1
|
Cao B, Zhang K, Zuo R, Kang Z, Lin J, Kang Z, Luo D, Chai Y, Xu J, Kang Q, Qiu S. 3D-bioprinted functional scaffold based on synergistic induction of i-PRF and laponite exerts efficient and personalized bone regeneration via miRNA-mediated TGF-β/Smads signaling. Int J Surg 2025; 111:3193-3211. [PMID: 40035712 DOI: 10.1097/js9.0000000000002312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Accepted: 02/17/2025] [Indexed: 03/06/2025]
Abstract
BACKGROUND Limited stem cells, low vascularization efficiency, and weak osteoinductive activity plague the repair and reconstruction of bone defects with cell-free scaffolds. METHODS Herein, injectable platelet-rich fibrin (i-PRF) was loaded into a alginate methacryloyl (AlgMA)/gelatin methacryloyl (GelMA)-methylcellulose (AGM) bioink system and constructed a porous hydrogel scaffold by 3D bioprinting. The addition of nanosilicate-laponite (Lap) further enhanced this scaffold and synergized with i-PRF to promote efficient and personalized cranial regeneration. RESULTS At the biochemical level, Lap significantly enhanced the ability of the scaffold to retard growth factor release, and multiple physiologically proportional growth factors in the scaffold synergistically promoted rapid neoangiogenesis and concomitantly recruited endogenous bone marrow mesenchymal stem cells (BMSCs). More importantly, the bioactive ions released by Lap markedly promoted the proliferation of BMSCs and consistently induced the osteogenic differentiation of BMSCs. At the immunological level, i-PRF-AGM@Lap significantly attenuates the inflammatory response by promoting macrophage M2 polarization. Mechanistically, miRNA sequencing and functional validation experiments demonstrated that bioactive ions released by Lap could synergize with growth factors in i-PRF to promote osteogenic differentiation of BMSCs through the miR-21 and miR-125a-mediated transforming growth factor-β/Smads signaling pathway. CONCLUSION The results of this study provide a new idea for the personalized treatment of bone defects.
Collapse
Affiliation(s)
- Bojun Cao
- Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Clinical and Translational Research Center for 3D Printing Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kunqi Zhang
- Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rongtai Zuo
- Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhiyang Kang
- Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jieming Lin
- Department of Orthopaedic Surgery, Renji Hospital, South Campus, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhixuan Kang
- Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dinghao Luo
- Clinical and Translational Research Center for 3D Printing Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yimin Chai
- Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jia Xu
- Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qinglin Kang
- Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuo Qiu
- Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
2
|
Lai W, Geliang H, Bin X, Wang W. Effects of hydrogel stiffness and viscoelasticity on organoid culture: a comprehensive review. Mol Med 2025; 31:83. [PMID: 40033190 PMCID: PMC11877758 DOI: 10.1186/s10020-025-01131-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 02/14/2025] [Indexed: 03/05/2025] Open
Abstract
As an emerging technology, organoids are promising new tools for basic and translational research in disease. Currently, the culture of organoids relies mainly on a type of unknown composition scaffold, namely Matrigel, which may pose problems in studying the effect of mechanical properties on organoids. Hydrogels, a new material with adjustable mechanical properties, can adapt to current studies. In this review, we summarized the synthesis of recent advance in developing definite hydrogel scaffolds for organoid culture and identified the critical parameters for regulating mechanical properties. In addition, classified by different mechanical properties like stiffness and viscoelasticity, we concluded the effect of mechanical properties on the development of organoids and tumor organoids. We hope this review enhances the understanding of the development of organoids by hydrogels and provides more practical approaches to investigating them.
Collapse
Affiliation(s)
- Wei Lai
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Hu Geliang
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Xu Bin
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| | - Wei Wang
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
3
|
Li H, Gong Y, Wang Y, Sang W, Wang C, Zhang Y, Zhang H, Liu P, Liu M, Sun H. β-Sitosterol modulates osteogenic and adipogenic balance in BMSCs to suppress osteoporosis via regulating mTOR-IMP1-Adipoq axis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 138:156400. [PMID: 39848018 DOI: 10.1016/j.phymed.2025.156400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/05/2025] [Accepted: 01/16/2025] [Indexed: 01/25/2025]
Abstract
BACKGROUND Osteoporosis (OP) is a prevalent global health concern, impacting millions of individuals, especially the elderly. The etiology of senile OP is associated with the imbalance of osteogenic and adipogenic differentiation in the bone marrow mesenchymal stem cells (BMSCs). The imbalance of BMSCs differentiation fate will leading to bone loss and lipids accumulation. β-sitosterol, a naturally occurring phytosterol which is abundant in plants and has a similar structure to cholesterol, demonstrates diverse bioactivities, including lipid-lowering effect and osteogenesis-inducing effects. These effects indicate that β-sitosterol might have anti-OP effects. Nevertheless, the precise mechanism underlying β-sitosterol's anti-osteoporotic efficacy via modulating BMSCs differentiation fate remains obscure. PURPOSE This study endeavors to elucidate whether β-sitosterol has the potential to augment the osteogenic differentiation of BMSCs while mitigating their adipogenic differentiation, thereby exerting an anti-OP effect; and to reveal its molecular mechanisms of action. METHODS In this study, a dosage form HP-β-cyclodextrin-coated β-sitosterol was developed for intragastric administration in mice to enhancing its bioavailability. Subsequently by using an integrative approach encompassing bioinformatics, computer molecular simulations, high-throughput sequencing, and in vitro/vivo as well as in-tube experiments, we investigated the anti-osteoporotic and bone healing effects of β-sitosterol and delineated its underlying mechanisms. RESULTS Our findings demonstrate that β-sitosterol exhibits anti-osteoporotic and bone healing effects both in vitro and in vivo by modulating the osteogenic and adipogenic differentiation of BMSCs. Mechanistically, these effects are mediated through the direct inhibition of mTOR's kinase activity independent of mediating autophagy, leading to the suppression of the mTOR-IMP1-Adipoq axis in BMSCs. CONCLUSION These results unveil β-sitosterol as a promising therapeutic agent for OP, shedding light on its underlying mechanisms. This research contributes potential candidates for diagnostic and therapeutic interventions in the realm of OP.
Collapse
Affiliation(s)
- Hao Li
- Academy of Integrative Medicine, Dalian Medical University, Dalian, China; Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Ying Gong
- Department of Orthopaedics, the First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Yanna Wang
- Academy of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Wanyu Sang
- Academy of Integrative Medicine, Dalian Medical University, Dalian, China; Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Changyuan Wang
- Academy of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Yukun Zhang
- Three Gorges Medical College, Wanzhou, Chongqing, China
| | - Hanrui Zhang
- Academy of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Peixuan Liu
- Academy of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Mozhen Liu
- Department of Orthopaedics, the First Affiliated Hospital, Dalian Medical University, Dalian, China.
| | - Huijun Sun
- Academy of Integrative Medicine, Dalian Medical University, Dalian, China; Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China.
| |
Collapse
|
4
|
Yuan B, Peng H, Wang Y, Li J, Zhang Y, Chen Z, Li K, Tu C, Zhang K, Zhu X, Shen B, Nie Y, Zhang X. Micro/Nanobiomimetic Iron-Based Scaffold Induces Vascularized Bone Regeneration To Repair Large Segmental Bone Defect in Load-Bearing Sites. ACS NANO 2025; 19:6840-6857. [PMID: 39933996 DOI: 10.1021/acsnano.4c11960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
Biodegradable scaffolds, including metals, ceramics, and polymers, show great potential in bone tissue regeneration. However, current biodegradable scaffolds do not simultaneously possess suitable mechanical properties, biodegradability and osteoinductivity, which severely limits their clinical application for large segmental bone defect repair. Herein, we developed a biomimetic and hierarchically micro-nanoporous iron-based scaffold utilizing a synergistic approach combining 3-dimensional printing, surface dealloying treatment and electrochemical deposition. Compared to traditional periodic lattice structures, the biomimetic scaffold with a stochastic lattice structure promised superior stress transfer efficiency. Cell experiments revealed that the biomimetic scaffold notably enhanced osteogenesis and angiogenesis in vitro via EGFR-mediated Ras/Raf/MAPK signaling. Upon implantation in a rat femoral condyle defect model, the scaffold achieved a dynamic equilibrium between in vivo material degradation and bone formation. More importantly, the study conducted in a large animal model with an extended cycle of up to 1 year demonstrated that bionic iron-based scaffolds effectively facilitated the repair and functional reconstruction of large bone defects in load-bearing regions by inducing vascularized bone regeneration. This study not only introduces a potential solution for addressing critical-sized bone defects in load-bearing regions but also provides a viable approach for the design of other biomimetic biomaterials.
Collapse
Affiliation(s)
- Bo Yuan
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China
- College of Biomedical Engineering, Sichuan University, Chengdu 610064, P. R. China
| | - Huabei Peng
- College of Mechanical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Yitian Wang
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Jingming Li
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China
- College of Biomedical Engineering, Sichuan University, Chengdu 610064, P. R. China
| | - Yuqi Zhang
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Zhikun Chen
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China
- College of Biomedical Engineering, Sichuan University, Chengdu 610064, P. R. China
| | - Kang Li
- West China Biomedical Big Data Center, Sichuan University West China Hospital, Chengdu, Sichuan University, Chengdu 610041, P. R. China
| | - Chongqi Tu
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Kai Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China
- College of Biomedical Engineering, Sichuan University, Chengdu 610064, P. R. China
- Institute of Regulatory Science for Medical Device, Sichuan University, Chengdu 610064, P. R. China
| | - Xiangdong Zhu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China
- College of Biomedical Engineering, Sichuan University, Chengdu 610064, P. R. China
| | - Bin Shen
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Yong Nie
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China
- College of Biomedical Engineering, Sichuan University, Chengdu 610064, P. R. China
| |
Collapse
|
5
|
Ma X, Zhu X, Lv S, Yang C, Wang Z, Liao M, Zhou B, Zhang Y, Sun S, Chen P, Liu Z, Chen H. 3D bioprinting of prefabricated artificial skin with multicomponent hydrogel for skin and hair follicle regeneration. Theranostics 2025; 15:2933-2950. [PMID: 40083946 PMCID: PMC11898285 DOI: 10.7150/thno.104854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 01/27/2025] [Indexed: 03/16/2025] Open
Abstract
Background: The timely management of large-scale wounds and the regeneration of skin appendages constitute major clinical issues. The production of high-precision and customizable artificial skin via 3D bioprinting offers a feasible means to surmount the predicament, within which the selection of bioactive materials and seed cells is critical. This study is aimed at employing skin stem cells and multicomponent hydrogels to prefabricate artificial skin through 3D bioprinting, which enables the regeneration of skin and its appendages. Methods and Results: We employed gelatin methacrylate (GelMA) and hyaluronic acid methacrylate (HAMA) as bioactive materials, in conjunction with epidermal stem cells (Epi-SCs) and skin-derived precursors (SKPs), to fabricate artificial skin utilizing 3D bioprinting. The photosensitive multicomponent hydrogel, comprising 5% GelMA and 0.5% HAMA, demonstrated excellent printability, suitable solubility and swelling rates, as well as stable mechanical properties. Moreover, this hydrogel exhibited exceptional biocompatibility, effectively facilitating the proliferation of SKPs while maintaining the cellular characteristics of both SKPs and Epi-SCs. The transplantation of this artificial skin into cutaneous wounds in nude mice led to complete wound healing and functional tissue regeneration. The regenerated tissue comprised epidermis, dermis, hair follicles, blood vessels, and sebaceous glands, closely resembling native skin. Remarkably, the artificial skin demonstrated sustained tissue regeneration capacity even after 12 h of in vitro culture, facilitating comprehensive functional skin regeneration. Conclusions: Our research presented a skin repair strategy for prefabricated cell-loaded artificial skin, thereby successfully facilitating the regeneration of the epidermis, dermis, hair follicles, blood vessels, and sebaceous glands within the wound.
Collapse
Affiliation(s)
- Xiaoxiao Ma
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, People's Republic of China
- East China Institute of Digital Medical Engineering, Shangrao, 334000, People's Republic of China
| | - Xiaohui Zhu
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, People's Republic of China
- Peptide and Small Molecule Drug RD Platform, Furong laboratory, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
| | - Sheng Lv
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Chunyan Yang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Zihao Wang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Meilan Liao
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Bohao Zhou
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Yiming Zhang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Shiyu Sun
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Ping Chen
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Zhonghua Liu
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Haiyan Chen
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, People's Republic of China
- East China Institute of Digital Medical Engineering, Shangrao, 334000, People's Republic of China
- Peptide and Small Molecule Drug RD Platform, Furong laboratory, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
| |
Collapse
|
6
|
Na J, Tai C, Wang Z, Yang Z, Chen X, Zhang J, Zheng L, Fan Y. Stiff extracellular matrix drives the differentiation of mesenchymal stem cells toward osteogenesis by the multiscale 3D genome reorganization. Biomaterials 2025; 312:122715. [PMID: 39094522 DOI: 10.1016/j.biomaterials.2024.122715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/17/2024] [Accepted: 07/26/2024] [Indexed: 08/04/2024]
Abstract
Extracellular matrix (ECM) stiffness is a major driver of stem cell fate. However, the involvement of the three-dimensional (3D) genomic reorganization in response to ECM stiffness remains unclear. Here, we generated comprehensive 3D chromatin landscapes of mesenchymal stem cells (MSCs) exposed to various ECM stiffness. We found that there were more long-range chromatin interactions, but less compartment A in MSCs cultured on stiff ECM than those cultured on soft ECM. However, the switch from compartment B in MSCs cultured on soft ECM to compartment A in MSCs cultured on stiff ECM included genes encoding proteins primarily enriched in cytoskeleton organization. At the topologically associating domains (TADs) level, stiff ECM tends to have merged TADs on soft ECM. These merged TADs on stiff ECM include upregulated genes encoding proteins enriched in osteogenesis, such as SP1, ETS1, and DCHS1, which were validated by quantitative real-time polymerase chain reaction and found to be consistent with the increase of alkaline phosphatase staining. Knockdown of SP1 or ETS1 led to the downregulation of osteogenic marker genes, including COL1A1, RUNX2, ALP, and OCN in MSCs cultured on stiff ECM. Our study provides an important insight into the stiff ECM-mediated promotion of MSC differentiation towards osteogenesis, emphasizing the influence of mechanical cues on the reorganization of 3D genome architecture and stem cell fate.
Collapse
Affiliation(s)
- Jing Na
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Chengzheng Tai
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Ziyi Wang
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Zhijie Yang
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Xinyuan Chen
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Jing Zhang
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China; Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine, Beihang University, Beijing, 100083, China.
| | - Lisha Zheng
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China.
| | - Yubo Fan
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China.
| |
Collapse
|
7
|
Zhu L, Wang Y, Zhu Z, Yao X, Zhang R, Xia Y, Liu M. Selection of the Anti-Osteoporosis Active Ingredients of Fructus Psoraleae-Eucommia-Drynariae Rhizoma Based on Solid-Phase Bio-Cell Chromatography and HPLC-MS Analysis. Food Sci Nutr 2025; 13:e4604. [PMID: 39816481 PMCID: PMC11732702 DOI: 10.1002/fsn3.4604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 10/02/2024] [Accepted: 10/27/2024] [Indexed: 01/18/2025] Open
Abstract
Osteoporosis (OP) is a prevalent metabolic bone disease globally. Currently, the development of Traditional Chinese Medicine (TCM) resources to unblock joints, strengthen bones, and enhance muscle function to regulate anti-osteogenic and anabolic metabolism and thus reshape intraosseous homeostasis was an effective way to alleviate OP. The F-E-D formula, comprising Fructus Psoraleae, Eucommia, and Drynariae Rhizoma, has shown efficacy in treating OP. However, its complex natural components necessitate the screening and simplification of bioactive compounds to further elucidate their therapeutic mechanisms and enhance therapeutic efficacy. In this study, we first used drug-target binding to produce different effects, which in turn exhibited different retention characteristics on the stationary phase. Using osteoblasts and osteoclasts as stationary phases, a chromatographic system (Solid-phase Bio-cell Chromatography, SBC) had been constructed to mimic the drug-target interaction, and the separation, analysis, and bioactivity screening of the chemical components of F-E-D had been performed. Then, the above collected eluates were analyzed by fine metabolomics, and 95 effective metabolites were initially screened and combined with database screening to finally select betaine, L-fucose, and itaconic acid as potentially active candidate compound monomers for the interaction with osteoblast-osteoclast in F-E-D. In terms of cell validation experiments, we found that the screened active monomers significantly inhibited the formation of osteoclasts, and the itaconic acid-treated group played a significant inhibitory effect on the expression of inflammatory factors TNF-α and IL-6. The above experimental data showed that the monomeric active ingredients in TCM could be effectively screened by solid-phase bio-chromatography and HPLC-MS, and the in vitro cellular experiments verified that the active monomers of TCM slowed down the progression of OP by inhibiting osteoclast production and alleviating the expression of inflammation.
