1
|
Lam MT, Jiang CL, Lee PY. T-ing up the storm: pathogenic cycling lymphocytes in the biology of macrophage activation syndrome. Pediatr Rheumatol Online J 2025; 23:29. [PMID: 40098189 PMCID: PMC11912701 DOI: 10.1186/s12969-025-01081-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Accepted: 03/06/2025] [Indexed: 03/19/2025] Open
Abstract
BACKGROUND Hemophagocytic lymphohistiocytosis (HLH) and macrophage activation syndrome (MAS) are potentially fatal cytokine storm syndromes with clinical features including fever, pancytopenia, hepatosplenomegaly, coagulopathy, and progressive multiorgan system dysfunction. Mechanistically, HLH / MAS are driven by persistent activation of lymphoid and myeloid cells, but our understanding of the pathogenic cell populations remains incomplete. MAIN BODY In this Perspectives article, we provide an overview of the biology of HLH / MAS and the critical role of interferon-g in disease pathogenesis. We discuss the recent discovery of cycling lymphocytes in HLH / MAS marked by expression of CD38 and HLA-DR, which are primary producers of IFN-γ. The expansion of cycling lymphocytes correlates with disease activity and helps to distinguish HLH / MAS from clinical mimics. We demonstrate an approach to quantify CD38+HLA-DR+ cycling lymphocytes and evaluate their utility as a diagnostic biomarker for HLH / MAS. Lastly, we discuss the treatment of MAS, including potential therapeutic options to target these pathogenic lymphocytes. CONCLUSION Understanding of biology of cycling lymphocytes in HLH / MAS will facilitate the development of novel therapeutic approaches to overcome these fatal hyperinflammatory disorders.
Collapse
Affiliation(s)
- Michael T Lam
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Connie L Jiang
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Boston Combined Residency Program, Boston Children's Hospital and Boston Medical Center, Boston, MA, USA
| | - Pui Y Lee
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2
|
Quiñones-Parra SM, Gras S, Nguyen THO, Farenc C, Szeto C, Rowntree LC, Chaurasia P, Sant S, Boon ACM, Jayasinghe D, Rimmelzwaan GF, Petersen J, Doherty PC, Uldrich AP, Littler DR, Rossjohn J, Kedzierska K. Molecular determinants of cross-strain influenza A virus recognition by αβ T cell receptors. Sci Immunol 2025; 10:eadn3805. [PMID: 39919196 DOI: 10.1126/sciimmunol.adn3805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/26/2024] [Accepted: 01/16/2025] [Indexed: 02/09/2025]
Abstract
Cross-reactive αβ T cell receptors (TCRs) recognizing multiple peptide variants can provide effective control of rapidly evolving viruses yet remain understudied. By screening 12 naturally occurring influenza-derived HLA-B*35:01-restricted nucleoprotein (NP)418-426 epitopes (B*35:01-NP418) that emerged since 1918 within influenza A viruses, including 2024 A/H5N1 viruses, we identified functional broadly cross-reactive T cells universally recognizing NP418 variants. Binding studies demonstrated that TCR cross-reactivity was concomitant with diminished antigen sensitivity. Primary human B*35:01/NP418+CD8+ T cell lines displayed reduced cross-reactivity in the absence of CD8 coreceptor binding, validating the low avidity of cross-reactive B*35:01-NP418+CD8+ T cell responses. Six TCR-HLA-B*35:01/NP418 crystal structures showed how cross-reactive TCRs recognized multiple B*35:01/NP418 epitope variants. Specific TCR interactions were formed with invariant and conserved peptide-HLA features, thus remaining distal from highly varied positions of the NP418 epitope. Our study defines molecular mechanisms associated with extensive TCR cross-reactivity toward naturally occurring viral variants highly relevant to universal protective immunity against influenza.
Collapse
Affiliation(s)
- Sergio M Quiñones-Parra
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia
| | - Stephanie Gras
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Thi H O Nguyen
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia
| | - Carine Farenc
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Christopher Szeto
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Louise C Rowntree
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia
| | - Priyanka Chaurasia
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Sneha Sant
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia
| | - Adrianus C M Boon
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Dhilshan Jayasinghe
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Guus F Rimmelzwaan
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine, Hannover, Germany
| | - Jan Petersen
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Peter C Doherty
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia
| | - Adam P Uldrich
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia
| | - Dene R Littler
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Jamie Rossjohn
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Institute of Infection and Immunity, Cardiff University, School of Medicine, Heath Park, Cardiff, UK
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
3
|
Wang Y, Song Z, Ran P, Xiang H, Xu Z, Xu N, Deng M, Zhu L, Yin Y, Feng J, Ding C, Yang W. Serum proteome reveals distinctive molecular features of H7N9- and SARS-CoV-2-infected patients. Cell Rep 2024; 43:114900. [PMID: 39487987 DOI: 10.1016/j.celrep.2024.114900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/02/2024] [Accepted: 10/07/2024] [Indexed: 11/04/2024] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has reminded us of human infections with the H7N9 virus and has raised questions related to the clinical and molecular pathophysiological diversity between the two diseases. Here, we performed a proteomic approach on sera samples from patients with H7N9-virus or SARS-CoV-2-virus infection and healthy controls. Compared to SARS-CoV-2, H7N9-virus infection caused elevated neutrophil concentrations, T cell exhaustion, and increased cytokine/interleukin secretion. Cell-type deconvolution and temporal analysis revealed that T cells and neutrophils could regulate the core immunological trajectory and influence the prognosis of patients with severe H7N9-virus infection. Elevated tissue-enhanced proteins combined with alterations of clinical biochemical indexes suggested that H7N9 infection induced more severe inflammatory organ injury and dysfunction in the liver and intestine. Further mechanical analysis revealed that the high concentration of neutrophils might impact the intestinal enterocyte cells through cytokine-receptor interaction, leading to intestinal damage in patients with H7N9-virus infection.
Collapse
Affiliation(s)
- Yunzhi Wang
- Department of Pediatric Orthopedics, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai 200092, China; Center for Cell and Gene Therapy, Clinical Research Center for Cell-based Immunotherapy, Shanghai Pudong Hospital, State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai 200433, China
| | - Zhigang Song
- Institutes of Biomedical Sciences, School of Life Sciences, Greater Bay Area Institute of Precision Medicine (Guangzhou) and Shanghai Public Health Clinical Center, Fudan University, Shanghai 200438, China
| | - Peng Ran
- Department of Pediatric Orthopedics, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai 200092, China; Center for Cell and Gene Therapy, Clinical Research Center for Cell-based Immunotherapy, Shanghai Pudong Hospital, State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai 200433, China
| | - Hang Xiang
- Center for Cell and Gene Therapy, Clinical Research Center for Cell-based Immunotherapy, Shanghai Pudong Hospital, State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai 200433, China
| | - Ziyan Xu
- Center for Cell and Gene Therapy, Clinical Research Center for Cell-based Immunotherapy, Shanghai Pudong Hospital, State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai 200433, China
| | - Ning Xu
- Center for Cell and Gene Therapy, Clinical Research Center for Cell-based Immunotherapy, Shanghai Pudong Hospital, State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai 200433, China
| | - Mengjie Deng
- Ruijin Hospital, College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lingli Zhu
- Center for Cell and Gene Therapy, Clinical Research Center for Cell-based Immunotherapy, Shanghai Pudong Hospital, State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai 200433, China
| | - Yanan Yin
- Center for Cell and Gene Therapy, Clinical Research Center for Cell-based Immunotherapy, Shanghai Pudong Hospital, State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai 200433, China
| | - Jinwen Feng
- Center for Cell and Gene Therapy, Clinical Research Center for Cell-based Immunotherapy, Shanghai Pudong Hospital, State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai 200433, China
| | - Chen Ding
- Center for Cell and Gene Therapy, Clinical Research Center for Cell-based Immunotherapy, Shanghai Pudong Hospital, State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai 200433, China; Departments of Cancer Research Institute, Affiliated Cancer Hospital of Xingjiang Medical University, Xingjiang Key Laboratory of Translational Biomedical Engineering, Urumqi 830000, P. R. China.
| | - Wenjun Yang
- Department of Pediatric Orthopedics, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai 200092, China.
| |
Collapse
|
4
|
Nakhaie M, Rukerd MRZ, Shahpar A, Pardeshenas M, Khoshnazar SM, Khazaeli M, Bashash D, Nezhad NZ, Charostad J. A Closer Look at the Avian Influenza Virus H7N9: A Calm before the Storm? J Med Virol 2024; 96:e70090. [PMID: 39601174 DOI: 10.1002/jmv.70090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/15/2024] [Accepted: 11/11/2024] [Indexed: 11/29/2024]
Abstract
The avian influenza A (H7N9) virus, which circulates in wild birds and poultry, has been a major concern for public health since it was first discovered in China in 2013 due to its demonstrated ability to infect humans, causing severe respiratory illness with high mortality rates. According to the World Health Organization (WHO), a total of 1568 human infections with 616 fatal cases caused by novel H7N9 viruses have been reported in China from early 2013 to January 2024. This manuscript provides a comprehensive review of the virology, evolutionary patterns, and pandemic potential of H7N9. The H7N9 virus exhibits a complex reassortment history, receiving genes from H9N2 and other avian influenza viruses. The presence of certain molecular markers, such as mutations in the hemagglutinin and polymerase basic protein 2, enhances the virus's adaptability to human hosts. The virus activates innate immune responses through pattern recognition receptors, leading to cytokine production and inflammation. Clinical manifestations range from mild to severe, with complications including pneumonia, acute respiratory distress syndrome, and multiorgan failure. Diagnosis relies on molecular assays such as reverse transcription-polymerase chain reaction. The increasing frequency of human infections, along with the virus's ability to bind to human receptors and cause severe disease, highlights its pandemic potential. Continued surveillance, vaccine development, and public health measures are crucial to limit the risk posed by H7N9. Understanding the virus's ecology, transmission dynamics, and pathogenesis is essential for developing effective prevention and control strategies.
Collapse
Affiliation(s)
- Mohsen Nakhaie
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Iran
- Clinical Research Development Unit, Afzalipour Hospital, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Rezaei Zadeh Rukerd
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Amirhossein Shahpar
- Gastroenterology and Hepatology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Pardeshenas
- Department of Microbiology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Seyedeh Mahdieh Khoshnazar
- Gastroenterology and Hepatology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Mana Khazaeli
- Clinical Research Development Unit, Afzalipour Hospital, Kerman University of Medical Sciences, Kerman, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nazanin Zeinali Nezhad
- Clinical Research Development Unit, Afzalipour Hospital, Kerman University of Medical Sciences, Kerman, Iran
| | - Javad Charostad
- Department of Microbiology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
5
|
Nguyen THO, Rowntree LC, Chua BY, Thwaites RS, Kedzierska K. Defining the balance between optimal immunity and immunopathology in influenza virus infection. Nat Rev Immunol 2024; 24:720-735. [PMID: 38698083 DOI: 10.1038/s41577-024-01029-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2024] [Indexed: 05/05/2024]
Abstract
Influenza A viruses remain a global threat to human health, with continued pandemic potential. In this Review, we discuss our current understanding of the optimal immune responses that drive recovery from influenza virus infection, highlighting the fine balance between protective immune mechanisms and detrimental immunopathology. We describe the contribution of innate and adaptive immune cells, inflammatory modulators and antibodies to influenza virus-specific immunity, inflammation and immunopathology. We highlight recent human influenza virus challenge studies that advance our understanding of susceptibility to influenza and determinants of symptomatic disease. We also describe studies of influenza virus-specific immunity in high-risk groups following infection and vaccination that inform the design of future vaccines to promote optimal antiviral immunity, particularly in vulnerable populations. Finally, we draw on lessons from the COVID-19 pandemic to refocus our attention to the ever-changing, highly mutable influenza A virus, predicted to cause future global pandemics.
Collapse
Affiliation(s)
- Thi H O Nguyen
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Louise C Rowntree
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Brendon Y Chua
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Ryan S Thwaites
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia.
| |
Collapse
|
6
|
Guo H, Guo L, Wang B, Jiang X, Wu Z, Mo X, Sun Y, Zhang Y, Wang Z, Kong J, Yan C, Huang X. Distinct Immune Homeostasis Remodeling Patterns after HLA-Matched and Haploidentical Transplantation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400544. [PMID: 39225336 PMCID: PMC11497014 DOI: 10.1002/advs.202400544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 07/21/2024] [Indexed: 09/04/2024]
Abstract
Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is a widely used treatment for a variety of hematopoietic disorders, and also provides a valuable platform for investigating the development of donor-derived immune cells in recipients post-HSCT. The immune system remodels from the donor to the recipient during allo-HSCT. However, little is known about the cell profile alterations as donor homeostasis rebalances to recipient homeostasis following HSCT. Here, multi-omics technology is applied at both the single cell and bulk sample levels, as well as spectrum flow cytometry and fluorescent transgenic mouse models, to dissect the dynamics of the rebalanced homeostatic immune system in recipients after allo-HSCT. The data reveal that all immune subpopulations observed in donors are successfully restored in recipients, though with varying levels of abundance. The remodeling of immune homeostasis exhibits different patterns in HLA-matched and haploidentical HSCT, highlighting distinct biases in T cell reconstitution from the central and peripheral pathways. Furthermore, ZNF683 is critical for maintaining the persistence and quiescence of CD8 T-cell in haploidentical HSCT. The research can serve as a foundation for developing novel strategies to induce immune tolerance.
Collapse
Affiliation(s)
- Huidong Guo
- National Clinical Research Center for Hematologic DiseaseBeijing Key Laboratory of Hematopoietic Stem Cell TransplantationPeking University People's HospitalPeking University Institute of HematologyPeking UniversityBeijing100044China
| | - Liping Guo
- National Clinical Research Center for Hematologic DiseaseBeijing Key Laboratory of Hematopoietic Stem Cell TransplantationPeking University People's HospitalPeking University Institute of HematologyPeking UniversityBeijing100044China
| | - Bixia Wang
- National Clinical Research Center for Hematologic DiseaseBeijing Key Laboratory of Hematopoietic Stem Cell TransplantationPeking University People's HospitalPeking University Institute of HematologyPeking UniversityBeijing100044China
| | - Xinya Jiang
- National Clinical Research Center for Hematologic DiseaseBeijing Key Laboratory of Hematopoietic Stem Cell TransplantationPeking University People's HospitalPeking University Institute of HematologyPeking UniversityBeijing100044China
- Research Unit of Key Technique for Diagnosis and Treatments of Hematologic MalignanciesChinese Academy of Medical SciencesBeijing2019RU029China
| | - Zhigui Wu
- National Clinical Research Center for Hematologic DiseaseBeijing Key Laboratory of Hematopoietic Stem Cell TransplantationPeking University People's HospitalPeking University Institute of HematologyPeking UniversityBeijing100044China
- Peking‐Tsinghua Center for Life SciencesAcademy for Advanced Interdisciplinary StudiesPeking UniversityBeijing100871China
| | - Xiao‐Dong Mo
- National Clinical Research Center for Hematologic DiseaseBeijing Key Laboratory of Hematopoietic Stem Cell TransplantationPeking University People's HospitalPeking University Institute of HematologyPeking UniversityBeijing100044China
| | - Yu‐Qian Sun
- National Clinical Research Center for Hematologic DiseaseBeijing Key Laboratory of Hematopoietic Stem Cell TransplantationPeking University People's HospitalPeking University Institute of HematologyPeking UniversityBeijing100044China
| | - Yuan‐Yuan Zhang
- National Clinical Research Center for Hematologic DiseaseBeijing Key Laboratory of Hematopoietic Stem Cell TransplantationPeking University People's HospitalPeking University Institute of HematologyPeking UniversityBeijing100044China
| | - Zhi‐Dong Wang
- National Clinical Research Center for Hematologic DiseaseBeijing Key Laboratory of Hematopoietic Stem Cell TransplantationPeking University People's HospitalPeking University Institute of HematologyPeking UniversityBeijing100044China
| | - Jun Kong
- National Clinical Research Center for Hematologic DiseaseBeijing Key Laboratory of Hematopoietic Stem Cell TransplantationPeking University People's HospitalPeking University Institute of HematologyPeking UniversityBeijing100044China
| | - Chen‐Hua Yan
- National Clinical Research Center for Hematologic DiseaseBeijing Key Laboratory of Hematopoietic Stem Cell TransplantationPeking University People's HospitalPeking University Institute of HematologyPeking UniversityBeijing100044China
| | - Xiao‐Jun Huang
- National Clinical Research Center for Hematologic DiseaseBeijing Key Laboratory of Hematopoietic Stem Cell TransplantationPeking University People's HospitalPeking University Institute of HematologyPeking UniversityBeijing100044China
- Research Unit of Key Technique for Diagnosis and Treatments of Hematologic MalignanciesChinese Academy of Medical SciencesBeijing2019RU029China
- Peking‐Tsinghua Center for Life SciencesAcademy for Advanced Interdisciplinary StudiesPeking UniversityBeijing100871China
| |
Collapse
|
7
|
Rowntree LC, Audsley J, Allen LF, McQuilten HA, Hagen RR, Chaurasia P, Petersen J, Littler DR, Tan HX, Murdiyarso L, Habel JR, Foo IJH, Zhang W, Ten Berge ERV, Ganesh H, Kaewpreedee P, Lee KWK, Cheng SMS, Kwok JSY, Jayasinghe D, Gras S, Juno JA, Wheatley AK, Kent SJ, Rossjohn J, Cheng AC, Kotsimbos TC, Trubiano JA, Holmes NE, Pang Chan KK, Hui DSC, Peiris M, Poon LLM, Lewin SR, Doherty PC, Thevarajan I, Valkenburg SA, Kedzierska K, Nguyen THO. SARS-CoV-2-specific CD8 + T cells from people with long COVID establish and maintain effector phenotype and key TCR signatures over 2 years. Proc Natl Acad Sci U S A 2024; 121:e2411428121. [PMID: 39284068 PMCID: PMC11441481 DOI: 10.1073/pnas.2411428121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 07/23/2024] [Indexed: 10/02/2024] Open
Abstract
Long COVID occurs in a small but important minority of patients following COVID-19, reducing quality of life and contributing to healthcare burden. Although research into underlying mechanisms is evolving, immunity is understudied. SARS-CoV-2-specific T cell responses are of key importance for viral clearance and COVID-19 recovery. However, in long COVID, the establishment and persistence of SARS-CoV-2-specific T cells are far from clear, especially beyond 12 mo postinfection and postvaccination. We defined ex vivo antigen-specific B cell and T cell responses and their T cell receptors (TCR) repertoires across 2 y postinfection in people with long COVID. Using 13 SARS-CoV-2 peptide-HLA tetramers, spanning 11 HLA allotypes, as well as spike and nucleocapsid probes, we tracked SARS-CoV-2-specific CD8+ and CD4+ T cells and B-cells in individuals from their first SARS-CoV-2 infection through primary vaccination over 24 mo. The frequencies of ORF1a- and nucleocapsid-specific T cells and B cells remained stable over 24 mo. Spike-specific CD8+ and CD4+ T cells and B cells were boosted by SARS-CoV-2 vaccination, indicating immunization, in fully recovered and people with long COVID, altered the immunodominance hierarchy of SARS-CoV-2 T cell epitopes. Meanwhile, influenza-specific CD8+ T cells were stable across 24 mo, suggesting no bystander-activation. Compared to total T cell populations, SARS-CoV-2-specific T cells were enriched for central memory phenotype, although the proportion of central memory T cells decreased following acute illness. Importantly, TCR repertoire composition was maintained throughout long COVID, including postvaccination, to 2 y postinfection. Overall, we defined ex vivo SARS-CoV-2-specific B cells and T cells to understand primary and recall responses, providing key insights into antigen-specific responses in people with long COVID.
