1
|
Mukhin N, Dietzel A, Issakov V, Bakhchova L. Balancing performance and stability characteristics in organic electrochemical transistor. Biosens Bioelectron 2025; 281:117476. [PMID: 40245610 DOI: 10.1016/j.bios.2025.117476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 04/10/2025] [Accepted: 04/13/2025] [Indexed: 04/19/2025]
Abstract
Nowadays organic electrochemical transistors (OECTs) are becoming a promising platform for bioelectronics and biosensing due to its biocompatibility, high sensitivity and selectivity, low driving voltages, high transconductance and flexibility. However, the existing problems associated with degradation processes within the OECT during long-term operation hinder their widespread implementation. Moreover, trade-offs often arise between OECT transconductance and speed, fast ion transport and electron mobility, electrochemical stability and sensitivity, cycling stability and signal amplification, and other metrics. Ensuring high performance characteristics and achieving enhanced stability in OECTs are distinct strategies that do not always align, as progress in one aspect often necessitates a trade-off with the other. This dynamic arises from the need to find a balance between reversible and irreversible processes in the behavior of OECT active layers, and providing simultaneously favorable conditions for ion and electron transport and their efficient charge coupling. This review article systematically summarizes the phenomenological and physical-chemical aspects associated with factors and mechanisms that determine both performance and long-term stability of OECT, paying special attention to the consideration of existing and promising approaches to extend the OECT lifespan, while maintaining (or even increasing) high effectiveness of its operation.
Collapse
Affiliation(s)
- Nikolay Mukhin
- Institute for CMOS Design, Technical University of Braunschweig, 38106, Braunschweig, Germany.
| | - Andreas Dietzel
- Institute of Microtechnology, Technical University of Braunschweig, 38106, Braunschweig, Germany
| | - Vadim Issakov
- Institute for CMOS Design, Technical University of Braunschweig, 38106, Braunschweig, Germany
| | - Liubov Bakhchova
- Institute for CMOS Design, Technical University of Braunschweig, 38106, Braunschweig, Germany
| |
Collapse
|
2
|
Meng K, Zhu J, Zhang T, Zhang X, Zhang Y, Chen X, Li F, Tong Y, Zhang S, Qiu D, Yang H, Liu S, Yin L, Zhao R, Huang L, Li T, Gao M, Pan T, Yang J, Cheng H, Lin Y. Nanostructure-gated organic electrochemical transistors for accurate glucose monitoring in dynamic biological pH conditions. Biosens Bioelectron 2025; 287:117677. [PMID: 40513290 DOI: 10.1016/j.bios.2025.117677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2025] [Revised: 05/13/2025] [Accepted: 06/07/2025] [Indexed: 06/16/2025]
Abstract
Non-invasive, real-time, and continuous monitoring of trace amounts of glucose in near-neutral biofluids is significant for the daily care and treatment of diabetic patients or people with suboptimal health status. Despite improved sensing performance with novel low-dimensional materials or porous structures in various enzymatic and non-enzymatic electrochemical glucose sensors, they still suffer from high cost, poor long-term stability, and performance fluctuations in varied temperature and pH. This work synergistically combines an Au-modified porous laser-induced graphene (LIG) gate electrode with an organic electrochemical transistor (OECT) to create a flexible non-enzymatic glucose sensor. The resulting OECT-based non-enzymatic glucose sensor exhibits significantly enhanced sensitivity in near-neutral biofluids, the limit of detection (LOD) (0.08 μM in pH = 7.4), excellent stability over time (degradation of ∼10 % in 180 days) and against temperature changes (30 °C-40 °C), self-pH calibration capabilities, and uncompromised sensing performance with shrinking sizes. The highly consistent laser patterning technique and in situ galvanic reduction process for electrode modifications not only provide a simple yet versatile approach to creating low-cost, compact sensing platforms for precise and real-time sweat glucose measurements but also support scalable production, allowing the correlation study of key biomarkers in sweat and blood.
Collapse
Affiliation(s)
- Ke Meng
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Jia Zhu
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 610054, China; Yangtze Delta Region Institute (Quzhou), University of Electronics Science and Technology of China, Quzhou, 324000, China.
| | - Tianyao Zhang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Xianzhe Zhang
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Yingying Zhang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou, 215011, China
| | - Xiangjie Chen
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Fan Li
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Yao Tong
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou, 215011, China
| | - Senhao Zhang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou, 215011, China
| | - Donghai Qiu
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou, 215011, China
| | - Hongbo Yang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou, 215011, China
| | - Shangbin Liu
- School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Lan Yin
- School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Rui Zhao
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Libin Huang
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Tao Li
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Min Gao
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Taisong Pan
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Jian Yang
- Research Center for Industries of the Future, Biomedical Engineering Program, School of Engineering, Westlake University, Hangzhou, Zhejiang, 310030, China
| | - Huanyu Cheng
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA, 16802, USA.
| | - Yuan Lin
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 610054, China; Medico-Engineering Cooperation on Applied Medicine Research Center, University of Electronics Science and Technology of China, Chengdu, 610054, China.
| |
Collapse
|
3
|
Zeng X, Peng C, Shi W, Hu S, Cao Y, Wei H, Chen PA, Xia J, Ding J, Zhang Y, Gong Z, Chen H, Lu N, Li R, Hu Y. An Interlayer Strategy for Low-Voltage Thin-Film Organic Electrochemical Transistors. SMALL METHODS 2025:e2500322. [PMID: 40364613 DOI: 10.1002/smtd.202500322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 04/24/2025] [Indexed: 05/15/2025]
Abstract
Solid-state organic electrochemical transistors (SS-OECTs) are promising candidates for next-generation wearable and bioelectronic applications due to their high transconductance and low-voltage operation. However, conventional SS-OECTs rely on ion gels with high ionic liquid concentrations, which compromise mechanical robustness and scalability. This study addresses these limitations by developing thin-film OECTs (TF-OECTs) using solid electrolytes with significantly reduced ionic liquid concentrations and introducing a doped organic semiconductor film (DOSCF) as an interlayer between the gate and electrolyte. This strategy enables TF-OECTs to achieve film-like mechanical properties while maintaining high performance, including a maximum transconductance (gm) of 5.05 mS, operational voltages below 1 V, and exceptional stability over 1000 switching cycles. The devices also exhibit superior flexibility, enduring over 2000 bending cycles with minimal performance degradation. Their potential is demonstrated in ferric ion sensing, achieving an ultralow detection limit of 15 nm with a high selectivity of 0.7 mA dec-1, and in neuromorphic computing, where they emulate synaptic behaviors and achieve a 96.7% image recognition accuracy after training with artificial neural networks (ANN). These results highlight the transformative potential of TF-OECTs for integration into advanced, multifunctional electronic systems, combining high performance, mechanical robustness, and scalability.
Collapse
Affiliation(s)
- Xi Zeng
- International Science and Technology Innovation Cooperation Base for Advanced Display Technologies of Hunan Province, School of Physics and Electronics, Hunan University, Changsha, 410082, China
- National Key Laboratory of Power Semiconductor and Integration Technology, Engineering Research Center of Advanced Semiconductor Technology and Application of Ministry of Education, College of Semiconductors (College of Integrated Circuits), Hunan University, Changsha, 410082, China
- Shenzhen Research Institute of Hunan University, Shenzhen, 518063, China
| | - Chengyuan Peng
- National Key Laboratory of Power Semiconductor and Integration Technology, Engineering Research Center of Advanced Semiconductor Technology and Application of Ministry of Education, College of Semiconductors (College of Integrated Circuits), Hunan University, Changsha, 410082, China
| | - Wenpei Shi
- International Science and Technology Innovation Cooperation Base for Advanced Display Technologies of Hunan Province, School of Physics and Electronics, Hunan University, Changsha, 410082, China
- National Key Laboratory of Power Semiconductor and Integration Technology, Engineering Research Center of Advanced Semiconductor Technology and Application of Ministry of Education, College of Semiconductors (College of Integrated Circuits), Hunan University, Changsha, 410082, China
| | - Shengjie Hu
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Yushi Cao
- School of Biological Science and Medical Engineering, Beihang University, Xueyuan Street 37, Beijing, 100191, China
| | - Huan Wei
- International Science and Technology Innovation Cooperation Base for Advanced Display Technologies of Hunan Province, School of Physics and Electronics, Hunan University, Changsha, 410082, China
- National Key Laboratory of Power Semiconductor and Integration Technology, Engineering Research Center of Advanced Semiconductor Technology and Application of Ministry of Education, College of Semiconductors (College of Integrated Circuits), Hunan University, Changsha, 410082, China
| | - Ping-An Chen
- International Science and Technology Innovation Cooperation Base for Advanced Display Technologies of Hunan Province, School of Physics and Electronics, Hunan University, Changsha, 410082, China
| | - Jiangnan Xia
- International Science and Technology Innovation Cooperation Base for Advanced Display Technologies of Hunan Province, School of Physics and Electronics, Hunan University, Changsha, 410082, China
| | - Jiaqi Ding
- International Science and Technology Innovation Cooperation Base for Advanced Display Technologies of Hunan Province, School of Physics and Electronics, Hunan University, Changsha, 410082, China
| | - Yu Zhang
- National Key Laboratory of Power Semiconductor and Integration Technology, Engineering Research Center of Advanced Semiconductor Technology and Application of Ministry of Education, College of Semiconductors (College of Integrated Circuits), Hunan University, Changsha, 410082, China
| | - Zhenqi Gong
- National Key Laboratory of Power Semiconductor and Integration Technology, Engineering Research Center of Advanced Semiconductor Technology and Application of Ministry of Education, College of Semiconductors (College of Integrated Circuits), Hunan University, Changsha, 410082, China
| | - Huajie Chen
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, China
| | - Naiyan Lu
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Rong Li
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Yuanyuan Hu
- International Science and Technology Innovation Cooperation Base for Advanced Display Technologies of Hunan Province, School of Physics and Electronics, Hunan University, Changsha, 410082, China
- National Key Laboratory of Power Semiconductor and Integration Technology, Engineering Research Center of Advanced Semiconductor Technology and Application of Ministry of Education, College of Semiconductors (College of Integrated Circuits), Hunan University, Changsha, 410082, China
- Shenzhen Research Institute of Hunan University, Shenzhen, 518063, China
| |
Collapse
|
4
|
Lee G, Kim YE, Kim H, Lee HK, Park JY, Oh S, Yoo H. Organic Synaptic Transistors and Printed Circuit Board Defect Inspection with Photonic Stimulation: A Novel Approach Using Oblique Angle Deposition. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2501997. [PMID: 40331564 DOI: 10.1002/smll.202501997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 04/19/2025] [Indexed: 05/08/2025]
Abstract
This study introduces a photonic stimulation-based synaptic transistor utilizing oblique angle deposition (OAD) of dinaphtho[2,3-b:2',3'-f]thieno[3,2-b]thiophene (DNTT). While OAD enables advanced nanostructures, its application to organic materials remains largely unexplored. Here, the electrical characteristics and photoinduced trap behavior of obliquely deposited DNTT transistors are systematically investigated, successfully replicating key synaptic functions. OAD-controlled grain size and spacing in the DNTT channel yield distinct performance metrics compared to conventional devices. The introduced trap regions enable stable synaptic behavior across diverse gate voltage (VG) conditions. By adjusting presynaptic photonic pulse intensity, duration, and repetition, a robust transition is achieved to long-term memory (LTM). The device further demonstrates reliable optoelectronic synaptic operation over 52 durability cycles. Concurrent photonic stimulation enables parallel potentiation-depression dynamics, enhancing processing speed and performance, highlighting its promise for next-generation neuromorphic computing. Its application is also showed in printed circuit board (PCB) defect inspection, successfully mimicking biological synapses under simultaneous photonic stimulation.