Collapse
Affiliation(s)
- Liming Zhu
- Department of Osteoporosis Care and ControlXiaoshan Affiliated Hospital of Wenzhou Medical UniversityZhejiangHangzhouChina
| | - Yeqing Wang
- Department of PharmacyXiaoshan Affiliated Hospital of Wenzhou Medical UniversityZhejiangHangzhouChina
| | - Zhongxin Zhu
- Department of Osteoporosis Care and ControlXiaoshan Affiliated Hospital of Wenzhou Medical UniversityZhejiangHangzhouChina
- Department of Clinical Research CenterXiaoshan Affiliated Hospital of Wenzhou Medical UniversityZhejiangHangzhouChina
| | - Xiaocong Yao
- Department of Osteoporosis Care and ControlXiaoshan Affiliated Hospital of Wenzhou Medical UniversityZhejiangHangzhouChina
| | - Ruijuan Zhang
- Department of Research and DevelopmentZhejiang Zhongwei Medical Research CenterZhejiangHangzhouChina
| | - Yujie Xia
- Department of Research and DevelopmentZhejiang Zhongwei Medical Research CenterZhejiangHangzhouChina
| | - Minbo Liu
- Department of Osteoporosis Care and ControlXiaoshan Affiliated Hospital of Wenzhou Medical UniversityZhejiangHangzhouChina
| |
Collapse
|
8
|
Zhang W, Rao Y, Wong SH, Wu Y, Zhang Y, Yang R, Tsui SK, Ker DFE, Mao C, Frith JE, Cao Q, Tuan RS, Wang DM. Transcriptome-Optimized Hydrogel Design of a Stem Cell Niche for Enhanced Tendon Regeneration. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2313722. [PMID: 39417770 PMCID: PMC11733723 DOI: 10.1002/adma.202313722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 09/04/2024] [Indexed: 10/19/2024]
Abstract
Bioactive hydrogels have emerged as promising artificial niches for enhancing stem cell-mediated tendon repair. However, a substantial knowledge gap remains regarding the optimal combination of niche features for targeted cellular responses, which often leads to lengthy development cycles and uncontrolled healing outcomes. To address this critical gap, an innovative, data-driven materiomics strategy is developed. This approach is based on in-house RNA-seq data that integrates bioinformatics and mathematical modeling, which is a significant departure from traditional trial-and-error methods. It aims to provide both mechanistic insights and quantitative assessments and predictions of the tenogenic effects of adipose-derived stem cells induced by systematically modulated features of a tendon-mimetic hydrogel (TenoGel). The knowledge generated has enabled a rational approach for TenoGel design, addressing key considerations, such as tendon extracellular matrix concentration, uniaxial tensile loading, and in vitro pre-conditioning duration. Remarkably, our optimized TenoGel demonstrated robust tenogenesis in vitro and facilitated tendon regeneration while preventing undesired ectopic ossification in a rat tendon injury model. These findings shed light on the importance of tailoring hydrogel features for efficient tendon repair. They also highlight the tremendous potential of the innovative materiomics strategy as a powerful predictive and assessment tool in biomaterial development for regenerative medicine.
Collapse
Affiliation(s)
- Wanqi Zhang
- School of Biomedical SciencesFaculty of MedicineThe Chinese University of Hong KongHong Kong SARChina
- Institute for Tissue Engineering and Regenerative MedicineThe Chinese University of Hong KongHong Kong SARChina
| | - Ying Rao
- School of Biomedical SciencesFaculty of MedicineThe Chinese University of Hong KongHong Kong SARChina
- Institute for Tissue Engineering and Regenerative MedicineThe Chinese University of Hong KongHong Kong SARChina
| | - Shing Hei Wong
- School of Biomedical SciencesFaculty of MedicineThe Chinese University of Hong KongHong Kong SARChina
- Hong Kong Bioinformatics CentreThe Chinese University of Hong KongHong Kong SARChina
| | - Yeung Wu
- School of Biomedical SciencesFaculty of MedicineThe Chinese University of Hong KongHong Kong SARChina
- Institute for Tissue Engineering and Regenerative MedicineThe Chinese University of Hong KongHong Kong SARChina
| | - Yuanhao Zhang
- School of Biomedical SciencesFaculty of MedicineThe Chinese University of Hong KongHong Kong SARChina
- Institute for Tissue Engineering and Regenerative MedicineThe Chinese University of Hong KongHong Kong SARChina
| | - Rui Yang
- Department of Sports MedicineOrthopedicsSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120China
| | - Stephen Kwok‐Wing Tsui
- School of Biomedical SciencesFaculty of MedicineThe Chinese University of Hong KongHong Kong SARChina
- Hong Kong Bioinformatics CentreThe Chinese University of Hong KongHong Kong SARChina
| | - Dai Fei Elmer Ker
- School of Biomedical SciencesFaculty of MedicineThe Chinese University of Hong KongHong Kong SARChina
- Institute for Tissue Engineering and Regenerative MedicineThe Chinese University of Hong KongHong Kong SARChina
- Department of Biomedical EngineeringThe Hong Kong Polytechnic UniversityHong Kong SARChina
- Center for Neuromusculoskeletal Restorative MedicineHong Kong Science ParkHong Kong SARChina
- Department of Orthopaedics and TraumatologyFaculty of MedicineThe Chinese University of Hong KongHong Kong SAR999077China
| | - Chuanbin Mao
- Department of Biomedical EngineeringThe Chinese University of Hong KongHong Kong SARChina
| | - Jessica E. Frith
- Materials Science and EngineeringMonash UniversityClayton3800VICAustralia
- Australian Regenerative Medicine InstituteMonash UniversityClayton3800VICAustralia
- Australian Research Council Training Centre for Cell and Tissue Engineering TechnologiesMonash UniversityClayton3800VICAustralia
| | - Qin Cao
- School of Biomedical SciencesFaculty of MedicineThe Chinese University of Hong KongHong Kong SARChina
- Hong Kong Bioinformatics CentreThe Chinese University of Hong KongHong Kong SARChina
| | - Rocky S. Tuan
- School of Biomedical SciencesFaculty of MedicineThe Chinese University of Hong KongHong Kong SARChina
- Institute for Tissue Engineering and Regenerative MedicineThe Chinese University of Hong KongHong Kong SARChina
- Center for Neuromusculoskeletal Restorative MedicineHong Kong Science ParkHong Kong SARChina
- Department of Orthopaedics and TraumatologyFaculty of MedicineThe Chinese University of Hong KongHong Kong SAR999077China
| | - Dan Michelle Wang
- School of Biomedical SciencesFaculty of MedicineThe Chinese University of Hong KongHong Kong SARChina
- Institute for Tissue Engineering and Regenerative MedicineThe Chinese University of Hong KongHong Kong SARChina
- Center for Neuromusculoskeletal Restorative MedicineHong Kong Science ParkHong Kong SARChina
- Department of Orthopaedics and TraumatologyFaculty of MedicineThe Chinese University of Hong KongHong Kong SAR999077China
| |
Collapse
|
9
|
Xin Q, Niu R, Chen Q, Liu D, Xu E. Stable cytoactivity of piscine satellite cells in rice bran-gelatin hydrogel scaffold of cultured meat. Int J Biol Macromol 2024; 277:134242. [PMID: 39084438 DOI: 10.1016/j.ijbiomac.2024.134242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 07/04/2024] [Accepted: 07/26/2024] [Indexed: 08/02/2024]
Abstract
In order to achieve high cell adhesion and growth efficiency on scaffolds for cultured meat, animal materials, especially gelatin, are necessary though the disadvantages of weak mechanical properties and poor stability of their hydrogel scaffolds are present during cell cultivation. Here, we use rice bran as a kind of filling and supporting materials to develop a composite scaffold with gelatin for fish cell cultivation, where rice bran is also inexpensive from high yield fibrous agricultural by-product. The rice bran (with a proportion of 1, 3, 5, 7, 10 to 3 of gelatin) could evenly distributed in the three-dimensional network composed of gelatin hydrogel. It contributed to delaying swelling and degradation rates, fixing water and improving elastic modulus. It is important that rice bran-gelatin hydrogel scaffolds (especially the hydrogel with 70 % rice bran, db) promoted piscine satellite cells (PSCs) proliferation effectively compared to the pure gelatin hydrogel, and the former could also support the differentiation of PSCs. Overall, this work showed a positive promotion to explore new source of scaffold materials like agricultural by-product for reducing the cost of cell cultured meat production.
Collapse
Affiliation(s)
- Qipu Xin
- College of Biosystems Engineering and Food Science, National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Ruihao Niu
- College of Biosystems Engineering and Food Science, National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Qihe Chen
- College of Biosystems Engineering and Food Science, National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314102, China
| | - Donghong Liu
- College of Biosystems Engineering and Food Science, National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314102, China.
| | - Enbo Xu
- College of Biosystems Engineering and Food Science, National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314102, China.
| |
Collapse
|
10
|
Mierke CT. Bioprinting of Cells, Organoids and Organs-on-a-Chip Together with Hydrogels Improves Structural and Mechanical Cues. Cells 2024; 13:1638. [PMID: 39404401 PMCID: PMC11476109 DOI: 10.3390/cells13191638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/25/2024] [Accepted: 10/01/2024] [Indexed: 10/19/2024] Open
Abstract
The 3D bioprinting technique has made enormous progress in tissue engineering, regenerative medicine and research into diseases such as cancer. Apart from individual cells, a collection of cells, such as organoids, can be printed in combination with various hydrogels. It can be hypothesized that 3D bioprinting will even become a promising tool for mechanobiological analyses of cells, organoids and their matrix environments in highly defined and precisely structured 3D environments, in which the mechanical properties of the cell environment can be individually adjusted. Mechanical obstacles or bead markers can be integrated into bioprinted samples to analyze mechanical deformations and forces within these bioprinted constructs, such as 3D organoids, and to perform biophysical analysis in complex 3D systems, which are still not standard techniques. The review highlights the advances of 3D and 4D printing technologies in integrating mechanobiological cues so that the next step will be a detailed analysis of key future biophysical research directions in organoid generation for the development of disease model systems, tissue regeneration and drug testing from a biophysical perspective. Finally, the review highlights the combination of bioprinted hydrogels, such as pure natural or synthetic hydrogels and mixtures, with organoids, organoid-cell co-cultures, organ-on-a-chip systems and organoid-organ-on-a chip combinations and introduces the use of assembloids to determine the mutual interactions of different cell types and cell-matrix interferences in specific biological and mechanical environments.
Collapse
Affiliation(s)
- Claudia Tanja Mierke
- Faculty of Physics and Earth System Science, Peter Debye Institute of Soft Matter Physics, Biological Physics Division, Leipzig University, 04103 Leipzig, Germany
| |
Collapse
|
11
|
Li B, Hu P, Liu K, Xu W, Wang J, Li Q, Chen B, Deng Y, Han C, Sun T, Liu X, Li M, Wang T, Liu J, Lin H, Rao K. MiRNA-100 ameliorates diabetes mellitus-induced erectile dysfunction by modulating autophagy, anti-inflammatory, and antifibrotic effects. Andrology 2024; 12:1280-1293. [PMID: 38227138 DOI: 10.1111/andr.13586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/12/2023] [Accepted: 12/12/2023] [Indexed: 01/17/2024]
Abstract
BACKGROUND Diabetes mellitus-induced erectile dysfunction (DMED) has become a common disease in adult men that can seriously reduce the quality of life of patients, and new therapies are urgently needed. miRNA-100 has many targets and can induce autophagy and reduce fibrosis by inhibiting the mTOR pathway and the TGF-β pathway. However, no research has been conducted with miR-100 in the field of DMED, and the specific mechanism of action is still unclear. OBJECTIVES To ascertain the effects of miR-100 on corpus cavernosum tissue of DMED rats and vascular endothelial cells in a high glucose environment and to elucidate the relevant mechanisms in autophagy, fibrosis and inflammation to find a new approach for the DMED therapy. METHODS Thirty rats were divided into three groups: the control group, the DMED group, and the DMED + miR-100 group. Using intraperitoneal injections of streptozotocin, all rats except the control group were modeled with diabetes mellitus, which was verified using the apomorphine (APO) test. For rats in the DMED + miR-100 group, rno-miR-100-5p agomir (50 nmol/kg, every 2 days, 6 times in total) was injected via the tail vein. After 13 weeks, the erectile function of each rat was assessed using cavernous manometry, and the corpus cavernosum tissue was harvested for subsequent experiments. For cellular experiments, human coronary microartery endothelial cells (HCMEC) were divided into four groups: the control group, the high-glucose (HG, 40 mM) group, the HG + mimic group, and the HG + inhibitor group. The cells were cultured for 6 days and collected for subsequent experiments 2 days after transfection. RESULTS Diabetic modeling impaired the erectile function in rats, and miR-100 reversed this effect. By measuring autophagy-related proteins such as mTOR/Raptor/Beclin1/p62/LC3B, we found that miR-100 could suppress the expression of mTOR and induce autophagy. The analysis of the eNOS/NO/cGMP axis function indicated that impaired endothelial function was improved by miR-100. By evaluating the TGF-β1/CTGF/Smad2/3 and NF-κB/TNF-α pathways, we found that miR-100 could lower the level of inflammation and fibrosis, which contributed to the improvement of the erectile function. Cellular experiments can be used as supporting evidence for these findings. CONCLUSION MiR-100 can improve the erectile function by inhibiting mTOR and thus inducing autophagy, improving the endothelial function through the eNOS/NO/cGMP axis, and exerting antifibrotic and anti-inflammatory effects, which may provide new ideas and directions for the treatment of DMED.
Collapse
Affiliation(s)
- Beining Li
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peng Hu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kang Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenchao Xu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiaxin Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qinyu Li
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bingliang Chen
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuxuan Deng
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chenglin Han
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Taotao Sun
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinqi Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mingchao Li
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jihong Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huang Lin
- Department of Urology, Fujian Provincial Hospital, Fuzhou, China
- Department of Urology, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Ke Rao
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
12
|
Shrestha S, Tieu T, Wojnilowicz M, Voelcker NH, Forsythe JS, Frith JE. Delivery of miRNAs Using Porous Silicon Nanoparticles Incorporated into 3D Hydrogels Enhances MSC Osteogenesis by Modulation of Fatty Acid Signaling and Silicon Degradation. Adv Healthc Mater 2024; 13:e2400171. [PMID: 38657207 DOI: 10.1002/adhm.202400171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/10/2024] [Indexed: 04/26/2024]
Abstract
Strategies incorporating mesenchymal stromal cells (MSC), hydrogels and osteoinductive signals offer promise for bone repair. Osteoinductive signals such as growth factors face challenges in clinical translation due to their high cost, low stability and immunogenicity leading to interest in microRNAs as a simple, inexpensive and powerful alternative. The selection of appropriate miRNA candidates and their efficient delivery must be optimised to make this a reality. This study evaluated pro-osteogenic miRNAs and used porous silicon nanoparticles modified with polyamidoamine dendrimers (PAMAM-pSiNP) to deliver these to MSC encapsulated within gelatin-PEG hydrogels. miR-29b-3p, miR-101-3p and miR-125b-5p are strongly pro-osteogenic and are shown to target FASN and ELOVL4 in the fatty acid biosynthesis pathway to modulate MSC osteogenesis. Hydrogel delivery of miRNA:PAMAM-pSiNP complexes enhanced transfection compared to 2D. The osteogenic potential of hBMSC in hydrogels with miR125b:PAMAM-pSiNP complexes is evaluated. Importantly, a dual-effect on osteogenesis occurred, with miRNAs increasing expression of alkaline phosphatase (ALP) and Runt-related transcription factor 2 (RUNX2) whilst the pSiNPs enhanced mineralisation, likely via degradation into silicic acid. Overall, this work presents insights into the role of miRNAs and fatty acid signalling in osteogenesis, providing future targets to improve bone formation and a promising system to enhance bone tissue engineering.
