1
|
Zhao G, Li X, Zhang Y, Wang X, Deng L, Xu J, Jin S, Zuo Z, Xun L, Luo M, Yang F, Qi J, Fu P. Intricating connections: the role of ferroptosis in systemic lupus erythematosus. Front Immunol 2025; 16:1534926. [PMID: 39967676 PMCID: PMC11832682 DOI: 10.3389/fimmu.2025.1534926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 01/17/2025] [Indexed: 02/20/2025] Open
Abstract
Systemic lupus erythematosus (SLE) is a chronic inflammatory and autoimmune disease with multiple tissue damage. However, the pathology remains elusive, and effective treatments are lacking. Multiple types of programmed cell death (PCD) implicated in SLE progression have recently been identified. Although ferroptosis, an iron-dependent form of cell death, has numerous pathophysiological features similar to those of SLE, such as intracellular iron accumulation, mitochondrial dysfunction, lipid metabolism disorders and concentration of damage associated-molecular patterns (DAMPs), only a few reports have demonstrated that ferroptosis is involved in SLE progression and that the role of ferroptosis in SLE pathogenesis continues to be neglected. Therefore, this review elucidates the potential intricate relationship between SLE and ferroptosis to provide a reliable theoretical basis for further research on ferroptosis in the pathogenesis of SLE.
Collapse
Affiliation(s)
- Guowang Zhao
- Department of Rheumatology and Clinical Immunology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Xinghai Li
- Department of Minimal Invasive Intervention Radiology, Ganzhou People’s Hospital, Ganzhou, Jiangxi, China
| | - Ying Zhang
- Yunnan Digestive Endoscopy Clinical Medical Center, Department of Gastroenterology, The First People’s Hospital of Yunnan Province, Affiliated by Kunming University of Science and Technology, Kunming, Yunnan, China
- School of Medicine, The First People’s Hospital of Yunnan Province, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Xingzi Wang
- Department of Nephrology, Yueyang Central Hospital, Yueyang, Hunan, China
| | - Li Deng
- Department of Internal Medicine, Community Health Service Station of Dian Mian Avenue, Kunming, Yunnan, China
| | - Juan Xu
- Yunnan Digestive Endoscopy Clinical Medical Center, Department of Gastroenterology, The First People’s Hospital of Yunnan Province, Affiliated by Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Shumei Jin
- Yunnan Institute of Food and Drug Supervision and Control, Medical Products Administration of Yunnan Province, Kunming, Yunnan, China
| | - Zan Zuo
- Yunnan Digestive Endoscopy Clinical Medical Center, Department of Gastroenterology, The First People’s Hospital of Yunnan Province, Affiliated by Kunming University of Science and Technology, Kunming, Yunnan, China
- School of Medicine, The First People’s Hospital of Yunnan Province, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Linting Xun
- Yunnan Digestive Endoscopy Clinical Medical Center, Department of Gastroenterology, The First People’s Hospital of Yunnan Province, Affiliated by Kunming University of Science and Technology, Kunming, Yunnan, China
- School of Medicine, The First People’s Hospital of Yunnan Province, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Mei Luo
- Yunnan Digestive Endoscopy Clinical Medical Center, Department of Gastroenterology, The First People’s Hospital of Yunnan Province, Affiliated by Kunming University of Science and Technology, Kunming, Yunnan, China
- School of Medicine, The First People’s Hospital of Yunnan Province, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Fan Yang
- School of Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Jialong Qi
- Yunnan Digestive Endoscopy Clinical Medical Center, Department of Gastroenterology, The First People’s Hospital of Yunnan Province, Affiliated by Kunming University of Science and Technology, Kunming, Yunnan, China
- School of Medicine, The First People’s Hospital of Yunnan Province, Kunming University of Science and Technology, Kunming, Yunnan, China
- Yunnan Provincial Key Laboratory of Clinical Virology, The First People’s Hospital of Yunnan Province, Kunming, Yunnan, China
- Yunnan Provincial Key Laboratory of Birth Defects and Genetic Diseases, First People’s Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Ping Fu
- Department of Rheumatology and Clinical Immunology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| |
Collapse
|
2
|
Li S, Liu H, Hu H, Ha E, Prasad P, Jenkins BC, Das US, Mukherjee S, Shishikura K, Hu R, Rader DJ, Pei L, Baur JA, Matthews ML, FitzGerald GA, McReynolds MR, Susztak K. Human genetics identify convergent signals in mitochondrial LACTB-mediated lipid metabolism in cardiovascular-kidney-metabolic syndrome. Cell Metab 2025; 37:154-168.e7. [PMID: 39561766 PMCID: PMC11972450 DOI: 10.1016/j.cmet.2024.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/15/2024] [Accepted: 10/04/2024] [Indexed: 11/21/2024]
Abstract
The understanding of cardiovascular-kidney-metabolic syndrome remains difficult despite recently performed large scale genome-wide association studies. Here, we identified beta-lactamase (LACTB), a novel gene whose expression is targeted by genetic variations causing kidney dysfunction and hyperlipidemia. Mice with LACTB deletion developed impaired glucose tolerance, elevated lipid levels, and increased sensitivity to kidney disease, while mice with tubule-specific overexpression of LACTB were protected from kidney injury. We show that LACTB is a novel mitochondrial protease cleaving and activating phospholipase A2 group VI (PLA2G6), a kidney-metabolic risk gene itself. Genetic deletion of PLA2G6 in tubule-specific LACTB-overexpressing mice abolished the protective function of LACTB. Via mouse and human lipidomic studies, we show that LACTB and downstream PLA2G6 convert oxidized phosphatidylethanolamine to lyso-phosphatidylethanolamine and thereby regulate mitochondrial function and ferroptosis. In summary, we identify a novel gene and a core targetable pathway for kidney-metabolic disorders.
Collapse
Affiliation(s)
- Shen Li
- Department of Medicine, Renal Electrolyte and Hypertension Division, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Penn/CHOP Kidney Innovation Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hongbo Liu
- Department of Medicine, Renal Electrolyte and Hypertension Division, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Penn/CHOP Kidney Innovation Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hailong Hu
- Department of Medicine, Renal Electrolyte and Hypertension Division, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Penn/CHOP Kidney Innovation Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Eunji Ha
- Department of Medicine, Renal Electrolyte and Hypertension Division, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Penn/CHOP Kidney Innovation Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Praveena Prasad
- Department of Biochemistry and Molecular Biology, The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Brenita C Jenkins
- Department of Biochemistry and Molecular Biology, The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Ujjalkumar Subhash Das
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sarmistha Mukherjee
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kyosuke Shishikura
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Renming Hu
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Daniel J Rader
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Medicine, Division of Translational Medicine and Human Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Liming Pei
- Center for Mitochondrial and Epigenomic Medicine, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Joseph A Baur
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Megan L Matthews
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Garret A FitzGerald
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Melanie R McReynolds
- Department of Biochemistry and Molecular Biology, The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Katalin Susztak
- Department of Medicine, Renal Electrolyte and Hypertension Division, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Penn/CHOP Kidney Innovation Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
3
|
Du L, Wang Y, Ma H, Fan J, Wang S, Liu J, Wang X. Exploring novel markers for coronary heart disease associated with systemic lupus erythematosus: A review. Medicine (Baltimore) 2024; 103:e40773. [PMID: 39686502 DOI: 10.1097/md.0000000000040773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2024] Open
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune condition that is characterized by the production of autoantibodies and sustained inflammatory damage. Coronary heart disease (CHD) is a common complication of SLE, significantly increases CHD-related mortality in SLE patients. Despite conventional risk factors, the mechanisms contributing to a higher CHD risk require further investigation, with the immune and inflammatory aspects of SLE playing a significant role. Endothelial cell damage and dysfunction are key factors in the progression of coronary atherosclerosis in SLE patients. This review specifically focuses on endothelial dysfunction and the role of specific microRNAs in the context of SLE and CHD. In addition, we discuss the effects and functions of oxidative stress markers, endothelial progenitor cells, and circulating endothelial cells in individuals with both SLE and CHD. We also explored the typical inflammatory markers associated with SLE and CHD, addressing their clinical significance and limitations.
Collapse
Affiliation(s)
- Linping Du
- Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Weifang, China
- Shandong Second Medical University, Weifang, China
| | - Yuqun Wang
- Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Weifang, China
- Shandong Second Medical University, Weifang, China
| | - Honglei Ma
- Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Weifang, China
- Shandong Second Medical University, Weifang, China
| | - Jiaheng Fan
- Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Weifang, China
- Shandong Second Medical University, Weifang, China
| | - Shiqi Wang
- Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Weifang, China
- Shandong Second Medical University, Weifang, China
| | - Junhong Liu
- Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Weifang, China
- Shandong Second Medical University, Weifang, China
| | - Xiaodong Wang
- Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Weifang, China
| |
Collapse
|
4
|
Simon Q, Tchen J, Charles N. [Basophil granulocytes control pathogenic accumulation of T follicular helper cells during lupus]. Med Sci (Paris) 2024; 40:815-818. [PMID: 39656976 DOI: 10.1051/medsci/2024143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024] Open
Affiliation(s)
- Quentin Simon
- Université Paris Cité, Centre de recherche sur l'inflammation, Inserm UMR1149, CNRS EMR8252, Laboratoire d'excellence Inflamex, Paris, France - Inovarion, Paris, France
| | - John Tchen
- Université Paris Cité, Centre de recherche sur l'inflammation, Inserm UMR1149, CNRS EMR8252, Laboratoire d'excellence Inflamex, Paris, France - Université de Bordeaux, ImmunoConcept Lab CNRS UMR5164, Bordeaux, France
| | - Nicolas Charles
- Université Paris Cité, Centre de recherche sur l'inflammation, Inserm UMR1149, CNRS EMR8252, Laboratoire d'excellence Inflamex, Paris, France
| |
Collapse
|
5
|
Jaiswal S, Kumar S, Sarkar B, Sinha RK. Therapeutic potential of Nelumbo nucifera Linn. in systemic lupus erythematosus: Network pharmacology and molecular modeling insights. Lupus 2024; 33:1155-1167. [PMID: 39135520 DOI: 10.1177/09612033241273074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
BACKGROUND Systemic lupus erythematosus is a chronic autoimmune inflammatory disease characterized by multiple symptoms. The phenolic acids and other flavonoids in Nelumbo nucifera have anti-oxidants, anti-inflammatory, and immunomodulatory activities that are essential for managing SLE through natural sources. This study employs network pharmacology to unveil the multi-target and multi-pathway mechanisms of Nelumbo nucifera as a complementary therapy. The findings are validated through molecular modeling, which includes molecular docking followed by a molecular dynamics study. METHODS Active compounds and targets of SLE were obtained from IMPPAT, KNApAcKFamily and SwissTargetPrediction databases. SLE-related targets were retrieved from GeneCards and OMIM databases. A protein-protein interaction (PPI) network was built to screen out the core targets using Cytoscape software. ShinyGO was used for GO and KEGG pathway enrichment analyses. Interactions between potential targets and active compounds were assessed by molecular docking and molecular dynamics simulation study. RESULTS In total, 12 active compounds and 1190 targets of N. nucifera's were identified. A network analysis of the PPI network revealed 10 core targets. GO and KEGG pathway enrichment analyses indicated that the effects of N. nucifera are mediated mainly by AGE-RAGE and other associated signalling pathways. Molecular docking indicated favourable binding affinities, particularly leucocianidol exhibiting less than -4.5 kcal/mol for all 10 targets. Subsequent molecular dynamics simulations of the leucocianidol-ESR1 complex aimed to elucidate the optimal binding complex's stability and flexibility. CONCLUSIONS Our study unveiled the potential therapeutic mechanism of N. nucifera in managing SLE. These findings provide insights for subsequent experimental validation and open up new avenues for further research in this field.
Collapse
Affiliation(s)
- Sugandha Jaiswal
- Department of Bioengineering and Biotechnology, Birla Institute of Technology(BIT), Mesra, Ranch, Jharkhand, India
| | - Satish Kumar
- Group Polyphenol-BIT, Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| | - Biswatrish Sarkar
- Group Polyphenol-BIT, Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| | - Rakesh Kumar Sinha
- Department of Bioengineering and Biotechnology, Birla Institute of Technology(BIT), Mesra, Ranch, Jharkhand, India
| |
Collapse
|
6
|
Tozaki N, Tawada C, Tanaka K, Im D, Ueda K, Kato N, Tsuji H, Yoshie Y, Matsuo M, Ichiki N, Niwa H, Mizutani Y, Shu E, Iwata H. Diacron-Reactive Oxygen Metabolites Levels Are Initially Elevated in Patients with Bullous Pemphigoid. JID INNOVATIONS 2024; 4:100282. [PMID: 38859975 PMCID: PMC11163163 DOI: 10.1016/j.xjidi.2024.100282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/07/2024] [Accepted: 03/31/2024] [Indexed: 06/12/2024] Open
Abstract
ROS are involved in the pathogenesis of bullous pemphigoid (BP), but this involvement has not been fully elucidated. In this study, to further elucidate the pathogenic role of ROS in BP, we examined the results of the diacron-reactive oxygen metabolite test and the biological antioxidant potential test for 16 patients with BP who visited our hospital before being treated with systemic corticosteroids. In the patients with BP, the average diacron-reactive oxygen metabolite levels, expressed in Carratelli units, were significantly reduced at 1 month of treatment (from 335.6 ± 40.3 Carratelli units to 224.7 ± 61.6 Carratelli units, P < .001). Bullous Pemphigoid Disease Area Index (erosions/blisters) scores correlated with diacron-reactive oxygen metabolite levels (r = 0.51), suggesting that those levels reflect the disease severity. We also performed staining of 3,5-dibromotyrosine in skin tissues. The 3,5-dibromotyrosine is expected to be a marker of tissue damage related to inflammation and allergies. The 3,5-dibromotyrosine was stained in infiltrated cells around the dermis, throughout the blister fluid, and at the basement membrane within the blister. It is considered that tissue destruction caused by the myeloperoxidase released from neutrophils and by eosinophil peroxidase released from eosinophils is involved in blister formation. The results suggest that ROS play a role in BP.
Collapse
Affiliation(s)
- Nagie Tozaki
- Department of Dermatology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Chisato Tawada
- Department of Dermatology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Kayoko Tanaka
- Department of Dermatology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Dongjun Im
- Department of Dermatology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Keisuke Ueda
- Department of Dermatology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Noriko Kato
- Department of Dermatology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Hiromu Tsuji
- Department of Dermatology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Yuka Yoshie
- Department of Dermatology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Maho Matsuo
- Department of Dermatology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Naohisa Ichiki
- Department of Dermatology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Hirofumi Niwa
- Department of Dermatology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Yoko Mizutani
- Department of Dermatology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - En Shu
- Department of Dermatology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Hiroaki Iwata
- Department of Dermatology, Gifu University Graduate School of Medicine, Gifu, Japan
| |
Collapse
|
7
|
Tchen J, Simon Q, Chapart L, Thaminy MK, Vibhushan S, Saveanu L, Lamri Y, Saidoune F, Pacreau E, Pellefigues C, Bex-Coudrat J, Karasuyama H, Miyake K, Hidalgo J, Fallon PG, Papo T, Blank U, Benhamou M, Hanouna G, Sacre K, Daugas E, Charles N. PD-L1- and IL-4-expressing basophils promote pathogenic accumulation of T follicular helper cells in lupus. Nat Commun 2024; 15:3389. [PMID: 38649353 PMCID: PMC11035650 DOI: 10.1038/s41467-024-47691-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 04/04/2024] [Indexed: 04/25/2024] Open
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by anti-nuclear autoantibodies whose production is promoted by autoreactive T follicular helper (TFH) cells. During SLE pathogenesis, basophils accumulate in secondary lymphoid organs (SLO), amplify autoantibody production and disease progression through mechanisms that remain to be defined. Here, we provide evidence for a direct functional relationship between TFH cells and basophils during lupus pathogenesis, both in humans and mice. PD-L1 upregulation on basophils and IL-4 production are associated with TFH and TFH2 cell expansions and with disease activity. Pathogenic TFH cell accumulation, maintenance, and function in SLO were dependent on PD-L1 and IL-4 in basophils, which induced a transcriptional program allowing TFH2 cell differentiation and function. Our study establishes a direct mechanistic link between basophils and TFH cells in SLE that promotes autoantibody production and lupus nephritis.
