1
|
Martínez Villarreal A, Gantchev J, Xie P, Lefrançois P, Ramchatesingh B, Litvinov IV. Memory T-Cell Phenotype in Cutaneous T-Cell Lymphoma Is Modified by Germline Gene Gametocyte Specific Factor 1. Exp Dermatol 2025; 34:e70123. [PMID: 40369846 PMCID: PMC12078864 DOI: 10.1111/exd.70123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 04/10/2025] [Accepted: 05/01/2025] [Indexed: 05/16/2025]
Abstract
Cutaneous T-cell lymphoma (CTCL) is a heterogeneous group of lymphoproliferative disorders characterised by skin infiltration by malignant memory T cells. While most patients will present with an indolent disease, others will follow a highly aggressive clinical course. Currently, defining disease prognosis remains challenging. Ectopic expression of gametocyte-specific factor 1 (GTSF1) has emerged as a potential prognostic biomarker. However, its contribution to CTCL carcinogenesis remains unknown. Here, we report that GTSF1 contributes to carcinogenesis by partially modifying the memory/effector phenotype of the malignant T cells. GTSF1 knockdown in CTCL cells led to T-cell activation and production of IFNγ and TNFα. Advanced stages of the disease are associated with decreased production of these cytokines. Notably, we show that patients classified with high expression of GTSF1 are associated with a worse disease prognosis. Taken together, our findings indicate that GTSF1 expression in CTCL cells allows them to acquire memory T-cell phenotype. Malignant memory T cells have a decreased production of immune-responsive cytokines, leading to a diminished immune response and disease progression. GTSF1 is an important candidate as a prognostic biomarker. Furthermore, understanding the specific function of GTSF1 might help develop novel targeted treatment options for CTCL patients.
Collapse
Affiliation(s)
- Amelia Martínez Villarreal
- Faculty of Medicine and Health Sciences, Research Institute of the McGill University Health CentreMcGill UniversityMontrealQuebecCanada
- Division of Experimental Medicine, Faculty of Medicine and Health SciencesMcGill UniversityMontrealQuebecCanada
| | - Jennifer Gantchev
- Department of NeurosurgeryBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Pingxing Xie
- Division of Dermatology, Faculty of Medicine and Health SciencesMcGill UniversityMontrealQuebecCanada
| | - Philippe Lefrançois
- Division of Experimental Medicine, Faculty of Medicine and Health SciencesMcGill UniversityMontrealQuebecCanada
- Division of Dermatology, Faculty of Medicine and Health SciencesMcGill UniversityMontrealQuebecCanada
- Lady Davis Institute for Medical ResearchJewish General Hospital, McGill UniversityMontrealQuebecCanada
| | - Brandon Ramchatesingh
- Faculty of Medicine and Health Sciences, Research Institute of the McGill University Health CentreMcGill UniversityMontrealQuebecCanada
- Division of Experimental Medicine, Faculty of Medicine and Health SciencesMcGill UniversityMontrealQuebecCanada
| | - Ivan V. Litvinov
- Faculty of Medicine and Health Sciences, Research Institute of the McGill University Health CentreMcGill UniversityMontrealQuebecCanada
- Division of Experimental Medicine, Faculty of Medicine and Health SciencesMcGill UniversityMontrealQuebecCanada
- Division of Dermatology, Faculty of Medicine and Health SciencesMcGill UniversityMontrealQuebecCanada
| |
Collapse
|
2
|
Piergentili R, Sechi S. Targeting Regulatory Noncoding RNAs in Human Cancer: The State of the Art in Clinical Trials. Pharmaceutics 2025; 17:471. [PMID: 40284466 PMCID: PMC12030637 DOI: 10.3390/pharmaceutics17040471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/29/2025] [Accepted: 03/31/2025] [Indexed: 04/29/2025] Open
Abstract
Noncoding RNAs (ncRNAs) are a heterogeneous group of RNA molecules whose classification is mainly based on arbitrary criteria such as the molecule length, secondary structures, and cellular functions. A large fraction of these ncRNAs play a regulatory role regarding messenger RNAs (mRNAs) or other ncRNAs, creating an intracellular network of cross-interactions that allow the fine and complex regulation of gene expression. Altering the balance between these interactions may be sufficient to cause a transition from health to disease and vice versa. This leads to the possibility of intervening in these mechanisms to re-establish health in patients. The regulatory role of ncRNAs is associated with all cancer hallmarks, such as proliferation, apoptosis, invasion, metastasis, and genomic instability. Based on the function performed in carcinogenesis, ncRNAs may behave either as oncogenes or tumor suppressors. However, this distinction is not rigid; some ncRNAs can fall into both classes depending on the tissue considered or the target molecule. Furthermore, some of them are also involved in regulating the response to traditional cancer-therapeutic approaches. In general, the regulation of molecular mechanisms by ncRNAs is very complex and still largely unclear, but it has enormous potential both for the development of new therapies, especially in cases where traditional methods fail, and for their use as novel and more efficient biomarkers. Overall, this review will provide a brief overview of ncRNAs in human cancer biology, with a specific focus on describing the most recent ongoing clinical trials (CT) in which ncRNAs have been tested for their potential as therapeutic agents or evaluated as biomarkers.
Collapse
|
3
|
Prizak R, Gadzekpo A, Hilbert L. Chromatin unfolding via loops can drive clustered transposon insertion. Biophys J 2025:S0006-3495(25)00212-7. [PMID: 40188359 DOI: 10.1016/j.bpj.2025.03.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 02/02/2025] [Accepted: 03/31/2025] [Indexed: 04/08/2025] Open
Abstract
Transposons, DNA sequences capable of relocating within the genome, make up a significant portion of eukaryotic genomes and are often found in clusters. Within the cell nucleus, the genome is organized into chromatin, a structure with varying degrees of compaction due to three-dimensional folding. Transposon insertion or activation can lead to chromatin decompaction, increasing accessibility and potentially facilitating further nearby insertions. This positive feedback between chromatin unfolding and transposon insertion may result in transposon clustering. Here, we combine bioinformatics with polymer modeling to explore possible mechanisms and conditions that promote clustered transposon insertions. Our analysis of human cell line genomic repeat data reveals extensive clustering of heterochromatic LINE-1 elements and euchromatic Alu elements. For Alu elements, this clustering correlates with increased chromatin accessibility. Both Alu and LINE-1 deviate in their sequence-inherent flexibility from the overall genome, with above-average flexibility for Alu and below-average flexibility for most LINE-1 sequences. Flexibility was highest in young transposons, so that young Alu and LINE-1 exceed overall genome flexibility. We developed an according polymer model of transposon insertion, consisting of a self-attracting chromatin domain. Transposon insertions locally disrupt self-attraction, leading to unfolding of the domain as more transposons are inserted. In simulations where transposons are inserted adjacent to existing ones, we observed gradual unfolding through loop extensions from a folded core. Including transposases as explicit particles, our model shows that adjacent transposon insertion occurs when densely packed chromatin excludes transposases or when insertion rates exceed the thermal equilibration rate of polymer configurations. We conclude that 1) dense chromatin packing that hinders transposase access as well as 2) a local loss of compaction upon transposon insertion favor clustered transposon insertion via loop formation. This biophysical mechanism of clustered insertion site preference would act in combination with selective pressures shaping transposon distribution over evolutionary timescales.
Collapse
Affiliation(s)
- Roshan Prizak
- Karlsruhe Institute of Technology, Institute of Biological and Chemical Systems, Eggenstein-Leopoldshafen, Germany
| | - Aaron Gadzekpo
- Karlsruhe Institute of Technology, Institute of Biological and Chemical Systems, Eggenstein-Leopoldshafen, Germany
| | - Lennart Hilbert
- Karlsruhe Institute of Technology, Institute of Biological and Chemical Systems, Eggenstein-Leopoldshafen, Germany; Karlsruhe Institute of Technology, Zoological Institute, Karlsruhe, Germany.
| |
Collapse
|
4
|
Vaz C, Burton M, Kermack AJ, Tan PF, Huan J, Yoo TPX, Donnelly K, Wellstead SJ, Wang D, Fisk HL, Houghton FD, Lewis S, Chong YS, Gluckman PD, Cheong Y, Macklon NS, Calder PC, Dutta A, Godfrey KM, Kumar P, Lillycrop KA, Karnani N. Short-term diet intervention comprising of olive oil, vitamin D, and omega-3 fatty acids alters the small non-coding RNA (sncRNA) landscape of human sperm. Sci Rep 2025; 15:7790. [PMID: 40044751 PMCID: PMC11882820 DOI: 10.1038/s41598-024-83653-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 12/16/2024] [Indexed: 03/09/2025] Open
Abstract
Offspring health outcomes are often linked with epigenetic alterations triggered by maternal nutrition and intrauterine environment. Strong experimental data also link paternal preconception nutrition with pathophysiology in the offspring, but the mechanism(s) routing effects of paternal exposures remain elusive. Animal experimental models have highlighted small non-coding RNAs (sncRNAs) as potential regulators of paternal effects. Here, we characterised the baseline sncRNA landscape of human sperm and the effect of a 6-week dietary intervention on their expression profile. This study involves sncRNAseq profiling, that was performed on a subset (n = 17) of the participants enrolled in the PREPARE trial: 9 from the control group and 8 from the intervention group. 5'tRFs, miRNAs and piRNAs were the most abundant sncRNA subtypes identified; their expression was associated with age, BMI, and sperm quality. Nutritional intervention with olive oil, vitamin D and omega-3 fatty acids altered expression of 3 tRFs, 15 miRNAs and 112 piRNAs, targeting genes involved in fatty acid metabolism and transposable elements in the sperm genome. PREPARE Trial registration number: ISRCTN50956936, Trial registration date: 10/02/2014.
Collapse
Affiliation(s)
- Candida Vaz
- Institute for Human Development and Potential (IHDP), Agency for Science, Technology and Research (A*STAR), 30 Medical Drive, Singapore, 117609, Republic of Singapore.
| | - Mark Burton
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Alexandra J Kermack
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton, UK
- Complete Fertility, Princess Anne Hospital, Southampton, UK
- University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Pei Fang Tan
- Institute for Human Development and Potential (IHDP), Agency for Science, Technology and Research (A*STAR), 30 Medical Drive, Singapore, 117609, Republic of Singapore
- Agency for Science, Technology and Research (A*STAR), Bioinformatics Institute (BII), 30 Biopolis Street #07-01 Matrix, Singapore, 138671, Republic of Singapore
| | - Jason Huan
- Institute for Human Development and Potential (IHDP), Agency for Science, Technology and Research (A*STAR), 30 Medical Drive, Singapore, 117609, Republic of Singapore
| | - Tessa P X Yoo
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Kerry Donnelly
- Complete Fertility, Princess Anne Hospital, Southampton, UK
| | - Susan J Wellstead
- Complete Fertility, Princess Anne Hospital, Southampton, UK
- University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Dennis Wang
- Institute for Human Development and Potential (IHDP), Agency for Science, Technology and Research (A*STAR), 30 Medical Drive, Singapore, 117609, Republic of Singapore
- Agency for Science, Technology and Research (A*STAR), Bioinformatics Institute (BII), 30 Biopolis Street #07-01 Matrix, Singapore, 138671, Republic of Singapore
| | - Helena L Fisk
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton, UK
| | - Franchesca D Houghton
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Sheena Lewis
- Queen's University, Belfast, Northern Ireland, UK
- Examen Lab Ltd, Belfast, Northern Ireland, UK
| | - Yap Seng Chong
- Institute for Human Development and Potential (IHDP), Agency for Science, Technology and Research (A*STAR), 30 Medical Drive, Singapore, 117609, Republic of Singapore
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
| | - Peter D Gluckman
- Institute for Human Development and Potential (IHDP), Agency for Science, Technology and Research (A*STAR), 30 Medical Drive, Singapore, 117609, Republic of Singapore
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Ying Cheong
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton, UK
- Complete Fertility, Princess Anne Hospital, Southampton, UK
- University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Nicholas S Macklon
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton, UK
- London Women's Clinic, London, UK
| | - Philip C Calder
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton, UK
| | - Anindya Dutta
- Department of Biochemistry and Molecular Genetics, University of Virginia, School of Medicine, Charlottesville, VA, USA
- Department of Genetics, U. Alabama, Birmingham, AL, 35294, USA
| | - Keith M Godfrey
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton, UK
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, UK
| | - Pankaj Kumar
- Department of Biochemistry and Molecular Genetics, University of Virginia, School of Medicine, Charlottesville, VA, USA
| | - Karen A Lillycrop
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
- School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, UK
| | - Neerja Karnani
- Institute for Human Development and Potential (IHDP), Agency for Science, Technology and Research (A*STAR), 30 Medical Drive, Singapore, 117609, Republic of Singapore.
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Republic of Singapore.
- Agency for Science, Technology and Research (A*STAR), Bioinformatics Institute (BII), 30 Biopolis Street #07-01 Matrix, Singapore, 138671, Republic of Singapore.
| |
Collapse
|
5
|
Gan M, Wang X, Ma J, Chen L, Wang Y, Shen L, Zhu L. Small RNA data sets of mouse testes and ovaries before and after sexual maturity. Sci Data 2025; 12:354. [PMID: 40016227 PMCID: PMC11868417 DOI: 10.1038/s41597-025-04555-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 01/29/2025] [Indexed: 03/01/2025] Open
Abstract
For a considerable period, reproductive health, fertility, and reproductive-related diseases have posed challenges to human well-being, as well as to the conservation of endangered species and the advancement of animal husbandry. PANDORA-seq, a recently introduced sequencing technique, demonstrates heightened sensitivity towards highly modified small RNAs like tsRNA and rsRNA. In this research endeavor, we leveraged PANDORA-seq to capture the small RNA expression profiles of mouse testes and ovaries pre- and post-sexual maturation. Our investigation successfully pinpointed an array of abundantly expressed small RNAs across various tissues, encompassing tsRNA, rsRNA, piRNA, miRNA, snoRNA, and ysRNA. Next, we conducted an expression profile analysis of these small RNAs to assist researchers in screening and validating them for various areas of interest. This dataset is poised to become an invaluable resource for exploring the postnatal development of testes and ovaries, offering new insights into the epigenetic mechanisms underlying germ cell production and differentiation.