Collapse
Affiliation(s)
- Surakshya Shrestha
- Department of Materials Science and Engineering, Monash University, Clayton, VIC, 3800, Australia
| | - Terence Tieu
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, VIC, 3168, Australia
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Manufacturing, Bayview Avenue, Clayton, VIC, 3168, Australia
| | - Marcin Wojnilowicz
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Manufacturing, Bayview Avenue, Clayton, VIC, 3168, Australia
| | - Nicolas H Voelcker
- Department of Materials Science and Engineering, Monash University, Clayton, VIC, 3800, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, VIC, 3168, Australia
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Manufacturing, Bayview Avenue, Clayton, VIC, 3168, Australia
- ARC Training Centre for Cell and Tissue Engineering Technologies, Monash University, Clayton, VIC, 3800, Australia
| | - John S Forsythe
- Department of Materials Science and Engineering, Monash University, Clayton, VIC, 3800, Australia
- ARC Training Centre for Cell and Tissue Engineering Technologies, Monash University, Clayton, VIC, 3800, Australia
| | - Jessica E Frith
- Department of Materials Science and Engineering, Monash University, Clayton, VIC, 3800, Australia
- ARC Training Centre for Cell and Tissue Engineering Technologies, Monash University, Clayton, VIC, 3800, Australia
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, 3800, Australia
| |
Collapse
|
13
|
Ma H, Zhang T. Histone demethylase KDM3B mediates matrix stiffness-induced osteogenic differentiation of adipose-derived stem cells. Arch Biochem Biophys 2024; 757:110028. [PMID: 38768746 DOI: 10.1016/j.abb.2024.110028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 04/29/2024] [Accepted: 05/07/2024] [Indexed: 05/22/2024]
Abstract
Biomechanical signals in the extracellular niche are considered promising for programming the lineage specification of stem cells. Recent studies have reported that biomechanics, such as the microstructure of nanomaterials, can induce adipose-derived stem cells (ASCs) to differentiate into osteoblasts, mediating gene regulation at the epigenetic level. Therefore, in this study, transcriptome expression levels of histone demethylases in ASCs were screened after treatment with different matrix stiffnesses, and histone lysine demethylase 3B (KDM3B) was found to promote osteogenic differentiation of ASCs in response to matrix stiffness, indicating a positive modulatory effect on this biological process. ASCs exhibited widespread and polygonal shapes with a distinct bundle-like expression of vinculin parallel to the axial cytoskeleton along the cell margins on the stiff matrix rather than round shapes with a smeared and shorter expression on the soft matrix. Comparatively rigid polydimethylsiloxane material directed ASCs into an osteogenic phenotype in inductive culture media via the upregulation of osteocalcin, alkaline phosphatase, and runt-related transcription factor 2. Treatment with KDM3B-siRNA decreased the expression of osteogenic differentiation markers and impaired mitochondrial dynamics and mitochondrial membrane potential. These results illustrate the critical role of KDM3B in the biomechanics-induced osteogenic commitment of ASCs and provide new avenues for the further application of stem cells as potential therapeutics for bone regeneration.
Collapse
Affiliation(s)
- Huangshui Ma
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China.
| | - Tao Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China.
| |
Collapse
|
14
|
Liu H, Chen Y, Huang Y, Wei L, Ran J, Li Q, Tian Y, Luo Z, Yang L, Liu H, Yin G, Xie Q. Macrophage-derived mir-100-5p orchestrates synovial proliferation and inflammation in rheumatoid arthritis through mTOR signaling. J Nanobiotechnology 2024; 22:197. [PMID: 38644475 PMCID: PMC11034106 DOI: 10.1186/s12951-024-02444-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 03/28/2024] [Indexed: 04/23/2024] Open
Abstract
BACKGROUND Rheumatoid arthritis (RA) is a chronic autoimmune disorder characterized by synovial inflammation, causing substantial disability and reducing life quality. While macrophages are widely appreciated as a master regulator in the inflammatory response of RA, the precise mechanisms underlying the regulation of proliferation and inflammation in RA-derived fibroblast-like synoviocytes (RA-FLS) remain elusive. Here, we provide extensive evidence to demonstrate that macrophage contributes to RA microenvironment remodeling by extracellular vesicles (sEVs) and downstream miR-100-5p/ mammalian target of rapamycin (mTOR) axis. RESULTS We showed that bone marrow derived macrophage (BMDM) derived-sEVs (BMDM-sEVs) from collagen-induced arthritis (CIA) mice (cBMDM-sEVs) exhibited a notable increase in abundance compared with BMDM-sEVs from normal mice (nBMDM-sEVs). cBMDM-sEVs induced significant RA-FLS proliferation and potent inflammatory responses. Mechanistically, decreased levels of miR-100-5p were detected in cBMDM-sEVs compared with nBMDM-sEVs. miR-100-5p overexpression ameliorated RA-FLS proliferation and inflammation by targeting the mTOR pathway. Partial attenuation of the inflammatory effects induced by cBMDM-sEVs on RA-FLS was achieved through the introduction of an overexpression of miR-100-5p. CONCLUSIONS Our work reveals the critical role of macrophages in exacerbating RA by facilitating the transfer of miR-100-5p-deficient sEVs to RA-FLS, and sheds light on novel disease mechanisms and provides potential therapeutic targets for RA interventions.
Collapse
Affiliation(s)
- Huan Liu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yuehong Chen
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yupeng Huang
- Department of General Practice, West China Hospital, General Practice Medical Center, Sichuan University, Chengdu, 610041, China
| | - Ling Wei
- Hospital of Chengdu Office of People's Government of Tibetan Autonomous region, Chengdu, 610041, China
| | - Jingjing Ran
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qianwei Li
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yunru Tian
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhongling Luo
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Leiyi Yang
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hongjiang Liu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Geng Yin
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Department of General Practice, West China Hospital, General Practice Medical Center, Sichuan University, Chengdu, 610041, China.
| | - Qibing Xie
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
15
|
Li S, Rong Q, Zhou Y, Che Y, Ye Z, Liu J, Wang J, Zhou M. Osteogenically committed hUCMSCs-derived exosomes promote the recovery of critical-sized bone defects with enhanced osteogenic properties. APL Bioeng 2024; 8:016107. [PMID: 38327715 PMCID: PMC10849773 DOI: 10.1063/5.0159740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 12/18/2023] [Indexed: 02/09/2024] Open
Abstract
Low viability of seed cells and the concern about biosafety restrict the application of cell-based tissue-engineered bone (TEB). Exosomes that bear similar bioactivities to donor cells display strong stability and low immunogenicity. Human umbilical cord mesenchymal stem cells-derived exosomes (hUCMSCs-Exos) show therapeutic efficacy in various diseases. However, little is known whether hUCMSCs-Exos can be used to construct TEB to repair bone defects. Herein, PM-Exos and OM-Exos were separately harvested from hUCMSCs which were cultured in proliferation medium (PM) or osteogenic induction medium (OM). A series of in-vitro studies were performed to evaluate the bioactivities of human bone marrow mesenchymal stem cells (hBMSCs) when co-cultured with PM-Exos or OM-Exos. Differential microRNAs (miRNAs) between PM-Exos and OM-Exos were sequenced and analyzed. Furthermore, PM-Exos and OM-Exos were incorporated in 3D printed tricalcium phosphate scaffolds to build TEBs for the repair of critical-sized calvarial bone defects in rats. Results showed that PM-Exos and OM-Exos bore similar morphology and size. They expressed representative surface markers of exosomes and could be internalized by hBMSCs to promote cellular migration and proliferation. OM-Exos outweighed PM-Exos in accelerating the osteogenic differentiation of hBMSCs, which might be attributed to the differentially expressed miRNAs. Furthermore, OM-Exos sustainably released from the scaffolds, and the resultant TEB showed a better reparative outcome than that of the PM-Exos group. Our study found that exosomes isolated from osteogenically committed hUCMSCs prominently facilitated the osteogenic differentiation of hBMSCs. TEB grafts functionalized by OM-Exos bear a promising application potential for the repair of large bone defects.
Collapse
Affiliation(s)
| | | | | | - Yuejuan Che
- Department of Anesthesia, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Ziming Ye
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou 510182, China
| | - Junfang Liu
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou 510182, China
| | - Jinheng Wang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Miao Zhou
- Author to whom correspondence should be addressed:. Tel/Fax: +86 020 33976070
| |
Collapse
|
16
|
Huang H, Li J, Wang C, Xing L, Cao H, Wang C, Leung CY, Li Z, Xi Y, Tian H, Li F, Sun D. Using Decellularized Magnetic Microrobots to Deliver Functional Cells for Cartilage Regeneration. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304088. [PMID: 37939310 DOI: 10.1002/smll.202304088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 09/25/2023] [Indexed: 11/10/2023]
Abstract
The use of natural cartilage extracellular matrix (ECM) has gained widespread attention in the field of cartilage tissue engineering. However, current approaches for delivering functional scaffolds for osteoarthritis (OA) therapy rely on knee surgery, which is limited by the narrow and complex structure of the articular cavity and carries the risk of injuring surrounding tissues. This work introduces a novel cell microcarrier, magnetized cartilage ECM-derived scaffolds (M-CEDSs), which are derived from decellularized natural porcine cartilage ECM. Human bone marrow mesenchymal stem cells are selected for their therapeutic potential in OA treatments. Owing to their natural composition, M-CEDSs have a biomechanical environment similar to that of human cartilage and can efficiently load functional cells while maintaining high mobility. The cells are released spontaneously at a target location for at least 20 days. Furthermore, cell-seeded M-CEDSs show better knee joint function recovery than control groups 3 weeks after surgery in preclinical experiments, and ex vivo experiments reveal that M-CEDSs can rapidly aggregate inside tissue samples. This work demonstrates the use of decellularized microrobots for cell delivery and their in vivo therapeutic effects in preclinical tests.
Collapse
Affiliation(s)
- Hanjin Huang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Junyang Li
- Department of Electronic Engineering, Ocean University of China, Qingdao, 266100, China
| | - Cheng Wang
- Beijing Key Laboratory of Spinal Disease Research, Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Department of Orthopaedics, Peking University Third Hospital, Beijing, 100191, China
| | - Liuxi Xing
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Hui Cao
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Chang Wang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Chung Yan Leung
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Zongze Li
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Yue Xi
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Hua Tian
- Beijing Key Laboratory of Spinal Disease Research, Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Department of Orthopaedics, Peking University Third Hospital, Beijing, 100191, China
| | - Feng Li
- Beijing Key Laboratory of Spinal Disease Research, Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Department of Orthopaedics, Peking University Third Hospital, Beijing, 100191, China
| | - Dong Sun
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
| |
Collapse
|
17
|
Göransson S, Strömblad S. Regulation of protein synthesis and stability by mechanical cues and its implications in cancer. Curr Opin Cell Biol 2024; 86:102304. [PMID: 38113713 DOI: 10.1016/j.ceb.2023.102304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/07/2023] [Accepted: 11/26/2023] [Indexed: 12/21/2023]
Abstract
Elevated tissue stiffness is a common feature of many solid tumors and the downstream mechanical signaling affects many cellular processes and contributes to cancer progression. Significant progress has been made in understanding how the mechanical properties of the matrix affect cancer cell behavior as well as transcription. However, how the same mechanical cues impact protein synthesis and stability and how this may contribute to disease is less well understood. Here, we present emerging evidence that cancer progression is frequently supported by gene regulation acting beyond the mRNA level and highlight some of the known crosstalk between this type of regulation and mechanotransduction in cancer as well as in other contexts. We suggest that future systematic approaches to define mechanosensitive translatomes and proteomes and how these are controlled may provide novel targets for cancer therapy.
Collapse
Affiliation(s)
- Sara Göransson
- Department of Biosciences and Nutrition, Karolinska Institutet, SE-141 83 Huddinge, Sweden
| | - Staffan Strömblad
- Department of Biosciences and Nutrition, Karolinska Institutet, SE-141 83 Huddinge, Sweden.
| |
Collapse
|
18
|
Lotfimehr H, Mardi N, Narimani S, Nasrabadi HT, Karimipour M, Sokullu E, Rahbarghazi R. mTOR signalling pathway in stem cell bioactivities and angiogenesis potential. Cell Prolif 2023; 56:e13499. [PMID: 37156724 PMCID: PMC10693190 DOI: 10.1111/cpr.13499] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/14/2023] [Accepted: 04/26/2023] [Indexed: 05/10/2023] Open
Abstract
The mammalian target of rapamycin (mTOR) is a protein kinase that responds to different stimuli such as stresses, starvation and hypoxic conditions. The modulation of this effector can lead to the alteration of cell dynamic growth, proliferation, basal metabolism and other bioactivities. Considering this fact, the mTOR pathway is believed to regulate the diverse functions in several cell lineages. Due to the pleiotropic effects of the mTOR, we here, hypothesize that this effector can also regulate the bioactivity of stem cells in response to external stimuli pathways under physiological and pathological conditions. As a correlation, we aimed to highlight the close relationship between the mTOR signalling axis and the regenerative potential of stem cells in a different milieu. The relevant publications were included in this study using electronic searches of the PubMed database from inception to February 2023. We noted that the mTOR signalling cascade can affect different stem cell bioactivities, especially angiogenesis under physiological and pathological conditions. Modulation of mTOR signalling pathways is thought of as an effective strategy to modulate the angiogenic properties of stem cells.
Collapse
Affiliation(s)
- Hamid Lotfimehr
- Stem Cell Research CenterTabriz University of Medical SciencesTabrizIran
- Department of Applied Cell Sciences, Faculty of Advanced Medical SciencesTabriz University of Medical SciencesTabrizIran
| | - Narges Mardi
- Student Research CommitteeTabriz University of Medical SciencesTabrizIran
| | - Samaneh Narimani
- Department of Applied Cell Sciences, Faculty of Advanced Medical SciencesTabriz University of Medical SciencesTabrizIran
| | - Hamid Tayefi Nasrabadi
- Stem Cell Research CenterTabriz University of Medical SciencesTabrizIran
- Department of Applied Cell Sciences, Faculty of Advanced Medical SciencesTabriz University of Medical SciencesTabrizIran
| | - Mohammad Karimipour
- Department of Applied Cell Sciences, Faculty of Advanced Medical SciencesTabriz University of Medical SciencesTabrizIran
| | - Emel Sokullu
- Koç University Research Center for Translational Medicine (KUTTAM)IstanbulTurkey
| | - Reza Rahbarghazi
- Stem Cell Research CenterTabriz University of Medical SciencesTabrizIran
- Department of Applied Cell Sciences, Faculty of Advanced Medical SciencesTabriz University of Medical SciencesTabrizIran
| |
Collapse
|
19
|
Nguyen TPT, Li F, Hung B, Truong VX, Thissen H, Forsythe JS, Frith JE. Cell Microencapsulation within Gelatin-PEG Microgels Using a Simple Pipet Tip-Based Device. ACS Biomater Sci Eng 2023; 9:6024-6033. [PMID: 37788301 DOI: 10.1021/acsbiomaterials.3c00676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Microgels are microscale particles of hydrogel that can be laden with cells and used to create macroporous tissue constructs. Their ability to support cell-ECM and cell-cell interactions, along with the high levels of nutrient and metabolite exchange facilitated by their high surface area-to-volume ratio, means that they are attracting increasing attention for a variety of tissue regeneration applications. Here, we present methods for fabricating and modifying the structure of microfluidic devices using commonly available laboratory consumables including pipet tips and PTFE and silicon tubing to produce microgels. Different microfluidic devices realized the controlled generation of a wide size range (130-800 μm) of microgels for cell encapsulation. Subsequently, we describe the process of encapsulating mesenchymal stromal cells in microgels formed by photo-cross-linking of gelatin-norbornene and PEG dithiol. The introduced pipet-based chip offers simplicity, tunability, and versatility, making it easily assembled in most laboratories to effectively produce cell-laden microgels for various applications in tissue engineering.
