1
|
Huang D, Liao J, Balcazar JL, Ye M, Wu R, Wang D, Alvarez PJJ, Yu P. Adaptive modification of antiviral defense systems in microbial community under Cr-induced stress. MICROBIOME 2025; 13:34. [PMID: 39891205 PMCID: PMC11786475 DOI: 10.1186/s40168-025-02030-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 01/05/2025] [Indexed: 02/03/2025]
Abstract
BACKGROUND The prokaryotic antiviral defense systems are crucial for mediating prokaryote-virus interactions that influence microbiome functioning and evolutionary dynamics. Despite the prevalence and significance of prokaryotic antiviral defense systems, their responses to abiotic stress and ecological consequences remain poorly understood in soil ecosystems. We established microcosm systems with varying concentrations of hexavalent chromium (Cr(VI)) to investigate the adaptive modifications of prokaryotic antiviral defense systems under abiotic stress. RESULTS Utilizing hybrid metagenomic assembly with long-read and short-read sequencing, we discovered that antiviral defense systems were more diverse and prevalent in heavily polluted soils, which was corroborated by meta-analyses of public datasets from various heavy metal-contaminated sites. As the Cr(VI) concentration increased, prokaryotes with defense systems favoring prokaryote-virus mutualism gradually supplanted those with defense systems incurring high adaptive costs. Additionally, as Cr(VI) concentrations increased, enriched antiviral defense systems exhibited synchronization with microbial heavy metal resistance genes. Furthermore, the proportion of antiviral defense systems carried by mobile genetic elements (MGEs), including plasmids and viruses, increased by approximately 43% and 39%, respectively, with rising Cr concentrations. This trend is conducive to strengthening the dissemination and sharing of defense resources within microbial communities. CONCLUSIONS Overall, our study reveals the adaptive modification of prokaryotic antiviral defense systems in soil ecosystems under abiotic stress, as well as their positive contributions to establishing prokaryote-virus mutualism and the evolution of microbial heavy metal resistance. These findings advance our understanding of microbial adaptation in stressful environments and may inspire novel approaches for microbiome manipulation and bioremediation. Video Abstract.
Collapse
Affiliation(s)
- Dan Huang
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jingqiu Liao
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, 24060, USA
| | | | - Mao Ye
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China.
| | - Ruonan Wu
- Earth and Biological Sciences Directorate, Pacific Northwest National Lab, Richland, WA, 99352, USA
| | - Dongsheng Wang
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Pedro J J Alvarez
- Department of Civil and Environmental Engineering, Rice University, Houston, TX, 77005, USA
| | - Pingfeng Yu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
2
|
Li X, Xu Z, Zhang S, Gao W, Dong Q, Guo F, Zhu Z, Yang W, Yang Z. Eutrophication-Driven Changes in Plankton Trophic Interactions: Insights from Trade-Offs in Functional Traits. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:744-755. [PMID: 39652070 DOI: 10.1021/acs.est.4c08067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2025]
Abstract
Understanding how plankton trophic interactions, particularly phytoplankton nutrient uptake and zooplankton grazing, respond to eutrophication is important for maintaining aquatic ecosystem functions and developing effective mitigation strategies. Phytoplankton exhibit trade-offs in functional traits between growth rate and antipredation defense, thereby regulating these trophic interactions. However, the combined effects of eutrophication and such trait-based regulation on plankton communities and interactions remain poorly understood. In the present study, we investigated these effects by integrating trait-based mechanistic modeling and field observations in China's eutrophic Pearl River Estuary. Our model predicted that the species with the weakest defensive capacities dominated under nutrient-poor conditions. As eutrophication increased, a concave growth-defense trade-off favored species with high growth rates and strong defense capacities, whereas a convex trade-off curve favored species that were either the least or the most well-defended. High grazing pressure accelerated these shifts. In the estuary, similar patterns emerged in the relative abundance of different phytoplankton species along a gradient of the nitrogen to phosphorus ratio (N:P), indicating changes from high nutrient uptake and low grazing under oligotrophic conditions to eutrophic conditions, in which some phytoplankton face considerable grazing pressure despite high nutrient uptake, whereas others grow slowly with less grazing pressure. These results enhance our understanding of trait-based plankton interactions in eutrophic bodies of water and provide support for more effective conservation and management strategies.
Collapse
Affiliation(s)
- Xiaoxiao Li
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Zhihao Xu
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Sibo Zhang
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Weilun Gao
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Qian Dong
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Fen Guo
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhenchang Zhu
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Wei Yang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Zhifeng Yang
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| |
Collapse
|
3
|
Hulse SV, Bruns EL. The emergence of nonlinear evolutionary trade-offs and the maintenance of genetic polymorphisms. Biol Lett 2024; 20:20240296. [PMID: 39626761 PMCID: PMC11614545 DOI: 10.1098/rsbl.2024.0296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/03/2024] [Accepted: 10/16/2024] [Indexed: 12/08/2024] Open
Abstract
Evolutionary models of quantitative traits often assume trade-offs between beneficial and detrimental traits, requiring modellers to specify a function linking trait values. The choice of trade-off function can be consequential; functions that assume diminishing returns (accelerating costs) typically lead to single equilibrium genotypes, while decelerating costs often lead to genetic polymorphisms. Despite their importance, our current theory has little to say on which trade-off functions are the most biologically plausible. To address this gap, we explored how the genetic determination of quantitative traits can lead to different trade-off functions, using resistance to infectious diseases as an example trait. We developed a model where alleles at separate loci pleiotropically increase resistance while decreasing fecundity. We then used this model to generate genotype landscapes and investigate how epistasis effects the trade-off function. Regardless of the strength of epistasis, our model consistently led to accelerating costs. We then incorporated our genotype model into an eco-evolutionary model of disease resistance. Unlike other models with accelerating costs, our approach often led to genetic polymorphisms. Our results suggest that accelerating costs are a strong null model for evolutionary trade-offs and that the eco-evolutionary conditions required for polymorphism may be more nuanced than previously thought.
Collapse
Affiliation(s)
| | - Emily L. Bruns
- University of Maryland College Park, College Park, MD, USA
| |
Collapse
|
4
|
Hermann RJ, Pantel JH, Réveillon T, Becks L. Range of trait variation in prey determines evolutionary contributions to predator growth rates. J Evol Biol 2024; 37:693-703. [PMID: 38761100 DOI: 10.1093/jeb/voae062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 04/12/2024] [Accepted: 05/15/2024] [Indexed: 05/20/2024]
Abstract
Evolutionary and ecological dynamics can occur on similar timescales and thus influence each other. While it has been shown that the relative contribution of ecological and evolutionary change to population dynamics can vary, it still remains unknown what influences these differences. Here, we test whether prey populations with increased variation in their defence and competitiveness traits will have a stronger impact on evolution for predator growth rates. We controlled trait variation by pairing distinct clonal lineages of the green alga Chlamydomonas reinhardtii with known traits as prey with the rotifer Brachionus calyciforus as predator and compared those results with a mechanistic model matching the empirical system. We measured the impact of evolution (shift in prey clonal frequency) and ecology (shift in prey population density) for predator growth rate and its dependency on trait variation using an approach based on a 2-way ANOVA. Our experimental results indicated that higher trait variation, i.e., a greater distance in trait space, increased the relative contribution of prey evolution to predator growth rate over 3-4 predator generations, which was also observed in model simulations spanning longer time periods. In our model, we also observed clone-specific results, where a more competitive undefended prey resulted in a higher evolutionary contribution, independent of the trait distance. Our results suggest that trait combinations and total prey trait variation combine to influence the contribution of evolution to predator population dynamics, and that trait variation can be used to identify and better predict the role of eco-evolutionary dynamics in predator-prey systems.
