1
|
Yan J, Qi L, Zheng Z, Chen Z, Wang Q, Xue Y. Single-atom Fe anchored graphdiyne for high-efficiency nitrate-to-ammonia conversion under ambient conditions. Chem Commun (Camb) 2025; 61:8023-8026. [PMID: 40314588 DOI: 10.1039/d5cc01394a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Abstract
The electrocatalytic conversion of wastewater nitrate (NO3-) to ammonia (NH3) under industrial-grade current densities at ambient conditions presents a sustainable alternative to the energy-intensive Haber-Bosch process, yet remains fundamentally challenging. Here, a highly efficient NO3- to NH3 electrocatalyst with single Fe atoms dispersed on graphdiyne (GDY) is constructed through an in situ growth method. Experimental analysis demonstrates the formation of high-density atomic active sites on GDY, ensuring the high intrinsic activity of the electrocatalyst. Besides, the newly formed sp-C-Fe chemical bonds bridged GDY and Fe atoms providing a well-defined channel for selectively and efficiently transferring electrons from the active sites to the reactants/key intermediates, allowing for selective NO3- activation and efficient protonation. This atomic-scale electronic modulation enables exceptional nitrate reduction performance, achieving record-high faradaic efficiency (45.48%) and ammonia yield (202.34 μmol h-1 cm-2) while maintaining operational stability.
Collapse
Affiliation(s)
- Jiayu Yan
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
| | - Lu Qi
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
- Shenzhen Research Institute of Shandong University, A301 Virtual University Park in South District of Shenzhen, Shenzhen 518057, China
| | - Zhiqiang Zheng
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
| | - Zhaoyang Chen
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
| | - Qi Wang
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
| | - Yurui Xue
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| |
Collapse
|
2
|
Wu H, Xue Y, He F, Chen S, Gao Y, Chen S, Li Y. Controlled Synthesis of Dy/Cu Bimetallic Atoms for Efficient Artificial Photosynthesis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2501867. [PMID: 40223434 DOI: 10.1002/smll.202501867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Revised: 03/21/2025] [Indexed: 04/15/2025]
Abstract
The birth of metal atom catalysts marked a new historical stage in the field of catalysis, allowing scientists to better understand the science of catalysis at the atomic level. On the basis of anchoring independent metal atoms, bimetal dysprosium-copper atoms are successfully anchored on graphdiyne (DyCu/GDY). Dy and Cu metal atoms are selectively anchored in triangular holes of GDY and stabilized by non-integer charge transfer and the confined space effect between the metals and GDY. The dynamic charge-transfer equilibrium caused by the inherent non-integer charge transfer between GDY and metal atoms produces sustained high activity, inducing a redistribution of surface charge. This result shows that the non-integer charge transfer strongly promotes the adsorption activation of CO2 and the desorption of the reaction intermediates, realizing the unpredictable selectivity and activity of CO2 conversion in the process of artificial photosynthesis, where the selectivity and yield of CO are 98% and 279 µmol gcat. -1 h-1, respectively.
Collapse
Affiliation(s)
- Han Wu
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yurui Xue
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Feng He
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Siao Chen
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yang Gao
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Siyi Chen
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yuliang Li
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
3
|
Wang H, Zhang X, Liu J, Chen C. Modulating the electronic structure of graphdiyne-based nanomaterials for engineering nano-bio interfaces in biomedical applications. Adv Drug Deliv Rev 2025; 220:115570. [PMID: 40147533 DOI: 10.1016/j.addr.2025.115570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 03/19/2025] [Accepted: 03/20/2025] [Indexed: 03/29/2025]
Abstract
Graphdiyne (GDY), a two-dimensional (2D) carbon allotrope featuring a unique electronic structure, has attracted considerable attention due to its outstanding properties and potential applications in various fields, particularly in biomedicine due to its exceptional surface area, tunable electronic structure, and biocompatibility. Although promising, this field is still in the proof-of-concept stage due to incomplete understanding of the effects of structural regulation, particularly electronic structure, of GDY-based nanomaterials on their nano-bio interfaces, which seriously hinders the research of GDY-based nanomaterials in the biomedical field. To provide a comprehensive understanding of the relationship between electronic structures and nano-bio interfaces, this review focuses on the modulation of the electronic structure of GDY-based nanomaterials and its implications for engineering nano-bio interfaces for biomedical applications. Firstly, we delve into the intrinsic electronic properties of GDY, including its bandgap tunability and high carrier mobility, which are critical for its functionality in biomedical applications. We then discuss strategies for modulating these properties through oxidation, nonmetallic doping, covalent modification, and metal loading, aiming to optimize the electronic structure of GDY-based nanomaterials for superior performance in specific biomedical contexts, such as biomedical imaging, surface and interface catalysis, free radical scavenging, and drug delivery. Furthermore, we provide an overview of the methodologies for the investigation of these electronic properties, including theoretical simulation, characterization techniques, and real-time analysis of electron transfer at the nano-bio interfaces, highlighting their roles in advancing our understanding and guiding the design of novel GDY-based materials. Finally, this review provides an outlook on future research directions aimed at further optimizing the design of GDY-based nanomaterials and nano-bio interfaces, emphasizing the need for interdisciplinary collaboration to overcome current challenges and to fully realize the potential of GDY-based nanomaterials in biomedical applications. These principles are anticipated to facilitate the future development and clinical translation of precise, safe, and effective nanomedicines with intelligent theranostic features.
Collapse
Affiliation(s)
- Hui Wang
- New Cornerstone Science Laboratory, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Xiaoyu Zhang
- New Cornerstone Science Laboratory, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Jing Liu
- New Cornerstone Science Laboratory, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, University of Chinese Academy of Sciences, Beijing 100190, China.
| | - Chunying Chen
- New Cornerstone Science Laboratory, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, University of Chinese Academy of Sciences, Beijing 100190, China; Research Unit of Nanoscience and Technology, Chinese Academy of Medical Sciences, Beijing 100730, China.
| |
Collapse
|
4
|
Yang T, Ding K, Zhou J, Ma X, Tan KC, Wang G, Huang H, Yang M. Unravelling Species-Specific Loading Effects on Oxygen Reduction Activity of Heteronuclear Single Atom Catalysts. SMALL METHODS 2025; 9:e2401333. [PMID: 39552000 DOI: 10.1002/smtd.202401333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/08/2024] [Indexed: 11/19/2024]
Abstract
Toward high-density single atom catalysts (SACs), the interaction between neighboring SACs and the induced non-linear loading effect become crucial for their intrinsic catalytic performance. Despite recent investigations on homonuclear SACs, understanding such effect in heteronuclear SACs remains limited. Using Fe and Co SACs co-supported on the nitrogen-doped graphene as a model system, the loading effect on the site-specific activity of heteronuclear SACs toward oxygen reduction reaction (ORR) is here reported by density functional theory calculations. The Fe site exhibits an oscillatory decrease in activity with the loading. In contrast, the Co site has a volcano-like activity with the optimum performance achieved at ≈16.8 wt.% (average inter-site distance: ≈7 Å). At the ultra-high loading of 38.4 wt.% (inter-site distance: ≈4 Å), the Co site is the only ORR active site, whereas Fe sites turn into spectators. This distinct loading-dependent activity between the Fe and Co sites can be ascribed to their difference in the binding capability with the substrate and the dxz and dyz orbitals' occupation. These findings highlight the importance of the loading effect in heteronuclear SACs, which could be useful for the development of high-performance heteronuclear and high-entropy SACs toward various catalytic reactions in the high-loading regime.
Collapse
Affiliation(s)
- Tong Yang
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| | - Keda Ding
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| | - Jun Zhou
- Institute of Materials Research & Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, Singapore, 138634, Singapore
| | - Xiaoyang Ma
- School of Information Science and Engineering, Shandong University, 72 Binhai Road, Qingdao, 266237, China
| | - Kay Chen Tan
- Department of Computing, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| | - Ge Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory of Function Materials for Molecule & Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Haitao Huang
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| | - Ming Yang
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
- Research Centre on Data Sciences & Artificial Intelligence, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
- Research Centre for Nanoscience and Nanotechnology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| |
Collapse
|
5
|
Feng B, Zhang D, Han Z, Shi P, Yan P, Zhao J, Huang S, Jiang K, Ji H, Zhang J, Zhu J, Lu C, Cao K, Zhuang X. Rational Synthesis of Isomeric Graphdiyne Frameworks toward Single-Ruthenium Catalysts and High-Performance Nitrogen Reduction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2502980. [PMID: 40159886 DOI: 10.1002/adma.202502980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/19/2025] [Indexed: 04/02/2025]
Abstract
Graphdiynes (GDYs), synthesized via direct coupling of arylacetylenes, have attracted great attention due to their unique electronic properties and structural diversity, typically forming 2D layered frameworks. However, crystalline GDY-like frameworks with 3D topology remain challenging to synthesize. Here, the study reports two highly crystalline, isomeric GDY-like frameworks with ThSi2 topology, constructed from 2,2'-binaphthalene and 6,6'-biazulene-based monomers. The azulene-based framework, due to its large dipole moment, exhibits a narrow bandgap of 1.15 eV, significantly lower than its naphthalene counterpart (2.33 eV). As ruthenium (Ru) single-atom supports, these frameworks enable strong Ru-diyne interactions, achieving an ammonia yield rate of 188.7 ± 1.6 µg h-1 mgcat -1 and a Faradaic efficiency of 37.4 ± 0.6%. Such bicontinuous channels and tunable electronic structures offer electrocatalysis field new opportunities. Moreover, the azulene-based framework, featuring a higher highest occupied molecular orbital and lower lowest unoccupied molecular orbital energy level, ensures superior electron mobility. These 3D crystalline frameworks introduce a new covalent organic framework (COF) family with diyne linkages and pure carbon skeletons, broadening the scope of COF materials. Their well-defined structures provide an ideal platform for tuning optoelectronic properties, enabling fundamental studies on structure-property relationships and opening new opportunities for catalytic and electronic applications.
Collapse
Affiliation(s)
- Boxu Feng
- The Soft2D Lab, State Key Laboratory of Metal Matrix Composites, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Dong Zhang
- School of Physical Science and Technology & Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai, 201210, China
| | - Zhiya Han
- School of Materials, Shanghai Dianji University, Shanghai, 200245, China
| | - Pengfei Shi
- The Soft2D Lab, State Key Laboratory of Metal Matrix Composites, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Pu Yan
- School of Physical Science and Technology & Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai, 201210, China
| | - Jinyu Zhao
- The Soft2D Lab, State Key Laboratory of Metal Matrix Composites, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Senhe Huang
- The Soft2D Lab, State Key Laboratory of Metal Matrix Composites, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Kaiyue Jiang
- The Soft2D Lab, State Key Laboratory of Metal Matrix Composites, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Huiping Ji
- The Soft2D Lab, State Key Laboratory of Metal Matrix Composites, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jichao Zhang
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 239, Zhangheng Road, Shanghai, 201204, China
| | - Jinhui Zhu
- The Soft2D Lab, State Key Laboratory of Metal Matrix Composites, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chenbao Lu
- The Soft2D Lab, State Key Laboratory of Metal Matrix Composites, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Kecheng Cao
- School of Physical Science and Technology & Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai, 201210, China
| | - Xiaodong Zhuang
- The Soft2D Lab, State Key Laboratory of Metal Matrix Composites, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 201203, China
| |
Collapse
|
6
|
Chen S, Xue Y, Gao Y, Wu H, Chen S, Zheng Y, Li Y. Interfacial Atom Rearrangement Drives Potential-Adaptive Electrocatalytic Olefin Hydrogenation. Angew Chem Int Ed Engl 2025:e202507269. [PMID: 40297937 DOI: 10.1002/anie.202507269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Revised: 04/17/2025] [Accepted: 04/22/2025] [Indexed: 04/30/2025]
Abstract
Dynamic rearrangement of metal atoms at heterointerfaces by chemical bond conversion drives high efficiency electrocatalytic processes, which is a new concept in the field of electrocatalysis and a new discovery to directly improve catalytic activity. It is of great significance to explore transformative catalytic systems that directly control the interfacial structure and function of atomic composition. As an emerging 2D carbon allotrope featuring unique sp-sp2 co-hybridization, graphdiyne (GDY) offers unprecedented advantages for heterointerface engineering. In particular, the uneven surface charge distribution of GDY, high distribution of active sites and customizable electronic structures provide unprecedented opportunities for the development of a new generation of catalytic systems. Here, we report a new idea to directly control the cooperative growth and drive metal atomic rearrangement on the interface of GDY/NiPd/GDY. The results of atomic-resolution electron microscopy characterization revealed two unique interfacial phenomena: i) GDY-induced massive dislocation formation within NiPd nanoalloys and ii) rearrangement of surface metal atoms from (111) to (200) facets. Detailed spectroscopic analysis further demonstrated the composition-dependent evolution of elemental valence states and stoichiometric ratios. This atomic-level restructuring establishes a charge-redistribution network featuring non-integer charge transfer, which improves the overall conductivity and intrinsic activity. What is even more encouraging is that this electrocatalytic olefin hydrogenation is carried out in an aqueous solution. The GDY/NiPd/GDY heterostructure achieves exceptional activity (turnover frequency: 6.8 s-1), stability (>5 cycles), and chemo-selectivity (-100%), which is superior to traditional catalysts.
Collapse
Affiliation(s)
- Siao Chen
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Yurui Xue
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Yang Gao
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Han Wu
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Siyi Chen
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Yunhao Zheng
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Yuliang Li
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
7
|
Zhao S, Hou J, Deng L, Qi Z, Tao N, Ruan W, Zheng J, Wang W, Xu Q, Saiding Q, Kong N, Liu YN, Tao W. Lactate-Modulating Nanozyme-Mediated Mitochondrial Respiration Block for Tumor Immunosuppression Remodeling. Angew Chem Int Ed Engl 2025; 64:e202422203. [PMID: 39932860 DOI: 10.1002/anie.202422203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 02/10/2025] [Accepted: 02/11/2025] [Indexed: 02/13/2025]
Abstract
Abnormal lactate metabolism in tumor cells leads to immune escape in the tumor microenvironment. Intervening in specific lactate metabolic pathways while blocking downstream pyruvate influx holds great promise for overcoming conventional lactate-targeted therapy limitations such as short half-life, insufficient lactate consumption, and pathological microenvironment elasticity. Herein, a nanocatalytic medicine based on carbondoping engineered copper nitride enzyme (Cu3N-C NE) with enhanced lactate oxidase (LOX) activity was carefully designed. Computational results revealed that the introduction of C favors activation of the hydroxyalkyl C-H bond in lactate by the polarization of adjacent hydroxyl groups, correspondingly facilitating the abstraction of hydrogen atoms from the desired α-C-H and α-C-O-H groups in lactate via the hydrogen atom-transfer (HAT) process. The Cu3N-C NEs could downregulate lactate levels in tumor cells for robust remodeling of the immunosuppressive microenvironment and further block as-generated pyruvate to influx into the mitochondrial respiration, achieving lactate homeostasis reprogramming. Our study provides a proof-of-concept design of next-generation lactate-modulation nanomedicine via heteroatom-doping and evolution with the additional potential to expedite the industrial production of lactate to pyruvate.