Collapse
Affiliation(s)
- Mailin Gan
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, P. R. China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, P. R. China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, P. R. China
| | - Xingyu Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, P. R. China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, P. R. China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, P. R. China
| | - Jianfeng Ma
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, P. R. China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, P. R. China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, P. R. China
| | - Lei Chen
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, P. R. China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, P. R. China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, P. R. China
| | - Yan Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, P. R. China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, P. R. China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, P. R. China
| | - Linyuan Shen
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, P. R. China.
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, P. R. China.
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, P. R. China.
| | - Li Zhu
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, P. R. China.
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, P. R. China.
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, P. R. China.
| |
Collapse
|
6
|
Barranco I, Almiñana C, Parra A, Martínez-Diaz P, Lucas X, Bauersachs S, Roca J. RNA profiles differ between small and large extracellular vesicle subsets isolated from porcine seminal plasma. BMC Genomics 2024; 25:1250. [PMID: 39731016 DOI: 10.1186/s12864-024-11167-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 12/18/2024] [Indexed: 12/29/2024] Open
Abstract
BACKGROUND Extracellular vesicles (EVs) are essential for cell-to-cell communication because they transport functionally active molecules, including proteins, RNA, and lipids, from secretory cells to nearby or distant target cells. Seminal plasma contains a large number of EVs (sEVs) that are phenotypically heterogeneous. The aim of the present study was to identify the RNA species contained in two subsets of porcine sEVs of different sizes, namely small sEVs (S-sEVs) and large sEVs (L-sEVs). The two subsets of sEVs were isolated from 54 seminal plasma samples by a method combining serial centrifugations, size exclusion chromatography, and ultrafiltration. The sEVs were characterized using an orthogonal approach. Analysis of RNA content and quantification were performed using RNA-seq analysis. RESULTS The two subsets of sEVs had different size distributions (P < 0.001). They also showed differences in concentration, morphology, and specific protein markers (P < 0.05). A total of 735 RNAs were identified and quantified, which included: (1) mRNAs, rRNAs, snoRNAs, snRNAs, tRNAs, other ncRNAs (termed as "all RNAs"), (2) miRNAs and (3) piRNAs. The distribution pattern of these RNA classes differed between S-sEVs and L-sEVs (P < 0.05). More than half of "all RNAs", miRNAs and piRNAs were found to be differentially abundant between S- and L-sEVs (FDR < 0.1%). Among the differentially abundant RNAs, "all RNAs" were more abundant in L- than in S-sEVs, whereas the most of the miRNAs were more abundant in S- than in L-sEVs. Differentially abundant piRNAs were equally distributed between S- and L-sEVs. Some of the all RNAs and miRNAs found to be differentially abundant between S- and L-sEVs were associated with sperm quality and functionality and male fertility success. CONCLUSIONS Small and large sEVs isolated from porcine seminal plasma show quantitative differences in RNA content. These differences would suggest that each sEV subtype exerts different functional activities in the targeted cells, namely spermatozoa and functional cells of the female reproductive tract.
Collapse
Grants
- PID2022-137738NA-I00 funded by MCIN/AEI/10.13039/501100011033/FEDER UE Ministerio de Ciencia e Innovación
- PID2020-113493RB-I00 funded by MCIN/AEI/10.13039/501100011033 Ministerio de Ciencia e Innovación
- PID2020-113493RB-I00 funded by MCIN/AEI/10.13039/501100011033 Ministerio de Ciencia e Innovación
- PID2020-113493RB-I00 funded by MCIN/AEI/10.13039/501100011033 Ministerio de Ciencia e Innovación
- 21935/PI/22 Fundación Seneca, Murcia, Spain
- 21935/PI/22 Fundación Seneca, Murcia, Spain
- 21935/PI/22 Fundación Seneca, Murcia, Spain
- 21935/PI/22 Fundación Seneca, Murcia, Spain
- 21935/PI/22 Fundación Seneca, Murcia, Spain
Collapse
Affiliation(s)
- Isabel Barranco
- Department of Medicine and Animal Surgery, Veterinary Science, University of Murcia, Murcia, Spain
| | - Carmen Almiñana
- Institute of Veterinary Anatomy, Vetsuisse-Faculty, University of Zurich, Lindau, ZH, Switzerland
- Department of Reproductive Endocrinology, University Hospital Zurich, Zurich, Switzerland
| | - Ana Parra
- Department of Medicine and Animal Surgery, Veterinary Science, University of Murcia, Murcia, Spain
| | - Pablo Martínez-Diaz
- Department of Medicine and Animal Surgery, Veterinary Science, University of Murcia, Murcia, Spain
| | - Xiomara Lucas
- Department of Medicine and Animal Surgery, Veterinary Science, University of Murcia, Murcia, Spain
| | - Stefan Bauersachs
- Institute of Veterinary Anatomy, Vetsuisse-Faculty, University of Zurich, Lindau, ZH, Switzerland
| | - Jordi Roca
- Department of Medicine and Animal Surgery, Veterinary Science, University of Murcia, Murcia, Spain.
| |
Collapse
|
7
|
Patel MZ, Jiang Y, Kakumani PK. Somatic piRNA and PIWI-mediated post-transcriptional gene regulation in stem cells and disease. Front Cell Dev Biol 2024; 12:1495035. [PMID: 39717847 PMCID: PMC11663942 DOI: 10.3389/fcell.2024.1495035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 11/25/2024] [Indexed: 12/25/2024] Open
Abstract
PIWI-interacting RNAs (piRNAs) are small non-coding RNAs that bind to the PIWI subclass of the Argonaute protein family and are essential for maintaining germline integrity. Initially discovered in Drosophila, PIWI proteins safeguard piRNAs, forming ribonucleoprotein (RNP) complexes, crucial for regulating gene expression and genome stability, by suppressing transposable elements (TEs). Recent insights revealed that piRNAs and PIWI proteins, known for their roles in germline maintenance, significantly influence mRNA stability, translation and retrotransposon silencing in both stem cells and bodily tissues. In the current review, we explore the multifaceted roles of piRNAs and PIWI proteins in numerous biological contexts, emphasizing their involvement in stem cell maintenance, differentiation, and the development of human diseases. Additionally, we discussed the up-and-coming animal models, beyond the classical fruit fly and earthworm systems, for studying piRNA-PIWIs in self-renewal and cell differentiation. Further, our review offers new insights and discusses the emerging roles of piRNA-dependent and independent functions of PIWI proteins in the soma, especially the mRNA regulation at the post-transcriptional level, governing stem cell characteristics, tumor development, and cardiovascular and neurodegenerative diseases.
Collapse
Affiliation(s)
| | | | - Pavan Kumar Kakumani
- Department of Biochemistry, Memorial University of Newfoundland, St. John’s, NL, Canada
| |
Collapse
|
8
|
Saha B, Chakravarty S, Ray S, Saha H, Das K, Ghosh I, Mallick B, Biswas NK, Goswami S. Correlating tissue and plasma‑specific piRNA changes to predict their possible role in pancreatic malignancy and chronic inflammation. Biomed Rep 2024; 21:186. [PMID: 39420923 PMCID: PMC11484194 DOI: 10.3892/br.2024.1874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/13/2024] [Indexed: 10/19/2024] Open
Abstract
The aggressiveness of pancreatic ductal adenocarcinoma is primarily due to lack of effective early detection biomarkers. Circulating non-coding RNAs serve as diagnostic or prognostic biomarkers in multiple types of cancer. Comparison of their expression between diseased tissue and relevant body fluids such as saliva, urine, bile, pancreatic juice, blood etc. may reveal mechanistic involvement of common non-coding RNAs. piwi-interacting RNAs (piRNAs) are a class of non-coding RNAs. The aim of the present study was to investigate plasma and tumour tissue piRNA changes in patients with pancreatic cancer (PC) and explore the possible role in tumorigenesis and pancreatic inflammation. Sequencing of circulating plasma small RNAs from patients with PC and chronic pancreatitis (CP) was performed and differentially expressed piRNAs were compared with those in tissues. Subsequent search for target genes for those piRNAs was performed followed by pathway and cluster analysis. A total of 36 piRNAs were shown to be deregulated in pancreatic tumour tissue and alteration of 11 piRNAs was detected in plasma of patients with PC. piRNAs hsa-piR-23246, hsa-piR-32858 and hsa-piR-9137 may serve a key role in PC development as their expression was correlated in both plasma and tumour tissue. Key piRNA-target interactions interfering with key biological pathways were also characterized. A total of 19 deregulated piRNAs in plasma samples of patients with CP was identified; these targeted genes responsible for chronic inflammation. Therefore, the present study provides a comprehensive description of piRNA alteration in pancreatic malignancy and inflammation; these may be explored for biomarker potential in future.
Collapse
Affiliation(s)
- Barsha Saha
- Biotechnology Research and Innovation Council-National Institute of Biomedical Genomics, Kalyani, Nadia, West Bengal 741251, India
- Regional Centre for Biotechnology, 3rd Milestone, Faridabad-Gurugram Expressway, Faridabad 121001, India
| | - Shouvik Chakravarty
- Biotechnology Research and Innovation Council-National Institute of Biomedical Genomics, Kalyani, Nadia, West Bengal 741251, India
- Regional Centre for Biotechnology, 3rd Milestone, Faridabad-Gurugram Expressway, Faridabad 121001, India
| | - Sukanta Ray
- Institute of Postgraduate Medical Education & Research, Kolkata 700020, India
| | - Hemabha Saha
- Institute of Postgraduate Medical Education & Research, Kolkata 700020, India
| | - Kshaunish Das
- Institute of Postgraduate Medical Education & Research, Kolkata 700020, India
| | - Indranil Ghosh
- Chittaranjan National Cancer Institute, Kolkata 700026, India
| | | | - Nidhan K. Biswas
- Biotechnology Research and Innovation Council-National Institute of Biomedical Genomics, Kalyani, Nadia, West Bengal 741251, India
| | - Srikanta Goswami
- Biotechnology Research and Innovation Council-National Institute of Biomedical Genomics, Kalyani, Nadia, West Bengal 741251, India
| |
Collapse
|
9
|
Guo C, Wang X, Ren H. Databases and computational methods for the identification of piRNA-related molecules: A survey. Comput Struct Biotechnol J 2024; 23:813-833. [PMID: 38328006 PMCID: PMC10847878 DOI: 10.1016/j.csbj.2024.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/31/2023] [Accepted: 01/15/2024] [Indexed: 02/09/2024] Open
Abstract
Piwi-interacting RNAs (piRNAs) are a class of small non-coding RNAs (ncRNAs) that plays important roles in many biological processes and major cancer diagnosis and treatment, thus becoming a hot research topic. This study aims to provide an in-depth review of computational piRNA-related research, including databases and computational models. Herein, we perform literature analysis and use comparative evaluation methods to summarize and analyze three aspects of computational piRNA-related research: (i) computational models for piRNA-related molecular identification tasks, (ii) computational models for piRNA-disease association prediction tasks, and (iii) computational resources and evaluation metrics for these tasks. This study shows that computational piRNA-related research has significantly progressed, exhibiting promising performance in recent years, whereas they also suffer from the emerging challenges of inconsistent naming systems and the lack of data. Different from other reviews on piRNA-related identification tasks that focus on the organization of datasets and computational methods, we pay more attention to the analysis of computational models, algorithms, and performances that aim to provide valuable references for computational piRNA-related identification tasks. This study will benefit the theoretical development and practical application of piRNAs by better understanding computational models and resources to investigate the biological functions and clinical implications of piRNA.
Collapse
Affiliation(s)
- Chang Guo
- Laboratory of Language Engineering and Computing, Guangdong University of Foreign Studies, Guangzhou 510420, China
| | - Xiaoli Wang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Han Ren
- Laboratory of Language Engineering and Computing, Guangdong University of Foreign Studies, Guangzhou 510420, China
- Laboratory of Language and Artificial Intelligence, Guangdong University of Foreign Studies, Guangzhou 510420, China
| |
Collapse
|
10
|
Pritam S, Scarpa A, Kofler R, Signor S. The impact of insertion bias into piRNA clusters on the invasion of transposable elements. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.06.616898. [PMID: 39464153 PMCID: PMC11507707 DOI: 10.1101/2024.10.06.616898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
In our current understanding of transposable element (TE) invasions TEs move freely until they accidentally insert into a piRNA cluster. They are then silenced by the production of piRNA cognate to the TE. Under this model, one would expect that TEs might evolve to avoid piRNA clusters. Yet empirical observations show that some TEs, such as the P-element, insert into piRNA clusters preferentially. We were thus wondering if such a bias could be beneficial for the TE, for example by minimizing harm to the host while still being able to selfishly spread in populations. We decided to model insertion bias to determine if there was ever a situation in which insertion bias was beneficial to the TE. We performed extensive forward simulations of TE invasions with differing insertion biases into piRNA clusters. We found that insertion bias significantly altered the invasion dynamics of TEs, primarily by changing the copy number of the TE in individuals prior to silencing. Insertion into a piRNA cluster reduced the deleterious effects of TEs to the host population, but we found that TEs avoiding piRNA clusters out-compete TEs with a bias towards cluster insertions. Insertion bias was only beneficial to the TE when there was negative selection against TEs and a lack of recombination. Different TEs show different insertion biases into piRNA clusters suggesting they are an attribute of the TE not the host, yet scenarios in which this is beneficial to the TE are quite limited. This opens up an interesting area of future research into the dynamics of insertion bias during TE invasions.
Collapse
Affiliation(s)
| | - Almorò Scarpa
- Institut für Populationsgenetik, Vetmeduni Vienna, Veterinärplatz 1, 1210 Wien, Austria
- Vienna Graduate School of Population Genetics, Vetmeduni Vienna, Vienna, Austria
| | - Robert Kofler
- Institut für Populationsgenetik, Vetmeduni Vienna, Veterinärplatz 1, 1210 Wien, Austria
| | | |
Collapse
|
11
|
Gallardo-Dodd CJ, Kutter C. The regulatory landscape of interacting RNA and protein pools in cellular homeostasis and cancer. Hum Genomics 2024; 18:109. [PMID: 39334294 PMCID: PMC11437681 DOI: 10.1186/s40246-024-00678-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 09/22/2024] [Indexed: 09/30/2024] Open
Abstract
Biological systems encompass intricate networks governed by RNA-protein interactions that play pivotal roles in cellular functions. RNA and proteins constituting 1.1% and 18% of the mammalian cell weight, respectively, orchestrate vital processes from genome organization to translation. To date, disentangling the functional fraction of the human genome has presented a major challenge, particularly for noncoding regions, yet recent discoveries have started to unveil a host of regulatory functions for noncoding RNAs (ncRNAs). While ncRNAs exist at different sizes, structures, degrees of evolutionary conservation and abundances within the cell, they partake in diverse roles either alone or in combination. However, certain ncRNA subtypes, including those that have been described or remain to be discovered, are poorly characterized given their heterogeneous nature. RNA activity is in most cases coordinated through interactions with RNA-binding proteins (RBPs). Extensive efforts are being made to accurately reconstruct RNA-RBP regulatory networks, which have provided unprecedented insight into cellular physiology and human disease. In this review, we provide a comprehensive view of RNAs and RBPs, focusing on how their interactions generate functional signals in living cells, particularly in the context of post-transcriptional regulatory processes and cancer.