Collapse
Affiliation(s)
- Gyeongho Lee
- Semiconductor Total Solution Center, Korea Institute of Ceramic Engineering and Technology, 3321 Gyeongchung-daero, Icheon, 17303, Republic of Korea
- Department of Materials Science and Engineering, Korea University, 145 Anam-ro, Seoul, 02841, Republic of Korea
| | - Yeo Eun Kim
- Department of Semiconductor Engineering, Gachon University, 1342 Seongnam-daero, Seongnam, 13120, Republic of Korea
| | - Hyeonjung Kim
- Division of Electrical Engineering, Hanyang University ERICA, 55 Hanyangdaehak-ro, Ansan, 15588, Republic of Korea
| | - Han-Koo Lee
- Pohang Accelerator Laboratory, Pohang University of Science and Technology (POSTECH), 80 Jigok-ro, Pohang, 37673, Republic of Korea
| | - Jae Yeon Park
- Radiation Fusion Technology Research Division, Advanced Radiation Technology Institute (ARTI)/Korea Atomic Energy Research (KAERI), 29 Geum gu-gil, Jeongeup, 56212, Republic of Korea
| | - Seyong Oh
- Division of Electrical Engineering, Hanyang University ERICA, 55 Hanyangdaehak-ro, Ansan, 15588, Republic of Korea
| | - Hocheon Yoo
- Department of Electronic Engineering, Hanyang University, 222 Wangsimni-ro, Seoul, 04763, Republic of Korea
| |
Collapse
|
5
|
Li M, Liang X, Liu C, Han S. Revealing the Impact of Gel Electrolytes on the Performance of Organic Electrochemical Transistors. Gels 2025; 11:202. [PMID: 40136909 PMCID: PMC11942148 DOI: 10.3390/gels11030202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/11/2025] [Accepted: 03/12/2025] [Indexed: 03/27/2025] Open
Abstract
Gel electrolyte-gated organic electrochemical transistors (OECTs) are promising bioelectronic devices known for their high transconductance, low operating voltage, and integration with biological systems. Despite extensive research on the performance of OECTs, a precise model defining the dependence of OECT performance on gel electrolytes is still lacking. In this work, we refine the device model to comprehensively account for the electrical double layer (EDL)'s capacitance of the gel electrolyte. Both experimental data and theoretical calculations indicate that the maximum transconductance of the OECT is contingent upon ion concentration, drain voltage, and scan rate, highlighting a strong correlation between the transconductance and the hydrogel electrolyte. Overall, this model serves as a theoretical tool for improving the performance of OECTs, enabling the further development of bioelectronic devices.
Collapse
Affiliation(s)
- Mancheng Li
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou 510275, China; (M.L.); (X.L.); (C.L.)
| | - Xiaoci Liang
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou 510275, China; (M.L.); (X.L.); (C.L.)
| | - Chuan Liu
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou 510275, China; (M.L.); (X.L.); (C.L.)
| | - Songjia Han
- College of Electronic Engineering, College of Artificial Intelligence, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
6
|
Chen J, Cong S, Liu R, Duan J, Chen C, Yu D, Zhu X, Ran C, Cheng D, Li Z, McCulloch I, Yue W. Imine-Based Polymeric Mixed Ionic-Electronic Conductors Featuring Degradability and Biocompatibility for Transient Bioinspired Electronics. Angew Chem Int Ed Engl 2025; 64:e202417921. [PMID: 39878194 DOI: 10.1002/anie.202417921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 01/25/2025] [Accepted: 01/27/2025] [Indexed: 01/31/2025]
Abstract
Degradable features are highly desirable to advance next-generation organic mixed ionic-electronic conductors (OMIECs) for transient bioinspired artificial intelligence devices. It is highly challenging that OMIECs exhibit excellent mixed ionic-electronic behavior and show degradability simultaneously. Specially, in OMIECs, doping is often a tradeoff between structural disorder and charge carrier mobilities. Here, we describe a regiochemistry-driven backbone curvature approach to prepare OMIECs, enabling doped state ordered within efficient ionic-electronic conduction in organic electrochemical transistors (OECTs) and presenting degradable characteristics. Significantly, i-3gTIT shows an outstanding mobility (1.99 cm2 V-1 s-1) and μC* (302 F V-1 cm-1 s-1), and presents higher disorder-tolerance upon doping and faster degradation behavior than its regioisomer, o-3gTIT. Especially, the resulting OECT-based inverter shows a high voltage gain of 31.6 V V-1 at a low driving voltage of 0.6 V. Moreover, we demonstrate an application of transient OECT, i. e., biodegradable solid-state electrolyte of OECT-based artificial synapses. Remarkably, the regiochemistry-driven film crystallinity modulation enables the conversion from volatile to non-volatile operation in such synapses. The transient synapse based on i-3gTIT achieves over 90 % recognition accuracy for small digit handwritten images, showing potential in security neuromorphic computing. Our work is the first presentation enabling excellent mixed conduction of OMIECs with degradable features for transient bioinspired electronics.
Collapse
Affiliation(s)
- Junxin Chen
- Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, PCFM Lab of Ministry of Education, School of Materials Science and Engineering, State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou, 510275, China
| | - Shengyu Cong
- Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, PCFM Lab of Ministry of Education, School of Materials Science and Engineering, State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou, 510275, China
| | - Riping Liu
- Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, PCFM Lab of Ministry of Education, School of Materials Science and Engineering, State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou, 510275, China
| | - Jiayao Duan
- Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, PCFM Lab of Ministry of Education, School of Materials Science and Engineering, State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou, 510275, China
| | - Chaoyue Chen
- Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, PCFM Lab of Ministry of Education, School of Materials Science and Engineering, State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou, 510275, China
| | - Dongsheng Yu
- PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Xiuyuan Zhu
- Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, PCFM Lab of Ministry of Education, School of Materials Science and Engineering, State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou, 510275, China
| | - Chong Ran
- Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, PCFM Lab of Ministry of Education, School of Materials Science and Engineering, State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou, 510275, China
| | - Du Cheng
- PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Zhengke Li
- Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, PCFM Lab of Ministry of Education, School of Materials Science and Engineering, State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou, 510275, China
| | - Iain McCulloch
- Andlinger Center for Energy and the Environment, and Department of Electrical and Computer Engineering, Princeton University, Princeton, NJ, 08544, USA
| | - Wan Yue
- Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, PCFM Lab of Ministry of Education, School of Materials Science and Engineering, State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou, 510275, China
| |
Collapse
|
7
|
Granelli R, Kovács-Vajna ZM, Torricelli F. Additive Manufacturing of Organic Electrochemical Transistors: Methods, Device Architectures, and Emerging Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2410499. [PMID: 39945058 PMCID: PMC11922034 DOI: 10.1002/smll.202410499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/14/2025] [Indexed: 03/20/2025]
Abstract
Organic electrochemical transistors (OECTs) are key devices in a large set of application fields including bioelectronics, neuromorphics, sensing, and flexible electronics. This review explores the advancements in additive manufacturing techniques accounting for printing technologies, device architectures, and emerging applications. The promising applications of printed OECTs, ranging from biochemical sensors to neuromorphic computing are examined, showcasing their versatility. Despite significant advancements, ongoing challenges persist, such as material-related issues, inconsistencies in film homogeneity, and the scalability of integration processes. This review identifies these critical obstacles and offers targeted solutions and future research directions aimed at enhancing the performance and reliability of fully-printed OECTs. By addressing these challenges, the aim of this study is to facilitate the development of next-generation OECTs that can meet the demands of emerging applications in sustainable and intelligent electronic and bioelectronic systems.
Collapse
Affiliation(s)
- Roberto Granelli
- Department of Information Engineering, University of Brescia, via Branze 38, Brescia, 25123, Italy
| | - Zsolt M Kovács-Vajna
- Department of Information Engineering, University of Brescia, via Branze 38, Brescia, 25123, Italy
| | - Fabrizio Torricelli
- Department of Information Engineering, University of Brescia, via Branze 38, Brescia, 25123, Italy
| |
Collapse
|
8
|
Zhao N, Jeon SJ, Yuan Y, Venkateswarlu S, Stella A, Papazotos J, Li Y. Full Conjugation in a Polymer with Non-conjugated Piperazine-2,5-dione Units via Energy-minimized Lactam-to-Lactim Tautomerization Enables Water-gated Transistor Fluoride Sensors. Angew Chem Int Ed Engl 2025; 64:e202419314. [PMID: 39607390 PMCID: PMC11811691 DOI: 10.1002/anie.202419314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/26/2024] [Accepted: 11/28/2024] [Indexed: 11/29/2024]
Abstract
Piperazine-2,5-dione (glycine anhydride, GA) has recently emerged as a valuable precursor for high-performance π-conjugated polymer semiconductors in organic electronics. We utilized GA to design a novel bisindolin-dihydropiperazine (IDHP)-based conjugated polymer, PIDHPTT, for aqueous chemical sensing. In the isatin-flanked monomer, GA exists as a non-conjugated lactam (DHP-NH) but converts to a conjugated lactim (DHP-OH) form within the polymer. Density functional theory (DFT) calculations show that this conversion is driven by energy minimization via extended π-conjugation. Neighboring DHP units in the lactim form facilitate this process through π-bridges, demonstrating a vinylogous effect, which has previously only been observed in small molecules. This is the first study to report such a long-range vinylogous effect in a polymer due to the collective synergy of numerous functional groups. The OH groups in the lactim DHP interact more strongly with fluoride ions than other halides. PIDHPTT exhibits significant changes in optical absorption, electrochemical impedance, and charge transport in response to fluoride ions, which differ from responses to other halides. A water-gated organic field-effect transistor based on PIDHPTT shows excellent sensitivity and selectivity for fluoride ions, demonstrating the potential of this polymer design for chemical sensing applications.
Collapse
Affiliation(s)
- Naixin Zhao
- Department of Chemical EngineeringWaterloo Institute for Nanotechnology (WIN)University of Waterloo200 University Ave WestWaterlooOntarioN2L 3G1Canada
| | - Sung Jae Jeon
- Department of Chemical EngineeringWaterloo Institute for Nanotechnology (WIN)University of Waterloo200 University Ave WestWaterlooOntarioN2L 3G1Canada
| | - Yi Yuan
- Department of Chemical EngineeringWaterloo Institute for Nanotechnology (WIN)University of Waterloo200 University Ave WestWaterlooOntarioN2L 3G1Canada
| | - Samala Venkateswarlu
- Department of Chemical EngineeringWaterloo Institute for Nanotechnology (WIN)University of Waterloo200 University Ave WestWaterlooOntarioN2L 3G1Canada
| | - Andrew Stella
- Department of Chemical EngineeringWaterloo Institute for Nanotechnology (WIN)University of Waterloo200 University Ave WestWaterlooOntarioN2L 3G1Canada
| | - Jimmy Papazotos
- Department of Chemical EngineeringWaterloo Institute for Nanotechnology (WIN)University of Waterloo200 University Ave WestWaterlooOntarioN2L 3G1Canada
| | - Yuning Li
- Department of Chemical EngineeringWaterloo Institute for Nanotechnology (WIN)University of Waterloo200 University Ave WestWaterlooOntarioN2L 3G1Canada
| |
Collapse
|
9
|
Lee I, Kim JH, Kim Y, Shin D, Lee H, Won J, Kang K, Choi JG, Yoon MH, Park S. Ultraflexible Vertical Corbino Organic Electrochemical Transistors for Epidermal Signal Monitoring. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2410444. [PMID: 39491808 DOI: 10.1002/adma.202410444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/11/2024] [Indexed: 11/05/2024]
Abstract
Skin-conformal organic electrochemical transistors (OECTs) have attracted significant attention for real-time physiological signal monitoring and are vital for health diagnostics and treatments. However, mechanical harmonization amid the inherent dynamic nature of the skin surface and the acquisition of intrinsic physiological signals are significant challenges that hinder the integration of the ultimate skin interface. Thus, this study proposes a novel 4-terminal (4-T) vertical Corbino OECT, exhibiting high transconductance (>400 mS) and offering remarkable resilience and operational stability at an extremely low voltage of 10 mV (1.9% of minimal current change after 104 biasing cycles and endurance up to 103 cycles of repetitive deformation with a 5 µm bending radius). Consequently, ultralow-power, motion-resistant epidermal electrocardiogram, electromyogram, and electrooculogram sensors are developed with an exceptional signal-to-noise ratio of 40.1 dB. The results of this study present a significant stride in non-invasive, skin-interfaced health-monitoring technologies and herald a new era in integrative health technologies.