Collapse
Affiliation(s)
- Louise C Rowntree
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Jennifer Audsley
- Department of Infectious Diseases, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Lilith F Allen
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Hayley A McQuilten
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Ruth R Hagen
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Priyanka Chaurasia
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Jan Petersen
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Dene R Littler
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Hyon-Xhi Tan
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Lydia Murdiyarso
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Jennifer R Habel
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Isabelle J H Foo
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Wuji Zhang
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Elizabeth R V Ten Berge
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Hanujah Ganesh
- Department of Infectious Diseases, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Prathanporn Kaewpreedee
- HKU-Pasteur Research Pole, School of Public Health, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Kelly W K Lee
- HKU-Pasteur Research Pole, School of Public Health, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Samuel M S Cheng
- Division of Public Health Laboratory Sciences, School of Public Health, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Janette S Y Kwok
- Division of Transplantation and Immunogenetics, Department of Pathology, Queen Mary Hospital, Hong Kong Special Administrative Region, China
| | - Dhilshan Jayasinghe
- Infection & Immunity Program, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC 3083, Australia
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC 3083, Australia
| | - Stephanie Gras
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
- Infection & Immunity Program, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC 3083, Australia
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC 3083, Australia
| | - Jennifer A Juno
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Adam K Wheatley
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Stephen J Kent
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Jamie Rossjohn
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
- Institute of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, United Kingdom
| | - Allen C Cheng
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC 3004, Australia
- Monash Infectious Diseases, Monash Health and School of Clinical Sciences, Monash University, Clayton, VIC 3168, Australia
| | - Tom C Kotsimbos
- Department of Respiratory Medicine, The Alfred Hospital, Melbourne, VIC 3004, Australia
- Department of Medicine, Central Clinical School, The Alfred Hospital, Monash University, Melbourne, VIC 3004, Australia
| | - Jason A Trubiano
- Department of Infectious Diseases, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
- Department of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- National Centre for Infections in Cancer, Peter McCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Department of Medicine (Austin Health), University of Melbourne, Heidelberg, VIC 3084, Australia
- Centre for Antibiotic Allergy and Research, Department of Infectious Diseases, Austin Health, Heidelberg, VIC 3084, Australia
| | - Natasha E Holmes
- Centre for Antibiotic Allergy and Research, Department of Infectious Diseases, Austin Health, Heidelberg, VIC 3084, Australia
- Department of Critical Care, University of Melbourne, Parkville, VIC 3000, Australia
- Data Analytics Research and Evaluation Centre, Austin Health and University of Melbourne, Heidelberg, VIC 3084, Australia
| | - Ken Ka Pang Chan
- Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - David S C Hui
- Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Malik Peiris
- HKU-Pasteur Research Pole, School of Public Health, The University of Hong Kong, Hong Kong Special Administrative Region, China
- Division of Public Health Laboratory Sciences, School of Public Health, The University of Hong Kong, Hong Kong Special Administrative Region, China
- Centre for Immunology and Infection, Hong Kong Science and Technology Park, New Territories, Hong Kong Special Administrative Region, China
| | - Leo L M Poon
- HKU-Pasteur Research Pole, School of Public Health, The University of Hong Kong, Hong Kong Special Administrative Region, China
- Division of Public Health Laboratory Sciences, School of Public Health, The University of Hong Kong, Hong Kong Special Administrative Region, China
- Centre for Immunology and Infection, Hong Kong Science and Technology Park, New Territories, Hong Kong Special Administrative Region, China
| | - Sharon R Lewin
- Department of Infectious Diseases, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
- Victorian Infectious Diseases Service, Royal Melbourne Hospital, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
- Department of Infectious Disease, Alfred Hospital and Monash University, Melbourne, VIC 3000, Australia
| | - Peter C Doherty
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Irani Thevarajan
- Department of Infectious Diseases, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
- Victorian Infectious Diseases Service, Royal Melbourne Hospital, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Sophie A Valkenburg
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
- HKU-Pasteur Research Pole, School of Public Health, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Thi H O Nguyen
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| |
Collapse
|
8
|
Wang CM, Jan Wu YJ, Huang LY, Zheng JW, Chen JY. Comprehensive Co-Inhibitory Receptor (Co-IR) Expression on T Cells and Soluble Proteins in Rheumatoid Arthritis. Cells 2024; 13:403. [PMID: 38474367 PMCID: PMC10931001 DOI: 10.3390/cells13050403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/11/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
Co-inhibitory receptors (Co-IRs) are essential in controlling the progression of immunopathology in rheumatoid arthritis (RA) by limiting T cell activation. The objective of this investigation was to determine the phenotypic expression of Co-IR T cells and to assess the levels of serum soluble PD-1, PDL-2, and TIM3 in Taiwanese RA patients. METHODS Co-IRs T cells were immunophenotyped employing multicolor flow cytometry, and ELISA was utilized for measuring soluble PD-1, PDL-2, and TIM3. Correlations have been detected across the percentage of T cells expressing Co-IRs (MFI) and different indicators in the blood, including ESR, high-sensitivity CRP (hsCRP), 28 joint disease activity scores (DAS28), and soluble PD-1/PDL-2/TIM3. RESULTS In RA patients, we recognized elevated levels of PD-1 (CD279), CTLA-4, and TIGIT in CD4+ T cells; TIGIT, HLA-DR, TIM3, and LAG3 in CD8+ T cells; and CD8+CD279+TIM3+, CD8+HLA-DR+CD38+ T cells. The following tests were revealed to be correlated with hsCRP: CD4/CD279 MFI, CD4/CD279%, CD4/TIM3%, CD8/TIM3%, CD8/TIM3 MFI, CD8/LAG3%, and CD8+HLA-DR+CD38+%. CD8/LAG3 and CD8/TIM3 MFIs are linked to ESR. DAS28-ESR and DAS28-CRP exhibited relationships with CD4/CD127 MFI, CD8/CD279%, and CD8/CD127 MFI, respectively. CD4+CD279+TIM3+% was correlated with DAS28-ESR (p = 0.0084, N = 46), DAS28-CRP (p = 0.007, N = 47), and hsCRP (p = 0.002, N = 56), respectively. In the serum of patients with RA, levels of soluble PD-1, PDL-2, and Tim3 were extremely elevated. CD4+ TIM3+% (p = 0.0089, N = 46) and CD8+ TIM3+% (p = 0.0305, N = 46) were correlated with sTIM3 levels; sPD1 levels were correlated with CD4+CD279+% (p < 0.0001, N = 31) and CD3+CD279+% (p = 0.0084, N = 30). CONCLUSIONS Co-IR expressions on CD4+ and CD8+ T cells, as well as soluble PD-1, PDL-2, and TIM3 levels, could function as indicators of disease activity and potentially play crucial roles in the pathogenesis of RA.
Collapse
Affiliation(s)
- Chin-Man Wang
- Department of Rehabilitation, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan 33302, Taiwan;
| | - Yeong-Jian Jan Wu
- Division of Allergy, Immunology and Rheumatology, Department of Medicine, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, No. 5, Fu-Shin St. Kwei-Shan, Taoyuan 33305, Taiwan; (Y.-J.J.W.)
| | - Li-Yu Huang
- Division of Allergy, Immunology and Rheumatology, Department of Medicine, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, No. 5, Fu-Shin St. Kwei-Shan, Taoyuan 33305, Taiwan; (Y.-J.J.W.)
| | - Jian-Wen Zheng
- Division of Allergy, Immunology and Rheumatology, Department of Medicine, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, No. 5, Fu-Shin St. Kwei-Shan, Taoyuan 33305, Taiwan; (Y.-J.J.W.)
| | - Ji-Yih Chen
- Division of Allergy, Immunology and Rheumatology, Department of Medicine, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, No. 5, Fu-Shin St. Kwei-Shan, Taoyuan 33305, Taiwan; (Y.-J.J.W.)
| |
Collapse
|
9
|
Vujkovic A, Ha M, de Block T, van Petersen L, Brosius I, Theunissen C, van Ierssel SH, Bartholomeus E, Adriaensen W, Vanham G, Elias G, Van Damme P, Van Tendeloo V, Beutels P, van Frankenhuijsen M, Vlieghe E, Ogunjimi B, Laukens K, Meysman P, Vercauteren K. Diagnosing Viral Infections Through T-Cell Receptor Sequencing of Activated CD8+ T Cells. J Infect Dis 2024; 229:507-516. [PMID: 37787611 PMCID: PMC10873181 DOI: 10.1093/infdis/jiad430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/26/2023] [Accepted: 09/29/2023] [Indexed: 10/04/2023] Open
Abstract
T-cell-based diagnostic tools identify pathogen exposure but lack differentiation between recent and historical exposures in acute infectious diseases. Here, T-cell receptor (TCR) RNA sequencing was performed on HLA-DR+/CD38+CD8+ T-cell subsets of hospitalized coronavirus disease 2019 (COVID-19) patients (n = 30) and healthy controls (n = 30; 10 of whom had previously been exposed to severe acute respiratory syndrome coronavirus 2 [SARS-CoV-2]). CDR3α and CDR3β TCR regions were clustered separately before epitope specificity annotation using a database of SARS-CoV-2-associated CDR3α and CDR3β sequences corresponding to >1000 SARS-CoV-2 epitopes. The depth of the SARS-CoV-2-associated CDR3α/β sequences differentiated COVID-19 patients from the healthy controls with a receiver operating characteristic area under the curve of 0.84 ± 0.10. Hence, annotating TCR sequences of activated CD8+ T cells can be used to diagnose an acute viral infection and discriminate it from historical exposure. In essence, this work presents a new paradigm for applying the T-cell repertoire to accomplish TCR-based diagnostics.
Collapse
Affiliation(s)
- Alexandra Vujkovic
- Clinical Virology Unit, Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
- Antwerp Unit for Data Analysis and Computation in Immunology and Sequencing (AUDACIS), University of Antwerp, Antwerp, Belgium
- Adrem Data Lab, Department of Computer Science, University of Antwerp, Antwerp, Belgium
| | - My Ha
- Antwerp Unit for Data Analysis and Computation in Immunology and Sequencing (AUDACIS), University of Antwerp, Antwerp, Belgium
- Antwerp Center for Translational Immunology and Virology (ACTIV), Antwerp, Belgium
- Centre for Health Economics Research and Modeling Infectious Diseases (CHERMID), University of Antwerp, Belgium
- Vaccine and Infectious Disease Institute, University of Antwerp, Belgium
| | - Tessa de Block
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Lida van Petersen
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Isabel Brosius
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Caroline Theunissen
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Sabrina H van Ierssel
- Department of General Internal Medicine, Infectious Diseases and Tropical Medicine, University Hospital Antwerp, Belgium
| | - Esther Bartholomeus
- Antwerp Unit for Data Analysis and Computation in Immunology and Sequencing (AUDACIS), University of Antwerp, Antwerp, Belgium
- Antwerp Center for Translational Immunology and Virology (ACTIV), Antwerp, Belgium
| | - Wim Adriaensen
- Clinical Immunology Unit, Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Guido Vanham
- Biomedical Department, Institute of Tropical Medicine, Antwerp, Belgium
| | - George Elias
- Laboratory of Experimental Hematology, Faculty of Medicine and Health Sciences, University of Antwerp, Belgium
| | - Pierre Van Damme
- Vaccine and Infectious Disease Institute, University of Antwerp, Belgium
| | - Viggo Van Tendeloo
- Laboratory of Experimental Hematology, Faculty of Medicine and Health Sciences, University of Antwerp, Belgium
| | - Philippe Beutels
- Antwerp Unit for Data Analysis and Computation in Immunology and Sequencing (AUDACIS), University of Antwerp, Antwerp, Belgium
- Antwerp Center for Translational Immunology and Virology (ACTIV), Antwerp, Belgium
- Centre for Health Economics Research and Modeling Infectious Diseases (CHERMID), University of Antwerp, Belgium
| | | | - Erika Vlieghe
- Department of General Internal Medicine, Infectious Diseases and Tropical Medicine, University Hospital Antwerp, Belgium
| | - Benson Ogunjimi
- Antwerp Unit for Data Analysis and Computation in Immunology and Sequencing (AUDACIS), University of Antwerp, Antwerp, Belgium
- Adrem Data Lab, Department of Computer Science, University of Antwerp, Antwerp, Belgium
- Antwerp Center for Translational Immunology and Virology (ACTIV), Antwerp, Belgium
- Centre for Health Economics Research and Modeling Infectious Diseases (CHERMID), University of Antwerp, Belgium
- Vaccine and Infectious Disease Institute, University of Antwerp, Belgium
- Department of Paediatrics, Antwerp University Hospital, Antwerp, Belgium
| | - Kris Laukens
- Antwerp Unit for Data Analysis and Computation in Immunology and Sequencing (AUDACIS), University of Antwerp, Antwerp, Belgium
- Adrem Data Lab, Department of Computer Science, University of Antwerp, Antwerp, Belgium
| | - Pieter Meysman
- Antwerp Unit for Data Analysis and Computation in Immunology and Sequencing (AUDACIS), University of Antwerp, Antwerp, Belgium
- Adrem Data Lab, Department of Computer Science, University of Antwerp, Antwerp, Belgium
| | - Koen Vercauteren
- Clinical Virology Unit, Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| |
Collapse
|
10
|
Nguyen TH, Kumar D, Prince C, Martini D, Grunwell JR, Lawrence T, Whitely T, Chappelle K, Chonat S, Prahalad S, Briones M, Chandrakasan S. Frequency of HLA-DR +CD38 hi T cells identifies and quantifies T-cell activation in hemophagocytic lymphohistiocytosis, hyperinflammation, and immune regulatory disorders. J Allergy Clin Immunol 2024; 153:309-319. [PMID: 37517575 PMCID: PMC10823038 DOI: 10.1016/j.jaci.2023.07.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/13/2023] [Accepted: 07/12/2023] [Indexed: 08/01/2023]
Abstract
BACKGROUND Quantifying T-cell activation is essential for the diagnosis and evaluation of treatment response in various hyperinflammatory and immune regulatory disorders, including hemophagocytic lymphohistiocytosis. Plasma soluble IL-2 receptor (sIL-2R) is a well-established biomarker for evaluating systemic T-cell activation. However, the limited availability of sIL-2R testing could result in delayed diagnosis. Furthermore, high sIL-2R levels may not always reflect T-cell activation. OBJECTIVES To address these limitations, this study investigated whether cell surface markers of T-cell activation, HLA-DR, and CD38, as assessed by flow cytometry, could be used to quantify systemic T-cell activation in a variety of inflammatory disease states and examine its correlation with sIL-2R levels. METHODS Results for sIL-2R, CXCL9, and ferritin assays were obtained from patient's medical records. Frequency of HLA-DR+CD38high(hi) T-cells was assessed in different T-cell subsets using flow cytometry. RESULTS In this study's cohort, activation in total CD8+ T (r = 0.65; P < .0001) and CD4+ (r = 0.42; P < .0001) T-cell subsets significantly correlated with plasma sIL-2R levels. At the disease onset, the frequency of HLA-DR+CD38hi T cells in CD8+ T (r = 0.65, P < .0001) and CD4+ T (r = 0.77; P < .0001) effector memory (TEM) compartments correlated strongly with sIL-2R levels. Evaluation of T-cell activation markers in follow-up samples also revealed a positive correlation for both CD4+ TEM and CD8+ TEM activation with sIL-2R levels; thus, attesting its utility in initial diagnosis and in evaluating treatment response. The frequency of HLA-DR+CD38hi T-cells in the CD8+ TEM compartment also correlated with plasma CXCL9 (r = 0.42; P = .0120) and ferritin levels (r = 0.32; P = .0037). CONCLUSIONS This study demonstrates that flow cytometry-based direct T-cell activation assessed by HLA-DR+CD38hi T cells accurately quantifies T-cell activation and strongly correlates with sIL-2R levels across a spectrum of hyperinflammatory and immune dysregulation disorders.
Collapse
Affiliation(s)
- Thinh H Nguyen
- Aflac Cancer and Blood Disorder Center, and the Divisions of Children's Healthcare of Atlanta, Atlanta; Department of Pediatrics, Emory University School of Medicine, Atlanta
| | - Deepak Kumar
- Aflac Cancer and Blood Disorder Center, and the Divisions of Children's Healthcare of Atlanta, Atlanta; Department of Pediatrics, Emory University School of Medicine, Atlanta
| | - Chengyu Prince
- Aflac Cancer and Blood Disorder Center, and the Divisions of Children's Healthcare of Atlanta, Atlanta
| | - Dylan Martini
- Department of Pediatrics, Emory University School of Medicine, Atlanta
| | - Jocelyn R Grunwell
- Department of Pediatrics, Emory University School of Medicine, Atlanta; Critical Care Medicine, Children's Healthcare of Atlanta, Atlanta
| | - Taylor Lawrence
- Aflac Cancer and Blood Disorder Center, and the Divisions of Children's Healthcare of Atlanta, Atlanta
| | - Trenton Whitely
- Aflac Cancer and Blood Disorder Center, and the Divisions of Children's Healthcare of Atlanta, Atlanta
| | - Karin Chappelle
- Aflac Cancer and Blood Disorder Center, and the Divisions of Children's Healthcare of Atlanta, Atlanta
| | - Satheesh Chonat
- Aflac Cancer and Blood Disorder Center, and the Divisions of Children's Healthcare of Atlanta, Atlanta; Department of Pediatrics, Emory University School of Medicine, Atlanta
| | - Sampath Prahalad
- Department of Pediatrics, Emory University School of Medicine, Atlanta; Pediatric Rheumatology, Children's Healthcare of Atlanta, Atlanta
| | - Michael Briones
- Aflac Cancer and Blood Disorder Center, and the Divisions of Children's Healthcare of Atlanta, Atlanta; Department of Pediatrics, Emory University School of Medicine, Atlanta
| | - Shanmuganathan Chandrakasan
- Aflac Cancer and Blood Disorder Center, and the Divisions of Children's Healthcare of Atlanta, Atlanta; Department of Pediatrics, Emory University School of Medicine, Atlanta.
| |
Collapse
|
11
|
Lanz AL, Erdem S, Ozcan A, Ceylaner G, Cansever M, Ceylaner S, Conca R, Magg T, Acuto O, Latour S, Klein C, Patiroglu T, Unal E, Eken A, Hauck F. A Novel Biallelic LCK Variant Resulting in Profound T-Cell Immune Deficiency and Review of the Literature. J Clin Immunol 2023; 44:1. [PMID: 38100037 PMCID: PMC10724324 DOI: 10.1007/s10875-023-01602-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 10/06/2023] [Indexed: 12/18/2023]
Abstract
Lymphocyte-specific protein tyrosine kinase (LCK) is an SRC-family kinase critical for initiation and propagation of T-cell antigen receptor (TCR) signaling through phosphorylation of TCR-associated CD3 chains and recruited downstream molecules. Until now, only one case of profound T-cell immune deficiency with complete LCK deficiency [1] caused by a biallelic missense mutation (c.1022T>C, p.L341P) and three cases of incomplete LCK deficiency [2] caused by a biallelic splice site mutation (c.188-2A>G) have been described. Additionally, deregulated LCK expression has been associated with genetically undefined immune deficiencies and hematological malignancies. Here, we describe the second case of complete LCK deficiency in a 6-month-old girl born to consanguineous parents presenting with profound T-cell immune deficiency. Whole exome sequencing (WES) revealed a novel pathogenic biallelic missense mutation in LCK (c.1393T>C, p.C465R), which led to the absence of LCK protein expression and phosphorylation, and a consecutive decrease in proximal TCR signaling. Loss of conventional CD4+ and CD8+ αβT-cells and homeostatic T-cell expansion was accompanied by increased γδT-cell and Treg percentages. Surface CD4 and CD8 co-receptor expression was reduced in the patient T-cells, while the heterozygous mother had impaired CD4 and CD8 surface expression to a lesser extent. We conclude that complete LCK deficiency is characterized by profound T-cell immune deficiency, reduced CD4 and CD8 surface expression, and a characteristic TCR signaling disorder. CD4 and CD8 surface expression may be of value for early detection of mono- and/or biallelic LCK deficiency.