Collapse
Affiliation(s)
- Ruben J Hermann
- Aquatic Ecology and Evolution, Limnological Institute, University of Konstanz, Konstanz, Germany
| | - Jelena H Pantel
- Ecological Modelling, Faculty of Biology, University Duisburg Essen, Essen, Germany
- Laboratoire Chrono-environnement, UMR 6249 CNRS-UFC, 16 Route de Gray, 25030 Besanc, France
| | - Tom Réveillon
- Aquatic Ecology and Evolution, Limnological Institute, University of Konstanz, Konstanz, Germany
| | - Lutz Becks
- Aquatic Ecology and Evolution, Limnological Institute, University of Konstanz, Konstanz, Germany
| |
Collapse
|
5
|
del Arco A, Fischer MG, Becks L. Evolution of exploitation and replication of giant viruses and virophages. Virus Evol 2024; 10:veae021. [PMID: 38562952 PMCID: PMC10984621 DOI: 10.1093/ve/veae021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 01/05/2024] [Accepted: 02/22/2024] [Indexed: 04/04/2024] Open
Abstract
Tripartite biotic interactions are inherently complex, and the strong interdependence of species and often one-sided exploitation can make these systems vulnerable to extinction. The persistence of species depends then on the balance between exploitation and avoidance of exploitation beyond the point where sustainable resource use is no longer possible. We used this general prediction to test the potential role of trait evolution for persistence in a tripartite microbial system consisting of a marine heterotrophic flagellate preyed upon by a giant virus, which in turn is parasitized by a virophage. Host and virophage may benefit from this interaction because the virophage reduces the harmful effects of the giant virus on the host population and the virophage can persist integrated into the host genome when giant viruses are scarce. We grew hosts and virus in the presence and absence of the virophage over ∼280 host generations and tested whether levels of exploitation and replication in the giant virus and/or virophage population evolved over the course of the experiment, and whether the changes were such that they could avoid overexploitation and extinction. We found that the giant virus evolved toward lower levels of replication and the virophage evolved toward increased replication but decreased exploitation of the giant virus. These changes reduced overall host exploitation by the virus and virus exploitation by the virophage and are predicted to facilitate persistence.
Collapse
Affiliation(s)
- Ana del Arco
- Aquatic Ecology and Evolution, Limnological Institute, University of Konstanz, Mainaustraße 252, Konstanz/Egg 78464, Germany
| | - Matthias G Fischer
- Max Planck Institute for Medical Research, Jahnstrasse 29, Heidelberg 69120, Germany
| | - Lutz Becks
- Aquatic Ecology and Evolution, Limnological Institute, University of Konstanz, Mainaustraße 252, Konstanz/Egg 78464, Germany
| |
Collapse
|
6
|
Conte L, Gonella F, Giansanti A, Kleidon A, Romano A. Modeling cell populations metabolism and competition under maximum power constraints. PLoS Comput Biol 2023; 19:e1011607. [PMID: 37939139 PMCID: PMC10659174 DOI: 10.1371/journal.pcbi.1011607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 11/20/2023] [Accepted: 10/16/2023] [Indexed: 11/10/2023] Open
Abstract
Ecological interactions are fundamental at the cellular scale, addressing the possibility of a description of cellular systems that uses language and principles of ecology. In this work, we use a minimal ecological approach that encompasses growth, adaptation and survival of cell populations to model cell metabolisms and competition under energetic constraints. As a proof-of-concept, we apply this general formulation to study the dynamics of the onset of a specific blood cancer-called Multiple Myeloma. We show that a minimal model describing antagonist cell populations competing for limited resources, as regulated by microenvironmental factors and internal cellular structures, reproduces patterns of Multiple Myeloma evolution, due to the uncontrolled proliferation of cancerous plasma cells within the bone marrow. The model is characterized by a class of regime shifts to more dissipative states for selectively advantaged malignant plasma cells, reflecting a breakdown of self-regulation in the bone marrow. The transition times obtained from the simulations range from years to decades consistently with clinical observations of survival times of patients. This irreversible dynamical behavior represents a possible description of the incurable nature of myelomas based on the ecological interactions between plasma cells and the microenvironment, embedded in a larger complex system. The use of ATP equivalent energy units in defining stocks and flows is a key to constructing an ecological model which reproduces the onset of myelomas as transitions between states of a system which reflects the energetics of plasma cells. This work provides a basis to construct more complex models representing myelomas, which can be compared with model ecosystems.
Collapse
Affiliation(s)
- Luigi Conte
- Department of Environmental Sciences, Informatics and Statistics, Ca’ Foscari University of Venice, Venezia Mestre, Italy
- Department of Physics, Sapienza University of Rome, Roma, Italy
- Centre for the Study of the Systemic Dynamics of Complex Diseases, Venezia Mestre, Italy
| | - Francesco Gonella
- Centre for the Study of the Systemic Dynamics of Complex Diseases, Venezia Mestre, Italy
- Department of Molecular Sciences and Nanosystems, Ca’ Foscari University of Venice, Venezia Mestre, Italy
- THE NEW INSTITUTE Centre for Environmental Humanities (NICHE), Venezia, Italy
| | - Andrea Giansanti
- Department of Physics, Sapienza University of Rome, Roma, Italy
- Istituto Nazionale di Fisica Nucleare, Roma, Italy
| | - Axel Kleidon
- Biospheric Theory and Modeling Group, Max Planck Institute for Biogeochemistry, Jena, Germany
| | - Alessandra Romano
- Centre for the Study of the Systemic Dynamics of Complex Diseases, Venezia Mestre, Italy
- Department of General Surgery and Medical-Surgical Specialties, University of Catania, Catania, Italy
| |
Collapse
|
7
|
Ontiveros VJ, Capitán JA, Casamayor EO, Alonso D. Colonization-persistence trade-offs in natural bacterial communities. Proc Biol Sci 2023; 290:20230709. [PMID: 37403500 PMCID: PMC10320335 DOI: 10.1098/rspb.2023.0709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/05/2023] [Indexed: 07/06/2023] Open
Abstract
Fitness equalizing mechanisms, such as trade-offs, are recognized as one of the main factors promoting species coexistence in community ecology. However, they have rarely been explored in microbial communities. Although microbial communities are highly diverse, the coexistence of their multiple taxa is largely attributed to niche differences and high dispersal rates, following the principle 'everything is everywhere, but the environment selects'. We use a dynamical stochastic model based on the theory of island biogeography to study highly diverse bacterial communities over time across three different systems (soils, alpine lakes and shallow saline lakes). Assuming fitness equalization mechanisms, here we newly analytically derive colonization-persistence trade-offs, and report a signal of such trade-offs in natural bacterial communities. Moreover, we show that different subsets of species in the community drive this trade-off. Rare taxa, which are occasional and more likely to follow independent colonization/extinction dynamics, drive this trade-off in the aquatic communities, while the core sub-community did it in the soils. We conclude that equalizing mechanisms may be more important than previously recognized in bacterial communities. Our work also emphasizes the fundamental value of dynamical models for understanding temporal patterns and processes in highly diverse communities.
