliaCrawleyWestern AustraliaAustralia
| | - Aleksey Sadekov
- Oceans Graduate SchoolThe University of Western AustraliaCrawleyWestern AustraliaAustralia
- Oceans Institute at The University of Western AustraliaCrawleyWestern AustraliaAustralia
- ARC Centre of Excellence for Coral Reef StudiesCrawleyWestern AustraliaAustralia
| | - Emma C. Thillainath
- Oceans Institute at The University of Western AustraliaCrawleyWestern AustraliaAustralia
- School of Biological SciencesThe University of Western AustraliaCrawleyWestern AustraliaAustralia
| | - Julie Trotter
- Oceans Institute at The University of Western AustraliaCrawleyWestern AustraliaAustralia
- School of Earth SciencesThe University of Western AustraliaCrawleyWestern AustraliaAustralia
| | - Malcolm T. McCulloch
- Oceans Graduate SchoolThe University of Western AustraliaCrawleyWestern AustraliaAustralia
- Oceans Institute at The University of Western AustraliaCrawleyWestern AustraliaAustralia
- ARC Centre of Excellence for Coral Reef StudiesCrawleyWestern AustraliaAustralia
| |
Collapse
|
23
|
Geerken E, de Nooijer LJ, Roepert A, Polerecky L, King HE, Reichart GJ. Element banding and organic linings within chamber walls of two benthic foraminifera. Sci Rep 2019; 9:3598. [PMID: 30837621 PMCID: PMC6400897 DOI: 10.1038/s41598-019-40298-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 02/04/2019] [Indexed: 11/09/2022] Open
Abstract
Trace and minor elements incorporated in foraminiferal shells are among the most used proxies for reconstructing past environmental conditions. A prominent issue concerning these proxies is that the inter-specimen variability in element composition is often considerably larger than the variability associated with the environmental conditions for which the proxy is used. Within a shell of an individual specimen the trace and minor elements are distributed in the form of bands of higher and lower concentrations. It has been hypothesized that differences in specimen-specific element banding patterns cause the inter-specimen and inter-species variability observed in average element composition, thereby reducing the reliability of proxies. To test this hypothesis, we compared spatial distributions of Mg, Na, Sr, K, S, P and N within chamber walls of two benthic foraminiferal species (Amphistegina lessonii and Ammonia tepida) with largely different average Mg content. For both species the selected specimens were grown at different temperatures and salinities to additionally assess how these parameters influence the element concentrations within the shell wall. Our results show that Mg, Na, Sr and K are co-located within shells, and occur in bands that coincide with organic linings but extend further into the calcite lamella. Changes in temperature or salinity modulate the element-banding pattern as a whole, with peak and trough heights co-varying rather than independently affected by these two environmental parameters. This means that independent changes in peak or trough height do not explain differences in average El/Ca between specimens. These results are used to evaluate and synthesize models of underlying mechanisms responsible for trace and minor element partitioning during calcification in foraminifera.
Collapse
Affiliation(s)
- E Geerken
- Department of Ocean Systems, NIOZ-Royal Netherlands Institute for Sea Research, and Utrecht University, Den Burg, The Netherlands
| | - L J de Nooijer
- Department of Ocean Systems, NIOZ-Royal Netherlands Institute for Sea Research, and Utrecht University, Den Burg, The Netherlands.
| | - A Roepert
- Faculty of Geosciences, Utrecht University, Utrecht, The Netherlands
| | - L Polerecky
- Faculty of Geosciences, Utrecht University, Utrecht, The Netherlands
| | - H E King
- Faculty of Geosciences, Utrecht University, Utrecht, The Netherlands
| | - G J Reichart
- Department of Ocean Systems, NIOZ-Royal Netherlands Institute for Sea Research, and Utrecht University, Den Burg, The Netherlands.,Faculty of Geosciences, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
24
|
Zarkogiannis SD, Antonarakou A, Tripati A, Kontakiotis G, Mortyn PG, Drinia H, Greaves M. Influence of surface ocean density on planktonic foraminifera calcification. Sci Rep 2019; 9:533. [PMID: 30679608 PMCID: PMC6346091 DOI: 10.1038/s41598-018-36935-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 11/27/2018] [Indexed: 12/01/2022] Open
Abstract
This study provides evidence that ambient seawater density influences calcification and may account for the observed planktonic foraminifera shell mass increase during glacial times. Volumes of weighed fossil Globigerina bulloides shells were accurately determined using X-ray Computer Tomography and were combined with water density reconstructions from Mg/Ca and δ18O measurements to estimate the buoyancy force exerted on each shell. After assessment of dissolution effects, the resulting relationship between shell mass and buoyancy suggests that heavier shells would need to be precipitated in glacial climates in order for these organisms to remain at their optimum living depth, and counterbalance the increased buoyant force of a denser, glacial ocean. Furthermore, the reanalysis of bibliographic data allowed the determination of a relationship between G. bulloides shell mass and ocean density, which introduces implications of a negative feedback mechanism for the uptake of atmospheric CO2 by the oceans.