Collapse
Affiliation(s)
- Carlos J Gallardo-Dodd
- Department of Microbiology, Tumor, and Cell Biology, Science for Life Laboratory, Karolinska Institute, Solna, Sweden
| | - Claudia Kutter
- Department of Microbiology, Tumor, and Cell Biology, Science for Life Laboratory, Karolinska Institute, Solna, Sweden.
| |
Collapse
|
12
|
Jaszczak RG, Zussman JW, Wagner DE, Laird DJ. Comprehensive profiling of migratory primordial germ cells reveals niche-specific differences in non-canonical Wnt and Nodal-Lefty signaling in anterior vs posterior migrants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.29.610420. [PMID: 39257761 PMCID: PMC11383659 DOI: 10.1101/2024.08.29.610420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Mammalian primordial germ cells (PGCs) migrate asynchronously through the embryonic hindgut and dorsal mesentery to reach the gonads. We previously found that interaction with different somatic niches regulates PGC proliferation along the migration route. To characterize transcriptional heterogeneity of migrating PGCs and their niches, we performed single-cell RNA sequencing of 13,262 mouse PGCs and 7,868 surrounding somatic cells during migration (E9.5, E10.5, E11.5) and in anterior versus posterior locations to enrich for leading and lagging migrants. Analysis of PGCs by position revealed dynamic gene expression changes between faster or earlier migrants in the anterior and slower or later migrants in the posterior at E9.5; these differences include migration-associated actin polymerization machinery and epigenetic reprogramming-associated genes. We furthermore identified changes in signaling with various somatic niches, notably strengthened interactions with hindgut epithelium via non-canonical WNT (ncWNT) in posterior PGCs compared to anterior. Reanalysis of a previously published dataset suggests that ncWNT signaling from the hindgut epithelium to early migratory PGCs is conserved in humans. Trajectory inference methods identified putative differentiation trajectories linking cell states across timepoints and from posterior to anterior in our mouse dataset. At E9.5, we mainly observed differences in cell adhesion and actin cytoskeletal dynamics between E9.5 posterior and anterior migrants. At E10.5, we observed divergent gene expression patterns between putative differentiation trajectories from posterior to anterior including Nodal signaling response genes Lefty1, Lefty2, and Pycr2 and reprogramming factors Dnmt1, Prc1, and Tet1. At E10.5, we experimentally validated anterior migrant-specific Lefty1/2 upregulation via whole-mount immunofluorescence staining for LEFTY1/2 proteins, suggesting that elevated autocrine Nodal signaling accompanies the late stages of PGC migration. Together, this positional and temporal atlas of mouse PGCs supports the idea that niche interactions along the migratory route elicit changes in proliferation, actin dynamics, pluripotency, and epigenetic reprogramming.
Collapse
Affiliation(s)
| | | | - Daniel E. Wagner
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research and Department of Obstetrics, Gynecology and Reproductive Science, UCSF, San Francisco, CA 94143 USA
| | - Diana J. Laird
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research and Department of Obstetrics, Gynecology and Reproductive Science, UCSF, San Francisco, CA 94143 USA
| |
Collapse
|
13
|
Mehta P, Sethi S, Yadav SK, Gupta G, Singh R. Heat stress induced piRNA alterations in pachytene spermatocytes and round spermatids. Reprod Biol Endocrinol 2024; 22:87. [PMID: 39049033 PMCID: PMC11267754 DOI: 10.1186/s12958-024-01249-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 06/26/2024] [Indexed: 07/27/2024] Open
Abstract
BACKGROUND Spermatogenesis is a temperature-sensitive process, and elevation in temperature hampers this process quickly and significantly. We studied the molecular effects of testicular heating on piRNAs and gene expression in rat testicular germ cells. METHODS We generated a cryptorchid rat model by displacing the testis from the scrotal sac (34 °C) to the abdominal area (37 °C) and sacrificed animals after 1 day, 3 days, and 5 days. Pachytene spermatocytes and round spermatids were purified using elutriation centrifugation and percoll gradient methods. We performed transcriptome sequencing in pachytene spermatocytes and round spermatids to identify differentially expressed piRNAs and their probable targets, i.e., TE transcripts and mRNAs. RESULTS As a result of heat stress, we observed significant upregulation of piRNAs and TE transcripts in testicular germ cells. In addition to this, piRNA biogenesis machinery and heat shock proteins (Hsp70 and Hsp90 family members) were upregulated. mRNAs have also been proposed as targets for piRNAs; therefore, we shortlisted certain piRNA-mRNA pairs with an inverse relationship of expression. We observed that in testicular heat stress, the heat shock proteins go hand-in-hand with the upregulation of piRNA biogenesis machinery. The dysregulation of piRNAs in heat-stressed germ cells, increased ping-pong activity, and disturbed expression of piRNA target transcripts suggest a connection between piRNAs, mRNAs, and TE transcripts. CONCLUSIONS In heat stress, piRNAs, piRNA machinery, and heat shock proteins are activated to deal with low levels of stress, which is followed by a rescue approach in prolonged stressaccompained by high TE activity to allow genetic mutations, perhaps for survival and adaptability.
Collapse
Affiliation(s)
- Poonam Mehta
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Shruti Sethi
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Santosh Kumar Yadav
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, India
| | - Gopal Gupta
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Rajender Singh
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.
| |
Collapse
|
14
|
Sun W, Guo C, Wan J, Ren H. piRNA-disease association prediction based on multi-channel graph variational autoencoder. PeerJ Comput Sci 2024; 10:e2216. [PMID: 39145234 PMCID: PMC11323097 DOI: 10.7717/peerj-cs.2216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 07/03/2024] [Indexed: 08/16/2024]
Abstract
Piwi-interacting RNA (piRNA) is a type of non-coding small RNA that is highly expressed in mammalian testis. PiRNA has been implicated in various human diseases, but the experimental validation of piRNA-disease associations is costly and time-consuming. In this article, a novel computational method for predicting piRNA-disease associations using a multi-channel graph variational autoencoder (MC-GVAE) is proposed. This method integrates four types of similarity networks for piRNAs and diseases, which are derived from piRNA sequences, disease semantics, piRNA Gaussian Interaction Profile (GIP) kernel, and disease GIP kernel, respectively. These networks are modeled by a graph VAE framework, which can learn low-dimensional and informative feature representations for piRNAs and diseases. Then, a multi-channel method is used to fuse the feature representations from different networks. Finally, a three-layer neural network classifier is applied to predict the potential associations between piRNAs and diseases. The method was evaluated on a benchmark dataset containing 5,002 experimentally validated associations with 4,350 piRNAs and 21 diseases, constructed from the piRDisease v1.0 database. It achieved state-of-the-art performance, with an average AUC value of 0.9310 and an AUPR value of 0.9247 under five-fold cross-validation. This demonstrates the method's effectiveness and superiority in piRNA-disease association prediction.
Collapse
Affiliation(s)
- Wei Sun
- School of Information Science and Technology, Qiongtai Normal University, Haikou, China
| | - Chang Guo
- School of Modern Information Industry, Guangzhou College of Commerce, Guangzhou, China
| | - Jing Wan
- Center for Lexicographical Studies, Guangdong University of Foreign Studies, Guangzhou, China
| | - Han Ren
- Laboratory of Language Engineering and Computing, Guangdong University of Foreign Studies, Guangzhou, China
- Laboratory of Language and Artificial Intelligence, Guangdong University of Foreign Studies, Guangzhou, China
| |
Collapse
|
15
|
Jiang M, Hong X, Gao Y, Kho AT, Tantisira KG, Li J. piRNA associates with immune diseases. Cell Commun Signal 2024; 22:347. [PMID: 38943141 PMCID: PMC11214247 DOI: 10.1186/s12964-024-01724-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 06/23/2024] [Indexed: 07/01/2024] Open
Abstract
PIWI-interacting RNA (piRNA) is the most abundant small non-coding RNA in animal cells, typically 26-31 nucleotides in length and it binds with PIWI proteins, a subfamily of Argonaute proteins. Initially discovered in germ cells, piRNA is well known for its role in silencing transposons and maintaining genome integrity. However, piRNA is also present in somatic cells as well as in extracellular vesicles and exosomes. While piRNA has been extensively studied in various diseases, particular cancer, its function in immune diseases remains unclear. In this review, we summarize current research on piRNA in immune diseases. We first introduce the basic characteristics, biogenesis and functions of piRNA. Then, we review the association of piRNA with different types of immune diseases, including autoimmune diseases, immunodeficiency diseases, infectious diseases, and other immune-related diseases. piRNA is considered a promising biomarker for diseases, highlighting the need for further research into its potential mechanisms in disease pathogenesis.
Collapse
Affiliation(s)
- Mingye Jiang
- Clinical Big Data Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Xiaoning Hong
- Clinical Big Data Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Yunfei Gao
- Department of Otolaryngology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Alvin T Kho
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Computational Health Informatics Program, Boston Children's Hospital, Boston, MA, USA
| | - Kelan G Tantisira
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Pediatrics, Division of Respiratory Medicine, University of California San Diego, La Jolla, CA, USA
| | - Jiang Li
- Clinical Big Data Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong, China.
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Shenzhen Key Laboratory of Chinese Medicine Active Substance Screening and Translational Research, Guangdong, Shenzhen, China.
| |
Collapse
|
16
|
Ma Y, Hou B, Zong J, Liu S. Potential molecular mechanisms and clinical implications of piRNAs in preeclampsia: a review. Reprod Biol Endocrinol 2024; 22:73. [PMID: 38915084 PMCID: PMC11194991 DOI: 10.1186/s12958-024-01247-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/17/2024] [Indexed: 06/26/2024] Open
Abstract
Preeclampsia is a multisystem progressive condition and is one of the most serious complications of pregnancy. Owing to its unclear pathogenesis, there are no precise and effective therapeutic targets for preeclampsia, and the only available treatment strategy is to terminate the pregnancy and eliminate the clinical symptoms. In recent years, non-coding RNAs have become a hotspot in preeclampsia research and have shown promise as effective biomarkers for the early diagnosis of preeclampsia over conventional biochemical markers. PIWI-interacting RNAs, novel small non-coding RNA that interact with PIWI proteins, are involved in the pathogenesis of various diseases at the transcriptional or post-transcriptional level. However, the mechanisms underlying the role of PIWI-interacting RNAs in the pathogenesis of preeclampsia remain unclear. In this review, we discuss the findings of existing studies on PIWI-interacting RNA biogenesis, functions, and their possible roles in preeclampsia, providing novel insights into the potential application of PIWI-interacting RNAs in the early diagnosis and clinical treatment of preeclampsia.
Collapse
Affiliation(s)
- Yuanxuan Ma
- Prenatal Diagnosis Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266003, Shandong, China
- Department of Medical Genetics, the Affiliated Hospital of Qingdao University, Qingdao , Shandong, 266003, China
| | - Bo Hou
- Department of Cardiology, the Affiliated Hospital of Qingdao University, Qingdao , Shandong, 266003, China
| | - Jinbao Zong
- Department of Laboratory, Qingdao Hiser Hospital Affliated of Qingdao University (Oingdao Traditional Chinese Medicine Hospital), 4 Renmin Road, Qingdao, 266033, China.
| | - Shiguo Liu
- Prenatal Diagnosis Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266003, Shandong, China.
- Department of Medical Genetics, the Affiliated Hospital of Qingdao University, Qingdao , Shandong, 266003, China.
- Medical Genetic Department, the Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003, China.
| |
Collapse
|
17
|
Zhang H, Li Y. Potential roles of PIWI-interacting RNAs in breast cancer, a new therapeutic strategy. Pathol Res Pract 2024; 257:155318. [PMID: 38688203 DOI: 10.1016/j.prp.2024.155318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/11/2024] [Accepted: 04/16/2024] [Indexed: 05/02/2024]
Abstract
Breast cancer (BC) has been the focus of numerous studies aimed at identifying novel biological markers for its early detection. PIWI-interacting RNAs (piRNAs), a subset of small non-coding RNAs, have emerged as potential markers due to their aberrant expression in various cancers. PiRNAs have recently gained attention due to their aberrant expression in various cancers, including BC. PiRNAs, exhibit diverse biological activities, such as epigenetic regulation of gene and protein expression and their association with cell proliferation and metastasis has been well-established. As the field of non-coding RNAs rapidly evolves, there is great anticipation that therapies targeting piRNAs will advance swiftly. This review will delve into the various biological functions of piRNAs, such as gene suppression, transposon silencing, and epigenetic regulation of genes. The review will also highlight the role of piRNAs as either progenitors or suppressors in cancers, with a particular focus on BC. Lastly, it will touch upon the potential of piRNAs as biomarkers and therapeutic targets for BC.
Collapse
Affiliation(s)
- Hongpeng Zhang
- The Second Clinical College, China Medical University, Shenyang 110122, China
| | - Yanshu Li
- School of Life Sciences, China Medical University, Shenyang 110122, China.
| |
Collapse
|
18
|
Gao J, Qin Y, Schimenti JC. Gene regulation during meiosis. Trends Genet 2024; 40:326-336. [PMID: 38177041 PMCID: PMC11003842 DOI: 10.1016/j.tig.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/12/2023] [Accepted: 12/12/2023] [Indexed: 01/06/2024]
Abstract
Meiosis is essential for gamete production in all sexually reproducing organisms. It entails two successive cell divisions without DNA replication, producing haploid cells from diploid ones. This process involves complex morphological and molecular differentiation that varies across species and between sexes. Specialized genomic events like meiotic recombination and chromosome segregation are tightly regulated, including preparation for post-meiotic development. Research in model organisms, notably yeast, has shed light on the genetic and molecular aspects of meiosis and its regulation. Although mammalian meiosis research faces challenges, particularly in replicating gametogenesis in vitro, advances in genetic and genomic technologies are providing mechanistic insights. Here we review the genetics and molecular biology of meiotic gene expression control, focusing on mammals.