Collapse
Affiliation(s)
- Anna-Lisa Lanz
- Division of Pediatric Immunology and Rheumatology, Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-Universität München, Lindwurmstrasse 4, 80337, Munich, Germany
| | - Serife Erdem
- Department of Medical Biology, Faculty of Medicine, Erciyes University, 38030, Kayseri, Turkey
- Molecular Biology and Genetics Department, Gevher Nesibe Genome and Stem Cell Institute, Betul-Ziya Eren Genome and Stem Cell Center (GENKOK), Erciyes University, Kayseri, Turkey
| | - Alper Ozcan
- Molecular Biology and Genetics Department, Gevher Nesibe Genome and Stem Cell Institute, Betul-Ziya Eren Genome and Stem Cell Center (GENKOK), Erciyes University, Kayseri, Turkey
| | | | - Murat Cansever
- Division of Pediatric Hematology & Oncology, Department of Pediatrics, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | | | - Raffaele Conca
- Division of Pediatric Immunology and Rheumatology, Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-Universität München, Lindwurmstrasse 4, 80337, Munich, Germany
| | - Thomas Magg
- Division of Pediatric Immunology and Rheumatology, Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-Universität München, Lindwurmstrasse 4, 80337, Munich, Germany
| | - Oreste Acuto
- T Cell Signalling Laboratory, Sir William Dunn School of Pathology, Oxford University, Oxford, OX2 3RE, UK
| | - Sylvain Latour
- Laboratory of Lymphocyte Activation and Susceptibility to EBV Infection, INSERM UMR1163, Paris, France
| | - Christoph Klein
- Division of Pediatric Immunology and Rheumatology, Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-Universität München, Lindwurmstrasse 4, 80337, Munich, Germany
| | - Turkan Patiroglu
- Division of Pediatric Hematology & Oncology, Department of Pediatrics, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Ekrem Unal
- Molecular Biology and Genetics Department, Gevher Nesibe Genome and Stem Cell Institute, Betul-Ziya Eren Genome and Stem Cell Center (GENKOK), Erciyes University, Kayseri, Turkey
- Intergen, Ankara, Turkey
- Hasan Kalyoncu University, Faculty of Health Sciences, Medical Point Hospital, Gaziantep, Türkiye
| | - Ahmet Eken
- Department of Medical Biology, Faculty of Medicine, Erciyes University, 38030, Kayseri, Turkey.
- Molecular Biology and Genetics Department, Gevher Nesibe Genome and Stem Cell Institute, Betul-Ziya Eren Genome and Stem Cell Center (GENKOK), Erciyes University, Kayseri, Turkey.
| | - Fabian Hauck
- Division of Pediatric Immunology and Rheumatology, Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-Universität München, Lindwurmstrasse 4, 80337, Munich, Germany.
- Munich Centre for Rare Diseases (M-ZSELMU), University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany.
| |
Collapse
|
12
|
Terekhova M, Swain A, Bohacova P, Aladyeva E, Arthur L, Laha A, Mogilenko DA, Burdess S, Sukhov V, Kleverov D, Echalar B, Tsurinov P, Chernyatchik R, Husarcikova K, Artyomov MN. Single-cell atlas of healthy human blood unveils age-related loss of NKG2C +GZMB -CD8 + memory T cells and accumulation of type 2 memory T cells. Immunity 2023; 56:2836-2854.e9. [PMID: 37963457 DOI: 10.1016/j.immuni.2023.10.013] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/11/2023] [Accepted: 10/19/2023] [Indexed: 11/16/2023]
Abstract
Extensive, large-scale single-cell profiling of healthy human blood at different ages is one of the critical pending tasks required to establish a framework for the systematic understanding of human aging. Here, using single-cell RNA/T cell receptor (TCR)/BCR-seq with protein feature barcoding, we profiled 317 samples from 166 healthy individuals aged 25-85 years old. From this, we generated a dataset from ∼2 million cells that described 55 subpopulations of blood immune cells. Twelve subpopulations changed with age, including the accumulation of GZMK+CD8+ T cells and HLA-DR+CD4+ T cells. In contrast to other T cell memory subsets, transcriptionally distinct NKG2C+GZMB-CD8+ T cells counterintuitively decreased with age. Furthermore, we found a concerted age-associated increase in type 2/interleukin (IL)4-expressing memory subpopulations across CD4+ and CD8+ T cell compartments (CCR4+CD8+ Tcm and Th2 CD4+ Tmem), suggesting a systematic functional shift in immune homeostasis with age. Our work provides novel insights into healthy human aging and a comprehensive annotated resource.
Collapse
Affiliation(s)
- Marina Terekhova
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Amanda Swain
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Pavla Bohacova
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Ekaterina Aladyeva
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Laura Arthur
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Anwesha Laha
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Denis A Mogilenko
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA; Department of Medicine, Department of Pathology, Microbiology, and Immunology, Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Samantha Burdess
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Vladimir Sukhov
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA; Computer Technologies Laboratory, ITMO University, Saint Petersburg 197101, Russia
| | - Denis Kleverov
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA; Computer Technologies Laboratory, ITMO University, Saint Petersburg 197101, Russia
| | - Barbora Echalar
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Petr Tsurinov
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA; JetBrains Research, 8021 Paphos, Cyprus
| | - Roman Chernyatchik
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA; JetBrains Research, 80639 Munich, Germany
| | - Kamila Husarcikova
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Maxim N Artyomov
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA.
| |
Collapse
|
13
|
Kang JB, Shen AZ, Gurajala S, Nathan A, Rumker L, Aguiar VRC, Valencia C, Lagattuta KA, Zhang F, Jonsson AH, Yazar S, Alquicira-Hernandez J, Khalili H, Ananthakrishnan AN, Jagadeesh K, Dey K, Daly MJ, Xavier RJ, Donlin LT, Anolik JH, Powell JE, Rao DA, Brenner MB, Gutierrez-Arcelus M, Luo Y, Sakaue S, Raychaudhuri S. Mapping the dynamic genetic regulatory architecture of HLA genes at single-cell resolution. Nat Genet 2023; 55:2255-2268. [PMID: 38036787 PMCID: PMC10787945 DOI: 10.1038/s41588-023-01586-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 10/19/2023] [Indexed: 12/02/2023]
Abstract
The human leukocyte antigen (HLA) locus plays a critical role in complex traits spanning autoimmune and infectious diseases, transplantation and cancer. While coding variation in HLA genes has been extensively documented, regulatory genetic variation modulating HLA expression levels has not been comprehensively investigated. Here we mapped expression quantitative trait loci (eQTLs) for classical HLA genes across 1,073 individuals and 1,131,414 single cells from three tissues. To mitigate technical confounding, we developed scHLApers, a pipeline to accurately quantify single-cell HLA expression using personalized reference genomes. We identified cell-type-specific cis-eQTLs for every classical HLA gene. Modeling eQTLs at single-cell resolution revealed that many eQTL effects are dynamic across cell states even within a cell type. HLA-DQ genes exhibit particularly cell-state-dependent effects within myeloid, B and T cells. For example, a T cell HLA-DQA1 eQTL ( rs3104371 ) is strongest in cytotoxic cells. Dynamic HLA regulation may underlie important interindividual variability in immune responses.
Collapse
Affiliation(s)
- Joyce B Kang
- Center for Data Sciences, Brigham and Women's Hospital, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Amber Z Shen
- Center for Data Sciences, Brigham and Women's Hospital, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Saisriram Gurajala
- Center for Data Sciences, Brigham and Women's Hospital, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Aparna Nathan
- Center for Data Sciences, Brigham and Women's Hospital, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Laurie Rumker
- Center for Data Sciences, Brigham and Women's Hospital, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Vitor R C Aguiar
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Cristian Valencia
- Center for Data Sciences, Brigham and Women's Hospital, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Kaitlyn A Lagattuta
- Center for Data Sciences, Brigham and Women's Hospital, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Fan Zhang
- Center for Data Sciences, Brigham and Women's Hospital, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Division of Rheumatology and the Center for Health Artificial Intelligence, University of Colorado School of Medicine, Aurora, CO, USA
| | - Anna Helena Jonsson
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Seyhan Yazar
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | | | - Hamed Khalili
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Ashwin N Ananthakrishnan
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | | | - Kushal Dey
- Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Physiology, Biophysics and Systems Biology Program, Weill Cornell Medicine, New York, NY, USA
| | - Mark J Daly
- Psychiatric and Neurodevelopmental Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- The Stanley Center for Psychiatric Research, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Ramnik J Xavier
- Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Molecular Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Laura T Donlin
- Hospital for Special Surgery, New York, NY, USA
- Weill Cornell Medicine, New York, NY, USA
| | - Jennifer H Anolik
- Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Joseph E Powell
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Deepak A Rao
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Michael B Brenner
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Maria Gutierrez-Arcelus
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Yang Luo
- Center for Data Sciences, Brigham and Women's Hospital, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Saori Sakaue
- Center for Data Sciences, Brigham and Women's Hospital, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Soumya Raychaudhuri
- Center for Data Sciences, Brigham and Women's Hospital, Boston, MA, USA.
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA.
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
14
|
Huang Z, Brodeur KE, Chen L, Du, Wobma H, Hsu EE, Liu M, Chang JC, Chang MH, Chou J, Day-Lewis M, Dedeoglu F, Halyabar O, Lederer JA, Li T, Lo MS, Lu M, Meidan E, Newburger JW, Randolph AG, Son MB, Sundel RP, Taylor ML, Wu H, Zhou Q, Canna SW, Wei K, Henderson LA, Nigrovic PA, Lee PY. Type I interferon signature and cycling lymphocytes in macrophage activation syndrome. J Clin Invest 2023; 133:e165616. [PMID: 37751296 PMCID: PMC10645381 DOI: 10.1172/jci165616] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 09/19/2023] [Indexed: 09/27/2023] Open
Abstract
BACKGROUNDMacrophage activation syndrome (MAS) is a life-threatening complication of Still's disease (SD) characterized by overt immune cell activation and cytokine storm. We aimed to further understand the immunologic landscape of SD and MAS.METHODWe profiled PBMCs from people in a healthy control group and patients with SD with or without MAS using bulk RNA-Seq and single-cell RNA-Seq (scRNA-Seq). We validated and expanded the findings by mass cytometry, flow cytometry, and in vitro studies.RESULTSBulk RNA-Seq of PBMCs from patients with SD-associated MAS revealed strong expression of genes associated with type I interferon (IFN-I) signaling and cell proliferation, in addition to the expected IFN-γ signal, compared with people in the healthy control group and patients with SD without MAS. scRNA-Seq analysis of more than 65,000 total PBMCs confirmed IFN-I and IFN-γ signatures and localized the cell proliferation signature to cycling CD38+HLA-DR+ cells within CD4+ T cell, CD8+ T cell, and NK cell populations. CD38+HLA-DR+ lymphocytes exhibited prominent IFN-γ production, glycolysis, and mTOR signaling. Cell-cell interaction modeling suggested a network linking CD38+HLA-DR+ lymphocytes with monocytes through IFN-γ signaling. Notably, the expansion of CD38+HLA-DR+ lymphocytes in MAS was greater than in other systemic inflammatory conditions in children. In vitro stimulation of PBMCs demonstrated that IFN-I and IL-15 - both elevated in MAS patients - synergistically augmented the generation of CD38+HLA-DR+ lymphocytes, while Janus kinase inhibition mitigated this response.CONCLUSIONMAS associated with SD is characterized by overproduction of IFN-I, which may act in synergy with IL-15 to generate CD38+HLA-DR+ cycling lymphocytes that produce IFN-γ.
Collapse
Affiliation(s)
- Zhengping Huang
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Rheumatology and Immunology, Guangdong Second Provincial General Hospital, Southern Medical University, Guangzhou, China
| | - Kailey E. Brodeur
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Liang Chen
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Du
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Rheumatology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Holly Wobma
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Evan E. Hsu
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Meng Liu
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Rheumatology and Immunology, Guangdong Second Provincial General Hospital, Southern Medical University, Guangzhou, China
| | - Joyce C. Chang
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Margaret H. Chang
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Janet Chou
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Megan Day-Lewis
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Fatma Dedeoglu
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Olha Halyabar
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - James A. Lederer
- Center for Data Sciences, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Tianwang Li
- Department of Rheumatology and Immunology, Guangdong Second Provincial General Hospital, Southern Medical University, Guangzhou, China
| | - Mindy S. Lo
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Meiping Lu
- Department of Rheumatology, Immunology and Allergy, Zhejiang University School of Medicine, Hangzhou, China
| | - Esra Meidan
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Adrienne G. Randolph
- Department of Anesthesiology, Critical Care, and Pain Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Mary Beth Son
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Robert P. Sundel
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Maria L. Taylor
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Huaxiang Wu
- Department of Rheumatology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Qing Zhou
- The MOE Key Laboratory of Biosystems Homeostasis and Protection, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Scott W. Canna
- Division of Rheumatology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Kevin Wei
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Lauren A. Henderson
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Peter A. Nigrovic
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Pui Y. Lee
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
15
|
Zhang W, Clemens EB, Kedzierski L, Chua BY, Mayo M, Lonzi C, Hinchcliff A, Rigas V, Middleton BF, Binks P, Rowntree LC, Allen LF, Tan HX, Petersen J, Chaurasia P, Krammer F, Wheatley AK, Kent SJ, Rossjohn J, Miller A, Lynar S, Nelson J, Nguyen THO, Davies J, Kedzierska K. Broad spectrum SARS-CoV-2-specific immunity in hospitalized First Nations peoples recovering from COVID-19. Immunol Cell Biol 2023; 101:964-974. [PMID: 37725525 PMCID: PMC10872797 DOI: 10.1111/imcb.12691] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/28/2023] [Accepted: 08/30/2023] [Indexed: 09/21/2023]
Abstract
Indigenous peoples globally are at increased risk of COVID-19-associated morbidity and mortality. However, data that describe immune responses to SARS-CoV-2 infection in Indigenous populations are lacking. We evaluated immune responses in Australian First Nations peoples hospitalized with COVID-19. Our work comprehensively mapped out inflammatory, humoral and adaptive immune responses following SARS-CoV-2 infection. Patients were recruited early following the lifting of strict public health measures in the Northern Territory, Australia, between November 2021 and May 2022. Australian First Nations peoples recovering from COVID-19 showed increased levels of MCP-1 and IL-8 cytokines, IgG-antibodies against Delta-RBD and memory SARS-CoV-2-specific T cell responses prior to hospital discharge in comparison with hospital admission, with resolution of hyperactivated HLA-DR+ CD38+ T cells. SARS-CoV-2 infection elicited coordinated ASC, Tfh and CD8+ T cell responses in concert with CD4+ T cell responses. Delta and Omicron RBD-IgG, as well as Ancestral N-IgG antibodies, strongly correlated with Ancestral RBD-IgG antibodies and Spike-specific memory B cells. We provide evidence of broad and robust immune responses following SARS-CoV-2 infection in Indigenous peoples, resembling those of non-Indigenous COVID-19 hospitalized patients.
Collapse
Affiliation(s)
- Wuji Zhang
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC 3010, Australia
| | - E Bridie Clemens
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC 3010, Australia
| | - Lukasz Kedzierski
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC 3010, Australia
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Brendon Y Chua
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC 3010, Australia
| | - Mark Mayo
- Menzies School of Health Research, Darwin, NT 0811, Australia
| | - Claire Lonzi
- Menzies School of Health Research, Darwin, NT 0811, Australia
| | | | - Vanessa Rigas
- Menzies School of Health Research, Darwin, NT 0811, Australia
| | | | - Paula Binks
- Menzies School of Health Research, Darwin, NT 0811, Australia
| | - Louise C Rowntree
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC 3010, Australia
| | - Lilith F Allen
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC 3010, Australia
| | - Hyon-Xhi Tan
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC 3010, Australia
| | - Jan Petersen
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Priyanka Chaurasia
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, 10029, USA
| | - Adam K Wheatley
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC 3010, Australia
| | - Stephen J Kent
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC 3010, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of Melbourne, Melbourne, VIC 3010, Australia
- Melbourne Sexual Health Centre, Infectious Diseases Department, Alfred Health, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Jamie Rossjohn
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
- Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | - Adrian Miller
- Indigenous Engagement, CQUniversity, Townsville, QLD 4810, Australia
| | - Sarah Lynar
- Menzies School of Health Research, Darwin, NT 0811, Australia
- Infectious Diseases Department, Royal Darwin Hospital, Darwin, NT, Australia
| | - Jane Nelson
- Menzies School of Health Research, Darwin, NT 0811, Australia
| | - Thi H O Nguyen
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC 3010, Australia
| | - Jane Davies
- Menzies School of Health Research, Darwin, NT 0811, Australia
- Infectious Diseases Department, Royal Darwin Hospital, Darwin, NT, Australia
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC 3010, Australia
- Center for Influenza Disease and Emergence Response (CIDER), Melbourne, VIC 3000, Australia
| |
Collapse
|
16
|
Guerriero M, Ally F, Loeb KR, Nair VS. Cytokine release syndrome after bronchoalveolar lavage. BMC Pulm Med 2023; 23:391. [PMID: 37845664 PMCID: PMC10577949 DOI: 10.1186/s12890-023-02704-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 10/11/2023] [Indexed: 10/18/2023] Open
Abstract
BACKGROUND Immunosuppressed bone marrow transplant patients with pulmonary infiltrates routinely undergo bronchoscopy with bronchoalveolar lavage (BAL) to investigate potential etiologies. Cytokine release syndrome after BAL is unreported in the literature in general and in this patient population. CASE PRESENTATION We report on an allogeneic bone marrow transplant patient with non-infectious organizing pneumonia of the lungs who developed delayed and rapidly progressive shock and hypoxia post-procedure over the course of 12 h resulting in intensive care unit admission for supportive care. BAL was characterized by a marked lymphocytic, cytotoxic T cell infiltrate on pathology and flow cytometry without clear evidence of infection. The patient's clinical status improved quickly only after the initiation of high dose intravenous steroids and returned to baseline as an outpatient. CONCLUSION The patient's clinical data and course suggest a cytotoxic T cell response from the lung and BAL as the etiology. With an increasing number of cellular therapies for cancer entering the clinic, the potential for unusual but morbid complications from routine bronchoscopy should be considered.
Collapse
Affiliation(s)
- Margaret Guerriero
- Division of Pulmonary, Critical Care & Sleep Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Feras Ally
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, USA
| | - Keith R Loeb
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, USA
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Clinical Research Division, Fred Hutchinson Cancer Center, 1100 Fairview Ave N, Seattle, WA, 98109, USA
| | - Viswam S Nair
- Division of Pulmonary, Critical Care & Sleep Medicine, University of Washington School of Medicine, Seattle, WA, USA.
- Clinical Research Division, Fred Hutchinson Cancer Center, 1100 Fairview Ave N, Seattle, WA, 98109, USA.
| |
Collapse
|
17
|
Tang K, Zhang Y, Li X, Zhang C, Jia X, Hu H, Chen L, Zhuang R, Zhang Y, Jin B, Ma Y. HLA-E-restricted Hantaan virus-specific CD8 + T cell responses enhance the control of infection in hemorrhagic fever with renal syndrome. BIOSAFETY AND HEALTH 2023; 5:289-299. [PMID: 40078905 PMCID: PMC11895001 DOI: 10.1016/j.bsheal.2023.06.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 06/01/2023] [Accepted: 06/12/2023] [Indexed: 03/14/2025] Open
Abstract
Infection with the Hantaan virus (HTNV) may result in severe hemorrhagic fever with renal syndrome (HFRS). The functions of HLA-E-restricted CD8+ T lymphocytes in virus control and vaccine development have recently received increased attention. The purpose of this research is to discover HLA-E-restricted CD8+ T cell epitopes on HTNV as well as the features of these epitope-specific CD8+ T cells in HFRS patients. To anticipate HLA-E-restricted HTNV epitopes, the NetMHCpan servers were utilized. The K562/HLA-E cell binding test and the enzyme-linked immunospot assay were used to confirm epitope binding to HLA-E. The number and features of HLA-E-restricted epitope-specific CD8+ T lymphocytes in HFRS patients were investigated using tetramer staining, intracellular cytokine labeling, proliferation, and cytotoxicity assays. Six HTNV-derived HLA-E-restricted CD8+ T cell epitopes were found in this study. In mild/moderate HFRS patients, the frequency of HLA-E-restricted epitope-specific CD8+ T cells was greater than in severe/critical patients. CD38+HLA-DR+ HLA-E-restricted CD8+ T cells were identified. Meanwhile, CD45RA+CCR7- effector memory-re-expressing CD45RA T cells with early and intermediate maturation and differentiation characteristics predominated. Notably, CD8+ T cells from milder HFRS patients produced more interferon-γ, interleukin-2, and granzyme B, had a stronger proliferative potential, and were inversely linked with the amount of plasma HTNV virus load. Furthermore, HLA-E-restricted epitope-specific CD8+ T cells demonstrated improved cytotoxic activity in vitro during the acute stage of HFRS. Taken together, the findings demonstrate the protective effects of HLA-E-restricted CD8+ T cells during HTNV infection, suggesting that HLA-E-targeted vaccines against HTNV might be developed for HLA-diverse populations.