Collapse
Affiliation(s)
- Vicente J. Ontiveros
- Theoretical and Computational Ecology, Center for Advanced Studies of Blanes (CEAB-CSIC), Spanish Council for Scientific Research, Accés Cala St. Francesc 14, E-17300 Blanes, Spain
| | - José A. Capitán
- Theoretical and Computational Ecology, Center for Advanced Studies of Blanes (CEAB-CSIC), Spanish Council for Scientific Research, Accés Cala St. Francesc 14, E-17300 Blanes, Spain
- Complex Systems Group. Department of Applied Mathematics, Universidad Politécnica de Madrid. Av. Juan de Herrera, 6. E-28040 Madrid, Spain
| | - Emilio O. Casamayor
- Integrative Freshwater Ecology Group, Centre of Advanced Studies of Blanes (CEAB-CSIC), Spanish Council for Scientific Research, Accés Cala St. Francesc 14, E-17300 Blanes, Spain
| | - David Alonso
- Theoretical and Computational Ecology, Center for Advanced Studies of Blanes (CEAB-CSIC), Spanish Council for Scientific Research, Accés Cala St. Francesc 14, E-17300 Blanes, Spain
| |
Collapse
|
8
|
Shifts from cooperative to individual-based predation defense determine microbial predator-prey dynamics. THE ISME JOURNAL 2023; 17:775-785. [PMID: 36854789 PMCID: PMC10119117 DOI: 10.1038/s41396-023-01381-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 02/03/2023] [Accepted: 02/07/2023] [Indexed: 03/02/2023]
Abstract
Predation defense is an important feature of predator-prey interactions adding complexity to ecosystem dynamics. Prey organisms have developed various strategies to escape predation which differ in mode (elude vs. attack), reversibility (inducible vs. permanent), and scope (individual vs. cooperative defenses). While the mechanisms and controls of many singular defenses are well understood, important ecological and evolutionary facets impacting long-term predator-prey dynamics remain underexplored. This pertains especially to trade-offs and interactions between alternative defenses occurring in prey populations evolving under predation pressure. Here, we explored the dynamics of a microbial predator-prey system consisting of bacterivorous flagellates (Poteriospumella lacustris) feeding on Pseudomonas putida. Within five weeks of co-cultivation corresponding to about 35 predator generations, we observed a consistent succession of bacterial defenses in all replicates (n = 16). Initially, bacteria expressed a highly effective cooperative defense based on toxic metabolites, which brought predators close to extinction. This initial strategy, however, was consistently superseded by a second mechanism of predation defense emerging via de novo mutations. Combining experiments with mathematical modeling, we demonstrate how this succession of defenses is driven by the maximization of individual rather than population benefits, highlighting the role of rapid evolution in the breakdown of social cooperation.
Collapse
|
9
|
Ress V, Traulsen A, Pichugin Y. Eco-evolutionary dynamics of clonal multicellular life cycles. eLife 2022; 11:e78822. [PMID: 36099169 PMCID: PMC9470158 DOI: 10.7554/elife.78822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 08/09/2022] [Indexed: 11/27/2022] Open
Abstract
The evolution of multicellular life cycles is a central process in the course of the emergence of multicellularity. The simplest multicellular life cycle is comprised of the growth of the propagule into a colony and its fragmentation to give rise to new propagules. The majority of theoretical models assume selection among life cycles to be driven by internal properties of multicellular groups, resulting in growth competition. At the same time, the influence of interactions between groups on the evolution of life cycles is rarely even considered. Here, we present a model of colonial life cycle evolution taking into account group interactions. Our work shows that the outcome of evolution could be coexistence between multiple life cycles or that the outcome may depend on the initial state of the population - scenarios impossible without group interactions. At the same time, we found that some results of these simpler models remain relevant: evolutionary stable strategies in our model are restricted to binary fragmentation - the same class of life cycles that contains all evolutionarily optimal life cycles in the model without interactions. Our results demonstrate that while models neglecting interactions can capture short-term dynamics, they fall short in predicting the population-scale picture of evolution.
Collapse
Affiliation(s)
- Vanessa Ress
- Max Planck Institute for Evolutionary BiologyPlönGermany
- Hamburg Center for Health Economics, University of HamburgHamburgGermany
| | - Arne Traulsen
- Max Planck Institute for Evolutionary BiologyPlönGermany
| | - Yuriy Pichugin
- Max Planck Institute for Evolutionary BiologyPlönGermany
- Department of Ecology and Evolutionary Biology, Princeton UniversityPrincetonUnited States
| |
Collapse
|
10
|
Fang W, Lin M, Shi J, Liang Z, Tu X, He Z, Qiu R, Wang S. Organic carbon and eukaryotic predation synergistically change resistance and resilience of aquatic microbial communities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 830:154386. [PMID: 35331758 DOI: 10.1016/j.scitotenv.2022.154386] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
With rapid global urbanization, anthropogenic activities alter aquatic biota in urban rivers through inputs of dissolved organic carbon (DOC) and nutrients. Microorganisms-mediated global element cycles provide functions in maintaining microbial ecology stability. The DOC (bottom-up control) and microbial predation (top-down control) may synergistically drive the competition and evolution of aquatic microbial communities, as well as their resistance and resilience, for which experimental evidences remain scarce. In this study, laboratory sediment-water column experiments were employed to mimic the organic carbon-driven water blackening and odorization process in urban rivers and to elucidate the impact of DOC on microbial ecology stability. Results showed that low (25-75 mg/L) and high DOC (100-150 mg/L) changed the aquatic microbial community assemblies in different patterns: (1) the low DOC enriched K-selection microorganisms (e.g., C39, Tolumonas and CR08G) with low biomass and low resilience, as well as high resistance to perturbations in changing microbial community assemblies; (2) the high DOC was associated with r-selection microorganisms (e.g., PSB-M-3 and Clostridium) with high biomass and improved resilience, together with low resistance detrimental to microbial ecology stability. Overall, this study provided new insight into the impact of DOC on aquatic microbial community stability, which may help guide sustainable urban river management.