Collapse
Affiliation(s)
- Jingyi Gao
- Cornell University, College of Veterinary Medicine, Department of Biomedical Sciences, Ithaca, NY 14853, USA
| | - Yiwen Qin
- Cornell University, College of Veterinary Medicine, Department of Biomedical Sciences, Ithaca, NY 14853, USA
| | - John C Schimenti
- Cornell University, College of Veterinary Medicine, Department of Biomedical Sciences, Ithaca, NY 14853, USA.
| |
Collapse
|
19
|
Lu X. Regulation of endogenous retroviruses in murine embryonic stem cells and early embryos. J Mol Cell Biol 2024; 15:mjad052. [PMID: 37604781 PMCID: PMC10794949 DOI: 10.1093/jmcb/mjad052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 11/24/2022] [Accepted: 08/19/2023] [Indexed: 08/23/2023] Open
Abstract
Endogenous retroviruses (ERVs) are important components of transposable elements that constitute ∼40% of the mouse genome. ERVs exhibit dynamic expression patterns during early embryonic development and are engaged in numerous biological processes. Therefore, ERV expression must be closely monitored in cells. Most studies have focused on the regulation of ERV expression in mouse embryonic stem cells (ESCs) and during early embryonic development. This review touches on the classification, expression, and functions of ERVs in mouse ESCs and early embryos and mainly discusses ERV modulation strategies from the perspectives of transcription, epigenetic modification, nucleosome/chromatin assembly, and post-transcriptional control.
Collapse
Affiliation(s)
- Xinyi Lu
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300350, China
| |
Collapse
|
20
|
Schmitz M, Querques I. DNA on the move: mechanisms, functions and applications of transposable elements. FEBS Open Bio 2024; 14:13-22. [PMID: 38041553 PMCID: PMC10761935 DOI: 10.1002/2211-5463.13743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 10/24/2023] [Accepted: 11/30/2023] [Indexed: 12/03/2023] Open
Abstract
Transposons are mobile genetic elements that have invaded all domains of life by moving between and within their host genomes. Due to their mobility (or transposition), transposons facilitate horizontal gene transfer in bacteria and foster the evolution of new molecular functions in prokaryotes and eukaryotes. As transposition can lead to detrimental genomic rearrangements, organisms have evolved a multitude of molecular strategies to control transposons, including genome defense mechanisms provided by CRISPR-Cas systems. Apart from their biological impacts on genomes, DNA transposons have been leveraged as efficient gene insertion vectors in basic research, transgenesis and gene therapy. However, the close to random insertion profile of transposon-based tools limits their programmability and safety. Despite recent advances brought by the development of CRISPR-associated genome editing nucleases, a strategy for efficient insertion of large, multi-kilobase transgenes at user-defined genomic sites is currently challenging. The discovery and experimental characterization of bacterial CRISPR-associated transposons (CASTs) led to the attractive hypothesis that these systems could be repurposed as programmable, site-specific gene integration technologies. Here, we provide a broad overview of the molecular mechanisms underpinning DNA transposition and of its biological and technological impact. The second focus of the article is to describe recent mechanistic and functional analyses of CAST transposition. Finally, current challenges and desired future advances of CAST-based genome engineering applications are briefly discussed.
Collapse
Affiliation(s)
| | - Irma Querques
- Department of BiochemistryUniversity of ZurichSwitzerland
- Max Perutz Labs, Vienna Biocenter Campus (VBC)Austria
- Department of Structural and Computational Biology, Center for Molecular BiologyUniversity of ViennaAustria
| |
Collapse
|
21
|
Sengupta P, Dutta S, Liew FF, Dhawan V, Das B, Mottola F, Slama P, Rocco L, Roychoudhury S. Environmental and Genetic Traffic in the Journey from Sperm to Offspring. Biomolecules 2023; 13:1759. [PMID: 38136630 PMCID: PMC10741607 DOI: 10.3390/biom13121759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/04/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023] Open
Abstract
Recent advancements in the understanding of how sperm develop into offspring have shown complex interactions between environmental influences and genetic factors. The past decade, marked by a research surge, has not only highlighted the profound impact of paternal contributions on fertility and reproductive outcomes but also revolutionized our comprehension by unveiling how parental factors sculpt traits in successive generations through mechanisms that extend beyond traditional inheritance patterns. Studies have shown that offspring are more susceptible to environmental factors, especially during critical phases of growth. While these factors are broadly detrimental to health, their effects are especially acute during these periods. Moving beyond the immutable nature of the genome, the epigenetic profile of cells emerges as a dynamic architecture. This flexibility renders it susceptible to environmental disruptions. The primary objective of this review is to shed light on the diverse processes through which environmental agents affect male reproductive capacity. Additionally, it explores the consequences of paternal environmental interactions, demonstrating how interactions can reverberate in the offspring. It encompasses direct genetic changes as well as a broad spectrum of epigenetic adaptations. By consolidating current empirically supported research, it offers an exhaustive perspective on the interwoven trajectories of the environment, genetics, and epigenetics in the elaborate transition from sperm to offspring.
Collapse
Affiliation(s)
- Pallav Sengupta
- Department of Biomedical Sciences, College of Medicine, Gulf Medical University, Ajman 4184, United Arab Emirates
| | - Sulagna Dutta
- School of Life Sciences, Manipal Academy of Higher Education (MAHE), Dubai 345050, United Arab Emirates
| | - Fong Fong Liew
- Department of Preclinical Sciences, Faculty of Dentistry, MAHSA University, Jenjarom 42610, Selangor, Malaysia
| | - Vidhu Dhawan
- Department of Anatomy, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Biprojit Das
- Department of Life Science and Bioinformatics, Assam University, Silchar 788011, India
| | - Filomena Mottola
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, 81100 Caserta, Italy
| | - Petr Slama
- Laboratory of Animal Immunology and Biotechnology, Department of Animal Morphology, Physiology and Genetics, Faculty of AgriSciences, Mendel University in Brno, 613 00 Brno, Czech Republic
| | - Lucia Rocco
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, 81100 Caserta, Italy
| | | |
Collapse
|
22
|
He M, Liu K, Cao J, Chen Q. An update on the role and potential mechanisms of clock genes regulating spermatogenesis: A systematic review of human and animal experimental studies. Rev Endocr Metab Disord 2023; 24:585-610. [PMID: 36792803 DOI: 10.1007/s11154-022-09783-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/25/2022] [Indexed: 02/17/2023]
Abstract
Circadian clocks can be traced in nearly all life kingdoms, with the male reproductive system no exception. However, our understanding of the circadian clock in spermatogenesis seems to fall behind other scenarios. The present review aims to summarize the current knowledge about the role and especially the potential mechanisms of clock genes in spermatogenesis regulation. Accumulating studies have revealed rhythmic oscillation in semen parameters and some physiological events of spermatogenesis. Disturbing the clock gene expression by genetic mutations or environmental changes will also notably damage spermatogenesis. On the other hand, the mechanisms of spermatogenetic regulation by clock genes remain largely unclear. Some recent studies, although not revealing the entire mechanisms, indeed attempted to shed light on this issue. Emerging clues hinted that gonadal hormones, retinoic acid signaling, homologous recombination, and the chromatoid body might be involved in the regulation of spermatogenesis by clock genes. Then we highlight the challenges and the promising directions for future studies so as to stimulate attention to this critical field which has not gained adequate concern.
Collapse
Affiliation(s)
- Mengchao He
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Kun Liu
- Center for Disease Control and Prevention of Southern Theatre Command, Guangzhou, 510630, China
| | - Jia Cao
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| | - Qing Chen
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| |
Collapse
|
23
|
Fu J, Qin T, Li C, Zhu J, Ding Y, Zhou M, Yang Q, Liu X, Zhou J, Chen F. Research progress of LINE-1 in the diagnosis, prognosis, and treatment of gynecologic tumors. Front Oncol 2023; 13:1201568. [PMID: 37546391 PMCID: PMC10399582 DOI: 10.3389/fonc.2023.1201568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/19/2023] [Indexed: 08/08/2023] Open
Abstract
The retrotransposon known as long interspersed nuclear element-1 (LINE-1), which is currently the sole autonomously mobile transposon in the human genome, can result in insertional mutations, chromosomal rearrangements, and genomic instability. In recent years, numerous studies have shown that LINE-1 is involved in the development of various diseases and also plays an important role in the immune regulation of the organism. The expression of LINE-1 in gynecologic tumors suggests that it is expected to be an independent indicator for early diagnosis and prognosis, and also, as a therapeutic target, LINE-1 is closely associated with gynecologic tumor prognosis. This article discusses the function of LINE-1 in the diagnosis, treatment, and prognosis of ovarian, cervical, and endometrial malignancies, as well as other gynecologic malignancies. It offers fresh perspectives on the early detection of tumors and the creation of novel anti-tumor medications.
Collapse
Affiliation(s)
- Jiaojiao Fu
- The First Clinical Medical College of Gansu University of Chinese Medicine, Gansu Provincial Hospital, Lanzhou, China
- Department of Obstetrics and Gynecology, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Tiansheng Qin
- The First Clinical Medical College of Gansu University of Chinese Medicine, Gansu Provincial Hospital, Lanzhou, China
- Department of Obstetrics and Gynecology, Gansu Provincial Hospital, Lanzhou, Gansu, China
- The First Clinical Medical School, Lanzhou University, Lanzhou, Gansu, China
- National Health Commission (NHC) Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Chaoming Li
- The First People’s Hospital of Longnan, Longnan City Hospital, Longnan, Gansu, China
| | - Jiaojiao Zhu
- The First Clinical Medical College of Gansu University of Chinese Medicine, Gansu Provincial Hospital, Lanzhou, China
- Department of Obstetrics and Gynecology, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Yaoyao Ding
- The First Clinical Medical College of Gansu University of Chinese Medicine, Gansu Provincial Hospital, Lanzhou, China
- Department of Obstetrics and Gynecology, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Meiying Zhou
- Department of Obstetrics and Gynecology, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Qing Yang
- The First Clinical Medical College of Gansu University of Chinese Medicine, Gansu Provincial Hospital, Lanzhou, China
- Department of Obstetrics and Gynecology, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Xiaofeng Liu
- The First Clinical Medical College of Gansu University of Chinese Medicine, Gansu Provincial Hospital, Lanzhou, China
- Department of Obstetrics and Gynecology, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Juanhong Zhou
- The First Clinical Medical College of Gansu University of Chinese Medicine, Gansu Provincial Hospital, Lanzhou, China
- Department of Obstetrics and Gynecology, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Fan Chen
- The First Clinical Medical College of Gansu University of Chinese Medicine, Gansu Provincial Hospital, Lanzhou, China
- Department of Obstetrics and Gynecology, Gansu Provincial Hospital, Lanzhou, Gansu, China
| |
Collapse
|
24
|
Carotti E, Carducci F, Barucca M, Canapa A, Biscotti MA. Transposable Elements: Epigenetic Silencing Mechanisms or Modulating Tools for Vertebrate Adaptations? Two Sides of the Same Coin. Int J Mol Sci 2023; 24:11591. [PMID: 37511347 PMCID: PMC10380595 DOI: 10.3390/ijms241411591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Transposable elements constitute one of the main components of eukaryotic genomes. In vertebrates, they differ in content, typology, and family diversity and played a crucial role in the evolution of this taxon. However, due to their transposition ability, TEs can be responsible for genome instability, and thus silencing mechanisms were evolved to allow the coexistence between TEs and eukaryotic host-coding genes. Several papers are highlighting in TEs the presence of regulatory elements involved in regulating nearby genes in a tissue-specific fashion. This suggests that TEs are not sequences merely to silence; rather, they can be domesticated for the regulation of host-coding gene expression, permitting species adaptation and resilience as well as ensuring human health. This review presents the main silencing mechanisms acting in vertebrates and the importance of exploiting these mechanisms for TE control to rewire gene expression networks, challenging the general view of TEs as threatening elements.
Collapse
Affiliation(s)
| | - Federica Carducci
- Dipartimento di Scienze della Vita e dell’Ambiente, Università Politecnica delle Marche, 60131 Ancona, Italy; (E.C.); (M.B.); (A.C.); (M.A.B.)
| | | | | | | |
Collapse
|
25
|
Adashev VE, Kotov AA, Olenina LV. RNA Helicase Vasa as a Multifunctional Conservative Regulator of Gametogenesis in Eukaryotes. Curr Issues Mol Biol 2023; 45:5677-5705. [PMID: 37504274 PMCID: PMC10378496 DOI: 10.3390/cimb45070358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 07/29/2023] Open
Abstract
Being a conservative marker of germ cells across metazoan species, DEAD box RNA helicase Vasa (DDX4) remains the subject of worldwide investigations thanks to its multiple functional manifestations. Vasa takes part in the preformation of primordial germ cells in a group of organisms and contributes to the maintenance of germline stem cells. Vasa is an essential player in the piRNA-mediated silencing of harmful genomic elements and in the translational regulation of selected mRNAs. Vasa is the top hierarchical protein of germ granules, liquid droplet organelles that compartmentalize RNA processing factors. Here, we survey current advances and problems in the understanding of the multifaceted functions of Vasa proteins in the gametogenesis of different eukaryotic organisms, from nematodes to humans.