Collapse
Affiliation(s)
- Kang Tang
- Department of Immunology, The Fourth Military Medical University, Xi’an 710032, China
| | - Yusi Zhang
- Department of Immunology, The Fourth Military Medical University, Xi’an 710032, China
| | - Xinyu Li
- Department of Immunology, The Fourth Military Medical University, Xi’an 710032, China
| | - Chunmei Zhang
- Department of Immunology, The Fourth Military Medical University, Xi’an 710032, China
| | | | - Haifeng Hu
- Department of Infectious Diseases, Tangdu Hospital, The Fourth Military Medical University, Xi’an 710038, China
| | - Lihua Chen
- Department of Immunology, The Fourth Military Medical University, Xi’an 710032, China
| | - Ran Zhuang
- Department of Immunology, The Fourth Military Medical University, Xi’an 710032, China
| | - Yun Zhang
- Department of Immunology, The Fourth Military Medical University, Xi’an 710032, China
| | - Boquan Jin
- Department of Immunology, The Fourth Military Medical University, Xi’an 710032, China
| | - Ying Ma
- Department of Immunology, The Fourth Military Medical University, Xi’an 710032, China
| |
Collapse
|
18
|
Pierzchalski A, Zenclussen AC, Herberth G. OMIP-94: Twenty-four-color (thirty-marker) panel for deep immunophenotyping of immune cells in human peripheral blood. Cytometry A 2023; 103:695-702. [PMID: 37254600 DOI: 10.1002/cyto.a.24766] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 05/10/2023] [Accepted: 05/12/2023] [Indexed: 06/01/2023]
Abstract
This newly established 24-color (30-marker) panel focuses on the characterization of the main human immune cell subtypes and was optimized for the analysis of human whole blood using a full spectrum flow cytometer. The panel covers all main leukocyte populations: neutrophils, eosinophils and basophils, monocytes (with additional subsets), dendritic cells, innate lymphoid cells and lymphocytes. As for lymphocytes, this panel includes CD4+ T helper, Treg cells, and CD8+ cytotoxic T cells. Further T cells subsets are included with special focus on invariant T cells: γδ T cells (including δ2TCR variant), invariant NKT cells and MAIT (mucosal-associated invariant T cells) cells. Additionally, total B cells (including Bregs and plasmocytes), NK cells, and NKT cells are included. For the overall check of activation status of the analyzed immune cells we used HLA-DR, CD38, CD57, CD69, PD-1, and CD94. In addition, we used CD62L, CD45RA, CD27, and CD39 to describe the differentiation status of these cells. The panel was designed to maximize the information that can be obtained from surface markers in order to avoid the need for fixation and permeabilization steps. The presented multimarker panel offers the possibility to discover new immune cell subtypes which in patients and in cohort studies may lead to the identification of altered immune phenotypes and might give a link to immune system based or to certain other diseases. This panel was developed for a full spectrum flow cytometer equipped with a minimum of three lasers. We developed this panel using healthy human fresh blood, however it was also successfully used for staining of isolated human peripheral blood mononuclear cells (PBMC).
Collapse
Affiliation(s)
- Arkadiusz Pierzchalski
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Ana C Zenclussen
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
- Perinatal Immunology Research Group, Medical Faculty, Saxonian Incubator for Clinical Translation (SIKT), University of Leipzig, Leipzig, Germany
| | - Gunda Herberth
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| |
Collapse
|
19
|
Largent AD, Lambert K, Chiang K, Shumlak N, Liggitt D, Oukka M, Torgerson TR, Buckner JH, Allenspach EJ, Rawlings DJ, Jackson SW. Dysregulated IFN-γ signals promote autoimmunity in STAT1 gain-of-function syndrome. Sci Transl Med 2023; 15:eade7028. [PMID: 37406138 PMCID: PMC11645977 DOI: 10.1126/scitranslmed.ade7028] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 06/16/2023] [Indexed: 07/07/2023]
Abstract
Heterozygous signal transducer and activator of transcription 1 (STAT1) gain-of-function (GOF) mutations promote a clinical syndrome of immune dysregulation characterized by recurrent infections and predisposition to humoral autoimmunity. To gain insights into immune characteristics of STAT1-driven inflammation, we performed deep immunophenotyping of pediatric patients with STAT1 GOF syndrome and age-matched controls. Affected individuals exhibited dysregulated CD4+ T cell and B cell activation, including expansion of TH1-skewed CXCR3+ populations that correlated with serum autoantibody titers. To dissect underlying immune mechanisms, we generated Stat1 GOF transgenic mice (Stat1GOF mice) and confirmed the development of spontaneous humoral autoimmunity that recapitulated the human phenotype. Despite clinical resemblance to human regulatory T cell (Treg) deficiency, Stat1GOF mice and humans with STAT1 GOF syndrome exhibited normal Treg development and function. In contrast, STAT1 GOF autoimmunity was characterized by adaptive immune activation driven by dysregulated STAT1-dependent signals downstream of the type 1 and type 2 interferon (IFN) receptors. However, in contrast to the prevailing type 1 IFN-centric model for STAT1 GOF autoimmunity, Stat1GOF mice lacking the type 1 IFN receptor were only partially protected from STAT1-driven systemic inflammation, whereas loss of type 2 IFN (IFN-γ) signals abrogated autoimmunity. Last, germline STAT1 GOF alleles are thought to enhance transcriptional activity by increasing total STAT1 protein, but the underlying biochemical mechanisms have not been defined. We showed that IFN-γ receptor deletion normalized total STAT1 expression across immune lineages, highlighting IFN-γ as the critical driver of feedforward STAT1 elevation in STAT1 GOF syndrome.
Collapse
Affiliation(s)
| | | | - Kristy Chiang
- Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Natali Shumlak
- Seattle Children's Research Institute, Seattle, WA 98101, USA
- Present address: Division of Medical Genetics, University of Washington School of Medicine; Seattle, WA 98195, USA
| | - Denny Liggitt
- Department of Comparative Medicine, University of Washington School of Medicine; Seattle, WA 98195, USA
| | - Mohammed Oukka
- Department of Pediatrics, University of Washington School of Medicine; Seattle, WA 98195, USA
- Department of Immunology, University of Washington School of Medicine; Seattle, WA 98195, USA
| | | | | | - Eric J. Allenspach
- Seattle Children's Research Institute, Seattle, WA 98101, USA
- Department of Pediatrics, University of Washington School of Medicine; Seattle, WA 98195, USA
| | - David J. Rawlings
- Seattle Children's Research Institute, Seattle, WA 98101, USA
- Department of Pediatrics, University of Washington School of Medicine; Seattle, WA 98195, USA
- Department of Immunology, University of Washington School of Medicine; Seattle, WA 98195, USA
| | - Shaun W. Jackson
- Seattle Children's Research Institute, Seattle, WA 98101, USA
- Department of Pediatrics, University of Washington School of Medicine; Seattle, WA 98195, USA
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine; Seattle, WA 98195, USA
| |
Collapse
|
20
|
Al Hammoud R, Kalaskar A, Rodriguez G, Del Bianco G, Bell C, Murphy JR, Heresi GP. Microalbuminuria in Perinatally HIV-Infected Children and Adolescents in the United States. Open Forum Infect Dis 2023; 10:ofad333. [PMID: 37426950 PMCID: PMC10326675 DOI: 10.1093/ofid/ofad333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 06/29/2023] [Indexed: 07/11/2023] Open
Abstract
Background The kidney is a common target for human immunodeficiency virus (HIV), making renal disease a common noninfectious complication of HIV. Microalbuminuria is an important marker that can detect early renal damage. Timely detection of microalbuminuria is important to initiate renal management and stop the progression of renal dysfunction in people with HIV. Limited data are available about renal abnormalities in people with perinatal HIV infection. The objective of this study was to determine the prevalence of microalbuminuria in a cohort of perinatally HIV-infected children and young adults receiving combination antiretroviral therapy and investigate correlations between microalbuminuria and clinical and laboratory findings. Methods This was a retrospective study of 71 patients with HIV followed in an urban pediatric HIV clinic in Houston, Texas, between October 2007 and August 2016. Demographic, clinical, and laboratory data were compared between subjects with persistent microalbuminuria (PM) and those without. PM is defined as a microalbumin-to-creatinine ratio ≥30 mg/g on at least 2 occasions separated by at least 1 month. Results Sixteen of 71 patients (23%) met the definition of PM. In univariate analysis, patients with PM had significantly higher CD8+ T-cell activation and lower CD4+ T-cell nadir. Multivariate analysis demonstrated increased microalbuminuria to be independently associated with older age and CD8+ T-cell activation measured as CD8+HLA-DR+ T-cell percentage. Conclusions Older age and increased activation of CD8+HLA-DR+ on T cells correlate with presence of microalbuminuria in this cohort of HIV-infected patients.
Collapse
Affiliation(s)
- Roukaya Al Hammoud
- Correspondence: Roukaya Al Hammoud, MD, Division of Infectious Diseases, Department of Pediatrics, McGovern Medical School at UTHealth Houston, and Children's Memorial Hermann Hospital, 6431 Fannin St, 3.126, Houston, TX 77030 (); Gloria P. Heresi, MD, Division of Infectious Diseases, Department of Pediatrics, McGovern Medical School at UTHealth Houston, and Children's Memorial Hermann Hospital, 6431 Fannin St, 3.126, Houston, TX 77030 ()
| | - Anupama Kalaskar
- Pediatric Infectious Diseases, Children's Minnesota, University of Minnesota, Minneapolis, Minnesota, USA
| | - Gilhen Rodriguez
- Division of Infectious Diseases, Department of Pediatrics, McGovern Medical School at UTHealth Houston, and Children's Memorial Hermann Hospital, Houston, Texas, USA
| | - Gabriela Del Bianco
- Division of Infectious Diseases, Department of Pediatrics, McGovern Medical School at UTHealth Houston, and Children's Memorial Hermann Hospital, Houston, Texas, USA
| | - Cynthia Bell
- Department of Pediatrics, McGovern Medical School at UTHealth Houston, Texas, USA
| | - James R Murphy
- Division of Infectious Diseases, Department of Pediatrics, McGovern Medical School at UTHealth Houston, and Children's Memorial Hermann Hospital, Houston, Texas, USA
| | - Gloria P Heresi
- Correspondence: Roukaya Al Hammoud, MD, Division of Infectious Diseases, Department of Pediatrics, McGovern Medical School at UTHealth Houston, and Children's Memorial Hermann Hospital, 6431 Fannin St, 3.126, Houston, TX 77030 (); Gloria P. Heresi, MD, Division of Infectious Diseases, Department of Pediatrics, McGovern Medical School at UTHealth Houston, and Children's Memorial Hermann Hospital, 6431 Fannin St, 3.126, Houston, TX 77030 ()
| |
Collapse
|
21
|
Santopaolo M, Gregorova M, Hamilton F, Arnold D, Long A, Lacey A, Oliver E, Halliday A, Baum H, Hamilton K, Milligan R, Pearce O, Knezevic L, Morales Aza B, Milne A, Milodowski E, Jones E, Lazarus R, Goenka A, Finn A, Maskell N, Davidson AD, Gillespie K, Wooldridge L, Rivino L. Prolonged T-cell activation and long COVID symptoms independently associate with severe COVID-19 at 3 months. eLife 2023; 12:e85009. [PMID: 37310006 PMCID: PMC10319436 DOI: 10.7554/elife.85009] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 06/11/2023] [Indexed: 06/14/2023] Open
Abstract
Coronavirus disease-19 (COVID-19) causes immune perturbations which may persist long term, and patients frequently report ongoing symptoms for months after recovery. We assessed immune activation at 3-12 months post hospital admission in 187 samples from 63 patients with mild, moderate, or severe disease and investigated whether it associates with long COVID. At 3 months, patients with severe disease displayed persistent activation of CD4+ and CD8+ T-cells, based on expression of HLA-DR, CD38, Ki67, and granzyme B, and elevated plasma levels of interleukin-4 (IL-4), IL-7, IL-17, and tumor necrosis factor-alpha (TNF-α) compared to mild and/or moderate patients. Plasma from severe patients at 3 months caused T-cells from healthy donors to upregulate IL-15Rα, suggesting that plasma factors in severe patients may increase T-cell responsiveness to IL-15-driven bystander activation. Patients with severe disease reported a higher number of long COVID symptoms which did not however correlate with cellular immune activation/pro-inflammatory cytokines after adjusting for age, sex, and disease severity. Our data suggests that long COVID and persistent immune activation may correlate independently with severe disease.
Collapse
Affiliation(s)
- Marianna Santopaolo
- School of Cellular and Molecular Medicine, University of BristolBristolUnited Kingdom
| | - Michaela Gregorova
- School of Cellular and Molecular Medicine, University of BristolBristolUnited Kingdom
| | - Fergus Hamilton
- Academic Respiratory Unit, North Bristol NHS TrustBristolUnited Kingdom
| | - David Arnold
- Academic Respiratory Unit, North Bristol NHS TrustBristolUnited Kingdom
| | - Anna Long
- Diabetes and Metabolism, Bristol Medical School, University of BristolBristolUnited Kingdom
| | - Aurora Lacey
- School of Cellular and Molecular Medicine, University of BristolBristolUnited Kingdom
| | - Elizabeth Oliver
- School of Cellular and Molecular Medicine, University of BristolBristolUnited Kingdom
| | - Alice Halliday
- School of Cellular and Molecular Medicine, University of BristolBristolUnited Kingdom
| | - Holly Baum
- School of Cellular and Molecular Medicine, University of BristolBristolUnited Kingdom
| | - Kristy Hamilton
- School of Cellular and Molecular Medicine, University of BristolBristolUnited Kingdom
| | - Rachel Milligan
- School of Cellular and Molecular Medicine, University of BristolBristolUnited Kingdom
| | - Olivia Pearce
- Diabetes and Metabolism, Bristol Medical School, University of BristolBristolUnited Kingdom
| | - Lea Knezevic
- Bristol Veterinary School, University of BristolBristolUnited Kingdom
| | - Begonia Morales Aza
- School of Cellular and Molecular Medicine, University of BristolBristolUnited Kingdom
| | - Alice Milne
- Academic Respiratory Unit, North Bristol NHS TrustBristolUnited Kingdom
| | - Emily Milodowski
- Bristol Veterinary School, University of BristolBristolUnited Kingdom
| | - Eben Jones
- School of Cellular and Molecular Medicine, University of BristolBristolUnited Kingdom
| | - Rajeka Lazarus
- University Hospitals Bristol and Weston NHS Foundation TrustBristolUnited Kingdom
| | - Anu Goenka
- School of Cellular and Molecular Medicine, University of BristolBristolUnited Kingdom
- Department of Paediatric Immunology and Infectious Diseases, Bristol Royal Hospital for ChildrenBristolUnited Kingdom
| | - Adam Finn
- School of Cellular and Molecular Medicine, University of BristolBristolUnited Kingdom
- Department of Paediatric Immunology and Infectious Diseases, Bristol Royal Hospital for ChildrenBristolUnited Kingdom
- School of Population Health Sciences, University of BristolBristolUnited Kingdom
| | - Nicholas Maskell
- Academic Respiratory Unit, North Bristol NHS TrustBristolUnited Kingdom
| | - Andrew D Davidson
- School of Cellular and Molecular Medicine, University of BristolBristolUnited Kingdom
| | - Kathleen Gillespie
- Diabetes and Metabolism, Bristol Medical School, University of BristolBristolUnited Kingdom
| | - Linda Wooldridge
- Bristol Veterinary School, University of BristolBristolUnited Kingdom
| | - Laura Rivino
- School of Cellular and Molecular Medicine, University of BristolBristolUnited Kingdom
| |
Collapse
|
22
|
Yunis J, Short KR, Yu D. Severe respiratory viral infections: T-cell functions diverging from immunity to inflammation. Trends Microbiol 2023; 31:644-656. [PMID: 36635162 PMCID: PMC9829516 DOI: 10.1016/j.tim.2022.12.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 01/11/2023]
Abstract
Respiratory viral infections such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and influenza A virus (IAV) trigger distinct clinical outcomes defined by immunity-based viral clearance or disease associated with exaggerated and prolonged inflammation. The important role of T cells in shaping both antiviral immunity and inflammation has revived interest in understanding the host-pathogen interactions that lead to the diverse functions of T cells in respiratory viral infections. Inborn deficiencies and acquired insufficiency in immunity can prolong infection and shift the immune response towards exacerbated inflammation, which results from persistent innate immune activation and bystander T-cell activation that is nonspecific to the pathogen but is often driven by cytokines. This review discusses how virus variants, exposure doses, routes of infection, host genetics, and immune history can modulate the activation and function of T cells, thus influencing clinical outcomes. Knowledge of virus-host interaction can inform strategies to prevent immune dysfunction in respiratory viral infection and help in the treatment of associated diseases.
Collapse
Affiliation(s)
- Joseph Yunis
- Frazer Institute, Faculty of Medicine, The University of Queensland, Woolloongabba, QLD 4102, Australia.
| | - Kirsty R Short
- School of Chemistry and Molecular Biosciences, Faculty of Science, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Di Yu
- Frazer Institute, Faculty of Medicine, The University of Queensland, Woolloongabba, QLD 4102, Australia; Ian Frazer Centre for Children's Immunotherapy Research, Child Health Research Centre, Faculty of Medicine, The University of Queensland, Brisbane, Australia.
| |
Collapse
|
23
|
DeRogatis JM, Neubert EN, Viramontes KM, Henriquez ML, Nicholas DA, Tinoco R. Cell-Intrinsic CD38 Expression Sustains Exhausted CD8 + T Cells by Regulating Their Survival and Metabolism during Chronic Viral Infection. J Virol 2023; 97:e0022523. [PMID: 37039663 PMCID: PMC10134879 DOI: 10.1128/jvi.00225-23] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 03/19/2023] [Indexed: 04/12/2023] Open
Abstract
Acute and chronic viral infections result in the differentiation of effector and exhausted T cells with functional and phenotypic differences that dictate whether the infection is cleared or progresses to chronicity. High CD38 expression has been observed on CD8+ T cells across various viral infections and tumors in patients, suggesting an important regulatory function for CD38 on responding T cells. Here, we show that CD38 expression was increased and sustained on exhausted CD8+ T cells following chronic lymphocytic choriomeningitis virus (LCMV) infection, with lower levels observed on T cells from acute LCMV infection. We uncovered a cell-intrinsic role for CD38 expression in regulating the survival of effector and exhausted CD8+ T cells. We observed increased proliferation and function of Cd38-/- CD8+ progenitor exhausted T cells compared to those of wild-type (WT) cells. Furthermore, decreased oxidative phosphorylation and glycolytic potential were observed in Cd38-/- CD8+ T cells during chronic but not acute LCMV infection. Our studies reveal that CD38 has a dual cell-intrinsic function in CD8+ T cells, where it decreases proliferation and function yet supports their survival and metabolism. These findings show that CD38 is not only a marker of T cell activation but also has regulatory functions on effector and exhausted CD8+ T cells. IMPORTANCE Our study shows how CD38 expression is regulated on CD8+ T cells responding during acute and chronic viral infection. We observed higher CD38 levels on CD8+ T cells during chronic viral infection compared to levels during acute viral infection. Deleting CD38 had an important cell-intrinsic function in ensuring the survival of virus-specific CD8+ T cells throughout the course of viral infection. We found defective metabolism in Cd38-/- CD8+ T cells arising during chronic infection and changes in their progenitor T cell phenotype. Our studies revealed a dual cell-intrinsic role for CD38 in limiting proliferation and granzyme B production in virus-specific exhausted T cells while also promoting their survival. These data highlight new avenues for research into the mechanisms through which CD38 regulates the survival and metabolism of CD8+ T cell responses to viral infections.
Collapse
Affiliation(s)
- Julia M. DeRogatis
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California Irvine, Irvine, California, USA
| | - Emily N. Neubert
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California Irvine, Irvine, California, USA
- Center for Virus Research, University of California Irvine, Irvine, California, USA
| | - Karla M. Viramontes
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California Irvine, Irvine, California, USA
| | - Monique L. Henriquez
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California Irvine, Irvine, California, USA
| | - Dequina A. Nicholas
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California Irvine, Irvine, California, USA
| | - Roberto Tinoco
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California Irvine, Irvine, California, USA
- Center for Virus Research, University of California Irvine, Irvine, California, USA
| |
Collapse
|
24
|
Kang JB, Shen AZ, Sakaue S, Luo Y, Gurajala S, Nathan A, Rumker L, Aguiar VRC, Valencia C, Lagattuta K, Zhang F, Jonsson AH, Yazar S, Alquicira-Hernandez J, Khalili H, Ananthakrishnan AN, Jagadeesh K, Dey K, Accelerating Medicines Partnership Program: Rheumatoid Arthritis and Systemic Lupus Erythematosus (AMP RA/SLE) Network, Daly MJ, Xavier RJ, Donlin LT, Anolik JH, Powell JE, Rao DA, Brenner MB, Gutierrez-Arcelus M, Raychaudhuri S. Mapping the dynamic genetic regulatory architecture of HLA genes at single-cell resolution. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.03.14.23287257. [PMID: 36993194 PMCID: PMC10055604 DOI: 10.1101/2023.03.14.23287257] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The human leukocyte antigen (HLA) locus plays a critical role in complex traits spanning autoimmune and infectious diseases, transplantation, and cancer. While coding variation in HLA genes has been extensively documented, regulatory genetic variation modulating HLA expression levels has not been comprehensively investigated. Here, we mapped expression quantitative trait loci (eQTLs) for classical HLA genes across 1,073 individuals and 1,131,414 single cells from three tissues, using personalized reference genomes to mitigate technical confounding. We identified cell-type-specific cis-eQTLs for every classical HLA gene. Modeling eQTLs at single-cell resolution revealed that many eQTL effects are dynamic across cell states even within a cell type. HLA-DQ genes exhibit particularly cell-state-dependent effects within myeloid, B, and T cells. Dynamic HLA regulation may underlie important interindividual variability in immune responses.