Collapse
Affiliation(s)
- Senfeng Zhao
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, China
- Center for Nanomedicine, and Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Jianing Hou
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, China
| | - Liu Deng
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, China
| | - Ziyu Qi
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, China
| | - Na Tao
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, China
| | - Wenjie Ruan
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, China
| | - Jia Zheng
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, China
| | - Wei Wang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, China
| | - Qianqian Xu
- State Key Laboratory for Powder Metallurgy, Central South University, Changsha, Hunan, 410083, China
| | - Qimanguli Saiding
- Center for Nanomedicine, and Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Na Kong
- Center for Nanomedicine, and Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - You-Nian Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, China
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Wei Tao
- Center for Nanomedicine, and Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
8
|
Zhang R, Zeng X, Yu L, Meng L, Miao W, Jin L. B/N modified GDY as a rare base 2D sensor: a first-principles study. Phys Chem Chem Phys 2025; 27:7943-7953. [PMID: 40165638 DOI: 10.1039/d5cp00209e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Detecting DNA rare bases is essential for diagnosing genetic disorders and cancers. However, their low abundance and high structural similarity make selective and sensitive detection challenging. The two-dimensional functionalized carbon material graphdiyne (GDY) holds great promise for enhancing sensor performance due to its excellent electronic properties, biocompatibility, and ease of functionalization. This study employs density functional theory (DFT) to investigate the adsorption behavior of rare bases on GDY and R-GDY (R = B/N) surfaces. Essential factors, including adsorption energy, bandgap, charge transfer, and density of states, are systematically analyzed. Additionally, critical sensor performance metrics, such as deposition time, sensitivity, and selectivity are predicted, providing valuable insights into the potential applications of these materials. The results indicate that while pure GDY can specifically recognize 5-hydroxymethylcytosine, its sensitivity is limited. In contrast, R-GDY stably adsorbs rare bases via π-π interactions, exhibiting good reversibility and moderate charge transfer, which significantly enhance its sensitivity. R-GDY effectively distinguishes between rare bases based on translocation time, making it ideal for the development of efficient and reusable electrochemical biosensors, thus providing a reliable approach for clinical diagnostics.
Collapse
Affiliation(s)
- Ruiying Zhang
- Shaanxi Key Laboratory of Catalysis, School of Chemical & Environment Science, Shaanxi University of Technology, Hanzhong 723001, China.
| | - Xia Zeng
- Shaanxi Key Laboratory of Catalysis, School of Chemical & Environment Science, Shaanxi University of Technology, Hanzhong 723001, China.
| | - Lin Yu
- Shaanxi Key Laboratory of Catalysis, School of Chemical & Environment Science, Shaanxi University of Technology, Hanzhong 723001, China.
| | - Lingyu Meng
- Shaanxi Key Laboratory of Catalysis, School of Chemical & Environment Science, Shaanxi University of Technology, Hanzhong 723001, China.
| | - Wenjin Miao
- Shaanxi Key Laboratory of Catalysis, School of Chemical & Environment Science, Shaanxi University of Technology, Hanzhong 723001, China.
| | - Lingxia Jin
- Shaanxi Key Laboratory of Catalysis, School of Chemical & Environment Science, Shaanxi University of Technology, Hanzhong 723001, China.
| |
Collapse
|
9
|
Hossain MN, Zhang L, Neagu R, Sun S. Exploring the properties, types, and performance of atomic site catalysts in electrochemical hydrogen evolution reactions. Chem Soc Rev 2025; 54:3323-3386. [PMID: 39981628 DOI: 10.1039/d4cs00333k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
Atomic site catalysts (ASCs) have recently gained prominence for their potential in the electrochemical hydrogen evolution reaction (HER) due to their exceptional activity, selectivity, and stability. ASCs with individual atoms dispersed on a support material, offer expanded surface areas and increased mass efficiency. This is because each atom in these catalysts serves as an active site, which enhances their catalytic activity. This review is focused on providing a detailed analysis of ASCs in the context of the HER. It will delve into their properties, types, and performance to provide a comprehensive understanding of their role in electrochemical HER processes. The introduction part underscores HER's significance in transitioning to sustainable energy sources and emphasizes the need for innovative catalysts like ASCs. The fundamentals of the HER section emphasizes the importance of understanding the HER and highlights the key role that catalysts play in HER. The review also explores the properties of ASCs with a specific emphasis on their atomic structure and categorizes the types based on their composition and structure. Within each category of ASCs, the review discusses their potential as catalysts for the HER. The performance section focuses on a thorough evaluation of ASCs in terms of their activity, selectivity, and stability in HER. The performance section assesses ASCs in terms of activity, selectivity, and stability, delving into reaction mechanisms via experimental and theoretical approaches, including density functional theory (DFT) studies. The review concludes by addressing ASC-related challenges in HER and proposing future research directions, aiming to inspire further innovation in sustainable catalysts for electrochemical HER.
Collapse
Affiliation(s)
- M Nur Hossain
- Energy, Mining and Environment, National Research Council of Canada, Vancouver, BC, V6T 1W5, Canada.
| | - Lei Zhang
- Energy, Mining and Environment, National Research Council of Canada, Vancouver, BC, V6T 1W5, Canada.
| | - Roberto Neagu
- Energy, Mining and Environment, National Research Council of Canada, Vancouver, BC, V6T 1W5, Canada.
| | - Shuhui Sun
- Institut National de la Recherche Scientifque (INRS), Center Énergie Matériaux Télécommunications, Varennes, QC, J3X 1P7, Canada.
| |
Collapse
|
10
|
Li H, Pan C, Peng X, Zhang B, Song S, Xu Z, Qiu X, Liu Y, Wang J, Guo Y. In-situ adsorption-coupled-oxidation enabled mercury vapor capture over sp-hybridized graphdiyne. Nat Commun 2025; 16:2439. [PMID: 40069183 PMCID: PMC11897331 DOI: 10.1038/s41467-025-57197-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 02/13/2025] [Indexed: 03/15/2025] Open
Abstract
Developing efficient and sustainable carbon sorbent for mercury vapor (Hg0) capture is significant to public health and ecosystem protection. Here we show a carbon material, namely graphdiyne with accessible sp-hybridized carbons (HsGDY), that can serve as an effective "trap" to anchor Hg atoms by strong electron-metal-support interaction, leading to the in-situ adsorption-coupled-oxidation of Hg. The adsorption process is benefited from the large hexagonal pore structure of HsGDY. The oxidation process is driven by the surface charge heterogeneity of HsGDY which can itself induce the adsorbed Hg atoms to lose electrons and present a partially oxidized state. Its good adaptability and excellent regeneration performance greatly broaden the applicability of HsGDY in diverse scenarios such as flue gas treatment and mercury-related personal protection. Our work demonstrates a sp-hybridized carbon material for mercury vapor capture which could contribute to sustainability of mercury pollution industries and provide guide for functional carbon material design.
Collapse
Affiliation(s)
- Honghu Li
- Institute of Environmental and Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan, PR China
- Research Center for Environment and Health, School of Information Engineering, Zhongnan University of Economics and Law, Wuhan, PR China
| | - Chuanqi Pan
- Institute of Environmental and Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan, PR China
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, PR China
| | - Xiyan Peng
- Institute of Environmental and Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan, PR China
- Research Center for Environment and Health, School of Information Engineering, Zhongnan University of Economics and Law, Wuhan, PR China
| | - Biluan Zhang
- Institute of Environmental and Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan, PR China
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, PR China
| | - Siyi Song
- Institute of Environmental and Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan, PR China
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, PR China
| | - Ze Xu
- Institute of Environmental and Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan, PR China
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, PR China
| | - Xiaofeng Qiu
- Institute of Environmental and Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan, PR China
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, PR China
| | - Yongqi Liu
- Institute of Environmental and Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan, PR China
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, PR China
| | - Jinlong Wang
- Institute of Environmental and Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan, PR China
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, PR China
- Wuhan Institute of Photochemistry and Technology, Wuhan, PR China
| | - Yanbing Guo
- Institute of Environmental and Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan, PR China.
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, PR China.
- Wuhan Institute of Photochemistry and Technology, Wuhan, PR China.
| |
Collapse
|
11
|
Shang H, Peng J, Zhou Y, Guo L, Li H, Wang W. Graphdiyne and its heteroatom-doped derivatives for Li-ion/metal batteries. Dalton Trans 2025; 54:3551-3572. [PMID: 39829409 DOI: 10.1039/d4dt03268c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Graphdiyne (GDY), which is composed of benzene rings and acetylene linkage units, is a new allotrope of carbon material. In particular, the large triangular pores of GDY, with a diameter of 5.4 Å, theoretically predict a higher lithium embedding density than traditional graphite anodes, making it a promising candidate for energy storage materials in lithium-ion (Li-ion) batteries. GDY is primarily synthesized via a cross-coupling reaction of hexaethynylbenzene (HEB). Under similar preparation conditions, the cross-coupling reaction of aryne precursors, other than HEB, yields many GDY heteroatom-doped derivatives. This introduces numerous heteroatomic defects as well as electrochemically active sites, potentially enhancing electrochemical performance. Recent advancements have focused on utilizing GDY and its heteroatom-doped derivatives as electrode materials or composite materials in Li-ion/metal batteries. This review systematically summarizes the strategies developed for GDY and its heteroatom-doped derivatives. Notably, recent research on the effects of morphology and chemical/electronic structure on performance, particularly new conceptual mechanisms in Li-ion/metal batteries, including self-expanding Li-ion transport channels and a capture/pore filling-intercalation hybrid mechanism, is briefly described. The results presented herein highlight the significant potential of GDY and its heteroatom-doped derivatives for energy storage applications and inspire further development.
Collapse
Affiliation(s)
- Hong Shang
- School of Science, China University of Geosciences (Beijing), Beijing 100083, P.R. China.
| | - Jia Peng
- School of Science, China University of Geosciences (Beijing), Beijing 100083, P.R. China.
| | - Yougui Zhou
- School of Science, China University of Geosciences (Beijing), Beijing 100083, P.R. China.
| | - Lihua Guo
- School of Science, China University of Geosciences (Beijing), Beijing 100083, P.R. China.
| | - Huipeng Li
- School of Science, China University of Geosciences (Beijing), Beijing 100083, P.R. China.
| | - Weiliang Wang
- School of Energy Resources, China University of Geosciences (Beijing), Beijing 100083, P.R. China
| |
Collapse
|
12
|
Qin Y, Wang Y, Lu J, Xu L, Wong W. A Highly Conjugated Nickel(II)-Acetylide Framework for Efficient Photocatalytic Carbon Dioxide Reduction. Angew Chem Int Ed Engl 2025; 64:e202418269. [PMID: 39365610 PMCID: PMC11795714 DOI: 10.1002/anie.202418269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/03/2024] [Accepted: 10/04/2024] [Indexed: 10/05/2024]
Abstract
The incorporation of transition-metal single atoms as molecular functional entities into the skeleton of graphdiyne (GDY) to construct novel two-dimensional (2D) metal-acetylide frameworks, known as metalated graphynes (MGYs), is a promising strategy for developing efficient catalysts, which can combine the tunable charge transfer of GDY frameworks, the catalytic activity of metal and the precise distribution of single metallic centers. Herein, four highly conjugated MGY photocatalysts based on NiII, PdII, PtII, and HgII were synthesized for the first time using the 'bottom-up' strategy through the use of M-C bonds (-C≡C-M-C≡C-). Remarkably, the NiII-based graphyne (TEPY-Ni-GY) exhibited the highest CO generation rate of 18.3 mmol g-1 h-1 and a selectivity of 98.8 %. This superior performance is attributed to the synergistic effects of pyrenyl and -C≡C-Ni(PBu3)2-C≡C- moieties. The pyrenyl block functions as an intramolecular π-conjugation channel, facilitating kinetically favorable electron transfer, while the -C≡C-Ni(PBu3)2-C≡C- moiety serves as the catalytic site that enhances CO2 adsorption and activation, thereby suppressing competitive hydrogen evolution. This study provides a new perspective on MGY-based photocatalysts for developing highly active and low-cost catalysts for CO2 reduction.
Collapse
Grants
- SRFS2021-5S01 Research Grants Council, University Grants Committee
- PolyU 15307321 Research Grants Council, University Grants Committee
- PolyU 25301524 Research Grants Council, University Grants Committee
- CDAQ, CE2H, CE2L, 847S Hong Kong Polytechnic University
- WZ0Z, BEBA, CE2N, CDB5 Hong Kong Polytechnic University
- 2024A1515010422 Natural Science Foundation of Guangdong Province
- 22309156 National Natural Science Foundation of China
- Research Grants Council, University Grants Committee
- Hong Kong Polytechnic University
- Natural Science Foundation of Guangdong Province
- National Natural Science Foundation of China
Collapse
Affiliation(s)
- Yingying Qin
- Department of Applied Biology and Chemical Technology and Research Institute for Smart EnergyThe Hong Kong Polytechnic University Hung HomHong KongP. R. China
| | - Yang Wang
- Department of Applied Biology and Chemical Technology and Research Institute for Smart EnergyThe Hong Kong Polytechnic University Hung HomHong KongP. R. China
| | - Jian Lu
- School of Fashion and TextilesThe Hong Kong Polytechnic University Hung HomHong KongP. R. China
| | - Linli Xu
- Department of Applied Biology and Chemical Technology and Research Institute for Smart EnergyThe Hong Kong Polytechnic University Hung HomHong KongP. R. China
| | - Wai‐Yeung Wong
- Department of Applied Biology and Chemical Technology and Research Institute for Smart EnergyThe Hong Kong Polytechnic University Hung HomHong KongP. R. China
| |
Collapse
|
13
|
Fu R, Guo J, Jin H, Li Z, Xia J, Tang Y, Ding Y, Zhao H, Ye D, Xu J. Boosting Enzyme-Like Activity Through Controlled Coordination of Metal Single-Atoms in Rhombic Cavity of Graphyne. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2409113. [PMID: 39718224 DOI: 10.1002/smll.202409113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/22/2024] [Indexed: 12/25/2024]
Abstract
The coordination number of metal single-atoms, being an important factor, should be precisely controlled as it affects both activity and specificity. Herein, the introduction of nitrogen into the para position of benzene in graphyne (2N-GY) is proposed as a carrier for anchoring metal single-atoms onto pyrazine nitrogen. These atoms are then coordinated to the center of the rhombic cavity, ensuring precisely controlled coordination numbers. Inspired by natural enzymes, a series of transition metal single-atom nanozymes (SANs) are constructed utilizing 2N-GY. Both theory calculations and experiments demonstrated that the incorporation of metal single-atoms of Fe, Mn, and Mo effectively augmented the enzyme-like activity, with Mo/GY exhibiting the highest peroxidase -like activity. Based on the differing activities of M/GY (M = Fe, Mn, Mo) and the varying abilities of sulfhydryl groups in biothiols to occupy metal active sites, sensing arrays for the high-throughput identification of six biothiols are constructed. After combining the fingerprint feature responses of biothiols and SANs with machine learning algorithms, the efficient distinction of the six biothiols is achieved. This study introduces a novel pathway for designing and synthesizing SANs that mimic natural enzymes.