Collapse
Affiliation(s)
- Wenwen Fang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, 510275 China; Zhongshan Municipal Ecology and Environment Bureau, Zhongshan, Guangdong 528403, China
| | - Muxing Lin
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, 510275 China
| | - Jiangjian Shi
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, 510275 China
| | - Zhiwei Liang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, 510275 China
| | - Xiang Tu
- State Environmental Protection Key Laboratory of Source Water Protection, Chinese Research Academy of Environmental Sciences, 100012 Beijing, China
| | - Zhili He
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, 510275 China
| | - Rongliang Qiu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, 510275 China; Guangdong Laboratory for Lingnan Modern Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Shanquan Wang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, 510275 China.
| |
Collapse
|
11
|
Hermann RJ, Becks L. Change in prey genotype frequency rescues predator from extinction. ROYAL SOCIETY OPEN SCIENCE 2022; 9:220211. [PMID: 35754995 PMCID: PMC9214283 DOI: 10.1098/rsos.220211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 05/27/2022] [Indexed: 05/03/2023]
Abstract
Indirect evolutionary rescue (IER) is a mechanism where a non-evolving species is saved from extinction in an otherwise lethal environment by evolution in an interacting species. This process has been described in a predator-prey model, where extinction of the predator is prevented by a shift in the frequency of defended towards undefended prey when reduced predator densities lower selection for defended prey. We test here how increased mortality and the initial frequencies of the prey types affect IER. Combining the analysis of model simulations and experiments with rotifers feeding on algae we show IER in the presence of increased predator mortality. We found that IER was dependent on the ability of the prey to evolve as well as on the frequency of the defended prey. High initial frequencies of defended prey resulted in predator extinction despite the possibility for prey evolution, as the increase in undefended prey was delayed too much to allow predator rescue. This frequency dependency for IER was more pronounced for higher predator mortalities. Our findings can help informing the development of conservation and management strategies that consider evolutionary responses in communities to environmental changes.
Collapse
Affiliation(s)
- Ruben Joseph Hermann
- Aquatic Ecology and Evolution Group, Limnological Institute University Konstanz, Konstanz, Germany
| | - Lutz Becks
- Aquatic Ecology and Evolution Group, Limnological Institute University Konstanz, Konstanz, Germany
| |
Collapse
|
12
|
Ahlawat N, Maggu K, Jigisha, Arun MG, Meena A, Agarwala A, Prasad NG. No major cost of evolved survivorship in Drosophila melanogaster populations coevolving with Pseudomonas entomophila. Proc Biol Sci 2022; 289:20220532. [PMID: 35506222 PMCID: PMC9065972 DOI: 10.1098/rspb.2022.0532] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Rapid exaggeration of host and pathogen traits via arms race dynamics is one possible outcome of host-pathogen coevolution. However, the exaggerated traits are expected to incur costs in terms of resource investment in other life-history traits. The current study investigated the costs associated with evolved traits in a host-pathogen coevolution system. We used the Drosophila melanogaster (host)-Pseudomonas entomophila (pathogen) system to experimentally derive two selection regimes, one where the host and pathogen both coevolved, and the other, where only the host evolved against a non-evolving pathogen. After 17 generations of selection, we found that hosts from both selected populations had better post-infection survivorship than controls. Even though the coevolving populations tended to have better survivorship post-infection, we found no clear evidence that the two selection regimes were significantly different from each other. There was weak evidence for the coevolving pathogens being more virulent than the ancestral pathogen. We found no major cost of increased post-infection survivorship. The costs were not different between the coevolving hosts and the hosts evolving against a non-evolving pathogen. We found no evolved costs in the coevolving pathogens. Thus, our results suggest that increased host immunity and pathogen virulence may not be costly.
Collapse
Affiliation(s)
- Neetika Ahlawat
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Mohali 140306, India
| | - Komal Maggu
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Mohali 140306, India,Department of Evolutionary and Environmental Studies, University of Zürich, Zürich 8057, Switzerland
| | - Jigisha
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Mohali 140306, India,Department of Plant and Microbial Biology, University of Zürich, Zürich 8008, Switzerland
| | - Manas Geeta Arun
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Mohali 140306, India
| | - Abhishek Meena
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Mohali 140306, India,Department of Evolutionary and Environmental Studies, University of Zürich, Zürich 8057, Switzerland
| | - Amisha Agarwala
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Mohali 140306, India,Department of Biology, Syracuse University, Syracuse, NY 13210, USA
| | - Nagaraj Guru Prasad
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Mohali 140306, India
| |
Collapse
|
13
|
Are some species ‘robust’ to exploitation? Explaining persistence in deceptive relationships. Evol Ecol 2022. [DOI: 10.1007/s10682-022-10174-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
AbstractAnimals and plants trick others in an extraordinary diversity of ways to gain fitness benefits. Mimicry and deception can, for example, lure prey, reduce the costs of parental care or aid in pollination–in ways that impose fitness costs on the exploited party. The evolutionary maintenance of such asymmetric relationships often relies on these costs being mitigated through counter-adaptations, low encounter rates, or indirect fitness benefits. However, these mechanisms do not always explain the evolutionary persistence of some classic deceptive interactions.Sexually deceptive pollination (in which plants trick male pollinators into mating with their flowers) has evolved multiple times independently, mainly in the southern hemisphere and especially in Australasia and Central and South America. This trickery imposes considerable costs on the males: they miss out on mating opportunities, and in some cases, waste their limited sperm on the flower. These relationships appear stable, yet in some cases there is little evidence suggesting that their persistence relies on counter-adaptations, low encounter rates, or indirect fitness benefits. So, how might these relationships persist?Here, we introduce and explore an additional hypothesis from systems biology: that some species are robust to exploitation. Robustness arises from a species’ innate traits and means they are robust against costs of exploitation. This allows species to persist where a population without those traits would not, making them ideal candidates for exploitation. We propose that this mechanism may help inform new research approaches and provide insight into how exploited species might persist.
Collapse
|
14
|
Abram F, Arcari T, Guerreiro D, O'Byrne CP. Evolutionary trade-offs between growth and survival: The delicate balance between reproductive success and longevity in bacteria. Adv Microb Physiol 2021; 79:133-162. [PMID: 34836610 DOI: 10.1016/bs.ampbs.2021.07.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
All living cells strive to allocate cellular resources in a way that promotes maximal evolutionary fitness. While there are many competing demands for resources the main decision making process centres on whether to proceed with growth and reproduction or to "hunker down" and invest in protection and survival (or to strike an optimal balance between these two processes). The transcriptional programme active at any given time largely determines which of these competing processes is dominant. At the top of the regulatory hierarchy are the sigma factors that commandeer the transcriptional machinery and determine which set of promoters are active at any given time. The regulatory inputs controlling their activity are therefore often highly complex, with multiple layers of regulation, allowing relevant environmental information to produce the most beneficial response. The tension between growth and survival is also evident in the developmental programme necessary to promote biofilm formation, which is typically associated with low growth rates and enhanced long-term survival. Nucleotide second messengers and energy pools (ATP/ADP levels) play critical roles in determining the fate of individual cells. Regulatory small RNAs frequently play important roles in the decision making processes too. In this review we discuss the trade-off that exists between reproduction and persistence in bacteria and discuss some of the recent advances in this fascinating field.