Collapse
Affiliation(s)
- Joyce B. Kang
- Center for Data Sciences, Brigham and Women’s Hospital, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Amber Z. Shen
- Center for Data Sciences, Brigham and Women’s Hospital, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Saori Sakaue
- Center for Data Sciences, Brigham and Women’s Hospital, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Yang Luo
- Center for Data Sciences, Brigham and Women’s Hospital, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Saisriram Gurajala
- Center for Data Sciences, Brigham and Women’s Hospital, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Aparna Nathan
- Center for Data Sciences, Brigham and Women’s Hospital, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Laurie Rumker
- Center for Data Sciences, Brigham and Women’s Hospital, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Vitor R. C. Aguiar
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Cristian Valencia
- Center for Data Sciences, Brigham and Women’s Hospital, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Kaitlyn Lagattuta
- Center for Data Sciences, Brigham and Women’s Hospital, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Fan Zhang
- Center for Data Sciences, Brigham and Women’s Hospital, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Division of Rheumatology and the Center for Health Artificial Intelligence, University of Colorado School of Medicine, Aurora, CO, USA
| | - Anna Helena Jonsson
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Seyhan Yazar
- Garvan Institute of Medical Research, Sydney, NSW, Australia
| | | | - Hamed Khalili
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Ashwin N. Ananthakrishnan
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | | | - Kushal Dey
- Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | | | - Mark J. Daly
- Psychiatric and Neurodevelopmental Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- The Stanley Center for Psychiatric Research, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Ramnik J. Xavier
- Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Molecular Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Laura T. Donlin
- Hospital for Special Surgery, New York, NY, USA
- Weill Cornell Medicine, New York, NY, USA
| | - Jennifer H. Anolik
- Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | | | - Deepak A. Rao
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Michael B. Brenner
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Maria Gutierrez-Arcelus
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Soumya Raychaudhuri
- Center for Data Sciences, Brigham and Women’s Hospital, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
25
|
Hermens JM, Kesmir C. Role of T cells in severe COVID-19 disease, protection, and long term immunity. Immunogenetics 2023; 75:295-307. [PMID: 36752852 PMCID: PMC9905767 DOI: 10.1007/s00251-023-01294-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 01/10/2023] [Indexed: 02/09/2023]
Abstract
Infection with SARS-CoV-2 causes wide range of disease severities from asymptomatic to life-threatening disease. Understanding the contribution of immunological traits in immunity against SARS-CoV-2 and in protection against severe COVID-19 could result in effective measures to prevent development of severe disease. While the role of cytokines and antibodies has been thoroughly studied, this is not the case for T cells. In this review, the association between T cells and COVID-19 disease severity and protection upon reexposure is discussed. While infiltration of overactivated cytotoxic T cells might be harmful in the infected tissue, fast responding T cells are important in the protection against severe COVID-19. This protection could even be viable in the long term as long-living memory T cells seem to be stabilized and mutations do not appear to have a large impact on T cell responses. Thus, after vaccination and infections, memory T cells should be able to help prevent onset of severe disease for most cases. Considering this, it would be useful to add N or M proteins in vaccinations, alongside the S protein which is currently used, as this results in a broader T cell response.
Collapse
Affiliation(s)
- Julia Maret Hermens
- Theoretical Biology and Bioinformatics, Biology Department, Science Faculty, Utrecht University, Utrecht, Netherlands
| | - Can Kesmir
- Theoretical Biology and Bioinformatics, Biology Department, Science Faculty, Utrecht University, Utrecht, Netherlands.
| |
Collapse
|
26
|
Arish M, Qian W, Narasimhan H, Sun J. COVID-19 immunopathology: From acute diseases to chronic sequelae. J Med Virol 2023; 95:e28122. [PMID: 36056655 PMCID: PMC9537925 DOI: 10.1002/jmv.28122] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/27/2022] [Accepted: 08/29/2022] [Indexed: 01/17/2023]
Abstract
The clinical manifestation of coronavirus disease 2019 (COVID-19) mainly targets the lung as a primary affected organ, which is also a critical site of immune cell activation by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, recent reports also suggest the involvement of extrapulmonary tissues in COVID-19 pathology. The interplay of both innate and adaptive immune responses is key to COVID-19 management. As a result, a robust innate immune response provides the first line of defense, concomitantly, adaptive immunity neutralizes the infection and builds memory for long-term protection. However, dysregulated immunity, both innate and adaptive, can skew towards immunopathology both in acute and chronic cases. Here we have summarized some of the recent findings that provide critical insight into the immunopathology caused by SARS-CoV-2, in acute and post-acute cases. Finally, we further discuss some of the immunomodulatory drugs in preclinical and clinical trials for dampening the immunopathology caused by COVID-19.
Collapse
Affiliation(s)
- Mohd Arish
- Carter Immunology Center, University of Virginia, Charlottesville, VA 22908, USA
| | - Wei Qian
- Carter Immunology Center, University of Virginia, Charlottesville, VA 22908, USA
| | - Harish Narasimhan
- Carter Immunology Center, University of Virginia, Charlottesville, VA 22908, USA
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA 22908, USA
| | - Jie Sun
- Carter Immunology Center, University of Virginia, Charlottesville, VA 22908, USA
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA 22908, USA
- Division of Infectious Disease and International Health, Department of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| |
Collapse
|
27
|
Nguyen AT, Lau HMP, Sloane H, Jayasinghe D, Mifsud NA, Chatzileontiadou DSM, Grant EJ, Szeto C, Gras S. Homologous peptides derived from influenza A, B and C viruses induce variable CD8 + T cell responses with cross-reactive potential. Clin Transl Immunology 2022; 11:e1422. [PMID: 36275878 PMCID: PMC9581725 DOI: 10.1002/cti2.1422] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 09/17/2022] [Accepted: 09/21/2022] [Indexed: 11/06/2022] Open
Abstract
Objective Influenza A, B and C viruses (IAV, IBV and ICV, respectively) circulate globally, infecting humans and causing widespread morbidity and mortality. Here, we investigate the T cell response towards an immunodominant IAV epitope, NP265‐273, and its IBV and ICV homologues, presented by HLA‐A*03:01 molecule expressed in ~ 4% of the global population (~ 300 million people). Methods We assessed the magnitude (tetramer staining) and quality of the CD8+ T cell response (intracellular cytokine staining) towards NP265‐IAV and described the T cell receptor (TCR) repertoire used to recognise this immunodominant epitope. We next assessed the immunogenicity of NP265‐IAV homologue peptides from IBV and ICV and the ability of CD8+ T cells to cross‐react towards these homologous peptides. Furthermore, we determined the structures of NP265‐IAV and NP323‐IBV peptides in complex with HLA‐A*03:01 by X‐ray crystallography. Results Our study provides a detailed characterisation of the CD8+ T cell response towards NP265‐IAV and its IBV and ICV homologues. The data revealed a diverse repertoire for NP265‐IAV that is associated with superior anti‐viral protection. Evidence of cross‐reactivity between the three different influenza virus strain‐derived epitopes was observed, indicating the discovery of a potential vaccination target that is broad enough to cover all three influenza strains. Conclusion We show that while there is a potential to cross‐protect against distinct influenza virus lineages, the T cell response was stronger against the IAV peptide than IBV or ICV, which is an important consideration when choosing targets for future vaccine design.
Collapse
Affiliation(s)
- Andrea T Nguyen
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery InstituteMonash UniversityClaytonVICAustralia,Department of Biochemistry and Chemistry, La Trobe Institute for Molecular ScienceLa Trobe UniversityBundooraVICAustralia
| | - Hiu Ming Peter Lau
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery InstituteMonash UniversityClaytonVICAustralia
| | - Hannah Sloane
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery InstituteMonash UniversityClaytonVICAustralia,Department of Biochemistry and Chemistry, La Trobe Institute for Molecular ScienceLa Trobe UniversityBundooraVICAustralia
| | - Dhilshan Jayasinghe
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery InstituteMonash UniversityClaytonVICAustralia,Department of Biochemistry and Chemistry, La Trobe Institute for Molecular ScienceLa Trobe UniversityBundooraVICAustralia
| | - Nicole A Mifsud
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery InstituteMonash UniversityClaytonVICAustralia
| | - Demetra SM Chatzileontiadou
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery InstituteMonash UniversityClaytonVICAustralia,Department of Biochemistry and Chemistry, La Trobe Institute for Molecular ScienceLa Trobe UniversityBundooraVICAustralia
| | - Emma J Grant
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery InstituteMonash UniversityClaytonVICAustralia,Department of Biochemistry and Chemistry, La Trobe Institute for Molecular ScienceLa Trobe UniversityBundooraVICAustralia
| | - Christopher Szeto
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery InstituteMonash UniversityClaytonVICAustralia,Department of Biochemistry and Chemistry, La Trobe Institute for Molecular ScienceLa Trobe UniversityBundooraVICAustralia
| | - Stephanie Gras
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery InstituteMonash UniversityClaytonVICAustralia,Department of Biochemistry and Chemistry, La Trobe Institute for Molecular ScienceLa Trobe UniversityBundooraVICAustralia
| |
Collapse
|
28
|
Huang CH, Fan JH, Jeng WJ, Chang ST, Yang CK, Teng W, Wu TH, Hsieh YC, Chen WT, Chen YC, Sheen IS, Lin YC, Lin CY. Innate-like bystander-activated CD38 + HLA-DR + CD8 + T cells play a pathogenic role in patients with chronic hepatitis C. Hepatology 2022; 76:803-818. [PMID: 35060158 DOI: 10.1002/hep.32349] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 01/07/2022] [Accepted: 01/12/2022] [Indexed: 12/17/2022]
Abstract
BACKGROUND AND AIMS HCV-specific T cells are few and exhausted in patients with chronic hepatitis C (CHC). Whether these T cells are responsible for the liver damage and fibrosis is still debated. However, cluster of differentiation 38-positive (CD38+ ) human leukocyte antigen DR-positive (HLA-DR+ ) CD8+ T cells are regarded as bystander CD8+ T cells that cause liver injury in acute hepatitis. We propose that these innate CD8+ T cells play a pathogenic role in CHC. METHODS Lymphocytes from peripheral blood were obtained from 108 patients with CHC and 43 healthy subjects. Immunophenotyping, functional assays, T-cell receptor (TCR) repertoire, and cytotoxic assay of CD38+ HLA-DR+ CD8+ T cells were studied. RESULTS The percentage of CD38+ HLA-DR+ CD8+ T cells increased significantly in patients with CHC. These cells expressed higher levels of effector memory and proinflammatory chemokine molecules and showed higher interferon-γ production than CD38- HLA-DR- CD8 T cells. They were largely composed of non-HCV-specific CD8+ T cells as assessed by HLA-A2-restricted pentamers and next-generation sequencing analysis of the TCR repertoire. In addition, these CD38+ HLA-DR+ CD8+ T cells had strong cytotoxicity, which could be inhibited by anti-DNAX accessory molecule 1, anti-NKG2 family member D, and anti-natural killer NKp30 antibodies. Lastly, the percentage of CD38+ HLA-DR+ CD8+ T cells was significantly associated with liver injury and fibrosis and decreased significantly along with serum alanine aminotransferase normalization after successful direct-acting antiviral treatment. CONCLUSIONS The TCR-independent, cytokine-responsive bystander CD38+ HLA-DR+ CD8+ T cells are strongly cytotoxic and play a pathogenic role in patients with CHC.
Collapse
Affiliation(s)
- Chien-Hao Huang
- Division of Hepatology, Department of Gastroenterology and Hepatology, Chang-Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan
- College of Medicine, Chang-Gung University, Taoyuan, Taiwan
| | - Jian-He Fan
- Division of Hepatology, Department of Gastroenterology and Hepatology, Chang-Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan
- College of Medicine, Chang-Gung University, Taoyuan, Taiwan
| | - Wen-Juei Jeng
- Division of Hepatology, Department of Gastroenterology and Hepatology, Chang-Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan
- College of Medicine, Chang-Gung University, Taoyuan, Taiwan
| | - Shu-Ting Chang
- Division of Hepatology, Department of Gastroenterology and Hepatology, Chang-Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan
| | - Chan-Keng Yang
- Division of Medical Oncology/Hematology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Wei Teng
- Division of Hepatology, Department of Gastroenterology and Hepatology, Chang-Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan
- College of Medicine, Chang-Gung University, Taoyuan, Taiwan
| | - Tsung-Han Wu
- Division of General Surgery, Chang-Gung Memorial Hospital, Linkou Medical Center, Taiwan
| | - Yi-Chung Hsieh
- Division of Hepatology, Department of Gastroenterology and Hepatology, Chang-Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan
- College of Medicine, Chang-Gung University, Taoyuan, Taiwan
| | - Wei-Ting Chen
- Division of Hepatology, Department of Gastroenterology and Hepatology, Chang-Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan
- College of Medicine, Chang-Gung University, Taoyuan, Taiwan
| | - Yi-Cheng Chen
- Division of Hepatology, Department of Gastroenterology and Hepatology, Chang-Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan
- College of Medicine, Chang-Gung University, Taoyuan, Taiwan
| | - I-Shyan Sheen
- Division of Hepatology, Department of Gastroenterology and Hepatology, Chang-Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan
- College of Medicine, Chang-Gung University, Taoyuan, Taiwan
| | - Yung-Chang Lin
- Division of Medical Oncology/Hematology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chun-Yen Lin
- Division of Hepatology, Department of Gastroenterology and Hepatology, Chang-Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan
- College of Medicine, Chang-Gung University, Taoyuan, Taiwan
| |
Collapse
|
29
|
Chew K, Lee B, van Haren SD, Nanishi E, O’Meara T, Splaine JB, DeLeon M, Soni D, Seo HS, Dhe-Paganon S, Ozonoff A, Smith JA, Levy O, Dowling DJ. Adjuvant Discovery via a High Throughput Screen using Human Primary Mononuclear Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.06.17.496630. [PMID: 35860217 PMCID: PMC9298130 DOI: 10.1101/2022.06.17.496630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Motivation Vaccines are a key biomedical intervention to prevent the spread of infectious diseases, but their efficacy can be limited by insufficient immunogenicity and nonuniform reactogenic profiles. Adjuvants are molecules that potentiate vaccine responses by inducing innate immune activation. However, there are a limited number of adjuvants in approved vaccines, and current approaches for preclinical adjuvant discovery and development are inefficient. To enhance adjuvant identification, we developed a protocol based on in vitro screening of human primary leukocytes. Summary We describe a methodology utilizing high-throughput and high-content screening for novel adjuvant candidates that was used to screen a library of ~2,500 small molecules via a 384-well quantitative combined cytokine and flow cytometry immunoassay in primary human peripheral blood mononuclear cells (PBMCs) from 4 healthy adult study participants. Hits were identified based on their induction of soluble cytokine (TNF, IFNg and IL-10) secretion and PBMC maturation (CD 80/86, Ox40, and HLA-DR) in at least two of the four donors screened. From an initial set of 197 compounds identified using these biomarkers-an 8.6% hit rate-we downselected to five scaffolds that demonstrated robust efficacy and potency in vitro and evaluated the top hit, vinblastine sulfate, for adjuvanticity in vivo. Vinblastine sulfate significantly enhanced murine humoral responses to recombinant SARS-CoV-2 spike protein, including a four-fold enhancement of IgG titer production when compared to treatment with the spike antigen alone. Overall, we outline a methodology for discovering immunomodulators with adjuvant potential via high-throughput screening of PBMCs in vitro that yielded a lead compound with in vivo adjuvanticity.
Collapse
Affiliation(s)
- Katherine Chew
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, USA
| | - Branden Lee
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, USA
| | - Simon D. van Haren
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Etsuro Nanishi
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Timothy O’Meara
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, USA
| | | | - Maria DeLeon
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, USA
| | - Dheeraj Soni
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Hyuk-Soo Seo
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Sirano Dhe-Paganon
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Al Ozonoff
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT & Harvard, Cambridge, MA, USA
| | - Jennifer A. Smith
- ICCB-Longwood Screening Facility, Harvard Medical School, Boston, MA, USA
| | - Ofer Levy
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT & Harvard, Cambridge, MA, USA
| | - David J. Dowling
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
30
|
McCarthy EE, Odorizzi PM, Lutz E, Smullin CP, Tenvooren I, Stone M, Simmons G, Hunt PW, Feeney ME, Norris PJ, Busch MP, Spitzer MH, Rutishauser RL. A cytotoxic-skewed immune set point predicts low neutralizing antibody levels after Zika virus infection. Cell Rep 2022; 39:110815. [PMID: 35584677 PMCID: PMC9151348 DOI: 10.1016/j.celrep.2022.110815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/27/2022] [Accepted: 04/21/2022] [Indexed: 11/03/2022] Open
Abstract
Although generating high neutralizing antibody levels is a key component of protective immunity after acute viral infection or vaccination, little is known about why some individuals generate high versus low neutralizing antibody titers. Here, we leverage the high-dimensional single-cell profiling capacity of mass cytometry to characterize the longitudinal cellular immune response to Zika virus (ZIKV) infection in viremic blood donors in Puerto Rico. During acute ZIKV infection, we identify widely coordinated responses across innate and adaptive immune cell lineages. High frequencies of multiple activated cell types during acute infection are associated with high titers of ZIKV neutralizing antibodies 6 months post-infection, while stable immune features suggesting a cytotoxic-skewed immune set point are associated with low titers. Our study offers insight into the coordination of immune responses and identifies candidate cellular biomarkers that may offer predictive value in vaccine efficacy trials aimed at inducing high levels of antiviral neutralizing antibodies.
Collapse
Affiliation(s)
- Elizabeth E McCarthy
- Departments of Otolaryngology-Head and Neck Surgery and Microbiology and Immunology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Pamela M Odorizzi
- Department of Medicine, Zuckerberg San Francisco General Hospital, University of California San Francisco, San Francisco, CA 94110, USA
| | - Emma Lutz
- Department of Medicine, Zuckerberg San Francisco General Hospital, University of California San Francisco, San Francisco, CA 94110, USA
| | - Carolyn P Smullin
- Department of Medicine, Zuckerberg San Francisco General Hospital, University of California San Francisco, San Francisco, CA 94110, USA
| | - Iliana Tenvooren
- Departments of Otolaryngology-Head and Neck Surgery and Microbiology and Immunology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Mars Stone
- Vitalant Research Institute, San Francisco, CA 94104, USA; Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA 94143, USA
| | - Graham Simmons
- Vitalant Research Institute, San Francisco, CA 94104, USA; Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA 94143, USA
| | - Peter W Hunt
- Department of Medicine, Zuckerberg San Francisco General Hospital, University of California San Francisco, San Francisco, CA 94110, USA
| | - Margaret E Feeney
- Department of Medicine, Zuckerberg San Francisco General Hospital, University of California San Francisco, San Francisco, CA 94110, USA; Department of Pediatrics, University of California San Francisco, San Francisco, CA 94110, USA
| | - Philip J Norris
- Department of Medicine, Zuckerberg San Francisco General Hospital, University of California San Francisco, San Francisco, CA 94110, USA; Vitalant Research Institute, San Francisco, CA 94104, USA; Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA 94143, USA
| | - Michael P Busch
- Vitalant Research Institute, San Francisco, CA 94104, USA; Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA 94143, USA
| | - Matthew H Spitzer
- Departments of Otolaryngology-Head and Neck Surgery and Microbiology and Immunology, University of California San Francisco, San Francisco, CA 94143, USA; Gladstone-UCSF Institute for Genomic Immunology, San Francisco, CA 94158, USA; Parker Institute for Cancer Immunotherapy, San Francisco, CA 94143, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA.
| | - Rachel L Rutishauser
- Department of Medicine, Zuckerberg San Francisco General Hospital, University of California San Francisco, San Francisco, CA 94110, USA; Gladstone-UCSF Institute for Genomic Immunology, San Francisco, CA 94158, USA.
| |
Collapse
|
31
|
Mettelman RC, Allen EK, Thomas PG. Mucosal immune responses to infection and vaccination in the respiratory tract. Immunity 2022; 55:749-780. [PMID: 35545027 PMCID: PMC9087965 DOI: 10.1016/j.immuni.2022.04.013] [Citation(s) in RCA: 122] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/12/2022] [Accepted: 04/15/2022] [Indexed: 01/25/2023]
Abstract
The lungs are constantly exposed to inhaled debris, allergens, pollutants, commensal or pathogenic microorganisms, and respiratory viruses. As a result, innate and adaptive immune responses in the respiratory tract are tightly regulated and are in continual flux between states of enhanced pathogen clearance, immune-modulation, and tissue repair. New single-cell-sequencing techniques are expanding our knowledge of airway cellular complexity and the nuanced connections between structural and immune cell compartments. Understanding these varied interactions is critical in treatment of human pulmonary disease and infections and in next-generation vaccine design. Here, we review the innate and adaptive immune responses in the lung and airways following infection and vaccination, with particular focus on influenza virus and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The ongoing SARS-CoV-2 pandemic has put pulmonary research firmly into the global spotlight, challenging previously held notions of respiratory immunity and helping identify new populations at high risk for respiratory distress.