Collapse
Affiliation(s)
- Ruixue Fu
- Department of Chemistry & Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Jian Guo
- Department of Chemistry & Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Huan Jin
- Department of Chemistry & Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai, 200444, P. R. China
- Shanxi Inspection and Testing Center, Taiyuan, Shanxi, 030006, P. R. China
| | - Zhen Li
- Department of Chemistry & Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Jianing Xia
- Department of Chemistry & Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Ya Tang
- Department of Chemistry & Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Yaping Ding
- Department of Chemistry & Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Hongbin Zhao
- Department of Chemistry & Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Daixin Ye
- Department of Chemistry & Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Jiaqiang Xu
- Department of Chemistry & Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai, 200444, P. R. China
| |
Collapse
|
14
|
Zhang X, Wang N, Li Y. The Accurate Synthesis of a Multiscale Metallic Interface on Graphdiyne. SMALL METHODS 2025; 9:e2301571. [PMID: 38795321 DOI: 10.1002/smtd.202301571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/21/2024] [Indexed: 05/27/2024]
Abstract
The accurate construction of composite material systems containing graphdiyne (GDY) and other metallic materials has promoted the formation of innovative structures and practical applications in the fields of energy, catalysis, optoelectronics, and biomedicine. To fulfill the practical requirements, the precise formation of multiscale interfaces over a wide range, from single atoms to nanostructures, plays an important role in the optimization of the structural design and properties. The intrinsic correlations between the structure, synthesis process, characteristic properties, and device performance are systematically investigated. This review outlines the current research achievements regarding the controlled formation of multiscale metallic interfaces on GDY. Synthetic strategies for interface regulation, as well as the correlation between the structure and performance, are presented. Furthermore, innovative research ideas for the design and synthesis of functional metal-based materials loaded onto GDY-based substances are also provided, demonstrating the promising application potential of GDY-based materials.
Collapse
Affiliation(s)
- Xiaonan Zhang
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Shandong University, 27 Shanda Nanlu, Jinan, 250100, P. R. China
| | - Ning Wang
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Shandong University, 27 Shanda Nanlu, Jinan, 250100, P. R. China
| | - Yuliang Li
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Shandong University, 27 Shanda Nanlu, Jinan, 250100, P. R. China
- Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing, 100190, P. R. China
| |
Collapse
|
15
|
Loni E, Majed A, Zhang S, Thangavelu HHS, Dun C, Tabassum A, Eisawi K, Urban JJ, Persson POÅ, Montemore MM, Naguib M. Two-Dimensional Tantalum Carbo-Selenide for Hydrogen Evolution. ACS NANO 2025; 19:3185-3196. [PMID: 39818718 PMCID: PMC11781020 DOI: 10.1021/acsnano.4c09903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 12/26/2024] [Accepted: 12/30/2024] [Indexed: 01/18/2025]
Abstract
Herein, we report the synthesis of two-dimensional Ta2Se2C (2D-Ta2Se2C) nanosheets using electrochemical lithiation in multilayer Ta2Se2C followed by sonication in deionized water. Multilayer Ta2Se2C was obtained via solid-state synthesis of FexTa2Se2C followed by chemical etching of Fe. 2D-Ta2Se2C exhibited promising electrocatalytic activity for the hydrogen evolution reaction from water compared to multilayer Ta2Se2C and 2D-TaSe2. 2D-Ta2Se2C showed an overpotential at 10 mA·cm-2 (η10) of 264 mV, a Tafel slope of 91 mV·dec-1, and an electrochemically active surface area of 17.61 mECSA2·gcatalyst-1. The high performance could be attributed to the large surface area of single sheets which hence maximizes the number of exposed catalytic sites and increased density of vacancies, observed with transmission electron microscopy, during synthesis and processing.
Collapse
Affiliation(s)
- Elham Loni
- Department
of Physics and Engineering Physics, Tulane
University, New Orleans, Louisiana 70118, United States
| | - Ahmad Majed
- Department
of Physics and Engineering Physics, Tulane
University, New Orleans, Louisiana 70118, United States
| | - Shengjie Zhang
- Department
of Chemical and Biomolecular Engineering, Tulane University, New Orleans, Louisiana 70118, United States
| | - Hari H. S. Thangavelu
- Department
of Physics, Chemistry and Biology, Linköping
University, Linköping SE-581 83, Sweden
| | - Chaochao Dun
- The
Molecular Foundry, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Anika Tabassum
- Department
of Physics and Engineering Physics, Tulane
University, New Orleans, Louisiana 70118, United States
| | - Karamullah Eisawi
- Department
of Physics and Engineering Physics, Tulane
University, New Orleans, Louisiana 70118, United States
| | - Jeffrey J. Urban
- The
Molecular Foundry, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Per O. Å. Persson
- Department
of Physics, Chemistry and Biology, Linköping
University, Linköping SE-581 83, Sweden
| | - Matthew M. Montemore
- Department
of Chemical and Biomolecular Engineering, Tulane University, New Orleans, Louisiana 70118, United States
| | - Michael Naguib
- Department
of Physics and Engineering Physics, Tulane
University, New Orleans, Louisiana 70118, United States
| |
Collapse
|
16
|
Zhang X, Hui L, He F, Li Y. The Interfacial Interpenetration Effect for Controlled Reaction Stability of Palladium Catalysts. J Am Chem Soc 2025; 147:436-445. [PMID: 39727306 DOI: 10.1021/jacs.4c11234] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Tailoring well-defined interfacial structures of heterogeneous metal catalysts has become an effective strategy for identifying the interface relationships and facilitating the reactions involving multiple intermediates. Here, a particle-particle heterostructure catalyst consisting of Pd and copper oxide nanoparticles is designed to achieve high-performance alkaline methanol oxidation electrocatalysis. The strong coupling particle-particle heterostructure catalyst induced a unique interfacial interpenetration effect to improve the interfacial charge redistribution and regulate the d-band structure for optimizing the adsorption of CO intermediates on the catalyst. The resulting catalyst shows impressive mass activity (4.0 A mgPd-1) and current density (215.8 mA cm-2) for the methanol oxidation reaction (MOR) in alkaline media, which is 80.0 and 154.1 times higher than 10% Pd/C. The catalyst also exhibited outstanding stability for the MOR without obvious mass activity decay after 30,000 cycles. Experimental results and theoretical simulation (DFT) studies show that the chemical bond of the Cu-O-Pd interface can be regulated by the Pd penetration effect, greatly improving the activity and stability of the MOR. The present work exhibits the superiority of the metal particle-metal oxide heterostructure interface toward the rational design of advanced electrocatalysts.
Collapse
Affiliation(s)
- Xueting Zhang
- Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Lan Hui
- Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Feng He
- Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yuliang Li
- Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
17
|
Jimenez-Sandoval R, Katuri KP, Annadata HV, Nayak C, Wehbe N, Melinte G, Saikaly PE. Biology-Based Synthesis of Nickel Single Atoms on the Surface of Geobacter sulfurreducens as an Efficient Electrocatalyst for Alkaline Water Electrolysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2407261. [PMID: 39324291 DOI: 10.1002/smll.202407261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/10/2024] [Indexed: 09/27/2024]
Abstract
Single-atom metal catalysts are promising electrocatalysts for water electrolysis. Nickel-based electrocatalysts have shown attractive application prospects for water electrolysis. However, synthesizing stable Ni single atoms using chemical and physical approaches remains a practical challenge. Here, a facile and precise method for synthesizing stable nickel single atoms on the surface of Geobacter sulfurreducens using a microbial-mediated extracellular electron transfer (EET) process is demonstrated. It is shown that G. sulfurreducens can effectively anchor nickel single atoms on their surface. X-ray absorption near-edge structure and Fourier-transformed extended X-ray absorption fine structure spectroscopy confirm that the nickel single atom is coordinated to nitrogen in the cytochromes. The as-synthesized nickel single atoms on G. sulfurreducens exhibit excellent bifunctional catalytic properties for alkaline water electrolysis with low overpotential (η) to achieve current density (10 mA cm-2) for both hydrogen evolution reactions (η = 80 mV) and oxygen evolution reaction (η = 330 mV) with minimal catalyst loading of 0.0015 mg Ni cm-2. The nickel single-atom catalyst shows long-term stability at a constant electrode potential. This synthesis method based on the EET capability of electroactive bacteria provides a simple and scalable approach for producing low-cost and highly efficient nonnoble transition metal single-atom catalysts for practical applications.
Collapse
Affiliation(s)
- Rodrigo Jimenez-Sandoval
- Environmental Science and Engineering Program, Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
- Water Desalination and Reuse Center (WDRC), BESE, KAUST, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Krishna P Katuri
- Environmental Science and Engineering Program, Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
- Water Desalination and Reuse Center (WDRC), BESE, KAUST, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Harshini V Annadata
- BARC Beamlines Section, Indus-2, Raja Ramanna Center for Advanced Technology, Indore, 452013, India
| | - Chandrani Nayak
- Atomic and Molecular Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
| | - Nimer Wehbe
- Imaging and Characterization (IAC) Core Lab, KAUST, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Georgian Melinte
- Imaging and Characterization (IAC) Core Lab, KAUST, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Pascal E Saikaly
- Environmental Science and Engineering Program, Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
- Water Desalination and Reuse Center (WDRC), BESE, KAUST, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| |
Collapse
|
18
|
Li SL, Chen Y, Tian G, Kou L, Qiao L, Zhao Y, Gan LY. High catalytic activity and abundant active sites in M 2C 12 monolayer for nitrogen reduction reaction. J Colloid Interface Sci 2024; 675:411-418. [PMID: 38976967 DOI: 10.1016/j.jcis.2024.06.231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/06/2024] [Accepted: 06/28/2024] [Indexed: 07/10/2024]
Abstract
Developing highly efficient single-atom catalysts (SACs) for the nitrogen reduction reaction (NRR) to ammonia production has garnered significant attention in the scientific community. However, achieving high activity and selectivity remains challenging due to the lack of innate activity in most existing catalysts or insufficient active site density. This study delves into the potential of M2C12 materials (M = Cr, Ir, Mn, Mo, Os, Re, Rh, Ru, W, Fe, Cu, and Ti) with high transition metal coverage as SACs for NRR using first-principles calculations. Among these materials, Os2C12 exhibited superior catalytic activity for NRR, with a low overpotential of 0.39 V and an Os coverage of up to 72.53 wt%. To further boost its catalytic activity, a nonmetal (NM) atom doping (NM = B, N, O, and S) and C vacancy modification were explored in Os2C12. It is found that the introduction of O enables exceptional catalytic activity, selectivity, and stability, with an even lower overpotential of 0.07 V. Incorporating the O atom disrupted the charge balance of its coordinating C atoms, effectively increasing the positive charge density of the Os-d-orbit-related electronic structure. This promoted strong d-π* coupling between Os and N2H, enhancing N2H adsorption and facilitating NRR processes. This comprehensive study provides valuable insights into NRR catalyst design for sustainable ammonia production and offers a reference for exploring alternative materials in other catalytic reactions.
Collapse
Affiliation(s)
- Shu-Long Li
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China; School of Physics, University of Electronic Science and Technology of China, Chengdu 611700, China; Western Superconducting Technologies Co, Ltd., Xi'an 710018, China
| | - Yutao Chen
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Guo Tian
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Liangzhi Kou
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, Queensland 4001, Australia
| | - Liang Qiao
- School of Physics, University of Electronic Science and Technology of China, Chengdu 611700, China.
| | - Yong Zhao
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China; College of Physics and Energy, Fujian Normal University, Fuzhou 350117, China.
| | - Li-Yong Gan
- College of Physics and Center of Quantum Materials and Devices, Chongqing University, Chongqing 401331, China.
| |
Collapse
|
19
|
Li Y, Peng CK, Sun Y, Sui LDN, Chang YC, Chen SY, Zhou Y, Lin YG, Lee JM. Operando elucidation of hydrogen production mechanisms on sub-nanometric high-entropy metallenes. Nat Commun 2024; 15:10222. [PMID: 39587090 PMCID: PMC11589590 DOI: 10.1038/s41467-024-54589-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 11/15/2024] [Indexed: 11/27/2024] Open
Abstract
Precise morphological control and identification of structure-property relationships pose formidable challenges for high-entropy alloys, severely limiting their rational design and application in multistep and tandem reactions. Herein, we report the synthesis of sub-nanometric high-entropy metallenes with up to eight metallic elements via a one-pot wet-chemical approach. The PdRhMoFeMn high-entropy metallenes exhibit high electrocatalytic hydrogen evolution performances with 6, 23, and 26 mV overpotentials at -10 mA cm-2 in acidic, neutral, and alkaline media, respectively, and high stability. The electrochemical measurements, theoretical simulations, and operando X-ray absorption spectroscopy reveal the actual active sites along with their dynamics and synergistic mechanisms in various electrolytes. Specially, Mn sites have strong binding affinity to hydroxyl groups, which enhances the water dissociation process at Pd sites with low energy barrier while Rh sites with optimal hydrogen adsorption free energy accelerate hydride coupling, thereby markedly boosting its intrinsic ability for hydrogen production.