Collapse
Affiliation(s)
- Vladimir E Adashev
- Department of Molecular Mechanisms for Realization of Genetic Information, Laboratory of Biochemical Genetics of Animals, National Research Center "Kurchatov Institute", Kurchatov Sq. 1, 123182 Moscow, Russia
| | - Alexei A Kotov
- Department of Molecular Mechanisms for Realization of Genetic Information, Laboratory of Biochemical Genetics of Animals, National Research Center "Kurchatov Institute", Kurchatov Sq. 1, 123182 Moscow, Russia
| | - Ludmila V Olenina
- Department of Molecular Mechanisms for Realization of Genetic Information, Laboratory of Biochemical Genetics of Animals, National Research Center "Kurchatov Institute", Kurchatov Sq. 1, 123182 Moscow, Russia
| |
Collapse
|
26
|
Spencley AL, Bar S, Swigut T, Flynn RA, Lee CH, Chen LF, Bassik MC, Wysocka J. Co-transcriptional genome surveillance by HUSH is coupled to termination machinery. Mol Cell 2023; 83:1623-1639.e8. [PMID: 37164018 PMCID: PMC10915761 DOI: 10.1016/j.molcel.2023.04.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 01/12/2023] [Accepted: 04/12/2023] [Indexed: 05/12/2023]
Abstract
The HUSH complex recognizes and silences foreign DNA such as viruses, transposons, and transgenes without prior exposure to its targets. Here, we show that endogenous targets of the HUSH complex fall into two distinct classes based on the presence or absence of H3K9me3. These classes are further distinguished by their transposon content and differential response to the loss of HUSH. A de novo genomic rearrangement at the Sox2 locus induces a switch from H3K9me3-independent to H3K9me3-associated HUSH targeting, resulting in silencing. We further demonstrate that HUSH interacts with the termination factor WDR82 and-via its component MPP8-with nascent RNA. HUSH accumulates at sites of high RNAPII occupancy including long exons and transcription termination sites in a manner dependent on WDR82 and CPSF. Together, our results uncover the functional diversity of HUSH targets and show that this vertebrate-specific complex exploits evolutionarily ancient transcription termination machinery for co-transcriptional chromatin targeting and genome surveillance.
Collapse
Affiliation(s)
- Andrew L Spencley
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA; Cancer Biology Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Shiran Bar
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Tomek Swigut
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Ryan A Flynn
- Stem Cell Program, Boston Children's Hospital, Boston, MA, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Cameron H Lee
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Liang-Fu Chen
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Michael C Bassik
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Joanna Wysocka
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA; Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA; Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA; Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
27
|
Xiong M, Yin L, Gui Y, Lv C, Ma X, Guo S, Wu Y, Feng S, Fan X, Zhou S, Wang L, Wen Y, Wang X, Xie Q, Namekawa SH, Yuan S. ADAD2 interacts with RNF17 in P-bodies to repress the Ping-pong cycle in pachytene piRNA biogenesis. J Cell Biol 2023; 222:e202206067. [PMID: 36930220 PMCID: PMC10040813 DOI: 10.1083/jcb.202206067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 01/04/2023] [Accepted: 02/21/2023] [Indexed: 03/18/2023] Open
Abstract
Pachytene piRNA biogenesis is a hallmark of the germline, distinct from another wave of pre-pachytene piRNA biogenesis with regard to the lack of a secondary amplification process known as the Ping-pong cycle. However, the underlying molecular mechanism and the venue for the suppression of the Ping-pong cycle remain elusive. Here, we showed that a testis-specific protein, ADAD2, interacts with a TDRD family member protein RNF17 and is associated with P-bodies. Importantly, ADAD2 directs RNF17 to repress Ping-pong activity in pachytene piRNA biogenesis. The P-body localization of RNF17 requires the intrinsically disordered domain of ADAD2. Deletion of Adad2 or Rnf17 causes the mislocalization of each other and subsequent Ping-pong activity derepression, secondary piRNAs overproduced, and disruption of P-body integrity at the meiotic stage, thereby leading to spermatogenesis arrested at the round spermatid stage. Collectively, by identifying the ADAD2-dependent mechanism, our study reveals a novel function of P-bodies in suppressing Ping-pong activity in pachytene piRNA biogenesis.
Collapse
Affiliation(s)
- Mengneng Xiong
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Reproductive Medicine Center, Wuhan University Renmin Hospital, Wuhan, China
| | - Lisha Yin
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yiqian Gui
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chunyu Lv
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xixiang Ma
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Laboratory of Animal Center, Huazhong University of Science and Technology, Wuhan, China
| | - Shuangshuang Guo
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanqing Wu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shenglei Feng
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xv Fan
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shumin Zhou
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lingjuan Wang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yujiao Wen
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoli Wang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qingzhen Xie
- Reproductive Medicine Center, Wuhan University Renmin Hospital, Wuhan, China
| | - Satoshi H. Namekawa
- Department of Microbiology and Molecular Genetics, University of California Davis, Davis, CA, USA
| | - Shuiqiao Yuan
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Laboratory of Animal Center, Huazhong University of Science and Technology, Wuhan, China
- Shenzhen Huazhong University of Science and Technology, Research Institute, Shenzhen, China
| |
Collapse
|
28
|
Lu Y, Nagamori I, Kobayashi H, Kojima-Kita K, Shirane K, Chang HY, Nishimura T, Koyano T, Yu Z, Castañeda JM, Matsuyama M, Kuramochi-Miyagawa S, Matzuk MM, Ikawa M. ADAD2 functions in spermiogenesis and piRNA biogenesis in mice. Andrology 2023; 11:698-709. [PMID: 36698249 PMCID: PMC10073342 DOI: 10.1111/andr.13400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 01/17/2023] [Accepted: 01/21/2023] [Indexed: 01/27/2023]
Abstract
BACKGROUND Adenosine deaminase domain containing 2 (ADAD2) is a testis-specific protein composed of a double-stranded RNA binding domain and a non-catalytic adenosine deaminase domain. A recent study showed that ADAD2 is indispensable for the male reproduction in mice. However, the detailed functions of ADAD2 remain elusive. OBJECTIVES This study aimed to investigate the cause of male sterility in Adad2 mutant mice and to understand the molecular functions of ADAD2. MATERIALS AND METHODS Adad2 homozygous mutant mouse lines, Adad2-/- and Adad2Δ/Δ , were generated by CRISPR/Cas9. Western blotting and immunohistochemistry were used to reveal the expression and subcellular localization of ADAD2. Co-immunoprecipitation tandem mass spectrometry was employed to determine the ADAD2-interacting proteins in mouse testes. RNA-sequencing analyses were carried out to analyze the transcriptome and PIWI-interacting RNA (piRNA) populations in wildtype and Adad2 mutant testes. RESULTS Adad2-/- and Adad2Δ/Δ mice exhibit male-specific sterility because of abnormal spermiogenesis. ADAD2 interacts with multiple RNA-binding proteins involved in piRNA biogenesis, including MILI, MIWI, RNF17, and YTHDC2. ADAD2 co-localizes and forms novel granules with RNF17 in spermatocytes. Ablation of ADAD2 impairs the formation of RNF17 granules, decreases the number of cluster-derived pachytene piRNAs, and increases expression of ping-pong-derived piRNAs. DISCUSSION AND CONCLUSION In collaboration with RNF17 and other RNA-binding proteins in spermatocytes, ADAD2 directly or indirectly functions in piRNA biogenesis.
Collapse
Affiliation(s)
- Yonggang Lu
- Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan
- Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Ippei Nagamori
- Department of Pathology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Hisato Kobayashi
- Department of Embryology, Nara Medical University, Kashihara, Nara 634-0813, Japan
| | - Kanako Kojima-Kita
- Department of Pathology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Kenjiro Shirane
- Department of Genome Biology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Hsin-Yi Chang
- Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
- Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Toru Nishimura
- Graduate School of Frontier Biosciences, Osaka University, Osaka 565-0871, Japan
| | - Takayuki Koyano
- Division of Molecular Genetics, Shigei Medical Research Institute, Okayama 701-0202, Japan
| | - Zhifeng Yu
- Center for Drug Discovery and Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, United States
| | - Julio M. Castañeda
- Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Makoto Matsuyama
- Division of Molecular Genetics, Shigei Medical Research Institute, Okayama 701-0202, Japan
| | - Satomi Kuramochi-Miyagawa
- Department of Pathology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
- Department of Genome Biology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
- Graduate School of Frontier Biosciences, Osaka University, Osaka 565-0871, Japan
| | - Martin M. Matzuk
- Center for Drug Discovery and Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, United States
| | - Masahito Ikawa
- Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan
- Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
- Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
- Laboratory of Reproductive Systems Biology, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
- Center for Infectious Disease Education and Research, Osaka University, Osaka 565-0871, Japan
| |
Collapse
|
29
|
Kim H, Barua A, Huang L, Zhou T, Bolaji M, Zachariah S, Mitra A, Jung SY, He B, Feng Q. The cancer testis antigen TDRD1 regulates prostate cancer proliferation by associating with the snRNP biogenesis machinery. Oncogene 2023:10.1038/s41388-023-02690-x. [PMID: 37041411 DOI: 10.1038/s41388-023-02690-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/13/2023]
Abstract
Prostate cancer is the most commonly diagnosed noncutaneous cancer in American men. TDRD1, a germ cell-specific gene, is erroneously expressed in more than half of prostate tumors, but its role in prostate cancer development remains elusive. In this study, we identified a PRMT5-TDRD1 signaling axis that regulates the proliferation of prostate cancer cells. PRMT5 is a protein arginine methyltransferase essential for small nuclear ribonucleoprotein (snRNP) biogenesis. Methylation of Sm proteins by PRMT5 is a critical initiation step for assembling snRNPs in the cytoplasm, and the final snRNP assembly takes place in Cajal bodies in the nucleus. By mass spectrum analysis, we found that TDRD1 interacts with multiple subunits of the snRNP biogenesis machinery. In the cytoplasm, TDRD1 interacts with methylated Sm proteins in a PRMT5-dependent manner. In the nucleus, TDRD1 interacts with Coilin, the scaffold protein of Cajal bodies. Ablation of TDRD1 in prostate cancer cells disrupted the integrity of Cajal bodies, affected the snRNP biogenesis, and reduced cell proliferation. Taken together, this study represents the first characterization of TDRD1 functions in prostate cancer development and suggests TDRD1 as a potential therapeutic target for prostate cancer treatment.
Collapse
Affiliation(s)
- Hong Kim
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Amrita Barua
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Luping Huang
- Immunobiology and Transplant Science Center, Houston Methodist Research Institute, Houston, TX, USA
| | - Tianyi Zhou
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Modupeola Bolaji
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Sharon Zachariah
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Aroshi Mitra
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Sung Yun Jung
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Bin He
- Immunobiology and Transplant Science Center, Houston Methodist Research Institute, Houston, TX, USA.
- Department of Medicine-Cancer Biology, Weill Cornell Medicine, Cornell University, New York, NY, 10065, USA.
| | - Qin Feng
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX, USA.
| |
Collapse
|
30
|
Seczynska M, Lehner PJ. The sound of silence: mechanisms and implications of HUSH complex function. Trends Genet 2023; 39:251-267. [PMID: 36754727 DOI: 10.1016/j.tig.2022.12.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/14/2022] [Accepted: 12/30/2022] [Indexed: 02/08/2023]
Abstract
The vertebrate genome is under constant threat of invasion by genetic parasites. Whether the host can immediately recognize and respond to invading elements has been unclear. The discovery of the human silencing hub (HUSH) complex, and the finding that it provides immediate protection from genome invasion by silencing products of reverse transcription, have important implications for mammalian genome evolution. In this review, we summarize recent insights into HUSH function and describe how cellular introns provide a novel means of self-nonself discrimination, allowing HUSH to recognize and transcriptionally repress a broad range of intronless genetic elements. We discuss how HUSH contributes to genome evolution, and highlight studies reporting the critical role of HUSH in development and implicating HUSH in the control of immune signaling and cancer progression.
Collapse
Affiliation(s)
- Marta Seczynska
- Cambridge Institute for Therapeutic Immunology & Infectious Disease, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge CB2 0AW, UK.
| | - Paul J Lehner
- Cambridge Institute for Therapeutic Immunology & Infectious Disease, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge CB2 0AW, UK.
| |
Collapse
|
31
|
Feng X, Pan S, Tu H, Huang J, Xiao C, Shen X, You L, Zhao X, Chen Y, Xu D, Qu X, Hu H. IQ67 DOMAIN protein 21 is critical for indentation formation in pavement cell morphogenesis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:721-738. [PMID: 36263896 DOI: 10.1111/jipb.13393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 10/15/2022] [Indexed: 05/26/2023]
Abstract
In plants, cortical microtubules anchor to the plasma membrane in arrays and play important roles in cell shape. However, the molecular mechanism of microtubule binding proteins, which connect the plasma membrane and cortical microtubules in cell morphology remains largely unknown. Here, we report that a plasma membrane and microtubule dual-localized IQ67 domain protein, IQD21, is critical for cotyledon pavement cell (PC) morphogenesis in Arabidopsis. iqd21 mutation caused increased indentation width, decreased lobe length, and similar lobe number of PCs, whereas IQD21 overexpression had a different effect on cotyledon PC shape. Weak overexpression led to increased lobe number, decreased indentation width, and similar lobe length, while moderate or great overexpression resulted in decreased lobe number, indentation width, and lobe length of PCs. Live-cell observations revealed that IQD21 accumulation at indentation regions correlates with lobe initiation and outgrowth during PC development. Cell biological and genetic approaches revealed that IQD21 promotes transfacial microtubules anchoring to the plasma membrane via its polybasic sites and bundling at the indentation regions in both periclinal and anticlinal walls. IQD21 controls cortical microtubule organization mainly through promoting Katanin 1-mediated microtubule severing during PC interdigitation. These findings provide the genetic evidence that transfacial microtubule arrays play a determinant role in lobe formation, and the insight into the molecular mechanism of IQD21 in transfacial microtubule organization at indentations and puzzle-shaped PC development.
Collapse
Affiliation(s)
- Xinhua Feng
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shujuan Pan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Haifu Tu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Junjie Huang
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, 430070, China
| | - Chuanlei Xiao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xin Shen
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lei You
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xinyan Zhao
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
| | - Yongqiang Chen
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Danyun Xu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaolu Qu
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Honghong Hu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
32
|
Stamidis N, Żylicz JJ. RNA-mediated heterochromatin formation at repetitive elements in mammals. EMBO J 2023; 42:e111717. [PMID: 36847618 PMCID: PMC10106986 DOI: 10.15252/embj.2022111717] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 12/12/2022] [Accepted: 02/07/2023] [Indexed: 03/01/2023] Open
Abstract
The failure to repress transcription of repetitive genomic elements can lead to catastrophic genome instability and is associated with various human diseases. As such, multiple parallel mechanisms cooperate to ensure repression and heterochromatinization of these elements, especially during germline development and early embryogenesis. A vital question in the field is how specificity in establishing heterochromatin at repetitive elements is achieved. Apart from trans-acting protein factors, recent evidence points to a role of different RNA species in targeting repressive histone marks and DNA methylation to these sites in mammals. Here, we review recent discoveries on this topic and predominantly focus on the role of RNA methylation, piRNAs, and other localized satellite RNAs.