Collapse
Affiliation(s)
- Inho Lee
- Department of Intelligence Semiconductor, Ajou University, Suwon, Gyeonggi-do, 16499, Republic of Korea
| | - Ji Hwan Kim
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Youngseok Kim
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Dongjoon Shin
- Department of Intelligence Semiconductor, Ajou University, Suwon, Gyeonggi-do, 16499, Republic of Korea
| | - Hyeongbeom Lee
- Department of Intelligence Semiconductor, Ajou University, Suwon, Gyeonggi-do, 16499, Republic of Korea
| | - Jonghyun Won
- Department of Intelligence Semiconductor, Ajou University, Suwon, Gyeonggi-do, 16499, Republic of Korea
| | - Keehoon Kang
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jun-Gyu Choi
- Department of Electrical and Computer Engineering, Ajou University, Suwon, 16499, Republic of Korea
| | - Myung-Han Yoon
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Sungjun Park
- Department of Intelligence Semiconductor, Ajou University, Suwon, Gyeonggi-do, 16499, Republic of Korea
- Department of Electrical and Computer Engineering, Ajou University, Suwon, 16499, Republic of Korea
| |
Collapse
|
10
|
Cong S, Chen J, Xie M, Deng Z, Chen C, Liu R, Duan J, Zhu X, Li Z, Cheng Y, Huang W, McCulloch I, Yue W. Single ambipolar OECT-based inverter with volatility and nonvolatility on demand. SCIENCE ADVANCES 2024; 10:eadq9405. [PMID: 39383214 PMCID: PMC11463256 DOI: 10.1126/sciadv.adq9405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 09/05/2024] [Indexed: 10/11/2024]
Abstract
Organic electrochemical transistor (OECT)-based inverter introduces new prospects for energy-efficient brain-inspired artificial intelligence devices. Here, we report single-component OECT-based inverters by incorporating ambipolar p(gDPP-V). Notably, p(gDPP-V) shows state-of-the-art ambipolar OECT performances in both conventional (p/n-type mode transconductance of 29/25 S cm-1) and vertical (transconductance of 297.2/292.4 μS μm-2 under p/n operation) device architectures. Especially, the resulting highly stable vertical OECT-based inverter shows a high voltage gain of 105 V V-1 under a low driving voltage of 0.8 V. The inverter exhibits undiscovered voltage-regulated dual mode: volatile receptor and nonvolatile synapse. Moreover, applications of physiology signal recording and demonstrations of NAND/NOR logic circuits are investigated within the volatile feature, while neuromorphic simulations with a convolutional neural network and image memorizing capabilities are explored under the nonvolatile behavior. The ambipolar OECT-based inverter, capable of both volatile and nonvolatile operations, provides possibilities for the applications of reconfigurable complementary logic circuits in novel neuromorphic computing paradigms.
Collapse
Affiliation(s)
- Shengyu Cong
- Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, School of Materials Science and Engineering, State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, China
| | - Junxin Chen
- Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, School of Materials Science and Engineering, State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, China
| | - Miao Xie
- School of Automation Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, China
| | - Ziyi Deng
- School of Automation Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, China
| | - Chaoyue Chen
- Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, School of Materials Science and Engineering, State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, China
| | - Riping Liu
- Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, School of Materials Science and Engineering, State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, China
| | - Jiayao Duan
- Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, School of Materials Science and Engineering, State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, China
| | - Xiuyuan Zhu
- Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, School of Materials Science and Engineering, State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, China
| | - Zhengke Li
- Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, School of Materials Science and Engineering, State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, China
| | - Yuhua Cheng
- School of Automation Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, China
| | - Wei Huang
- School of Automation Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, China
| | - Iain McCulloch
- Andlinger Center for Energy and the Environment, and Department of Electrical and Computer Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Wan Yue
- Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, School of Materials Science and Engineering, State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
11
|
Belleri P, Pons I Tarrés J, McCulloch I, Blom PWM, Kovács-Vajna ZM, Gkoupidenis P, Torricelli F. Unravelling the operation of organic artificial neurons for neuromorphic bioelectronics. Nat Commun 2024; 15:5350. [PMID: 38914568 PMCID: PMC11196688 DOI: 10.1038/s41467-024-49668-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 06/17/2024] [Indexed: 06/26/2024] Open
Abstract
Organic artificial neurons operating in liquid environments are crucial components in neuromorphic bioelectronics. However, the current understanding of these neurons is limited, hindering their rational design and development for realistic neuronal emulation in biological settings. Here we combine experiments, numerical non-linear simulations, and analytical tools to unravel the operation of organic artificial neurons. This comprehensive approach elucidates a broad spectrum of biorealistic behaviors, including firing properties, excitability, wetware operation, and biohybrid integration. The non-linear simulations are grounded in a physics-based framework, accounting for ion type and ion concentration in the electrolytic medium, organic mixed ionic-electronic parameters, and biomembrane features. The derived analytical expressions link the neurons spiking features with material and physical parameters, bridging closer the domains of artificial neurons and neuroscience. This work provides streamlined and transferable guidelines for the design, development, engineering, and optimization of organic artificial neurons, advancing next generation neuronal networks, neuromorphic electronics, and bioelectronics.
Collapse
Affiliation(s)
- Pietro Belleri
- Department of Information Engineering, University of Brescia, via Branze 38, 25123, Brescia, Italy
| | - Judith Pons I Tarrés
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Iain McCulloch
- Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford, UK
| | - Paul W M Blom
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Zsolt M Kovács-Vajna
- Department of Information Engineering, University of Brescia, via Branze 38, 25123, Brescia, Italy
| | - Paschalis Gkoupidenis
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany.
- Department of Electrical and Computer Engineering, North Carolina State University, 890 Oval Dr, Raleigh, NC, USA.
- Department of Physics, North Carolina State University, 2401 Stinson Dr, Raleigh, NC, USA.
| | - Fabrizio Torricelli
- Department of Information Engineering, University of Brescia, via Branze 38, 25123, Brescia, Italy.
| |
Collapse
|
12
|
Wang X, Zhang Z, Li P, Xu J, Zheng Y, Sun W, Xie M, Wang J, Pan X, Lei X, Wang J, Chen J, Chen Y, Wang SJ, Lei T. Ultrastable N-Type Semiconducting Fiber Organic Electrochemical Transistors for Highly Sensitive Biosensors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2400287. [PMID: 38433667 DOI: 10.1002/adma.202400287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 02/27/2024] [Indexed: 03/05/2024]
Abstract
Organic electrochemical transistors (OECTs) have attracted increasing attention due to their merits of high transconductance, low operating voltage, and good biocompatibility, ideal for biosensors. However, further advances in their practical applications face challenges of low n-type performance and poor stability. Here, it is demonstrated that wet-spinning the commercially available n-type conjugated polymer poly(benzimidazobenzophenanthroline) (BBL) into highly aligned and crystalline fibers enhances both OECT performance and stability. Although BBL is only soluble in high-boiling-point strong acids, it can be wet-spun into high-quality fibers with adjustable diameters. The BBL fiber OECTs exhibit a record-high area-normalized transconductance (gm,A) of 2.40 µS µm-2 and over 10 times higher figure-of-merit (µC*) than its thin-film counterparts. More importantly, these fiber OECTs exhibit remarkable stability with no noticeable performance attenuation after 1500 cycles over 4 h operation, outperforming all previously reported n-type OECTs. The superior performance and stability can be attributed to shorter π-π stacking distance and ordered molecular arrangement in the fibers, endowing the BBL fiber OECT-based biosensors with outstanding sensitivity while keeping a miniaturized form factor. This work demonstrates that, beyond new material development, developing new fabrication technology is also crucial for addressing the performance and stability issues in n-type OECTs.
Collapse
Affiliation(s)
- Xiu Wang
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Zhi Zhang
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Peiyun Li
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Jingcao Xu
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Yuting Zheng
- College of Engineering, Peking University, Beijing, 100871, P. R. China
| | - Wenxi Sun
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Mingyue Xie
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Juanrong Wang
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Xiran Pan
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Xun Lei
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Jingyi Wang
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Jupeng Chen
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Yiheng Chen
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Shu-Jen Wang
- Department of Physics, Hong Kong Baptist University, Hong Kong, SAR, P. R. China
| | - Ting Lei
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| |
Collapse
|
13
|
Guo J, Chen SE, Giridharagopal R, Bischak CG, Onorato JW, Yan K, Shen Z, Li CZ, Luscombe CK, Ginger DS. Understanding asymmetric switching times in accumulation mode organic electrochemical transistors. NATURE MATERIALS 2024; 23:656-663. [PMID: 38632374 DOI: 10.1038/s41563-024-01875-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 03/19/2024] [Indexed: 04/19/2024]
Abstract
Understanding the factors underpinning device switching times is crucial for the implementation of organic electrochemical transistors in neuromorphic computing, bioelectronics and real-time sensing applications. Existing models of device operation cannot explain the experimental observations that turn-off times are generally much faster than turn-on times in accumulation mode organic electrochemical transistors. Here, using operando optical microscopy, we image the local doping level of the transistor channel and show that turn-on occurs in two stages-propagation of a doping front, followed by uniform doping-while turn-off occurs in one stage. We attribute the faster turn-off to a combination of engineering as well as physical and chemical factors including channel geometry, differences in doping and dedoping kinetics and the phenomena of carrier-density-dependent mobility. We show that ion transport limits the operation speed in our devices. Our study provides insights into the kinetics of organic electrochemical transistors and guidelines for engineering faster organic electrochemical transistors.
Collapse
Affiliation(s)
- Jiajie Guo
- Molecular Engineering and Sciences Institute, University of Washington, Seattle, WA, USA
| | - Shinya E Chen
- Molecular Engineering and Sciences Institute, University of Washington, Seattle, WA, USA
| | | | - Connor G Bischak
- Department of Chemistry, University of Washington, Seattle, WA, USA
| | - Jonathan W Onorato
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, USA
| | - Kangrong Yan
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, P. R. China
| | - Ziqiu Shen
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, P. R. China
| | - Chang-Zhi Li
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, P. R. China
| | - Christine K Luscombe
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, USA
- pi-Conjugated Polymers Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Japan
| | - David S Ginger
- Department of Chemistry, University of Washington, Seattle, WA, USA.
| |
Collapse
|
14
|
Li H, Zhang Y, Deng Z, Lu B, Ma L, Wang R, Wang X, Jiao Z, Wang Y, Zhou K, Wei Q. Constructing a Hydrophilic Microsensor for High-Antifouling Neurotransmitter Dopamine Sensing. ACS Sens 2024; 9:1785-1798. [PMID: 38384144 DOI: 10.1021/acssensors.3c02042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Real-time sensing of dopamine is essential for understanding its physiological function and clarifying the pathophysiological mechanism of diseases caused by impaired dopamine systems. However, severe fouling from nonspecific protein adsorption, for a long time, limited conventional neural recording electrodes concerning recording stability. This study reported a high-antifouling nanocrystalline boron-doped diamond microsensor grown on a carbon fiber substrate. The antifouling properties of this diamond sensor were strongly related to the grain size (i.e., nanocrystalline and microcrystalline) and surface terminations (i.e., oxygen and hydrogen terminals). Experimental observations and molecular dynamics calculations demonstrated that the oxygen-terminated nanocrystalline boron-doped diamond microsensor exhibited enhanced antifouling characteristics against protein adsorption, which was attributed to the formation of a strong hydration layer as a physical and energetic barrier that prevents protein adsorption on the surface. This finally allowed for in vivo monitoring of dopamine in rat brains upon potassium chloride stimulation, thus presenting a potential solution for the design of next-generation antifouling neural recording sensors. Experimental observations and molecular dynamics calculations demonstrated that the oxygen-terminated nanocrystalline boron-doped diamond (O-NCBDD) microsensor exhibited ultrahydrophilic properties with a contact angle of 4.9°, which was prone to forming a strong hydration layer as a physical and energetic barrier to withstand the adsorption of proteins. The proposed O-NCBDD microsensor exhibited a high detection sensitivity of 5.14 μA μM-1 cm-2 and a low detection limit of 25.7 nM. This finally allowed for in vivo monitoring of dopamine with an average concentration of 1.3 μM in rat brains upon 2 μL of potassium chloride stimulation, thus presenting a potential solution for the design of next-generation antifouling neural recording sensors.