Collapse
Affiliation(s)
- Robert C Mettelman
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - E Kaitlynn Allen
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Paul G Thomas
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
32
|
HLA-A*11:01-restricted CD8+ T cell immunity against influenza A and influenza B viruses in Indigenous and non-Indigenous people. PLoS Pathog 2022; 18:e1010337. [PMID: 35255101 PMCID: PMC8929706 DOI: 10.1371/journal.ppat.1010337] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 03/17/2022] [Accepted: 02/03/2022] [Indexed: 11/19/2022] Open
Abstract
HLA-A*11:01 is one of the most prevalent human leukocyte antigens (HLAs), especially in East Asian and Oceanian populations. It is also highly expressed in Indigenous people who are at high risk of severe influenza disease. As CD8+ T cells can provide broadly cross-reactive immunity to distinct influenza strains and subtypes, including influenza A, B and C viruses, understanding CD8+ T cell immunity to influenza viruses across prominent HLA types is needed to rationally design a universal influenza vaccine and generate protective immunity especially for high-risk populations. As only a handful of HLA-A*11:01-restricted CD8+ T cell epitopes have been described for influenza A viruses (IAVs) and epitopes for influenza B viruses (IBVs) were still unknown, we embarked on an epitope discovery study to define a CD8+ T cell landscape for HLA-A*11:01-expressing Indigenous and non-Indigenous Australian people. Using mass-spectrometry, we identified IAV- and IBV-derived peptides presented by HLA-A*11:01 during infection. 79 IAV and 57 IBV peptides were subsequently screened for immunogenicity in vitro with peripheral blood mononuclear cells from HLA-A*11:01-expressing Indigenous and non-Indigenous Australian donors. CD8+ T cell immunogenicity screening revealed two immunogenic IAV epitopes (A11/PB2320-331 and A11/PB2323-331) and the first HLA-A*11:01-restricted IBV epitopes (A11/M41-49, A11/NS1186-195 and A11/NP511-520). The immunogenic IAV- and IBV-derived peptides were >90% conserved among their respective influenza viruses. Identification of novel immunogenic HLA-A*11:01-restricted CD8+ T cell epitopes has implications for understanding how CD8+ T cell immunity is generated towards IAVs and IBVs. These findings can inform the development of rationally designed, broadly cross-reactive influenza vaccines to ensure protection from severe influenza disease in HLA-A*11:01-expressing individuals. Influenza A and influenza B viral infections cause significant morbidity and mortality. Established CD8+ T cell immunity directed at conserved viral regions provides protection against influenza viruses, drives rapid recovery, and leads to less severe clinical outcomes. Killer CD8+ T cells recognising viral peptides presented by HLA class I glycoproteins can provide broad immunity across distinct influenza strains and subtypes. Using immunopeptidomics, we identified novel CD8+ T cell targets for influenza A and influenza B viruses in the context of HLA-A*11:01, an HLA-I allomorph highly prevalent in East Asia and Oceania, including Indigenous populations. Our study provides key insights for T cell-directed vaccines and immunotherapies.
Collapse
|
33
|
Zeidler JD, Hogan KA, Agorrody G, Peclat TR, Kashyap S, Kanamori KS, Gomez LS, Mazdeh DZ, Warner GM, Thompson KL, Chini CCS, Chini EN. The CD38 glycohydrolase and the NAD sink: implications for pathological conditions. Am J Physiol Cell Physiol 2022; 322:C521-C545. [PMID: 35138178 PMCID: PMC8917930 DOI: 10.1152/ajpcell.00451.2021] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/12/2022] [Accepted: 01/12/2022] [Indexed: 02/07/2023]
Abstract
Nicotinamide adenine dinucleotide (NAD) acts as a cofactor in several oxidation-reduction (redox) reactions and is a substrate for a number of nonredox enzymes. NAD is fundamental to a variety of cellular processes including energy metabolism, cell signaling, and epigenetics. NAD homeostasis appears to be of paramount importance to health span and longevity, and its dysregulation is associated with multiple diseases. NAD metabolism is dynamic and maintained by synthesis and degradation. The enzyme CD38, one of the main NAD-consuming enzymes, is a key component of NAD homeostasis. The majority of CD38 is localized in the plasma membrane with its catalytic domain facing the extracellular environment, likely for the purpose of controlling systemic levels of NAD. Several cell types express CD38, but its expression predominates on endothelial cells and immune cells capable of infiltrating organs and tissues. Here we review potential roles of CD38 in health and disease and postulate ways in which CD38 dysregulation causes changes in NAD homeostasis and contributes to the pathophysiology of multiple conditions. Indeed, in animal models the development of infectious diseases, autoimmune disorders, fibrosis, metabolic diseases, and age-associated diseases including cancer, heart disease, and neurodegeneration are associated with altered CD38 enzymatic activity. Many of these conditions are modified in CD38-deficient mice or by blocking CD38 NADase activity. In diseases in which CD38 appears to play a role, CD38-dependent NAD decline is often a common denominator of pathophysiology. Thus, understanding dysregulation of NAD homeostasis by CD38 may open new avenues for the treatment of human diseases.
Collapse
Affiliation(s)
- Julianna D Zeidler
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Kelly A Hogan
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Guillermo Agorrody
- Departamento de Fisiopatología, Hospital de Clínicas, Montevideo, Uruguay
- Laboratorio de Patologías del Metabolismo y el Envejecimiento, Instituto Pasteur de Montevideo, Montevideo, Uruguay
| | - Thais R Peclat
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Sonu Kashyap
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Jacksonville, Florida
| | - Karina S Kanamori
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Lilian Sales Gomez
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Delaram Z Mazdeh
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Gina M Warner
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Katie L Thompson
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Claudia C S Chini
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Jacksonville, Florida
| | - Eduardo Nunes Chini
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Jacksonville, Florida
| |
Collapse
|
34
|
Cao K, Wang X, Peng H, Ding L, Wang X, Hu Y, Dong L, Yang T, Hong X, Xing M, Li D, Zhu C, He X, Zhao C, Zhao P, Zhou D, Zhang X, Xu J. A Single Vaccine Protects against SARS-CoV-2 and Influenza Virus in Mice. J Virol 2022; 96:e0157821. [PMID: 34908443 PMCID: PMC8865568 DOI: 10.1128/jvi.01578-21] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 12/03/2021] [Indexed: 11/20/2022] Open
Abstract
The ongoing SARS-CoV-2 pandemic poses a severe global threat to public health, as do influenza viruses and other coronaviruses. Here, we present chimpanzee adenovirus 68 (AdC68)-based vaccines designed to universally target coronaviruses and influenza. Our design is centered on an immunogen generated by fusing the SARS-CoV-2 receptor-binding domain (RBD) to the conserved stalk of H7N9 hemagglutinin (HA). Remarkably, the constructed vaccine effectively induced both SARS-CoV-2-targeting antibodies and anti-influenza antibodies in mice, consequently affording protection from lethal SARS-CoV-2 and H7N9 challenges as well as effective H3N2 control. We propose our AdC68-vectored coronavirus-influenza vaccine as a universal approach toward curbing respiratory virus-causing pandemics. IMPORTANCE The COVID-19 pandemic exemplifies the severe public health threats of respiratory virus infection and influenza A viruses. The currently envisioned strategy for the prevention of respiratory virus-causing diseases requires the comprehensive administration of vaccines tailored for individual viruses. Here, we present an alternative strategy by designing chimpanzee adenovirus 68-based vaccines which target both the SARS-CoV-2 receptor-binding-domain and the conserved stalk of influenza hemagglutinin. When tested in mice, this strategy attained potent neutralizing antibodies against wild-type SARS-CoV-2 and its emerging variants, enabling an effective protection against lethal SARS-CoV-2 challenge. Notably, it also provided complete protection from lethal H7N9 challenge and efficient control of H3N2-induced morbidity. Our study opens a new avenue to universally curb respiratory virus infection by vaccination.
Collapse
Affiliation(s)
- Kangli Cao
- Zhongshan Hospital & Institutes of Biomedical Sciences, Fudan University, Shanghai, People’s Republic of China
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, People’s Republic of China
| | - Xiang Wang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, People’s Republic of China
| | - Haoran Peng
- Department of Microbiology, Second Military Medical University, Shanghai, People’s Republic of China
| | - Longfei Ding
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, People’s Republic of China
| | - Xiangwei Wang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, People’s Republic of China
| | - Yangyang Hu
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, People’s Republic of China
| | - Lanlan Dong
- Zhongshan Hospital & Institutes of Biomedical Sciences, Fudan University, Shanghai, People’s Republic of China
| | - Tianhan Yang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, People’s Republic of China
| | - Xiujing Hong
- Zhongshan Hospital & Institutes of Biomedical Sciences, Fudan University, Shanghai, People’s Republic of China
| | - Man Xing
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, People’s Republic of China
| | - Duoduo Li
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, People’s Republic of China
| | - Cuisong Zhu
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, People’s Republic of China
| | - Xiangchuan He
- Zhongshan Hospital & Institutes of Biomedical Sciences, Fudan University, Shanghai, People’s Republic of China
| | - Chen Zhao
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, People’s Republic of China
| | - Ping Zhao
- Department of Microbiology, Second Military Medical University, Shanghai, People’s Republic of China
| | - Dongming Zhou
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, People’s Republic of China
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, People’s Republic of China
| | - Xiaoyan Zhang
- Zhongshan Hospital & Institutes of Biomedical Sciences, Fudan University, Shanghai, People’s Republic of China
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, People’s Republic of China
| | - Jianqing Xu
- Zhongshan Hospital & Institutes of Biomedical Sciences, Fudan University, Shanghai, People’s Republic of China
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, People’s Republic of China
| |
Collapse
|
35
|
Chen YC, Weng SW, Ding JY, Lee CH, Ku CL, Huang WC, You HL, Huang WT. Clinicopathological Manifestations and Immune Phenotypes in Adult-Onset Immunodeficiency with Anti-interferon-γ Autoantibodies. J Clin Immunol 2022; 42:672-683. [DOI: 10.1007/s10875-022-01210-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 01/16/2022] [Indexed: 10/19/2022]
|
36
|
Belaid B, Lamara Mahammad L, Mihi B, Rahali SY, Djidjeli A, Larab Z, Berkani L, Berkane I, Sayah W, Merah F, Lazli NZ, Kheddouci L, Kadi A, Ouali M, Khellafi R, Mekideche D, Kheliouen A, Ayoub S, Hamidi RM, Derrar F, Gharnaout M, Allam I, Djidjik R. T cell counts and IL-6 concentration in blood of North African COVID-19 patients are two independent prognostic factors for severe disease and death. J Leukoc Biol 2022; 111:269-281. [PMID: 33527487 PMCID: PMC8014881 DOI: 10.1002/jlb.4cova1020-703r] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/05/2021] [Accepted: 01/08/2021] [Indexed: 01/04/2023] Open
Abstract
The immune system plays a crucial role in the response against severe acute respiratory syndrome coronavirus 2 with significant differences among patients. The study investigated the relationships between lymphocyte subsets, cytokines, and disease outcomes in patients with coronavirus disease 2019 (COVID-19). The measurements of peripheral blood lymphocytes subsets and cytokine levels were performed by flow cytometry for 57 COVID-19 patients. Patients were categorized into two groups according to the severity of the disease (nonsevere vs. severe). Total lymphocytes, T cells, CD4+ T cells, CD8+ T cells, B cells, and natural killer cells were decreased in COVID-19 patients and statistical differences were found among different severity of illness and survival states (P ˂ 0.01). The levels of IL-6 and IL-10 were significantly higher in severe and death groups and negatively correlated with lymphocyte subsets counts. The percentages of Th17 in the peripheral blood of patients were higher than those of healthy controls whereas the percentages of Th2 were lower. For the severe cases, the area under receiver operating characteristic (ROC) curve of IL-6 was the largest among all the immune parameters (0.964; 95% confidence interval: 0.927-1.000, P < 0.0001). In addition, the preoperative IL-6 concentration of 77.38 pg/ml was the optimal cutoff value (sensitivity: 84.6%, specificity: 100%). Using multivariate logistic regression analysis and ROC curves, IL-6 > 106.44 pg/ml and CD8+ T cell counts <150 cells/μl were found to be associated with mortality. Measuring the immune parameters and defining a risk threshold can segregate patients who develop a severe disease from those with a mild pathology. The identification of these parameters may help clinicians to predict the outcome of the patients with high risk of unfavorable progress of the disease.
Collapse
Affiliation(s)
- Brahim Belaid
- Immunology Department, Béni‐Messous Teaching HospitalUniversity of AlgiersAlgiersAlgeria
| | - Lydia Lamara Mahammad
- Immunology Department, Béni‐Messous Teaching HospitalUniversity of AlgiersAlgiersAlgeria
| | - Belgacem Mihi
- Center for Perinatal ResearchThe Research Institute at Nationwide Children's HospitalColumbusOhioUSA
| | - Sarah Yasmine Rahali
- Immunology Department, Béni‐Messous Teaching HospitalUniversity of AlgiersAlgiersAlgeria
| | - Asma Djidjeli
- Immunology Department, Béni‐Messous Teaching HospitalUniversity of AlgiersAlgiersAlgeria
| | - Zineb Larab
- Immunology Department, Béni‐Messous Teaching HospitalUniversity of AlgiersAlgiersAlgeria
| | - Lilya Berkani
- Immunology Department, Béni‐Messous Teaching HospitalUniversity of AlgiersAlgiersAlgeria
| | - Ismahane Berkane
- Immunology Department, Béni‐Messous Teaching HospitalUniversity of AlgiersAlgiersAlgeria
| | - Wafa Sayah
- Immunology Department, Béni‐Messous Teaching HospitalUniversity of AlgiersAlgiersAlgeria
| | - Fatma Merah
- Immunology Department, Béni‐Messous Teaching HospitalUniversity of AlgiersAlgiersAlgeria
| | - Nouzha Zhor Lazli
- Immunology Department, Béni‐Messous Teaching HospitalUniversity of AlgiersAlgiersAlgeria
| | - Lylia Kheddouci
- Immunology Department, Béni‐Messous Teaching HospitalUniversity of AlgiersAlgiersAlgeria
| | - Ahmed Kadi
- Pneumology Department A, Béni‐Messous Teaching HospitalUniversity of AlgiersAlgiersAlgeria
| | - Mourad Ouali
- Intensive Care Department, Béni‐Messous Teaching HospitalUniversity of AlgiersAlgiersAlgeria
| | - Rachida Khellafi
- Pneumology Department B, Béni‐Messous Teaching HospitalUniversity of AlgiersAlgiersAlgeria
| | - Dalila Mekideche
- Pneumology Department C, Béni‐Messous Teaching HospitalUniversity of AlgiersAlgiersAlgeria
| | - Assia Kheliouen
- Pneumology Department A, Béni‐Messous Teaching HospitalUniversity of AlgiersAlgiersAlgeria
| | - Soraya Ayoub
- Internal Medicine Department, Béni‐Messous, Teaching HospitalUniversity of AlgiersAlgiersAlgeria
| | - Réda Malek Hamidi
- Intensive Care Department, Béni‐Messous Teaching HospitalUniversity of AlgiersAlgiersAlgeria
| | - Fawzi Derrar
- Virology Department, Institut Pasteur d'AlgérieUniversity of AlgiersAlgiersAlgeria
| | - Merzak Gharnaout
- Pneumology Department, Rouiba HospitalUniversity of AlgiersAlgiersAlgeria
| | - Ines Allam
- Immunology Department, Béni‐Messous Teaching HospitalUniversity of AlgiersAlgiersAlgeria
| | - Réda Djidjik
- Immunology Department, Béni‐Messous Teaching HospitalUniversity of AlgiersAlgiersAlgeria
| |
Collapse
|
37
|
Endothelial dysfunction contributes to severe COVID-19 in combination with dysregulated lymphocyte responses and cytokine networks. Signal Transduct Target Ther 2021; 6:418. [PMID: 34893580 PMCID: PMC8661333 DOI: 10.1038/s41392-021-00819-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/22/2021] [Accepted: 10/17/2021] [Indexed: 02/07/2023] Open
Abstract
The systemic processes involved in the manifestation of life-threatening COVID-19 and in disease recovery are still incompletely understood, despite investigations focusing on the dysregulation of immune responses after SARS-CoV-2 infection. To define hallmarks of severe COVID-19 in acute disease (n = 58) and in disease recovery in convalescent patients (n = 28) from Hannover Medical School, we used flow cytometry and proteomics data with unsupervised clustering analyses. In our observational study, we combined analyses of immune cells and cytokine/chemokine networks with endothelial activation and injury. ICU patients displayed an altered immune signature with prolonged lymphopenia but the expansion of granulocytes and plasmablasts along with activated and terminally differentiated T and NK cells and high levels of SARS-CoV-2-specific antibodies. The core signature of seven plasma proteins revealed a highly inflammatory microenvironment in addition to endothelial injury in severe COVID-19. Changes within this signature were associated with either disease progression or recovery. In summary, our data suggest that besides a strong inflammatory response, severe COVID-19 is driven by endothelial activation and barrier disruption, whereby recovery depends on the regeneration of the endothelial integrity.
Collapse
|
38
|
Rouhani SJ, Trujillo JA, Pyzer AR, Yu J, Fessler J, Cabanov A, Higgs EF, Cron KR, Zha Y, Lu Y, Bloodworth JC, Abasiyanik MF, Okrah S, Flood BA, Hatogai K, Leung MY, Pezeshk A, Kozloff L, Reschke R, Strohbehn GW, Chervin CS, Kumar M, Schrantz S, Madariaga ML, Beavis KG, Yeo KTJ, Sweis RF, Segal J, Tay S, Izumchenko E, Mueller J, Chen LS, Gajewski TF. Severe COVID-19 infection is associated with aberrant cytokine production by infected lung epithelial cells rather than by systemic immune dysfunction. RESEARCH SQUARE 2021:rs.3.rs-1083825. [PMID: 34845442 PMCID: PMC8629200 DOI: 10.21203/rs.3.rs-1083825/v1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The mechanisms explaining progression to severe COVID-19 remain poorly understood. It has been proposed that immune system dysregulation/over-stimulation may be implicated, but it is not clear how such processes would lead to respiratory failure. We performed comprehensive multiparameter immune monitoring in a tightly controlled cohort of 128 COVID-19 patients, and used the ratio of oxygen saturation to fraction of inspired oxygen (SpO2 / FiO2) as a physiologic measure of disease severity. Machine learning algorithms integrating 139 parameters identified IL-6 and CCL2 as two factors predictive of severe disease, consistent with the therapeutic benefit observed with anti-IL6-R antibody treatment. However, transcripts encoding these cytokines were not detected among circulating immune cells. Rather, in situ analysis of lung specimens using RNAscope and immunofluorescent staining revealed that elevated IL-6 and CCL2 were dominantly produced by infected lung type II pneumocytes. Severe disease was not associated with higher viral load, deficient antibody responses, or dysfunctional T cell responses. These results refine our understanding of severe COVID-19 pathophysiology, indicating that aberrant cytokine production by infected lung epithelial cells is a major driver of immunopathology. We propose that these factors cause local immune regulation towards the benefit of the virus.