Collapse
Affiliation(s)
- Thuy P T Nguyen
- Department Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Fanyi Li
- CSIRO Manufacturing, Research Way, Clayton, Victoria 3168, Australia
| | - Brendan Hung
- Department Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Vinh Xuan Truong
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore
| | - Helmut Thissen
- CSIRO Manufacturing, Research Way, Clayton, Victoria 3168, Australia
| | - John S Forsythe
- Department Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
- Australian Research Council Training Centre for Cell and Tissue Engineering Technologies, Monash University, Clayton, Victoria 3800, Australia
| | - Jessica E Frith
- Department Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
- Australian Research Council Training Centre for Cell and Tissue Engineering Technologies, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
20
|
Jiang T, Tang XY, Mao Y, Zhou YQ, Wang JJ, Li RM, Xie XR, Zhang HM, Fang B, Ouyang NJ, Tang GH. Matrix mechanics regulate the polarization state of bone marrow-derived neutrophils through the JAK1/STAT3 signaling pathway. Acta Biomater 2023; 168:159-173. [PMID: 37467837 DOI: 10.1016/j.actbio.2023.07.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 07/11/2023] [Accepted: 07/11/2023] [Indexed: 07/21/2023]
Abstract
Matrix mechanics regulate essential cell behaviors through mechanotransduction, and as one of its most important elements, substrate stiffness was reported to regulate cell functions such as viability, communication, migration, and differentiation. Neutrophils (Neus) predominate the early inflammatory response and initiate regeneration. The activation of Neus can be regulated by physical cues; however, the functional alterations of Neus by substrate stiffness remain unknown, which is critical in determining the outcomes of engineered tissue mimics. Herein, a three-dimensional (3D) culture system made of hydrogels was developed to explore the effects of varying stiffnesses (1.5, 2.6, and 5.7 kPa) on the states of Neus. Neus showed better cell integrity and viability in the 3D system. Moreover, it was shown that the stiffer matrix tended to induce Neus toward an anti-inflammatory phenotype (N2) with less adhesion molecule expression, less reactive oxygen species (ROS) production, and more anti-inflammatory cytokine secretion. Additionally, the aortic ring assay indicated that Neus cultured in a stiffer matrix significantly increased vascular sprouting. RNA sequencing showed that a stiffer matrix could significantly activate JAK1/STAT3 signaling in Neus and the inhibition of JAK1 ablated the stiffness-dependent increase in the expression of CD182 (an N2 marker). Taken together, these results demonstrate that a stiffer matrix promotes Neus to shift to the N2 phenotype, which was regulated by JAK1/STAT3 pathway. This study lays the groundwork for further research on fabricating engineered tissue mimics, which may provide more treatment options for ischemic diseases and bone defects. STATEMENT OF SIGNIFICANCE.
Collapse
Affiliation(s)
- Ting Jiang
- Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology, Shanghai 200011, PR China; Oral Bioengineering Lab, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai 200011, PR China
| | - Xin-Yue Tang
- Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology, Shanghai 200011, PR China; Oral Bioengineering Lab, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai 200011, PR China
| | - Yi Mao
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology, Shanghai 200011, PR China; Oral Bioengineering Lab, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai 200011, PR China
| | - Yu-Qi Zhou
- Oral Bioengineering Lab, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai 200011, PR China
| | - Jia-Jia Wang
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology, Shanghai 200011, PR China; Oral Bioengineering Lab, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai 200011, PR China
| | - Ruo-Mei Li
- Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology, Shanghai 200011, PR China; Oral Bioengineering Lab, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai 200011, PR China
| | - Xin-Ru Xie
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology, Shanghai 200011, PR China; Oral Bioengineering Lab, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai 200011, PR China
| | - Hong-Ming Zhang
- Oral Bioengineering Lab, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai 200011, PR China
| | - Bing Fang
- Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology, Shanghai 200011, PR China; Oral Bioengineering Lab, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai 200011, PR China.
| | - Ning-Juan Ouyang
- Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology, Shanghai 200011, PR China.
| | - Guo-Hua Tang
- Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology, Shanghai 200011, PR China; Oral Bioengineering Lab, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai 200011, PR China.
| |
Collapse
|
21
|
Vilar A, Hodgson-Garms M, Kusuma GD, Donderwinkel I, Carthew J, Tan JL, Lim R, Frith JE. Substrate mechanical properties bias MSC paracrine activity and therapeutic potential. Acta Biomater 2023; 168:144-158. [PMID: 37422008 DOI: 10.1016/j.actbio.2023.06.041] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 06/14/2023] [Accepted: 06/27/2023] [Indexed: 07/10/2023]
Abstract
Mesenchymal stromal cells (MSCs) have significant therapeutic potential due to their ability to differentiate into musculoskeletal lineages suitable for tissue-engineering, as well as the immunomodulatory and pro-regenerative effects of the paracrine factors that these cells secrete. Cues from the extracellular environment, including physical stimuli such as substrate stiffness, are strong drivers of MSC differentiation, but their effects upon MSC paracrine activity are not well understood. This study, therefore sought to determine the impact of substrate stiffness on the paracrine activity of MSCs, analysing both effects on MSC fate and their effect on T-cell and macrophage activity and angiogenesis. The data show that conditioned medium (CM) from MSCs cultured on 0.2 kPa (soft) and 100 kPa (stiff) polyacrylamide hydrogels have differing effects on MSC proliferation and differentiation, with stiff CM promoting proliferation whilst soft CM promoted differentiation. There were also differences in the effects upon macrophage phagocytosis and angiogenesis, with the most beneficial effects from soft CM. Analysis of the media composition identified differences in the levels of proteins including IL-6, OPG, and TIMP-2. Using recombinant proteins and blocking antibodies, we confirmed a role for OPG in modulating MSC proliferation with a complex combination of factors involved in the regulation of MSC differentiation. Together the data confirm that the physical microenvironment has an important influence on the MSC secretome and that this can alter the differentiation and regenerative potential of the cells. These findings can be used to tailor the culture environment for manufacturing potent MSCs for specific clinical applications or to inform the design of biomaterials that enable the retention of MSC activity after delivery into the body. STATEMENT OF SIGNIFICANCE: • MSCs cultured on 100 kPa matrices produce a secretome that boosts MSC proliferation • MSCs cultured on 0.2 kPa matrices produce a secretome that promotes MSC osteogenesis and adipogenesis, as well as angiogenesis and macrophage phagocytosis • IL-6 secretion is elevated in MSCs on 0.2 kPa substrates • OPG, TIMP-2, MCP-1, and sTNFR1 secretion are elevated in MSCs on 100 kPa substrates.
Collapse
Affiliation(s)
- Aeolus Vilar
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia; ARC Training Centre for Cell and Tissue Engineering Technologies, Monash University, Clayton, Victoria 3800, Australia
| | - Margeaux Hodgson-Garms
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Gina D Kusuma
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Ilze Donderwinkel
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - James Carthew
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Jean L Tan
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria 3800, Australia; Department of Obstetrics and Gynecology, Monash University, Clayton, Victoria 3800, Australia
| | - Rebecca Lim
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria 3800, Australia; Department of Obstetrics and Gynecology, Monash University, Clayton, Victoria 3800, Australia; Australian Regenerative Medicine Institute, Monash University, Clayton, Australia
| | - Jessica E Frith
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia; Australian Regenerative Medicine Institute, Monash University, Clayton, Australia; ARC Training Centre for Cell and Tissue Engineering Technologies, Monash University, Clayton, Victoria 3800, Australia.
| |
Collapse
|
22
|
Sloas DC, Tran JC, Marzilli AM, Ngo JT. Tension-tuned receptors for synthetic mechanotransduction and intercellular force detection. Nat Biotechnol 2023; 41:1287-1295. [PMID: 36646932 PMCID: PMC10499187 DOI: 10.1038/s41587-022-01638-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 12/08/2022] [Indexed: 01/18/2023]
Abstract
Cells interpret mechanical stimuli from their environments and neighbors, but the ability to engineer customized mechanosensing capabilities has remained a synthetic and mechanobiology challenge. Here we introduce tension-tuned synthetic Notch (SynNotch) receptors to convert extracellular and intercellular forces into specifiable gene expression changes. By elevating the tension requirements of SynNotch activation, in combination with structure-guided mutagenesis, we designed a set of receptors with mechanical sensitivities spanning the physiologically relevant picoNewton range. Cells expressing these receptors can distinguish between varying tensile forces and respond by enacting customizable transcriptional programs. We applied these tools to design a decision-making circuit, through which fibroblasts differentiate into myoblasts upon stimulation with distinct tension magnitudes. We also characterize cell-generated forces transmitted between cells during Notch signaling. Overall, this work provides insight into how mechanically induced changes in protein structure can be used to transduce physical forces into biochemical signals. The system should facilitate the further programming and dissection of force-related phenomena in biological systems.
Collapse
Affiliation(s)
- D Christopher Sloas
- Department of Biomedical Engineering and Biological Design Center, Boston University, Boston, MA, USA
| | - Jeremy C Tran
- Department of Biomedical Engineering and Biological Design Center, Boston University, Boston, MA, USA
| | - Alexander M Marzilli
- Department of Biomedical Engineering and Biological Design Center, Boston University, Boston, MA, USA
| | - John T Ngo
- Department of Biomedical Engineering and Biological Design Center, Boston University, Boston, MA, USA.
| |
Collapse
|
23
|
Yao S, Zhu Q, Zhang Q, Cai Y, Liu S, Pang L, Jing Y, Yin X, Cheng H. Managing Cancer and Living Meaningfully (CALM) alleviates chemotherapy related cognitive impairment (CRCI) in breast cancer survivors: A pilot study based on resting-state fMRI. Cancer Med 2023; 12:16231-16242. [PMID: 37409628 PMCID: PMC10469649 DOI: 10.1002/cam4.6285] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 07/07/2023] Open
Abstract
BACKGROUND Chemotherapy related cognitive impairment (CRCI) is a type of memory and cognitive impairment induced by chemotherapy and has become a growing clinical problem. Breast cancer survivors (BCs) refer to patients from the moment of breast cancer diagnosis to the end of their lives. Managing Cancer and Living Meaningfully (CALM) is a convenient and easy-to-apply psychological intervention that has been proven to improve quality of life and alleviate CRCI in BCs. However, the underlying neurobiological mechanisms remain unclear. Resting-state functional magnetic resonance imaging (rs-fMRI) has become an effective method for understanding the neurobiological mechanisms of brain networks in CRCI. The fractional amplitude of low-frequency fluctuations (fALFF) and ALFF have often been used in analyzing the power and intensity of spontaneous regional resting state neural activity. METHODS The recruited BCs were randomly divided into the CALM group and the care as usual (CAU) group. All BCs were evaluated by the Functional Assessment of Cancer Therapy Cognitive Function (FACT-Cog) before and after CALM or CAU. The rs-fMRI imaging was acquired before and after CALM intervention in CALM group BCs. The BCs were defined as before CALM intervention (BCI) group and after CALM intervention (ACI) group. RESULTS There were 32 BCs in CALM group and 35 BCs in CAU group completed the overall study. There were significant differences between the BCI group and the ACI group in the FACT-Cog-PCI scores. Compared with the BCI group, the ACI group showed lower fALFF signal in the left medial frontal gyrus and right sub-gyral and higher fALFF in the left occipital_sup and middle occipital gyrus. There was a significant positive correlation between hippocampal ALFF value and FACT-Cog-PCI scores. CONCLUSIONS CALM intervention may have an effective function in alleviating CRCI of BCs. The altered local synchronization and regional brain activity may be correlated with the improved cognitive function of BCs who received the CALM intervention. The ALFF value of hippocampus seems to be an important factor in reflect cognitive function in BCs with CRCI and the neural network mechanism of CALM intervention deserves further exploration to promote its application.
Collapse
Affiliation(s)
- Senbang Yao
- Department of OncologyThe Second Affiliated Hospital of Anhui Medical UniversityHefeiChina
- Cancer and Cognition LaboratoryAnhui Medical UniversityHefeiChina
| | - Qinqin Zhu
- Department of RadiologyQuzhou People's HospitalQuzhouChina
| | - Qianqian Zhang
- Department of OncologyThe Second Affiliated Hospital of Anhui Medical UniversityHefeiChina
- Cancer and Cognition LaboratoryAnhui Medical UniversityHefeiChina
| | - Yinlian Cai
- Department of OncologyThe Second Affiliated Hospital of Anhui Medical UniversityHefeiChina
- Cancer and Cognition LaboratoryAnhui Medical UniversityHefeiChina
| | - Shaochun Liu
- Department of OncologyThe Second Affiliated Hospital of Anhui Medical UniversityHefeiChina
- Cancer and Cognition LaboratoryAnhui Medical UniversityHefeiChina
| | - Lulian Pang
- Department of OncologyThe Second Affiliated Hospital of Anhui Medical UniversityHefeiChina
- Cancer and Cognition LaboratoryAnhui Medical UniversityHefeiChina
| | - Yanyan Jing
- Department of OncologyThe Second Affiliated Hospital of Anhui Medical UniversityHefeiChina
- Cancer and Cognition LaboratoryAnhui Medical UniversityHefeiChina
| | - Xiangxiang Yin
- Department of OncologyThe Second Affiliated Hospital of Anhui Medical UniversityHefeiChina
- Cancer and Cognition LaboratoryAnhui Medical UniversityHefeiChina
| | - Huaidong Cheng
- Department of OncologyThe Second Affiliated Hospital of Anhui Medical UniversityHefeiChina
- Shenzhen Clinical Medical School of Southern Medical UniversityShenzhenChina
- Department of OncologyShenzhen Hospital of Southern Medical UniversityShenzhenChina
| |
Collapse
|
24
|
Liu Z, Liu J, Li J, Li Y, Sun J, Deng Y, Zhou H. Substrate stiffness can affect the crosstalk between adipose derived mesenchymal stem cells and macrophages in bone tissue engineering. Front Bioeng Biotechnol 2023; 11:1133547. [PMID: 37576988 PMCID: PMC10415109 DOI: 10.3389/fbioe.2023.1133547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 06/15/2023] [Indexed: 08/15/2023] Open
Abstract
Purpose: This study aimed to explore the effect of biomaterials with different stiffness on Adipose Derived Mesenchymal Stem Cells (ADSC)-macrophage crosstalk in bone tissue engineering and its role in bone repair. Methods: Biomaterials with Young's modulus of 64 and 0.2 kPa were selected, and the crosstalk between ADSCs and macrophages was investigated by means of conditioned medium treatment and cell co-culture, respectively. Polymerase chain reaction (PCR) and flow cytometry were used to evaluate the polarization of macrophages. Alkaline phosphatase (ALP) and alizarin red staining (ARS) solutions were used to evaluate the osteogenic differentiation of ADSCs. Transwell assay was used to evaluate the chemotaxis of ADSCs and macrophages. Moreover, mass spectrometry proteomics was used to analyze the secreted protein profile of ADSCs of different substrates and macrophages in different polarization states. Results: On exploring the influence of biomaterials on macrophages from ADSCs on different substrates, we found that CD163 and CD206 expression levels in macrophages were significantly higher in the 64-kPa group than in the 0.2-kPa group in conditioned medium treatment and cell co-culture. Flow cytometry showed that more cells became CD163+ or CD206+ cells in the 64-kPa group under conditioned medium treatment or cell co-culture. The Transwell assay showed that more macrophages migrated to the lower chamber in the 64-kPa group. The proteomic analysis found that ADSCs in the 64-kPa group secreted more immunomodulatory proteins, such as LBP and RBP4, to improve the repair microenvironment. On exploring the influence of biomaterials on ADSCs from macrophages in different polarization states, we found that ALP and ARS levels in ADSCs were significantly higher in the M2 group than in the other three groups (NC, M0, and M1 groups) in both conditioned medium treatment and cell co-culture. The Transwell assay showed that more ADSCs migrated to the lower chamber in the M2 group. The proteomic analysis found that M2 macrophages secreted more extracellular remodeling proteins, such as LRP1, to promote bone repair. Conclusion: In bone tissue engineering, the stiffness of repair biomaterials can affect the crosstalk between ADSCs and macrophages, thereby regulating local repair immunity and affecting bone repair.