Collapse
Affiliation(s)
- Haichao Li
- State Key Laboratory of Powder Metallurgy, School of Materials Science and Engineering, Central South University, Changsha 410083, P. R. China
| | - Yening Zhang
- Department of Hematology and Critical Care Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan Province 410000, P. R. China
- Key Laboratory of Sepsis Translational Medicine of Hunan, Central South University, Changsha, Hunan Province 410000, P. R. China
| | - Zejun Deng
- State Key Laboratory of Powder Metallurgy, School of Materials Science and Engineering, Central South University, Changsha 410083, P. R. China
| | - Ben Lu
- Department of Hematology and Critical Care Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan Province 410000, P. R. China
- Key Laboratory of Sepsis Translational Medicine of Hunan, Central South University, Changsha, Hunan Province 410000, P. R. China
| | - Li Ma
- State Key Laboratory of Powder Metallurgy, School of Materials Science and Engineering, Central South University, Changsha 410083, P. R. China
| | - Run Wang
- State Key Laboratory of Powder Metallurgy, School of Materials Science and Engineering, Central South University, Changsha 410083, P. R. China
| | - Xiang Wang
- State Key Laboratory of Powder Metallurgy, School of Materials Science and Engineering, Central South University, Changsha 410083, P. R. China
| | - Zengkai Jiao
- State Key Laboratory of Powder Metallurgy, School of Materials Science and Engineering, Central South University, Changsha 410083, P. R. China
| | - Yijia Wang
- Institute for Advanced Study, Central South University, Changsha 410083, P. R. China
| | - Kechao Zhou
- State Key Laboratory of Powder Metallurgy, School of Materials Science and Engineering, Central South University, Changsha 410083, P. R. China
| | - Qiuping Wei
- State Key Laboratory of Powder Metallurgy, School of Materials Science and Engineering, Central South University, Changsha 410083, P. R. China
| |
Collapse
|
15
|
Jiang X, Shi C, Wang Z, Huang L, Chi L. Healthcare Monitoring Sensors Based on Organic Transistors: Surface/Interface Strategy and Performance. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308952. [PMID: 37951211 DOI: 10.1002/adma.202308952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/16/2023] [Indexed: 11/13/2023]
Abstract
Organic transistors possess inherent advantages such as flexibility, biocompatibility, customizable chemical structures, solution-processability, and amplifying capabilities, making them highly promising for portable healthcare sensor applications. Through convenient and diverse modifications at the material and device surfaces or interfaces, organic transistors allow for a wide range of sensor applications spanning from chemical and biological to physical sensing. In this comprehensive review, the surface and interface engineering aspect associated with four types of typical healthcare sensors is focused. The device operation principles and sensing mechanisms are systematically analyzed and highlighted, and particularly surface/interface functionalization strategies that contribute to the enhancement of sensing performance are focused. An outlook and perspective on the critical issues and challenges in the field of healthcare sensing using organic transistors are provided as well.
Collapse
Affiliation(s)
- Xingyu Jiang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, P. R. China
| | - Cheng Shi
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, P. R. China
| | - Zi Wang
- Suzhou Laboratory, 388 Ruoshui Road, Suzhou, 215123, P. R. China
| | - Lizhen Huang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, P. R. China
| | - Lifeng Chi
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, P. R. China
| |
Collapse
|
16
|
Jo IY, Jeong D, Moon Y, Lee D, Lee S, Choi JG, Nam D, Kim JH, Cho J, Cho S, Kim DY, Ahn H, Kim BJ, Yoon MH. High-Performance Organic Electrochemical Transistors Achieved by Optimizing Structural and Energetic Ordering of Diketopyrrolopyrrole-Based Polymers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307402. [PMID: 37989225 DOI: 10.1002/adma.202307402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 11/15/2023] [Indexed: 11/23/2023]
Abstract
For optimizing steady-state performance in organic electrochemical transistors (OECTs), both molecular design and structural alignment approaches must work in tandem to minimize energetic and microstructural disorders in polymeric mixed ionic-electronic conductor films. Herein, a series of poly(diketopyrrolopyrrole)s bearing various lengths of aliphatic-glycol hybrid side chains (PDPP-mEG; m = 2-5) is developed to achieve high-performance p-type OECTs. PDPP-4EG polymer with the optimized length of side chains exhibits excellent crystallinity owing to enhanced lamellar and backbone interactions. Furthermore, the improved structural ordering in PDPP-4EG films significantly decreases trap state density and energetic disorder. Consequently, PDPP-4EG-based OECT devices produce a mobility-volumetric capacitance product ([µC*]) of 702 F V-1 cm-1 s-1 and a hole mobility of 6.49 ± 0.60 cm2 V-1 s-1 . Finally, for achieving the optimal structural ordering along the OECT channel direction, a floating film transfer method is employed to reinforce the unidirectional orientation of polymer chains, leading to a substantially increased figure-of-merit [µC*] to over 800 F V-1 cm-1 s-1 . The research demonstrates the importance of side chain engineering of polymeric mixed ionic-electronic conductors in conjunction with their anisotropic microstructural optimization to maximize OECT characteristics.
Collapse
Affiliation(s)
- Il-Young Jo
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Dahyun Jeong
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Yina Moon
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Dongchan Lee
- Department of Physics and EHSRC, University of Ulsan, Ulsan, 44610, Republic of Korea
| | - Seungjin Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Jun-Gyu Choi
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Donghyeon Nam
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Ji Hwan Kim
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Jinhan Cho
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Shinuk Cho
- Department of Physics and EHSRC, University of Ulsan, Ulsan, 44610, Republic of Korea
| | - Dong-Yu Kim
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - HyungJu Ahn
- Industrial Technology Convergence Center, Pohang Accelerator Laboratory, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Bumjoon J Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Myung-Han Yoon
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| |
Collapse
|
17
|
Zhou X, Wang Z, Xiong T, He B, Wang Z, Zhang H, Hu D, Liu Y, Yang C, Li Q, Chen M, Zhang Q, Wei L. Fiber Crossbars: An Emerging Architecture of Smart Electronic Textiles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2300576. [PMID: 37042804 DOI: 10.1002/adma.202300576] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/18/2023] [Indexed: 06/19/2023]
Abstract
Smart wearables have a significant impact on people's daily lives, enabling personalized motion monitoring, realizing the Internet of Things, and even reshaping the next generation of telemedicine systems. Fiber crossbars (FCs), constructed by crossing two fibers, have become an emerging architecture among the accessible structures of state-of-the-art smart electronic textiles. The mechanical, chemical, and electrical interactions between crossing fibers result in extensive functionalities, leading to the significant development of innovative electronic textiles employing FCs as their basic units. This review provides a timely and comprehensive overview of the structure designs, material selections, and assembly techniques of FC-based devices. The recent advances in FC-based devices are summarized, including multipurpose sensing, multiple-mode computing, high-resolution display, high-efficient power supply, and large-scale textile systems. Finally, current challenges, potential solutions, and future perspectives for FC-based systems are discussed for their further development in scale-up production and commercial applications.
Collapse
Affiliation(s)
- Xuhui Zhou
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Zhe Wang
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Ting Xiong
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Bing He
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Zhixun Wang
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Haozhe Zhang
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Dongmei Hu
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, P. R. China
| | - Yanting Liu
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Chunlei Yang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Qingwen Li
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, P. R. China
| | - Ming Chen
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Qichong Zhang
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, P. R. China
| | - Lei Wei
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
- The Institute for Digital Molecular Analytics and Science (IDMxS), Nanyang Technological University, 59 Nanyang Drive, Singapore, 636921, Singapore
| |
Collapse
|
18
|
Lee Y, Carnicer-Lombarte A, Han S, Woodington BJ, Chai S, Polyravas AG, Velasco-Bosom S, Kim EH, Malliaras GG, Jung S. Tunable Organic Active Neural Probe Enabling Near-Sensor Signal Processing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2301782. [PMID: 37212503 DOI: 10.1002/adma.202301782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/13/2023] [Indexed: 05/23/2023]
Abstract
Neural recording systems have significantly progressed to provide an advanced understanding and treatment for neurological diseases. Flexible transistor-based active neural probes exhibit great potential in electrophysiology applications due to their intrinsic amplification capability and tissue-compliant nature. However, most current active neural probes exhibit bulky back-end connectivity since the output is current, and the development of an integrated circuit for voltage output is crucial for near-sensor signal processing at the abiotic/biotic interface. Here, inkjet-printed organic voltage amplifiers are presented by monolithically integrating organic electrochemical transistors and thin-film polymer resistors on a single, highly flexible substrate for in vivo brain activity recording. Additive inkjet printing enables the seamless integration of multiple active and passive components on the somatosensory cortex, leading to significant noise reduction over the externally connected typical configuration. It also facilitates fine-tuning of the voltage amplification and frequency properties. The organic voltage amplifiers are validated as electrocorticography devices in a rat in vivo model, showing their ability to record local field potentials in an experimental model of spontaneous and epileptiform activity. These results bring organic active neural probes to the forefront in applications where efficient sensory data processing is performed at sensor endpoints.
Collapse
Affiliation(s)
- Yongwoo Lee
- Department of Convergence IT Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Alejandro Carnicer-Lombarte
- Electrical Engineering Division, Department of Engineering, University of Cambridge, 9 JJ Thomson Ave, Cambridge, CB3 0FA, UK
| | - Sanggil Han
- Electrical Engineering Division, Department of Engineering, University of Cambridge, 9 JJ Thomson Ave, Cambridge, CB3 0FA, UK
- Department of Nano-Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Ben J Woodington
- Electrical Engineering Division, Department of Engineering, University of Cambridge, 9 JJ Thomson Ave, Cambridge, CB3 0FA, UK
| | - Seungjin Chai
- Department of Convergence IT Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Anastasios G Polyravas
- Electrical Engineering Division, Department of Engineering, University of Cambridge, 9 JJ Thomson Ave, Cambridge, CB3 0FA, UK
| | - Santiago Velasco-Bosom
- Electrical Engineering Division, Department of Engineering, University of Cambridge, 9 JJ Thomson Ave, Cambridge, CB3 0FA, UK
| | - Eun-Hee Kim
- Department of Pediatrics, Chungnam National University Sejong Hospital, Chungnam National University School of Medicine, 20 Bodeum 7-ro, Sejong, 30099, Republic of Korea
| | - George G Malliaras
- Electrical Engineering Division, Department of Engineering, University of Cambridge, 9 JJ Thomson Ave, Cambridge, CB3 0FA, UK
| | - Sungjune Jung
- Department of Convergence IT Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 37673, Republic of Korea
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, 37673, Republic of Korea
| |
Collapse
|
19
|
Le VN, Bombile JH, Rupasinghe GS, Baustert KN, Li R, Maria IP, Shahi M, Alarcon Espejo P, McCulloch I, Graham KR, Risko C, Paterson AF. New Chemical Dopant and Counterion Mechanism for Organic Electrochemical Transistors and Organic Mixed Ionic-Electronic Conductors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207694. [PMID: 37466175 PMCID: PMC10520668 DOI: 10.1002/advs.202207694] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/07/2023] [Indexed: 07/20/2023]
Abstract
Organic mixed ionic-electronic conductors (OMIECs) have varied performance requirements across a diverse application space. Chemically doping the OMIEC can be a simple, low-cost approach for adapting performance metrics. However, complex challenges, such as identifying new dopant materials and elucidating design rules, inhibit its realization. Here, these challenges are approached by introducing a new n-dopant, tetrabutylammonium hydroxide (TBA-OH), and identifying a new design consideration underpinning its success. TBA-OH behaves as both a chemical n-dopant and morphology additive in donor acceptor co-polymer naphthodithiophene diimide-based polymer, which serves as an electron transporting material in organic electrochemical transistors (OECTs). The combined effects enhance OECT transconductance, charge carrier mobility, and volumetric capacitance, representative of the key metrics underpinning all OMIEC applications. Additionally, when the TBA+ counterion adopts an "edge-on" location relative to the polymer backbone, Coulombic interaction between the counterion and polaron is reduced, and polaron delocalization increases. This is the first time such mechanisms are identified in doped-OECTs and doped-OMIECs. The work herein therefore takes the first steps toward developing the design guidelines needed to realize chemical doping as a generic strategy for tailoring performance metrics in OECTs and OMIECs.