Collapse
Affiliation(s)
- John Tchen
- Université Paris Cité, Centre de Recherche sur l'Inflammation, INSERM UMR1149, CNRS EMR8252, Faculté de Médecine site Bichat, 75018, Paris, France
- Université Paris Cité, Laboratoire d'Excellence Inflamex, 75018, Paris, France
| | - Quentin Simon
- Université Paris Cité, Centre de Recherche sur l'Inflammation, INSERM UMR1149, CNRS EMR8252, Faculté de Médecine site Bichat, 75018, Paris, France
- Université Paris Cité, Laboratoire d'Excellence Inflamex, 75018, Paris, France
- Inovarion, 75005, Paris, France
| | - Léa Chapart
- Université Paris Cité, Centre de Recherche sur l'Inflammation, INSERM UMR1149, CNRS EMR8252, Faculté de Médecine site Bichat, 75018, Paris, France
- Université Paris Cité, Laboratoire d'Excellence Inflamex, 75018, Paris, France
| | - Morgane K Thaminy
- Université Paris Cité, Centre de Recherche sur l'Inflammation, INSERM UMR1149, CNRS EMR8252, Faculté de Médecine site Bichat, 75018, Paris, France
- Université Paris Cité, Laboratoire d'Excellence Inflamex, 75018, Paris, France
| | - Shamila Vibhushan
- Université Paris Cité, Centre de Recherche sur l'Inflammation, INSERM UMR1149, CNRS EMR8252, Faculté de Médecine site Bichat, 75018, Paris, France
- Université Paris Cité, Laboratoire d'Excellence Inflamex, 75018, Paris, France
| | - Loredana Saveanu
- Université Paris Cité, Centre de Recherche sur l'Inflammation, INSERM UMR1149, CNRS EMR8252, Faculté de Médecine site Bichat, 75018, Paris, France
- Université Paris Cité, Laboratoire d'Excellence Inflamex, 75018, Paris, France
| | - Yasmine Lamri
- Université Paris Cité, Centre de Recherche sur l'Inflammation, INSERM UMR1149, CNRS EMR8252, Faculté de Médecine site Bichat, 75018, Paris, France
- Université Paris Cité, Laboratoire d'Excellence Inflamex, 75018, Paris, France
| | - Fanny Saidoune
- Université Paris Cité, Centre de Recherche sur l'Inflammation, INSERM UMR1149, CNRS EMR8252, Faculté de Médecine site Bichat, 75018, Paris, France
- Université Paris Cité, Laboratoire d'Excellence Inflamex, 75018, Paris, France
| | - Emeline Pacreau
- Université Paris Cité, Centre de Recherche sur l'Inflammation, INSERM UMR1149, CNRS EMR8252, Faculté de Médecine site Bichat, 75018, Paris, France
- Université Paris Cité, Laboratoire d'Excellence Inflamex, 75018, Paris, France
| | - Christophe Pellefigues
- Université Paris Cité, Centre de Recherche sur l'Inflammation, INSERM UMR1149, CNRS EMR8252, Faculté de Médecine site Bichat, 75018, Paris, France
- Université Paris Cité, Laboratoire d'Excellence Inflamex, 75018, Paris, France
| | - Julie Bex-Coudrat
- Université Paris Cité, Centre de Recherche sur l'Inflammation, INSERM UMR1149, CNRS EMR8252, Faculté de Médecine site Bichat, 75018, Paris, France
- Université Paris Cité, Laboratoire d'Excellence Inflamex, 75018, Paris, France
| | - Hajime Karasuyama
- Inflammation, Infection and Immunity Laboratory, TMDU Advanced Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Kensuke Miyake
- Inflammation, Infection and Immunity Laboratory, TMDU Advanced Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Juan Hidalgo
- Universidad Autonoma de Barcelona, Facultad de Biociencias, Unidad de Fisiologia Animal Bellaterra, Bellaterra Campus, 08193, Barcelona, Spain
| | | | - Thomas Papo
- Université Paris Cité, Centre de Recherche sur l'Inflammation, INSERM UMR1149, CNRS EMR8252, Faculté de Médecine site Bichat, 75018, Paris, France
- Université Paris Cité, Laboratoire d'Excellence Inflamex, 75018, Paris, France
- Service de Médecine Interne, Hôpital Bichat, Assistance Publique - Hôpitaux de Paris, 75018, Paris, France
| | - Ulrich Blank
- Université Paris Cité, Centre de Recherche sur l'Inflammation, INSERM UMR1149, CNRS EMR8252, Faculté de Médecine site Bichat, 75018, Paris, France
- Université Paris Cité, Laboratoire d'Excellence Inflamex, 75018, Paris, France
| | - Marc Benhamou
- Université Paris Cité, Centre de Recherche sur l'Inflammation, INSERM UMR1149, CNRS EMR8252, Faculté de Médecine site Bichat, 75018, Paris, France
- Université Paris Cité, Laboratoire d'Excellence Inflamex, 75018, Paris, France
| | - Guillaume Hanouna
- Université Paris Cité, Centre de Recherche sur l'Inflammation, INSERM UMR1149, CNRS EMR8252, Faculté de Médecine site Bichat, 75018, Paris, France
- Université Paris Cité, Laboratoire d'Excellence Inflamex, 75018, Paris, France
- Service de Néphrologie, Hôpital Bichat, Assistance Publique - Hôpitaux de Paris, 75018, Paris, France
| | - Karim Sacre
- Université Paris Cité, Centre de Recherche sur l'Inflammation, INSERM UMR1149, CNRS EMR8252, Faculté de Médecine site Bichat, 75018, Paris, France
- Université Paris Cité, Laboratoire d'Excellence Inflamex, 75018, Paris, France
- Service de Médecine Interne, Hôpital Bichat, Assistance Publique - Hôpitaux de Paris, 75018, Paris, France
| | - Eric Daugas
- Université Paris Cité, Centre de Recherche sur l'Inflammation, INSERM UMR1149, CNRS EMR8252, Faculté de Médecine site Bichat, 75018, Paris, France
- Université Paris Cité, Laboratoire d'Excellence Inflamex, 75018, Paris, France
- Service de Néphrologie, Hôpital Bichat, Assistance Publique - Hôpitaux de Paris, 75018, Paris, France
| | - Nicolas Charles
- Université Paris Cité, Centre de Recherche sur l'Inflammation, INSERM UMR1149, CNRS EMR8252, Faculté de Médecine site Bichat, 75018, Paris, France.
- Université Paris Cité, Laboratoire d'Excellence Inflamex, 75018, Paris, France.
| |
Collapse
|
8
|
Charles N, Kortekaas-Krohn I, Kocaturk E, Scheffel J, Altrichter S, Steinert C, Xiang YK, Gutermuth J, Reber LL, Maurer M. Autoreactive IgE: Pathogenic role and therapeutic target in autoimmune diseases. Allergy 2023; 78:3118-3135. [PMID: 37555488 DOI: 10.1111/all.15843] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/08/2023] [Accepted: 07/27/2023] [Indexed: 08/10/2023]
Abstract
Autoimmunity is the break of tolerance to self-antigens that leads to organ-specific or systemic diseases often characterized by the presence of pathogenic autoreactive antibodies (AAb) produced by plasmablast and/or plasma cells. AAb are prevalent in the general population and not systematically associated with clinical symptoms. In contrast, in some individuals, these AAb are pathogenic and drive the development of signs and symptoms of antibody-mediated autoimmune diseases (AbAID). AAb production, isotype profiles, and glycosylations are promoted by pro-inflammatory triggers linked to genetic, environmental, and hormonal parameters. Recent evidence supports a role for pathogenic AAb of the IgE isotype in a number of AbAID. Autoreactive IgE can drive the activation of mast cells, basophils, and other types of FcεRI-bearing cells and may play a role in promoting autoantibody production and other pro-inflammatory pathways. In this review, we discuss the current knowledge on the pathogenicity of autoreactive IgE in AbAID and their status as therapeutic targets. We also highlight unresolved issues including the need for assays that reproducibly quantify IgE AAbs, to validate their diagnostic and prognostic value, and to further study their pathophysiological contributions to AbAID.
Collapse
Affiliation(s)
- Nicolas Charles
- Faculté de Médecine site Bichat, Centre de Recherche sur l'Inflammation, INSERM UMR1149, CNRS EMR8252, Université Paris Cité, Paris, France
- Laboratoire d'Excellence Inflamex, Université Paris Cité, Paris, France
| | - Inge Kortekaas-Krohn
- Vrije Universiteit Brussel (VUB), Skin Immunology & Immune Tolerance (SKIN) Research Group, Brussels, Belgium
- Department of Dermatology, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Emek Kocaturk
- Department of Dermatology, Koç University School of Medicine, Istanbul, Turkey
- Institute of Allergology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, Berlin, Germany
| | - Jörg Scheffel
- Institute of Allergology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, Berlin, Germany
| | - Sabine Altrichter
- Institute of Allergology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, Berlin, Germany
- Departement of Dermatology and Venerology, Kepler University Hospital, Linz, Austria
| | - Carolin Steinert
- Institute of Allergology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, Berlin, Germany
- Freie Universität Berlin, Department of Biology, Chemistry and Pharmacy, Berlin, Germany
| | - Yi-Kui Xiang
- Institute of Allergology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, Berlin, Germany
| | - Jan Gutermuth
- Vrije Universiteit Brussel (VUB), Skin Immunology & Immune Tolerance (SKIN) Research Group, Brussels, Belgium
- Department of Dermatology, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Laurent L Reber
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), UMR 1291, University of Toulouse, INSERM, CNRS, Toulouse, France
| | - Marcus Maurer
- Institute of Allergology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, Berlin, Germany
| |
Collapse
|
9
|
Najar M, Alsabri SG, Guedi GG, Merimi M, Lavoie F, Grabs D, Pelletier JP, Martel-Pelletier J, Benderdour M, Fahmi H. Role of epigenetics and the transcription factor Sp1 in the expression of the D prostanoid receptor 1 in human cartilage. Front Cell Dev Biol 2023; 11:1256998. [PMID: 38099292 PMCID: PMC10720455 DOI: 10.3389/fcell.2023.1256998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 11/16/2023] [Indexed: 12/17/2023] Open
Abstract
D prostanoid receptor 1 (DP1), a prostaglandin D2 receptor, plays a central role in the modulation of inflammation and cartilage metabolism. We have previously shown that activation of DP1 signaling downregulated catabolic responses in cultured chondrocytes and was protective in mouse osteoarthritis (OA). However, the mechanisms underlying its transcriptional regulation in cartilage remained poorly understood. In the present study, we aimed to characterize the human DP1 promoter and the role of DNA methylation in DP1 expression in chondrocytes. In addition, we analyzed the expression level and methylation status of the DP1 gene promoter in normal and OA cartilage. Deletion and site-directed mutagenesis analyses identified a minimal promoter region (-250/-120) containing three binding sites for specificity protein 1 (Sp1). Binding of Sp1 to the DP1 promoter was confirmed using electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation (ChIP) assays. Treatment with the Sp1 inhibitor mithramycin A reduced DP1 promoter activity and DP1 mRNA expression. Inhibition of DNA methylation by 5-Aza-2'-deoxycytidine upregulated DP1 expression, and in vitro methylation reduced the DP1 promoter activity. Neither the methylation status of the DP1 promoter nor the DP1 expression level were different between normal and OA cartilage. In conclusion, our results suggest that the transcription factor Sp1 and DNA methylation are important determinants of DP1 transcription regulation. They also suggest that the methylation status and expression level of DP1 are not altered in OA cartilage. These findings will improve our understanding of the regulatory mechanisms of DP1 transcription and may facilitate the development of intervention strategies involving DP1.
Collapse
Affiliation(s)
- Mehdi Najar
- Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), Montreal, QC, Canada
| | - Sami G. Alsabri
- Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), Montreal, QC, Canada
| | - Gadid G. Guedi
- Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), Montreal, QC, Canada
| | - Makram Merimi
- Laboratory of Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Frédéric Lavoie
- Departement of Orthopedic Surgery, University of Montreal Hospital Center (CHUM), Montréal, QC, Canada
| | - Detlev Grabs
- Research Unit in Clinical and Functional Anatomy, Department of Anatomy, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
| | - Jean-Pierre Pelletier
- Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), Montreal, QC, Canada
| | - Johanne Martel-Pelletier
- Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), Montreal, QC, Canada
| | - Mohamed Benderdour
- Orthopedics Research Laboratory, Research Center, Hôpital du Sacré-Cœur de Montréal, Université de Montréal, Montréal, QC, Canada
| | - Hassan Fahmi
- Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), Montreal, QC, Canada
| |
Collapse
|
10
|
Wang M, Rajkumar S, Lai Y, Liu X, He J, Ishikawa T, Nallapothula D, Singh RR. Tertiary lymphoid structures as local perpetuators of organ-specific immune injury: implication for lupus nephritis. Front Immunol 2023; 14:1204777. [PMID: 38022566 PMCID: PMC10644380 DOI: 10.3389/fimmu.2023.1204777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
In response to inflammatory stimuli in conditions such as autoimmune disorders, infections and cancers, immune cells organize in nonlymphoid tissues, which resemble secondary lymphoid organs. Such immune cell clusters are called tertiary lymphoid structures (TLS). Here, we describe the potential role of TLS in the pathogenesis of autoimmune disease, focusing on lupus nephritis, a condition that incurs major morbidity and mortality. In the kidneys of patients and animals with lupus nephritis, the presence of immune cell aggregates with similar cell composition, structure, and gene signature as lymph nodes and of lymphoid tissue-inducer and -organizer cells, along with evidence of communication between stromal and immune cells are indicative of the formation of TLS. TLS formation in kidneys affected by lupus may be instigated by local increases in lymphorganogenic chemokines such as CXCL13, and in molecules associated with leukocyte migration and vascularization. Importantly, the presence of TLS in kidneys is associated with severe tubulointerstitial inflammation, higher disease activity and chronicity indices, and poor response to treatment in patients with lupus nephritis. TLS may contribute to the pathogenesis of lupus nephritis by increasing local IFN-I production, facilitating the recruitment and supporting survival of autoreactive B cells, maintaining local production of systemic autoantibodies such as anti-dsDNA and anti-Sm/RNP autoantibodies, and initiating epitope spreading to local autoantigens. Resolution of TLS, along with improvement in lupus, by treating animals with soluble BAFF receptor, docosahexaenoic acid, complement inhibitor C4BP(β-), S1P1 receptor modulator Cenerimod, dexamethasone, and anti-CXCL13 further emphasizes a role of TLS in the pathogenesis of lupus. However, the mechanisms underlying TLS formation and their roles in the pathogenesis of lupus nephritis are not fully comprehended. Furthermore, the lack of non-invasive methods to visualize/quantify TLS in kidneys is also a major hurdle; however, recent success in visualizing TLS in lupus-prone mice by photon emission computed tomography provides hope for early detection and manipulation of TLS.