Collapse
Affiliation(s)
- Nikolaos Stamidis
- Novo Nordisk Foundation Center for Stem Cell Medicine, reNEW, University of Copenhagen, Copenhagen, Denmark
| | - Jan Jakub Żylicz
- Novo Nordisk Foundation Center for Stem Cell Medicine, reNEW, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
33
|
Feng Q, Kim H, Barua A, Huang L, Bolaji M, Zachariah S, Jung SY, He B, Zhou T, Mitra A. The cancer testis antigen TDRD1 regulates prostate cancer proliferation by associating with snRNP biogenesis machinery. RESEARCH SQUARE 2023:rs.3.rs-2035901. [PMID: 36865141 PMCID: PMC9980208 DOI: 10.21203/rs.3.rs-2035901/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Prostate cancer is the most commonly diagnosed noncutaneous cancer in American men. TDRD1, a germ cell-specific gene, is erroneously expressed in more than half of prostate tumors, but its role in prostate cancer development remains elusive. In this study, we identified a PRMT5-TDRD1 signaling axis that regulates the proliferation of prostate cancer cells. PRMT5 is a protein arginine methyltransferase essential for small nuclear ribonucleoprotein (snRNP) biogenesis. Methylation of Sm proteins by PRMT5 is a critical initiation step for assembling snRNPs in the cytoplasm, and the final snRNP assembly takes place in Cajal bodies in the nucleus. By mass spectrum analysis, we found that TDRD1 interacts with multiple subunits of the snRNP biogenesis machinery. In the cytoplasm, TDRD1 interacts with methylated Sm proteins in a PRMT5-dependent manner. In the nucleus, TDRD1 interacts with Coilin, the scaffold protein of Cajal bodies. Ablation of TDRD1 in prostate cancer cells disrupted the integrity of Cajal bodies, affected the snRNP biogenesis, and reduced cell proliferation. Taken together, this study represents the first characterization of TDRD1 functions in prostate cancer development and suggests TDRD1 as a potential therapeutic target for prostate cancer treatment.
Collapse
|
34
|
Shoji K, Umemura Y, Katsuma S, Tomari Y. The piRNA cluster torimochi is an expanding transposon in cultured silkworm cells. PLoS Genet 2023; 19:e1010632. [PMID: 36758066 PMCID: PMC9946225 DOI: 10.1371/journal.pgen.1010632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 02/22/2023] [Accepted: 01/20/2023] [Indexed: 02/11/2023] Open
Abstract
PIWI proteins and PIWI-interacting RNAs (piRNAs) play a central role in repressing transposable elements in animal germ cells. It is thought that piRNAs are mainly produced from discrete genomic loci named piRNA clusters, which often contain many "dead" transposon remnants from past invasions and have heterochromatic features. In the genome of silkworm ovary-derived cultured cells called BmN4, a well-established model for piRNA research, torimochi was previously annotated as a unique and specialized genomic region that can capture transgenes and produce new piRNAs bearing a trans-silencing activity. However, the sequence identity of torimochi has remained elusive. Here, we carefully characterized torimochi by utilizing the updated silkworm genome sequence and the long-read sequencer MinION. We found that torimochi is in fact a full-length gypsy-like LTR retrotransposon, which is exceptionally active and has massively expanded its copy number in BmN4 cells. Many copies of torimochi in BmN4 cells have features of open chromatin and the ability to produce piRNAs. Therefore, torimochi may represent a young, growing piRNA cluster, which is still "alive" and active in transposition yet capable of trapping other transposable elements to produce de novo piRNAs.
Collapse
Affiliation(s)
- Keisuke Shoji
- Laboratory of RNA Function, Institute for Quantitative Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- * E-mail: (K.S); (Y.T)
| | - Yusuke Umemura
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Meguro-ku, Tokyo, Japan
| | - Susumu Katsuma
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Yukihide Tomari
- Laboratory of RNA Function, Institute for Quantitative Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- * E-mail: (K.S); (Y.T)
| |
Collapse
|
35
|
Wang K, Gao XQ, Wang T, Zhou LY. The Function and Therapeutic Potential of Circular RNA in Cardiovascular Diseases. Cardiovasc Drugs Ther 2023; 37:181-198. [PMID: 34269929 DOI: 10.1007/s10557-021-07228-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/06/2021] [Indexed: 01/14/2023]
Abstract
Circular RNA (circRNA) has a closed-loop structure, and its 3' and 5' ends are directly covalently connected by reverse splicing, which is more stable than linear RNA. CircRNAs usually possess microRNA (miRNA) binding sites, which can bind miRNAs and inhibit miRNA function. Many studies have shown that circRNAs are involved in the processes of cell senescence, proliferation and apoptosis and a series of signalling pathways, playing an important role in the prevention and treatment of diseases. CircRNAs are potential biological diagnostic markers and therapeutic targets for cardiovascular diseases (CVDs). To identify biomarkers and potential effective therapeutic targets without toxicity for heart disease, we summarize the biogenesis, biology, characterization and functions of circRNAs in CVDs, hoping that this information will shed new light on the prevention and treatment of CVDs.
Collapse
Affiliation(s)
- Kai Wang
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, Shandong, China
| | - Xiang-Qian Gao
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, Shandong, China
| | - Tao Wang
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, Shandong, China
| | - Lu-Yu Zhou
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, Shandong, China.
| |
Collapse
|
36
|
Miller DE, Dorador AP, Van Vaerenberghe K, Li A, Grantham EK, Cerbin S, Cummings C, Barragan M, Egidy RR, Scott AR, Hall KE, Perera A, Gilliland WD, Hawley RS, Blumenstiel JP. Off-target piRNA gene silencing in Drosophila melanogaster rescued by a transposable element insertion. PLoS Genet 2023; 19:e1010598. [PMID: 36809339 PMCID: PMC9983838 DOI: 10.1371/journal.pgen.1010598] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 03/03/2023] [Accepted: 01/04/2023] [Indexed: 02/23/2023] Open
Abstract
Transposable elements (TE) are selfish genetic elements that can cause harmful mutations. In Drosophila, it has been estimated that half of all spontaneous visible marker phenotypes are mutations caused by TE insertions. Several factors likely limit the accumulation of exponentially amplifying TEs within genomes. First, synergistic interactions between TEs that amplify their harm with increasing copy number are proposed to limit TE copy number. However, the nature of this synergy is poorly understood. Second, because of the harm posed by TEs, eukaryotes have evolved systems of small RNA-based genome defense to limit transposition. However, as in all immune systems, there is a cost of autoimmunity and small RNA-based systems that silence TEs can inadvertently silence genes flanking TE insertions. In a screen for essential meiotic genes in Drosophila melanogaster, a truncated Doc retrotransposon within a neighboring gene was found to trigger the germline silencing of ald, the Drosophila Mps1 homolog, a gene essential for proper chromosome segregation in meiosis. A subsequent screen for suppressors of this silencing identified a new insertion of a Hobo DNA transposon in the same neighboring gene. Here we describe how the original Doc insertion triggers flanking piRNA biogenesis and local gene silencing. We show that this local gene silencing occurs in cis and is dependent on deadlock, a component of the Rhino-Deadlock-Cutoff (RDC) complex, to trigger dual-strand piRNA biogenesis at TE insertions. We further show how the additional Hobo insertion leads to de-silencing by reducing flanking piRNA biogenesis triggered by the original Doc insertion. These results support a model of TE-mediated gene silencing by piRNA biogenesis in cis that depends on local determinants of transcription. This may explain complex patterns of off-target gene silencing triggered by TEs within populations and in the laboratory. It also provides a mechanism of sign epistasis among TE insertions, illuminates the complex nature of their interactions and supports a model in which off-target gene silencing shapes the evolution of the RDC complex.
Collapse
Affiliation(s)
- Danny E. Miller
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
- Division of Genetic Medicine, Department of Pediatrics, University of Washington and Seattle Children’s Hospital, Seattle, Washington, United States of America
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, United States of America
| | - Ana P. Dorador
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, Kansas, United States of America
| | - Kelley Van Vaerenberghe
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, Kansas, United States of America
- Division of Biological Sciences, University of Montana, Missoula, Montana, United States of America
| | - Angela Li
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, Kansas, United States of America
| | - Emily K. Grantham
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, Kansas, United States of America
| | - Stefan Cerbin
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, Kansas, United States of America
| | - Celeste Cummings
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, Kansas, United States of America
| | - Marilyn Barragan
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, Kansas, United States of America
| | - Rhonda R. Egidy
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Allison R. Scott
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Kate E. Hall
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Anoja Perera
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - William D. Gilliland
- Department of Biological Sciences, DePaul University, Chicago, Illinois, United States of America
| | - R. Scott Hawley
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Justin P. Blumenstiel
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, Kansas, United States of America
| |
Collapse
|
37
|
Kumar D, Sahoo SS, Chauss D, Kazemian M, Afzali B. Non-coding RNAs in immunoregulation and autoimmunity: Technological advances and critical limitations. J Autoimmun 2023; 134:102982. [PMID: 36592512 PMCID: PMC9908861 DOI: 10.1016/j.jaut.2022.102982] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/11/2022] [Accepted: 12/15/2022] [Indexed: 01/02/2023]
Abstract
Immune cell function is critically dependent on precise control over transcriptional output from the genome. In this respect, integration of environmental signals that regulate gene expression, specifically by transcription factors, enhancer DNA elements, genome topography and non-coding RNAs (ncRNAs), are key components. The first three have been extensively investigated. Even though non-coding RNAs represent the vast majority of cellular RNA species, this class of RNA remains historically understudied. This is partly because of a lag in technological and bioinformatic innovations specifically capable of identifying and accurately measuring their expression. Nevertheless, recent progress in this domain has enabled a profusion of publications identifying novel sub-types of ncRNAs and studies directly addressing the function of ncRNAs in human health and disease. Many ncRNAs, including circular and enhancer RNAs, have now been demonstrated to play key functions in the regulation of immune cells and to show associations with immune-mediated diseases. Some ncRNAs may function as biomarkers of disease, aiding in diagnostics and in estimating response to treatment, while others may play a direct role in the pathogenesis of disease. Importantly, some are relatively stable and are amenable to therapeutic targeting, for example through gene therapy. Here, we provide an overview of ncRNAs and review technological advances that enable their study and hold substantial promise for the future. We provide context-specific examples by examining the associations of ncRNAs with four prototypical human autoimmune diseases, specifically rheumatoid arthritis, psoriasis, inflammatory bowel disease and multiple sclerosis. We anticipate that the utility and mechanistic roles of these ncRNAs in autoimmunity will be further elucidated in the near future.
Collapse
Affiliation(s)
- Dhaneshwar Kumar
- Immunoregulation Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, MD, USA
| | - Subhransu Sekhar Sahoo
- Departments of Biochemistry and Computer Science, Purdue University, West Lafayette, IN, USA
| | - Daniel Chauss
- Immunoregulation Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, MD, USA
| | - Majid Kazemian
- Departments of Biochemistry and Computer Science, Purdue University, West Lafayette, IN, USA
| | - Behdad Afzali
- Immunoregulation Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, MD, USA.
| |
Collapse
|
38
|
Nagirnaja L, Lopes AM, Charng WL, Miller B, Stakaitis R, Golubickaite I, Stendahl A, Luan T, Friedrich C, Mahyari E, Fadial E, Kasak L, Vigh-Conrad K, Oud MS, Xavier MJ, Cheers SR, James ER, Guo J, Jenkins TG, Riera-Escamilla A, Barros A, Carvalho F, Fernandes S, Gonçalves J, Gurnett CA, Jørgensen N, Jezek D, Jungheim ES, Kliesch S, McLachlan RI, Omurtag KR, Pilatz A, Sandlow JI, Smith J, Eisenberg ML, Hotaling JM, Jarvi KA, Punab M, Rajpert-De Meyts E, Carrell DT, Krausz C, Laan M, O’Bryan MK, Schlegel PN, Tüttelmann F, Veltman JA, Almstrup K, Aston KI, Conrad DF. Diverse monogenic subforms of human spermatogenic failure. Nat Commun 2022; 13:7953. [PMID: 36572685 PMCID: PMC9792524 DOI: 10.1038/s41467-022-35661-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 12/16/2022] [Indexed: 12/27/2022] Open
Abstract
Non-obstructive azoospermia (NOA) is the most severe form of male infertility and typically incurable. Defining the genetic basis of NOA has proven challenging, and the most advanced classification of NOA subforms is not based on genetics, but simple description of testis histology. In this study, we exome-sequenced over 1000 clinically diagnosed NOA cases and identified a plausible recessive Mendelian cause in 20%. We find further support for 21 genes in a 2-stage burden test with 2072 cases and 11,587 fertile controls. The disrupted genes are primarily on the autosomes, enriched for undescribed human "knockouts", and, for the most part, have yet to be linked to a Mendelian trait. Integration with single-cell RNA sequencing data shows that azoospermia genes can be grouped into molecular subforms with synchronized expression patterns, and analogs of these subforms exist in mice. This analysis framework identifies groups of genes with known roles in spermatogenesis but also reveals unrecognized subforms, such as a set of genes expressed across mitotic divisions of differentiating spermatogonia. Our findings highlight NOA as an understudied Mendelian disorder and provide a conceptual structure for organizing the complex genetics of male infertility, which may provide a rational basis for disease classification.