Collapse
Affiliation(s)
- Stergios D Zarkogiannis
- National & Kapodistrian University of Athens, School of Earth Sciences, Faculty of Geology & Geoenvironment, Department of Historical Geology - Paleontology, Athens, Greece.
| | - Assimina Antonarakou
- National & Kapodistrian University of Athens, School of Earth Sciences, Faculty of Geology & Geoenvironment, Department of Historical Geology - Paleontology, Athens, Greece
| | - Aradhna Tripati
- Department of Earth, Planetary, and Space Sciences, Department of Atmospheric and Oceanic Sciences, Institute of the Environment and Sustainability, California Nanosystems Institute, University of California, Los Angeles, CA, USA.,European Institute of Marine Sciences (IUEM) Université de Brest, UMR 6538, Domaines Océaniques, Rue Dumont D'Urville, and IFREMER, Plouzané, France
| | - George Kontakiotis
- National & Kapodistrian University of Athens, School of Earth Sciences, Faculty of Geology & Geoenvironment, Department of Historical Geology - Paleontology, Athens, Greece
| | - P Graham Mortyn
- Institute of Environmental Science and Technology, Universitat Autònoma de Barcelona, Barcelona, Spain.,Department of Geography, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Hara Drinia
- National & Kapodistrian University of Athens, School of Earth Sciences, Faculty of Geology & Geoenvironment, Department of Historical Geology - Paleontology, Athens, Greece
| | - Mervyn Greaves
- Department of Earth Sciences, University of Cambridge, Cambridge, UK
| |
Collapse
|
25
|
Jiang W, Pacella MS, Vali H, Gray JJ, McKee MD. Chiral switching in biomineral suprastructures induced by homochiral l-amino acid. SCIENCE ADVANCES 2018; 4:eaas9819. [PMID: 30083605 PMCID: PMC6070311 DOI: 10.1126/sciadv.aas9819] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 06/22/2018] [Indexed: 05/17/2023]
Abstract
How homochiral l-biomolecules in nature induce a chiral switch in biomineralized architectures is unknown, although chiral switching is common in many calcium carbonate-hardened structures found in marine and terrestrial organisms. We created hierarchically organized, chiral biomineral structures of calcium carbonate, whose chirality can be switched by a single l-enantiomer of an amino acid. The control of this chiral switching involves two stages: a calcium carbonate (vaterite) platelet layer inclination stage, followed by a platelet layer rotation stage, the latter stage being responsible for successional chiral switching events within the biomineralized structures. The morphology of the synthesized chiral vaterite structures remarkably resembles pathologic chiral vaterite otoconia found in the human inner ear. In general, these findings describe how a single-enantiomer amino acid might contribute to biomineral architectures having more than one chirality as is commonly seen in biology, and more specifically, they suggest how pathologic chiral malformations may arise in humans.
Collapse
Affiliation(s)
- Wenge Jiang
- Faculty of Dentistry, McGill University, Montreal, Quebec H3A 0C7, Canada
| | - Michael S. Pacella
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218 USA
| | - Hojatollah Vali
- Department of Anatomy and Cell Biology, Faculty of Medicine, McGill University, Montreal, Quebec H3A 0C7, Canada
| | - Jeffrey J. Gray
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Program in Molecular Biophysics, John Hopkins University, Baltimore, MD 21218, USA
| | - Marc D. McKee
- Faculty of Dentistry, McGill University, Montreal, Quebec H3A 0C7, Canada
- Department of Anatomy and Cell Biology, Faculty of Medicine, McGill University, Montreal, Quebec H3A 0C7, Canada
- Corresponding author.
| |
Collapse
|