Collapse
Affiliation(s)
- Sherin J Rouhani
- Department of Medicine, Section of Hematology/Oncology, University of Chicago, Chicago, IL
| | - Jonathan A Trujillo
- Department of Medicine, Section of Hematology/Oncology, University of Chicago, Chicago, IL
| | - Athalia R Pyzer
- Department of Medicine, Section of Hematology/Oncology, University of Chicago, Chicago, IL
| | - Jovian Yu
- Department of Medicine, Section of Hematology/Oncology, University of Chicago, Chicago, IL
| | - Jessica Fessler
- Department of Pathology, University of Chicago, 5841 S. Maryland Ave, MC2115, Chicago, IL
| | - Alexandra Cabanov
- Department of Pathology, University of Chicago, 5841 S. Maryland Ave, MC2115, Chicago, IL
| | - Emily F Higgs
- Department of Pathology, University of Chicago, 5841 S. Maryland Ave, MC2115, Chicago, IL
| | - Kyle R Cron
- Department of Pathology, University of Chicago, 5841 S. Maryland Ave, MC2115, Chicago, IL
| | - Yuanyuan Zha
- The Human Immunological Monitoring Facility, University of Chicago, Chicago, IL 60637
| | - Yihao Lu
- Department of Public Health Sciences, The University of Chicago, Chicago, IL 60637
| | - Jeffrey C Bloodworth
- Department of Medicine, Section of Hematology/Oncology, University of Chicago, Chicago, IL
| | | | - Susan Okrah
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Blake A Flood
- Department of Pathology, University of Chicago, 5841 S. Maryland Ave, MC2115, Chicago, IL
| | - Ken Hatogai
- Department of Medicine, Section of Hematology/Oncology, University of Chicago, Chicago, IL
- Department of Pathology, University of Chicago, 5841 S. Maryland Ave, MC2115, Chicago, IL
| | - Michael Yk Leung
- Department of Pathology, University of Chicago, 5841 S. Maryland Ave, MC2115, Chicago, IL
| | - Apameh Pezeshk
- Department of Medicine, Section of Hematology/Oncology, University of Chicago, Chicago, IL
| | - Lara Kozloff
- Department of Medicine, Section of Hematology/Oncology, University of Chicago, Chicago, IL
| | - Robin Reschke
- Department of Pathology, University of Chicago, 5841 S. Maryland Ave, MC2115, Chicago, IL
| | - Garth W Strohbehn
- Department of Medicine, Section of Hematology/Oncology, University of Chicago, Chicago, IL
| | - Carolina Soto Chervin
- Department of Medicine, Section of Hematology/Oncology, University of Chicago, Chicago, IL
| | - Madan Kumar
- Department of Pediatrics, Section of Infectious Diseases, University of Chicago
| | - Stephen Schrantz
- Department of Medicine, Section of Infectious Diseases, University of Chicago
| | | | - Kathleen G Beavis
- Department of Pathology, University of Chicago, 5841 S. Maryland Ave, MC2115, Chicago, IL
| | - Kiang-Teck J Yeo
- Department of Pathology, University of Chicago, 5841 S. Maryland Ave, MC2115, Chicago, IL
| | - Randy F Sweis
- Department of Medicine, Section of Hematology/Oncology, University of Chicago, Chicago, IL
| | - Jeremy Segal
- Department of Pathology, University of Chicago, 5841 S. Maryland Ave, MC2115, Chicago, IL
| | - Savaş Tay
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Evgeny Izumchenko
- Department of Medicine, Section of Hematology/Oncology, University of Chicago, Chicago, IL
| | - Jeffrey Mueller
- Department of Pathology, University of Chicago, 5841 S. Maryland Ave, MC2115, Chicago, IL
| | - Lin S Chen
- Department of Public Health Sciences, The University of Chicago, Chicago, IL 60637
| | - Thomas F Gajewski
- Department of Pathology, University of Chicago, 5841 S. Maryland Ave, MC2115, Chicago, IL
| |
Collapse
|
39
|
Wang Y, Luo Y, Tang G, Ouyang R, Zhang M, Jiang Y, Wang T, Zhang X, Yin B, Huang J, Wei W, Huang M, Wang F, Wu S, Hou H. HLA-DR Expression Level in CD8 + T Cells Correlates With the Severity of Children With Acute Infectious Mononucleosis. Front Immunol 2021; 12:753290. [PMID: 34804038 PMCID: PMC8596082 DOI: 10.3389/fimmu.2021.753290] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/14/2021] [Indexed: 01/04/2023] Open
Abstract
Background This study aimed to assess the host immune signatures associated with EBV infection and its clinical value in indicating the severity of children with acute infectious mononucleosis (IM). Methods Twenty-eight pediatric patients with IM aged 3–8 years were enrolled. The immune phenotypes and cytokine secretion capability of T cells were detected. Results The percentages and absolute numbers of CD3+ and CD8+ T cells were significantly increased in IM patients compared with HCs. The percentages of Naïve CD4+ and CD8+ T cells were decreased but with increased percentages of memory CD4+ and CD8+ T subsets. Our results showed the upregulation of active marker HLA-DR, TCR-αβ, and inhibitory receptors PD-1, TIGIT in CD8+ T cells from IM patients, which suggested that effective cytotoxic T cells were highly against EBV infection. However, EBV exposure impaired the cytokine (IFN-γ, IL-2, and TNF-α) secretion capability of CD4+ and CD8+ T cells after stimulation with PMA/ionomycin in vitro. Multivariate analysis revealed that the percentage of HLA-DR+ CD8+ T cells was an independent prognostic marker for IM. The percentage of HLA-DR+ CD8+ T cells was significantly correlated with high viral load and abnormal liver function results. Conclusion Robust expansion and upregulation of HLA-DR in CD8+ T cells, accompanied with impaired cytokine secretion, were typical characteristics of children with acute IM. The percentage of HLA-DR+ CD8+ T cells might be used as a prominent marker not only for the early diagnosis but also for indicating the severity of IM.
Collapse
Affiliation(s)
- Yun Wang
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Luo
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guoxing Tang
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Renren Ouyang
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Minxia Zhang
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuhuan Jiang
- Department of Clinical Laboratory, First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ting Wang
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiwen Zhang
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Botao Yin
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jin Huang
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Wei
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Huang
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Wang
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shiji Wu
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongyan Hou
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
40
|
Du J, Wei L, Li G, Hua M, Sun Y, Wang D, Han K, Yan Y, Song C, Song R, Zhang H, Han J, Liu J, Kong Y. Persistent High Percentage of HLA-DR +CD38 high CD8 + T Cells Associated With Immune Disorder and Disease Severity of COVID-19. Front Immunol 2021; 12:735125. [PMID: 34567001 PMCID: PMC8458852 DOI: 10.3389/fimmu.2021.735125] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 08/09/2021] [Indexed: 12/30/2022] Open
Abstract
Background The global outbreak of coronavirus disease 2019 (COVID-19) has turned into a worldwide public health crisis and caused more than 100,000,000 severe cases. Progressive lymphopenia, especially in T cells, was a prominent clinical feature of severe COVID-19. Activated HLA-DR+CD38+ CD8+ T cells were enriched over a prolonged period from the lymphopenia patients who died from Ebola and influenza infection and in severe patients infected with SARS-CoV-2. However, the CD38+HLA-DR+ CD8+ T population was reported to play contradictory roles in SARS-CoV-2 infection. Methods A total of 42 COVID-19 patients, including 32 mild or moderate and 10 severe or critical cases, who received care at Beijing Ditan Hospital were recruited into this retrospective study. Blood samples were first collected within 3 days of the hospital admission and once every 3-7 days during hospitalization. The longitudinal flow cytometric data were examined during hospitalization. Moreover, we evaluated serum levels of 45 cytokines/chemokines/growth factors and 14 soluble checkpoints using Luminex multiplex assay longitudinally. Results We revealed that the HLA-DR+CD38+ CD8+ T population was heterogeneous, and could be divided into two subsets with distinct characteristics: HLA-DR+CD38dim and HLA-DR+CD38hi. We observed a persistent accumulation of HLA-DR+CD38hi CD8+ T cells in severe COVID-19 patients. These HLA-DR+CD38hi CD8+ T cells were in a state of overactivation and consequent dysregulation manifested by expression of multiple inhibitory and stimulatory checkpoints, higher apoptotic sensitivity, impaired killing potential, and more exhausted transcriptional regulation compared to HLA-DR+CD38dim CD8+ T cells. Moreover, the clinical and laboratory data supported that only HLA-DR+CD38hi CD8+ T cells were associated with systemic inflammation, tissue injury, and immune disorders of severe COVID-19 patients. Conclusions Our findings indicated that HLA-DR+CD38hi CD8+ T cells were correlated with disease severity of COVID-19 rather than HLA-DR+CD38dim population.
Collapse
Affiliation(s)
- Juan Du
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Lirong Wei
- Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Guoli Li
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Mingxi Hua
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Yao Sun
- Intensive Care Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Di Wang
- Clinical and Research Center of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Kai Han
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Yonghong Yan
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Chuan Song
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Rui Song
- Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Henghui Zhang
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Junyan Han
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Jingyuan Liu
- Intensive Care Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Yaxian Kong
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
41
|
Jia X, Chua BY, Loh L, Koutsakos M, Kedzierski L, Olshansky M, Heath WR, Chang SY, Xu J, Wang Z, Kedzierska K. High expression of CD38 and MHC class II on CD8 + T cells during severe influenza disease reflects bystander activation and trogocytosis. Clin Transl Immunology 2021; 10:e1336. [PMID: 34522380 PMCID: PMC8426257 DOI: 10.1002/cti2.1336] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/19/2021] [Accepted: 08/10/2021] [Indexed: 11/12/2022] Open
Abstract
Objectives Although co‐expression of CD38 and HLA‐DR reflects T‐cell activation during viral infections, high and prolonged CD38+HLA‐DR+ expression is associated with severe disease. To date, the mechanism underpinning expression of CD38+HLA‐DR+ is poorly understood. Methods We used mouse models of influenza A/H9N2, A/H7N9 and A/H3N2 infection to investigate mechanisms underpinning CD38+MHC‐II+ phenotype on CD8+ T cells. To further understand MHC‐II trogocytosis on murine CD8+ T cells as well as the significance behind the scenario, we used adoptively transferred transgenic OT‐I CD8+ T cells and A/H3N2‐SIINKEKL infection. Results Analysis of influenza‐specific immunodominant DbNP366+CD8+ T‐cell responses showed that CD38+MHC‐II+ co‐expression was detected on both virus‐specific and bystander CD8+ T cells, with increased numbers of both CD38+MHC‐II+CD8+ T‐cell populations observed in immune organs including the site of infection during severe viral challenge. OT‐I cells adoptively transferred into MHC‐II−/− mice had no MHC‐II after infection, suggesting that MHC‐II was acquired via trogocytosis. The detection of CD19 on CD38+MHC‐II+ OT‐I cells supports the proposition that MHC‐II was acquired by trogocytosis sourced from B cells. Co‐expression of CD38+MHC‐II+ on CD8+ T cells was needed for optimal recall following secondary infection. Conclusions Overall, our study demonstrates that both virus‐specific and bystander CD38+MHC‐II+ CD8+ T cells are recruited to the site of infection during severe disease, and that MHC‐II presence occurs via trogocytosis from antigen‐presenting cells. Our findings highlight the importance of the CD38+MHC‐II+ phenotype for CD8+ T‐cell recall.
Collapse
Affiliation(s)
- Xiaoxiao Jia
- Department of Microbiology and Immunology University of Melbourne, at the Peter Doherty Institute for Infection and Immunity Parkville VIC Australia
| | - Brendon Y Chua
- Department of Microbiology and Immunology University of Melbourne, at the Peter Doherty Institute for Infection and Immunity Parkville VIC Australia
| | - Liyen Loh
- Department of Microbiology and Immunology University of Melbourne, at the Peter Doherty Institute for Infection and Immunity Parkville VIC Australia
| | - Marios Koutsakos
- Department of Microbiology and Immunology University of Melbourne, at the Peter Doherty Institute for Infection and Immunity Parkville VIC Australia
| | - Lukasz Kedzierski
- Department of Microbiology and Immunology University of Melbourne, at the Peter Doherty Institute for Infection and Immunity Parkville VIC Australia.,Faculty of Veterinary and Agricultural Sciences University of Melbourne, at the Peter Doherty Institute for Infection and Immunity Parkville VIC Australia
| | - Moshe Olshansky
- Department of Microbiology Monash University Clayton VIC Australia
| | - William R Heath
- Department of Microbiology and Immunology University of Melbourne, at the Peter Doherty Institute for Infection and Immunity Parkville VIC Australia
| | - So Young Chang
- Department of Microbiology and Immunology University of Melbourne, at the Peter Doherty Institute for Infection and Immunity Parkville VIC Australia
| | - Jianqing Xu
- Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences Key Laboratory of Medical Molecular Virology of Ministry of Education/Health Shanghai Medical College Fudan University Shanghai China
| | - Zhongfang Wang
- Department of Microbiology and Immunology University of Melbourne, at the Peter Doherty Institute for Infection and Immunity Parkville VIC Australia.,State Key Laboratory of Respiratory Disease Guangzhou Medical University Guangzhou China
| | - Katherine Kedzierska
- Department of Microbiology and Immunology University of Melbourne, at the Peter Doherty Institute for Infection and Immunity Parkville VIC Australia
| |
Collapse
|
42
|
Sasaki T, Akiyama M, Kaneko Y, Takeuchi T. IgG4-related disease and idiopathic multicentric Castleman's disease: confusable immune-mediated disorders. Rheumatology (Oxford) 2021; 61:490-501. [PMID: 34363463 DOI: 10.1093/rheumatology/keab634] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/13/2021] [Accepted: 08/02/2021] [Indexed: 11/13/2022] Open
Abstract
IgG4-related disease (IgG4-RD) and idiopathic multicentric Castleman's disease (iMCD) are both rare systemic immune-mediated disorders. However, pathogenesis differs markedly between the two diseases, and differing therapeutic strategies are adopted: IgG4-RD is treated using a moderate dose of glucocorticoids or rituximab, while iMCD therapy involves an interleukin (IL)-6 targeted approach. Nonetheless, some clinical features of IgG4-RD and iMCD overlap, so differential diagnosis is sometimes difficult, even though the classification and diagnostic criteria of the diseases require careful exclusion of the other. The key findings in IgG4-RD are high IgG4/IgG ratio, allergic features, and germinal centre expansion involving T follicular helper cells, while iMCD involves polyclonal antibody production (high IgA and IgM levels), sheet-like mature plasma cell proliferation, and inflammatory features driven by IL-6. The distribution of organ involvement also provides important clues in both diseases. Particular attention should be given to differential diagnosis using combined clinical and/or pathological findings, because single features cannot distinguish IgG4-RD from iMCD. In the present review, we discuss the similarities and differences between IgG4-RD and iMCD, as well as how to distinguish the two diseases.
Collapse
Affiliation(s)
- Takanori Sasaki
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Mitsuhiro Akiyama
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Yuko Kaneko
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Tsutomu Takeuchi
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
43
|
Abstract
Influenza viruses are one of the leading causes of respiratory tract infections in humans and their newly emerging and re-emerging virus strains are responsible for seasonal epidemics and occasional pandemics, leading to a serious threat to global public health systems. The poor clinical outcome and pathogenesis during influenza virus infection in humans and animal models are often associated with elevated proinflammatory cytokines and chemokines production, which is also known as hypercytokinemia or "cytokine storm", that precedes acute respiratory distress syndrome (ARDS) and often leads to death. Although we still do not fully understand the complex nature of cytokine storms, the use of immunomodulatory drugs is a promising approach for treating hypercytokinemia induced by an acute viral infection, including highly pathogenic avian influenza virus infection and Coronavirus Disease 2019 (COVID-19). This review aims to discuss the immune responses and cytokine storm pathology induced by influenza virus infection and also summarize alternative experimental strategies for treating hypercytokinemia caused by influenza virus.
Collapse
Affiliation(s)
- Fanhua Wei
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in Western China, Ningxia University, Yinchuan, China.,College of Agriculture, Ningxia University, Yinchuan, China
| | - Chengjiang Gao
- Key Laboratory of Infection and Immunity of Shandong Province & Department of Immunology, School of Biomedical Sciences, Shandong University, Jinan, China
| | - Yujiong Wang
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in Western China, Ningxia University, Yinchuan, China.,College of Life Science, Ningxia University, Yinchuan, China
| |
Collapse
|
44
|
Liu WJ, Xiao H, Dai L, Liu D, Chen J, Qi X, Bi Y, Shi Y, Gao GF, Liu Y. Avian influenza A (H7N9) virus: from low pathogenic to highly pathogenic. Front Med 2021; 15:507-527. [PMID: 33860875 PMCID: PMC8190734 DOI: 10.1007/s11684-020-0814-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 07/08/2020] [Indexed: 12/13/2022]
Abstract
The avian influenza A (H7N9) virus is a zoonotic virus that is closely associated with live poultry markets. It has caused infections in humans in China since 2013. Five waves of the H7N9 influenza epidemic occurred in China between March 2013 and September 2017. H7N9 with low-pathogenicity dominated in the first four waves, whereas highly pathogenic H7N9 influenza emerged in poultry and spread to humans during the fifth wave, causing wide concern. Specialists and officials from China and other countries responded quickly, controlled the epidemic well thus far, and characterized the virus by using new technologies and surveillance tools that were made possible by their preparedness efforts. Here, we review the characteristics of the H7N9 viruses that were identified while controlling the spread of the disease. It was summarized and discussed from the perspectives of molecular epidemiology, clinical features, virulence and pathogenesis, receptor binding, T-cell responses, monoclonal antibody development, vaccine development, and disease burden. These data provide tools for minimizing the future threat of H7N9 and other emerging and re-emerging viruses, such as SARS-CoV-2.
Collapse
Affiliation(s)
- William J Liu
- Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Third People's Hospital, Shenzhen, 518114, China.
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China.
| | - Haixia Xiao
- Laboratory of Protein Engineering and Vaccines, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences (CAS), Tianjin, 300308, China
| | - Lianpan Dai
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Di Liu
- CAS Key Laboratory of Special Pathogens and Biosafety, Chinese Academy of Sciences, Wuhan, 430071, China
- National Virus Resource Center, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy Sciences, Beijing, 100049, China
- Center for Influenza Research and Early Warning, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jianjun Chen
- CAS Key Laboratory of Special Pathogens and Biosafety, Chinese Academy of Sciences, Wuhan, 430071, China
- National Virus Resource Center, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy Sciences, Beijing, 100049, China
- Center for Influenza Research and Early Warning, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiaopeng Qi
- Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Yuhai Bi
- Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Third People's Hospital, Shenzhen, 518114, China
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy Sciences, Beijing, 100049, China
- Center for Influenza Research and Early Warning, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yi Shi
- Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Third People's Hospital, Shenzhen, 518114, China
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy Sciences, Beijing, 100049, China
- Center for Influenza Research and Early Warning, Chinese Academy of Sciences, Beijing, 100101, China
| | - George F Gao
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Yingxia Liu
- Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Third People's Hospital, Shenzhen, 518114, China.
| |
Collapse
|
45
|
Del Campo J, Bouley J, Chevandier M, Rousset C, Haller M, Indalecio A, Guyon-Gellin D, Le Vert A, Hill F, Djebali S, Leverrier Y, Marvel J, Combadière B, Nicolas F. OVX836 Heptameric Nucleoprotein Vaccine Generates Lung Tissue-Resident Memory CD8+ T-Cells for Cross-Protection Against Influenza. Front Immunol 2021; 12:678483. [PMID: 34177921 PMCID: PMC8223747 DOI: 10.3389/fimmu.2021.678483] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 05/18/2021] [Indexed: 11/23/2022] Open
Abstract
Tissue-resident memory (TRM) CD8+ T-cells play a crucial role in the protection against influenza infection but remain difficult to elicit using recombinant protein vaccines. OVX836 is a recombinant protein vaccine, obtained by the fusion of the DNA sequence of the influenza A nucleoprotein (NP) to the DNA sequence of the OVX313 heptamerization domain. We previously demonstrated that OVX836 provides broad-spectrum protection against influenza viruses. Here, we show that OVX836 intramuscular (IM) immunization induces higher numbers of NP-specific IFNγ-producing CD8+ T-cells in the lung, compared to mutant NP (NPm) and wild-type NP (NPwt), which form monomeric and trimeric structures, respectively. OVX836 induces cytotoxic CD8+ T-cells and high frequencies of lung TRM CD8+ T-cells, while inducing solid protection against lethal influenza virus challenges for at least 90 days. Adoptive transfer experiments demonstrated that protection against diverse influenza subtypes is mediated by NP-specific CD8+ T-cells isolated from the lung and spleen following OVX836 vaccination. OVX836 induces a high number of NP-specific lung CD8+ TRM-cells for long-term protection against influenza viruses.