Collapse
Affiliation(s)
- Meiying Wang
- Department of Rheumatology and Immunology, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
- Peking University Shenzhen Hosiptal, Shenzhen, China
- Autoimmunity and Tolerance Laboratory, Division of Rheumatology, Department of Medicine, David Geffen School of Medicine at University of California Los Angeles (UCLA), Los Angeles, CA, United States
| | - Snehin Rajkumar
- Autoimmunity and Tolerance Laboratory, Division of Rheumatology, Department of Medicine, David Geffen School of Medicine at University of California Los Angeles (UCLA), Los Angeles, CA, United States
| | - Yupeng Lai
- Department of Rheumatology and Immunology, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Xingjiao Liu
- Department of Rheumatology and Immunology, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Jing He
- Department of Rheumatology and Immunology, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
- Department of Nephrology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Tatsuya Ishikawa
- Autoimmunity and Tolerance Laboratory, Division of Rheumatology, Department of Medicine, David Geffen School of Medicine at University of California Los Angeles (UCLA), Los Angeles, CA, United States
| | - Dhiraj Nallapothula
- Autoimmunity and Tolerance Laboratory, Division of Rheumatology, Department of Medicine, David Geffen School of Medicine at University of California Los Angeles (UCLA), Los Angeles, CA, United States
| | - Ram Raj Singh
- Autoimmunity and Tolerance Laboratory, Division of Rheumatology, Department of Medicine, David Geffen School of Medicine at University of California Los Angeles (UCLA), Los Angeles, CA, United States
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
- Molecular Toxicology Interdepartmental Program, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| |
Collapse
|
11
|
Fujimoto S, Arinobu Y, Miyawaki K, Ayano M, Mitoma H, Kimoto Y, Ono N, Akashi K, Horiuchi T, Niiro H. Anti-dsDNA IgE induces IL-4 production from basophils, potentially involved in B-cell differentiation in systemic lupus erythematosus. Rheumatology (Oxford) 2023; 62:3480-3489. [PMID: 36810600 DOI: 10.1093/rheumatology/kead082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/26/2023] [Accepted: 02/06/2023] [Indexed: 02/24/2023] Open
Abstract
OBJECTIVES Recently, the involvement of basophils and IgE-type autoantibodies in the pathogenesis of SLE has been elucidated using mouse models; however, few studies have been conducted in humans. In this study, the role of basophils and anti-double-stranded DNA (dsDNA) IgE in SLE was examined using human samples. METHODS The correlation between disease activity and serum levels of anti-dsDNA IgE in SLE was evaluated using enzyme-linked immunosorbent assay. Cytokines produced by IgE-stimulated basophils from healthy subjects were assessed using RNA sequences. The interaction of basophils and B cells to promote B cell differentiation was investigated using a co-culture system. The ability of basophils from patients with SLE with anti-dsDNA IgE to create cytokines that may be involved in B cell differentiation in response to dsDNA was examined using real-time PCR. RESULTS Anti-dsDNA IgE levels in the serum of patients with SLE correlated with disease activity. Healthy donor basophils produced IL-3, IL-4 and TGF-β1 after anti-IgE stimulation. Co-culture of B cells with anti-IgE-stimulated basophils increased plasmablasts which were cancelled by neutralizing IL-4. After encountering the antigen, basophils released IL-4 more quickly than follicular helper T cells. Basophils isolated from patients with anti-dsDNA IgE promoted IL-4 expression by adding dsDNA. CONCLUSIONS These results suggest that basophils contribute to the pathogenesis of SLE by promoting B cell differentiation via dsDNA-specific IgE in patients similar to the process described in mouse models.
Collapse
Affiliation(s)
- Sho Fujimoto
- Department of Clinical Immunology and Rheumatology/Infectious Disease, Kyushu University Hospital, Fukuoka, Japan
| | - Yojiro Arinobu
- Department of Clinical Immunology and Rheumatology/Infectious Disease, Kyushu University Hospital, Fukuoka, Japan
| | - Kohta Miyawaki
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Masahiro Ayano
- Department of Cancer Stem Cell Research, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Hiroki Mitoma
- Department of Clinical Immunology and Rheumatology/Infectious Disease, Kyushu University Hospital, Fukuoka, Japan
| | - Yasutaka Kimoto
- Department of Internal Medicine, Kyushu University Beppu Hospital, Oita, Japan
| | - Nobuyuki Ono
- Department of Clinical Immunology and Rheumatology/Infectious Disease, Kyushu University Hospital, Fukuoka, Japan
| | - Koichi Akashi
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Takahiko Horiuchi
- Department of Internal Medicine, Kyushu University Beppu Hospital, Oita, Japan
| | - Hiroaki Niiro
- Department of Medical Education, Faculty of Medical Sciences, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| |
Collapse
|
12
|
Miyake K, Ito J, Nakabayashi J, Shichino S, Ishiwata K, Karasuyama H. Single cell transcriptomics clarifies the basophil differentiation trajectory and identifies pre-basophils upstream of mature basophils. Nat Commun 2023; 14:2694. [PMID: 37202383 DOI: 10.1038/s41467-023-38356-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 04/27/2023] [Indexed: 05/20/2023] Open
Abstract
Basophils are the rarest granulocytes and are recognized as critical cells for type 2 immune responses. However, their differentiation pathway remains to be fully elucidated. Here, we assess the ontogenetic trajectory of basophils by single-cell RNA sequence analysis. Combined with flow cytometric and functional analyses, we identify c-Kit-CLEC12Ahi pre-basophils located downstream of pre-basophil and mast cell progenitors (pre-BMPs) and upstream of CLEC12Alo mature basophils. The transcriptomic analysis predicts that the pre-basophil population includes previously-defined basophil progenitor (BaP)-like cells in terms of gene expression profile. Pre-basophils are highly proliferative and respond better to non-IgE stimuli but less to antigen plus IgE stimulation than do mature basophils. Although pre-basophils usually remain in the bone marrow, they emerge in helminth-infected tissues, probably through IL-3-mediated inhibition of their retention in the bone marrow. Thus, the present study identifies pre-basophils that bridge the gap between pre-BMPs and mature basophils during basophil ontogeny.
Collapse
Grants
- 20K16277 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 22K007115 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 22H05064 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 19H01025 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 22H02845 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- JP21gm6210025 Japan Agency for Medical Research and Development (AMED)
Collapse
Affiliation(s)
- Kensuke Miyake
- Inflammation, Infection & Immunity Laboratory, Advanced Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan.
| | - Junya Ito
- Inflammation, Infection & Immunity Laboratory, Advanced Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Jun Nakabayashi
- College of Liberal Arts and Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Shigeyuki Shichino
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute of Biomedical Sciences, Tokyo University of Science, Noda, Japan
| | - Kenji Ishiwata
- Department of Tropical Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Hajime Karasuyama
- Inflammation, Infection & Immunity Laboratory, Advanced Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| |
Collapse
|
13
|
Poto R, Loffredo S, Marone G, Di Salvatore A, de Paulis A, Schroeder JT, Varricchi G. Basophils beyond allergic and parasitic diseases. Front Immunol 2023; 14:1190034. [PMID: 37205111 PMCID: PMC10185837 DOI: 10.3389/fimmu.2023.1190034] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 04/14/2023] [Indexed: 05/21/2023] Open
Abstract
Basophils bind IgE via FcεRI-αβγ2, which they uniquely share only with mast cells. In doing so, they can rapidly release mediators that are hallmark of allergic disease. This fundamental similarity, along with some morphological features shared by the two cell types, has long brought into question the biological significance that basophils mediate beyond that of mast cells. Unlike mast cells, which mature and reside in tissues, basophils are released into circulation from the bone marrow (constituting 1% of leukocytes), only to infiltrate tissues under specific inflammatory conditions. Evidence is emerging that basophils mediate non-redundant roles in allergic disease and, unsuspectingly, are implicated in a variety of other pathologies [e.g., myocardial infarction, autoimmunity, chronic obstructive pulmonary disease, fibrosis, cancer, etc.]. Recent findings strengthen the notion that these cells mediate protection from parasitic infections, whereas related studies implicate basophils promoting wound healing. Central to these functions is the substantial evidence that human and mouse basophils are increasingly implicated as important sources of IL-4 and IL-13. Nonetheless, much remains unclear regarding the role of basophils in pathology vs. homeostasis. In this review, we discuss the dichotomous (protective and/or harmful) roles of basophils in a wide spectrum of non-allergic disorders.
Collapse
Affiliation(s)
- Remo Poto
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- World Allergy Organization (WAO), Center of Excellence (CoE), Naples, Italy
| | - Stefania Loffredo
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- World Allergy Organization (WAO), Center of Excellence (CoE), Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
- Institute of Experimental Endocrinology and Oncology “G. Salvatore”, National Research Council (CNR), Naples, Italy
| | - Gianni Marone
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- World Allergy Organization (WAO), Center of Excellence (CoE), Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
- Institute of Experimental Endocrinology and Oncology “G. Salvatore”, National Research Council (CNR), Naples, Italy
| | - Antonio Di Salvatore
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Amato de Paulis
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- World Allergy Organization (WAO), Center of Excellence (CoE), Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
| | - John T. Schroeder
- Division of Allergy and Clinical Immunology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Gilda Varricchi
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- World Allergy Organization (WAO), Center of Excellence (CoE), Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
- Institute of Experimental Endocrinology and Oncology “G. Salvatore”, National Research Council (CNR), Naples, Italy
| |
Collapse
|
14
|
Möbs C, Salheiser M, Bleise F, Witt M, Mayer JU. Basophils control T cell priming through soluble mediators rather than antigen presentation. Front Immunol 2023; 13:1032379. [PMID: 36846020 PMCID: PMC9950813 DOI: 10.3389/fimmu.2022.1032379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/10/2022] [Indexed: 02/12/2023] Open
Abstract
Basophils play an important role in the development of type 2 immunity and have been linked to protective immunity against parasites but also inflammatory responses in allergic diseases. While typically classified as degranulating effector cells, different modes of cellular activation have been identified, which together with the observation that different populations of basophils exist in the context of disease suggest a multifunctional role. In this review we aim to highlight the role of basophils play in antigen presentation of type 2 immunity and focus on the contribution basophils play in the context of antigen presentation and T cell priming. We will discuss evidence suggesting that basophils perform a direct role in antigen presentation and relate it to findings that indicate cellular cooperation with professional antigen-presenting cells, such as dendritic cells. We will also highlight tissue-specific differences in basophil phenotypes that might lead to distinct roles in cellular cooperation and how these distinct interactions might influence immunological and clinical outcomes of disease. This review thus aims to consolidate the seemingly conflicting literature on the involvement of basophils in antigen presentation and tries to find a resolution to the discussion whether basophils influence antigen presentation through direct or indirect mechanisms.
Collapse
Affiliation(s)
| | | | | | | | - Johannes U. Mayer
- Department of Dermatology and Allergology, Philipps-Universität Marburg, Marburg, Germany
| |
Collapse
|
15
|
Shibuya R, Kim BS. Skin-homing basophils and beyond. Front Immunol 2022; 13:1059098. [PMID: 36618424 PMCID: PMC9815541 DOI: 10.3389/fimmu.2022.1059098] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
Basophils have been implicated in type 2 inflammation and numerous disorders in the skin such as helminth infection, atopic dermatitis, and urticaria. Although similar in form and function to tissue-resident mast cells, classical studies on basophils have centered on those from the hematopoietic compartment. However, increasing studies in tissues like the skin demonstrate that basophils may take on particular characteristics by responding to unique developmental, chemotactic, and activation cues. Herein, we highlight how recent studies in barrier immunology suggest the presence of skin-homing basophils that harbor a unique identity in terms of phenotype, function, and motility. These concepts may uniquely inform how basophils contribute to diseases at multiple epithelial surfaces and our ability to therapeutically target the innate immune system in disease.
Collapse
Affiliation(s)
- Rintaro Shibuya
- Kimberly and Eric J. Waldman Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York City, NY, United States,Mark Lebwohl Center for Neuroinflammation and Sensation, Icahn School of Medicine at Mount Sinai, New York City, NY, United States,Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Brian S. Kim
- Kimberly and Eric J. Waldman Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York City, NY, United States,Mark Lebwohl Center for Neuroinflammation and Sensation, Icahn School of Medicine at Mount Sinai, New York City, NY, United States,Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York City, NY, United States,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York City, NY, United States,*Correspondence: Brian S. Kim,
| |
Collapse
|
16
|
Poto R, Gambardella AR, Marone G, Schroeder JT, Mattei F, Schiavoni G, Varricchi G. Basophils from allergy to cancer. Front Immunol 2022; 13:1056838. [PMID: 36578500 PMCID: PMC9791102 DOI: 10.3389/fimmu.2022.1056838] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/21/2022] [Indexed: 12/14/2022] Open
Abstract
Human basophils, first identified over 140 years ago, account for just 0.5-1% of circulating leukocytes. While this scarcity long hampered basophil studies, innovations during the past 30 years, beginning with their isolation and more recently in the development of mouse models, have markedly advanced our understanding of these cells. Although dissimilarities between human and mouse basophils persist, the overall findings highlight the growing importance of these cells in health and disease. Indeed, studies continue to support basophils as key participants in IgE-mediated reactions, where they infiltrate inflammatory lesions, release pro-inflammatory mediators (histamine, leukotriene C4: LTC4) and regulatory cytokines (IL-4, IL-13) central to the pathogenesis of allergic diseases. Studies now report basophils infiltrating various human cancers where they play diverse roles, either promoting or hampering tumorigenesis. Likewise, this activity bears remarkable similarity to the mounting evidence that basophils facilitate wound healing. In fact, both activities appear linked to the capacity of basophils to secrete IL-4/IL-13, with these cytokines polarizing macrophages toward the M2 phenotype. Basophils also secrete several angiogenic factors (vascular endothelial growth factor: VEGF-A, amphiregulin) consistent with these activities. In this review, we feature these newfound properties with the goal of unraveling the increasing importance of basophils in these diverse pathobiological processes.
Collapse
Affiliation(s)
- Remo Poto
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy,Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy,World Allergy Organization (WAO), Center of Excellence (CoE), Naples, Italy
| | - Adriana Rosa Gambardella
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy,Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Gianni Marone
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy,World Allergy Organization (WAO), Center of Excellence (CoE), Naples, Italy,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy,Institute of Experimental Endocrinology and Oncology “G. Salvatore”, National Research Council (CNR), Naples, Italy
| | - John T. Schroeder
- Department of Medicine, Division of Allergy and Clinical Immunology, Johns Hopkins Asthma and Allergy Center, Johns Hopkins University, Baltimore, MD, United States
| | - Fabrizio Mattei
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Giovanna Schiavoni
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy,*Correspondence: Gilda Varricchi, ; Giovanna Schiavoni,
| | - Gilda Varricchi
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy,World Allergy Organization (WAO), Center of Excellence (CoE), Naples, Italy,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy,Institute of Experimental Endocrinology and Oncology “G. Salvatore”, National Research Council (CNR), Naples, Italy,*Correspondence: Gilda Varricchi, ; Giovanna Schiavoni,
| |
Collapse
|
17
|
Li BZ, Wang H, Li XB, Zhang QR, Huang RG, Wu H, Wang YY, Li KD, Chu XJ, Cao NW, Zhou HY, Fang XY, Leng RX, Fan YG, Tao JH, Shuai ZW, Ye DQ. Altered gut fungi in systemic lupus erythematosus - A pilot study. Front Microbiol 2022; 13:1031079. [PMID: 36545195 PMCID: PMC9760866 DOI: 10.3389/fmicb.2022.1031079] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/18/2022] [Indexed: 12/12/2022] Open
Abstract
Objective Gut fungi, as symbiosis with the human gastrointestinal tract, may regulate physiology via multiple interactions with host cells. The plausible role of fungi in systemic lupus erythematosus (SLE) is far from clear and need to be explored. Methods A total of 64 subjects were recruited, including SLE, rheumatoid arthritis (RA), undifferentiated connective tissue diseases (UCTDs) patients and healthy controls (HCs). Fecal samples of subjects were collected. Gut fungi and bacteria were detected by ITS sequencing and 16S rRNA gene sequencing, respectively. Alpha and beta diversities of microbiota were analyzed. Linear discriminant analysis effect size analysis was performed to identify abundance of microbiota in different groups. The correlation network between bacterial and fungal microbiota was analyzed based on Spearman correlation. Results Gut fungal diversity and community composition exhibited significant shifts in SLE compared with UCTDs, RA and HCs. Compared with HCs, the alpha and beta diversities of fungal microbiota decreased in SLE patients. According to principal coordinates analysis results, the constitution of fungal microbiota from SLE, RA, UCTDs patients and HCs exhibited distinct differences with a clear separation between fungal microbiota. There was dysbiosis in the compositions of fungal and bacterial microbiota in the SLE patients, compared to HCs. Pezizales, Cantharellales and Pseudaleuria were enriched in SLE compared with HCs, RA and UCTDs. There was a complex relationship network between bacterial and fungal microbiota, especially Candida which was related to a variety of bacteria. Conclusion This study presents a pilot analysis of fungal microbiota with diversity and composition in SLE, and identifies several gut fungi with different abundance patterns taxa among SLE, RA, UCTDs and HCs. Furthermore, the gut bacterial-fungal association network in SLE patients was altered compared with HCs.