Collapse
Affiliation(s)
- Vianna N. Le
- Department of Chemical and Materials EngineeringDepartment of Electrical EngineeringCentre for Applied Energy ResearchUniversity of KentuckyLexingtonKY40506USA
| | - Joel H. Bombile
- Department of Chemistryand Centre for Applied Energy ResearchUniversity of KentuckyLexingtonKY40506USA
| | - Gehan S. Rupasinghe
- Department of Chemical and Materials EngineeringDepartment of Electrical EngineeringCentre for Applied Energy ResearchUniversity of KentuckyLexingtonKY40506USA
| | - Kyle N. Baustert
- Department of ChemistryUniversity of KentuckyLexingtonKY40506USA
| | | | - Iuliana P. Maria
- Department of ChemistryChemistry Research LaboratoryUniversity of OxfordOxfordOX1 3TAUK
| | - Maryam Shahi
- Department of Chemical and Materials EngineeringDepartment of Electrical EngineeringCentre for Applied Energy ResearchUniversity of KentuckyLexingtonKY40506USA
| | - Paula Alarcon Espejo
- Department of Chemical and Materials EngineeringDepartment of Electrical EngineeringCentre for Applied Energy ResearchUniversity of KentuckyLexingtonKY40506USA
| | - Iain McCulloch
- Department of ChemistryChemistry Research LaboratoryUniversity of OxfordOxfordOX1 3TAUK
- King Abdullah University of Science and TechnologyKAUST Solar CentreThuwal23955‐6900Saudi Arabia
| | | | - Chad Risko
- Department of Chemistryand Centre for Applied Energy ResearchUniversity of KentuckyLexingtonKY40506USA
| | - Alexandra F. Paterson
- Department of Chemical and Materials EngineeringDepartment of Electrical EngineeringCentre for Applied Energy ResearchUniversity of KentuckyLexingtonKY40506USA
| |
Collapse
|
20
|
Rasitanon N, Rattanapan P, Kaewpradub K, Buranachai C, Jeerapan I. Glucose Oxidase/Egg White Protein Microparticles with a Redox Mediator for Glucose Biosensors on a Screen-Printed Electrode and a Decomposable Electrode. BIOSENSORS 2023; 13:772. [PMID: 37622858 PMCID: PMC10452649 DOI: 10.3390/bios13080772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/17/2023] [Accepted: 07/19/2023] [Indexed: 08/26/2023]
Abstract
Glucose oxidase (GOx) is a typical model enzyme used to create biosensors. Exploring a strategy to prepare ready-to-use functional enzymatic microparticles combining GOx and food-based proteins offers compelling advantages. However, no reports exist on the integration of egg white materials to synthesize functional biorecognition particles with glucose oxidation catalytic functions for electrochemical biosensors. Here, we demonstrate functional microparticles combining egg white proteins, GOx, and 9,10-phenanthrenequinone (PQ). The egg white proteins crosslink to form three-dimensional scaffolds to accommodate GOx and redox molecules. The PQ mediator enhances electron transfer between the electrode surface and the GOx enzyme's flavin adenine dinucleotides. The functional microparticles are directly applied to the printed electrode. The performance of these microparticles is evaluated using a screen-printed carbon nanotube (CNT)-modified electrode coated with GOx/PQ/egg white protein microparticles. The analytical performance of the system exhibits a linear range of 0.125-40 mM, with a maximum current (Imax) and a Michaelis-Menten constant (Km) being 0.2 µA and 4.6 mM, respectively. Additionally, a decomposable electrode composed of CNTs and edible oil conjugated with functional enzyme microparticles is shown to undergo degradation under gastric conditions. Utilizing food-based proteins to accommodate enzymes and to create redox-active microparticles for catalyzing glucose oxidation offers advantages in developing affordable and degradable bioelectrodes. This concept holds promise for advancing biocompatible electrodes in biosensor and bioelectronics applications.
Collapse
Affiliation(s)
- Natcha Rasitanon
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai 90110, Thailand; (N.R.); (P.R.); (K.K.); (C.B.)
- Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai 90110, Thailand
| | - Parinthorn Rattanapan
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai 90110, Thailand; (N.R.); (P.R.); (K.K.); (C.B.)
| | - Kanyawee Kaewpradub
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai 90110, Thailand; (N.R.); (P.R.); (K.K.); (C.B.)
- Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai 90110, Thailand
| | - Chittanon Buranachai
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai 90110, Thailand; (N.R.); (P.R.); (K.K.); (C.B.)
- Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai 90110, Thailand
| | - Itthipon Jeerapan
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai 90110, Thailand; (N.R.); (P.R.); (K.K.); (C.B.)
- Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai 90110, Thailand
- Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai 90110, Thailand
| |
Collapse
|
21
|
Fumeaux N, Almeida CP, Demuru S, Briand D. Organic electrochemical transistors printed from degradable materials as disposable biochemical sensors. Sci Rep 2023; 13:11467. [PMID: 37454190 PMCID: PMC10349802 DOI: 10.1038/s41598-023-38308-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 07/06/2023] [Indexed: 07/18/2023] Open
Abstract
Transient electronics hold promise in reducing electronic waste, especially in applications that require only a limited lifetime. While various degradable electronic and physical sensing devices have been proposed, there is growing interest in the development of degradable biochemical sensors. In this work, we present the development of an organic electrochemical transistor (OECT) with degradable electrodes, printed on an eco- and bioresorbable substrate. The influence of the design and materials for the contacts, channel and gate of the transducer, namely poly(3,4-ethylene dioxythiophene):polystyrene sulfonate (PEDOT:PSS) and carbon, is systematically evaluated for the development of OECT-based transient biosensors. The sensing capabilities of the electrochemical transistors are demonstrated with ionic solutions as well as for the enzyme-based detection of glucose. The disposable OECTs show comparable performance to their non-degradable counterparts. Their integration with highly conductive degradable and printable zinc tracks is studied for the realization of interconnects. These eco-friendly OECTs may find applications as disposable and sustainable biochemical sensors, and constitute a step towards bioresorbable biosensors.
Collapse
Affiliation(s)
- Nicolas Fumeaux
- Soft Transducers Laboratory, Ecole Polytechnique Fédérale de Lausanne (EPFL), Rue de la Maladière 71b, CH-2000, Neuchâtel, Switzerland.
| | - Claudio Pinto Almeida
- Soft Transducers Laboratory, Ecole Polytechnique Fédérale de Lausanne (EPFL), Rue de la Maladière 71b, CH-2000, Neuchâtel, Switzerland
| | - Silvia Demuru
- Soft Transducers Laboratory, Ecole Polytechnique Fédérale de Lausanne (EPFL), Rue de la Maladière 71b, CH-2000, Neuchâtel, Switzerland
| | - Danick Briand
- Soft Transducers Laboratory, Ecole Polytechnique Fédérale de Lausanne (EPFL), Rue de la Maladière 71b, CH-2000, Neuchâtel, Switzerland.
| |
Collapse
|
22
|
Min J, Tu J, Xu C, Lukas H, Shin S, Yang Y, Solomon SA, Mukasa D, Gao W. Skin-Interfaced Wearable Sweat Sensors for Precision Medicine. Chem Rev 2023; 123:5049-5138. [PMID: 36971504 PMCID: PMC10406569 DOI: 10.1021/acs.chemrev.2c00823] [Citation(s) in RCA: 187] [Impact Index Per Article: 93.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Wearable sensors hold great potential in empowering personalized health monitoring, predictive analytics, and timely intervention toward personalized healthcare. Advances in flexible electronics, materials science, and electrochemistry have spurred the development of wearable sweat sensors that enable the continuous and noninvasive screening of analytes indicative of health status. Existing major challenges in wearable sensors include: improving the sweat extraction and sweat sensing capabilities, improving the form factor of the wearable device for minimal discomfort and reliable measurements when worn, and understanding the clinical value of sweat analytes toward biomarker discovery. This review provides a comprehensive review of wearable sweat sensors and outlines state-of-the-art technologies and research that strive to bridge these gaps. The physiology of sweat, materials, biosensing mechanisms and advances, and approaches for sweat induction and sampling are introduced. Additionally, design considerations for the system-level development of wearable sweat sensing devices, spanning from strategies for prolonged sweat extraction to efficient powering of wearables, are discussed. Furthermore, the applications, data analytics, commercialization efforts, challenges, and prospects of wearable sweat sensors for precision medicine are discussed.
Collapse
Affiliation(s)
- Jihong Min
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California, 91125, USA
| | - Jiaobing Tu
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California, 91125, USA
| | - Changhao Xu
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California, 91125, USA
| | - Heather Lukas
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California, 91125, USA
| | - Soyoung Shin
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California, 91125, USA
| | - Yiran Yang
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California, 91125, USA
| | - Samuel A. Solomon
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California, 91125, USA
| | - Daniel Mukasa
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California, 91125, USA
| | - Wei Gao
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California, 91125, USA
| |
Collapse
|
23
|
Li T, Cheryl Koh JY, Moudgil A, Cao H, Wu X, Chen S, Hou K, Surendran A, Stephen M, Tang C, Wang C, Wang QJ, Tay CY, Leong WL. Biocompatible Ionic Liquids in High-Performing Organic Electrochemical Transistors for Ion Detection and Electrophysiological Monitoring. ACS NANO 2022; 16:12049-12060. [PMID: 35939084 DOI: 10.1021/acsnano.2c02191] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Organic electrochemical transistors (OECTs) have recently attracted attention due to their high transconductance and low operating voltage, which makes them ideal for a wide range of biosensing applications. Poly-3,4-ethylenedioxythiophene:poly-4-styrenesulfonate (PEDOT:PSS) is a typical material used as the active channel layer in OECTs. Pristine PEDOT:PSS has poor electrical conductivity, and additives are typically introduced to improve its conductivity and OECT performance. However, these additives are mostly either toxic or not proven to be biocompatible. Herein, a biocompatible ionic liquid [MTEOA][MeOSO3] is demonstrated to be an effective additive to enhance the performance of PEDOT:PSS-based OECTs. The influence of [MTEOA][MeOSO3] on the conductivity, morphology, and redox process of PEDOT:PSS is investigated. The PEDOT:PSS/[MTEOA][MeOSO3]-based OECT exhibits high transconductance (22.3 ± 4.5 mS μm-1), high μC* (the product of mobility μ and volumetric capacitance C*) (283.80 ± 29.66 F cm-1 V-1 s-1), fast response time (∼40.57 μs), and excellent switching cyclical stability. Next, the integration of sodium (Na+) and potassium (K+) ion-selective membranes with the OECTs is demonstrated, enabling selective ion detection in the physiological range. In addition, flexible OECTs are designed for electrocardiography (ECG) signal acquisition. These OECTs have shown robust performance against physical deformation and successfully recorded high-quality ECG signals.