Collapse
Affiliation(s)
- Yinghao Li
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| | - Chun-Kuo Peng
- Department of Material Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan
- Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu, 300092, Taiwan
| | - Yuntong Sun
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore.
| | - L D Nicole Sui
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
- Environmental Chemistry and Materials Centre, Nanyang Environment & Water Research Institute (NEWRI), Interdisciplinary Graduate Programme, Nanyang Technological University, Singapore, 637141, Singapore
| | - Yu-Chung Chang
- Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu, 300092, Taiwan
| | - San-Yuan Chen
- Department of Material Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan
| | - Yingtang Zhou
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, 316004, China.
| | - Yan-Gu Lin
- Department of Material Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan.
- Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu, 300092, Taiwan.
| | - Jong-Min Lee
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore.
| |
Collapse
|
20
|
Yu J, Yan Y, Lin Y, Liu H, Li Y, Xie S, Sun S, Liu F, Zhang Z, Li W, Oh JS, Zhou L, Qi L, Wang B, Huang W. Improved high-current-density hydrogen evolution reaction kinetics on single-atom Co embedded in an order pore-structured nitrogen assembly carbon support. NANOSCALE HORIZONS 2024; 9:2326-2333. [PMID: 39316069 DOI: 10.1039/d4nh00299g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Single-atom catalysis is a subcategory of heterogeneous catalysis with well-defined active sites. Numerous endeavors have been devoted to developing single-atom catalysts for industrially applicable catalysis, including the hydrogen evolution reaction (HER). High-current-density electrolyzers have been pursued for single-atom catalysts to increase active-site density and enhance mass transfer. Here, we reasoned that a single-atom metal embedded in nitrogen assembly carbon (NAC) catalysts with high single-atom density, large surface area, and ordered mesoporosity, could fulfil an industrially applicable HER. Among several different single-atom catalysts, the HER overpotential with the best performing Co-NAC reached a current density of 200 mA cm-2 at 310 mV, which is relevant to industrially applicable current density. Density functional theory (DFT) calculations suggested feasible hydrogen binding on single-atom Co resulted in the promising HER activity over Co-NAC. The best-performing Co-NAC showed robust performance under alkaline conditions at a current density of 50 mA cm-2 for 20 h in an H-cell and at a current density of 150 mA cm-2 for 100 h in a flow cell.
Collapse
Affiliation(s)
- Jiaqi Yu
- Department of Chemistry, Iowa State University, Ames, IA 50011, USA.
| | - Yu Yan
- School of Sustainable Chemical, Biological and Materials Engineering, University of Oklahoma, Norman, OK, 73019, USA.
| | - Yuemin Lin
- Department of Chemistry, Iowa State University, Ames, IA 50011, USA.
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, P. R. China
| | - Hengzhou Liu
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, USA
| | - Yuting Li
- U.S. DOE Ames National Laboratory, Iowa State University, Ames, IA, 50011, USA.
| | - Shaohua Xie
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA 92521, USA
| | - Simin Sun
- Department of Chemistry, Iowa State University, Ames, IA 50011, USA.
| | - Fudong Liu
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA 92521, USA
| | - Zhiguo Zhang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, P. R. China
| | - Wenzhen Li
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, USA
| | - Jin-Su Oh
- U.S. DOE Ames National Laboratory, Iowa State University, Ames, IA, 50011, USA.
| | - Lin Zhou
- U.S. DOE Ames National Laboratory, Iowa State University, Ames, IA, 50011, USA.
| | - Long Qi
- U.S. DOE Ames National Laboratory, Iowa State University, Ames, IA, 50011, USA.
| | - Bin Wang
- School of Sustainable Chemical, Biological and Materials Engineering, University of Oklahoma, Norman, OK, 73019, USA.
| | - Wenyu Huang
- Department of Chemistry, Iowa State University, Ames, IA 50011, USA.
- U.S. DOE Ames National Laboratory, Iowa State University, Ames, IA, 50011, USA.
| |
Collapse
|
21
|
Luo W, Liu J, Hu Y, Yan Q. Single and dual-atom catalysts towards electrosynthesis of ammonia and urea: a review. NANOSCALE 2024; 16:20463-20483. [PMID: 39435616 DOI: 10.1039/d4nr02387k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Ammonia and urea represent two important chemicals that have contributed to the rapid development of humanity. However, their industrial production requires harsh conditions, consuming excessive energy and resulting in significant greenhouse gas emission. Therefore, there is growing interest in the electrocatalytic synthesis of ammonia and urea as it can be carried out under ambient conditions. Recently, atomic catalysts (ACs) have gained increased attention for their superior catalytic properties, being able to outperform their micro and nano counterparts. This review examines the advantages and disadvantages of ACs and summarises the advancement of ACs in the electrocatalytic synthesis of ammonia and urea. The focus is on two types of AC - single-atom catalysts (SACs) and diatom catalysts (DACs). SACs offer various advantages, including the 100% atom utilization that allows for low material mass loading, suppression of competitive reactions such as hydrogen evolution reaction (HER), and alternative reaction pathways allowing for efficient synthesis of ammonia and urea. DACs inherit these advantages, possessing further benefits of synergistic effects between the two catalytic centers at close proximity, particularly matching the NN bond for N2 reduction and boosting C-N coupling for urea synthesis. DACs also possess the ability to break the linear scaling relation of adsorption energy of reactants and intermediates, allowing for tuning of intermediate adsorption energies. Finally, possible future research directions using ACs are proposed.
Collapse
Affiliation(s)
- Wenyu Luo
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore.
| | - Jiawei Liu
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore.
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore
| | - Yue Hu
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
| | - Qingyu Yan
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore.
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| |
Collapse
|
22
|
Kment Š, Bakandritsos A, Tantis I, Kmentová H, Zuo Y, Henrotte O, Naldoni A, Otyepka M, Varma RS, Zbořil R. Single Atom Catalysts Based on Earth-Abundant Metals for Energy-Related Applications. Chem Rev 2024; 124:11767-11847. [PMID: 38967551 PMCID: PMC11565580 DOI: 10.1021/acs.chemrev.4c00155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/05/2024] [Accepted: 06/18/2024] [Indexed: 07/06/2024]
Abstract
Anthropogenic activities related to population growth, economic development, technological advances, and changes in lifestyle and climate patterns result in a continuous increase in energy consumption. At the same time, the rare metal elements frequently deployed as catalysts in energy related processes are not only costly in view of their low natural abundance, but their availability is often further limited due to geopolitical reasons. Thus, electrochemical energy storage and conversion with earth-abundant metals, mainly in the form of single-atom catalysts (SACs), are highly relevant and timely technologies. In this review the application of earth-abundant SACs in electrochemical energy storage and electrocatalytic conversion of chemicals to fuels or products with high energy content is discussed. The oxygen reduction reaction is also appraised, which is primarily harnessed in fuel cell technologies and metal-air batteries. The coordination, active sites, and mechanistic aspects of transition metal SACs are analyzed for two-electron and four-electron reaction pathways. Further, the electrochemical water splitting with SACs toward green hydrogen fuel is discussed in terms of not only hydrogen evolution reaction but also oxygen evolution reaction. Similarly, the production of ammonia as a clean fuel via electrocatalytic nitrogen reduction reaction is portrayed, highlighting the potential of earth-abundant single metal species.
Collapse
Affiliation(s)
- Štĕpán Kment
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute, Palacký University, Křížkovského
511/8, 779 00 Olomouc, Czech Republic
- Nanotechnology
Centre, Centre for Energy and Environmental Technologies, VŠB − Technical University of Ostrava, 17. Listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic
| | - Aristides Bakandritsos
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute, Palacký University, Křížkovského
511/8, 779 00 Olomouc, Czech Republic
- Nanotechnology
Centre, Centre for Energy and Environmental Technologies, VŠB − Technical University of Ostrava, 17. Listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic
| | - Iosif Tantis
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute, Palacký University, Křížkovského
511/8, 779 00 Olomouc, Czech Republic
| | - Hana Kmentová
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute, Palacký University, Křížkovského
511/8, 779 00 Olomouc, Czech Republic
| | - Yunpeng Zuo
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute, Palacký University, Křížkovského
511/8, 779 00 Olomouc, Czech Republic
| | - Olivier Henrotte
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute, Palacký University, Křížkovského
511/8, 779 00 Olomouc, Czech Republic
| | - Alberto Naldoni
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute, Palacký University, Křížkovského
511/8, 779 00 Olomouc, Czech Republic
- Department
of Chemistry and NIS Centre, University
of Turin, Turin, Italy 10125
| | - Michal Otyepka
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute, Palacký University, Křížkovského
511/8, 779 00 Olomouc, Czech Republic
- IT4Innovations, VŠB − Technical University of Ostrava, 17. Listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic
| | - Rajender S. Varma
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute, Palacký University, Křížkovského
511/8, 779 00 Olomouc, Czech Republic
| | - Radek Zbořil
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute, Palacký University, Křížkovského
511/8, 779 00 Olomouc, Czech Republic
- Nanotechnology
Centre, Centre for Energy and Environmental Technologies, VŠB − Technical University of Ostrava, 17. Listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic
| |
Collapse
|
23
|
Wang L, Han Y, Xie M, Li X, Chen Q, Tang Y, Liu Y, Ge H, Li H, Cai L, Meerholz K, Zhang H, Müllen K, Chi L. Synthesis of Hexabenzocoronene-Cored Graphdiyne Nanosheets through Dehydrogenative Coupling on Au(111) Surface. Angew Chem Int Ed Engl 2024; 63:e202411722. [PMID: 39081066 DOI: 10.1002/anie.202411722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Indexed: 10/26/2024]
Abstract
Thermally-induced dehydrogenative coupling of polyphenylenes on metal surfaces is an important technique to synthesize π ${\pi }$ -conjugated carbon nanostructures with atomic precision. However, this protocol has rarely been utilized to fabricate structurally defined carbon nanosheets composed of sp- and sp2-hybridized carbon atoms. Here, we present the synthesis of butadiyne-linked hexabenzocoronenes (HBCs) on Au(111) surfaces as core-expanded graphdiynes. The reaction started from hexa(4-ethylphenyl)benzene, which undergoes dehydrogenation toward hexa(4-vinylphenyl)benzene, followed by planarization to hexabenzocoronene, coupling between the vinyl groups, and further dehydrogenation. In addition to butadiyne linkages, benzene groups were also found as another type of linker. The reaction sequences were monitored by scanning tunneling microscopy and bond-resolved non-contact atomic force microscopy, which disclose the structures of intermediates and final products. In combination with density functional theory simulations, the key steps from ethyl substituents to butadiyne and benzene linkers were elucidated. This is a new on-surface synthesis of core-expanded graphdiynes with unprecedented electronic properties.
Collapse
Affiliation(s)
- Lina Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, P. R. China
| | - Yi Han
- Max Planck Institute for Polymer Research, Ackermannweg 10, D-55128, Mainz, Germany
| | - Miao Xie
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, P. R. China
| | - Xuechao Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, P. R. China
| | - Qiang Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, P. R. China
| | - Yanning Tang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, P. R. China
| | - Ye Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, P. R. China
| | - Haitao Ge
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, P. R. China
| | - Hailong Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, P. R. China
| | - Liangshuhan Cai
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, P. R. China
| | - Klaus Meerholz
- Department of Chemistry, University of Cologne, Greinstraße 4-6, 50939, Cologne, Germany
| | - Haiming Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, P. R. China
| | - Klaus Müllen
- Max Planck Institute for Polymer Research, Ackermannweg 10, D-55128, Mainz, Germany
| | - Lifeng Chi
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, P. R. China
| |
Collapse
|
24
|
Zhang W, Xu J, Wang T, Lin X, Wang F. Graphdiyne as an emerging sensor platform: Principles, synthesis and application. J Adv Res 2024:S2090-1232(24)00468-5. [PMID: 39414227 DOI: 10.1016/j.jare.2024.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/20/2024] [Accepted: 10/13/2024] [Indexed: 10/18/2024] Open
Abstract
BACKGROUND Graphdiyne (GDY) is a kind of carbon material, which has highly delocalized π-conjugated system and feasible green synthesis. Nowadays, the use of GDY substrate as a sensing platform has become a new research hotspot and is rapidly developing. However, its application as a sensor is still relatively overlook compared to other fields. AIM OF REVIEW This study is for the purpose of making researchers have a complete comprehensive understanding of GDY and its associated sensing platforms. KEY SCIENTIFIC CONCEPTS OF REVIEW This study introduces the structure, unique characteristics, and synthesis progress of GDY material. Moreover, the article systematically summarizes the improvement of GDY-based sensors in life, health and environmental detection. It also discusses the opportunities and challenges of designing high-performance GDY-based sensing platforms with the assistance of machine learning and theoretical calculate. It has essential scientific and practical meaning for accelerating the development of sensing platforms which base on GDY, triggering unknown phenomena and knowledge of material research, and initiating unlimited space for scientific innovation.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China; College of Life Science, Xinyang Normal University, Xinyang 464000, China
| | - Jing Xu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China; College of Life Science, Xinyang Normal University, Xinyang 464000, China.
| | - Tian Wang
- College of Life Science, Xinyang Normal University, Xinyang 464000, China
| | - Xi Lin
- College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, China.
| | - Fu Wang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China; Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an 710061, China; Xianyang Key Laboratory of Molecular Imaging and Drug Synthesis, School of Pharmacy, Shaanxi University of International Trade & Commerce, Xianyang 712046, China.
| |
Collapse
|
25
|
Hui L, Yan D, Zhang X, Wu H, Li J, Li Y. Halogen Tailoring of Platinum Electrocatalyst with High CO Tolerance for Methanol Oxidation Reaction. Angew Chem Int Ed Engl 2024; 63:e202410413. [PMID: 38973379 DOI: 10.1002/anie.202410413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/01/2024] [Accepted: 07/01/2024] [Indexed: 07/09/2024]
Abstract
The catalytic activity of platinum for CO oxidation depends on the interaction of electron donation and back-donation at the platinum center. Here we demonstrate that the platinum bromine nanoparticles with electron-rich properties on bromine bonded with sp-C in graphdiyne (PtBr NPs/Br-GDY), which is formed by bromine ligand and constitutes an electrocatalyst with a high CO-resistant for methanol oxidation reaction (MOR). The catalyst showed peak mass activity for MOR as high as 10.4 A mgPt -1, which is 20.8 times higher than the 20 % Pt/C. The catalyst also showed robust long-term stability with slight current density decay after 100 hours at 35 mA cm-2. Structural characterization, experimental, and theoretical studies show that the electron donation from bromine makes the surface of platinum catalysts highly electron-rich, and can strengthen the adsorption of CO as well as enhance π back-donation of Pt to weaken the C-O bond to facilitate CO electrooxidation and enhance catalytic performance during MOR. The results highlight the importance of electron-rich structure among active sites in Pt-halogen catalysts and provide detailed insights into the new mechanism of CO electrooxidation to overcome CO poisoning at the Pt center on an orbital level.