Collapse
Affiliation(s)
- Bao-Zhu Li
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China,Inflammatory and Immune Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Hua Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China,Inflammatory and Immune Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Xian-Bao Li
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China,Inflammatory and Immune Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Qian-Ru Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China,Inflammatory and Immune Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Rong-Gui Huang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China,Inflammatory and Immune Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Hong Wu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China,Inflammatory and Immune Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Yi-Yu Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China,Inflammatory and Immune Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Kai-Di Li
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China,Inflammatory and Immune Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Xiu-Jie Chu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China,Inflammatory and Immune Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Nv-Wei Cao
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China,Inflammatory and Immune Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Hao-Yue Zhou
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China,Inflammatory and Immune Diseases Laboratory of Anhui Province, Hefei, Anhui, China,The First Hospital of Jiaxing, Jiaxing, Zhejiang, China
| | - Xin-Yu Fang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China,Inflammatory and Immune Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Rui-Xue Leng
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China,Inflammatory and Immune Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Yin-Guang Fan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China,Inflammatory and Immune Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Jin-Hui Tao
- Department of Rheumatology and Immunology, The First Affiliated Hospital of University of Science and Technology of China, Hefei, Anhui, China
| | - Zong-Wen Shuai
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Dong-Qing Ye
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China,Inflammatory and Immune Diseases Laboratory of Anhui Province, Hefei, Anhui, China,*Correspondence: Dong-Qing Ye,
| |
Collapse
|
18
|
He J, Ma C, Tang D, Zhong S, Yuan X, Zheng F, Zeng Z, Chen Y, Liu D, Hong X, Dai W, Yin L, Dai Y. Absolute quantification and characterization of oxylipins in lupus nephritis and systemic lupus erythematosus. Front Immunol 2022; 13:964901. [PMID: 36275708 PMCID: PMC9582137 DOI: 10.3389/fimmu.2022.964901] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 09/21/2022] [Indexed: 12/02/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease with multi-organ inflammation and defect, which is linked to many molecule mediators. Oxylipins as a class of lipid mediator have not been broadly investigated in SLE. Here, we applied targeted mass spectrometry analysis to screen the alteration of oxylipins in serum of 98 SLE patients and 106 healthy controls. The correlation of oxylipins to lupus nephritis (LN) and SLE disease activity, and the biomarkers for SLE classification, were analyzed. Among 128 oxylipins analyzed, 92 were absolutely quantified and 26 were significantly changed. They were mainly generated from the metabolism of several polyunsaturated fatty acids, including arachidonic acid (AA), linoleic acid (LA), docosahexanoic acid (DHA), eicosapentanoic acid (EPA) and dihomo-γ-linolenic acid (DGLA). Several oxylipins, especially those produced from AA, showed different abundance between patients with and without lupus nephritis (LN). The DGLA metabolic activity and DGLA generated PGE1, were significantly associated with SLE disease activity. Random forest-based machine learning identified a 5-oxylipin combination as potential biomarker for SLE classification with high accuracy. Seven individual oxylipin biomarkers were also identified with good performance in distinguishing SLE patients from healthy controls (individual AUC > 0.7). Interestingly, the biomarkers for differentiating SLE patients from healthy controls are distinct from the oxylipins differentially expressed in LN patients vs. non-LN patients. This study provides possibilities for the understanding of SLE characteristics and the development of new tools for SLE classification.
Collapse
Affiliation(s)
- Jingquan He
- Department of Radiotherapy, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical School of Guangzhou University of Chinese Medicine, Shenzhen, China
- Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People’s Hospital, Shenzhen, China
| | - Chiyu Ma
- Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People’s Hospital, Shenzhen, China
| | - Donge Tang
- Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People’s Hospital, Shenzhen, China
| | - Shaoyun Zhong
- Biotree Metabolomics Research Center, Biotree, Shanghai, China
| | - Xiaofang Yuan
- Biotree Metabolomics Research Center, Biotree, Shanghai, China
| | - Fengping Zheng
- Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People’s Hospital, Shenzhen, China
| | - Zhipeng Zeng
- Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People’s Hospital, Shenzhen, China
| | - Yumei Chen
- Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People’s Hospital, Shenzhen, China
| | - Dongzhou Liu
- Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People’s Hospital, Shenzhen, China
| | - Xiaoping Hong
- Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People’s Hospital, Shenzhen, China
| | - Weier Dai
- College of Natural Science, University of Texas at Austin, Austin, TX, United States
| | - Lianghong Yin
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yong Dai
- Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People’s Hospital, Shenzhen, China
- *Correspondence: Yong Dai,
| |
Collapse
|
19
|
Dossybayeva K, Bexeitov Y, Mukusheva Z, Almukhamedova Z, Assylbekova M, Abdukhakimova D, Rakhimzhanova M, Poddighe D. Analysis of Peripheral Blood Basophils in Pediatric Systemic Lupus Erythematosus. Diagnostics (Basel) 2022; 12:1701. [PMID: 35885605 PMCID: PMC9317310 DOI: 10.3390/diagnostics12071701] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/01/2022] [Accepted: 07/02/2022] [Indexed: 11/23/2022] Open
Abstract
Basophils are the least abundant circulating leukocytes, and their immunological role has not yet been completely elucidated. There is evidence supporting their immunomodulatory role in several pathological settings; recently, studies in both experimental models and humans suggested that basophil homeostasis may be altered in systemic lupus erythematosus (SLE). Here, we first assessed circulating basophils in children affected with pediatric SLE (pSLE). In this cross-sectional study, circulating basophils were enumerated by fluorescence-based flow cytometry analysis in children affected with pSLE, in addition to children suffering from juvenile idiopathic arthritis (JIA) or non-inflammatory/non-rheumatic conditions. This study included 52 pediatric patients distributed in these three groups. We observed a statistically significant reduction of peripherally circulating basophils in children with pSLE compared to the other two groups of patients. This preliminary study is consistent with the available studies in adult patients with SLE showing a reduced number of circulating basophils. However, further research is needed to draw final conclusions on basophils' homeostasis in pSLE, in addition to their correlation with the disease activity and concomitant therapies.
Collapse
Affiliation(s)
- Kuanysh Dossybayeva
- Department of Medicine, Nazarbayev University School of Medicine, Nur-Sultan 010000, Kazakhstan; (K.D.); (Y.B.); (D.A.)
| | - Yergali Bexeitov
- Department of Medicine, Nazarbayev University School of Medicine, Nur-Sultan 010000, Kazakhstan; (K.D.); (Y.B.); (D.A.)
| | - Zaure Mukusheva
- Program of Pediatric Rheumatology, Clinical Academic Department of Pediatrics, National Research Center for Maternal and Child Health, University Medical Center, Nur-Sultan 010000, Kazakhstan; (Z.M.); (Z.A.); (M.A.)
| | - Zhaina Almukhamedova
- Program of Pediatric Rheumatology, Clinical Academic Department of Pediatrics, National Research Center for Maternal and Child Health, University Medical Center, Nur-Sultan 010000, Kazakhstan; (Z.M.); (Z.A.); (M.A.)
| | - Maykesh Assylbekova
- Program of Pediatric Rheumatology, Clinical Academic Department of Pediatrics, National Research Center for Maternal and Child Health, University Medical Center, Nur-Sultan 010000, Kazakhstan; (Z.M.); (Z.A.); (M.A.)
| | - Diyora Abdukhakimova
- Department of Medicine, Nazarbayev University School of Medicine, Nur-Sultan 010000, Kazakhstan; (K.D.); (Y.B.); (D.A.)
| | - Marzhan Rakhimzhanova
- Program of Pediatric Endocrinology and Inherited Diseases, Clinical Academic Department of Pediatrics, National Research Center for Maternal and Child Health, University Medical Center, Nur-Sultan 010000, Kazakhstan;
| | - Dimitri Poddighe
- Department of Medicine, Nazarbayev University School of Medicine, Nur-Sultan 010000, Kazakhstan; (K.D.); (Y.B.); (D.A.)
- Clinical Academic Department of Pediatrics, National Research Center for Maternal and Child Health, University Medical Center, Nur-Sultan 010000, Kazakhstan
| |
Collapse
|
20
|
Identification of potential inhibitors for Hematopoietic Prostaglandin D2 synthase: Computational modeling and molecular dynamics simulations. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
21
|
Tchen J, Simon Q, Chapart L, Pellefigues C, Karasuyama H, Miyake K, Blank U, Benhamou M, Daugas E, Charles N. CT-M8 Mice: A New Mouse Model Demonstrates That Basophils Have a Nonredundant Role in Lupus-Like Disease Development. Front Immunol 2022; 13:900532. [PMID: 35844602 PMCID: PMC9277511 DOI: 10.3389/fimmu.2022.900532] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 05/30/2022] [Indexed: 12/04/2022] Open
Abstract
Tissue-specific mouse models are essential tools to decipher the role of each cell compartment and/or their expressed genes in the pathophysiology of diseases. Here, we describe a new knock-in mouse model allowing expression of both the fluorescent protein tdTomato and the CRE recombinase selectively in the basophil compartment under the control of the Mcpt8 gene. These “CT-M8” mice did not show any abnormalities in their peripheral distribution of major immune cell populations nor their basophil function. CT-M8 mice allowed the identification of basophils by immunofluorescence and flow cytometry and basophil-specific Cre-mediated floxed gene deletion. Breeding of our CT-M8 mice with the ROSA26flox-stop-DTA mice led to the generation of basophil-deficient mice with no detectable abnormalities in other cell compartments. These mice were then used to document basophil involvement in systemic lupus erythematosus (SLE) pathophysiology since we previously reported by transient depletion of these cells during the course of an ongoing disease that they support and amplify autoantibody production in two distinct lupus-like mouse models (Lyn−/− and pristane-induced). Here, constitutive basophil deficiency prevented pristane-induced lupus-like disease development by limiting autoantibody titers and renal damages. Therefore, basophils have a nonredundant role in pristane-induced lupus-like disease and are involved in both its induction and amplification. This CT-M8 new mouse model will allow us to finely decipher the role of basophils and their expressed genes in health and disease.
Collapse
Affiliation(s)
- John Tchen
- Université Paris Cité, Centre de Recherche sur l’Inflammation, Institut National de la Santé Et de la Recherche Médicale (INSERM) UMR1149, Centre National de la Recherche Scientifique (CNRS). EMR8252, Faculté de Médecine site Bichat, Paris, France
- Université Paris Cité, Laboratoire d’Excellence INFLAMEX, Paris, France
| | - Quentin Simon
- Université Paris Cité, Centre de Recherche sur l’Inflammation, Institut National de la Santé Et de la Recherche Médicale (INSERM) UMR1149, Centre National de la Recherche Scientifique (CNRS). EMR8252, Faculté de Médecine site Bichat, Paris, France
- Université Paris Cité, Laboratoire d’Excellence INFLAMEX, Paris, France
| | - Léa Chapart
- Université Paris Cité, Centre de Recherche sur l’Inflammation, Institut National de la Santé Et de la Recherche Médicale (INSERM) UMR1149, Centre National de la Recherche Scientifique (CNRS). EMR8252, Faculté de Médecine site Bichat, Paris, France
- Université Paris Cité, Laboratoire d’Excellence INFLAMEX, Paris, France
| | - Christophe Pellefigues
- Université Paris Cité, Centre de Recherche sur l’Inflammation, Institut National de la Santé Et de la Recherche Médicale (INSERM) UMR1149, Centre National de la Recherche Scientifique (CNRS). EMR8252, Faculté de Médecine site Bichat, Paris, France
- Université Paris Cité, Laboratoire d’Excellence INFLAMEX, Paris, France
| | - Hajime Karasuyama
- Inflammation, Infection and Immunity Laboratory, TMDU Advanced Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Kensuke Miyake
- Inflammation, Infection and Immunity Laboratory, TMDU Advanced Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Ulrich Blank
- Université Paris Cité, Centre de Recherche sur l’Inflammation, Institut National de la Santé Et de la Recherche Médicale (INSERM) UMR1149, Centre National de la Recherche Scientifique (CNRS). EMR8252, Faculté de Médecine site Bichat, Paris, France
- Université Paris Cité, Laboratoire d’Excellence INFLAMEX, Paris, France
| | - Marc Benhamou
- Université Paris Cité, Centre de Recherche sur l’Inflammation, Institut National de la Santé Et de la Recherche Médicale (INSERM) UMR1149, Centre National de la Recherche Scientifique (CNRS). EMR8252, Faculté de Médecine site Bichat, Paris, France
- Université Paris Cité, Laboratoire d’Excellence INFLAMEX, Paris, France
| | - Eric Daugas
- Université Paris Cité, Centre de Recherche sur l’Inflammation, Institut National de la Santé Et de la Recherche Médicale (INSERM) UMR1149, Centre National de la Recherche Scientifique (CNRS). EMR8252, Faculté de Médecine site Bichat, Paris, France
- Université Paris Cité, Laboratoire d’Excellence INFLAMEX, Paris, France
- Service de Néphrologie, Hôpital Bichat, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Nicolas Charles
- Université Paris Cité, Centre de Recherche sur l’Inflammation, Institut National de la Santé Et de la Recherche Médicale (INSERM) UMR1149, Centre National de la Recherche Scientifique (CNRS). EMR8252, Faculté de Médecine site Bichat, Paris, France
- Université Paris Cité, Laboratoire d’Excellence INFLAMEX, Paris, France
- *Correspondence: Nicolas Charles, ; orcid.org/0000-0002-5416-5834
| |
Collapse
|
22
|
Miyake K, Ito J, Karasuyama H. Role of Basophils in a Broad Spectrum of Disorders. Front Immunol 2022; 13:902494. [PMID: 35693800 PMCID: PMC9186123 DOI: 10.3389/fimmu.2022.902494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/04/2022] [Indexed: 11/13/2022] Open
Abstract
Basophils are the rarest granulocytes and have long been overlooked in immunological research due to their rarity and similarities with tissue-resident mast cells. In the last two decades, non-redundant functions of basophils have been clarified or implicated in a broad spectrum of immune responses, particularly by virtue of the development of novel analytical tools for basophils. Basophils infiltrate inflamed tissues of patients with various disorders, even though they circulate in the bloodstream under homeostatic conditions. Depletion of basophils results in the amelioration or exaggeration of inflammation, depending on models of disease, indicating basophils can play either beneficial or deleterious roles in a context-dependent manner. In this review, we summarize the recent findings of basophil pathophysiology under various conditions in mice and humans, including allergy, autoimmunity, tumors, tissue repair, fibrosis, and COVID-19. Further mechanistic studies on basophil biology could lead to the identification of novel biomarkers or therapeutic targets in a broad range of diseases.
Collapse
|
23
|
Tchen J, Charles N. [Basophils and IgE in autoimmunity: Mechanisms and therapeutic targets]. Med Sci (Paris) 2022; 38:366-373. [PMID: 35485897 DOI: 10.1051/medsci/2022040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Understanding the pathophysiology of antibody-driven autoimmune diseases (AAID) represents a major challenge for the biomedical community to develop innovative therapeutic strategies that are still lacking to control these diseases. If the reason why AAID are developing still needs to be defined, loss of tolerance to self-antigens leads to the development of an autoimmune chain reaction in some individuals. However, autoreactive antibodies are present in a large proportion of the general population without any associated pathological condition. The amplification of autoantibody production, circulating immune complex formation and innate immune system activation leading to this amplification are some central phenomena in AAID pathophysiology. In this review, we summarize the contribution of type 2 immunity, basophils and IgE in the initiation of some amplification loops that are pathogenic in some AAID, including systemic lupus erythematosus and mixed connective tissue disease.
Collapse
Affiliation(s)
- John Tchen
- Université Paris Cité, Centre de recherche sur l'inflammation, Inserm UMR1149, CNRS ERL8252, Faculté de médecine site Bichat, Paris, France - Université Paris Cité, Laboratoire d'excellence Inflamex, Paris, France
| | - Nicolas Charles
- Université Paris Cité, Centre de recherche sur l'inflammation, Inserm UMR1149, CNRS ERL8252, Faculté de médecine site Bichat, Paris, France - Université Paris Cité, Laboratoire d'excellence Inflamex, Paris, France
| |
Collapse
|
24
|
Pellefigues C, Tchen J, Saji C, Lamri Y, Charles N. AMG853, A Bispecific Prostaglandin D 2 Receptor 1 and 2 Antagonist, Dampens Basophil Activation and Related Lupus-Like Nephritis Activity in Lyn-Deficient Mice. Front Immunol 2022; 13:824686. [PMID: 35444641 PMCID: PMC9014266 DOI: 10.3389/fimmu.2022.824686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 03/10/2022] [Indexed: 11/17/2022] Open
Abstract
Systemic lupus erythematosus is a complex autoimmune disease during which patients develop autoantibodies raised against nuclear antigens. During the course of the disease, by accumulating in secondary lymphoid organs (SLOs), basophils support autoreactive plasma cells to amplify autoantibody production. We have recently shown that murine lupus-like disease could be controlled by 10 days of oral treatment with a combination of prostaglandin D2 (PGD2) receptor (PTGDR) antagonists through the inhibition of basophil activation and recruitment to SLOs. Importantly, inhibiting solely PTGDR-1 or PTGDR-2 was ineffective, and the development of lupus-like disease could only be dampened by using antagonists for both PTGDR-1 and PTGDR-2. Here, we aimed at establishing a proof of concept that a clinically relevant bispecific antagonist of PTGDR-1 and PTGDR-2 could be efficient to treat murine lupus-like nephritis. Diseased Lyn-deficient female mice received treatment with AMG853 (vidupiprant, a bispecific PTGDR-1/PTGDR-2 antagonist) for 10 days. This led to the dampening of basophil activation and recruitment in SLOs and was associated with a decrease in plasmablast expansion and immunoglobulin E (IgE) production. Ten days of treatment with AMG853 was consequently sufficient in reducing the dsDNA-specific IgG titers, circulating immune complex glomerular deposition, and renal inflammation, which are hallmarks of lupus-like disease. Thus, bispecific PTGDR-1 and PTGDR-2 antagonists, such as AMG853, are a promising class of drugs for the treatment or prevention of organ damage in systemic lupus erythematosus.