Collapse
Affiliation(s)
- Ting Li
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798
| | - Jie Yan Cheryl Koh
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798
- Environmental Chemistry and Materials Centre and Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141
| | - Akshay Moudgil
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798
| | - Huan Cao
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798
| | - Xihu Wu
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798
| | - Shuai Chen
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798
| | - Kunqi Hou
- School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Abhijith Surendran
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798
| | - Meera Stephen
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798
| | - Cindy Tang
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798
| | - Chongwu Wang
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798
| | - Qi Jie Wang
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798
- School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Chor Yong Tay
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798
- Environmental Chemistry and Materials Centre and Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | - Wei Lin Leong
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798
| |
Collapse
|
24
|
Wang M, Wu Y, Lou F, Cui W, Chen D, Zhang X, Jin D, Hun X. Photoelectrochemical signal for anion and cation detections with photoactive material. APPLIED NANOSCIENCE 2022. [DOI: 10.1007/s13204-022-02591-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
25
|
Li W, Jin J, Xiong T, Yu P, Mao L. Fast-Scanning Potential-Gated Organic Electrochemical Transistors for Highly Sensitive Sensing of Dopamine in Living Rat Brain. Angew Chem Int Ed Engl 2022; 61:e202204134. [PMID: 35583258 DOI: 10.1002/anie.202204134] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Indexed: 11/12/2022]
Abstract
Developing techniques for the highly sensitive assay of neurotransmitters is essential for understanding physiological and pathological processes. Here, we demonstrate a fast-scanning potential (FSP)-gated organic electrochemical transistor (OECT): for the highly sensitive sensing of dopamine (DA) in a living rat brain. The configuration combines the selectivity of fast-scan cyclic voltammetry (FSCV) with the high sensitivity of an OECT. The combined use of FSP as a gating mode and transconductance (gm ) as a sensing parameter further improve the sensing performance in terms of sensitivity, limit of detection, reproducibility, and stability. The FSP-OECT exhibits a sensitivity of 0.899 S M-1 and a low limit of detection down to 5 nM and was validated for in vivo monitoring of the basal level and electrically stimulated release of DA.
Collapse
Affiliation(s)
- Weiqi Li
- Beijing National Laboratory for Molecular Science, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Jin
- Beijing National Laboratory for Molecular Science, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tianyi Xiong
- Beijing National Laboratory for Molecular Science, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ping Yu
- Beijing National Laboratory for Molecular Science, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lanqun Mao
- Beijing National Laboratory for Molecular Science, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, 100190, China.,College of Chemistry, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
26
|
Tan STM, Lee G, Denti I, LeCroy G, Rozylowicz K, Marks A, Griggs S, McCulloch I, Giovannitti A, Salleo A. Tuning Organic Electrochemical Transistor Threshold Voltage using Chemically Doped Polymer Gates. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2202359. [PMID: 35737653 DOI: 10.1002/adma.202202359] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/21/2022] [Indexed: 06/15/2023]
Abstract
Organic electrochemical transistors (OECTs) have shown promise as transducers and amplifiers of minute electronic potentials due to their large transconductances. Tuning the OECT threshold voltage is important to achieve low-powered devices with amplification properties within the desired operational voltage range. However, traditional design approaches have struggled to decouple channel and materials properties from threshold voltage, thereby compromising on several other OECT performance metrics, such as electrochemical stability, transconductance, and dynamic range. In this work, simple solution-processing methods are utilized to chemically dope polymer gate electrodes, thereby controlling their work function, which in turn tunes the operation voltage range of the OECTs without perturbing their channel properties. Chemical doping of initially air-sensitive polymer electrodes further improves their electrochemical stability in ambient conditions. Thus, OECTs that are simultaneously low-powered and electrochemically resistant to oxidative side reactions under ambient conditions are demonstrated. This approach shows that threshold voltage, which is once interwoven with other OECT properties, can in fact be an independent design parameter, expanding the design space of OECTs.
Collapse
Affiliation(s)
- Siew Ting Melissa Tan
- Department of Materials Science and Engineering, Stanford University, California, CA, 94305, USA
| | - Gijun Lee
- Department of Materials Science and Engineering, Stanford University, California, CA, 94305, USA
| | - Ilaria Denti
- Department of Materials Science and Engineering, Stanford University, California, CA, 94305, USA
| | - Garrett LeCroy
- Department of Materials Science and Engineering, Stanford University, California, CA, 94305, USA
| | - Kalee Rozylowicz
- Department of Materials Science and Engineering, Stanford University, California, CA, 94305, USA
| | - Adam Marks
- Department of Materials Science and Engineering, Stanford University, California, CA, 94305, USA
| | - Sophie Griggs
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford, OX1 3TA, UK
| | - Iain McCulloch
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford, OX1 3TA, UK
| | - Alexander Giovannitti
- Department of Materials Science and Engineering, Stanford University, California, CA, 94305, USA
| | - Alberto Salleo
- Department of Materials Science and Engineering, Stanford University, California, CA, 94305, USA
| |
Collapse
|
27
|
Granelli R, Alessandri I, Gkoupidenis P, Vassalini I, Kovács-Vajna ZM, Blom PWM, Torricelli F. High-Performance Bioelectronic Circuits Integrated on Biodegradable and Compostable Substrates with Fully Printed Mask-Less Organic Electrochemical Transistors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2108077. [PMID: 35642950 DOI: 10.1002/smll.202108077] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/31/2022] [Indexed: 06/15/2023]
Abstract
Organic electrochemical transistors (OECTs) rely on volumetric ion-modulation of the electronic current to provide low-voltage operation, large signal amplification, enhanced sensing capabilities, and seamless integration with biology. The majority of current OECT technologies require multistep photolithographic microfabrication methods on glass or plastic substrates, which do not provide an ideal path toward ultralow cost ubiquitous and sustainable electronics and bioelectronics. At the same time, the development of advanced bioelectronic circuits combining bio-detection, amplification, and local processing functionalities urgently demand for OECT technology platforms with a monolithic integration of high-performance iontronic circuits and sensors. Here, fully printed mask-less OECTs fabricated on thin-film biodegradable and compostable substrates are proposed. The dispensing and capillary printing methods are used for depositing both high- and low-viscosity OECT materials. Fully printed OECT unipolar inverter circuits with a gain normalized to the supply voltage as high as 136.6 V-1 , and current-driven sensors for ion detection and real-time monitoring with a sensitivity of up to 506 mV dec-1 , are integrated on biodegradable and compostable substrates. These universal building blocks with the top-performance ever reported demonstrate the effectiveness of the proposed approach and can open opportunities for next-generation high-performance sustainable bioelectronics.
Collapse
Affiliation(s)
- Roberto Granelli
- Department of Information Engineering, University of Brescia, via Branze 38, Brescia, 25123, Italy
| | - Ivano Alessandri
- Department of Information Engineering, University of Brescia, via Branze 38, Brescia, 25123, Italy
| | | | - Irene Vassalini
- Department of Information Engineering, University of Brescia, via Branze 38, Brescia, 25123, Italy
| | - Zsolt M Kovács-Vajna
- Department of Information Engineering, University of Brescia, via Branze 38, Brescia, 25123, Italy
| | - Paul W M Blom
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Fabrizio Torricelli
- Department of Information Engineering, University of Brescia, via Branze 38, Brescia, 25123, Italy
| |
Collapse
|
28
|
Li W, Jin J, Xiong T, Yu P, Mao L. Fast‐Scanning Potential‐Gated Organic Electrochemical Transistors for Highly Sensitive Sensing of Dopamine in Living Rat Brain. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Weiqi Li
- Beijing National Laboratory for Molecular Science Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry Chinese Academy of Sciences (CAS) Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Jing Jin
- Beijing National Laboratory for Molecular Science Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry Chinese Academy of Sciences (CAS) Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Tianyi Xiong
- Beijing National Laboratory for Molecular Science Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry Chinese Academy of Sciences (CAS) Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Ping Yu
- Beijing National Laboratory for Molecular Science Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry Chinese Academy of Sciences (CAS) Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Lanqun Mao
- Beijing National Laboratory for Molecular Science Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry Chinese Academy of Sciences (CAS) Beijing 100190 China
- College of Chemistry Beijing Normal University Beijing 100875 China
| |
Collapse
|
29
|
Tan STM, Gumyusenge A, Quill TJ, LeCroy GS, Bonacchini GE, Denti I, Salleo A. Mixed Ionic-Electronic Conduction, a Multifunctional Property in Organic Conductors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2110406. [PMID: 35434865 DOI: 10.1002/adma.202110406] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/07/2022] [Indexed: 06/14/2023]
Abstract
Organic mixed ionic-electronic conductors (OMIECs) have gained recent interest and rapid development due to their versatility in diverse applications ranging from sensing, actuation and computation to energy harvesting/storage, and information transfer. Their multifunctional properties arise from their ability to simultaneously participate in redox reactions as well as modulation of ionic and electronic charge density throughout the bulk of the material. Most importantly, the ability to access charge states with deep modulation through a large extent of its density of states and physical volume of the material enables OMIEC-based devices to display exciting new characteristics and opens up new degrees of freedom in device design. Leveraging the infinite possibilities of the organic synthetic toolbox, this perspective highlights several chemical and structural design approaches to modify OMIECs' properties important in device applications such as electronic and ionic conductivity, color, modulus, etc. Additionally, the ability for OMIECs to respond to external stimuli and transduce signals to myriad types of outputs has accelerated their development in smart systems. This perspective further illustrates how various stimuli such as electrical, chemical, and optical inputs fundamentally change OMIECs' properties dynamically and how these changes can be utilized in device applications.
Collapse
Affiliation(s)
- Siew Ting Melissa Tan
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Aristide Gumyusenge
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Tyler James Quill
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Garrett Swain LeCroy
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Giorgio Ernesto Bonacchini
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
- Center for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia, Via Giovanni Pascoli, 70/3, Milano, 20133, Italy
| | - Ilaria Denti
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Alberto Salleo
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
| |
Collapse
|
30
|
Li Y, Cui B, Zhang S, Li B, Li J, Liu S, Zhao Q. Ion-Selective Organic Electrochemical Transistors: Recent Progress and Challenges. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107413. [PMID: 35182018 DOI: 10.1002/smll.202107413] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/20/2022] [Indexed: 06/14/2023]
Abstract
The charged species inside biofluids (blood, interstitial fluid, sweat, saliva, urine, etc.) can reflect the human body's physiological conditions and thus be adopted to diagnose various diseases early. Among all personalized health management applications, ion-selective organic electrochemical transistors (IS-OECTs) have shown tremendous potential in point-of-care testing of biofluids due to low cost, ease of fabrication, high signal amplification, and low detection limit. Moreover, IS-OECTs exhibit excellent flexibility and biocompatibility that enable their application in wearable bioelectronics for continuous health monitoring. In this review, the working principle of IS-OECTs and the recent studies of IS-OECTs for performance improvement are reviewed. Specifically, contemporary studies on material design and device optimization to enhance the sensitivity of IS-OECTs are discussed. In addition, the progress toward the commercialization of IS-OECTs is highlighted, and the recently proposed solutions or alternatives are summarized. The main challenges and perspectives for fully exploiting IS-OECTs toward future preventive and personal medical devices are addressed.