Collapse
Affiliation(s)
- Lan Hui
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Dengxin Yan
- Laboratory for Chemical Technology, Ghent University, Technologiepark 125, 9052, Gent, Belgium
| | - Xueting Zhang
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Han Wu
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jinze Li
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yuliang Li
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
26
|
Fu K, Yuan D, Yu T, Lei C, Kou Z, Huang B, Lyu S, Zhang F, Wan T. Recent Advances on Two-Dimensional Nanomaterials Supported Single-Atom for Hydrogen Evolution Electrocatalysts. Molecules 2024; 29:4304. [PMID: 39339299 PMCID: PMC11434429 DOI: 10.3390/molecules29184304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/05/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Water electrolysis has been recognized as a promising technology that can convert renewable energy into hydrogen for storage and utilization. The superior activity and low cost of catalysis are key factors in promoting the industrialization of water electrolysis. Single-atom catalysts (SACs) have attracted attention due to their ultra-high atomic utilization, clear structure, and highest hydrogen evolution reaction (HER) performance. In addition, the performance and stability of single-atom (SA) substrates are crucial, and various two-dimensional (2D) nanomaterial supports have become promising foundations for SA due to their unique exposed surfaces, diverse elemental compositions, and flexible electronic structures, to drive single atoms to reach performance limits. The SA supported by 2D nanomaterials exhibits various electronic interactions and synergistic effects, all of which need to be comprehensively summarized. This article aims to organize and discuss the progress of 2D nanomaterial single-atom supports in enhancing HER, including common and widely used synthesis methods, advanced characterization techniques, different types of 2D supports, and the correlation between structural hydrogen evolution performance. Finally, the latest understanding of 2D nanomaterial supports was proposed.
Collapse
Affiliation(s)
- Kangkai Fu
- Hubei Key Laboratory of Automotive Power Train and Electronic Control, School of Automotive Engineering, Hubei University of Automotive Technology, Shiyan 442002, China
- Hubei Key Laboratory of Energy Storage and Power Battery, School of Mathematics, Physics and Optoelectronic Engineering, Hubei University of Automotive Technology, Shiyan 442002, China
| | - Douke Yuan
- Hubei Key Laboratory of Automotive Power Train and Electronic Control, School of Automotive Engineering, Hubei University of Automotive Technology, Shiyan 442002, China
- Hubei Key Laboratory of Energy Storage and Power Battery, School of Mathematics, Physics and Optoelectronic Engineering, Hubei University of Automotive Technology, Shiyan 442002, China
| | - Ting Yu
- Hubei Key Laboratory of Automotive Power Train and Electronic Control, School of Automotive Engineering, Hubei University of Automotive Technology, Shiyan 442002, China
- Hubei Key Laboratory of Energy Storage and Power Battery, School of Mathematics, Physics and Optoelectronic Engineering, Hubei University of Automotive Technology, Shiyan 442002, China
| | - Chaojun Lei
- Key Laboratory of Organosilicon Chemistry and Material Technology, College of Material, Chemistry and Chemical Engineering, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China
| | - Zhenhui Kou
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Bingfeng Huang
- Hubei Key Laboratory of Automotive Power Train and Electronic Control, School of Automotive Engineering, Hubei University of Automotive Technology, Shiyan 442002, China
- Hubei Key Laboratory of Energy Storage and Power Battery, School of Mathematics, Physics and Optoelectronic Engineering, Hubei University of Automotive Technology, Shiyan 442002, China
| | - Siliu Lyu
- Hubei Key Laboratory of Automotive Power Train and Electronic Control, School of Automotive Engineering, Hubei University of Automotive Technology, Shiyan 442002, China
- Hubei Key Laboratory of Energy Storage and Power Battery, School of Mathematics, Physics and Optoelectronic Engineering, Hubei University of Automotive Technology, Shiyan 442002, China
| | - Feng Zhang
- Hubei Key Laboratory of Automotive Power Train and Electronic Control, School of Automotive Engineering, Hubei University of Automotive Technology, Shiyan 442002, China
- Hubei Key Laboratory of Energy Storage and Power Battery, School of Mathematics, Physics and Optoelectronic Engineering, Hubei University of Automotive Technology, Shiyan 442002, China
| | - Tongtao Wan
- Hubei Key Laboratory of Automotive Power Train and Electronic Control, School of Automotive Engineering, Hubei University of Automotive Technology, Shiyan 442002, China
- Hubei Key Laboratory of Energy Storage and Power Battery, School of Mathematics, Physics and Optoelectronic Engineering, Hubei University of Automotive Technology, Shiyan 442002, China
| |
Collapse
|
27
|
Guo Q, Yuan R, Zhao Y, Yu Y, Fu J, Cao L. Performance of Nitrogen-Doped Carbon Nanoparticles Carrying FeNiCu as Bifunctional Electrocatalyst for Rechargeable Zinc-Air Battery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400830. [PMID: 38778739 DOI: 10.1002/smll.202400830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/12/2024] [Indexed: 05/25/2024]
Abstract
Catalysts for zinc-air batteries (ZABs) must be stable over long-term charging-discharging cycles and exhibit bifunctional catalytic activity. In this study, by doping nitrogen-doped carbon (NC) materials with three metal atoms (Fe, Ni, and Cu), a single-atom-distributed FeNiCu-NC bifunctional catalyst is prepared. The catalyst includes Fe(Ni-doped)-N4 for the oxygen evolution reaction (OER), Fe(Cu-doped)-N4 for the oxygen reduction reaction (ORR), and the NiCu-NC catalytic structure for the oxygen reduction reaction (ORR) in the nitrogen-doped carbon nanoparticles. This single-atom distribution catalyst structure enhances the bifunctional catalytic activity. If a trimetallic single-atom catalyst is designed, it will surpass the typical bimetallic single-atom catcalyst. FeNiCu-NC exhibits outstanding performance as an electrocatalyst, with a half-wave potential (E1/2) of 0.876 V versus RHE, overpotential (Ej = 10) of 253 mV versus RHE at 10 mA cm-2, and a small potential gap (ΔE = 0.61 V). As the anode in a ZAB, FeNiCu-NC can undergo continuous charge-discharged cycles for 575 h without significant attenuation. This study presents a new method for achieving high-performance, low-cost ZABs via trimetallic single-atom doping.
Collapse
Affiliation(s)
- Qiao Guo
- Institute of Material Science and Engineering, Dalian Jiaotong University, Dalian, 116028, China
| | - Rui Yuan
- Fuel Cell System and Engineering Laboratory, Key Laboratory of Fuel Cells & Hybrid Power Sources, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Yutong Zhao
- Fuel Cell System and Engineering Laboratory, Key Laboratory of Fuel Cells & Hybrid Power Sources, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Ying Yu
- Fuel Cell System and Engineering Laboratory, Key Laboratory of Fuel Cells & Hybrid Power Sources, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Jie Fu
- Institute of Material Science and Engineering, Dalian Jiaotong University, Dalian, 116028, China
| | - Longsheng Cao
- Fuel Cell System and Engineering Laboratory, Key Laboratory of Fuel Cells & Hybrid Power Sources, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| |
Collapse
|
28
|
Kong Y, Qiu X, Xue Y, Li G, Qi L, Yang W, Liu T, Li Y. Sulfonic Acid-Functionalized Graphdiyne for Effective Li-S Battery Separators. J Am Chem Soc 2024; 146:23764-23774. [PMID: 39149921 DOI: 10.1021/jacs.4c05107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Lithium-sulfur (Li-S) batteries enable a promising high-energy-storage system while facing practical challenges regarding lithium dendrites and lithium polysulfides (LiPSs) shuttling. Herein, a fascinating SO3H-functionalized graphdiyne (SOGDY) was developed by grafting SO3H onto GDY to modify the separator in Li-S batteries. It realizes structure-retained material transformation, that is, SOGDY retains the crystalline all-carbon network and uniform subnanopores from the initial GDY. The abundant SO3H and uniform pores create a rapid Li+ transport relay station, benefit rapid Li+ transport and even lithium deposition, and prevent lithium dendrite growth. The spatial obstruction and strong polar adsorption sites from SO3H effectively inhibit LiPS shuttling. Additionally, SOGDY establishes a fast electron-transfer pathway to facilitate the LiPS conversion. The SOGDY/PP separator exhibited steady cycling at 1 mA cm-2 over 3500 h in the Li∥Li symmetric battery and achieved outstanding low-temperature and high-rate performance in the Li-S battery with a high initial specific capacity of 804.5 mA h g-1 and a final capacity of 504.9 mA h g-1 after 500 cycles at 3 C and -10 °C. This work demonstrates that introducing a stable all-carbon network and uniform functionalized nanopores is an effective strategy to modify the Li-S battery separator.
Collapse
Affiliation(s)
- Yang Kong
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao 266237, P.R. China
| | - Xuming Qiu
- Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, P.R. China
| | - Yurui Xue
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao 266237, P.R. China
| | - Guoxing Li
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao 266237, P.R. China
| | - Lu Qi
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao 266237, P.R. China
| | - Wenlong Yang
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao 266237, P.R. China
| | - Taifeng Liu
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao 266237, P.R. China
| | - Yuliang Li
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao 266237, P.R. China
- Institute of Chemistry, The Chinese Academy of Sciences, Beijing 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| |
Collapse
|
29
|
Zheng Z, Qi L, Luan X, Zhao S, Xue Y, Li Y. Growing highly ordered Pt and Mn bimetallic single atomic layers over graphdiyne. Nat Commun 2024; 15:7331. [PMID: 39187493 PMCID: PMC11347568 DOI: 10.1038/s41467-024-51687-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 08/14/2024] [Indexed: 08/28/2024] Open
Abstract
Controlling the precise growth of atoms is necessary to achieve manipulation of atomic composition and atomic position, regulation of electronic structure, and an understanding of reactions at the atomic level. Herein, we report a facile method for ordered anchoring of zero-valent platinum and manganese atoms with single-atom thickness on graphdiyne under mild conditions. Due to strong and incomplete charge transfer between graphdiyne and metal atoms, the formation of metal clusters and nanoparticles can be inhibited. The size, composition and structure of the bimetallic nanoplates are precisely controlled by the natural structure-limiting effect of graphdiyne. Experimental characterization clearly demonstrates such a fine control process. Electrochemical measurements show that the active site of platinum-manganese interface on graphdiyne guarantees the high catalytic activity and selectivity (~100%) for alkene-to-diol conversion. This work lays a solid foundation for obtaining high-performance nanomaterials by the atomic engineering of active site.
Collapse
Affiliation(s)
- Zhiqiang Zheng
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Shandong University Jinan 250100, Jinan, China
| | - Lu Qi
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Shandong University Jinan 250100, Jinan, China
| | - Xiaoyu Luan
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Shandong University Jinan 250100, Jinan, China
| | - Shuya Zhao
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Shandong University Jinan 250100, Jinan, China
| | - Yurui Xue
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Shandong University Jinan 250100, Jinan, China.
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.
| | - Yuliang Li
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Shandong University Jinan 250100, Jinan, China.
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
30
|
Gao Y, Xue Y, Chen S, Zheng Y, Chen S, Zheng X, He F, Huang C, Li Y. Confined Growth of Highly Ordered Metal Atomic Arrays for Seawater Oxidation. Angew Chem Int Ed Engl 2024; 63:e202406043. [PMID: 38866704 DOI: 10.1002/anie.202406043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 06/14/2024]
Abstract
Metal atom catalysts have been among the most important research objects due to their specific physical and chemical properties. However, precise control of the anchoring of metal atoms is still challenging to achieve. Cobalt and iridium atomic arrays formed sequentially ordered stable arrays in graphdiyne (GDY) triangular cavities depending on their intrinsic chemical properties and interactions. The success of this method was attributed to multifunctional integration of GDY, enabling selective growth from one to several atoms and various atomic densities. The bimetallic atom arrays show several advantages resulting from reducibility of acetylene bonds, space limiting effect, incomplete charge transfer between GDY and metal atoms, and sp-C hybridized triple bond skeleton. This well-designed system exhibits unprecedented oxygen evolution reaction (OER) performance with a mass activity of 2.6 A mgcat. -1 at a low overpotential of 300 mV, which is 216.6 times higher than the state-of-the-art IrO2 catalyst, and long-term stability.
Collapse
Affiliation(s)
- Yang Gao
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, P. R. China
| | - Yurui Xue
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, P. R. China
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Shandong University, 250100, Jinan, P. R. China
| | - Siao Chen
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, P. R. China
- University of Chinese Academy of Sciences, 100190, Beijing, P. R. China
| | - Yunhao Zheng
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, P. R. China
- University of Chinese Academy of Sciences, 100190, Beijing, P. R. China
| | - Siyi Chen
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, P. R. China
- University of Chinese Academy of Sciences, 100190, Beijing, P. R. China
| | - Xuchen Zheng
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, P. R. China
- University of Chinese Academy of Sciences, 100190, Beijing, P. R. China
| | - Feng He
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, P. R. China
| | - Changshui Huang
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, P. R. China
| | - Yuliang Li
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, P. R. China
- University of Chinese Academy of Sciences, 100190, Beijing, P. R. China
| |
Collapse
|
31
|
Zhang Y, Zhu R, Zhong J, Quan Z, Zhu Y, Yang J, Liang P, Yong Lee J, Liu H. Ozone decomposition on transition-metal-atom anchored graphdiyne: Insights from computation and experiment. J Colloid Interface Sci 2024; 668:77-87. [PMID: 38669998 DOI: 10.1016/j.jcis.2024.04.112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 03/22/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024]
Abstract
Transition-metal-atom anchored graphdiynes (TM@GDY, TM = Mn, Fe, Co, Ni and Cu) have already been synthesized and found applications in hydrogen evolution, nitrogen fixation and etc. By means of first-principle predictions and test experiments, we propose here that Fe@GDY and Co@GDY are efficient catalysts for the sustainable conversion of O3 to O2. These two catalysts can spontaneously chemisorb O3 with zero reaction barrier and have low O3 conversion barriers (0.31 eV and 0.19 eV, respectively). The O3 decomposition experiment in a continuous flow membrane reactor and electron paramagnetic resonance results verify that Fe@GDY and Co@GDY are efficient catalysts under humid conditions. Raman spectra prove the formation of the key Fe-O/Co-O and FeOO and CoOO intermediates. The hydrophobic nature of graphdiyne and the strongest chemisorption of O3 among tested ambient gases, make Fe@GDY and Co@GDY ideal catalysts under both dry and humid conditions. These findings would stimulate future explorations on metal anchored GDY-based catalysts for applications of toxic gas decomposition or fixation.