Collapse
Affiliation(s)
- Christophe Pellefigues
- Université de Paris, Centre de Recherche sur l'Inflammation, INSERM UMR1149, CNRS ERL8252, Faculté de Médecine site Bichat, Paris, France.,Université de Paris, Laboratoire d'Excellence INFLAMEX, Paris, France
| | - John Tchen
- Université de Paris, Centre de Recherche sur l'Inflammation, INSERM UMR1149, CNRS ERL8252, Faculté de Médecine site Bichat, Paris, France.,Université de Paris, Laboratoire d'Excellence INFLAMEX, Paris, France
| | - Chaimae Saji
- Université de Paris, Centre de Recherche sur l'Inflammation, INSERM UMR1149, CNRS ERL8252, Faculté de Médecine site Bichat, Paris, France.,Université de Paris, Laboratoire d'Excellence INFLAMEX, Paris, France
| | - Yasmine Lamri
- Université de Paris, Centre de Recherche sur l'Inflammation, INSERM UMR1149, CNRS ERL8252, Faculté de Médecine site Bichat, Paris, France.,Université de Paris, Laboratoire d'Excellence INFLAMEX, Paris, France
| | - Nicolas Charles
- Université de Paris, Centre de Recherche sur l'Inflammation, INSERM UMR1149, CNRS ERL8252, Faculté de Médecine site Bichat, Paris, France.,Université de Paris, Laboratoire d'Excellence INFLAMEX, Paris, France
| |
Collapse
|
25
|
Artru F, McPhail MJW, Triantafyllou E, Trovato FM. Lipids in Liver Failure Syndromes: A Focus on Eicosanoids, Specialized Pro-Resolving Lipid Mediators and Lysophospholipids. Front Immunol 2022; 13:867261. [PMID: 35432367 PMCID: PMC9008479 DOI: 10.3389/fimmu.2022.867261] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/08/2022] [Indexed: 12/30/2022] Open
Abstract
Lipids are organic compounds insoluble in water with a variety of metabolic and non-metabolic functions. They not only represent an efficient energy substrate but can also act as key inflammatory and anti-inflammatory molecules as part of a network of soluble mediators at the interface of metabolism and the immune system. The role of endogenous bioactive lipid mediators has been demonstrated in several inflammatory diseases (rheumatoid arthritis, inflammatory bowel disease, atherosclerosis, cancer). The liver is unique in providing balanced immunotolerance to the exposure of bacterial components from the gut transiting through the portal vein and the lymphatic system. This balance is abruptly deranged in liver failure syndromes such as acute liver failure and acute-on-chronic liver failure. In these syndromes, researchers have recently focused on bioactive lipid mediators by global metabonomic profiling and uncovered the pivotal role of these mediators in the immune dysfunction observed in liver failure syndromes explaining the high occurrence of sepsis and subsequent organ failure. Among endogenous bioactive lipids, the mechanistic actions of three classes (eicosanoids, pro-resolving lipid mediators and lysophospholipids) in the pathophysiological modulation of liver failure syndromes will be the topic of this narrative review. Furthermore, the therapeutic potential of lipid-immune pathways will be described.
Collapse
Affiliation(s)
- Florent Artru
- Institute of Liver Studies, King's College Hospital, London, United Kingdom
| | - Mark J W McPhail
- Institute of Liver Studies, King's College Hospital, London, United Kingdom
| | - Evangelos Triantafyllou
- Section of Hepatology and Gastroenterology, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | | |
Collapse
|
26
|
Ko H, Kim CJ, Im SH. T Helper 2-Associated Immunity in the Pathogenesis of Systemic Lupus Erythematosus. Front Immunol 2022; 13:866549. [PMID: 35444658 PMCID: PMC9014558 DOI: 10.3389/fimmu.2022.866549] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/09/2022] [Indexed: 11/13/2022] Open
Abstract
Systemic Lupus Erythematosus (SLE) is a chronic autoimmune disease that mainly affects women in their reproductive years. A complex interaction of environmental and genetic factors leads to the disruption of immune tolerance towards self, causing overt immune activation and production of autoantibodies that attack multiple organs. Kidney damage, termed lupus nephritis, is the leading cause of SLE-related morbidity and mortality. Autoantibodies are central to propagating lupus nephritis through forming immune complexes and triggering complements. Immunoglobulin G (IgG) potently activates complement; therefore, autoantibodies were mainly considered to be of the IgG isotype. However, studies revealed that over 50% of patients produce autoantibodies of the IgE isotype. IgE autoantibodies actively participate in disease pathogenesis as omalizumab treatment, a humanized anti-IgE monoclonal antibody, improved disease severity in an SLE clinical trial. IgE is a hallmark of T helper 2-associated immunity. Thus, T helper 2-associated immunity seems to play a pathogenic role in a subset of SLE patients. This review summarizes human and animal studies that illustrate type 2 immune responses involved during the pathology of SLE.
Collapse
Affiliation(s)
- Haeun Ko
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, South Korea
| | - Chan Johng Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, South Korea
- Pohang University of Science and Technology (POSTECH) Biotech Center, Pohang University of Science and Technology, Pohang, South Korea
| | - Sin-Hyeog Im
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, South Korea
- Institute for Convergence Research and Education, Yonsei University, Seoul, South Korea
- ImmunoBiome Inc., Bio Open Innovation Center, Pohang, South Korea
| |
Collapse
|
27
|
Abstract
The β common chain (βc) cytokine family includes granulocyte-macrophage colony-stimulating factor (GM-CSF), interleukin-3 (IL-3) and IL-5, all of which use βc as key signaling receptor subunit. GM-CSF, IL-3 and IL-5 have specific roles as hematopoietic growth factors. IL-3 binds with high affinity to the IL-3 receptor α (IL-3Rα/CD123) and then associates with the βc subunit. IL-3 is mainly synthesized by different subsets of T cells, but is also produced by several other immune [basophils, dendritic cells (DCs), mast cells, etc.] and non-immune cells (microglia and astrocytes). The IL-3Rα is also expressed by immune (basophils, eosinophils, mast cells, DCs, monocytes, and megacaryocytes) and non-immune cells (endothelial cells and neuronal cells). IL-3 is the most important growth and activating factor for human and mouse basophils, primary effector cells of allergic disorders. IL-3-activated basophils and mast cells are also involved in different chronic inflammatory disorders, infections, and several types of cancer. IL-3 induces the release of cytokines (i.e., IL-4, IL-13, CXCL8) from human basophils and preincubation of basophils with IL-3 potentiates the release of proinflammatory mediators and cytokines from IgE- and C5a-activated basophils. IL-3 synergistically potentiates IL-33-induced mediator release from human basophils. IL-3 plays a pathogenic role in several hematologic cancers and may contribute to autoimmune and cardiac disorders. Several IL-3Rα/CD123 targeting molecules have shown some efficacy in the treatment of hematologic malignancies.
Collapse
|
28
|
Rittchen S, Jandl K, Lanz I, Reiter B, Ferreirós N, Kratz D, Lindenmann J, Brcic L, Bärnthaler T, Atallah R, Olschewski H, Sturm EM, Heinemann A. Monocytes and Macrophages Serve as Potent Prostaglandin D 2 Sources during Acute, Non-Allergic Pulmonary Inflammation. Int J Mol Sci 2021; 22:ijms222111697. [PMID: 34769126 PMCID: PMC8584273 DOI: 10.3390/ijms222111697] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/20/2021] [Accepted: 10/25/2021] [Indexed: 11/16/2022] Open
Abstract
Acute respiratory inflammation, most commonly resulting from bacterial or viral infection, is one of the leading causes of death and disability worldwide. The inflammatory lipid mediator prostaglandin D2 (PGD2) and its rate-limiting enzyme, hematopoietic PGD synthase (hPGDS), are well-known drivers of allergic pulmonary inflammation. Here, we sought to investigate the source and role of hPGDS-derived PGD2 in acute pulmonary inflammation. Murine bronchoalveolar monocytes/macrophages from LPS- but not OVA-induced lung inflammation released significant amounts of PGD2. Accordingly, human monocyte-derived macrophages expressed high basal levels of hPGDS and released significant levels of PGD2 after LPS/IFN-γ, but not IL-4 stimulation. Human peripheral blood monocytes secreted significantly more PGD2 than monocyte-derived macrophages. Using human precision-cut lung slices (PCLS), we observed that LPS/IFN-γ but not IL-4/IL-13 drive PGD2 production in the lung. HPGDS inhibition prevented LPS-induced PGD2 release by human monocyte-derived macrophages and PCLS. As a result of hPGDS inhibition, less TNF-α, IL-6 and IL-10 could be determined in PCLS-conditioned medium. Collectively, this dataset reflects the time-dependent release of PGD2 by human phagocytes, highlights the importance of monocytes and macrophages as PGD2 sources and suggests that hPGDS inhibition might be a potential therapeutic option for acute, non-allergic lung inflammation.
Collapse
Affiliation(s)
- Sonja Rittchen
- Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, 8010 Graz, Austria; (S.R.); (K.J.); (I.L.); (B.R.); (T.B.); (R.A.); (E.M.S.)
- Ludwig Boltzmann Institute for Lung Vascular Research, 8010 Graz, Austria;
| | - Katharina Jandl
- Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, 8010 Graz, Austria; (S.R.); (K.J.); (I.L.); (B.R.); (T.B.); (R.A.); (E.M.S.)
- Ludwig Boltzmann Institute for Lung Vascular Research, 8010 Graz, Austria;
| | - Ilse Lanz
- Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, 8010 Graz, Austria; (S.R.); (K.J.); (I.L.); (B.R.); (T.B.); (R.A.); (E.M.S.)
| | - Bernhard Reiter
- Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, 8010 Graz, Austria; (S.R.); (K.J.); (I.L.); (B.R.); (T.B.); (R.A.); (E.M.S.)
| | - Nerea Ferreirós
- Pharmazentrum Frankfurt/ZAFES, Institute of Clinical Pharmacology, Goethe University Frankfurt, 60596 Frankfurt am Main, Germany; (N.F.); (D.K.)
| | - Daniel Kratz
- Pharmazentrum Frankfurt/ZAFES, Institute of Clinical Pharmacology, Goethe University Frankfurt, 60596 Frankfurt am Main, Germany; (N.F.); (D.K.)
| | - Jörg Lindenmann
- Department of Surgery, Divison of Thoracic and Hyperbaric Surgery, Medical University of Graz, 8010 Graz, Austria;
| | - Luka Brcic
- Diagnostic and Research Institute of Pathology, Medical University of Graz, 8010 Graz, Austria;
| | - Thomas Bärnthaler
- Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, 8010 Graz, Austria; (S.R.); (K.J.); (I.L.); (B.R.); (T.B.); (R.A.); (E.M.S.)
| | - Reham Atallah
- Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, 8010 Graz, Austria; (S.R.); (K.J.); (I.L.); (B.R.); (T.B.); (R.A.); (E.M.S.)
| | - Horst Olschewski
- Ludwig Boltzmann Institute for Lung Vascular Research, 8010 Graz, Austria;
- Department of Internal Medicine, Division of Pulmonology, Medical University of Graz, 8010 Graz, Austria
| | - Eva M. Sturm
- Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, 8010 Graz, Austria; (S.R.); (K.J.); (I.L.); (B.R.); (T.B.); (R.A.); (E.M.S.)
| | - Akos Heinemann
- Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, 8010 Graz, Austria; (S.R.); (K.J.); (I.L.); (B.R.); (T.B.); (R.A.); (E.M.S.)
- BioTechMed, 8010 Graz, Austria
- Correspondence: ; Tel.: +43-316-385-74112
| |
Collapse
|
29
|
Ramezankhani R, Minaei N, Haddadi M, Solhi R, Taleahmad S. The impact of sex on susceptibility to systemic lupus erythematosus and rheumatoid arthritis; a bioinformatics point of view. Cell Signal 2021; 88:110171. [PMID: 34662716 DOI: 10.1016/j.cellsig.2021.110171] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 11/18/2022]
Abstract
The unknown etiology of systemic autoimmune diseases, such as Systemic Lupus Erythematosus (SLE) and Rheumatoid Arthritis (RA), with a remarkable predominance of female, have prompted many researchers for unveiling the precise molecular mechanisms involved in this gender bias. In fact, depending on hormones and transcribed genes from sex chromosomes, at least, the initial mechanisms involved in pathogenesis might differ largely. With the aim of elucidating the above mechanisms, we have tried to specify the differentially expressed genes (DEGs) extracted from microarray libraries from both female and male SLE and RA patients. Subsequently, the androgen and estrogen receptor elements (ARE and ERE) among differentially expressed transcription factors (TFs) and the DEGs located on X or Y chromosomes have been determined. Moreover, the pathways regarding the common DEGs in both sexes are enriched. Our data revealed several ARE and ERE-containing genes (LCN2, LTF, RPL31, RPL9, RPS17, RPS24, RPS27L, S100A8, ABCA1, HIST1H2BD, ISG15, MAFB, GNLY, EVL, and HDC) to be associated with the related autoimmune disease and sex. Also, two DEGs (KDM5D and RPS4Y1) in SLE patients were determined to be on Y chromosome with one had been proved to be associated with autoantigens in SLE. Altogether, our data showed a number of plausible pathways in both autoimmune conditions together with the relevance of several sex-related genes in the mentioned diseases pathogenesis.
Collapse
Affiliation(s)
- Roya Ramezankhani
- Department of Applied Cell Sciences, Faculty of Basic Science and Advanced Medical Technologies, Royan Institute, ACER, Tehran, Iran; Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research, ACECR, Tehran, Iran; Department of Development and Regeneration, Stem Cell Biology and Embryology, KU Leuven Stem Cell Institute, Leuven, Belgium
| | - Neda Minaei
- Department of Applied Cell Sciences, Faculty of Basic Science and Advanced Medical Technologies, Royan Institute, ACER, Tehran, Iran; Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research, ACECR, Tehran, Iran
| | - Mahnaz Haddadi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Roya Solhi
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research, ACECR, Tehran, Iran; Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Sara Taleahmad
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| |
Collapse
|
30
|
Diverse innate stimuli activate basophils through pathways involving Syk and IκB kinases. Proc Natl Acad Sci U S A 2021; 118:2019524118. [PMID: 33727419 DOI: 10.1073/pnas.2019524118] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Mature basophils play critical inflammatory roles during helminthic, autoimmune, and allergic diseases through their secretion of histamine and the type 2 cytokines interleukin 4 (IL-4) and IL-13. Basophils are activated typically by allergen-mediated IgE cross-linking but also by endogenous "innate" factors. The aim of this study was to identify the innate stimuli (cytokines, chemokines, growth factors, hormones, neuropeptides, metabolites, and bacterial products) and signaling pathways inducing primary basophil activation. Basophils from naïve mice or helminth-infected mice were cultured with up to 96 distinct stimuli and their influence on basophil survival, activation, degranulation, and IL-4 or IL-13 expression were investigated. Activated basophils show a heterogeneous phenotype and segregate into distinct subsets expressing IL-4, IL-13, activation, or degranulation markers. We find that several innate stimuli including epithelial derived inflammatory cytokines (IL-33, IL-18, TSLP, and GM-CSF), growth factors (IL-3, IL-7, TGFβ, and VEGF), eicosanoids, metabolites, TLR ligands, and type I IFN exert significant direct effects on basophils. Basophil activation mediated by distinct upstream signaling pathways is always sensitive to Syk and IκB kinases-specific inhibitors but not necessarily to NFAT, STAT5, adenylate cyclase, or c-fos/AP-1 inhibitors. Thus, basophils are activated by very diverse mediators, but their activation seem controlled by a core checkpoint involving Syk and IκB kinases.