Collapse
Affiliation(s)
- Zeyang Liu
- Department of Ophthalmology, Shanghai Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jin Liu
- Department of Ophthalmology, Shanghai Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jipeng Li
- Department of Ophthalmology, Shanghai Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yinwei Li
- Department of Ophthalmology, Shanghai Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jing Sun
- Department of Ophthalmology, Shanghai Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yuan Deng
- Department of Ophthalmology, Shanghai Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Huifang Zhou
- Department of Ophthalmology, Shanghai Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
25
|
Zhang Y, Sheng R, Chen J, Wang H, Zhu Y, Cao Z, Zhao X, Wang Z, Liu C, Chen Z, Zhang P, Kuang B, Zheng H, Shen C, Yao Q, Zhang W. Silk Fibroin and Sericin Differentially Potentiate the Paracrine and Regenerative Functions of Stem Cells Through Multiomics Analysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210517. [PMID: 36915982 DOI: 10.1002/adma.202210517] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 02/08/2023] [Indexed: 05/19/2023]
Abstract
Silk fibroin (SF) and sericin (SS), the two major proteins of silk, are attractive biomaterials with great potential in tissue engineering and regenerative medicine. However, their biochemical interactions with stem cells remain unclear. In this study, multiomics are employed to obtain a global view of the cellular processes and pathways of mesenchymal stem cells (MSCs) triggered by SF and SS to discern cell-biomaterial interactions at an in-depth, high-throughput molecular level. Integrated RNA sequencing and proteomic analysis confirm that SF and SS initiate widespread but distinct cellular responses and potentiate the paracrine functions of MSCs that regulate extracellular matrix deposition, angiogenesis, and immunomodulation through differentially activating the integrin/PI3K/Akt and glycolysis signaling pathways. These paracrine signals of MSCs stimulated by SF and SS effectively improve skin regeneration by regulating the behavior of multiple resident cells (fibroblasts, endothelial cells, and macrophages) in the skin wound microenvironment. Compared to SS, SF exhibits better immunomodulatory effects in vitro and in vivo, indicating its greater potential as a carrier material of MSCs for skin regeneration. This study provides comprehensive and reliable insights into the cellular interactions with SF and SS, enabling the future development of silk-based therapeutics for tissue engineering and stem cell therapy.
Collapse
Affiliation(s)
- Yanan Zhang
- School of Medicine, Southeast University, Nanjing, 210009, China
| | - Renwang Sheng
- School of Medicine, Southeast University, Nanjing, 210009, China
| | - Jialin Chen
- School of Medicine, Southeast University, Nanjing, 210009, China
- Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, 210096, China
- China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, 310058, China
| | - Hongmei Wang
- School of Medicine, Southeast University, Nanjing, 210009, China
| | - Yue Zhu
- School of Medicine, Southeast University, Nanjing, 210009, China
| | - Zhicheng Cao
- School of Medicine, Southeast University, Nanjing, 210009, China
- Department of Orthopaedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210006, China
| | - Xinyi Zhao
- School of Medicine, Southeast University, Nanjing, 210009, China
| | - Zhimei Wang
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Chuanquan Liu
- School of Medicine, Southeast University, Nanjing, 210009, China
| | - Zhixuan Chen
- School of Medicine, Southeast University, Nanjing, 210009, China
| | - Po Zhang
- School of Medicine, Southeast University, Nanjing, 210009, China
- Department of Orthopaedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210006, China
| | - Baian Kuang
- School of Medicine, Southeast University, Nanjing, 210009, China
| | - Haotian Zheng
- School of Medicine, Southeast University, Nanjing, 210009, China
| | - Chuanlai Shen
- School of Medicine, Southeast University, Nanjing, 210009, China
| | - Qingqiang Yao
- China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, 310058, China
- Department of Orthopaedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210006, China
| | - Wei Zhang
- School of Medicine, Southeast University, Nanjing, 210009, China
- Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, 210096, China
- China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, 310058, China
| |
Collapse
|
26
|
Chen W, Zhang H, Zhou Q, Zhou F, Zhang Q, Su J. Smart Hydrogels for Bone Reconstruction via Modulating the Microenvironment. RESEARCH (WASHINGTON, D.C.) 2023; 6:0089. [PMID: 36996343 PMCID: PMC10042443 DOI: 10.34133/research.0089] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 02/14/2023] [Indexed: 02/18/2023]
Abstract
Rapid and effective repair of injured or diseased bone defects remains a major challenge due to shortages of implants. Smart hydrogels that respond to internal and external stimuli to achieve therapeutic actions in a spatially and temporally controlled manner have recently attracted much attention for bone therapy and regeneration. These hydrogels can be modified by introducing responsive moieties or embedding nanoparticles to increase their capacity for bone repair. Under specific stimuli, smart hydrogels can achieve variable, programmable, and controllable changes on demand to modulate the microenvironment for promoting bone healing. In this review, we highlight the advantages of smart hydrogels and summarize their materials, gelation methods, and properties. Then, we overview the recent advances in developing hydrogels that respond to biochemical signals, electromagnetic energy, and physical stimuli, including single, dual, and multiple types of stimuli, to enable physiological and pathological bone repair by modulating the microenvironment. Then, we discuss the current challenges and future perspectives regarding the clinical translation of smart hydrogels.
Collapse
Affiliation(s)
- Weikai Chen
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, P. R. China
- Organoid Research Center, Shanghai University, Shanghai 200444, P. R. China
- National Center for Translational Medicine (Shanghai), Shanghai University Branch, Shanghai 200444, P. R. China
- School of Medicine, Shanghai University, Shanghai 200444, P. R. China
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China
| | - Hao Zhang
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, P. R. China
- Organoid Research Center, Shanghai University, Shanghai 200444, P. R. China
- National Center for Translational Medicine (Shanghai), Shanghai University Branch, Shanghai 200444, P. R. China
| | - Qirong Zhou
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, P. R. China
- Organoid Research Center, Shanghai University, Shanghai 200444, P. R. China
- National Center for Translational Medicine (Shanghai), Shanghai University Branch, Shanghai 200444, P. R. China
- Department of Orthopedics Trauma, Changhai Hospital, Naval Medical University, Shanghai 200433, P. R. China
| | - Fengjin Zhou
- Department of Orthopaedics, Honghui Hospital, Xi’an Jiao Tong University, Xi’an 710000, P. R. China
| | - Qin Zhang
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, P. R. China
- Organoid Research Center, Shanghai University, Shanghai 200444, P. R. China
- National Center for Translational Medicine (Shanghai), Shanghai University Branch, Shanghai 200444, P. R. China
| | - Jiacan Su
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, P. R. China
- Organoid Research Center, Shanghai University, Shanghai 200444, P. R. China
- National Center for Translational Medicine (Shanghai), Shanghai University Branch, Shanghai 200444, P. R. China
| |
Collapse
|
27
|
Kao TW, Liu YS, Yang CY, Lee OKS. Mechanotransduction of mesenchymal stem cells and hemodynamic implications. CHINESE J PHYSIOL 2023; 66:55-64. [PMID: 37082993 DOI: 10.4103/cjop.cjop-d-22-00144] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023] Open
Abstract
Mesenchymal stem cells (MSCs) possess the capacity for self-renewal and multipotency. The traditional approach to manipulating MSC's fate choice predominantly relies on biochemical stimulation. Accumulating evidence also suggests the role of physical input in MSCs differentiation. Therefore, investigating mechanotransduction at the molecular level and related to tissue-specific cell functions sheds light on the responses secondary to mechanical forces. In this review, a new frontier aiming to optimize the cultural parameters was illustrated, i.e. spatial boundary condition, which recapitulates in vivo physiology and facilitates the investigations of cellular behavior. The concept of mechanical memory was additionally addressed to appreciate how MSCs store imprints from previous culture niches. Besides, different types of forces as physical stimuli were of interest based on the association with the respective signaling pathways and the differentiation outcome. The downstream mechanoreceptors and their corresponding effects were further pinpointed. The cardiovascular system or immune system may share similar mechanisms of mechanosensing and mechanotransduction; for example, resident stem cells in a vascular wall and recruited MSCs in the bloodstream experience mechanical forces such as stretch and fluid shear stress. In addition, baroreceptors or mechanosensors of endothelial cells detect changes in blood flow, pass over signals induced by mechanical stimuli and eventually maintain arterial pressure at the physiological level. These mechanosensitive receptors transduce pressure variation and regulate endothelial barrier functions. The exact signal transduction is considered context dependent but still elusive. In this review, we summarized the current evidence of how mechanical stimuli impact MSCs commitment and the underlying mechanisms. Future perspectives are anticipated to focus on the application of cardiovascular bioengineering and regenerative medicine.
Collapse
Affiliation(s)
- Ting-Wei Kao
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Yi-Shiuan Liu
- School of Medicine, National Tsing Hua University, Hsinchu, Taiwan
| | - Chih-Yu Yang
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University; Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University; Division of Nephrology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Oscar Kuang-Sheng Lee
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University; Stem Cell Research Center, National Yang Ming Chiao Tung University; Department of Medical Research, Taipei Veterans General Hospital, Taipei; Department of Orthopedics, China Medical University Hospital; Center for Translational Genomics and Regenerative Medicine Research, China Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
28
|
Tian G, Ren T. Mechanical stress regulates the mechanotransduction and metabolism of cardiac fibroblasts in fibrotic cardiac diseases. Eur J Cell Biol 2023; 102:151288. [PMID: 36696810 DOI: 10.1016/j.ejcb.2023.151288] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/20/2023] Open
Abstract
Fibrotic cardiac diseases are characterized by myocardial fibrosis that results in maladaptive cardiac remodeling. Cardiac fibroblasts (CFs) are the main cell type responsible for fibrosis. In response to stress or injury, intrinsic CFs develop into myofibroblasts and produce excess extracellular matrix (ECM) proteins. Myofibroblasts are mechanosensitive cells that can detect changes in tissue stiffness and respond accordingly. Previous studies have revealed that some mechanical stimuli control fibroblast behaviors, including ECM formation, cell migration, and other phenotypic traits. Further, metabolic alteration is reported to regulate fibrotic signaling cascades, such as the transforming growth factor-β pathway and ECM deposition. However, the relationship between metabolic changes and mechanical stress during fibroblast-to-myofibroblast transition remains unclear. This review aims to elaborate on the crosstalk between mechanical stress and metabolic changes during the pathological transition of cardiac fibroblasts.
Collapse
Affiliation(s)
- Geer Tian
- Department of Cardiology of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China; Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, PR China; Binjiang Institute of Zhejiang University, 66 Dongxin Road, Hangzhou 310053, PR China
| | - Tanchen Ren
- Department of Cardiology of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China; Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, PR China.
| |
Collapse
|
29
|
Xu J, Lin Y, Tian M, Li X, Yin Y, Li Q, Li Z, Zhou J, Jiang X, Li Y, Chen S. Periodontal Ligament Stem Cell-Derived Extracellular Vesicles Enhance Tension-Induced Osteogenesis. ACS Biomater Sci Eng 2023; 9:388-398. [PMID: 36538768 DOI: 10.1021/acsbiomaterials.2c00717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Tension-induced osteogenesis has great significance in maintaining bone homeostasis and ensuring the efficiency and stability of orthodontic treatment. Recently, extracellular vesicles (EVs) have shown great potential in regulating bone remodeling. Here, we aimed to explore the effects of periodontal ligament stem cell (PDLSC)-derived EVs on tension-induced osteogenesis and the potential mechanism. PDLSC-derived EVs were extracted by ultracentrifugation. In vitro, PDLSC-derived EVs of 10 μg/mL significantly improved the proliferation of MC3T3-E1 cells and enhanced the osteogenic differentiation of osteoblasts under a tensile strain of 2000 uε. Next, a mouse model of orthodontic tooth movement (OTM) was established and treated with subperiosteal injection of PDLSC-derived EVs (1 mg/kg) on the tension side. The results showed that treatment with PDLSC-derived EVs effectively enhanced OTM and promoted osteogenesis on the tension side, including increasing trabecular bone parameters and promoting the expression of osteogenic-related biomarkers (OCN and OPN). More interestingly, we identified several mechano-sensitive miRNAs enriched in PDLSC-derived EVs by high-throughput miRNA sequencing. Bioinformatics analysis indicated that they were related to various osteogenesis-related signaling pathways. Therefore, PDLSC-derived EVs could improve the efficiency of OTM by enhancing tension-induced osteogenesis of osteoblasts. Our study may provide potential evidence for the promoting effects of PDLSC-derived EVs on osteogenesis and offer new insights into the development of treatment strategies for enhancing osteogenesis in orthodontic treatment and other metabolic bone diseases.
Collapse
Affiliation(s)
- Jingchen Xu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, #14, 3rd Section, Ren Min S Rd, Chengdu, Sichuan 610041, China
| | - Yao Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, #14, 3rd Section, Ren Min S Rd, Chengdu, Sichuan 610041, China
| | - Mi Tian
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, #14, 3rd Section, Ren Min S Rd, Chengdu, Sichuan 610041, China
| | - Xinyi Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, #14, 3rd Section, Ren Min S Rd, Chengdu, Sichuan 610041, China
| | - Yuanyuan Yin
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing 401147, China
| | - Qiming Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, #14, 3rd Section, Ren Min S Rd, Chengdu, Sichuan 610041, China
| | - Ziyu Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, #14, 3rd Section, Ren Min S Rd, Chengdu, Sichuan 610041, China
| | - Jialiang Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, #14, 3rd Section, Ren Min S Rd, Chengdu, Sichuan 610041, China
| | - Xiaoge Jiang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, #14, 3rd Section, Ren Min S Rd, Chengdu, Sichuan 610041, China
| | - Yulin Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, #14, 3rd Section, Ren Min S Rd, Chengdu, Sichuan 610041, China
| | - Song Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, #14, 3rd Section, Ren Min S Rd, Chengdu, Sichuan 610041, China
| |
Collapse
|
30
|
Emerging biomaterials and technologies to control stem cell fate and patterning in engineered 3D tissues and organoids. Biointerphases 2022; 17:060801. [DOI: 10.1116/6.0002034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The ability to create complex three-dimensional cellular models that can effectively replicate the structure and function of human organs and tissues in vitro has the potential to revolutionize medicine. Such models could facilitate the interrogation of developmental and disease processes underpinning fundamental discovery science, vastly accelerate drug development and screening, or even be used to create tissues for implantation into the body. Realization of this potential, however, requires the recreation of complex biochemical, biophysical, and cellular patterns of 3D tissues and remains a key challenge in the field. Recent advances are being driven by improved knowledge of tissue morphogenesis and architecture and technological developments in bioengineering and materials science that can create the multidimensional and dynamic systems required to produce complex tissue microenvironments. In this article, we discuss challenges for in vitro models of tissues and organs and summarize the current state-of-the art in biomaterials and bioengineered systems that aim to address these challenges. This includes both top-down technologies, such as 3D photopatterning, magnetism, acoustic forces, and cell origami, as well as bottom-up patterning using 3D bioprinting, microfluidics, cell sheet technology, or composite scaffolds. We illustrate the varying ways that these can be applied to suit the needs of different tissues and applications by focussing on specific examples of patterning the bone-tendon interface, kidney organoids, and brain cancer models. Finally, we discuss the challenges and future prospects in applying materials science and bioengineering to develop high-quality 3D tissue structures for in vitro studies.