Collapse
Affiliation(s)
- Florence Abram
- Microbiology & Ryan Institute, School of Natural Sciences, National University of Ireland, Galway, Ireland
| | - Talia Arcari
- Microbiology & Ryan Institute, School of Natural Sciences, National University of Ireland, Galway, Ireland
| | - Duarte Guerreiro
- Microbiology & Ryan Institute, School of Natural Sciences, National University of Ireland, Galway, Ireland
| | - Conor P O'Byrne
- Microbiology & Ryan Institute, School of Natural Sciences, National University of Ireland, Galway, Ireland.
| |
Collapse
|
15
|
Cairns J, Jousset A, Becks L, Hiltunen T. Effect of mutation supply on population dynamics and trait evolution in an experimental microbial community. Ecol Lett 2021; 25:355-365. [PMID: 34808691 DOI: 10.1111/ele.13922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 10/25/2021] [Indexed: 11/30/2022]
Abstract
Mutation supply can influence evolutionary and thereby ecological dynamics in important ways which have received little attention. Mutation supply influences features of population genetics, such as the pool of adaptive mutations, evolutionary pathways and importance of processes, such as clonal interference. The resultant trait evolutionary dynamics, in turn, can alter population size and species interactions. However, controlled experiments testing for the importance of mutation supply on rapid adaptation and thereby population and community dynamics have primarily been restricted to the first of these aspects. To close this knowledge gap, we performed a serial passage experiment with wild-type Pseudomonas fluorescens and a mutant with reduced mutation rate. Bacteria were grown at two resource levels in combination with the presence of a ciliate predator. A higher mutation supply enabled faster adaptation to the low-resource environment and anti-predatory defence. This was associated with higher population size at the ecological level and better access to high-recurrence mutational targets at the genomic level with higher mutation supply. In contrast, mutation rate did not affect growth under high-resource level. Our results demonstrate that intrinsic mutation rate influences population dynamics and trait evolution particularly when population size is constrained by extrinsic conditions.
Collapse
Affiliation(s)
- Johannes Cairns
- Organismal and Evolutionary Biology Research Programme (OEB), Department of Computer Science, University of Helsinki, Finland.,Department of Microbiology, University of Helsinki, Finland
| | - Alexandre Jousset
- Key Laboratory of Plant Immunity, Jiangsu Key Laboratory for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Nanjing Agricultural University, Nanjing, PR China
| | - Lutz Becks
- Max Planck Institute for Evolutionary Biology, Department of Evolutionary Ecology, Community Dynamics Group, Plön, Germany.,Limnological Institute University Konstanz, Aquatic Ecology and Evolution, Konstanz, Germany
| | - Teppo Hiltunen
- Department of Microbiology, University of Helsinki, Finland.,Department of Biology, University of Turku, Turku, Finland
| |
Collapse
|
16
|
Wölfl B, te Rietmole H, Salvioli M, Kaznatcheev A, Thuijsman F, Brown JS, Burgering B, Staňková K. The Contribution of Evolutionary Game Theory to Understanding and Treating Cancer. DYNAMIC GAMES AND APPLICATIONS 2021; 12:313-342. [PMID: 35601872 PMCID: PMC9117378 DOI: 10.1007/s13235-021-00397-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/05/2021] [Indexed: 05/05/2023]
Abstract
Evolutionary game theory mathematically conceptualizes and analyzes biological interactions where one's fitness not only depends on one's own traits, but also on the traits of others. Typically, the individuals are not overtly rational and do not select, but rather inherit their traits. Cancer can be framed as such an evolutionary game, as it is composed of cells of heterogeneous types undergoing frequency-dependent selection. In this article, we first summarize existing works where evolutionary game theory has been employed in modeling cancer and improving its treatment. Some of these game-theoretic models suggest how one could anticipate and steer cancer's eco-evolutionary dynamics into states more desirable for the patient via evolutionary therapies. Such therapies offer great promise for increasing patient survival and decreasing drug toxicity, as demonstrated by some recent studies and clinical trials. We discuss clinical relevance of the existing game-theoretic models of cancer and its treatment, and opportunities for future applications. Moreover, we discuss the developments in cancer biology that are needed to better utilize the full potential of game-theoretic models. Ultimately, we demonstrate that viewing tumors with evolutionary game theory has medically useful implications that can inform and create a lockstep between empirical findings and mathematical modeling. We suggest that cancer progression is an evolutionary competition between different cell types and therefore needs to be viewed as an evolutionary game.
Collapse
Affiliation(s)
- Benjamin Wölfl
- Department of Mathematics, University of Vienna, Vienna, Austria
- Vienna Graduate School of Population Genetics, Vienna, Austria
| | - Hedy te Rietmole
- Department of Molecular Cancer Research, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Monica Salvioli
- Department of Mathematics, University of Trento, Trento, Italy
- Department of Data Science and Knowledge Engineering, Maastricht University, Maastricht, The Netherlands
| | - Artem Kaznatcheev
- Department of Biology, University of Pennsylvania, Philadelphia, USA
- Department of Computer Science, University of Oxford, Oxford, UK
| | - Frank Thuijsman
- Department of Data Science and Knowledge Engineering, Maastricht University, Maastricht, The Netherlands
| | - Joel S. Brown
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL USA
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL USA
| | - Boudewijn Burgering
- Department of Molecular Cancer Research, University Medical Center Utrecht, Utrecht, The Netherlands
- The Oncode Institute, Utrecht, The Netherlands
| | - Kateřina Staňková
- Department of Data Science and Knowledge Engineering, Maastricht University, Maastricht, The Netherlands
- Department of Engineering Systems and Services, Faculty of Technology, Policy and Management, Delft University of Technology, Delft, The Netherlands
| |
Collapse
|
17
|
Fields B, Moffat EK, Harrison E, Andersen SU, Young JPW, Friman VP. Genetic variation is associated with differences in facilitative and competitive interactions in the Rhizobium leguminosarum species complex. Environ Microbiol 2021; 24:3463-3485. [PMID: 34398510 DOI: 10.1111/1462-2920.15720] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 07/08/2021] [Accepted: 08/10/2021] [Indexed: 12/01/2022]
Abstract
Competitive and facilitative interactions influence bacterial community composition, diversity and functioning. However, the role of genetic diversity for determining interactions between coexisting strains of the same, or closely related, species remains poorly understood. Here, we investigated the type (facilitative/inhibitory) and potential underlying mechanisms of pairwise interactions between 24 genetically diverse bacterial strains belonging to three genospecies (gsA,C,E) of the Rhizobium leguminosarum species complex. Interactions were determined indirectly, based on secreted compounds in cell-free supernatants, and directly, as growth inhibition in cocultures. We found supernatants mediated both facilitative and inhibitory interactions that varied greatly between strains and genospecies. Overall, gsE strains indirectly suppressed growth of gsA strains, while their own growth was facilitated by other genospecies' supernatants. Similar genospecies-level patterns were observed in direct competition, where gsA showed the highest susceptibility and gsE the highest inhibition capacity. At the genetic level, increased gsA susceptibility was associated with a non-random distribution of quorum sensing and secondary metabolite genes across genospecies. Together, our results suggest that genetic variation is associated with facilitative and competitive interactions, which could be important ecological mechanisms explaining R. leguminosarum diversity.