Collapse
Affiliation(s)
- Ying Zhang
- College of Chemistry and Materials Science, Jinan University, 601 Huang-Pu Avenue West, Guangzhou 510632, China
| | - Rui Zhu
- College of Chemistry and Materials Science, Jinan University, 601 Huang-Pu Avenue West, Guangzhou 510632, China
| | - Jiang Zhong
- College of Chemistry and Materials Science, Jinan University, 601 Huang-Pu Avenue West, Guangzhou 510632, China
| | - Zhipeng Quan
- School of Applied Physics and Materials, Wuyi University, Jiangmen 529020, China
| | - Yongjian Zhu
- School of Applied Physics and Materials, Wuyi University, Jiangmen 529020, China
| | - Jingling Yang
- Guangdong Key Laboratory of Environmental Pollution and Health, College of Environment and Climate, Jinan University, Guangzhou 511443, China.
| | - Ping Liang
- School of Applied Physics and Materials, Wuyi University, Jiangmen 529020, China.
| | - Jin Yong Lee
- Department of Chemistry, Sungkyunkwan University, Suwon 440-746, South Korea
| | - Hongguang Liu
- College of Chemistry and Materials Science, Jinan University, 601 Huang-Pu Avenue West, Guangzhou 510632, China; School of Applied Physics and Materials, Wuyi University, Jiangmen 529020, China.
| |
Collapse
|
32
|
Zhang C, Zheng X, Gao Y, Xing C, Chen S, Xue Y, Li Y. Direct conversion of CO 2 to CH 4 on Pd/graphdiyne single-crystalline. Natl Sci Rev 2024; 11:nwae189. [PMID: 39007000 PMCID: PMC11242443 DOI: 10.1093/nsr/nwae189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 05/12/2024] [Accepted: 05/13/2024] [Indexed: 07/16/2024] Open
Abstract
A major impediment to the development of the efficient use of artificial photosynthesis is the lack of highly selective and efficient photocatalysts toward the conversion of CO2 by sunlight energy at room temperature and ambient pressure. After many years of hard work, we finally completed the synthesis of graphdiyne-based palladium quantum dot catalysts containing high-density metal atom steps for selective artificial photosynthesis. The well-designed interface structure of the catalyst is composed of electron-donor and acceptor groups, resulting in the obvious incomplete charge-transfer phenomenon between graphdiyne and plasmonic metal nanostructures on the interface. These intrinsic characteristics are the origin of the high performance of the catalyst. Studies on its mechanism reveal that the synergism between 'hot electron' from local surface plasmon resonance and rapid photogenerated carrier separation at the ohmic contact interface accelerates the multi-electron reaction kinetics. The catalyst can selectively synthesize CH4 directly from CO2 and H2O with selectivity of near 100% at room temperature and pressure, and exhibits transformative performance, with an average CH4 yield of 26.2 μmol g-1 h-1 and remarkable long-term stability.
Collapse
Affiliation(s)
- Chao Zhang
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Xuchen Zheng
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Yang Gao
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Chengyu Xing
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Siao Chen
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Yurui Xue
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuliang Li
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| |
Collapse
|
33
|
Kaleem Shabbir M, Arif F, Asghar H, Irum Memon S, Khanum U, Akhtar J, Ali A, Ramzan Z, Aziz A, Memon AA, Hussain Thebo K. Two-Dimensional MXene-Based Electrocatalysts: Challenges and Opportunities. CHEM REC 2024; 24:e202400047. [PMID: 39042918 DOI: 10.1002/tcr.202400047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 05/22/2024] [Indexed: 07/25/2024]
Abstract
MXene, regarded as cutting-edge two-dimensional (2D) materials, have been widely explored in various applications due to their remarkable flexibility, high specific surface area, good mechanical strength, and interesting electrical conductivity. Recently, 2D MXene has served as a ideal platform for the design and development of electrocatalysts with high activity, selectivity, and stability. This review article provides a detailed description of the structural engineering of MXene-based electrocatalysts and summarizes the uses of 2D MXene in hydrogen evolution reactions, nitrogen reduction reactions, oxygen evolution reactions, oxygen reduction reactions, and methanol/ethanol oxidation. Then, key issues and prospects for 2D MXene as a next-generation platform in fundamental research and real-world electrocatalysis applications are discussed. Emphasis will be given to material design and enhancement techniques. Finally, future research directions are suggested to improve the efficiency of MXene-based electrocatalysts.
Collapse
Affiliation(s)
- Muhammad Kaleem Shabbir
- Functional nanomaterials Lab (FNL), Department of Chemistry Mirpur, University of Science and Technology (MUST), -10250 (AJK), Mirpur, Pakistan
- Department of Chemistry, University of Kotli, Kotli, AJK 11100, Pakistan
| | - Fozia Arif
- Functional nanomaterials Lab (FNL), Department of Chemistry Mirpur, University of Science and Technology (MUST), -10250 (AJK), Mirpur, Pakistan
- Government Graduate College for Women Jhelum, Jhelum, 49600, Pakistan
| | - Haleema Asghar
- Government Graduate College for Women Jhelum, Jhelum, 49600, Pakistan
| | - Sanam Irum Memon
- Department of Textile Engineering, Mehran University of Engineering and Technology, Jamshoro
| | - Urooj Khanum
- Functional nanomaterials Lab (FNL), Department of Chemistry Mirpur, University of Science and Technology (MUST), -10250 (AJK), Mirpur, Pakistan
| | - Javeed Akhtar
- Functional nanomaterials Lab (FNL), Department of Chemistry Mirpur, University of Science and Technology (MUST), -10250 (AJK), Mirpur, Pakistan
| | - Akbar Ali
- Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Zeeshan Ramzan
- Functional nanomaterials Lab (FNL), Department of Chemistry Mirpur, University of Science and Technology (MUST), -10250 (AJK), Mirpur, Pakistan
| | - Aliya Aziz
- Department of Chemistry, University of Kotli, Kotli, AJK 11100, Pakistan
| | - Ayaz Ali Memon
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, Pakistan
| | - Khalid Hussain Thebo
- Functional nanomaterials Lab (FNL), Department of Chemistry Mirpur, University of Science and Technology (MUST), -10250 (AJK), Mirpur, Pakistan
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang, Wenhua Road, China
| |
Collapse
|
34
|
Fang Y, Yang J, Pan C. The Surface/Interface Modulation of Platinum Group Metal (PGM)-Free Catalysts for VOCs and CO Catalytic Oxidation. ACS APPLIED MATERIALS & INTERFACES 2024; 16:37379-37389. [PMID: 38981038 DOI: 10.1021/acsami.4c08018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Effective management of volatile organic compounds (VOCs) and carbon monoxide (CO) is critical to human health and the ecological environment. Catalytic oxidation is one of the most promising technologies for achieving efficient VOCs and CO emission control. Platinum group metal (PGM)-free catalysts are recently receiving sustainable attention in catalyzing VOCs and CO removal due to their low cost, superior catalytic activity, and excellent stability, but PGM-free catalysts face challenges in low-temperature catalytic efficiency. In this mini-review, starting with discussing the catalytic mechanism of VOCs and CO oxidation, we summarize the surface/interface modulation strategies of PGM-free catalysts to promote oxygen and VOCs/CO molecule activation for enhanced low-temperature oxidation activity, including oxygen vacancy engineering, heteroatom doping, surface acidity modification, and active interface construction. We highlight the currently remaining challenges and prospects of advanced PGM-free catalyst development for highly efficient VOCs and CO emission control in practical applications.
Collapse
Affiliation(s)
- Yarong Fang
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Ji Yang
- Energy Storage and Distributed Resources Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Chuanqi Pan
- Henan Academy of Sciences, Zhengzhou 450046, P. R. China
- Institute of Chemistry, Henan Academy of Sciences, Zhengzhou 450002, P. R. China
| |
Collapse
|
35
|
Wang B, Ma J, Yang R, Meng B, Yang X, Zhang Q, Zhang B, Zhuo S. Bridging Nickel-MOF and Copper Single Atoms/Clusters with H-Substituted Graphdiyne for the Tandem Catalysis of Nitrate to Ammonia. Angew Chem Int Ed Engl 2024; 63:e202404819. [PMID: 38728151 DOI: 10.1002/anie.202404819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 05/08/2024] [Accepted: 05/10/2024] [Indexed: 05/12/2024]
Abstract
Interfacial engineering of synergistic catalysts is one of the keys to achieving multiple proton-coupled electron transfer processes in nitrate-to-ammonia conversion. Herein, by joining ultrathin nickel-based metal-organic framework (denoted Ni-MOF) nanosheets with few-layered hydrogen-substituted graphdiyne-supported copper single atoms and clusters (denoted HsGDY@Cu), a tandem catalyst of Ni-MOFs@HsGDY@Cu with dual-active interfaces was developed for the concerted catalysis of nitrate-to-ammonia. In such a system, the sandwiched HsGDY layer could serve as a bridge to connect the coordinated unsaturated Ni2+ sites with Cu single atoms/clusters in a limited range of 0 to 3.6 nm. From Ni2+ to Cu, via the hydrogen spillover process, the hydrogen radicals (H⋅) generated at the unsaturated Ni2+ sites could migrate across HsGDY to the Cu sites to participate in the transformation of *HNO3 to NH3. From Cu to Ni2+, bypassing the higher reaction energy for *HNO3 formation on the Ni2+ sites, the NO2 - detached from the Cu sites could diffuse onto the unsaturated Ni2+ sites to form NH3 as well. The combined results make this hybrid a tandem catalyst with dual active sites for the catalysis of nitrate-to-ammonia conversion with improved Faradaic efficiency at lower overpotentials.
Collapse
Affiliation(s)
- Biwen Wang
- School of Chemistry and Chemical Engineering, Xi'an Key Laboratory of Functional Organic Porous Materials, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Jiahao Ma
- School of Chemistry and Chemical Engineering, Xi'an Key Laboratory of Functional Organic Porous Materials, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
- Research & Development Institute of, Northwestern Polytechnical University in Shenzhen, Shenzhen City, 518063, P. R. China
| | - Rong Yang
- Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Bocheng Meng
- School of Chemistry and Chemical Engineering, Xi'an Key Laboratory of Functional Organic Porous Materials, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Xiubo Yang
- Analytical & Testing Center, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Qiuyu Zhang
- School of Chemistry and Chemical Engineering, Xi'an Key Laboratory of Functional Organic Porous Materials, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Bin Zhang
- Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Sifei Zhuo
- School of Chemistry and Chemical Engineering, Xi'an Key Laboratory of Functional Organic Porous Materials, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
- Research & Development Institute of, Northwestern Polytechnical University in Shenzhen, Shenzhen City, 518063, P. R. China
| |
Collapse
|
36
|
Liu J, Zhang L, Wang K, Jiang C, Zhang C, Wang N. Island-Like Heterogeneous Interface Generating Tandem Toroidal Built-In Electric Field for Efficient Potassium Ions Diffusion. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400093. [PMID: 38353062 DOI: 10.1002/smll.202400093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 01/31/2024] [Indexed: 07/19/2024]
Abstract
For large-size potassium accommodation, heterostructure usually suffers severe delamination and exfoliation at the interfaces due to different volume expansion of two-phase during charge/discharge process, resulting in the deconstruction of heterostructures and shortened lifespan of batteries. Here, an innovative strategy is proposed through constructing a microscopic heterostructure system containing copper quantum dots (Cu QDs) highly dispersed in the triphenyl-substituted triazine graphdiyne (TPTG) substrates (TPTG@CuQDs) to solve this problem. The copper quantum dots are uniformly anchored on TPTG substrates, generating a myriad of island-like heterogeneous structures, together with tandem toroidal built-in electric field (BIEF) between every micro heterointerface. The island-like heterostructure endows both benefits of exposed contact interface and robust architecture. Generated tandem toroidal BIEF provides efficient transport pathways with lower energy barriers, reducing the diffusion resistance and facilitating the reaction kinetics of potassium ions. When used as anode, the TPTG@CuQDs exhibit highly reversible capacity and low-capacity degradation (≈0.01% over 5560 cycles at 1 A g-1). Moreover, the TPTG@CuQDs-based full cell delivers an outstanding reversible capacity of ≈110 mAh g-1 over 800 cycles at 1 A g-1. This quantum-scale heterointerface construction strategy offers a new approach toward stable heterostructure design for the application of metal ion batteries.
Collapse
Affiliation(s)
- Jingyi Liu
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Luwei Zhang
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Kaihang Wang
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Chao Jiang
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Chunfang Zhang
- College of Chemistry and Materials Science, Hebei University, Baoding, 071002, P. R. China
| | - Ning Wang
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| |
Collapse
|
37
|
Ma L, Yuan J, Liu Z, Luo Y, Su Y, Zhu K, Feng Z, Niu H, Xiao S, Wei J, Xiang X. Mesoporous Electrocatalysts with p-n Heterojunctions for Efficient Electroreduction of CO 2 and N 2 to Urea. ACS APPLIED MATERIALS & INTERFACES 2024; 16:26015-26024. [PMID: 38721726 DOI: 10.1021/acsami.4c00257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
The electrocatalytic synthesis of high-value-added urea by activating N2 and CO2 is a green synthesis technology that has achieved carbon neutrality. However, the chemical adsorption and C-N coupling ability of N2 and CO2 on the surface of the catalyst are generally poor, greatly limiting the improvement of electrocatalytic activity and selectivity in electrocatalytic urea synthesis. Herein, novel hierarchical mesoporous CeO2/Co3O4 heterostructures are fabricated, and at an ultralow applied voltage of -0.2 V, the urea yield rate reaches 5.81 mmol g-1 h-1, with a corresponding Faraday efficiency of 30.05%. The hierarchical mesoporous material effectively reduces the mass transfer resistance of reactants and intermediates, making it easier for them to access active centers. The emerging space-charge regions at the heterointerface generate local electrophilic and nucleophilic regions, facilitating CO2 targeted adsorption in the electrophilic region and activation to produce *CO intermediates and N2 targeted adsorption in the nucleophilic region and activation to generate *N ═ N* intermediates. Then, the electrons in the σ orbitals of *N ═ N* intermediates can be easily accepted by the empty eg orbitals of Co3+ in CeO2/Co3O4, which presents a low-spin state (LS: t2g6eg0). Subsequently, *CO couples with *N ═ N* to produce the key intermediate *NCON*. Interestingly, it was discovered through in situ Raman spectroscopy that the CeO2/Co3O4 catalyst has a reversible spinel structure before and after the electrocatalytic reaction, which is due to the surface reconstruction of the catalyst during the electrocatalytic reaction process, producing amorphous active cobalt oxides, which is beneficial for improving electrocatalytic activity.