Collapse
|
31
|
Wang R, Zhang M, Hu Y, He J, Lin Q, Peng N. MiR-100-5p inhibits osteogenic differentiation of human bone mesenchymal stromal cells by targeting TMEM135. Hum Cell 2022; 35:1671-1683. [PMID: 35947339 DOI: 10.1007/s13577-022-00764-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 07/29/2022] [Indexed: 02/05/2023]
Abstract
Osteoporosis is a disorder characterized by reduced bone mass, disruption of bone microarchitecture, and a propensity to fracture. The osteogenic differentiation of human bone mesenchymal stromal cells (hBMSCs) exerts a critical effect on preventing bone loss during osteoporosis. Herein, the study recognized miR-100-5p as a deregulated miRNA during osteoporosis (upregulated) and BMSC osteogenic differentiation (downregulated). miR-100-5p was upregulated in osteoporosis patients-isolated BMSCs compared to non-osteoporosis trauma patients-isolated BMSCs. hBMSCs, overexpression inhibited hBMSC proliferation and osteogenic differentiation, whereas miR-100-5p inhibition exerted opposite effects. TMEM135 was downregulated in osteoporosis and upregulated in differentiated osteoblasts, as well as downregulated upon the overexpression of miR-100-5p. MiR-100-5p directly targeted and inhibited TMEM135. In hBMSCs, TMEM135 silencing also inhibited hBMSC osteogenic differentiation. When co-transfected to hBMSCs, antagomir-100-5p promoted, whereas TMEM135 silencing inhibited hBMSC osteogenic differentiation; TMEM135 knockdown dramatically attenuated the effects of miR-100-5p inhibition. Taken together, miR-100-5p forms a regulatory axis with TMEM135 by direct binding. The miR-100-5p/TMEM135 axis modulates hBMSC differentiation into osteoblast. Considering the critical effect of BMSC osteogenesis on osteoporosis, this axis might play a role in osteoporosis, and further in vivo and clinical investigations are required.
Collapse
Affiliation(s)
- Rui Wang
- Department of Endocrinology, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Miao Zhang
- Department of Endocrinology, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Ying Hu
- Department of Endocrinology, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Juan He
- Department of Endocrinology, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Qiao Lin
- Department of Endocrinology, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Nianchun Peng
- Department of Endocrinology, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China.
| |
Collapse
|
32
|
Xu Z, Li Y, Li P, Sun Y, Lv S, Wang Y, He X, Xu J, Xu Z, Li L, Li Y. Soft substrates promote direct chemical reprogramming of fibroblasts into neurons. Acta Biomater 2022; 152:255-272. [PMID: 36041647 DOI: 10.1016/j.actbio.2022.08.049] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 08/13/2022] [Accepted: 08/23/2022] [Indexed: 11/01/2022]
Abstract
Fibroblasts can be directly reprogrammed via a combination of small molecules to generate induced neurons (iNs), bypassing intermediate stages. This method holds great promise for regenerative medicine; however, it remains inefficient. Recently, studies have suggested that physical cues may improve the direct reprogramming of fibroblasts into neurons, but the underlying mechanisms remain to be further explored, and the physical factors reported to date do not exhibit the full properties of the extracellular matrix (ECM). Previous in vitro studies mainly used rigid polystyrene dishes, while one of the characteristics of the native in-vivo environment of neurons is the soft nature of brain ECM. The reported stiffness of brain tissue is very soft ranging between 100 Pa and 3 kPa, and the effect of substrate stiffness on direct neuronal reprogramming has not been explored. Here, we show for the first time that soft substrates substantially improved the production efficiency and quality of iNs, without needing to co-culture with glial cells during reprogramming, producing more glutamatergic neurons with electrophysiological functions in a shorter time. Transcriptome sequencing indicated that soft substrates might promote glutamatergic neuron reprogramming through integrins, actin cytoskeleton, Hippo signalling pathway, and regulation of mesenchymal-to-epithelial transition, and competing endogenous RNA network analysis provided new targets for neuronal reprogramming. We demonstrated that soft substrates may promote neuronal reprogramming by inhibiting microRNA-615-3p-targeting integrin subunit beta 4. Our findings can aid the development of regenerative therapies and help improve our understanding of neuronal reprogramming. STATEMENT OF SIGNIFICANCE: : First, we have shown that low stiffness promotes direct reprogramming on the basis of small molecule combinations. To the best of our knowledge, this is the first report on this type of method, which may greatly promote the progress of neural reprogramming. Second, we found that miR-615-3p may interact with ITGB4, and the soft substrates may promote neural reprogramming by inhibiting microRNA (miR)-615-3p targeting integrin subunit beta 4 (ITGB4). We are the first to report on this mechanism. Our findings will provide more functional neurons for subsequent basic and clinical research in neurological regenerative medicine, and will help to improve the overall understanding of neural reprogramming. This work also provides new ideas for the design of medical biomaterials for nerve regeneration.
Collapse
Affiliation(s)
- Ziran Xu
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, China.
| | - Yan Li
- Division of Orthopedics and Biotechnology, Department for Clinical Intervention and Technology (CLINTEC), Karolinska Institute, Stockholm, Sweden.
| | - Pengdong Li
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan 511518, Guangdong, China.
| | - Yingying Sun
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; Department of Stomatology, The First Hospital of Jilin University, Changchun 130021, China.
| | - Shuang Lv
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, China.
| | - Yin Wang
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, China.
| | - Xia He
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; Department of Pathology, Shanxi Bethune Hospital, Taiyuan 030032, China.
| | - Jinying Xu
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; Department of Burns Surgery, The First Hospital of Jilin University, Changchun 130000, China.
| | - Zhixiang Xu
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, China.
| | - Lisha Li
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, China.
| | - Yulin Li
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, China.
| |
Collapse
|
33
|
Yang Y, Huang H, Li Y. Roles of exosomes and exosome-derived miRNAs in pulmonary fibrosis. Front Pharmacol 2022; 13:928933. [PMID: 36034858 PMCID: PMC9403513 DOI: 10.3389/fphar.2022.928933] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 07/15/2022] [Indexed: 11/13/2022] Open
Abstract
Pulmonary fibrosis is a chronic, progressive fibrosing interstitial lung disease of unknown etiology that leads rapidly to death. It is characterized by the replacement of healthy tissue through an altered extracellular matrix and damage to the alveolar structure. New pharmacological treatments and biomarkers are needed for pulmonary fibrosis to ensure better outcomes and earlier diagnosis of patients. Exosomes are nanoscale vesicles released by nearly all cell types that play a central role as mediators of cell-to-cell communication. Moreover, exosomes are emerging as a crucial factor in antigen presentation, immune response, immunomodulation, inflammation, and cellular phenotypic transformation and have also shown promising therapeutic potential in pulmonary fibrosis. This review summarizes current knowledge of exosomes that may promote pulmonary fibrosis and be utilized for diagnostics and prognostics. In addition, the utilization of exosomes and their cargo miRNAs as novel therapeutics and their potential mechanisms are also discussed. This review aims to elucidate the role of exosomes in the pathogenesis of pulmonary fibrosis and paves the way for developing novel therapeutics for pulmonary fibrosis. Further in-depth research and clinical trials on this topic are encouraged in the future.
Collapse
Affiliation(s)
- Yongfeng Yang
- Precision Medicine Key Laboratory, Institute of Respiratory Health, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hong Huang
- Precision Medicine Key Laboratory, Institute of Respiratory Health, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Transplantation Engineering and Immunology, Institute of Clinical Pathology, Ministry of Health, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yi Li
- Precision Medicine Key Laboratory, Institute of Respiratory Health, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- *Correspondence: Yi Li,
| |
Collapse
|
34
|
Athirasala A, Patel S, Menezes PP, Kim J, Tahayeri A, Sahay G, Bertassoni LE. Matrix stiffness regulates lipid nanoparticle-mRNA delivery in cell-laden hydrogels. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2022; 42:102550. [PMID: 35292368 PMCID: PMC9206884 DOI: 10.1016/j.nano.2022.102550] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 01/16/2022] [Accepted: 03/07/2022] [Indexed: 06/03/2023]
Abstract
mRNA therapeutics have increased in popularity, largely due to the transient and fast nature of protein expression and the low risk of off-target effects. This has increased drastically with the remarkable success of mRNA-based vaccines for COVID-19. Despite advances in lipid nanoparticle (LNP)-based delivery, the mechanisms that regulate efficient endocytic trafficking and translation of mRNA remain poorly understood. Although it is widely acknowledged that the extracellular matrix (ECM) regulates uptake and expression of exogenous nano-complexed genetic material, its specific effects on mRNA delivery and expression have not yet been examined. Here, we demonstrate a critical role for matrix stiffness in modulating both mRNA transfection and expression and uncover distinct mechano-regulatory mechanisms for endocytosis of mRNA through RhoA mediated mTOR signaling and cytoskeletal dynamics. Our findings have implications for effective delivery of therapeutic mRNA to targeted tissues that may be differentially affected by tissue and matrix stiffness.
Collapse
Affiliation(s)
- Avathamsa Athirasala
- Department of Biomedical Engineering, Collaborative Life Sciences Building, Oregon Health and Science University, Portland, OR, USA
| | - Siddharth Patel
- Department of Pharmaceutical Sciences, College of Pharmacy, Collaborative Life Science Building, Oregon State University, Portland, OR, USA
| | - Paula P Menezes
- Division of Biomaterials and Biomechanics, Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, OR, USA; Department of Pharmacy, Federal University of Sergipe, Aracaju, Sergipe, Brazil
| | - Jeonghwan Kim
- Department of Pharmaceutical Sciences, College of Pharmacy, Collaborative Life Science Building, Oregon State University, Portland, OR, USA
| | - Anthony Tahayeri
- Division of Biomaterials and Biomechanics, Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, OR, USA
| | - Gaurav Sahay
- Department of Biomedical Engineering, Collaborative Life Sciences Building, Oregon Health and Science University, Portland, OR, USA; Department of Pharmaceutical Sciences, College of Pharmacy, Collaborative Life Science Building, Oregon State University, Portland, OR, USA; Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, USA
| | - Luiz E Bertassoni
- Department of Biomedical Engineering, Collaborative Life Sciences Building, Oregon Health and Science University, Portland, OR, USA; Division of Biomaterials and Biomechanics, Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, OR, USA; Center for Regenerative Medicine, Oregon Health and Science University, Portland, OR, USA; Cancer Early Detection Advanced Research (CEDAR) Center, Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA.
| |
Collapse
|
35
|
Recent advances in smart stimuli-responsive biomaterials for bone therapeutics and regeneration. Bone Res 2022; 10:17. [PMID: 35197462 PMCID: PMC8866424 DOI: 10.1038/s41413-021-00180-y] [Citation(s) in RCA: 195] [Impact Index Per Article: 65.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 07/26/2021] [Accepted: 09/17/2021] [Indexed: 02/05/2023] Open
Abstract
Bone defects combined with tumors, infections, or other bone diseases are challenging in clinical practice. Autologous and allogeneic grafts are two main traditional remedies, but they can cause a series of complications. To address this problem, researchers have constructed various implantable biomaterials. However, the original pathological microenvironment of bone defects, such as residual tumors, severe infection, or other bone diseases, could further affect bone regeneration. Thus, the rational design of versatile biomaterials with integrated bone therapy and regeneration functions is in great demand. Many strategies have been applied to fabricate smart stimuli-responsive materials for bone therapy and regeneration, with stimuli related to external physical triggers or endogenous disease microenvironments or involving multiple integrated strategies. Typical external physical triggers include light irradiation, electric and magnetic fields, ultrasound, and mechanical stimuli. These stimuli can transform the internal atomic packing arrangements of materials and affect cell fate, thus enhancing bone tissue therapy and regeneration. In addition to the external stimuli-responsive strategy, some specific pathological microenvironments, such as excess reactive oxygen species and mild acidity in tumors, specific pH reduction and enzymes secreted by bacteria in severe infection, and electronegative potential in bone defect sites, could be used as biochemical triggers to activate bone disease therapy and bone regeneration. Herein, we summarize and discuss the rational construction of versatile biomaterials with bone therapeutic and regenerative functions. The specific mechanisms, clinical applications, and existing limitations of the newly designed biomaterials are also clarified.
Collapse
|
36
|
Carthew J, Taylor JBJ, Garcia-Cruz MR, Kiaie N, Voelcker NH, Cadarso VJ, Frith JE. The Bumpy Road to Stem Cell Therapies: Rational Design of Surface Topographies to Dictate Stem Cell Mechanotransduction and Fate. ACS APPLIED MATERIALS & INTERFACES 2022; 14:23066-23101. [PMID: 35192344 DOI: 10.1021/acsami.1c22109] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Cells sense and respond to a variety of physical cues from their surrounding microenvironment, and these are interpreted through mechanotransductive processes to inform their behavior. These mechanisms have particular relevance to stem cells, where control of stem cell proliferation, potency, and differentiation is key to their successful application in regenerative medicine. It is increasingly recognized that surface micro- and nanotopographies influence stem cell behavior and may represent a powerful tool with which to direct the morphology and fate of stem cells. Current progress toward this goal has been driven by combined advances in fabrication technologies and cell biology. Here, the capacity to generate precisely defined micro- and nanoscale topographies has facilitated the studies that provide knowledge of the mechanotransducive processes that govern the cellular response as well as knowledge of the specific features that can drive cells toward a defined differentiation outcome. However, the path forward is not fully defined, and the "bumpy road" that lays ahead must be crossed before the full potential of these approaches can be fully exploited. This review focuses on the challenges and opportunities in applying micro- and nanotopographies to dictate stem cell fate for regenerative medicine. Here, key techniques used to produce topographic features are reviewed, such as photolithography, block copolymer lithography, electron beam lithography, nanoimprint lithography, soft lithography, scanning probe lithography, colloidal lithography, electrospinning, and surface roughening, alongside their advantages and disadvantages. The biological impacts of surface topographies are then discussed, including the current understanding of the mechanotransductive mechanisms by which these cues are interpreted by the cells, as well as the specific effects of surface topographies on cell differentiation and fate. Finally, considerations in translating these technologies and their future prospects are evaluated.