Collapse
Affiliation(s)
| | - Emma K Moffat
- Department of Biology, University of York, York, UK.,Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| | - Ellie Harrison
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| | - Stig U Andersen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | | | | |
Collapse
|
18
|
The evolution of convex trade-offs enables the transition towards multicellularity. Nat Commun 2021; 12:4222. [PMID: 34244514 PMCID: PMC8270964 DOI: 10.1038/s41467-021-24503-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 06/17/2021] [Indexed: 11/13/2022] Open
Abstract
The evolutionary transition towards multicellular life often involves growth in groups of undifferentiated cells followed by differentiation into soma and germ-like cells. Theory predicts that germ soma differentiation is facilitated by a convex trade-off between survival and reproduction. However, this has never been tested and these transitions remain poorly understood at the ecological and genetic level. Here, we study the evolution of cell groups in ten isogenic lines of the unicellular green algae Chlamydomonas reinhardtii with prolonged exposure to a rotifer predator. We confirm that growth in cell groups is heritable and characterized by a convex trade-off curve between reproduction and survival. Identical mutations evolve in all cell group isolates; these are linked to survival and reducing associated cell costs. Overall, we show that just 500 generations of predator selection were sufficient to lead to a convex trade-off and incorporate evolved changes into the prey genome. Multicellularity is a major evolutionary transition that remains poorly characterized at the ecological and genetic level. Exposing unicellular green algae to a rotifer predator showed that just 500 generations of predator selection were sufficient to lead to a convex trade-off and incorporate evolved changes into the prey genome.
Collapse
|
19
|
Pradeep Ram AS, Keshri J, Sime-Ngando T. Differential impact of top-down and bottom-up forces in structuring freshwater bacterial communities. FEMS Microbiol Ecol 2020; 96:5700279. [PMID: 31922543 DOI: 10.1093/femsec/fiaa005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 01/09/2020] [Indexed: 01/21/2023] Open
Abstract
Limited data exist on the simultaneous impact of bottom-up (nutrients) and top-down (viruses and heterotrophic nanoflagellates) forces in shaping freshwater bacterial communities. In our laboratory microcosms, nutrient additions (organic and inorganic) and viral reduction approach led to the proliferation of high nucleic acid (HNA) bacterial subpopulation without an increase in phage abundance. High viral-mediated bacterial lysis in the presence of nanoflagellates yielded high proportion of low nucleic acid bacterial subpopulation. 16S rRNA gene sequence analysis indicated that members of classes Proteobacteria and Bacteroidetes evoked differential responses to nutrients and mortality forces, thereby resulting in differences (P < 0.001) in bacterial community composition and diversity, as observed from analysis of similarities and UniFrac analysis. Bacterial species richness (Chao) and diversity (Shannon) index was significantly higher (P < 0.001) in the presence of both the top-down factors and viruses alone, whereas lower host diversity was observed under nutrient relaxation of growth-limiting substrates due to the explosive growth of opportunistic HNA bacterial subpopulation. Our results are in agreement with the theoretical model of 'killing the winner', where the availability of growth-limiting substrates can act as a stimulating factor for host community composition while top-down forces can operate in the control of host diversity.
Collapse
Affiliation(s)
- A S Pradeep Ram
- Laboratoire Microorganismes: Génome et Environnement, UMR CNRS 6023, Université Clermont-Auvergne, 63178 Aubière Cedex, France
| | - J Keshri
- Laboratoire Microorganismes: Génome et Environnement, UMR CNRS 6023, Université Clermont-Auvergne, 63178 Aubière Cedex, France
| | - T Sime-Ngando
- Laboratoire Microorganismes: Génome et Environnement, UMR CNRS 6023, Université Clermont-Auvergne, 63178 Aubière Cedex, France
| |
Collapse
|
20
|
Cairns J, Moerman F, Fronhofer EA, Altermatt F, Hiltunen T. Evolution in interacting species alters predator life-history traits, behaviour and morphology in experimental microbial communities. Proc Biol Sci 2020; 287:20200652. [PMID: 32486984 DOI: 10.1098/rspb.2020.0652] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Predator-prey interactions heavily influence the dynamics of many ecosystems. An increasing body of evidence suggests that rapid evolution and coevolution can alter these interactions, with important ecological implications, by acting on traits determining fitness, including reproduction, anti-predatory defence and foraging efficiency. However, most studies to date have focused only on evolution in the prey species, and the predator traits in (co)evolving systems remain poorly understood. Here, we investigated changes in predator traits after approximately 600 generations in a predator-prey (ciliate-bacteria) evolutionary experiment. Predators independently evolved on seven different prey species, allowing generalization of the predator's evolutionary response. We used highly resolved automated image analysis to quantify changes in predator life history, morphology and behaviour. Consistent with previous studies, we found that prey evolution impaired growth of the predator, although the effect depended on the prey species. By contrast, predator evolution did not cause a clear increase in predator growth when feeding on ancestral prey. However, predator evolution affected morphology and behaviour, increasing size, speed and directionality of movement, which have all been linked to higher prey search efficiency. These results show that in (co)evolving systems, predator adaptation can occur in traits relevant to foraging efficiency without translating into an increased ability of the predator to grow on the ancestral prey type.
Collapse
Affiliation(s)
- Johannes Cairns
- Wellcome Sanger Institute, Cambridge CB10 1SA, UK.,Organismal and Evolutionary Biology Research Programme, Department of Computer Science, University of Helsinki, 00014 Helsinki, Finland.,Department of Microbiology, University of Helsinki, PO Box 56, 00014 Helsinki, Finland
| | - Felix Moerman
- Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, 8600 Dübendorf, Switzerland.,Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland.,ISEM, University of Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | | | - Florian Altermatt
- Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, 8600 Dübendorf, Switzerland.,Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Teppo Hiltunen
- Department of Microbiology, University of Helsinki, PO Box 56, 00014 Helsinki, Finland.,Department of Biology, University of Turku, 20014 Turku, Finland
| |
Collapse
|
21
|
Nair RR, Vasse M, Wielgoss S, Sun L, Yu YTN, Velicer GJ. Bacterial predator-prey coevolution accelerates genome evolution and selects on virulence-associated prey defences. Nat Commun 2019; 10:4301. [PMID: 31541093 PMCID: PMC6754418 DOI: 10.1038/s41467-019-12140-6] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 08/22/2019] [Indexed: 01/08/2023] Open
Abstract
Generalist bacterial predators are likely to strongly shape many important ecological and evolutionary features of microbial communities, for example by altering the character and pace of molecular evolution, but investigations of such effects are scarce. Here we report how predator-prey interactions alter the evolution of fitness, genomes and phenotypic diversity in coevolving bacterial communities composed of Myxococcus xanthus as predator and Escherichia coli as prey, relative to single-species controls. We show evidence of reciprocal adaptation and demonstrate accelerated genomic evolution specific to coevolving communities, including the rapid appearance of mutator genotypes. Strong parallel evolution unique to the predator-prey communities occurs in both parties, with predators driving adaptation at two prey traits associated with virulence in bacterial pathogens-mucoidy and the outer-membrane protease OmpT. Our results suggest that generalist predatory bacteria are important determinants of how complex microbial communities and their interaction networks evolve in natural habitats.