Collapse
Affiliation(s)
- Yang Li
- College of Electronic and Optical Engineering, and College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications (NJUPT), 9 Wenyuan Road, Nanjing, Jiangsu, 210023, China
| | - Binbin Cui
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Shiming Zhang
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Bingxiang Li
- College of Electronic and Optical Engineering, and College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications (NJUPT), 9 Wenyuan Road, Nanjing, Jiangsu, 210023, China
| | - Jianmin Li
- College of Electronic and Optical Engineering, and College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications (NJUPT), 9 Wenyuan Road, Nanjing, Jiangsu, 210023, China
| | - Shujuan Liu
- State Key Laboratory of Organic Electronics and Information Displays, and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications (NJUPT), 9 Wenyuan Road, Nanjing, Jiangsu, 210023, China
| | - Qiang Zhao
- College of Electronic and Optical Engineering, and College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications (NJUPT), 9 Wenyuan Road, Nanjing, Jiangsu, 210023, China
- State Key Laboratory of Organic Electronics and Information Displays, and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications (NJUPT), 9 Wenyuan Road, Nanjing, Jiangsu, 210023, China
| |
Collapse
|
31
|
Parsaei-Khomami A, Badiei A, Ghavami ZS, Ghasemi JB. A new fluorescence probe for simultaneous determination of Fe2+ and Fe3+ by orthogonal signal correction-principal component regression. J Mol Struct 2022; 1252:131978. [DOI: 10.1016/j.molstruc.2021.131978] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
32
|
He Y, Kukhta NA, Marks A, Luscombe CK. The effect of side chain engineering on conjugated polymers in organic electrochemical transistors for bioelectronic applications. JOURNAL OF MATERIALS CHEMISTRY. C 2022; 10:2314-2332. [PMID: 35310858 PMCID: PMC8852261 DOI: 10.1039/d1tc05229b] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/07/2021] [Indexed: 05/08/2023]
Abstract
Bioelectronics focuses on the establishment of the connection between the ion-driven biosystems and readable electronic signals. Organic electrochemical transistors (OECTs) offer a viable solution for this task. Organic mixed ionic/electronic conductors (OMIECs) rest at the heart of OECTs. The balance between the ionic and electronic conductivities of OMIECs is closely connected to the OECT device performance. While modification of the OMIECs' electronic properties is largely related to the development of conjugated scaffolds, properties such as ion permeability, solubility, flexibility, morphology, and sensitivity can be altered by side chain moieties. In this review, we uncover the influence of side chain molecular design on the properties and performance of OECTs. We summarise current understanding of OECT performance and focus specifically on the knowledge of ionic-electronic coupling, shedding light on the significance of side chain development of OMIECs. We show how the versatile synthetic toolbox of side chains can be successfully employed to tune OECT parameters via controlling the material properties. As the field continues to mature, more detailed investigations into the crucial role side chain engineering plays on the resultant OMIEC properties will allow for side chain alternatives to be developed and will ultimately lead to further enhancements within the field of OECT channel materials.
Collapse
Affiliation(s)
- Yifei He
- Materials Science and Engineering Department, University of Washington Seattle Washington 98195-2120 USA
| | - Nadzeya A Kukhta
- Materials Science and Engineering Department, University of Washington Seattle Washington 98195-2120 USA
| | - Adam Marks
- Department of Chemistry, University of Oxford Oxford OX1 3TA UK
| | - Christine K Luscombe
- Materials Science and Engineering Department, University of Washington Seattle Washington 98195-2120 USA
- Department of Chemistry, University of Washington, Seattle Washington 98195 USA
| |
Collapse
|
33
|
Kim Y, Kim G, Ding B, Jeong D, Lee I, Park S, Kim BJ, McCulloch I, Heeney M, Yoon MH. High-Current-Density Organic Electrochemical Diodes Enabled by Asymmetric Active Layer Design. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107355. [PMID: 34852181 DOI: 10.1002/adma.202107355] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/12/2021] [Indexed: 06/13/2023]
Abstract
Owing to their outstanding electrical/electrochemical performance, operational stability, mechanical flexibility, and decent biocompatibility, organic mixed ionic-electronic conductors have shown great potential as implantable electrodes for neural recording/stimulation and as active channels for signal switching/amplifying transistors. Nonetheless, no studies exist on a general design rule for high-performance electrochemical diodes, which are essential for highly functional circuit architectures. In this work, generalizable electrochemical diodes with a very high current density over 30 kA cm-2 are designed by introducing an asymmetric active layer based on organic mixed ionic-electronic conductors. The underlying mechanism on polarity-sensitive balanced ionic doping/dedoping is elucidated by numerical device analysis and in operando spectroelectrochemical potential mapping, while the general material requirements for electrochemical diode operation are deduced using various types of conjugated polymers. In parallel, analog signal rectification and digital logic processing circuits are successfully demonstrated to show the broad impact of circuits incorporating organic electrochemical diodes. It is expected that organic electrochemical diodes will play vital roles in realizing multifunctional soft bioelectronic circuitry in combination with organic electrochemical transistors.
Collapse
Affiliation(s)
- Youngseok Kim
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Gunwoo Kim
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Bowen Ding
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, London, W12 0BZ, UK
| | - Dahyun Jeong
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Inho Lee
- Department of Electrical and Computer Engineering, Ajou University, Suwon, 16499, Republic of Korea
| | - Sungjun Park
- Department of Electrical and Computer Engineering, Ajou University, Suwon, 16499, Republic of Korea
| | - Bumjoon J Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Iain McCulloch
- KAUST Solar Center, Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
- Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK
| | - Martin Heeney
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, London, W12 0BZ, UK
| | - Myung-Han Yoon
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| |
Collapse
|
34
|
Murugasenapathi NK, Ghosh R, Ramanathan S, Ghosh S, Chinnappan A, Mohamed SAJ, Esther Jebakumari KA, Gopinath SCB, Ramakrishna S, Palanisamy T. Transistor-Based Biomolecule Sensors: Recent Technological Advancements and Future Prospects. Crit Rev Anal Chem 2021; 53:1044-1065. [PMID: 34788167 DOI: 10.1080/10408347.2021.2002133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
Transistor-based sensors have been widely recognized to be highly sensitive and reliable for point-of-care/bed-side diagnosis. In this line, a range of cutting-edge technologies has been generated to elevate the role of transistors for biomolecule detection. Detection of a wide range of clinical biomarkers has been reported using various configurations of transistors. The inordinate sensitivity of transistors to the field-effect imparts high sensitivity toward wide range of biomolecules. This overview has gleaned the present achievements with the technological advancements using high performance transistor-based sensors. This review encloses transistors incorporated with a variety of functional nanomaterials and organic elements for their excellence in selectivity and sensitivity. In addition, the technological advancements in fabrication of these microdevices or nanodevices and functionalization of the sensing elements have also been discussed. The technological gap in the realization of sensors in transistor platforms and the resulted scope for research has been discussed. Finally, foreseen technological advancements and future research perspectives are described.
Collapse
Affiliation(s)
- Natchimuthu Karuppusamy Murugasenapathi
- Electrodics and Electrocatalysis Division (EEC), CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi, Tamil Nadu, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Rituparna Ghosh
- Centre for Nanofiber and Nanotechnology, Department of Mechanical Engineering, National University of Singapore, Singapore
| | | | - Soumalya Ghosh
- Department of Production Engineering, Jadavpur University, Kolkata, West Bengal, India
| | - Amutha Chinnappan
- Centre for Nanofiber and Nanotechnology, Department of Mechanical Engineering, National University of Singapore, Singapore
| | - Syed Abuthahir Jamal Mohamed
- Electrodics and Electrocatalysis Division (EEC), CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi, Tamil Nadu, India
| | - Krishnan Abraham Esther Jebakumari
- Electrodics and Electrocatalysis Division (EEC), CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi, Tamil Nadu, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Subash C B Gopinath
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis, Perlis, Malaysia
- Faculty of Chemical Engineering Technology, Universiti Malaysia Perlis, Arau, Perlis, Malaysia
| | - Seeram Ramakrishna
- Centre for Nanofiber and Nanotechnology, Department of Mechanical Engineering, National University of Singapore, Singapore
| | - Tamilarasan Palanisamy
- Electrodics and Electrocatalysis Division (EEC), CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi, Tamil Nadu, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
35
|
Hasan N, Kansakar U, Sherer E, DeCoster MA, Radadia AD. Ion-Selective Membrane-Coated Graphene-Hexagonal Boron Nitride Heterostructures for Field-Effect Ion Sensing. ACS OMEGA 2021; 6:30281-30291. [PMID: 34805660 PMCID: PMC8600519 DOI: 10.1021/acsomega.1c02222] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 10/12/2021] [Indexed: 06/13/2023]
Abstract
An intrinsic ion sensitivity exceeding the Nernst-Boltzmann limit and an sp 2 -hybridized carbon structure make graphene a promising channel material for realizing ion-sensitive field-effect transistors with a stable solid-liquid interface under biased conditions in buffered salt solutions. Here, we examine the performance of graphene field-effect transistors coated with ion-selective membranes as a tool to selectively detect changes in concentrations of Ca2+, K+, and Na+ in individual salt solutions as well as in buffered Locke's solution. Both the shift in the Dirac point and transconductance could be measured as a function of ion concentration with repeatability exceeding 99.5% and reproducibility exceeding 98% over 60 days. However, an enhancement of selectivity, by about an order magnitude or more, was observed using transconductance as the indicator when compared to Dirac voltage, which is the only factor reported to date. Fabricating a hexagonal boron nitride multilayer between graphene and oxide further increased the ion sensitivity and selectivity of transconductance. These findings incite investigating ion sensitivity of transconductance in alternative architectures as well as urge the exploration of graphene transistor arrays for biomedical applications.
Collapse
Affiliation(s)
- Nowzesh Hasan
- Institute
for Micromanufacturing, Louisiana Tech University, 911 Hergot Avenue, Ruston, Louisiana 71272, United States
- Center
for Biomedical Engineering and Rehabilitation Sciences, Louisiana Tech University, 911 Hergot Avenue, Ruston, Louisiana 71272, United States
| | - Urna Kansakar
- Institute
for Micromanufacturing, Louisiana Tech University, 911 Hergot Avenue, Ruston, Louisiana 71272, United States
- Center
for Biomedical Engineering and Rehabilitation Sciences, Louisiana Tech University, 911 Hergot Avenue, Ruston, Louisiana 71272, United States
| | - Eric Sherer
- Chemical
Engineering, Louisiana Tech University, 911 Hergot Avenue, Ruston, Louisiana 71272, United States
| | - Mark A. DeCoster
- Institute
for Micromanufacturing, Louisiana Tech University, 911 Hergot Avenue, Ruston, Louisiana 71272, United States
- Center
for Biomedical Engineering and Rehabilitation Sciences, Louisiana Tech University, 911 Hergot Avenue, Ruston, Louisiana 71272, United States
| | - Adarsh D. Radadia
- Institute
for Micromanufacturing, Louisiana Tech University, 911 Hergot Avenue, Ruston, Louisiana 71272, United States
- Center
for Biomedical Engineering and Rehabilitation Sciences, Louisiana Tech University, 911 Hergot Avenue, Ruston, Louisiana 71272, United States
- Chemical
Engineering, Louisiana Tech University, 911 Hergot Avenue, Ruston, Louisiana 71272, United States
| |
Collapse
|
36
|
|
37
|
Lieberth K, Romele P, Torricelli F, Koutsouras DA, Brückner M, Mailänder V, Gkoupidenis P, Blom PWM. Current-Driven Organic Electrochemical Transistors for Monitoring Cell Layer Integrity with Enhanced Sensitivity. Adv Healthc Mater 2021; 10:e2100845. [PMID: 34309226 PMCID: PMC11468701 DOI: 10.1002/adhm.202100845] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/06/2021] [Indexed: 01/28/2023]
Abstract
In this progress report an overview is given on the use of the organic electrochemical transistor (OECT) as a biosensor for impedance sensing of cell layers. The transient OECT current can be used to detect changes in the impedance of the cell layer, as shown by Jimison et al. To circumvent the application of a high gate bias and preventing electrolysis of the electrolyte, in case of small impedance variations, an alternative measuring technique based on an OECT in a current-driven configuration is developed. The ion-sensitivity is larger than 1200 mV V-1 dec-1 at low operating voltage. It can be even further enhanced using an OECT based complementary amplifier, which consists of a p-type and an n-type OECT connected in series, as known from digital electronics. The monitoring of cell layer integrity and irreversible disruption of barrier function with the current-driven OECT is demonstrated for an epithelial Caco-2 cell layer, showing the enhanced ion-sensitivity as compared to the standard OECT configuration. As a state-of-the-art application of the current-driven OECT, the in situ monitoring of reversible tight junction modulation under the effect of drug additives, like poly-l-lysine, is discussed. This shows its potential for in vitro and even in vivo toxicological and drug delivery studies.