Collapse
|
31
|
Pellefigues C, Naidoo K, Mehta P, Schmidt AJ, Jagot F, Roussel E, Cait A, Yumnam B, Chappell S, Meijlink K, Camberis M, Jiang JX, Painter G, Filbey K, Uluçkan Ö, Gasser O, Le Gros G. Basophils promote barrier dysfunction and resolution in the atopic skin. J Allergy Clin Immunol 2021; 148:799-812.e10. [PMID: 33662369 PMCID: PMC8410897 DOI: 10.1016/j.jaci.2021.02.018] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 02/07/2021] [Accepted: 02/12/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND The type 2 cytokines IL-4 and IL-13 promote not only atopic dermatitis (AD) but also the resolution of inflammation. How type 2 cytokines participate in the resolution of AD is poorly known. OBJECTIVE Our aim was to determine the mechanisms and cell types governing skin inflammation, barrier dysfunction, and resolution of inflammation in a model of AD. METHODS Mice that exhibit expression of IL-4, IL-13, and MCPT8 or that could be depleted of basophils or eosinophils, be deficient in IL-4 or MHC class II molecules, or have basophils lacking macrophage colony-stimulating factor (M-CSF) were treated with calcipotriol (MC903) as an acute model of AD. Kinetics of the disease; keratinocyte differentiation; and leukocyte accumulation, phenotype, function, and cytokine production were measured by transepidermal water loss, histopathology, molecular biology, or unbiased analysis of spectral flow cytometry. RESULTS In this model of AD, basophils were activated systemically and were the initial and main source of IL-4 in the skin. Basophils and IL-4 promoted epidermal hyperplasia and skin barrier dysfunction by acting on keratinocyte differentiation during inflammation. Basophils, IL-4, and basophil-derived M-CSF inhibited the accumulation of proinflammatory cells in the skin while promoting the expansion and function of proresolution M2-like macrophages and the expression of probarrier genes. Basophils kept their proresolution properties during AD resolution. CONCLUSION Basophils can display both beneficial and detrimental type 2 functions simultaneously during atopic inflammation.
Collapse
Affiliation(s)
- Christophe Pellefigues
- Malaghan Institute of Medical Research, Victoria University, Wellington, New Zealand; INSERM UMR1149, CNRS ERL8252, Centre de recherche sur l'inflammation, Inflamex, Université de Paris, Paris, France.
| | - Karmella Naidoo
- Malaghan Institute of Medical Research, Victoria University, Wellington, New Zealand
| | - Palak Mehta
- Malaghan Institute of Medical Research, Victoria University, Wellington, New Zealand
| | - Alfonso J Schmidt
- Malaghan Institute of Medical Research, Victoria University, Wellington, New Zealand
| | - Ferdinand Jagot
- Malaghan Institute of Medical Research, Victoria University, Wellington, New Zealand
| | - Elsa Roussel
- Novartis Institutes for Biomedical Research (NIBR), Novartis, Basel, Switzerland
| | - Alissa Cait
- Malaghan Institute of Medical Research, Victoria University, Wellington, New Zealand
| | - Bibek Yumnam
- Malaghan Institute of Medical Research, Victoria University, Wellington, New Zealand
| | - Sally Chappell
- Malaghan Institute of Medical Research, Victoria University, Wellington, New Zealand
| | - Kimberley Meijlink
- Malaghan Institute of Medical Research, Victoria University, Wellington, New Zealand
| | - Mali Camberis
- Malaghan Institute of Medical Research, Victoria University, Wellington, New Zealand
| | - Jean X Jiang
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, Tex
| | - Gavin Painter
- Ferrier Research Institute, Victoria University, Wellington, New Zealand
| | - Kara Filbey
- Malaghan Institute of Medical Research, Victoria University, Wellington, New Zealand
| | - Özge Uluçkan
- Novartis Institutes for Biomedical Research (NIBR), Novartis, Basel, Switzerland
| | - Olivier Gasser
- Malaghan Institute of Medical Research, Victoria University, Wellington, New Zealand
| | - Graham Le Gros
- Malaghan Institute of Medical Research, Victoria University, Wellington, New Zealand
| |
Collapse
|
32
|
Miyake K, Shibata S, Yoshikawa S, Karasuyama H. Basophils and their effector molecules in allergic disorders. Allergy 2021; 76:1693-1706. [PMID: 33205439 DOI: 10.1111/all.14662] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/26/2020] [Accepted: 11/12/2020] [Indexed: 12/20/2022]
Abstract
Basophils are the rarest granulocytes which represent <1% of peripheral blood leukocytes. Basophils bear several phenotypic similarities to tissue-resident mast cells and therefore had been erroneously considered as blood-circulating mast cells. However, recent researches have revealed that basophils play nonredundant roles in allergic inflammation, protective immunity against parasitic infections and regulation of innate and acquired immunity. Basophils are recruited to inflamed tissues and activated in an IgE-dependent or IgE-independent manner to release a variety of effector molecules. Such molecules, including IL-4, act on various types of cells and play versatile roles, including the induction and termination of allergic inflammation and the regulation of immune responses. Recent development of novel therapeutic agents has enabled us to gain further insights into basophil biology in human disorders. In this review, we highlight the recent advances in the field of basophil biology with a particular focus on the role of basophils in allergic inflammation. Further studies on basophils and their effector molecules will help us identify novel therapeutic targets for treating allergic disorders.
Collapse
Affiliation(s)
- Kensuke Miyake
- Inflammation, Infection and Immunity Laboratory TMDU Advanced Research Institute Tokyo Medical and Dental University (TMDU) Tokyo Japan
| | - Sho Shibata
- Department of Respiratory Medicine Graduate School of Medical and Dental Sciences Tokyo Medical and Dental University (TMDU) Tokyo Japan
| | - Soichiro Yoshikawa
- Department of Cell Physiology Graduate School of Medicine, Dentistry and Pharmaceutical Sciences Okayama University Okayama Japan
| | - Hajime Karasuyama
- Inflammation, Infection and Immunity Laboratory TMDU Advanced Research Institute Tokyo Medical and Dental University (TMDU) Tokyo Japan
| |
Collapse
|
33
|
Shah H, Eisenbarth S, Tormey CA, Siddon AJ. Behind the scenes with basophils: an emerging therapeutic target. IMMUNOTHERAPY ADVANCES 2021; 1:ltab008. [PMID: 35919744 PMCID: PMC9327101 DOI: 10.1093/immadv/ltab008] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/11/2021] [Accepted: 05/11/2021] [Indexed: 12/12/2022] Open
Abstract
Summary
Though basophils were originally viewed as redundant blood ‘mast cells’, the implementation of flow cytometry has established basophils as unique leukocytes with critical immunomodulatory functions. Basophils play an active role in allergic inflammation, autoimmunity, and hematological malignancies. They are distinguishable from other leukocytes by their characteristic metachromatic deep-purple cytoplasmic, round granules. Mature basophils are phenotypically characterized by surface expression of IL-3Rα (CD123); IL-3 drives basophil differentiation, degranulation, and synthesis of inflammatory mediators including type 2 cytokines. Basophil degranulation is the predominant source of histamine in peripheral blood, promoting allergic responses. Basophils serve as a bridge between innate and adaptive immunity by secreting IL-4 which supports eosinophil migration, monocyte differentiation into macrophages, B-cell activation, and CD4 T-cell differentiation into Th2 cells. Further, basophilia is a key phenomenon in myeloid neoplasms, especially chronic myeloid leukemia (CML) for which it is a diagnostic criterion. Increased circulating basophils, often with aberrant immunophenotype, have been detected in patients with CML and other myeloproliferative neoplasms (MPNs). The significance of basophils’ immunoregulatory functions in malignant and non-malignant diseases is an active area of research. Ongoing and future research can inform the development of immunotherapies that target basophils to impact allergic, autoimmune, and malignant disease states. This review article aims to provide an overview of basophil biology, identification strategies, and roles and dysregulation in diseases.
Collapse
Affiliation(s)
- Hemali Shah
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Stephanie Eisenbarth
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, USA
- Department of Immunology, Yale School of Medicine, New Haven, CT, USA
| | | | - Alexa J Siddon
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, USA
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
34
|
Chen W, Wang Q, Zhou B, Zhang L, Zhu H. Lipid Metabolism Profiles in Rheumatic Diseases. Front Pharmacol 2021; 12:643520. [PMID: 33897433 PMCID: PMC8064727 DOI: 10.3389/fphar.2021.643520] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/18/2021] [Indexed: 12/25/2022] Open
Abstract
Rheumatic diseases are a group of chronic autoimmune disorders that involve multiple organs or systems and have high mortality. The mechanisms of these diseases are still ill-defined, and targeted therapeutic strategies are still challenging for physicians. Recent research indicates that cell metabolism plays important roles in the pathogenesis of rheumatic diseases. In this review, we mainly focus on lipid metabolism profiles (dyslipidaemia, fatty acid metabolism) and mechanisms in rheumatic diseases and discuss potential clinical applications based on lipid metabolism profiles.
Collapse
Affiliation(s)
- Weilin Chen
- Department of Rheumatology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China.,Provincial Clinical Research Center for Rheumatic and Immunologic Diseases, Xiangya Hospital, Changsha, China
| | - Qi Wang
- Department of Radiology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Bin Zhou
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lihua Zhang
- Department of Rheumatology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Honglin Zhu
- Department of Rheumatology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China.,Provincial Clinical Research Center for Rheumatic and Immunologic Diseases, Xiangya Hospital, Changsha, China
| |
Collapse
|
35
|
Rossi A, Pacella I, Piconese S. RNA Flow Cytometry for the Study of T Cell Metabolism. Int J Mol Sci 2021; 22:ijms22083906. [PMID: 33918901 PMCID: PMC8069477 DOI: 10.3390/ijms22083906] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 12/30/2022] Open
Abstract
T cells undergo activation and differentiation programs along a continuum of states that can be tracked through flow cytometry using a combination of surface and intracellular markers. Such dynamic behavior is the result of transcriptional and post-transcriptional events, initiated and sustained by the activation of specific transcription factors and by epigenetic remodeling. These signaling pathways are tightly integrated with metabolic routes in a bidirectional manner: on the one hand, T cell receptors and costimulatory molecules activate metabolic reprogramming; on the other hand, metabolites modify T cell transcriptional programs and functions. Flow cytometry represents an invaluable tool to analyze the integration of phenotypical, functional, metabolic and transcriptional features, at the single cell level in heterogeneous T cell populations, and from complex microenvironments, with potential clinical application in monitoring the efficacy of cancer immunotherapy. Here, we review the most recent advances in flow cytometry-based analysis of gene expression, in combination with indicators of mitochondrial activity, with the aim of revealing and characterizing major metabolic pathways in T cells.
Collapse
Affiliation(s)
- Alessandra Rossi
- Department of Internal Clinical Sciences, Anaesthesiology and Cardiovascular Sciences, Sapienza University of Rome, 00161 Roma, Italy; (A.R.); (I.P.)
| | - Ilenia Pacella
- Department of Internal Clinical Sciences, Anaesthesiology and Cardiovascular Sciences, Sapienza University of Rome, 00161 Roma, Italy; (A.R.); (I.P.)
| | - Silvia Piconese
- Department of Internal Clinical Sciences, Anaesthesiology and Cardiovascular Sciences, Sapienza University of Rome, 00161 Roma, Italy; (A.R.); (I.P.)
- Istituto Pasteur Italia-Fondazione Cenci Bolognetti, 00161 Roma, Italy
- Correspondence:
| |
Collapse
|
36
|
Autoimmunity, IgE and FcεRI-bearing cells. Curr Opin Immunol 2021; 72:43-50. [PMID: 33819742 DOI: 10.1016/j.coi.2021.03.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/19/2021] [Accepted: 03/02/2021] [Indexed: 12/16/2022]
Abstract
Antibody-mediated autoimmune diseases (AAID) involve several isotypes of autoreactive antibodies. In a growing number of AAID, autoreactive IgE are present with a significant prevalence and are often associated with the presence of IgG anti-IgE and/or anti-FcεRIα (high affinity IgE receptor α chain). FcεRI-bearing cells, such as basophils or mast cells, are key players in some of these AAID. Recent advances in the pathophysiology of these diseases led to the passed or current development of anti-IgE strategies that showed very potent effects in some of them. The present review centralizes the information on the relevance of autoreactive IgE and FcεRI-bearing cells in the pathophysiology of different AAID and the ones where the anti-IgE therapeutic strategy shows or may show some benefits for the patients.
Collapse
|
37
|
Wójcik P, Gęgotek A, Žarković N, Skrzydlewska E. Oxidative Stress and Lipid Mediators Modulate Immune Cell Functions in Autoimmune Diseases. Int J Mol Sci 2021; 22:ijms22020723. [PMID: 33450863 PMCID: PMC7828321 DOI: 10.3390/ijms22020723] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/08/2021] [Accepted: 01/11/2021] [Indexed: 12/15/2022] Open
Abstract
Autoimmune diseases, including psoriasis, systemic lupus erythematosus (SLE), and rheumatic arthritis (RA), are caused by a combination of environmental and genetic factors that lead to overactivation of immune cells and chronic inflammation. Since oxidative stress is a common feature of these diseases, which activates leukocytes to intensify inflammation, antioxidants could reduce the severity of these diseases. In addition to activating leukocytes, oxidative stress increases the production of lipid mediators, notably of endocannabinoids and eicosanoids, which are products of enzymatic lipid metabolism that act through specific receptors. Because the anti-inflammatory CB2 receptors are the predominant cannabinoid receptors in leukocytes, endocannabinoids are believed to act as anti-inflammatory factors that regulate compensatory mechanisms in autoimmune diseases. While administration of eicosanoids in vitro leads to the differentiation of lymphocytes into T helper 2 (Th2) cells, eicosanoids are also necessary for the different0iation of Th1 and Th17 cells. Therefore, their antagonists and/or the genetic deletion of their receptors abolish inflammation in animal models of psoriasis—RA and SLE. On the other hand, products of non-enzymatic lipid peroxidation, especially acrolein and 4-hydroxynonenal-protein adducts, mostly generated by an oxidative burst of granulocytes, may enhance inflammation and even acting as autoantigens and extracellular signaling molecules in the vicious circle of autoimmune diseases.
Collapse
Affiliation(s)
- Piotr Wójcik
- Department of Analytical Chemistry, Medical University of Bialystok, 15-222 Bialystok, Poland; (P.W.); (A.G.)
| | - Agnieszka Gęgotek
- Department of Analytical Chemistry, Medical University of Bialystok, 15-222 Bialystok, Poland; (P.W.); (A.G.)
| | - Neven Žarković
- Laboratory for Oxidative Stress, Rudjer Boskovic Institute, 10000 Zagreb, Croatia;
| | - Elżbieta Skrzydlewska
- Department of Analytical Chemistry, Medical University of Bialystok, 15-222 Bialystok, Poland; (P.W.); (A.G.)