Collapse
Affiliation(s)
- Lingjia Ma
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Jiongliang Yuan
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Zhaotao Liu
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Yiqing Luo
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Yuning Su
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Kunye Zhu
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Zefeng Feng
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Huihua Niu
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Shuaishuai Xiao
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Jianjun Wei
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Xu Xiang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
- Quzhou Institute for Innovation in Resource Chemical Engineering, Quzhou, Zhejiang 324000, P. R. China
| |
Collapse
|
38
|
He F, Chen X, Xue Y, Li Y. Theoretical Prediction Leads to Synthesize GDY Supported InO x Quantum Dots for CO 2 Reduction. Angew Chem Int Ed Engl 2024; 63:e202318080. [PMID: 38548702 DOI: 10.1002/anie.202318080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Indexed: 04/19/2024]
Abstract
The preparation of formic acid by direct reduction of carbon dioxide is an important basis for the future chemical industry and is of great significance. Due to the serious shortage of highly active and selective electrocatalysts leading to the development of direct reduction of carbon dioxide is limited. Herein the target catalysts with high CO2RR activity and selectivity were identified by integrating DFT calculations and high-throughput screening and by using graphdiyne (GDY) supported metal oxides quantum dots (QDs) as the ideal model. It is theoretically predicted that GDY supported indium oxide QDs (i.e., InOx/GDY) is a new heterostructure electrocatalyst candidate with optimal CO2RR performance. The interfacial electronic strong interactions effectively regulate the surface charge distribution of QDs and affect the adsorption/desorption behavior of HCOO* intermediate during CO2RR to achieve highly efficient CO2 conversion. Based on the predicted composition and structure, we synthesized the advanced catalytic system, and demonstrates superior CO2-to-HCOOH conversion performance. The study presents an effective strategy for rational design of highly efficient heterostructure electrocatalysts to promote green chemical production.
Collapse
Affiliation(s)
- Feng He
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Xi Chen
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Yurui Xue
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, Science School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Yuliang Li
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100190, P. R. China
| |
Collapse
|
39
|
Nidhi HV, Koppad VS, Babu AM, Varghese A. Properties, Synthesis and Emerging Applications of Graphdiyne: A Journey Through Recent Advancements. Top Curr Chem (Cham) 2024; 382:19. [PMID: 38762848 DOI: 10.1007/s41061-024-00466-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 05/05/2024] [Indexed: 05/20/2024]
Abstract
Graphdiyne (GDY) is a new variant of nano-carbon material with excellent chemical, physical and electronic properties. It has attracted wide attention from researchers and industrialists for its extensive role in the fields of optics, electronics, bio-medics and energy. The unique arrangement of sp-sp2 carbon atoms, linear acetylenic linkages, uniform pores and highly conjugated structure offer numerous potentials for further exploration of GDY materials. However, since the material is at its infancy, not much understanding is available regarding its properties, growth mechanism and future applications. Therefore, in this review, readers are guided through a brief discussion on GDY's properties, different synthesis procedures with a special focus on surface functionalization and a list of applications for GDY. The review also critically analyses the advantages and disadvantages of each synthesis route and emphasizes the future scope of the material.
Collapse
Affiliation(s)
- H V Nidhi
- CHRIST (Deemed to Be University), Bangalore, Karnataka, 560029, India
| | - Vinayaka S Koppad
- CHRIST (Deemed to Be University), Bangalore, Karnataka, 560029, India
| | - Ann Mariella Babu
- CHRIST (Deemed to Be University), Bangalore, Karnataka, 560029, India
| | - Anitha Varghese
- CHRIST (Deemed to Be University), Bangalore, Karnataka, 560029, India.
| |
Collapse
|
40
|
Patil R, Rajput A, Matsagar BM, Chen NCR, Ujihara M, Salunkhe RR, Yadav P, Wu KCW, Chakraborty B, Dutta S. Elevated temperature-driven coordinative reconstruction of an unsaturated single-Ni-atom structure with low valency on a polymer-derived matrix for the electrolytic oxygen evolution reaction. NANOSCALE 2024; 16:7467-7479. [PMID: 38511345 DOI: 10.1039/d4nr00337c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
A high-temperature pyrolysis-controlled coordination reconstruction resulted in a single-Ni-atom structure with a Ni-Nx-C structural unit (x = N atom coordinated to Ni). Pyrolysis of Ni-phen@ZIF-8-RF at 700 °C resulted in NiNP-NC-700 with predominantly Ni nanoparticles. Upon elevating the pyrolysis temperature from 700 to 900 °C, a coordination reconstruction offers Ni-Nx atomic sites in NiSA-NC-900. A combined investigation with X-ray absorption spectroscopy, X-ray photoelectron spectroscopy, and soft X-ray L3-edge spectroscopy suggests the stabilization of low-valent Niδ+ (0 < δ < 2) in the Ni-N-C structural units. The oxygen evolution reaction (OER) is a key process during water splitting in fuel cells. However, OER is a thermodynamically uphill reaction with multi-step proton-coupled electron transfer and sluggish kinetics, due to which there is a need for a catalyst that can lower the OER overpotentials. The adsorption energy of a multi-step reaction on a single metal atom with coordination unsaturation tunes the adsorption of each oxygenated intermediate. The promising OER activity of the NiSA-NC-900/NF anode on nickel foam was followed by the overall water splitting (OWS) using using NiSA-NC-900/NF as anode and Pt coil as the cathodic counterpart, wherein a cell potential of 1.75 V at 10 mA cm-2 was achieved. The cell potential recorded with Pt(-)/(+)NiSA-NC-900/NF was much lower than that obtained for other cells, i.e., Pt(-)/NF and NF(-)/(+)NF, which enhances the potentials of low-valent NiSAs for insightful understanding of the OER. At a constant applied potential of 1.61 V (vs. RHE) for 12 h, an small increase in current for initial 0.6 h followed by a constant current depicts the fair stability of catalyst for 12 h. Our results offer an insightful angle into the OER with a coordinatively reconstructed single-Ni-atom structure at lower valency (<+2).
Collapse
Affiliation(s)
- Rahul Patil
- Electrochemical Energy & Sensor Research Laboratory, Amity Institute of Click Chemistry Research & Studies, Amity University, Noida, India.
| | - Anubha Rajput
- Department of Chemistry, Indian Institute of Technology, New Delhi, India.
| | - Babasaheb M Matsagar
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Norman C R Chen
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
- Molecular Science and Technology Program, Taiwan International Graduate Program Academia Sinica, Taiwan
- International Graduate Program of Molecular Science and Technology (NTU-MST), National Taiwan University, Taiwan
| | - Masaki Ujihara
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei, Taiwan
| | - Rahul R Salunkhe
- Materials Research Laboratory Department of Physics, Indian Institute of Technology, Jammu, India
| | - Praveen Yadav
- Synchrotron X-ray Facility, Raja Ramanna Centre for Advanced Technology, Rajendra Nagar, Indore, Madhya Pradesh 452013, India
| | - Kevin C-W Wu
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | | | - Saikat Dutta
- Electrochemical Energy & Sensor Research Laboratory, Amity Institute of Click Chemistry Research & Studies, Amity University, Noida, India.
| |
Collapse
|
41
|
Gao Y, Xue Y, Wu H, Chen S, Zheng X, Xing C, Li Y. Self-Organized Gradually Single-Atom-Layer of Metal Osmium for an Unprecedented Hydrogen Production from Seawater. J Am Chem Soc 2024; 146:10573-10580. [PMID: 38567542 DOI: 10.1021/jacs.4c00027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Atomic thick two-dimensional (2D) materials with exciting physical, chemical, and electronic properties are gaining increasing attention in next-generation science and technology, showing great promise in catalysis and energy science. However, the precise design and synthesis of efficient catalytic systems based on such materials still face many difficulties, especially in how to control the preparation of structurally determined, highly active, atomic-scale distribution of material systems. Here, we report that a highly active zerovalent osmium single-atom-layer with a thickness of single atom size has been successfully and controllably self-organized on the surface of 2D graphdiyne (GDY) material. Detailed characterizations showed that the incomplete charge transfer effect between the Os atoms and GDY not only stabilized the catalytic system but also improved the intrinsic activity, making the Gibbs free energy reach the best and resulting in remarkable performance with a small overpotential of 49 mV at 500 mA cm-2, large specific j0 of 18.6 mA cm-2, and turnover frequency of 3.89 H2 s-1 at 50 mV. In addition, the formation of sp-C-Os bonds guarantees the high long-term stability of 800 h at a large current density of 500 mA cm-2 in alkaline simulated seawater.
Collapse
Affiliation(s)
- Yang Gao
- CAS Key Laboratory of Organic Solids, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, China
| | - Yurui Xue
- CAS Key Laboratory of Organic Solids, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, China
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Han Wu
- CAS Key Laboratory of Organic Solids, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Siao Chen
- CAS Key Laboratory of Organic Solids, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuchen Zheng
- CAS Key Laboratory of Organic Solids, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chengyu Xing
- CAS Key Laboratory of Organic Solids, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, China
| | - Yuliang Li
- CAS Key Laboratory of Organic Solids, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
42
|
Feng Y, Sun M, Ji Y, Fan T. Is Fe the Most Active Site for Fe/N-Doped Graphdiyne? ACS OMEGA 2024; 9:17389-17397. [PMID: 38645330 PMCID: PMC11025103 DOI: 10.1021/acsomega.4c00093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/20/2024] [Accepted: 03/22/2024] [Indexed: 04/23/2024]
Abstract
We performed a systematic study on the activity of pristine, Fe-doped, N-doped, and Fe/N-codoped graphdiyne (GDY) for oxygen reduction reactions (ORRs). We found that the pristine GDY has a high overpotential because of the weak binding of the intermediates. The sp-hybridized N-doped GDY enhances the binding of the intermediates at the adjacent sp-hybridized C site, which greatly enhances its ORR activities with a low overpotential of 0.45 V. On the other hand, on Fe-doped GDY, the binding of the intermediates at the Fe site and its neighboring C sites becomes too strong, while the C site at the second nearest acetylene chain becomes the most active site with an overpotential of 0.43 V. In the case of Fe and N codoping, Fe and the C sites near Fe and N still bind the intermediates too strongly, and the most active site is located at the C with an optimal distance. The binding energy of OH* is an activity descriptor for Fe- and/or N-doped GDY. Based on the machine learning analysis of ΔG(OH*), both the properties of the active center (electronic and geometric properties) and its environment, especially the latter, play important roles in determining its activity. The scaling relation analysis and volcano plot suggest that Fe and N doping enhance the binding of the intermediates to different extents, and the C atom, which is bonded neither to N nor to Fe atom, with an optimal binding strength, becomes the most active site.
Collapse
Affiliation(s)
- Yuanyi Feng
- School
of Chemistry and Chemical Engineering, South
China University of Technology, Guangzhou 510641, P. R. China
| | - Mingying Sun
- School
of Chemistry and Chemical Engineering, South
China University of Technology, Guangzhou 510641, P. R. China
| | - Yongfei Ji
- School
of Chemistry and Chemical Engineering, Guangzhou
University, Guangzhou 510006, P. R. China
| | - Ting Fan
- School
of Chemistry and Chemical Engineering, South
China University of Technology, Guangzhou 510641, P. R. China
| |
Collapse
|
43
|
Alemany-Molina G, Navlani-García M, Juan-Juan J, Morallón E, Cazorla-Amorós D. Exploring the synergistic effect of palladium nanoparticles and highly dispersed transition metals on carbon nitride/super-activated carbon composites for boosting electrocatalytic activity. J Colloid Interface Sci 2024; 660:401-411. [PMID: 38244506 DOI: 10.1016/j.jcis.2024.01.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/13/2023] [Accepted: 01/08/2024] [Indexed: 01/22/2024]
Abstract
In the present work, multifunctional electrocatalysts formed by palladium nanoparticles (Pd NPs) loaded on Fe or Cu-containing composite supports, based on carbon nitride (C3N4) and super-activated carbon with a high porosity development (SBET 3180 m2/g, VDR 1.57 cm3/g, and VT 1.65 cm3/g), were synthesised. The presence of Fe or Cu sites favoured the formation of Pd NPs with small average particle size and a very narrow size distribution, which agreed with Density Functional Theory (DFT) calculations showing that the interaction of Pd clusters with C3N4 flakes is weaker than with Cu- or Fe-C3N4 sites. The electroactivity was also dependent on the composition and, as suggested by preliminary DFT calculations, the Pd-Cu catalyst showed lower overpotential for hydrogen evolution reaction (HER) while bifunctional oxygen reduction reaction/ oxygen evolution reaction (ORR/OER) behaviour was superior in Pd-Fe sample. The Pd-Fe electrocatalyst was studied in a zinc-air battery (ZAB) for 10 h, showing a performance similar to a commercial Pt/C + RuO2 catalyst with a high content of precious metal. This study demonstrates the synergistic effect between Pd species and transition metals and shows that transition metals anchored on C3N4-based composite materials promote the electroactivity of Pd NPs in HER, ORR and OER due to the interaction between both species.