Collapse
Affiliation(s)
- Ramith R Nair
- Institute for Integrative Biology, ETH Zürich, Zürich, 8092, Switzerland.
| | - Marie Vasse
- Institute for Integrative Biology, ETH Zürich, Zürich, 8092, Switzerland.
| | - Sébastien Wielgoss
- Institute for Integrative Biology, ETH Zürich, Zürich, 8092, Switzerland
| | - Lei Sun
- Institute for Integrative Biology, ETH Zürich, Zürich, 8092, Switzerland
- Department of Systems Biology, Harvard Medical School, 02115, Boston, MA, USA
| | - Yuen-Tsu N Yu
- Institute for Integrative Biology, ETH Zürich, Zürich, 8092, Switzerland
| | - Gregory J Velicer
- Institute for Integrative Biology, ETH Zürich, Zürich, 8092, Switzerland
| |
Collapse
|
22
|
Karakostis K, Fåhraeus R. Shaping the regulation of the p53 mRNA tumour suppressor: the co-evolution of genetic signatures. BMC Cancer 2019; 19:915. [PMID: 31519161 PMCID: PMC6743176 DOI: 10.1186/s12885-019-6118-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 08/30/2019] [Indexed: 12/13/2022] Open
Abstract
Structured RNA regulatory motifs exist from the prebiotic stages of the RNA world to the more complex eukaryotic systems. In cases where a functional RNA structure is within the coding sequence a selective pressure drives a parallel co-evolution of the RNA structure and the encoded peptide domain. The p53-MDM2 axis, describing the interactions between the p53 tumor suppressor and the MDM2 E3 ubiquitin ligase, serves as particularly useful model revealing how secondary RNA structures have co-evolved along with corresponding interacting protein motifs, thus having an impact on protein - RNA and protein - protein interactions; and how such structures developed signal-dependent regulation in mammalian systems. The p53(BOX-I) RNA sequence binds the C-terminus of MDM2 and controls p53 synthesis while the encoded peptide domain binds MDM2 and controls p53 degradation. The BOX-I peptide domain is also located within p53 transcription activation domain. The folding of the p53 mRNA structure has evolved from temperature-regulated in pre-vertebrates to an ATM kinase signal-dependent pathway in mammalian cells. The protein - protein interaction evolved in vertebrates and became regulated by the same signaling pathway. At the same time the protein - RNA and protein - protein interactions evolved, the p53 trans-activation domain progressed to become integrated into a range of cellular pathways. We discuss how a single synonymous mutation in the BOX-1, the p53(L22 L), observed in a chronic lymphocyte leukaemia patient, prevents the activation of p53 following DNA damage. The concepts analysed and discussed in this review may serve as a conceptual mechanistic paradigm of the co-evolution and function of molecules having roles in cellular regulation, or the aetiology of genetic diseases and how synonymous mutations can affect the encoded protein.
Collapse
Affiliation(s)
| | - Robin Fåhraeus
- Université Paris 7, INSERM UMR 1131, 27 Rue Juliette Dodu, 75010 Paris, France
- Department of Medical Biosciences, Umea University, SE-90185 Umea, Sweden
- RECAMO, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53 Brno, Czech Republic
| |
Collapse
|
23
|
Scheuerl T, Cairns J, Becks L, Hiltunen T. Predator coevolution and prey trait variability determine species coexistence. Proc Biol Sci 2019; 286:20190245. [PMID: 31088272 PMCID: PMC6532513 DOI: 10.1098/rspb.2019.0245] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 04/25/2019] [Indexed: 01/08/2023] Open
Abstract
Predation is one of the key ecological mechanisms allowing species coexistence and influencing biological diversity. However, ecological processes are subject to contemporary evolutionary change, and the degree to which predation affects diversity ultimately depends on the interplay between evolution and ecology. Furthermore, ecological interactions that influence species coexistence can be altered by reciprocal coevolution especially in the case of antagonistic interactions such as predation or parasitism. Here we used an experimental evolution approach to test for the role of initial trait variation in the prey population and coevolutionary history of the predator in the ecological dynamics of a two-species bacterial community predated by a ciliate. We found that initial trait variation both at the bacterial and ciliate level enhanced species coexistence, and that subsequent trait evolutionary trajectories depended on the initial genetic diversity present in the population. Our findings provide further support to the notion that the ecology-centric view of diversity maintenance must be reinvestigated in light of recent findings in the field of eco-evolutionary dynamics.
Collapse
Affiliation(s)
- Thomas Scheuerl
- Department of Microbiology, University of Helsinki, PO Box 56, Helsinki 00014, Finland
| | - Johannes Cairns
- Department of Microbiology, University of Helsinki, PO Box 56, Helsinki 00014, Finland
- Organismal and Evolutionary Biology Research Programme, University of Helsinki, PO Box 65, Helsinki 00014Finland
| | - Lutz Becks
- Department of Evolutionary Ecology, Community Dynamics Group, Max Planck Institute for Evolutionary Biology, August Thienemann Strasse 2, 24306 Plön, Germany
- Aquatic Ecology and Evolution, Limnological Institute University Konstanz, Konstanz, Germany
| | - Teppo Hiltunen
- Department of Microbiology, University of Helsinki, PO Box 56, Helsinki 00014, Finland
- Department of Biology, University of Turku, Turku 20014, Finland
| |
Collapse
|
24
|
Phenotypic plasticity more essential to maintaining variation in host-attachment behaviour than evolutionary trade-offs in a facultatively parasitic mite. Parasitology 2019; 146:1289-1295. [DOI: 10.1017/s0031182019000507] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractA prevailing hypothesis for the evolution of parasitism posits that the fitness benefits gained from parasitic activity results in selection for and fixation of parasitic strategies. Despite the potential fitness advantage of parasitism, facultative parasites continue to exhibit genetic variation in parasitic behaviour in nature. We hypothesized that evolutionary trade-offs associated with parasitic host-attachment behaviour maintain natural variation observed in attachment behaviour. In this study, we used replicate lines of a facultatively parasitic mite, previously selected for increased host-attachment behaviour to test whether increased attachment trades off with mite fecundity and longevity, as well as the phenotypic plasticity of attachment. We also tested for potential correlated changes in mite morphology. To test for context-dependent trade-offs, mite fecundity and longevity were assayed in the presence or absence of a host. Our results show that selected and control mites exhibited similar fecundities, longevities, attachment plasticities and morphologies, which did not provide evidence for life history trade-offs associated with increased attachment. Surprisingly, phenotypic plasticity in attachment was maintained despite directional selection on the trait, which suggests that phenotypic plasticity likely plays an important role in maintaining attachment variation in natural populations of this facultative parasite.
Collapse
|
25
|
Park HJ, Pichugin Y, Huang W, Traulsen A. Population size changes and extinction risk of populations driven by mutant interactors. Phys Rev E 2019; 99:022305. [PMID: 30934279 DOI: 10.1103/physreve.99.022305] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Indexed: 11/07/2022]
Abstract
Spontaneous random mutations are an important source of variation in populations. Many evolutionary models consider mutants with a fixed fitness, chosen from a fitness distribution without considering microscopic interactions among the residents and mutants. Here, we go beyond this and consider "mutant interactors," which lead to new interactions between the residents and invading mutants that can affect the population size and the extinction risk of populations. We model microscopic interactions between individuals by using a dynamic interaction matrix, the dimension of which increases with the emergence of a new mutant and decreases with extinction. The new interaction parameters of the mutant follow a probability distribution around the payoff entries of its ancestor. These new interactions can drive the population away from the previous equilibrium and lead to changes in the population size. Thus, the population size is an evolving property rather than an externally controlled variable. We calculate the average population size of our stochastic system over time and quantify the extinction risk of the population by the mean time to extinction.