Collapse
Affiliation(s)
- James Carthew
- Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Jason B J Taylor
- Mechanical and Aerospace Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Maria R Garcia-Cruz
- Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Nasim Kiaie
- Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Nicolas H Voelcker
- Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria 3168, Australia
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
- ARC Centre for Cell and Tissue Engineering Technologies, Monash University, Clayton, Victoria 3800, Australia
- CSIRO Manufacturing, Bayview Avenue, Clayton, VIC 3168, Australia
| | - Victor J Cadarso
- Mechanical and Aerospace Engineering, Monash University, Clayton, Victoria 3800, Australia
- Centre to Impact Antimicrobial Resistance, Monash University, Clayton, Victoria 3800, Australia
| | - Jessica E Frith
- Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
- ARC Centre for Cell and Tissue Engineering Technologies, Monash University, Clayton, Victoria 3800, Australia
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
37
|
Mechanical regulation of bone remodeling. Bone Res 2022; 10:16. [PMID: 35181672 PMCID: PMC8857305 DOI: 10.1038/s41413-022-00190-4] [Citation(s) in RCA: 215] [Impact Index Per Article: 71.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 11/04/2021] [Accepted: 12/13/2021] [Indexed: 12/17/2022] Open
Abstract
Bone remodeling is a lifelong process that gives rise to a mature, dynamic bone structure via a balance between bone formation by osteoblasts and resorption by osteoclasts. These opposite processes allow the accommodation of bones to dynamic mechanical forces, altering bone mass in response to changing conditions. Mechanical forces are indispensable for bone homeostasis; skeletal formation, resorption, and adaptation are dependent on mechanical signals, and loss of mechanical stimulation can therefore significantly weaken the bone structure, causing disuse osteoporosis and increasing the risk of fracture. The exact mechanisms by which the body senses and transduces mechanical forces to regulate bone remodeling have long been an active area of study among researchers and clinicians. Such research will lead to a deeper understanding of bone disorders and identify new strategies for skeletal rejuvenation. Here, we will discuss the mechanical properties, mechanosensitive cell populations, and mechanotransducive signaling pathways of the skeletal system.
Collapse
|
38
|
Gargalionis AN, Papavassiliou KA, Basdra EK, Papavassiliou AG. mTOR Signaling Components in Tumor Mechanobiology. Int J Mol Sci 2022; 23:1825. [PMID: 35163745 PMCID: PMC8837098 DOI: 10.3390/ijms23031825] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/02/2022] [Accepted: 02/03/2022] [Indexed: 11/17/2022] Open
Abstract
Mechanistic target of rapamycin (mTOR) is a central signaling hub that integrates networks of nutrient availability, cellular metabolism, and autophagy in eukaryotic cells. mTOR kinase, along with its upstream regulators and downstream substrates, is upregulated in most human malignancies. At the same time, mechanical forces from the tumor microenvironment and mechanotransduction promote cancer cells' proliferation, motility, and invasion. mTOR signaling pathway has been recently found on the crossroads of mechanoresponsive-induced signaling cascades to regulate cell growth, invasion, and metastasis in cancer cells. In this review, we examine the emerging association of mTOR signaling components with certain protein tools of tumor mechanobiology. Thereby, we highlight novel mechanisms of mechanotransduction, which regulate tumor progression and invasion, as well as mechanisms related to the therapeutic efficacy of antitumor drugs.
Collapse
Affiliation(s)
- Antonios N. Gargalionis
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (K.A.P.); (E.K.B.)
- Department of Biopathology, Aeginition Hospital, Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Kostas A. Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (K.A.P.); (E.K.B.)
| | - Efthimia K. Basdra
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (K.A.P.); (E.K.B.)
| | - Athanasios G. Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (K.A.P.); (E.K.B.)
| |
Collapse
|
39
|
Han P, Gomez GA, Duda GN, Ivanovski S, Poh PS. Scaffold geometry modulation of mechanotransduction and its influence on epigenetics. Acta Biomater 2022; 163:259-274. [PMID: 35038587 DOI: 10.1016/j.actbio.2022.01.020] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 02/03/2023]
Abstract
The dynamics of cell mechanics and epigenetic signatures direct cell behaviour and fate, thus influencing regenerative outcomes. In recent years, the utilisation of 2D geometric (i.e. square, circle, hexagon, triangle or round-shaped) substrates for investigating cell mechanics in response to the extracellular microenvironment have gained increasing interest in regenerative medicine due to their tunable physicochemical properties. In contrast, there is relatively limited knowledge of cell mechanobiology and epigenetics in the context of 3D biomaterial matrices, i.e., hydrogels and scaffolds. Scaffold geometry provides biophysical signals that trigger a nucleus response (regulation of gene expression) and modulates cell behaviour and function. In this review, we explore the potential of additive manufacturing to incorporate multi length-scale geometry features on a scaffold. Then, we discuss how scaffold geometry direct cell and nuclear mechanosensing. We further discuss how cell epigenetics, particularly DNA/histone methylation and histone acetylation, are modulated by scaffold features that lead to specific gene expression and ultimately influence the outcome of tissue regeneration. Overall, we highlight that geometry of different magnitude scales can facilitate the assembly of cells and multicellular tissues into desired functional architectures through the mechanotransduction pathway. Moving forward, the challenge confronting biomedical engineers is the distillation of the vast knowledge to incorporate multiscaled geometrical features that would collectively elicit a favourable tissue regeneration response by harnessing the design flexibility of additive manufacturing. STATEMENT OF SIGNIFICANCE: It is well-established that cells sense and respond to their 2D geometric microenvironment by transmitting extracellular physiochemical forces through the cytoskeleton and biochemical signalling to the nucleus, facilitating epigenetic changes such as DNA methylation, histone acetylation, and microRNA expression. In this context, the current review presents a unique perspective and highlights the importance of 3D architectures (dimensionality and geometries) on cell and nuclear mechanics and epigenetics. Insight into current challenges around the study of mechanobiology and epigenetics utilising additively manufactured 3D scaffold geometries will progress biomaterials research in this space.
Collapse
|
40
|
Dai Z, Wei G. Inhibition of miRNA-100 facilitates bone regeneration defects of mesenchymal stem cells in osteoporotic mice through the protein kinase B pathway. Bioengineered 2022; 13:963-973. [PMID: 35132915 PMCID: PMC8974201 DOI: 10.1080/21655979.2021.2015880] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Osteoporotic patients suffer from bone microstructure damage and are prone to fracture and bone defect. Due to the damage of bone healing ability, the bone repair of osteoporotic patients is usually slow. Here we aimed to explore the function and potential molecular mechanism of miR-100 in osteogenic differentiation ability of bone marrow stem cells (BMSCs). Ovariectomy was performed on mice to induce osteoporosis. BMSCs were extracted from normal and ovariectomized (OVX) mice to examine the effect of microRNA (miR)-100 on BMSC osteogenic differentiation. Hematoxylin and eosin (H&E) staining and safranin O-fast green staining assays were performed on femur tissues to reveal pathological changes. The osteogenic differentiation of BMSCs were determined by Alkaline Phosphatase and Alizarin red staining assays. The results showed that miR-100 expression was significantly upregulated in bone tissues and BMSCs from osteoporotic mice. MiR-100 knockdown partially improved osteogenic function of OVX mice-derived BMSCs. Next, mechanistic target of rapamycin kinase (MTOR) was identified as the target downstream miR-100. MiR-100 deficiency can activate the protein kinase B (AKT)/mTOR pathway. MiR-100 controlled the osteogenic function of BMSCs by the AKT/mTOR pathway. Collectively, our findings demonstrate that inhibition of miR-100 facilitates bone regeneration defects of BMSCs in osteoporotic mice through AKT pathway, indicating that miR-100 might be an effective target for the treatment of osteoporotic mandibular injury and bone defect diseases.
Collapse
Affiliation(s)
- Zhengqiu Dai
- Department of Orthopedic, Taizhou Second People's Hospital, Taizhou, Jiangsu, China
| | - Guoqiang Wei
- Department of Plastic Surgery, First Ward, Xi'an International Medical Center Plastic Surgery Hospital, Xi'an, Shanxi, China
| |
Collapse
|
41
|
Liu G, ZHOU YUAN, Zhang X, Guo S. Advances in Hydrogels for Stem Cell Therapy: Regulation Mechanisms and Tissue Engineering Applications. J Mater Chem B 2022; 10:5520-5536. [DOI: 10.1039/d2tb01044e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Stem cell therapy has shown unparalleled potential in tissue engineering, but it still faces challenges in the regulation of stem cell fate. Inspired by the native stem cell niche, a...
Collapse
|
42
|
Kim H, Solak K, Han Y, Cho YW, Koo KM, Kim CD, Luo Z, Son H, Kim HR, Mavi A, Kim TH. Electrically controlled mRNA delivery using a polypyrrole-graphene oxide hybrid film to promote osteogenic differentiation of human mesenchymal stem cells. NANO RESEARCH 2022; 15:9253-9263. [PMID: 35911478 PMCID: PMC9308036 DOI: 10.1007/s12274-022-4613-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/31/2022] [Accepted: 06/03/2022] [Indexed: 05/03/2023]
Abstract
UNLABELLED Direct messenger ribonucleic acid (mRNA) delivery to target cells or tissues has revolutionized the field of biotechnology. However, the applicability of regenerative medicine is limited by the technical difficulties of various mRNA-loaded nanocarriers. Herein, we report a new conductive hybrid film that could guide osteogenic differentiation of human adipose-derived mesenchymal stem cells (hADMSCs) via electrically controlled mRNA delivery. To find optimal electrical conductivity and mRNA-loading capacity, the polypyrrole-graphene oxide (PPy-GO) hybrid film was electropolymerized on indium tin oxide substrates. We found that the fluorescein sodium salt, a molecule partially mimicking the physical and chemical properties of mRNAs, can be effectively absorbed and released by electrical stimulation (ES). The hADMSCs cultivated on the PPy-GO hybrid film loaded with pre-osteogenic mRNAs showed the highest osteogenic differentiation under electrical stimulation. This platform can load various types of RNAs thus highly promising as a new nucleic acid delivery tool for the development of stem cell-based therapeutics. ELECTRONIC SUPPLEMENTARY MATERIAL Supplementary material (electrochemical and FT-IR analysis on the film, additional SEM, AFM and C-AFM images of the film, optical and fluorescence images of cells, and the primers used for RT-qPCR analysis) is available in the online version of this article at 10.1007/s12274-022-4613-y.
Collapse
Affiliation(s)
- Huijung Kim
- School of Integrative Engineering, Chung-Ang University, 84 Heukseuk-ro, Dongjak-gu, Seoul, 06974 Republic of Korea
| | - Kübra Solak
- Department of Nanoscience and Nanoengineering, Graduate School of Natural and Applied Sciences, Atatürk University, Erzurum, 25240 Turkey
| | - Yoojoong Han
- School of Integrative Engineering, Chung-Ang University, 84 Heukseuk-ro, Dongjak-gu, Seoul, 06974 Republic of Korea
| | - Yeon-Woo Cho
- School of Integrative Engineering, Chung-Ang University, 84 Heukseuk-ro, Dongjak-gu, Seoul, 06974 Republic of Korea
| | - Kyeong-Mo Koo
- School of Integrative Engineering, Chung-Ang University, 84 Heukseuk-ro, Dongjak-gu, Seoul, 06974 Republic of Korea
| | - Chang-Dae Kim
- School of Integrative Engineering, Chung-Ang University, 84 Heukseuk-ro, Dongjak-gu, Seoul, 06974 Republic of Korea
| | - Zhengtang Luo
- Department of Chemical and Biological Engineering, Hong Kong University of Science and Technology, Kowloon, Hong Kong, 999077 China
| | - Hyungbin Son
- School of Integrative Engineering, Chung-Ang University, 84 Heukseuk-ro, Dongjak-gu, Seoul, 06974 Republic of Korea
| | - Hyung-Ryong Kim
- Department of Pharmacology, College of Dentistry, Jeonbuk National University, Jeonju, 54896 Republic of Korea
| | - Ahmet Mavi
- Department of Nanoscience and Nanoengineering, Institute of Science, Atatürk University, Erzurum, 25240 Turkey
- Department of Mathematics and Science Education, Education Faculty of Kazim Karabekir, Atatürk University, Erzurum, 25240 Turkey
| | - Tae-Hyung Kim
- School of Integrative Engineering, Chung-Ang University, 84 Heukseuk-ro, Dongjak-gu, Seoul, 06974 Republic of Korea
| |
Collapse
|
43
|
Poongodi R, Chen YL, Yang TH, Huang YH, Yang KD, Lin HC, Cheng JK. Bio-Scaffolds as Cell or Exosome Carriers for Nerve Injury Repair. Int J Mol Sci 2021; 22:13347. [PMID: 34948144 PMCID: PMC8707664 DOI: 10.3390/ijms222413347] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/08/2021] [Accepted: 12/10/2021] [Indexed: 12/12/2022] Open
Abstract
Central and peripheral nerve injuries can lead to permanent paralysis and organ dysfunction. In recent years, many cell and exosome implantation techniques have been developed in an attempt to restore function after nerve injury with promising but generally unsatisfactory clinical results. Clinical outcome may be enhanced by bio-scaffolds specifically fabricated to provide the appropriate three-dimensional (3D) conduit, growth-permissive substrate, and trophic factor support required for cell survival and regeneration. In rodents, these scaffolds have been shown to promote axonal regrowth and restore limb motor function following experimental spinal cord or sciatic nerve injury. Combining the appropriate cell/exosome and scaffold type may thus achieve tissue repair and regeneration with safety and efficacy sufficient for routine clinical application. In this review, we describe the efficacies of bio-scaffolds composed of various natural polysaccharides (alginate, chitin, chitosan, and hyaluronic acid), protein polymers (gelatin, collagen, silk fibroin, fibrin, and keratin), and self-assembling peptides for repair of nerve injury. In addition, we review the capacities of these constructs for supporting in vitro cell-adhesion, mechano-transduction, proliferation, and differentiation as well as the in vivo properties critical for a successful clinical outcome, including controlled degradation and re-absorption. Finally, we describe recent advances in 3D bio-printing for nerve regeneration.
Collapse
Affiliation(s)
- Raju Poongodi
- Department of Medical Research, Mackay Memorial Hospital, Taipei 10449, Taiwan; (R.P.); (T.-H.Y.)
| | - Ying-Lun Chen
- Department of Anesthesiology, Mackay Memorial Hospital, Taipei 10449, Taiwan; (Y.-L.C.); (Y.-H.H.)
- Department of Medicine, Mackay Medical College, New Taipei City 25245, Taiwan
| | - Tao-Hsiang Yang
- Department of Medical Research, Mackay Memorial Hospital, Taipei 10449, Taiwan; (R.P.); (T.-H.Y.)
| | - Ya-Hsien Huang
- Department of Anesthesiology, Mackay Memorial Hospital, Taipei 10449, Taiwan; (Y.-L.C.); (Y.-H.H.)
- Department of Medicine, Mackay Medical College, New Taipei City 25245, Taiwan
| | - Kuender D. Yang
- Institute of Biomedical Science, Mackay Medical College, New Taipei City 25245, Taiwan;
- Department of Pediatrics, Mackay Memorial Hospital, Taipei 10449, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Hsin-Chieh Lin
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan;
| | - Jen-Kun Cheng
- Department of Medical Research, Mackay Memorial Hospital, Taipei 10449, Taiwan; (R.P.); (T.-H.Y.)
- Department of Anesthesiology, Mackay Memorial Hospital, Taipei 10449, Taiwan; (Y.-L.C.); (Y.-H.H.)