- Correspondence:
| |
Collapse
|
38
|
Lamri Y, Vibhushan S, Pacreau E, Boedec E, Saidoune F, Mailleux A, Crestani B, Blank U, Benhamou M, Papo T, Daugas E, Sacré K, Charles N. Basophils and IgE contribute to mixed connective tissue disease development. J Allergy Clin Immunol 2020; 147:1478-1489.e11. [PMID: 33338538 DOI: 10.1016/j.jaci.2020.12.622] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/20/2020] [Accepted: 12/01/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND Mixed connective tissue disease (MCTD) is a rare and complex autoimmune disease that presents mixed features with other connective tissue diseases, such as systemic lupus erythematosus, systemic sclerosis, and myositis. It is characterized by high levels of anti-U1 small nuclear ribonucleoprotein 70k autoantibodies and a high incidence of life-threatening pulmonary involvement. The pathophysiology of MCTD is not well understood, and no specific treatment is yet available for the patients. Basophils and IgE play a role in the development of systemic lupus erythematosus and thus represent new therapeutic targets for systemic lupus erythematosus and other diseases involving basophils and IgE in their pathogenesis. OBJECTIVE We sought to investigate the role of basophils and IgE in the pathophysiology of MCTD. METHODS Basophil activation status and the presence of autoreactive IgE were assessed in peripheral blood of a cohort of patients with MCTD and in an MCTD-like mouse model. Basophil depletion and IgE-deficient animals were used to investigate the contribution of basophils and IgE in the lung pathology development of this mouse model. RESULTS Patients with MCTD have a peripheral basopenia and activated blood basophils overexpressing C-C chemokine receptor 3. Autoreactive IgE raised against the main MCTD autoantigen U1 small nuclear ribonucleoprotein 70k were found in nearly 80% of the patients from the cohort. Basophil activation and IgE anti-U1 small nuclear ribonucleoprotein 70k were also observed in the MCTD-like mouse model along with basophil accumulation in lymph nodes and lungs. Basophil depletion dampened lung pathology, and IgE deficiency prevented its development. CONCLUSIONS Basophils and IgE contribute to MCTD pathophysiology and represent new candidate therapeutic targets for patients with MCTD.
Collapse
Affiliation(s)
- Yasmine Lamri
- Université de Paris, Centre de Recherche sur l'Inflammation, INSERM UMR1149, CNRS ERL8252, Faculté de Médecine site Bichat, Paris, France; Université de Paris, Laboratoire d'Excellence Inflamex, Paris, France
| | - Shamila Vibhushan
- Université de Paris, Centre de Recherche sur l'Inflammation, INSERM UMR1149, CNRS ERL8252, Faculté de Médecine site Bichat, Paris, France; Université de Paris, Laboratoire d'Excellence Inflamex, Paris, France
| | - Emeline Pacreau
- Université de Paris, Centre de Recherche sur l'Inflammation, INSERM UMR1149, CNRS ERL8252, Faculté de Médecine site Bichat, Paris, France; Université de Paris, Laboratoire d'Excellence Inflamex, Paris, France
| | - Erwan Boedec
- Université de Paris, Centre de Recherche sur l'Inflammation, INSERM UMR1149, CNRS ERL8252, Faculté de Médecine site Bichat, Paris, France; Université de Paris, Laboratoire d'Excellence Inflamex, Paris, France
| | - Fanny Saidoune
- Université de Paris, Centre de Recherche sur l'Inflammation, INSERM UMR1149, CNRS ERL8252, Faculté de Médecine site Bichat, Paris, France; Université de Paris, Laboratoire d'Excellence Inflamex, Paris, France
| | - Arnaud Mailleux
- Université de Paris, Laboratoire d'Excellence Inflamex, Paris, France; Université de Paris, INSERM UMR1152, Faculté de Médecine site Bichat, Paris, France
| | - Bruno Crestani
- Université de Paris, Laboratoire d'Excellence Inflamex, Paris, France; Université de Paris, INSERM UMR1152, Faculté de Médecine site Bichat, Paris, France; Department of Pulmonology, Hôpital Bichat, Assistance Publique-Hôpitaux de Paris, Université de Paris, Faculté de Médecine site Bichat, DHU FIRE, Paris, France
| | - Ulrich Blank
- Université de Paris, Centre de Recherche sur l'Inflammation, INSERM UMR1149, CNRS ERL8252, Faculté de Médecine site Bichat, Paris, France; Université de Paris, Laboratoire d'Excellence Inflamex, Paris, France
| | - Marc Benhamou
- Université de Paris, Centre de Recherche sur l'Inflammation, INSERM UMR1149, CNRS ERL8252, Faculté de Médecine site Bichat, Paris, France; Université de Paris, Laboratoire d'Excellence Inflamex, Paris, France
| | - Thomas Papo
- Université de Paris, Centre de Recherche sur l'Inflammation, INSERM UMR1149, CNRS ERL8252, Faculté de Médecine site Bichat, Paris, France; Université de Paris, Laboratoire d'Excellence Inflamex, Paris, France; Department of Internal Medicine, Hôpital Bichat, Assistance Publique-Hôpitaux de Paris, Université de Paris, Faculté de Médecine site Bichat, DHU FIRE, Paris, France
| | - Eric Daugas
- Université de Paris, Centre de Recherche sur l'Inflammation, INSERM UMR1149, CNRS ERL8252, Faculté de Médecine site Bichat, Paris, France; Université de Paris, Laboratoire d'Excellence Inflamex, Paris, France; Department of Nephrology, Hôpital Bichat, Assistance Publique-Hôpitaux de Paris, Université de Paris, Faculté de Médecine site Bichat, DHU FIRE, Paris, France
| | - Karim Sacré
- Université de Paris, Centre de Recherche sur l'Inflammation, INSERM UMR1149, CNRS ERL8252, Faculté de Médecine site Bichat, Paris, France; Université de Paris, Laboratoire d'Excellence Inflamex, Paris, France; Department of Internal Medicine, Hôpital Bichat, Assistance Publique-Hôpitaux de Paris, Université de Paris, Faculté de Médecine site Bichat, DHU FIRE, Paris, France
| | - Nicolas Charles
- Université de Paris, Centre de Recherche sur l'Inflammation, INSERM UMR1149, CNRS ERL8252, Faculté de Médecine site Bichat, Paris, France; Université de Paris, Laboratoire d'Excellence Inflamex, Paris, France.
| |
Collapse
|
39
|
Halfon M, Bachelet D, Hanouna G, Dema B, Pellefigues C, Manchon P, Laouenan C, Charles N, Daugas E. CD62L on blood basophils: a first pre-treatment predictor of remission in severe lupus nephritis. Nephrol Dial Transplant 2020; 36:2256-2262. [PMID: 33316058 DOI: 10.1093/ndt/gfaa263] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Basophils were recently shown to contribute to lupus nephritis (LN). This study assessed blood basophil activation markers (BAMs) for the diagnosis of LN severity and as pre-treatment prognostic markers of the response to treatment in patients with severe LN. METHOD The diagnostic study included all the patients of a monocentric prospective observational cohort built with consecutive patients diagnosed with LN on the basis of a renal biopsy. The prognostic study selected patients of this cohort according to the following inclusion criteria: ≥18 years old, Class III or IV A ± C ± Class V or pure Class V LN at the time of inclusion and treated with an induction treatment for LN. Clinical data and BAMs were obtained at the time of the kidney biopsy. LN remission status was recorded 12 months after induction therapy initiation. Associations between baseline data and histological severity of LN or LN remission were assessed using logistic regression. RESULTS No significant association was found between BAMs and the histological severity of LN in 101 patients. Among the 83 patients included in the prognostic study, 64 reached renal remission. CD62L expression on blood basophils at baseline was independently negatively associated with remission at 12 months [odds ratio = 0.26, 95% confidence interval 0.08-0.82, P = 0.02 for quantitative CD62L expression >105 (geometric fluorescent intensity) gMFI]. CD62L <105 gMFI was associated with a probability of 0.87 of LN remission in the next 12 months after the start of induction therapy. CONCLUSION Pre-treatment CD62L expression on blood basophils could be a first predictive biomarker of renal response to induction therapy at 12 months in patients with severe LN.
Collapse
Affiliation(s)
- Matthieu Halfon
- Department of Nephrology, Hôpital Bichat, Assistance Publique-Hôpitaux de Paris, Université de Paris, Paris, France
| | - Delphine Bachelet
- Department of Biostatistical Epidemiology and Clinical Research, Hôpital Bichat, Assistance Publique-Hôpitaux de Paris, INSERM CIC-EC 1425, Paris, France
| | - Guillaume Hanouna
- Department of Nephrology, Hôpital Bichat, Assistance Publique-Hôpitaux de Paris, Université de Paris, Paris, France
| | - Barbara Dema
- Centre de recherche sur l'inflammation, INSERM UMR1149, CNRS EL8252, Laboratoire d'Excellence Inflamex, Université de Paris, Paris, France
| | - Christophe Pellefigues
- Centre de recherche sur l'inflammation, INSERM UMR1149, CNRS EL8252, Laboratoire d'Excellence Inflamex, Université de Paris, Paris, France
| | - Pauline Manchon
- Department of Biostatistical Epidemiology and Clinical Research, Hôpital Bichat, Assistance Publique-Hôpitaux de Paris, INSERM CIC-EC 1425, Paris, France
| | - Cedric Laouenan
- Department of Biostatistical Epidemiology and Clinical Research, Hôpital Bichat, Assistance Publique-Hôpitaux de Paris, INSERM CIC-EC 1425, Paris, France.,INSERM, IAME, UMR 1137, Université de Paris, Paris, France
| | - Nicolas Charles
- Centre de recherche sur l'inflammation, INSERM UMR1149, CNRS EL8252, Laboratoire d'Excellence Inflamex, Université de Paris, Paris, France
| | - Eric Daugas
- Department of Nephrology, Hôpital Bichat, Assistance Publique-Hôpitaux de Paris, Université de Paris, Paris, France.,Centre de recherche sur l'inflammation, INSERM UMR1149, CNRS EL8252, Laboratoire d'Excellence Inflamex, Université de Paris, Paris, France
| |
Collapse
|
40
|
IgE in the Pathogenesis of SLE: From Pathogenic Role to Therapeutic Target. Antibodies (Basel) 2020; 9:antib9040069. [PMID: 33302566 PMCID: PMC7768355 DOI: 10.3390/antib9040069] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/11/2020] [Accepted: 11/22/2020] [Indexed: 01/08/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is a multifactorial chronic autoimmune disease, marked by the presence of autoantibodies to nuclear antigens belonging to different isotype classes. For several years, IgE antibodies have been incriminated in the development of allergic diseases and parasitic infections and different anti-IgE therapies have been developed to encounter the pathogenic role of IgE in these pathologies. Recently, multiple studies showed the presence of elevated total IgE levels and demonstrated a pathogenic role of autoreactive IgE in SLE. This review aims to summarize the findings incriminating IgE and autoreactive IgE in the pathophysiology of SLE, to describe their functional outcomes on their targeted cells as well as to discuss different IgE-related therapeutic modalities that emerged and that may be beneficial for SLE patient care.
Collapse
|
41
|
Innate immune response in systemic autoimmune diseases: a potential target of therapy. Inflammopharmacology 2020; 28:1421-1438. [DOI: 10.1007/s10787-020-00762-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/18/2020] [Indexed: 02/06/2023]
|
42
|
Dossybayeva K, Abdukhakimova D, Poddighe D. Basophils and Systemic Lupus Erythematosus in Murine Models and Human Patients. BIOLOGY 2020; 9:308. [PMID: 32977704 PMCID: PMC7598686 DOI: 10.3390/biology9100308] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/18/2020] [Accepted: 09/18/2020] [Indexed: 12/12/2022]
Abstract
Basophils are the rarest cell population in the blood. Even though basophils are known to participate in some allergic reactions and immune responses to parasitic infections, their immunological role is still largely elusive. Recent evidence has suggested that in some murine models of systemic lupus erythematosus and lupus-like nephritis, basophils may also be implicated in autoimmunity processes by promoting autoantibody production and tissue injury. We conducted a systematic search to collect the available evidence on basophils' potential immunomodulatory role in autoimmunity and, particularly, systemic lupus erythematosus. We identified several articles investigating basophils' role in murine models of lupus (n = 3) and in patients affected with systemic lupus erythematosus (n = 8). Even though the alteration of the "adaptive" immune response is considered the main immunopathological event in systemic lupus erythematosus, the contribution from the mechanisms of "innate" immunity and, particularly, basophils may be relevant as well, by modulating the activation, polarization, and survival of lymphocytes.
Collapse
Affiliation(s)
- Kuanysh Dossybayeva
- Department of Medicine, Nazarbayev University School of Medicine, Nur-Sultan 010000, Kazakhstan; (K.D.); (D.A.)
| | - Diyora Abdukhakimova
- Department of Medicine, Nazarbayev University School of Medicine, Nur-Sultan 010000, Kazakhstan; (K.D.); (D.A.)
| | - Dimitri Poddighe
- Department of Medicine, Nazarbayev University School of Medicine, Nur-Sultan 010000, Kazakhstan; (K.D.); (D.A.)
- Department of Pediatrics, University Medical Center, Nur-Sultan 010000, Kazakhstan
| |
Collapse
|
43
|
Marone G, Schroeder JT, Mattei F, Loffredo S, Gambardella AR, Poto R, de Paulis A, Schiavoni G, Varricchi G. Is There a Role for Basophils in Cancer? Front Immunol 2020; 11:2103. [PMID: 33013885 PMCID: PMC7505934 DOI: 10.3389/fimmu.2020.02103] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 08/03/2020] [Indexed: 12/11/2022] Open
Abstract
Basophils were identified in human peripheral blood by Paul Ehrlich over 140 years ago. Human basophils represent <1% of peripheral blood leukocytes. During the last decades, basophils have been described also in mice, guinea pigs, rabbits, and monkeys. There are many similarities, but also several immunological differences between human and mouse basophils. There are currently several strains of mice with profound constitutive or inducible basophil deficiency useful to prove that these cells have specific roles in vivo. However, none of these mice are solely and completely devoid of all basophils. Therefore, the relevance of these findings to humans remains to be established. It has been known for some time that basophils have the propensity to migrate into the site of inflammation. Recent observations indicate that tissue resident basophils contribute to lung development and locally promote M2 polarization of macrophages. Moreover, there is increasing evidence that lung-resident basophils exhibit a specific phenotype, different from circulating basophils. Activated human and mouse basophils synthesize restricted and distinct profiles of cytokines. Human basophils produce several canonical (e.g., VEGFs, angiopoietin 1) and non-canonical (i.e., cysteinyl leukotriene C4) angiogenic factors. Activated human and mouse basophils release extracellular DNA traps that may have multiple effects in cancer. Hyperresponsiveness of basophils has been demonstrated in patients with JAK2V617F-positive polycythemia vera. Basophils are present in the immune landscape of human lung adenocarcinoma and pancreatic cancer and can promote inflammation-driven skin tumor growth. The few studies conducted thus far using different models of basophil-deficient mice have provided informative results on the roles of these cells in tumorigenesis. Much more remains to be discovered before we unravel the hitherto mysterious roles of basophils in human and experimental cancers.
Collapse
Affiliation(s)
- Giancarlo Marone
- Section of Hygiene, Department of Public Health, University of Naples Federico II, Naples, Italy.,Azienda Ospedaliera Ospedali dei Colli, Monaldi Hospital Pharmacy, Naples, Italy
| | - John T Schroeder
- Division of Allergy and Clinical Immunology, Department of Medicine, Johns Hopkins Asthma and Allergy Center, Johns Hopkins University, Baltimore, MD, United States
| | - Fabrizio Mattei
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Stefania Loffredo
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,WAO Center of Excellence, Naples, Italy.,Institute of Experimental Endocrinology and Oncology "G. Salvatore", National Research Council (CNR), Naples, Italy
| | | | - Remo Poto
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
| | - Amato de Paulis
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,WAO Center of Excellence, Naples, Italy
| | - Giovanna Schiavoni
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Gilda Varricchi
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,WAO Center of Excellence, Naples, Italy.,Institute of Experimental Endocrinology and Oncology "G. Salvatore", National Research Council (CNR), Naples, Italy
| |
Collapse
|
44
|
Pellefigues C. IgE Autoreactivity in Atopic Dermatitis: Paving the Road for Autoimmune Diseases? Antibodies (Basel) 2020; 9:E47. [PMID: 32911788 PMCID: PMC7551081 DOI: 10.3390/antib9030047] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/02/2020] [Accepted: 09/04/2020] [Indexed: 12/20/2022] Open
Abstract
Atopic dermatitis (AD) is a common skin disease affecting 20% of the population beginning usually before one year of age. It is associated with the emergence of allergen-specific IgE, but also with autoreactive IgE, whose function remain elusive. This review discusses current knowledge relevant to the mechanisms, which leads to the secretion of autoreactive IgE and to the potential function of these antibodies in AD. Multiple autoantigens have been described to elicit an IgE-dependent response in this context. This IgE autoimmunity starts in infancy and is associated with disease severity. Furthermore, the overall prevalence of autoreactive IgE to multiple auto-antigens is high in AD patients. IgE-antigen complexes can promote a facilitated antigen presentation, a skewing of the adaptive response toward type 2 immunity, and a chronic skin barrier dysfunction and inflammation in patients or AD models. In AD, skin barrier defects and the atopic immune environment facilitate allergen sensitization and the development of other IgE-mediated allergic diseases in a process called the atopic march. AD is also associated epidemiologically with several autoimmune diseases showing autoreactive IgE secretion. Thus, a potential outcome of IgE autoreactivity in AD could be the development of further autoimmune diseases.