Collapse
Affiliation(s)
| | - Julien Bouley
- Research and Development Department, Osivax, Lyon, France
| | | | - Carine Rousset
- Research and Development Department, Osivax, Lyon, France
| | | | | | | | | | - Fergal Hill
- Research and Development Department, Osivax, Lyon, France
| | - Sophia Djebali
- Immunity and Cytotoxic Lymphocytes Team, Centre International de Recherche en Infectiologie, INSERM, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Université de Lyon, Lyon, France
| | - Yann Leverrier
- Immunity and Cytotoxic Lymphocytes Team, Centre International de Recherche en Infectiologie, INSERM, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Université de Lyon, Lyon, France
| | - Jacqueline Marvel
- Immunity and Cytotoxic Lymphocytes Team, Centre International de Recherche en Infectiologie, INSERM, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Université de Lyon, Lyon, France
| | - Béhazine Combadière
- Sorbonne Université, Inserm, Centre d'Immunologie et des Maladies Infectieuses (Cimi-Paris), Paris, France
| | | |
Collapse
|
46
|
CD8 + T cell landscape in Indigenous and non-Indigenous people restricted by influenza mortality-associated HLA-A*24:02 allomorph. Nat Commun 2021; 12:2931. [PMID: 34006841 PMCID: PMC8132304 DOI: 10.1038/s41467-021-23212-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 04/19/2021] [Indexed: 02/03/2023] Open
Abstract
Indigenous people worldwide are at high risk of developing severe influenza disease. HLA-A*24:02 allele, highly prevalent in Indigenous populations, is associated with influenza-induced mortality, although the basis for this association is unclear. Here, we define CD8+ T-cell immune landscapes against influenza A (IAV) and B (IBV) viruses in HLA-A*24:02-expressing Indigenous and non-Indigenous individuals, human tissues, influenza-infected patients and HLA-A*24:02-transgenic mice. We identify immunodominant protective CD8+ T-cell epitopes, one towards IAV and six towards IBV, with A24/PB2550-558-specific CD8+ T cells being cross-reactive between IAV and IBV. Memory CD8+ T cells towards these specificities are present in blood (CD27+CD45RA- phenotype) and tissues (CD103+CD69+ phenotype) of healthy individuals, and effector CD27-CD45RA-PD-1+CD38+CD8+ T cells in IAV/IBV patients. Our data show influenza-specific CD8+ T-cell responses in Indigenous Australians, and advocate for T-cell-mediated vaccines that target and boost the breadth of IAV/IBV-specific CD8+ T cells to protect high-risk HLA-A*24:02-expressing Indigenous and non-Indigenous populations from severe influenza disease.
Collapse
|
47
|
Nguyen THO, Koutsakos M, van de Sandt CE, Crawford JC, Loh L, Sant S, Grzelak L, Allen EK, Brahm T, Clemens EB, Auladell M, Hensen L, Wang Z, Nüssing S, Jia X, Günther P, Wheatley AK, Kent SJ, Aban M, Deng YM, Laurie KL, Hurt AC, Gras S, Rossjohn J, Crowe J, Xu J, Jackson D, Brown LE, La Gruta N, Chen W, Doherty PC, Turner SJ, Kotsimbos TC, Thomas PG, Cheng AC, Kedzierska K. Immune cellular networks underlying recovery from influenza virus infection in acute hospitalized patients. Nat Commun 2021; 12:2691. [PMID: 33976217 PMCID: PMC8113517 DOI: 10.1038/s41467-021-23018-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 04/08/2021] [Indexed: 02/07/2023] Open
Abstract
How innate and adaptive immune responses work in concert to resolve influenza disease is yet to be fully investigated in one single study. Here, we utilize longitudinal samples from patients hospitalized with acute influenza to understand these immune responses. We report the dynamics of 18 important immune parameters, related to clinical, genetic and virological factors, in influenza patients across different severity levels. Influenza disease correlates with increases in IL-6/IL-8/MIP-1α/β cytokines and lower antibody responses. Robust activation of circulating T follicular helper cells correlates with peak antibody-secreting cells and influenza heamaglutinin-specific memory B-cell numbers, which phenotypically differs from vaccination-induced B-cell responses. Numbers of influenza-specific CD8+ or CD4+ T cells increase early in disease and retain an activated phenotype during patient recovery. We report the characterisation of immune cellular networks underlying recovery from influenza infection which are highly relevant to other infectious diseases.
Collapse
Affiliation(s)
- Thi H O Nguyen
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
| | - Marios Koutsakos
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
| | - Carolien E van de Sandt
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | | | - Liyen Loh
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
| | - Sneha Sant
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
| | - Ludivine Grzelak
- Biology Department, École Normale Supérieure Paris-Saclay, Université Paris-Saclay Cachan, Cachan, France
| | - Emma K Allen
- Department of Immunology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Tim Brahm
- Department of Immunology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - E Bridie Clemens
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
| | - Maria Auladell
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
| | - Luca Hensen
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
| | - Zhongfang Wang
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
| | - Simone Nüssing
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
| | - Xiaoxiao Jia
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
| | - Patrick Günther
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
| | - Adam K Wheatley
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
| | - Stephen J Kent
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
- Melbourne Sexual Health Centre and Department of Infectious Diseases, Alfred Hospital and Central Clinical School, Monash University, Melbourne, VIC, Australia
- ARC Centre for Excellence in Convergent Bio-Nano Science and Technology, University of Melbourne, Parkville, VIC, Australia
| | - Malet Aban
- World Health Organisation (WHO) Collaborating Centre for Reference and Research on Influenza, at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Yi-Mo Deng
- World Health Organisation (WHO) Collaborating Centre for Reference and Research on Influenza, at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Karen L Laurie
- World Health Organisation (WHO) Collaborating Centre for Reference and Research on Influenza, at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Aeron C Hurt
- World Health Organisation (WHO) Collaborating Centre for Reference and Research on Influenza, at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Stephanie Gras
- Infection and Immunity Program & Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- Australian Research Council Centre of Excellence for Advanced Molecular Imaging, Monash University, Clayton, VIC, Australia
- Department of Biochemistry and Genetics, La Trobe Institute For Molecular Science, La Trobe University, Bundoora, VIC, Australia
| | - Jamie Rossjohn
- Infection and Immunity Program & Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- Australian Research Council Centre of Excellence for Advanced Molecular Imaging, Monash University, Clayton, VIC, Australia
- Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff, UK
| | - Jane Crowe
- Deepdene Surgery, Deepdene, VIC, Australia
| | - Jianqing Xu
- Shanghai Public Health Clinical Centre and Institutes of Biomedical Sciences, Key Laboratory of Medical Molecular Virology of Ministry of Education/Health, Shanghai Medical College, Fudan University, Shanghai, China
| | - David Jackson
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
| | - Lorena E Brown
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
| | - Nicole La Gruta
- Infection and Immunity Program & Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Weisan Chen
- Department of Biochemistry and Genetics, La Trobe Institute For Molecular Science, La Trobe University, Bundoora, VIC, Australia
| | - Peter C Doherty
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
| | - Stephen J Turner
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Tom C Kotsimbos
- Department of Allergy, Immunology and Respiratory Medicine, The Alfred Hospital, Melbourne, VIC, Australia
- Department of Medicine, Monash University, Central Clinical School, The Alfred Hospital, Melbourne, VIC, Australia
| | - Paul G Thomas
- Department of Immunology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Allen C Cheng
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia.
- Infection Prevention and Healthcare Epidemiology Unit, Alfred Health, Melbourne, VIC, Australia.
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia.
| |
Collapse
|
48
|
van den Berg SPH, Lanfermeijer J, Jacobi RHJ, Hendriks M, Vos M, van Schuijlenburg R, Nanlohy NM, Borghans JAM, van Beek J, van Baarle D, de Wit J. Latent CMV Infection Is Associated With Lower Influenza Virus-Specific Memory T-Cell Frequencies, but Not With an Impaired T-Cell Response to Acute Influenza Virus Infection. Front Immunol 2021; 12:663664. [PMID: 34025665 PMCID: PMC8131658 DOI: 10.3389/fimmu.2021.663664] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/12/2021] [Indexed: 12/13/2022] Open
Abstract
Latent infection with cytomegalovirus (CMV) is assumed to contribute to the age-associated decline of the immune system. CMV induces large changes in the T-cell pool and may thereby affect other immune responses. CMV is expected to impact especially older adults, who are already at higher risk of severe disease and hospitalization upon infections such as influenza virus (IAV) infection. Here, we investigated the impact of CMV infection on IAV-specific CD8+ T-cell frequencies in healthy individuals (n=96) and the response to IAV infection in older adults (n=72). IAV-specific memory T-cell frequencies were lower in healthy CMV+ older individuals compared to healthy CMV- older individuals. Upon acute IAV infection, CMV serostatus or CMV-specific antibody levels were not negatively associated with IAV-specific T-cell frequencies, function, phenotype or T-cell receptor repertoire diversity. This suggests that specific T-cell responses upon acute IAV infection are not negatively affected by CMV. In addition, we found neither an association between CMV infection and inflammatory cytokine levels in serum during acute IAV infection nor between cytokine levels and the height of the IAV-specific T-cell response upon infection. Finally, CMV infection was not associated with increased severity of influenza-related symptoms. In fact, CMV infection was even associated with increased IAV-specific T-cell responses early upon acute IAV infection. In conclusion, although associated with lower frequencies of memory IAV-specific T cells in healthy individuals, CMV infection does not seem to hamper the induction of a proper T-cell response during acute IAV infection in older adults.
Collapse
Affiliation(s)
- Sara P H van den Berg
- Center for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, Netherlands.,Center for Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Josien Lanfermeijer
- Center for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, Netherlands.,Center for Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Ronald H J Jacobi
- Center for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, Netherlands
| | - Marion Hendriks
- Center for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, Netherlands
| | - Martijn Vos
- Center for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, Netherlands
| | - Roos van Schuijlenburg
- Center for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, Netherlands
| | - Nening M Nanlohy
- Center for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, Netherlands
| | - José A M Borghans
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Josine van Beek
- Center for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, Netherlands
| | - Debbie van Baarle
- Center for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, Netherlands.,Center for Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Jelle de Wit
- Center for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, Netherlands
| |
Collapse
|
49
|
Nguyen THO, Rowntree LC, Petersen J, Chua BY, Hensen L, Kedzierski L, van de Sandt CE, Chaurasia P, Tan HX, Habel JR, Zhang W, Allen LF, Earnest L, Mak KY, Juno JA, Wragg K, Mordant FL, Amanat F, Krammer F, Mifsud NA, Doolan DL, Flanagan KL, Sonda S, Kaur J, Wakim LM, Westall GP, James F, Mouhtouris E, Gordon CL, Holmes NE, Smibert OC, Trubiano JA, Cheng AC, Harcourt P, Clifton P, Crawford JC, Thomas PG, Wheatley AK, Kent SJ, Rossjohn J, Torresi J, Kedzierska K. CD8 + T cells specific for an immunodominant SARS-CoV-2 nucleocapsid epitope display high naive precursor frequency and TCR promiscuity. Immunity 2021; 54:1066-1082.e5. [PMID: 33951417 PMCID: PMC8049468 DOI: 10.1016/j.immuni.2021.04.009] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/23/2021] [Accepted: 04/12/2021] [Indexed: 12/16/2022]
Abstract
To better understand primary and recall T cell responses during coronavirus disease 2019 (COVID-19), it is important to examine unmanipulated severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific T cells. By using peptide-human leukocyte antigen (HLA) tetramers for direct ex vivo analysis, we characterized CD8+ T cells specific for SARS-CoV-2 epitopes in COVID-19 patients and unexposed individuals. Unlike CD8+ T cells directed toward subdominant epitopes (B7/N257, A2/S269, and A24/S1,208) CD8+ T cells specific for the immunodominant B7/N105 epitope were detected at high frequencies in pre-pandemic samples and at increased frequencies during acute COVID-19 and convalescence. SARS-CoV-2-specific CD8+ T cells in pre-pandemic samples from children, adults, and elderly individuals predominantly displayed a naive phenotype, indicating a lack of previous cross-reactive exposures. T cell receptor (TCR) analyses revealed diverse TCRαβ repertoires and promiscuous αβ-TCR pairing within B7/N105+CD8+ T cells. Our study demonstrates high naive precursor frequency and TCRαβ diversity within immunodominant B7/N105-specific CD8+ T cells and provides insight into SARS-CoV-2-specific T cell origins and subsequent responses.
Collapse
Affiliation(s)
- Thi H O Nguyen
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Louise C Rowntree
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Jan Petersen
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Australian Research Council Centre of Excellence for Advanced Molecular Imaging, Monash University, Clayton, VIC 3800, Australia
| | - Brendon Y Chua
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia; Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo 060-0808, Japan
| | - Luca Hensen
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Lukasz Kedzierski
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia; Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Carolien E van de Sandt
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia; Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam 1066CX, the Netherlands
| | - Priyanka Chaurasia
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Hyon-Xhi Tan
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Jennifer R Habel
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Wuji Zhang
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Lilith F Allen
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Linda Earnest
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Kai Yan Mak
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Jennifer A Juno
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Kathleen Wragg
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Francesca L Mordant
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Fatima Amanat
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Nicole A Mifsud
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Denise L Doolan
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health & Medicine, James Cook University, Cairns, QLD 4870, Australia
| | - Katie L Flanagan
- School of Health Sciences and School of Medicine, University of Tasmania, Launceston, TAS 7248, Australia; Department of Immunology and Pathology, Monash University, Commercial Road, Melbourne, VIC 3004, Australia; School of Health and Biomedical Science, RMIT University, Melbourne, VIC 3000, Australia; Tasmanian Vaccine Trial Centre, Clifford Craig Foundation, Launceston General Hospital, Launceston, TAS 7250, Australia
| | - Sabrina Sonda
- School of Health Sciences and School of Medicine, University of Tasmania, Launceston, TAS 7248, Australia
| | - Jasveen Kaur
- School of Health Sciences and School of Medicine, University of Tasmania, Launceston, TAS 7248, Australia; Tasmanian Vaccine Trial Centre, Clifford Craig Foundation, Launceston General Hospital, Launceston, TAS 7250, Australia
| | - Linda M Wakim
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Glen P Westall
- Lung Transplant Unit, Alfred Hospital, Melbourne, VIC 3004, Australia
| | - Fiona James
- Department of Infectious Diseases, Austin Hospital, Heidelberg, VIC 3084, Australia
| | - Effie Mouhtouris
- Department of Infectious Diseases, Austin Hospital, Heidelberg, VIC 3084, Australia
| | - Claire L Gordon
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia; Department of Infectious Diseases, Austin Hospital, Heidelberg, VIC 3084, Australia
| | - Natasha E Holmes
- Department of Infectious Diseases, Austin Hospital, Heidelberg, VIC 3084, Australia; Department of Medicine and Radiology, The University of Melbourne, Parkville, VIC 3000, Australia; Data Analytics Research and Evaluation (DARE) Centre, Austin Health and The University of Melbourne, Heidelberg, VIC 3084, Australia
| | - Olivia C Smibert
- Department of Infectious Diseases, Austin Hospital, Heidelberg, VIC 3084, Australia; Department of Infectious Diseases, Peter McCallum Cancer Centre, Melbourne, VIC 3000, Australia; The National Centre for Infections in Cancer, Peter McCallum Cancer Centre, Melbourne, VIC 3000, Australia
| | - Jason A Trubiano
- Department of Infectious Diseases, Peter McCallum Cancer Centre, Melbourne, VIC 3000, Australia; The National Centre for Infections in Cancer, Peter McCallum Cancer Centre, Melbourne, VIC 3000, Australia; Centre for Antibiotic Allergy and Research, Department of Infectious Diseases Austin Health, Heidelberg, VIC 3084, Australia; Department of Medicine (Austin Health), The University of Melbourne, Heidelberg, VIC 3084, Australia
| | - Allen C Cheng
- Infection Prevention and Healthcare Epidemiology Unit, Alfred Health, Melbourne, VIC 3004, Australia; School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC 3004, Australia
| | | | | | - Jeremy Chase Crawford
- Department of Immunology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Paul G Thomas
- Department of Immunology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Adam K Wheatley
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Stephen J Kent
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of Melbourne, Melbourne, VIC 3000, Australia; Melbourne Sexual Health Centre, Infectious Diseases Department, Alfred Health, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Jamie Rossjohn
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Australian Research Council Centre of Excellence for Advanced Molecular Imaging, Monash University, Clayton, VIC 3800, Australia; Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, United Kingdom
| | - Joseph Torresi
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia; Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo 060-0808, Japan.
| |
Collapse
|
50
|
Detsika MG, Ampelakiotou K, Grigoriou E, Psarra K, Jahaj E, Roussos C, Dimopoulou I, Orfanos SE, Tsirogianni A, Kotanidou A. A novel ratio of CD8 +:B-cells as a prognostic marker of coronavirus disease 2019 patient progression and outcome. Virology 2021; 556:79-86. [PMID: 33550117 PMCID: PMC7831474 DOI: 10.1016/j.virol.2021.01.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/11/2020] [Accepted: 01/05/2021] [Indexed: 12/13/2022]
Abstract
Infection with SARS-COV-2 may result in severe pneumonia potentially leading to mechanical ventilation and intensive care treatment. The aim of the present study was to analyze the immune responses in critically ill coronavirus 2019 (COVID-19) patients requiring mechanical ventilation and assess their potential use as markers of clinical progression and outcome. Confirmed COVID-19 patients were grouped into those requiring mechanical ventilation (intubated) and non-intubated. Immune phenotyping was performed and cytokine levels were determined. A novel ratio of CD8+:B cells was significantly lower in intubated versus non-intubated (p = 0.015) and intubated non-survivors (NSV) versus survivors (SV) (p = 0.015). The same ratio correlated with outcome, CRP, IL-6 levels and neutrophil count. Receiving operating curve (ROC) analysis for prediction of requirement of mechanical ventilation by the CD8+:B cells ratio revealed an AUC of 0.747 and a p = 0.007. The ratio of CD8+:B cells may serve as a useful prognostic marker for disease severity and outcome.
Collapse
Affiliation(s)
- Maria G. Detsika
- 1st Department of Critical Care Medicine & Pulmonary Services, GP Livanos and M Simou Laboratories, Evangelismos Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Kleio Ampelakiotou
- Department of Immunology and Histocompatibility, ‘Evangelismos' General Hospital, Athens, Greece
| | - Eirini Grigoriou
- Department of Immunology and Histocompatibility, ‘Evangelismos' General Hospital, Athens, Greece
| | - Katherina Psarra
- Department of Immunology and Histocompatibility, ‘Evangelismos' General Hospital, Athens, Greece
| | - Edison Jahaj
- 1st Department of Critical Care Medicine & Pulmonary Services, GP Livanos and M Simou Laboratories, Evangelismos Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Charis Roussos
- 1st Department of Critical Care Medicine & Pulmonary Services, GP Livanos and M Simou Laboratories, Evangelismos Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Ioanna Dimopoulou
- 1st Department of Critical Care Medicine & Pulmonary Services, GP Livanos and M Simou Laboratories, Evangelismos Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Stylianos E. Orfanos
- 1st Department of Critical Care Medicine & Pulmonary Services, GP Livanos and M Simou Laboratories, Evangelismos Hospital, National and Kapodistrian University of Athens, Athens, Greece,2nd Department of Critical Care Medicine, Attikon Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Alexandra Tsirogianni
- Department of Immunology and Histocompatibility, ‘Evangelismos' General Hospital, Athens, Greece
| | - Anastasia Kotanidou
- 1st Department of Critical Care Medicine & Pulmonary Services, GP Livanos and M Simou Laboratories, Evangelismos Hospital, National and Kapodistrian University of Athens, Athens, Greece.
| |
Collapse
|