- Department of Medicine, Mackay Medical College, New Taipei City 25245, Taiwan
| |
Collapse
|
44
|
Gan M, Zhou Q, Ge J, Zhao J, Wang Y, Yan Q, Wu C, Yu H, Xiao Q, Wang W, Yang H, Zou J. Precise in-situ release of microRNA from an injectable hydrogel induces bone regeneration. Acta Biomater 2021; 135:289-303. [PMID: 34474179 DOI: 10.1016/j.actbio.2021.08.041] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 08/21/2021] [Accepted: 08/25/2021] [Indexed: 02/08/2023]
Abstract
Critical bone defects are a common yet challenging orthopedic problem. Tissue engineering is an emerging and promising strategy for bone regeneration in large-scale bone defects. The precise on-demand release of osteogenic factors is critical for controlling the osteogenic differentiation of seed cells with the support of appropriate three dimensional scaffolds. However, most of the effective osteogenic factors are biomacromolecules with release behaviors that are difficult to control. Here, the cholesterol-modified non-coding microRNA Chol-miR-26a was used to promote the osteogenic differentiation of human mesenchymal stem cells (hMSCs). Chol-miR-26a was conjugated to an injectable poly(ethylene glycol) (PEG) hydrogel through an ultraviolet (UV)-cleavable ester bond. The injectable PEG hydrogel was formed by a copper-free click reaction between the terminal azide groups of 8-armed PEG and dibenzocyclooctyne-biofunctionalized PEG, into which UV-cleavable Chol-miR-26a was simultaneously conjugated via a Michael addition reaction. Upon UV irradiation, Gel-c-miR-26a (MLCaged) released Chol-c-miR-26a selectively and exhibited significantly improved efficacy in bone regeneration compared to the hydrogel without UV irradiation and UV-uncleavable MLControl. MLCaged significantly enhanced alkaline phosphatase activity and promoted calcium nodule deposition in vitro and repaired critical skull defects in a rat animal model, demonstrating that injectable implantation with the precise release of osteogenic factors has the potential to repair large-scale bone defects in clinical practice. STATEMENT OF SIGNIFICANCE: Provide a novel and practical strategy via hydrogel for efficient delivery and precisely controlled release of miRNAs into bone defect sites. The hydrogel is formed by polyethylene glycol (PEG), which is crosslinked by 'click' reaction. Cholesterol-modified miR-26a loading on the hydrogel is covalently patterned onto the fibers of hydrogel through a UV light-cleavable linker, which prevents undesired release of miRNA. This hydrogel could realize the controlled release of miRNA under light regulation both in vitro and in vivo, thus realize bone regeneration.
Collapse
|
45
|
Zhang C, Zhu H, Ren X, Gao B, Cheng B, Liu S, Sha B, Li Z, Zhang Z, Lv Y, Wang H, Guo H, Lu TJ, Xu F, Genin GM, Lin M. Mechanics-driven nuclear localization of YAP can be reversed by N-cadherin ligation in mesenchymal stem cells. Nat Commun 2021; 12:6229. [PMID: 34711824 PMCID: PMC8553821 DOI: 10.1038/s41467-021-26454-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 10/01/2021] [Indexed: 12/30/2022] Open
Abstract
Mesenchymal stem cells adopt differentiation pathways based upon cumulative effects of mechanosensing. A cell's mechanical microenvironment changes substantially over the course of development, beginning from the early stages in which cells are typically surrounded by other cells and continuing through later stages in which cells are typically surrounded by extracellular matrix. How cells erase the memory of some of these mechanical microenvironments while locking in memory of others is unknown. Here, we develop a material and culture system for modifying and measuring the degree to which cells retain cumulative effects of mechanosensing. Using this system, we discover that effects of the RGD adhesive motif of fibronectin (representative of extracellular matrix), known to impart what is often termed "mechanical memory" in mesenchymal stem cells via nuclear YAP localization, are erased by the HAVDI adhesive motif of the N-cadherin (representative of cell-cell contacts). These effects can be explained by a motor clutch model that relates cellular traction force, nuclear deformation, and resulting nuclear YAP re-localization. Results demonstrate that controlled storage and removal of proteins associated with mechanical memory in mesenchymal stem cells is possible through defined and programmable material systems.
Collapse
Affiliation(s)
- Cheng Zhang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Hongyuan Zhu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Xinru Ren
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Bin Gao
- Department of Endocrinology, Second Affiliated Hospital of Air Force Military Medical University, Xi'an, 710038, People's Republic of China
| | - Bo Cheng
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Shaobao Liu
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, People's Republic of China
| | - Baoyong Sha
- School of Basic Medical Science, Xi'an Medical University, Xi'an, 710021, People's Republic of China
| | - Zhaoqing Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Zheng Zhang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Yi Lv
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xian, People's Republic of China
| | - Haohua Wang
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xian, People's Republic of China
| | - Hui Guo
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, People's Republic of China
| | - Tian Jian Lu
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, People's Republic of China
- MOE Key Laboratory of Multifunctional Materials and Structures, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Guy M Genin
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
- Department of Mechanical Engineering & Materials Science, Washington University in St. Louis, St. Louis, 63130, MO, USA
- NSF Science and Technology Center for Engineering Mechanobiology, Washington University in St. Louis, St. Louis, 63130, MO, USA
| | - Min Lin
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China.
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China.
| |
Collapse
|
46
|
Dole NS, Yoon J, Monteiro DA, Yang J, Mazur CM, Kaya S, Belair CD, Alliston T. Mechanosensitive miR-100 coordinates TGFβ and Wnt signaling in osteocytes during fluid shear stress. FASEB J 2021; 35:e21883. [PMID: 34569659 PMCID: PMC9153140 DOI: 10.1096/fj.202100930] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/12/2021] [Indexed: 11/12/2022]
Abstract
Organism scale mechanical forces elicit cellular scale changes through coordinated regulation of multiple signaling pathways. The mechanisms by which cells integrate signaling to generate a unified biological response remains a major question in mechanobiology. For example, the mechanosensitive response of bone and other tissues requires coordinated signaling by the transforming growth factor beta (TGFβ) and Wnt pathways through mechanisms that are not well‐defined. Here we report a new microRNA‐dependent mechanism that mediates mechanosensitive crosstalk between TGFβ and Wnt signaling in osteocytes exposed to fluid shear stress (FSS). From 60 mechanosensitive microRNA (miRs) identified by small‐RNAseq, miR100 expression is suppressed by in vivo hindlimb loading in the murine tibia and by cellular scale FSS in OCY454 cells. Though FSS activates both TGFβ and Wnt signaling in osteocytes, only TGFβ represses miR‐100 expression. miR‐100, in turn, antagonizes Wnt signaling by targeting and inhibiting expression of Frizzled receptors (FZD5/FZD8). Accordingly, miR‐100 inhibition blunts FSS‐ and TGFβ‐inducible Wnt signaling. Therefore, our results identify FSS‐responsive miRNAs in osteocytes, including one that integrates the mechanosensitive function of two essential signaling pathways in the osteoanabolic response of bone to mechanical load.
Collapse
Affiliation(s)
- Neha S Dole
- Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, California, USA
| | - Jihee Yoon
- Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, California, USA
| | - David A Monteiro
- Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, California, USA
| | - Jason Yang
- Department of Molecular & Cell Biology, University of California Berkeley, Berkeley, California, USA
| | - Courtney M Mazur
- Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, California, USA
| | - Serra Kaya
- Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, California, USA
| | - Cassandra D Belair
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, California, USA.,Department of Urology, University of California, San Francisco, San Francisco, California, USA
| | - Tamara Alliston
- Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, California, USA.,Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
47
|
miR-486 Promotes the Invasion and Cell Cycle Progression of Ovarian Cancer Cells by Targeting CADM1. ACTA ACUST UNITED AC 2021; 2021:7407086. [PMID: 34395181 PMCID: PMC8360751 DOI: 10.1155/2021/7407086] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 07/13/2021] [Indexed: 01/05/2023]
Abstract
Objective To explore the role and possible underlying mechanism of miR-486 in ovarian cancer (OC) cells. Methods The expression of miR-486 and CADM1 was detected by qRT-PCR in OC tissues and adjacent nontumor tissues and OC cell lines. The dual-luciferase reporter gene system was used to determine the targeting relationship between miR-486 and CADM1. CCK-8, colony formation assay, Transwell, and flow cytometry were performed to detect cell proliferation, cell invasion, cell cycle progression, and the apoptotic cell death, respectively. Western blot was carried out to detect the expression of CADM1 protein and the proteins associated with cell cycle progression. Results miR-486 was significantly upregulated in OC tissues and cells, while CADM1 expression was significantly downregulated. Dual-luciferase reporter assays further confirmed that CADM1 was a target gene of miR-486. Interference with miR-486 could inhibit the proliferation and invasion and promoted the apoptosis of SKOV3 cells. Knocking down both miR-486 and CADM1 significantly increased the SKOV3 cell proliferation, invasion, and the number of cells transitioning from the G0/G1 phase into the S phase of cell cycle and reduced the cellular apoptosis. Western blot analysis revealed that the expression of cell cycle progression-related proteins (CyclinD1, CyclinE, and CDK6) was significantly reduced, and the p21 expression was increased when interfering with both miR-486 and CADM1 expression. Conclusion Our results suggested that miR-486 could act as a tumor promoter by targeting CADM1 and be a potential therapeutic target for the treatment of OC.
Collapse
|
48
|
Inhibition of Fibrotic Contraction by Sirolimus (Rapamycin) in an Ex Vivo Model of Thyroid Eye Disease. Ophthalmic Plast Reconstr Surg 2021; 37:366-371. [PMID: 33237667 DOI: 10.1097/iop.0000000000001876] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Thyroid eye disease (TED) is characterized by orbital inflammation and complicated by extraocular muscle fibrosis. Treatment with rapamycin/sirolimus has been reported to improve ocular motility and disease manifestations in TED. Whether this resulted from a primary antifibrotic effect on fibroblasts or was secondary to immune-suppression is unclear. METHODS In vitro contractility studies of primary orbital fibroblasts. Cells from patients with TED and controls were treated with rapamycin [mechanistic target of rapamycin an (mTOR) inhibitor] and MHY1485 (an mTOR stimulator) as well as inhibitors upstream in the same signaling cascade (saracatinib and befatinib). RESULTS At concentrations consistent with the therapeutic dosing range in humans, rapamycin/sirolimus significantly reduces fibrosis in orbital fibroblasts from TED patients and controls in vitro. This effect is separate from, and in addition to, its immune suppressive effect. mTOR-driven fibrotic activity is greater in TED-derived fibroblasts and can be blocked also upstream of mTOR by inhibition of src. There was no adverse effect on cell survival. CONCLUSION The authors present evidence for a direct antifibrotic effect of rapamycin/sirolimus in primary orbital fibroblasts. Targeting mTOR signaling presents a further and adjunctive treatment of TED alongside other immune-suppressive agents. By acting downstream of IGF1-R, sirolimus may offer a cost-effective alternative to teprotumumab therapy. Clinical case reports, now supplemented by this in vitro evidence, support the initiation of a clinical trial to treat the fibrotic sequelae of TED with this already-approved agent. Such an "off-the-shelf" therapy is a welcome prospect for TED treatment, particularly one available at a low price.
Collapse
|
49
|
Bai WY, Xia JW, Rong XL, Cong PK, Khederzadeh S, Zheng HF. Integrative analysis of genomic and epigenomic data reveals underlying super-enhancer-mediated microRNA regulatory network for human bone mineral density. Hum Mol Genet 2021; 30:2177-2189. [PMID: 34230965 PMCID: PMC8561425 DOI: 10.1093/hmg/ddab181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/17/2021] [Accepted: 06/29/2021] [Indexed: 12/24/2022] Open
Abstract
Bone mineral density (BMD) is a highly heritable complex trait and is a key indicator for diagnosis and treatment for osteoporosis. In the last decade, numerous susceptibility loci for BMD and fracture have been identified by genome wide association studies (GWAS); however, fine mapping of these loci is challengeable. Here, we proposed a new long-range fine-mapping approach that combined super-enhancers (SEs) and microRNAs (miRNAs) data, which were two important factors in control of cell identity and specific differentiation, with the GWAS summary datasets in cell-type-restricted way. Genome-wide SE-based analysis found that the BMD-related variants were significantly enriched in the osteoblast SE regions, indicative of potential long-range effects of such SNPs. With the SNP-mapped SEs (mSEs), 13 accessible long-range mSE-interacted miRNAs (mSE-miRNAs) were identified by integrating osteoblast Hi-C and ATAC-seq data, including three known bone-related miRNAs (miR-132-3p, miR-212-3p and miR-125b-5p). The putative targets of the two newly identified mSE-miRNAs (miR-548aj-3p and miR-190a-3p) were found largely enriched in osteogenic-related pathway and processes, suggesting that these mSE-miRNAs could be functional in the regulation of osteoblast differentiation. Furthermore, we identified 54 genes with the long-range 'mSE-miRNA' approach, and 24 of them were previously reported to be related to skeletal development. Besides, enrichment analysis found that these genes were specifically enriched in the post-transcriptional regulation and bone formation processes. This study provided a new insight into the approach of fine-mapping of GWAS loci. A tool was provided for the genome-wide SE-based analysis and the detection of long-range osteoblast-restricted mSE-miRNAs (https://github.com/Zheng-Lab-Westlake/Osteo-Fine-Mapp-SNP2SE2miRNA).
Collapse
Affiliation(s)
- Wei-Yang Bai
- Fudan University, Shanghai, China.,Diseases & Population (DaP) Geninfo Lab, School of Life Sciences, Westlake University, 18 Shilongshan Road, Xihu District, Hangzhou 310024, Zhejiang, China.,Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Xihu District, Hangzhou 310024, Zhejiang, China.,Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Xihu District, Hangzhou 310024, Zhejiang, China
| | - Jiang-Wei Xia
- Diseases & Population (DaP) Geninfo Lab, School of Life Sciences, Westlake University, 18 Shilongshan Road, Xihu District, Hangzhou 310024, Zhejiang, China.,Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Xihu District, Hangzhou 310024, Zhejiang, China.,Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Xihu District, Hangzhou 310024, Zhejiang, China
| | - Xiao-Li Rong
- Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Pei-Kuan Cong
- Diseases & Population (DaP) Geninfo Lab, School of Life Sciences, Westlake University, 18 Shilongshan Road, Xihu District, Hangzhou 310024, Zhejiang, China.,Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Xihu District, Hangzhou 310024, Zhejiang, China.,Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Xihu District, Hangzhou 310024, Zhejiang, China
| | - Saber Khederzadeh
- Diseases & Population (DaP) Geninfo Lab, School of Life Sciences, Westlake University, 18 Shilongshan Road, Xihu District, Hangzhou 310024, Zhejiang, China.,Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Xihu District, Hangzhou 310024, Zhejiang, China.,Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Xihu District, Hangzhou 310024, Zhejiang, China
| | - Hou-Feng Zheng
- Fudan University, Shanghai, China.,Diseases & Population (DaP) Geninfo Lab, School of Life Sciences, Westlake University, 18 Shilongshan Road, Xihu District, Hangzhou 310024, Zhejiang, China.,Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Xihu District, Hangzhou 310024, Zhejiang, China.,Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Xihu District, Hangzhou 310024, Zhejiang, China
| |
Collapse
|
50
|
Zhang K, Feng Q, Fang Z, Gu L, Bian L. Structurally Dynamic Hydrogels for Biomedical Applications: Pursuing a Fine Balance between Macroscopic Stability and Microscopic Dynamics. Chem Rev 2021; 121:11149-11193. [PMID: 34189903 DOI: 10.1021/acs.chemrev.1c00071] [Citation(s) in RCA: 177] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Owing to their unique chemical and physical properties, hydrogels are attracting increasing attention in both basic and translational biomedical studies. Although the classical hydrogels with static networks have been widely reported for decades, a growing number of recent studies have shown that structurally dynamic hydrogels can better mimic the dynamics and functions of natural extracellular matrix (ECM) in soft tissues. These synthetic materials with defined compositions can recapitulate key chemical and biophysical properties of living tissues, providing an important means to understanding the mechanisms by which cells sense and remodel their surrounding microenvironments. This review begins with the overall expectation and design principles of dynamic hydrogels. We then highlight recent progress in the fabrication strategies of dynamic hydrogels including both degradation-dependent and degradation-independent approaches, followed by their unique properties and use in biomedical applications such as regenerative medicine, drug delivery, and 3D culture. Finally, challenges and emerging trends in the development and application of dynamic hydrogels are discussed.
Collapse
Affiliation(s)
- Kunyu Zhang
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States.,Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Qian Feng
- Bioengineering College, Chongqing University, Chongqing 400044, People's Republic of China
| | - Zhiwei Fang
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States.,Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Luo Gu
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States.,Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Liming Bian
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, People's Republic of China.,National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, People's Republic of China.,Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, People's Republic of China.,Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, People's Republic of China.,Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, People's Republic of China
| |
Collapse
|