Collapse
Affiliation(s)
- Christophe Pellefigues
- INSERM UMRS1149-CNRS ERL8252, Team «Basophils and Mast cells in Immunopathology», Centre de recherche sur l'inflammation (CRI), Inflamex, DHU Fire, Université de Paris, 75018 Paris, France
| |
Collapse
|
45
|
Han H, Xu Y, Liao S, Xiao H, Chen X, Lu X, Wang S, Yang C, Liu H, Pan Q. Increased number and activation of peripheral basophils in adult-onset minimal change disease. J Cell Mol Med 2020; 24:7841-7849. [PMID: 32510738 PMCID: PMC7348159 DOI: 10.1111/jcmm.15417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/21/2020] [Accepted: 05/06/2020] [Indexed: 12/11/2022] Open
Abstract
Nowadays, the pathogenesis of minimal change disease (MCD) is still not well-known, and the current understanding on MCD is mainly based on data derived from children, and very few adults. Here, we comprehensively analysed the correlation between the changes of peripheral basophils and the incidence rate and relapse of adult-onset MCD. The results showed that in patients at the onset of MCD, the ratio and activation of basophils were all higher than those of healthy controls (all P < .05). In vitro test results showed that basophils from healthy controls can be activated by the serum taken from patients with MCD. Among 62 patients at the onset of MCD, with complete remission after treatment and 1 year of follow-up, the relative and absolute basophil counts before treatment were higher in the long-term remission group (n = 33) than that of the relapse group (n = 29). The basophil counts were significantly higher in the infrequent relapse group (n = 13) than that of the frequent relapse group (n = 16; P < .05). These findings suggested that basophil may play a pathogenic role in adult-onset MCD, and the increased number and activation of peripheral basophils could predict recurrence in adult MCD.
Collapse
Affiliation(s)
- Huanqin Han
- Infectious Diseases CenterAffiliated Hospital of Guangdong Medical UniversityZhanjiangChina
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang CityInstitute of NephrologyAffiliated Hospital of Guangdong Medical UniversityZhanjiangChina
| | - Yong‐Zhi Xu
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang CityInstitute of NephrologyAffiliated Hospital of Guangdong Medical UniversityZhanjiangChina
| | - Shuzhen Liao
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang CityInstitute of NephrologyAffiliated Hospital of Guangdong Medical UniversityZhanjiangChina
| | - Haiyan Xiao
- College of NursingDepartment of Anesthesiology and Perioperative MedicineAugusta UniversityAugustaGAUSA
| | - Xiaoqun Chen
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang CityInstitute of NephrologyAffiliated Hospital of Guangdong Medical UniversityZhanjiangChina
| | - Xing Lu
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang CityInstitute of NephrologyAffiliated Hospital of Guangdong Medical UniversityZhanjiangChina
| | - Shujun Wang
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang CityInstitute of NephrologyAffiliated Hospital of Guangdong Medical UniversityZhanjiangChina
| | - Chen Yang
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang CityInstitute of NephrologyAffiliated Hospital of Guangdong Medical UniversityZhanjiangChina
| | - Hua‐feng Liu
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang CityInstitute of NephrologyAffiliated Hospital of Guangdong Medical UniversityZhanjiangChina
| | - Qingjun Pan
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang CityInstitute of NephrologyAffiliated Hospital of Guangdong Medical UniversityZhanjiangChina
| |
Collapse
|
46
|
Galeotti C, Karnam A, Das M, Kaveri SV, Bayry J. Acid Stripping of Surface IgE Antibodies Bound to FcεRI is Unsuitable for the Functional Assays that Require Long-Term Culture of Basophils and Entire Removal of Surface IgE. Int J Mol Sci 2020; 21:ijms21020510. [PMID: 31941161 PMCID: PMC7014331 DOI: 10.3390/ijms21020510] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 01/10/2020] [Indexed: 02/07/2023] Open
Abstract
Basophils are rare granulocytes and dysregulated functions of these cells are associated with several atopic and non-atopic allergic diseases of skin, respiratory system and gastrointestinal tract. Both cytokines and immunoglobulin E (IgE) are implicated in mediating the basophil activation and pathogenesis of these disorders. Several reports have shown that healthy individuals, and patients with allergic disorders display IgG autoantibodies to IgE and hence functional characterization of these anti-IgE IgG autoantibodies is critical. In general, anti-IgE IgG autoantibodies modulate basophil activation irrespective of allergen specificity by interacting with constant domains of IgE. Therefore, an ideal solution to prove the functions of such anti-IgE IgG autoantibodies would be to completely eliminate type I high affinity immunoglobulin E receptor (FcɛRI)-bound IgE from the surface of basophils and to demonstrate in an unequivocal manner the role of anti-IgE IgG autoantibodies. In line with previous reports, our data show that FcɛRI on peripheral blood basophils are almost saturated with IgE. Further, acetic acid buffer (pH 4) efficiently removes these FcɛRI-bound IgE. Although immediately following acetic acid-elution of IgE had no repercussion on the viability of basophils, following 24 h culture with interleukin-3 (IL-3), the viability and yield of basophils were drastically reduced in acid-treated cells and had repercussion on the induction of activation markers. Lactic acid treatment on the other hand though had no adverse effects on the viability of basophils and IL-3-induced activation, it removed only a small fraction of the cell surface bound IgE. Thus, our results show that acid buffers could be used for the elution of FcɛRI-bound IgE on the basophil surface for the biochemical characterization of IgE antibodies or for the immediate use of basophils to determine their sensitivity to undergo degranulation by specific allergens. However, these methods are not utile for the functional assays of basophils that require longer duration of culture and entire removal of surface IgE to validate the role of anti-IgE IgG autoantibodies that interact with FcɛRI-bound IgE irrespective of allergen specificity.
Collapse
Affiliation(s)
- Caroline Galeotti
- Institut National de la Santé et de la Recherche Médicale, Centre de Recherche des Cordeliers, Equipe-Immunopathologie et Immunointervention Thérapeutique, Sorbonne Université, Paris, F-75006, France
- Service de Rhumatologie Pédiatrique, Centre de Référence des Maladies Auto-Inflammatoires Rares et des Amyloses, CHU de Bicêtre, le Kremlin Bicêtre, F-94270 Paris, France
| | - Anupama Karnam
- Institut National de la Santé et de la Recherche Médicale, Centre de Recherche des Cordeliers, Equipe-Immunopathologie et Immunointervention Thérapeutique, Sorbonne Université, Paris, F-75006, France
| | - Mrinmoy Das
- Institut National de la Santé et de la Recherche Médicale, Centre de Recherche des Cordeliers, Equipe-Immunopathologie et Immunointervention Thérapeutique, Sorbonne Université, Paris, F-75006, France
| | - Srini V Kaveri
- Institut National de la Santé et de la Recherche Médicale, Centre de Recherche des Cordeliers, Equipe-Immunopathologie et Immunointervention Thérapeutique, Sorbonne Université, Paris, F-75006, France
- Université Paris Descartes, Sorbonne Paris Cité, F-75006 Paris, France
| | - Jagadeesh Bayry
- Institut National de la Santé et de la Recherche Médicale, Centre de Recherche des Cordeliers, Equipe-Immunopathologie et Immunointervention Thérapeutique, Sorbonne Université, Paris, F-75006, France
- Université Paris Descartes, Sorbonne Paris Cité, F-75006 Paris, France
| |
Collapse
|
47
|
Kimbrough JR, Austin Z, Milne GL, Sulikowski GA. Synthesis of a Human Urinary Metabolite of Prostaglandin D 2. Org Lett 2019; 21:10048-10051. [PMID: 31799855 DOI: 10.1021/acs.orglett.9b03983] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A chemical synthesis of the major human metabolite of prostaglandin D2, tricyclic-PGDM, is described. The synthetic route starts from iodocyclopentenone 1 (available from cyclopentadiene in 6 steps) and requires 13 synthetic transformations. The synthetic route takes advantage of a contrasteric allylation to establish the 1,2-cis relationship between the ring hydroxyl group and side chain. A second key sequence is the application of Fu's copper-catalyzed C-H insertion of a diazoacetate followed by an alkyne semihydrogenation to introduce the unsaturated side chain.
Collapse
Affiliation(s)
- Jennifer R Kimbrough
- Department of Chemistry , Vanderbilt University , Nashville , Tennessee 37232 , United States
| | - Zachary Austin
- Department of Chemistry , Vanderbilt University , Nashville , Tennessee 37232 , United States
| | - Ginger L Milne
- Department of Pharmacology , Vanderbilt University School of Medicine , Nashville , Tennessee 37232 , United States.,Vanderbilt Institute of Chemical Biology , Vanderbilt University , Nashville , Tennessee 37232 , United States
| | - Gary A Sulikowski
- Department of Chemistry , Vanderbilt University , Nashville , Tennessee 37232 , United States.,Department of Pharmacology , Vanderbilt University School of Medicine , Nashville , Tennessee 37232 , United States.,Vanderbilt Institute of Chemical Biology , Vanderbilt University , Nashville , Tennessee 37232 , United States
| |
Collapse
|
48
|
Liu YR, Tang ZS, Duan JA, Chen L, Sun J, Zhou R, Song ZX, Shi XB, Zhu HY. ER-depletion lowering the 'hypothalamus-uterus-kidney' axis functions by perturbing the renal ERβ/Ptgds signalling pathway. Aging (Albany NY) 2019; 11:9500-9529. [PMID: 31708494 PMCID: PMC6874469 DOI: 10.18632/aging.102401] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 10/26/2019] [Indexed: 12/14/2022]
Abstract
Researchers have long assumed that systematic estrogen fading might contribute to the sustained progression of menopausal degenerate syndromes, although definitive evidence has not been presented. Whether such findings represent a causal contribution or are the result of opportunistic messengers sent from the reproductive system to the brain is also a vital question. We constructed a multiscale network of the ovariectomy (OVX) induced estrogen receptors depletion (ER-depletion) model and integrated targeted proteomic, targeted lipidomic, cytochemical, and histopathological data across three tissues from the ovariectomy rodent model. We found that compared to control rats, OVX rats showed increased renal and uterine prostaglandin D2 synthase (Ptgds) expression and decreased hypothalamic Ptgds expression, abnormal Ptgds metabolites, the degenerate renal function profiles and decreased cognitive ability (learning and memory) in Morris water maze test. Importantly, we observed a regulatory relationship among ER (particularly ERβ), the degree of the pathological phenotype, learning behavior test and the ‘hypothalamus-uterus-kidney (HUK) axis functions. Collectively, this study elucidates that ER depletion promoted HUK aging is mostly attributed to a renal ERβ/Ptgds signalling imbalance.
Collapse
Affiliation(s)
- Yan-Ru Liu
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xianyang 712083, P.R. China
| | - Zhi-Shu Tang
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xianyang 712083, P.R. China
| | - Jin-Ao Duan
- Key Laboratory for High Technology Research of TCM Formulae and Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
| | - Lin Chen
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xianyang 712083, P.R. China
| | - Jing Sun
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xianyang 712083, P.R. China
| | - Rui Zhou
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xianyang 712083, P.R. China
| | - Zhong-Xing Song
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xianyang 712083, P.R. China
| | - Xin-Bo Shi
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xianyang 712083, P.R. China
| | - Hui-Yuan Zhu
- Shaanxi University of Chinese Medicine, Xianyang 712083, P.R. China
| |
Collapse
|
49
|
Pellefigues C, Mehta P, Prout MS, Naidoo K, Yumnam B, Chandler J, Chappell S, Filbey K, Camberis M, Le Gros G. The Basoph8 Mice Enable an Unbiased Detection and a Conditional Depletion of Basophils. Front Immunol 2019; 10:2143. [PMID: 31552058 PMCID: PMC6746837 DOI: 10.3389/fimmu.2019.02143] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 08/27/2019] [Indexed: 01/05/2023] Open
Abstract
Basophils are granulocytes involved in parasite immunity and allergic diseases, known for their potent secretion of type 2 cytokines. Identifying their functions has proven to be controversial due to their relative rarity and their complex lineage phenotype. Here, we show that the expression of basophils lineage markers CD200R3 and FcεRIα is highly variable in inflammatory settings and hinders basophils identification by flow cytometry across multiple disease states or tissues. Fluorophore-conjugated antibody staining of these lineage markers strongly activates basophil type 2 cytokine expression, and represents a potential bias for coculture or in vivo transfer experiments. The Basoph8 is a mouse model where basophils specifically express a strong fluorescent reporter and the Cre recombinase. Basophils can be identified and FACS sorted unambiguously by their expression of the enhanced yellow fluorescent protein (eYFP) in these mice. We show that the expression of the eYFP is robust in vivo during inflammation, and in vitro on living basophils for at least 72 h, including during the induction of anaphylactoid degranulation. We bred and characterized the Basoph8xiDTR mice, in which basophils specifically express eYFP and the simian diphtheria toxin receptor (DTR). This model enables basophils conditional depletion relatively specifically ex vivo and in vivo during allergic inflammation and their detection as eYFP+ cells. In conclusion, we report underappreciated benefits of the commercially available Basoph8 mice to study basophils function.
Collapse
Affiliation(s)
- Christophe Pellefigues
- The Malaghan Institute of Medical Research, Victoria University, Wellington, New Zealand
| | - Palak Mehta
- The Malaghan Institute of Medical Research, Victoria University, Wellington, New Zealand
| | - Melanie Sarah Prout
- The Malaghan Institute of Medical Research, Victoria University, Wellington, New Zealand
| | - Karmella Naidoo
- The Malaghan Institute of Medical Research, Victoria University, Wellington, New Zealand
| | - Bibek Yumnam
- The Malaghan Institute of Medical Research, Victoria University, Wellington, New Zealand
| | - Jodie Chandler
- The Malaghan Institute of Medical Research, Victoria University, Wellington, New Zealand
| | - Sally Chappell
- The Malaghan Institute of Medical Research, Victoria University, Wellington, New Zealand
| | - Kara Filbey
- The Malaghan Institute of Medical Research, Victoria University, Wellington, New Zealand
| | - Mali Camberis
- The Malaghan Institute of Medical Research, Victoria University, Wellington, New Zealand
| | - Graham Le Gros
- The Malaghan Institute of Medical Research, Victoria University, Wellington, New Zealand
| |
Collapse
|
50
|
Arachidonic Acid Metabolism and Kidney Inflammation. Int J Mol Sci 2019; 20:ijms20153683. [PMID: 31357612 PMCID: PMC6695795 DOI: 10.3390/ijms20153683] [Citation(s) in RCA: 211] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 07/19/2019] [Accepted: 07/20/2019] [Indexed: 12/17/2022] Open
Abstract
As a major component of cell membrane lipids, Arachidonic acid (AA), being a major component of the cell membrane lipid content, is mainly metabolized by three kinds of enzymes: cyclooxygenase (COX), lipoxygenase (LOX), and cytochrome P450 (CYP450) enzymes. Based on these three metabolic pathways, AA could be converted into various metabolites that trigger different inflammatory responses. In the kidney, prostaglandins (PG), thromboxane (Tx), leukotrienes (LTs) and hydroxyeicosatetraenoic acids (HETEs) are the major metabolites generated from AA. An increased level of prostaglandins (PGs), TxA2 and leukotriene B4 (LTB4) results in inflammatory damage to the kidney. Moreover, the LTB4-leukotriene B4 receptor 1 (BLT1) axis participates in the acute kidney injury via mediating the recruitment of renal neutrophils. In addition, AA can regulate renal ion transport through 19-hydroxystilbenetetraenoic acid (19-HETE) and 20-HETE, both of which are produced by cytochrome P450 monooxygenase. Epoxyeicosatrienoic acids (EETs) generated by the CYP450 enzyme also plays a paramount role in the kidney damage during the inflammation process. For example, 14 and 15-EET mitigated ischemia/reperfusion-caused renal tubular epithelial cell damage. Many drug candidates that target the AA metabolism pathways are being developed to treat kidney inflammation. These observations support an extraordinary interest in a wide range of studies on drug interventions aiming to control AA metabolism and kidney inflammation.
Collapse
|