Collapse
Affiliation(s)
- Hye Jin Park
- Department of Evolutionary Theory, Max Planck Institute for Evolutionary Biology, 24306 Plön, Germany
| | - Yuriy Pichugin
- Department of Evolutionary Theory, Max Planck Institute for Evolutionary Biology, 24306 Plön, Germany
| | - Weini Huang
- Complex Systems and Networks Research Group, School of Mathematical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom.,Group of Theoretical Biology, The State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou 510060, China
| | - Arne Traulsen
- Department of Evolutionary Theory, Max Planck Institute for Evolutionary Biology, 24306 Plön, Germany
| |
Collapse
|
26
|
Theodosiou L, Hiltunen T, Becks L. The role of stressors in altering eco‐evolutionary dynamics. Funct Ecol 2019. [DOI: 10.1111/1365-2435.13263] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Loukas Theodosiou
- Community Dynamics GroupMax Planck Institute for Evolutionary Biology Plön Germany
- Department of Microbial Population BiologyMax Planck Institute for Evolutionary Biology Plön Germany
| | - Teppo Hiltunen
- Department of MicrobiologyUniversity of Helsinki Helsinki Finland
- Department of BiologyUniversity of Turku Turku Finland
| | - Lutz Becks
- Community Dynamics GroupMax Planck Institute for Evolutionary Biology Plön Germany
- Limnology ‐ Aquatic Ecology and Evolution, Limnological InstituteUniversity of Konstanz Konstanz Germany
| |
Collapse
|
27
|
Govaert L, Fronhofer EA, Lion S, Eizaguirre C, Bonte D, Egas M, Hendry AP, De Brito Martins A, Melián CJ, Raeymaekers JAM, Ratikainen II, Saether B, Schweitzer JA, Matthews B. Eco‐evolutionary feedbacks—Theoretical models and perspectives. Funct Ecol 2018. [DOI: 10.1111/1365-2435.13241] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Lynn Govaert
- Laboratory of Aquatic Ecology, Evolution and Conservation KU Leuven Leuven Belgium
- Department of Aquatic Ecology Eawag: Swiss Federal Institute of Aquatic Science and Technology Dübendorf Switzerland
- Department of Evolutionary Biology and Environmental Studies University of Zurich Zürich Switzerland
| | | | - Sébastien Lion
- Centre d'Ecologie Fonctionnelle et Evolutive CNRS, IRD, EPHE Université de Montpellier Montpellier France
| | | | - Dries Bonte
- Department of Biology Ghent University Ghent Belgium
| | - Martijn Egas
- Institute for Biodiversity and Ecosystem Dynamics University of Amsterdam Amsterdam The Netherlands
| | - Andrew P. Hendry
- Redpath Museum and Department of Biology McGill University Montreal Quebec Canada
| | - Ayana De Brito Martins
- Fish Ecology and Evolution DepartmentCenter for Ecology, Evolution and BiogeochemistryEawag: Swiss Federal Institute of Aquatic Science and Technology Dübendorf Switzerland
| | - Carlos J. Melián
- Fish Ecology and Evolution DepartmentCenter for Ecology, Evolution and BiogeochemistryEawag: Swiss Federal Institute of Aquatic Science and Technology Dübendorf Switzerland
| | | | - Irja I. Ratikainen
- Department of Biology Centre for Biodiversity Dynamics Norwegian University of Science and Technology Trondheim Norway
- Institute of Biodiversity, Animal Health and Comparative Medicine University of Glasgow Glasgow UK
| | - Bernt‐Erik Saether
- Department of Biology Centre for Biodiversity Dynamics Norwegian University of Science and Technology Trondheim Norway
| | - Jennifer A. Schweitzer
- Department of Ecology and Evolutionary Biology University of Tennessee Knoxville Tennessee
| | - Blake Matthews
- Department of Aquatic Ecology Eawag: Swiss Federal Institute of Aquatic Science and Technology Dübendorf Switzerland
| |
Collapse
|
28
|
Abstract
Purpose In this paper, we provide an overview of a life history theory and how it applies to cancer evolution. Recent Findings We review the literature on trade-offs in tumors, focusing on the trade-offs among cellular proliferation, survival, and motility. Trade-offs are critical natural constraints for almost all evolutionary processes. Many ecological studies show that trade-offs among these cellular functions maintain a genetic diversity. In addition, these trade-offs are not fixed, but rather can shift depending on the ecological circumstances in the microenvironment. This can lead to selection for the cellular capacity to respond to these differing microenvironments in ways that promote the fitness of the cancer cell. We relate these life history trade-offs to the recently developed Evo-Eco indexes and discuss how life history theory can help refine our measures of tumor evolution and ecology. Summary Life history theory provides a framework for understanding how the spatial and temporal variability in the tumor microenvironment—in particular resources and threats—affect trade-offs among cell survival, cell proliferation, and cell migration. We discuss how these trade-offs can potentially be leveraged in cancer therapy to increase the effectiveness of treatment.
Collapse
|
29
|
Jiao W, Du R, Ye M, Sun M, Feng Y, Wan J, Zhao Y, Zhang Z, Huang D, Du D, Jiang X. 'Agricultural Waste to Treasure' - Biochar and eggshell to impede soil antibiotics/antibiotic resistant bacteria (genes) from accumulating in Solanum tuberosum L. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 242:2088-2095. [PMID: 29945818 DOI: 10.1016/j.envpol.2018.06.059] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 06/19/2018] [Accepted: 06/19/2018] [Indexed: 06/08/2023]
Abstract
Soil contamination with antibiotics and antibiotic resistant bacteria/genes (ARB/ARGs) has becoming an emerging environmental problem. Moreover, the mixed pollutants' transfer and accumulation from soil to tuberous vegetables has posed a great threat against food security and human health. In this work, the application of two absorbing materials (maize biochar and sulfate modified eggshell) was able to reduce the poisonous effect of soil antibiotics on potato root system by stimulate the dissipation of water-soluble antibiotics in soil; and also improve food quality by increasing potato starch, protein, fat, and vitamins. Meanwhile, both amendments could effectively decrease the classes and the accumulative abundance of ARB and ARGs (sulI, sulII, catI, catII, ermA, ermB) in the edible parts of potato. The lowest abundance of ARGs was detected in the biochar application treatment, with the accumulative ARG level of 8.9 × 102 and 7.2 × 102 copies mL-1 in potato peel (sull + catI + ermA) and tuberous root (sulI), respectively. It is the first study to demonstrate the feasibility of biochar and eggshell derived from agricultural wastes as green absorbing materials to reduce soil antibiotic, ARB, and ARGs accumulation risk in tuberous vegetable.
Collapse
Affiliation(s)
- Wentao Jiao
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Ruijun Du
- Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Mao Ye
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Mingming Sun
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yanfang Feng
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Jinzhong Wan
- Nanjing Institute of Environmental Science, Ministry of Environmental Protection of China, Nanjing 210042, China
| | - Yuanchao Zhao
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhongyun Zhang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Duan Huang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Daolin Du
- Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xin Jiang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| |
Collapse
|