Collapse
Affiliation(s)
- G Alemany-Molina
- Department of Inorganic Chemistry and Materials Institute, University of Alicante, Ap. 99, Alicante E-03080, Spain
| | - M Navlani-García
- Department of Inorganic Chemistry and Materials Institute, University of Alicante, Ap. 99, Alicante E-03080, Spain
| | - J Juan-Juan
- Research Support Services, University of Alicante, Ap. 99, Alicante E-03080, Spain
| | - E Morallón
- Department of Physical Chemistry and Materials Institute, University of Alicante, Ap. 99, Alicante E-03080, Spain
| | - D Cazorla-Amorós
- Department of Inorganic Chemistry and Materials Institute, University of Alicante, Ap. 99, Alicante E-03080, Spain.
| |
Collapse
|
44
|
Ma Y, Yang Q, Qi J, Zhang Y, Gao Y, Zeng Y, Jiang N, Sun Y, Qu K, Fang W, Li Y, Lu X, Zhi C, Qiu J. Surface atom knockout for the active site exposure of alloy catalyst. Proc Natl Acad Sci U S A 2024; 121:e2319525121. [PMID: 38564637 PMCID: PMC11009663 DOI: 10.1073/pnas.2319525121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/06/2024] [Indexed: 04/04/2024] Open
Abstract
The fine regulation of catalysts by the atomic-level removal of inactive atoms can promote the active site exposure for performance enhancement, whereas suffering from the difficulty in controllably removing atoms using current micro/nano-scale material fabrication technologies. Here, we developed a surface atom knockout method to promote the active site exposure in an alloy catalyst. Taking Cu3Pd alloy as an example, it refers to assemble a battery using Cu3Pd and Zn as cathode and anode, the charge process of which proceeds at about 1.1 V, equal to the theoretical potential difference between Cu2+/Cu and Zn2+/Zn, suggesting the electricity-driven dissolution of Cu atoms. The precise knockout of Cu atoms is confirmed by the linear relationship between the amount of the removed Cu atoms and the battery cumulative specific capacity, which is attributed to the inherent atom-electron-capacity correspondence. We observed the surface atom knockout process at different stages and studied the evolution of the chemical environment. The alloy catalyst achieves a higher current density for oxygen reduction reaction compared to the original alloy and Pt/C. This work provides an atomic fabrication method for material synthesis and regulation toward the wide applications in catalysis, energy, and others.
Collapse
Affiliation(s)
- Yi Ma
- State Key Laboratory of Chemical Resource Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing100029, China
| | - Qi Yang
- State Key Laboratory of Chemical Resource Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing100029, China
| | - Jun Qi
- State Key Laboratory of Chemical Resource Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing100029, China
| | - Yong Zhang
- State Key Laboratory of Chemical Resource Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing100029, China
| | - Yuliang Gao
- State Key Laboratory of Chemical Resource Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing100029, China
| | - You Zeng
- State Key Laboratory of Chemical Resource Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing100029, China
| | - Na Jiang
- State Key Laboratory of Chemical Resource Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing100029, China
| | - Ying Sun
- Institute of Clean Energy Chemistry, Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials of Liaoning Province, College of Chemistry, Liaoning University, Shenyang110036, China
| | - Keqi Qu
- State Key Laboratory of Chemical Resource Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing100029, China
| | - Wenhui Fang
- State Key Laboratory of Chemical Resource Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing100029, China
| | - Ying Li
- State Key Laboratory of Chemical Resource Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing100029, China
| | - Xuejun Lu
- State Key Laboratory of Chemical Resource Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing100029, China
| | - Chunyi Zhi
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong999077, China
| | - Jieshan Qiu
- State Key Laboratory of Chemical Resource Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing100029, China
| |
Collapse
|
45
|
Zhu Y, Zhang S, Qiu X, Hao Q, Wu Y, Luo Z, Guo Y. Graphdiyne/metal oxide hybrid materials for efficient energy and environmental catalysis. Chem Sci 2024; 15:5061-5081. [PMID: 38577352 PMCID: PMC10988606 DOI: 10.1039/d4sc00036f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 02/22/2024] [Indexed: 04/06/2024] Open
Abstract
Graphdiyne (GDY)-based materials, owing to their unique structure and tunable electronic properties, exhibit great potential in the fields of catalysis, energy, environmental science, and beyond. In particular, GDY/metal oxide hybrid materials (GDY/MOs) have attracted extensive attention in energy and environmental catalysis. The interaction between GDY and metal oxides can increase the number of intrinsic active sites, facilitate charge transfer, and regulate the adsorption and desorption of intermediate species. In this review, we summarize the structure, synthesis, advanced characterization, small molecule activation mechanism and applications of GDY/MOs in energy conversion and environmental remediation. The intrinsic structure-activity relationship and corresponding reaction mechanism are highlighted. In particular, the activation mechanisms of reactant molecules (H2O, O2, N2, etc.) on GDY/MOs are systemically discussed. Finally, we outline some new perspectives of opportunities and challenges in developing GDY/MOs for efficient energy and environmental catalysis.
Collapse
Affiliation(s)
- Yuhua Zhu
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, College of Chemistry, Central China Normal University Wuhan Hubei 430082 China
- School of Civil Engineering, Wuhan University Wuhan 430072 China
| | - Shuhong Zhang
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, College of Chemistry, Central China Normal University Wuhan Hubei 430082 China
| | - Xiaofeng Qiu
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, College of Chemistry, Central China Normal University Wuhan Hubei 430082 China
| | - Quanguo Hao
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, College of Chemistry, Central China Normal University Wuhan Hubei 430082 China
| | - Yan Wu
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, College of Chemistry, Central China Normal University Wuhan Hubei 430082 China
| | - Zhu Luo
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, College of Chemistry, Central China Normal University Wuhan Hubei 430082 China
- Wuhan Institute of Photochemistry and Technology 7 North Bingang Road Wuhan Hubei 430082 China
| | - Yanbing Guo
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, College of Chemistry, Central China Normal University Wuhan Hubei 430082 China
- Wuhan Institute of Photochemistry and Technology 7 North Bingang Road Wuhan Hubei 430082 China
| |
Collapse
|
46
|
Fu X, He F, Liu X, Ge B, Zhang D, Chang Q, Gao J, Li X, Huang C, Li Y. Direct solar energy conversion on zinc-air battery. Proc Natl Acad Sci U S A 2024; 121:e2318777121. [PMID: 38547057 PMCID: PMC10998616 DOI: 10.1073/pnas.2318777121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 02/23/2024] [Indexed: 04/08/2024] Open
Abstract
A concept of solar energy convertible zinc-air battery (SZAB) is demonstrated through rational design of an electrode coupled with multifunction. The multifunctional electrode is fabricated using nitrogen-substituted graphdiyne (N-GDY) with large π-conjugated carbonous network, which can work as photoresponsive bifunctional electrocatalyst, enabling a sunlight-promoted process through efficient injection of photoelectrons into the conduction band of N-GDY. SZAB enables direct conversion and storage of solar energy during the charging process. Such a battery exhibits a lowered charge voltage under illumination, corresponding to a high energy efficiency of 90.4% and electric energy saving of 30.3%. The battery can display a power conversion efficiency as high as 1.02%. Density functional theory calculations reveal that the photopromoted oxygen evolution reaction kinetics originates from the transition from the alkyne bonds to double bonds caused by the transfer of excited electrons, which changes the position of highest occupied molecular orbital and lowest unoccupied molecular orbital, thus greatly promoting the formation of intermediates to the conversion process. Our findings provide conceptual and experimental confirmation that batteries are charged directly from solar energy without the external solar cells, providing a way to manufacture future energy devices.
Collapse
Affiliation(s)
- Xinlong Fu
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing100049, China
| | - Feng He
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing100190, China
| | - Xin Liu
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin150001, China
| | - Binghui Ge
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei230039, China
| | - Deyi Zhang
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing100049, China
| | - Qian Chang
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing100190, China
| | - Jingchi Gao
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing100049, China
| | - Xiaodong Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing100190, China
| | - Changshui Huang
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing100049, China
| | - Yuliang Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing100049, China
| |
Collapse
|
47
|
Yu Y, Zhu Z, Huang H. Surface Engineered Single-atom Systems for Energy Conversion. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311148. [PMID: 38197471 DOI: 10.1002/adma.202311148] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/17/2023] [Indexed: 01/11/2024]
Abstract
Single-atom catalysts (SACs) are demonstrated to show exceptional reactivity and selectivity in catalytic reactions by effectively utilizing metal species, making them a favorable choice among the different active materials for energy conversion. However, SACs are still in the early stages of energy conversion, and problems like agglomeration and low energy conversion efficiency are hampering their practical applications. Substantial research focus on support modifications, which are vital for SAC reactivity and stability due to the intimate relationship between metal atoms and support. In this review, a category of supports and a variety of surface engineering strategies employed in SA systems are summarized, including surface site engineering (heteroatom doping, vacancy introducing, surface groups grafting, and coordination tunning) and surface structure engineering (size/morphology control, cocatalyst deposition, facet engineering, and crystallinity control). Also, the merits of support surface engineering in single-atom systems are systematically introduced. Highlights are the comprehensive summary and discussions on the utilization of surface-engineered SACs in diversified energy conversion applications including photocatalysis, electrocatalysis, thermocatalysis, and energy conversion devices. At the end of this review, the potential and obstacles of using surface-engineered SACs in the field of energy conversion are discussed. This review aims to guide the rational design and manipulation of SACs for target-specific applications by capitalizing on the characteristic benefits of support surface engineering.
Collapse
Affiliation(s)
- Yutang Yu
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Zijian Zhu
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Hongwei Huang
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing, 100083, China
| |
Collapse
|
48
|
Zhang L, Qi L, Liu J, He F, Wang N, Li Y. Microcrystalline Nanofiber Electrode with Adaptive Intrinsic Structure and Microscopic Interface. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308905. [PMID: 37988690 DOI: 10.1002/smll.202308905] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/27/2023] [Indexed: 11/23/2023]
Abstract
A strategy of microcrystalline aggregation is proposed to fabricate energy storage electrode with outstanding capacity and stability. Carbon-rich electrode (BDTG) functionalized with benzo[1,2-b:4,5-b']dithiophene units and butadiyne segments are prepared. The linear conjugate chains pack as microcrystalline nanofibers on nanoscale, which further aggregates to form a porous interpenetrating network. The microcrystalline aggregation feature of BDTG exhibit stable structure during long cycling test, revealing the following advantage in structure and property. The stretchable butadiyne linker facilitates reversible adsorption and desorption of Li with the aid of adjacent sulfur heteroatom. The alkyne-alkene transition exhibits intrinsic structural stability of microcrystalline region in BDTG electrodes. Meanwhile, alkynyl groups and sulfur heteroatoms on the surface of BDTG nanofibers participate in the formation of microscopic interface, providing a stable interfacial contact between BDTG electrodes and adjacent electrolyte. As a proof-of-concept, BDTG-based electrode shows high capacity (1430 mAh g-1 at 50 mA g-1) and excellent cycle performance (8000 cycles under 5 A g-1) in half-cell of lithium-ion batteries, and a reversible capacity of 120 mAh g-1 is obtained under the current density of 2 C in full-cell. This work shows microcrystalline aggregation is beneficial to realize adaptive intrinsic structure and interface contact during the charge-discharge process.
Collapse
Affiliation(s)
- Luwei Zhang
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Lu Qi
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Jingyi Liu
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Feng He
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Ning Wang
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Yuliang Li
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
49
|
Zhang X, Wu X, Lv Y, Guo J, Liang N, Guo R, Zhu Y, Liu H, Jia D. Fabrication of Zn-Air Battery with High Output Capacity Under Ultra-Large Current. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307999. [PMID: 37972271 DOI: 10.1002/smll.202307999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/27/2023] [Indexed: 11/19/2023]
Abstract
Zn-air battery (ZAB) is advocated as a more viable option in the new-energy technology. However, the limited-output capacity at a high current density impedes the driving range in power batteries substantially. Here, a novel heterojunction-based graphdiyne (GDY) and Ag29Cu7 alloy quantum dots (Ag29Cu7 QDs/GDY) for constructing a high-performance aqueous ZAB are fabricated. The as-fabricated ZAB achieves discharge at up to 100 mA cm-2 (the highest value ever reported) along with a remarkable output specific capacity of 786.2 mAh g-1 Zn, which is mainly benefitted from the binary-synergistic effect toward a stable triple-phase interface for air electrode induced by the Ag29Cu7 QDs and GDY in harsh base, together with the decreasing reaction energy barrier and polarization. The results outperform the superior reports discharging at low current and will bring breakthrough progress toward the practical applications of ZAB on large power supply facilities.
Collapse
Affiliation(s)
- Xiuli Zhang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, Xinjiang, 830046, P. R. China
| | - Xueyan Wu
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, Xinjiang, 830046, P. R. China
| | - Yan Lv
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, Xinjiang, 830046, P. R. China
| | - Jixi Guo
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, Xinjiang, 830046, P. R. China
| | - Na Liang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, Xinjiang, 830046, P. R. China
| | - Renhe Guo
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, Xinjiang, 830046, P. R. China
| | - Yingfu Zhu
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, Xinjiang, 830046, P. R. China
| | - Huibiao Liu
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, Xinjiang, 830046, P. R. China
- CAS Key Laboratory of Organic Solids, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Dianzeng Jia
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, Xinjiang, 830046, P. R. China
| |
Collapse
|
50
|
Dong YW, Zhai XJ, Wu Y, Zhou YN, Li YC, Nan J, Wang ST, Chai YM, Dong B. Construction of n-type homogeneous to improve interfacial carrier transfer for enhanced photoelectrocatalytic hydrolysis. J Colloid Interface Sci 2024; 658:258-266. [PMID: 38104408 DOI: 10.1016/j.jcis.2023.12.080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/08/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
Photoelectrocatalyzed hydrogen production plays an important role in the path to carbon neutrality. The construction of heterojunctions provides an ideal example of an oxygen precipitation reaction. In this work, the performance of the n-n type heterojunction CeBTC@FeBTC/NIF in the photoelectronically coupled catalytic oxygen evolution reaction (OER) reaction is presented. The efficient transfer of carriers between components enhances the catalytic activity. Besides, the construction of heterojunctions optimizes the energy level structure and increases the absorption of light, and the microstructure forms holes with a blackbody effect that also enhances light absorption. Consequently, CeBTC@FeBTC/NIF has excellent photoelectric coupling catalytic properties and requires an overpotential of only 300 mV to drive a current density of 100 mA cm-2 under illumination. More importantly, the n-n heterojunction was found to be effective in enhancing charge and photogenerated electron migration by examining the carrier density of each component and carrier diffusion at the interface.
Collapse
Affiliation(s)
- Yi-Wen Dong
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Xue-Jun Zhai
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Yang Wu
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Ya-Nan Zhou
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Yi-Chuan Li
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Jun Nan
- CNOOC Tianjin Chemical Research and Design Institute Co., Ltd, Tianjin 300131, China
| | - Shu-Tao Wang
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Yong-Ming Chai
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China.
| | - Bin Dong
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China.
| |
Collapse
|