Collapse
Affiliation(s)
- Liina Nagirnaja
- grid.5288.70000 0000 9758 5690Division of Genetics, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR USA
| | - Alexandra M. Lopes
- grid.5808.50000 0001 1503 7226i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal ,grid.5808.50000 0001 1503 7226IPATIMUP - Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal
| | - Wu-Lin Charng
- grid.4367.60000 0001 2355 7002Department of Neurology, Washington University, St. Louis, MO USA
| | - Brian Miller
- grid.5288.70000 0000 9758 5690Division of Genetics, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR USA
| | - Rytis Stakaitis
- grid.475435.4Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark ,grid.475435.4International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark ,grid.45083.3a0000 0004 0432 6841Laboratory of Molecular Neurooncology, Neuroscience Institute, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Ieva Golubickaite
- grid.475435.4Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark ,grid.475435.4International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark ,grid.45083.3a0000 0004 0432 6841Department of Genetics and Molecular Medicine, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Alexandra Stendahl
- grid.5288.70000 0000 9758 5690Division of Genetics, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR USA
| | - Tianpengcheng Luan
- grid.1008.90000 0001 2179 088XSchool of BioSciences, Faculty of Science, The University of Melbourne, Parkville, VIC Australia
| | - Corinna Friedrich
- grid.5949.10000 0001 2172 9288Institute of Reproductive Genetics, University of Münster, Münster, Germany
| | - Eisa Mahyari
- grid.5288.70000 0000 9758 5690Division of Genetics, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR USA
| | - Eloise Fadial
- grid.5288.70000 0000 9758 5690Division of Genetics, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR USA
| | - Laura Kasak
- grid.10939.320000 0001 0943 7661Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Katinka Vigh-Conrad
- grid.5288.70000 0000 9758 5690Division of Genetics, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR USA
| | - Manon S. Oud
- grid.10417.330000 0004 0444 9382Department of Human Genetics, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Miguel J. Xavier
- grid.1006.70000 0001 0462 7212Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle-upon-Tyne, UK
| | - Samuel R. Cheers
- grid.1008.90000 0001 2179 088XSchool of BioSciences, Faculty of Science, The University of Melbourne, Parkville, VIC Australia
| | - Emma R. James
- grid.223827.e0000 0001 2193 0096Andrology and IVF Laboratory, Department of Surgery (Urology), University of Utah School of Medicine, Salt Lake City, UT USA ,grid.223827.e0000 0001 2193 0096Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT USA
| | - Jingtao Guo
- grid.223827.e0000 0001 2193 0096Andrology and IVF Laboratory, Department of Surgery (Urology), University of Utah School of Medicine, Salt Lake City, UT USA
| | - Timothy G. Jenkins
- grid.223827.e0000 0001 2193 0096Andrology and IVF Laboratory, Department of Surgery (Urology), University of Utah School of Medicine, Salt Lake City, UT USA
| | - Antoni Riera-Escamilla
- grid.418813.70000 0004 1767 1951Andrology Department, Fundació Puigvert, Universitat Autònoma de Barcelona, Instituto de Investigaciones Biomédicas Sant Pau (IIB-Sant Pau), Barcelona, Catalonia Spain ,grid.7080.f0000 0001 2296 0625Molecular Biology Laboratory, Fundació Puigvert, Instituto de Investigaciones Biomédicas Sant Pau (IIB Sant Pau), Universitat Autònoma de Barcelona, Barcelona, Catalonia 08025 Spain
| | - Alberto Barros
- grid.5808.50000 0001 1503 7226i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal ,grid.5808.50000 0001 1503 7226Serviço de Genética, Departamento de Patologia, Faculdade de Medicina da Universidade do Porto, Porto, Portugal
| | - Filipa Carvalho
- grid.5808.50000 0001 1503 7226i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal ,grid.5808.50000 0001 1503 7226Serviço de Genética, Departamento de Patologia, Faculdade de Medicina da Universidade do Porto, Porto, Portugal
| | - Susana Fernandes
- grid.5808.50000 0001 1503 7226i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal ,grid.5808.50000 0001 1503 7226Serviço de Genética, Departamento de Patologia, Faculdade de Medicina da Universidade do Porto, Porto, Portugal
| | - João Gonçalves
- grid.422270.10000 0001 2287 695XDepartamento de Genética Humana, Instituto Nacional de Saúde Dr. Ricardo Jorge, Lisboa, Portugal ,grid.10772.330000000121511713Centre for Toxicogenomics and Human Health, Nova Medical School, Lisbon, Portugal
| | - Christina A. Gurnett
- grid.4367.60000 0001 2355 7002Department of Neurology, Washington University, St. Louis, MO USA
| | - Niels Jørgensen
- grid.475435.4Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark ,grid.475435.4International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Davor Jezek
- grid.4808.40000 0001 0657 4636Department of Histology and Embryology, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Emily S. Jungheim
- grid.16753.360000 0001 2299 3507Department of Obstetrics and Gynecology at Northwestern University, Division of Reproductive Endocrinology, Chicago, IL USA
| | - Sabine Kliesch
- grid.16149.3b0000 0004 0551 4246Department of Clinical and Surgical Andrology, Centre of Reproductive Medicine and Andrology, University Hospital Münster, Münster, Germany
| | - Robert I. McLachlan
- grid.1002.30000 0004 1936 7857Hudson Institute of Medical Research and the Department of Obstetrics and Gynecology, Monash University, Clayton, VIC Australia
| | - Kenan R. Omurtag
- grid.34477.330000000122986657Department of Obstetrics and Gynecology at Washington University, Division of Reproductive Endocrinology, St. Louis, MO USA
| | - Adrian Pilatz
- grid.8664.c0000 0001 2165 8627Clinic for Urology, Pediatric Urology and Andrology, Justus Liebig University, Giessen, Germany
| | - Jay I. Sandlow
- grid.30760.320000 0001 2111 8460Department of Urology, Medical College of Wisconsin, Milwaukee, WI USA
| | - James Smith
- grid.266102.10000 0001 2297 6811Department of Urology, University California San Francisco, San Francisco, CA USA
| | - Michael L. Eisenberg
- grid.168010.e0000000419368956Department of Urology, Stanford University School of Medicine, Stanford, CA USA
| | - James M. Hotaling
- grid.223827.e0000 0001 2193 0096Andrology and IVF Laboratory, Department of Surgery (Urology), University of Utah School of Medicine, Salt Lake City, UT USA
| | - Keith A. Jarvi
- grid.17063.330000 0001 2157 2938Division of Urology, Department of Surgery, Mount Sinai Hospital, University of Toronto, Toronto, ON Canada
| | - Margus Punab
- grid.412269.a0000 0001 0585 7044Andrology Center, Tartu University Hospital, Tartu, Estonia ,grid.10939.320000 0001 0943 7661Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Ewa Rajpert-De Meyts
- grid.475435.4Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark ,grid.475435.4International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Douglas T. Carrell
- grid.223827.e0000 0001 2193 0096Andrology and IVF Laboratory, Department of Surgery (Urology), University of Utah School of Medicine, Salt Lake City, UT USA
| | - Csilla Krausz
- grid.8404.80000 0004 1757 2304Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Maris Laan
- grid.10939.320000 0001 0943 7661Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Moira K. O’Bryan
- grid.1008.90000 0001 2179 088XSchool of BioSciences, Faculty of Science, The University of Melbourne, Parkville, VIC Australia ,grid.1002.30000 0004 1936 7857School of Biological Sciences, Monash University, Clayton, VIC Australia
| | - Peter N. Schlegel
- grid.5386.8000000041936877XDepartment of Urology, Weill Cornell Medicine, New York, NY USA
| | - Frank Tüttelmann
- grid.5949.10000 0001 2172 9288Institute of Reproductive Genetics, University of Münster, Münster, Germany
| | - Joris A. Veltman
- grid.1006.70000 0001 0462 7212Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle-upon-Tyne, UK
| | - Kristian Almstrup
- grid.475435.4Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark ,grid.475435.4International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Kenneth I. Aston
- grid.223827.e0000 0001 2193 0096Andrology and IVF Laboratory, Department of Surgery (Urology), University of Utah School of Medicine, Salt Lake City, UT USA
| | - Donald F. Conrad
- grid.5288.70000 0000 9758 5690Division of Genetics, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR USA
| |
Collapse
|
39
|
Key J, Gispert S, Koornneef L, Sleddens-Linkels E, Kohli A, Torres-Odio S, Koepf G, Amr S, Reichlmeir M, Harter PN, West AP, Münch C, Baarends WM, Auburger G. CLPP Depletion Causes Diplotene Arrest; Underlying Testis Mitochondrial Dysfunction Occurs with Accumulation of Perrault Proteins ERAL1, PEO1, and HARS2. Cells 2022; 12:52. [PMID: 36611846 PMCID: PMC9818230 DOI: 10.3390/cells12010052] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/13/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
Human Perrault syndrome (PRLTS) is autosomal, recessively inherited, and characterized by ovarian insufficiency with hearing loss. Among the genetic causes are mutations of matrix peptidase CLPP, which trigger additional azoospermia. Here, we analyzed the impact of CLPP deficiency on male mouse meiosis stages. Histology, immunocytology, different OMICS and biochemical approaches, and RT-qPCR were employed in CLPP-null mouse testis. Meiotic chromosome pairing and synapsis proceeded normally. However, the foci number of the crossover marker MLH1 was slightly reduced, and foci persisted in diplotene, most likely due to premature desynapsis, associated with an accumulation of the DNA damage marker γH2AX. No meiotic M-phase cells were detected. Proteome profiles identified strong deficits of proteins involved in male meiotic prophase (HSPA2, SHCBP1L, DMRT7, and HSF5), versus an accumulation of AURKAIP1. Histone H3 cleavage, mtDNA extrusion, and cGAMP increase suggested innate immunity activation. However, the deletion of downstream STING/IFNAR failed to alleviate pathology. As markers of underlying mitochondrial pathology, we observed an accumulation of PRLTS proteins ERAL1, PEO1, and HARS2. We propose that the loss of CLPP leads to the extrusion of mitochondrial nucleotide-binding proteins to cytosol and nucleus, affecting late meiotic prophase progression, and causing cell death prior to M-phase entry. This phenotype is more severe than in mito-mice or mutator-mice.
Collapse
Affiliation(s)
- Jana Key
- Experimental Neurology, Medical Faculty, Goethe University, 60590 Frankfurt am Main, Germany
| | - Suzana Gispert
- Experimental Neurology, Medical Faculty, Goethe University, 60590 Frankfurt am Main, Germany
| | - Lieke Koornneef
- Department of Developmental Biology, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands
- Oncode Institute, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Esther Sleddens-Linkels
- Department of Developmental Biology, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Aneesha Kohli
- Institute of Biochemistry II, Goethe University Medical School, 60590 Frankfurt am Main, Germany
| | - Sylvia Torres-Odio
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Health Science Center, Texas A&M University, Bryan, TX 77807, USA
| | - Gabriele Koepf
- Experimental Neurology, Medical Faculty, Goethe University, 60590 Frankfurt am Main, Germany
| | - Shady Amr
- Institute of Biochemistry II, Goethe University Medical School, 60590 Frankfurt am Main, Germany
| | - Marina Reichlmeir
- Experimental Neurology, Medical Faculty, Goethe University, 60590 Frankfurt am Main, Germany
| | - Patrick N. Harter
- Institute of Neurology (Edinger-Institute), University Hospital Frankfurt, Goethe University, Heinrich-Hoffmann-Strasse 7, 60528 Frankfurt am Main, Germany
| | - Andrew Phillip West
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Health Science Center, Texas A&M University, Bryan, TX 77807, USA
| | - Christian Münch
- Institute of Biochemistry II, Goethe University Medical School, 60590 Frankfurt am Main, Germany
- Frankfurt Cancer Institute, 60590 Frankfurt am Main, Germany
- Cardio-Pulmonary Institute, 35392 Gießen, Germany
| | - Willy M. Baarends
- Department of Developmental Biology, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Georg Auburger
- Experimental Neurology, Medical Faculty, Goethe University, 60590 Frankfurt am Main, Germany
| |
Collapse
|
40
|
Walsh E, Torres TZB, Rückert C. Culex Mosquito Piwi4 Is Antiviral against Two Negative-Sense RNA Viruses. Viruses 2022; 14:2758. [PMID: 36560761 PMCID: PMC9781653 DOI: 10.3390/v14122758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Culex spp. mosquitoes transmit several pathogens concerning public health, including West Nile virus and Saint Louis encephalitis virus. Understanding the antiviral immune system of Culex spp. mosquitoes is important for reducing the transmission of these viruses. Mosquitoes rely on RNA interference (RNAi) to control viral replication. While the siRNA pathway in mosquitoes is heavily studied, less is known about the piRNA pathway. The piRNA pathway in mosquitoes has recently been connected to mosquito antiviral immunity. In Aedes aegypti, Piwi4 has been implicated in antiviral responses. The antiviral role of the piRNA pathway in Culex spp. mosquitoes is understudied compared to Ae. aegypti. Here, we aimed to identify the role of PIWI genes and piRNAs in Culex quinquefasciatus and Culex tarsalis cells during virus infection. We examined the effect of PIWI gene silencing on virus replication of two arboviruses and three insect-specific viruses in Cx. quinquefasciatus derived cells (Hsu) and Cx. tarsalis derived (CT) cells. We show that Piwi4 is antiviral against the La Crosse orthobunyavirus (LACV) in Hsu and CT cells, and the insect-specific rhabdovirus Merida virus (MERDV) in Hsu cells. None of the silenced PIWI genes impacted replication of the two flaviviruses Usutu virus (USUV) and Calbertado virus, or the phasivirus Phasi-Charoen-like virus. We further used small RNA sequencing to determine that LACV-derived piRNAs, but not USUV-derived piRNAs were generated in Hsu cells and that PIWI gene silencing resulted in a small reduction in vpiRNAs. Finally, we determined that LACV-derived DNA was produced in Hsu cells during infection, but whether this viral DNA is required for vpiRNA production remains unclear. Overall, we expanded our knowledge on the piRNA pathway and how it relates to the antiviral response in Culex spp mosquitoes.
Collapse
Affiliation(s)
| | | | - Claudia Rückert
- Department of Biochemistry and Molecular Biology, College of Agriculture, Biotechnology & Natural Resources, University of Nevada, Reno, NV 89557, USA
| |
Collapse
|
41
|
Di R, Zhang R, Mwacharo JM, Wang X, He X, Liu Y, Zhang J, Gong Y, Zhang X, Chu M. Characteristics of piRNAs and their comparative profiling in testes of sheep with different fertility. Front Genet 2022; 13:1078049. [PMID: 36568364 PMCID: PMC9768229 DOI: 10.3389/fgene.2022.1078049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 11/23/2022] [Indexed: 12/12/2022] Open
Abstract
As a novel class of small RNAs, piRNAs are highly expressed in the animal gonads and their main known role is to inhibit transposon activity for ensuring the correctness and integrity of genome. In order to explore the characteristics of piRNAs in sheep testis and their possible regulatory roles on male reproduction, deep sequencing technology was used to sequence small RNAs and identify piRNAs in testes of sheep. The length of piRNAs in sheep testes showed a unimodal distribution between 26 and 31 nt, with a peak at 29 nt. These piRNAs exhibited obvious ping-pong signature and strand specificity. In the genome, they were mainly aligned to CDS, intron, repetitive sequence regions and unannotated regions. Furthermore, in transposon analysis, piRNAs were aligned predominantly to LINE, SINE, and LTR types of retrotransposon in sheep testes, and the piRNAs derived from each type showed obvious ping-pong signature. The piRNA clusters identified in sheep testes were mainly distributed on chromosomes 3, 7, 15, 17, 18 and 20. The results combining semen determination with pathway enrichment analysis implied that differentially expressed piRNAs between the testes of rams with different fertility might participate in spermatogenesis by regulating multiple pathways closely related to stabilization of blood-testis barrier and renewal and differentiation of spermatogonial stem cell. Taken together, the study provided new insights into the characteristics, origin and expression patterns of piRNAs in sheep testes tissue, which would help us better understand the role of piRNAs in sheep reproduction.
Collapse
Affiliation(s)
- Ran Di
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Rensen Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China,School of Advanced Agricultural Sciences, Yiyang Vocational & Technical College, Yiyang, China
| | - Joram Mwashigadi Mwacharo
- Small Ruminant Genomics International Center for Agricultural Research in the Dry Areas (ICARDA), Addis Ababa, Ethiopia,Institute of Animal and Veterinary Sciences, SRUC and Center for Tropical Livestock Genetics and Health (CTLGH), Midlothian, United Kingdom
| | - Xiangyu Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaoyun He
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yufang Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jinlong Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Tianjin Academy of Agricultural Sciences, Tianjin, China
| | - Yiming Gong
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaosheng Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Tianjin Academy of Agricultural Sciences, Tianjin, China,*Correspondence: Xiaosheng Zhang, ; Mingxing Chu,
| | - Mingxing Chu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China,*Correspondence: Xiaosheng Zhang, ; Mingxing Chu,
| |
Collapse
|
42
|
He S, Feng X. DNA methylation dynamics during germline development. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:2240-2251. [PMID: 36478632 PMCID: PMC10108260 DOI: 10.1111/jipb.13422] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
DNA methylation plays essential homeostatic functions in eukaryotic genomes. In animals, DNA methylation is also developmentally regulated and, in turn, regulates development. In the past two decades, huge research effort has endorsed the understanding that DNA methylation plays a similar role in plant development, especially during sexual reproduction. The power of whole-genome sequencing and cell isolation techniques, as well as bioinformatics tools, have enabled recent studies to reveal dynamic changes in DNA methylation during germline development. Furthermore, the combination of these technological advances with genetics, developmental biology and cell biology tools has revealed functional methylation reprogramming events that control gene and transposon activities in flowering plant germlines. In this review, we discuss the major advances in our knowledge of DNA methylation dynamics during male and female germline development in flowering plants.
Collapse
Affiliation(s)
- Shengbo He
- Guangdong Laboratory for Lingnan Modern Agriculture, College of AgricultureSouth China Agricultural UniversityGuangzhou510642China
| | - Xiaoqi Feng
- John Innes Centre, Colney LaneNorwichNR4 7UHUK
| |
Collapse
|
43
|
Dindhoria K, Monga I, Thind AS. Computational approaches and challenges for identification and annotation of non-coding RNAs using RNA-Seq. Funct Integr Genomics 2022; 22:1105-1112. [DOI: 10.1007/s10142-022-00915-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 11/04/2022] [Accepted: 11/04/2022] [Indexed: 11/22/2022]
|
44
|
Angileri KM, Bagia NA, Feschotte C. Transposon control as a checkpoint for tissue regeneration. Development 2022; 149:dev191957. [PMID: 36440631 PMCID: PMC10655923 DOI: 10.1242/dev.191957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 10/03/2022] [Indexed: 11/29/2022]
Abstract
Tissue regeneration requires precise temporal control of cellular processes such as inflammatory signaling, chromatin remodeling and proliferation. The combination of these processes forms a unique microenvironment permissive to the expression, and potential mobilization of, transposable elements (TEs). Here, we develop the hypothesis that TE activation creates a barrier to tissue repair that must be overcome to achieve successful regeneration. We discuss how uncontrolled TE activity may impede tissue restoration and review mechanisms by which TE activity may be controlled during regeneration. We posit that the diversification and co-evolution of TEs and host control mechanisms may contribute to the wide variation in regenerative competency across tissues and species.
Collapse
Affiliation(s)
- Krista M. Angileri
- Department of Molecular Biology and Genetics, Cornell University, 526 Campus Rd, Ithaca, NY 14850, USA
| | - Nornubari A. Bagia
- Department of Molecular Biology and Genetics, Cornell University, 526 Campus Rd, Ithaca, NY 14850, USA
| | - Cedric Feschotte
- Department of Molecular Biology and Genetics, Cornell University, 526 Campus Rd, Ithaca, NY 14850, USA
| |
Collapse
|
45
|
Tzur YB. lncRNAs in fertility: redefining the gene expression paradigm? Trends Genet 2022; 38:1170-1179. [PMID: 35728988 DOI: 10.1016/j.tig.2022.05.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 05/02/2022] [Accepted: 05/26/2022] [Indexed: 01/24/2023]
Abstract
Comparative transcriptome approaches assume that highly or dynamically expressed genes are important. This has led to the identification of many genes critical for cellular activity and organism development. However, while testes express the highest levels of long noncoding RNAs (lncRNAs), there is scarcely any evidence for lncRNAs with significant roles in fertility. This was explained by changes in chromatin structure during spermatogenesis that lead to 'promiscuous transcription' with no functional roles for the transcripts. Recent discoveries offer novel and surprising alternatives. Here, I review the current knowledge regarding the involvement of lncRNAs in fertility, why I find gametogenesis different from other developmental processes, offer models to explain why the experimental evidence did not meet theoretical predictions, and suggest possible approaches to test the models.
Collapse
Affiliation(s)
- Yonatan B Tzur
- Department of Genetics, Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| |
Collapse
|
46
|
Zattera ML, Bruschi DP. Transposable Elements as a Source of Novel Repetitive DNA in the Eukaryote Genome. Cells 2022; 11:3373. [PMID: 36359770 PMCID: PMC9659126 DOI: 10.3390/cells11213373] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 12/02/2022] Open
Abstract
The impact of transposable elements (TEs) on the evolution of the eukaryote genome has been observed in a number of biological processes, such as the recruitment of the host's gene expression network or the rearrangement of genome structure. However, TEs may also provide a substrate for the emergence of novel repetitive elements, which contribute to the generation of new genomic components during the course of the evolutionary process. In this review, we examine published descriptions of TEs that give rise to tandem sequences in an attempt to comprehend the relationship between TEs and the emergence of de novo satellite DNA families in eukaryotic organisms. We evaluated the intragenomic behavior of the TEs, the role of their molecular structure, and the chromosomal distribution of the paralogous copies that generate arrays of repeats as a substrate for the emergence of new repetitive elements in the genome. We highlight the involvement and importance of TEs in the eukaryote genome and its remodeling processes.
Collapse
Affiliation(s)
- Michelle Louise Zattera
- Departamento de Genética, Programa de Pós-Graduação em Genética, Setor de Ciências Biológicas, Universidade Federal do Paraná, Curitiba 81530-000, PR, Brazil
| | - Daniel Pacheco Bruschi
- Departamento de Genética, Laboratorio de Citogenética Evolutiva e Conservação Animal, Setor de Ciências Biológicas, Universidade Federal do Paraná, Curitiba 81530-000, PR, Brazil
| |
Collapse
|
47
|
Jian Z, Han Y, Li H. Potential roles of PIWI-interacting RNAs in lung cancer. Front Oncol 2022; 12:944403. [PMID: 36324572 PMCID: PMC9618814 DOI: 10.3389/fonc.2022.944403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 09/21/2022] [Indexed: 07/29/2023] Open
Abstract
Lung cancer is a malignant tumor with high morbidity and mortality in the world today. Emerging evidence suggests that PIWI-interacting RNAs (piRNAs) are aberrantly expressed in various human cancers, including lung cancer. Despite of the poorly understood mechanism, piRNAs may work as carcinogenic roles or tumor suppressors by engaging in a variety of cancer-associated signaling pathways. Therefore, they might serve as potential therapeutic targets, diagnostic indicators, or prognostic indicators in lung cancer. This review will discuss the new findings of piRNAs, including their biosynthetic processes, mechanisms of gene suppression, and the significance of these piRNAs tested in lung cancer samples to determine their involvement in cancer progression.
Collapse
|
48
|
Cong Y, Ye X, Mei Y, He K, Li F. Transposons and non-coding regions drive the intrafamily differences of genome size in insects. iScience 2022; 25:104873. [PMID: 36039293 PMCID: PMC9418806 DOI: 10.1016/j.isci.2022.104873] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/24/2022] [Accepted: 07/29/2022] [Indexed: 11/02/2022] Open
Abstract
Genome size (GS) can vary considerably between phylogenetically close species, but the landscape of GS changes in insects remain largely unclear. To better understand the specific evolutionary factors that determine GS in insects, we examined flow cytometry-based published GS data from 1,326 insect species, spanning 700 genera, 155 families, and 21 orders. Model fitting showed that GS generally followed an Ornstein-Uhlenbeck adaptive evolutionary model in Insecta overall. Ancestral reconstruction indicated a likely GS of 1,069 Mb, suggesting that most insect clades appeared to undergo massive genome expansions or contractions. Quantification of genomic components in 56 species from nine families in four insect orders revealed that the proliferation of transposable elements contributed to high variation in GS between close species, such as within Coleoptera. This study sheds lights on the pattern of GS variation in insects and provides a better understanding of insect GS evolution.
Collapse
Affiliation(s)
- Yuyang Cong
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Xinhai Ye
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Yang Mei
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Kang He
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Fei Li
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
49
|
Corsello T, Kudlicki AS, Liu T, Casola A. Respiratory syncytial virus infection changes the piwi-interacting RNA content of airway epithelial cells. Front Mol Biosci 2022; 9:931354. [PMID: 36158569 PMCID: PMC9493205 DOI: 10.3389/fmolb.2022.931354] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 08/03/2022] [Indexed: 11/13/2022] Open
Abstract
Piwi-interacting RNAs (piRNAs) are small non-coding RNAs (sncRNAs) of about 26–32 nucleotides in length and represent the largest class of sncRNA molecules expressed in animal cells. piRNAs have been shown to play a crucial role to safeguard the genome, maintaining genome complexity and integrity, as they suppress the insertional mutations caused by transposable elements. However, there is growing evidence for the role of piRNAs in controlling gene expression in somatic cells as well. Little is known about changes in piRNA expression and possible function occurring in response to viral infections. In this study, we investigated the piRNA expression profile, using a human piRNA microarray, in human small airway epithelial (SAE) cells infected with respiratory syncytial virus (RSV), a leading cause of acute respiratory tract infections in children. We found a time-dependent increase in piRNAs differentially expressed in RSV-infected SAE cells. We validated the top piRNAs upregulated and downregulated at 24 h post-infection by RT-qPCR and identified potential targets. We then used Gene Ontology (GO) tool to predict the biological processes of the predicted targets of the most represented piRNAs in infected cells over the time course of RSV infection. We found that the most significant groups of targets of regulated piRNAs are related to cytoskeletal or Golgi organization and nucleic acid/nucleotide binding at 15 and 24 h p.i. To identify common patterns of time-dependent responses to infection, we clustered the significantly regulated expression profiles. Each of the clusters of temporal profiles have a distinct set of potential targets of the piRNAs in the cluster Understanding changes in piRNA expression in RSV-infected airway epithelial cells will increase our knowledge of the piRNA role in viral infection and might identify novel therapeutic targets for viral lung-mediated diseases.
Collapse
Affiliation(s)
- Tiziana Corsello
- Department of Pediatrics, The University of Texas Medical Branch at Galveston (UTMB), Galveston, TX, United States
| | - Andrzej S Kudlicki
- Institute for Translational Sciences, The University of Texas Medical Branch at Galveston (UTMB), Galveston, TX, United States
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch at Galveston (UTMB), Galveston, TX, United States
| | - Tianshuang Liu
- Department of Pediatrics, The University of Texas Medical Branch at Galveston (UTMB), Galveston, TX, United States
| | - Antonella Casola
- Department of Pediatrics, The University of Texas Medical Branch at Galveston (UTMB), Galveston, TX, United States
- Institute for Translational Sciences, The University of Texas Medical Branch at Galveston (UTMB), Galveston, TX, United States
- Department of Microbiology and Immunology, The University of Texas Medical Branch at Galveston (UTMB), Galveston, TX, United States
- *Correspondence: Antonella Casola,
| |
Collapse
|
50
|
Oyelami FO, Usman T, Suravajhala P, Ali N, Do DN. Emerging Roles of Noncoding RNAs in Bovine Mastitis Diseases. Pathogens 2022; 11:pathogens11091009. [PMID: 36145441 PMCID: PMC9501195 DOI: 10.3390/pathogens11091009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 08/26/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
Non-coding RNAs (ncRNAs) are an abundant class of RNA with varying nucleotide lengths. They have been shown to have great potential in eutherians/human disease diagnosis and treatments and are now gaining more importance for the improvement of diseases in livestock. To date, thousands of ncRNAs have been discovered in the bovine genome and the continuous advancement in deep sequencing technologies and various bioinformatics tools has enabled the elucidation of their roles in bovine health. Among farm animals' diseases, mastitis, a common inflammatory disease in cattle, has caused devastating economic losses to dairy farmers over the last few decades. Here, we summarize the biology of bovine mastitis and comprehensively discuss the roles of ncRNAs in different types of mastitis infection. Based on our findings and relevant literature, we highlighted various evidence of ncRNA roles in mastitis. Different approaches (in vivo versus in vitro) for exploring ncRNA roles in mastitis are emphasized. More particularly, the potential applications of emerging genome editing technologies, as well as integrated omics platforms for ncRNA studies and implications for mastitis are presented.
Collapse
Affiliation(s)
- Favour Oluwapelumi Oyelami
- The John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601, Australia
| | - Tahir Usman
- College of Veterinary Sciences & Animal Husbandry, Abdul Wali Khan University, Mardan 23200, KP, Pakistan
| | - Prashanth Suravajhala
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Clappana 690525, Kerala, India
| | - Nawab Ali
- Department of Zoology, Abdul Wali Khan University, Mardan 23200, KP, Pakistan
| | - Duy N. Do
- Faculty of Veterinary Medicine, Viet Nam National University of Agriculture, Hanoi 100000, Vietnam
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, NS B2N 5E3, Canada
- Correspondence: ; Tel.: +1-9029578789
| |
Collapse
|