Collapse
Affiliation(s)
- Katharina Lieberth
- Max Planck Institute for Polymer ResearchAckermannweg 10Mainz55128Germany
| | - Paolo Romele
- Department of Information EngineeringUniversity of BresciaVia Branze 38Brescia25123Italy
| | - Fabrizio Torricelli
- Department of Information EngineeringUniversity of BresciaVia Branze 38Brescia25123Italy
| | | | - Maximilian Brückner
- Max Planck Institute for Polymer ResearchAckermannweg 10Mainz55128Germany
- Dermatology ClinicUniversity Medical Center of the Johannes Gutenberg‐University MainzLangenbeckstr. 1Mainz55131Germany
| | - Volker Mailänder
- Max Planck Institute for Polymer ResearchAckermannweg 10Mainz55128Germany
- Dermatology ClinicUniversity Medical Center of the Johannes Gutenberg‐University MainzLangenbeckstr. 1Mainz55131Germany
| | | | - Paul W. M. Blom
- Max Planck Institute for Polymer ResearchAckermannweg 10Mainz55128Germany
| |
Collapse
|
38
|
Ferro LMM, Merces L, de Camargo DHS, Bof Bufon CC. Ultrahigh-Gain Organic Electrochemical Transistor Chemosensors Based on Self-Curled Nanomembranes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2101518. [PMID: 34061409 DOI: 10.1002/adma.202101518] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/31/2021] [Indexed: 06/12/2023]
Abstract
Organic electrochemical transistors (OECTs) are technologically relevant devices presenting high susceptibility to physical stimulus, chemical functionalization, and shape changes-jointly to versatility and low production costs. The OECT capability of liquid-gating addresses both electrochemical sensing and signal amplification within a single integrated device unit. However, given the organic semiconductor time-consuming doping process and their usual low field-effect mobility, OECTs are frequently considered low-end category devices. Toward high-performance OECTs, microtubular electrochemical devices based on strain-engineering are presented here by taking advantage of the exclusive shape features of self-curled nanomembranes. Such novel OECTs outperform the state-of-the-art organic liquid-gated transistors, reaching lower operating voltage, improved ion doping, and a signal amplification with a >104 intrinsic gain. The multipurpose OECT concept is validated with different electrolytes and distinct nanometer-thick molecular films, namely, phthalocyanine and thiophene derivatives. The OECTs are also applied as transducers to detect a biomarker related to neurological diseases, the neurotransmitter dopamine. The self-curled OECTs update the premises of electrochemical energy conversion in liquid-gated transistors, yielding a substantial performance improvement and new chemical sensing capabilities within picoliter sampling volumes.
Collapse
Affiliation(s)
- Letícia M M Ferro
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Giuseppe Máximo Scolfaro 10000, Polo II de Alta Tecnologia, Campinas, 13083-100, Brazil
- Institute of Chemistry (IQ), University of Campinas (UNICAMP), Cidade Universitária "Zeferino Vaz", Campinas, 13083-970, Brazil
| | - Leandro Merces
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Giuseppe Máximo Scolfaro 10000, Polo II de Alta Tecnologia, Campinas, 13083-100, Brazil
| | - Davi H S de Camargo
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Giuseppe Máximo Scolfaro 10000, Polo II de Alta Tecnologia, Campinas, 13083-100, Brazil
| | - Carlos C Bof Bufon
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Giuseppe Máximo Scolfaro 10000, Polo II de Alta Tecnologia, Campinas, 13083-100, Brazil
- Institute of Chemistry (IQ), University of Campinas (UNICAMP), Cidade Universitária "Zeferino Vaz", Campinas, 13083-970, Brazil
- Postgraduate Program in Materials Science and Technology (POSMAT), São Paulo State University (UNESP), Bauru, São Paulo, 17033-360, Brazil
| |
Collapse
|
39
|
Abstract
Mechanoreceptors in human skin are important and efficient cutaneous sensors that are highly sensitive, selective, and adaptive to the environment. Among these, Merkel disk (MD) and cilia are capable of sensing an external mechanical force through a receptor with a sharp pillar-like structure at its end. Then, the signal of the action potential is generated by pumping Na+ ions through ion channels. In this study, a self-powered, stretchable, and wearable gel mechanoreceptor sensor is developed inspired by the structural features of the MD and cilia with sharp tips and the signaling characteristics of mechanoreceptor ion migration. Poly(vinylidene fluoride-co-trifluoroethylene) gel is used to implement a self-powered system, and polyvinylchloride-based elastic gel is utilized to detect sensing signals based on charge transfer and distribution. The surface of all gels is that of a conical structure to achieve high sensor sensitivity and conformal contact with a target surface. In addition, using the developed sensors, various biological signals related to pressure/strain occurring in the human body (e.g., blood pressure (BP), muscle movement, and motion) are acquired. Furthermore, the behavior of arterial BP was investigated during the contraction and relaxation of the muscles.
Collapse
Affiliation(s)
- Kyoung-Yong Chun
- Institute of Advanced Machinery Design Technology, Korea University, Anam-Dong, Seongbuk-Gu, Seoul 136-713, Republic of Korea
| | - Seunghwan Seo
- School of Mechanical Engineering, College of Engineering, Korea University, Anam-Dong, Seongbuk-Gu, Seoul 136-713, Republic of Korea
| | - Chang-Soo Han
- Institute of Advanced Machinery Design Technology, Korea University, Anam-Dong, Seongbuk-Gu, Seoul 136-713, Republic of Korea
- School of Mechanical Engineering, College of Engineering, Korea University, Anam-Dong, Seongbuk-Gu, Seoul 136-713, Republic of Korea
| |
Collapse
|
40
|
Chen X, Marks A, Paulsen BD, Wu R, Rashid RB, Chen H, Alsufyani M, Rivnay J, McCulloch I. n
‐Type Rigid Semiconducting Polymers Bearing Oligo(Ethylene Glycol) Side Chains for High‐Performance Organic Electrochemical Transistors. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202013998] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Xingxing Chen
- Department of Physical Science and Engineering Division King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Adam Marks
- Department of Chemistry and Centre for Plastic Electronics Imperial College London London W12 0BZ UK
| | - Bryan D. Paulsen
- Department of Biomedical Engineering Northwestern University 2145 Sheridan Rd Evanston IL 60208 USA
| | - Ruiheng Wu
- Department of Chemistry Northwestern University 2145 Sheridan Rd Evanston IL 60208 USA
| | - Reem B. Rashid
- Department of Biomedical Engineering Northwestern University 2145 Sheridan Rd Evanston IL 60208 USA
| | - Hu Chen
- Department of Physical Science and Engineering Division King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Maryam Alsufyani
- Department of Physical Science and Engineering Division King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Jonathan Rivnay
- Department of Biomedical Engineering Northwestern University 2145 Sheridan Rd Evanston IL 60208 USA
- Simpson Querrey Institute Northwestern University Chicago IL 60611 USA
| | - Iain McCulloch
- Department of Physical Science and Engineering Division King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
- Department of Chemistry and Centre for Plastic Electronics Imperial College London London W12 0BZ UK
- Department of Chemistry Chemistry Research Laboratory University of Oxford Oxford OX1 3TA UK
| |
Collapse
|
41
|
Chen X, Marks A, Paulsen BD, Wu R, Rashid RB, Chen H, Alsufyani M, Rivnay J, McCulloch I. n-Type Rigid Semiconducting Polymers Bearing Oligo(Ethylene Glycol) Side Chains for High-Performance Organic Electrochemical Transistors. Angew Chem Int Ed Engl 2021; 60:9368-9373. [PMID: 33368944 DOI: 10.1002/anie.202013998] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 12/14/2020] [Indexed: 01/01/2023]
Abstract
N-type conjugated polymers as the semiconducting component of organic electrochemical transistors (OECTs) are still undeveloped with respect to their p-type counterparts. Herein, we report two rigid n-type conjugated polymers bearing oligo(ethylene glycol) (OEG) side chains, PgNaN and PgNgN, which demonstrated an essentially torsion-free π-conjugated backbone. The planarity and electron-deficient rigid structures enable the resulting polymers to achieve high electron mobility in an OECT device of up to the 10-3 cm2 V-1 s-1 range, with a deep-lying LUMO energy level lower than -4.0 eV. Prominently, the polymers exhibited a high device performance with a maximum dimensionally normalized transconductance of 0.212 S cm-1 and the product of charge-carrier mobility μ and volumetric capacitance C* of 0.662±0.113 F cm-1 V-1 s-1 , which are among the highest in n-type conjugated polymers reported to date. Moreover, the polymers are synthesized via a metal-free aldol-condensation polymerization, which is beneficial to their application in bioelectronics.
Collapse
Affiliation(s)
- Xingxing Chen
- Department of Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Adam Marks
- Department of Chemistry and Centre for Plastic Electronics, Imperial College London, London, W12 0BZ, UK
| | - Bryan D Paulsen
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Rd, Evanston, IL, 60208, USA
| | - Ruiheng Wu
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd, Evanston, IL, 60208, USA
| | - Reem B Rashid
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Rd, Evanston, IL, 60208, USA
| | - Hu Chen
- Department of Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Maryam Alsufyani
- Department of Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Jonathan Rivnay
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Rd, Evanston, IL, 60208, USA.,Simpson Querrey Institute, Northwestern University, Chicago, IL, 60611, USA
| | - Iain McCulloch
- Department of Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.,Department of Chemistry and Centre for Plastic Electronics, Imperial College London, London, W12 0BZ, UK.,Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford, OX1 3TA, UK
| |
Collapse
|
42
|
Yu J, Yang A, Wang N, Ling H, Song J, Chen X, Lian Y, Zhang Z, Yan F, Gu M. Highly sensitive detection of caspase-3 activity based on peptide-modified organic electrochemical transistor biosensors. NANOSCALE 2021; 13:2868-2874. [PMID: 33464252 DOI: 10.1039/d0nr08453k] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Caspase-3 is an important proteolytic enzyme that cleaves several key substrates in apoptotic processes, resulting in DNA fragmentation, the degradation of nuclear proteins, and the formation of apoptotic bodies. However, it is challenging to detect caspase-3 due to its low expression levels in cells. In this work, organic electrochemical transistors (OECTs) are used in the detection of caspase-3 for the first time. A self-assembled monolayer of the peptide is bonded to the Au gate electrode (GE) of an OECT via gold-sulphur bonds. It is found that the transfer curve of the transistor shifts to a lower gate voltage due to the modulation of the surface potential of the GE by the peptides. Then, the device is used in the detection of caspase-3 in aqueous solutions and shows a detection limit of 0.1 pM. Due to its high sensitivity, the device can detect caspase-3 in induced apoptotic HeLa cells. The system is low-cost, conveniently used and applicable for biological and medical monitoring where caspase-3 detection and quantification are required.
Collapse
Affiliation(s)
- Ji Yu
- National Laboratory of Solid State Microstructures and Department of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, P.R. China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Fang Y, Meng L, Prominski A, Schaumann EN, Seebald M, Tian B. Recent advances in bioelectronics chemistry. Chem Soc Rev 2020. [PMID: 32672777 DOI: 10.1039/d1030cs00333f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2023]
Abstract
Research in bioelectronics is highly interdisciplinary, with many new developments being based on techniques from across the physical and life sciences. Advances in our understanding of the fundamental chemistry underlying the materials used in bioelectronic applications have been a crucial component of many recent discoveries. In this review, we highlight ways in which a chemistry-oriented perspective may facilitate novel and deep insights into both the fundamental scientific understanding and the design of materials, which can in turn tune the functionality and biocompatibility of bioelectronic devices. We provide an in-depth examination of several developments in the field, organized by the chemical properties of the materials. We conclude by surveying how some of the latest major topics of chemical research may be further integrated with bioelectronics.
Collapse
Affiliation(s)
- Yin Fang
- The James Franck Institute, University of Chicago, Chicago, IL 60637, USA.
| | | | | | | | | | | |
Collapse
|
44
|
Fang Y, Meng L, Prominski A, Schaumann E, Seebald M, Tian B. Recent advances in bioelectronics chemistry. Chem Soc Rev 2020; 49:7978-8035. [PMID: 32672777 PMCID: PMC7674226 DOI: 10.1039/d0cs00333f] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Research in bioelectronics is highly interdisciplinary, with many new developments being based on techniques from across the physical and life sciences. Advances in our understanding of the fundamental chemistry underlying the materials used in bioelectronic applications have been a crucial component of many recent discoveries. In this review, we highlight ways in which a chemistry-oriented perspective may facilitate novel and deep insights into both the fundamental scientific understanding and the design of materials, which can in turn tune the functionality and biocompatibility of bioelectronic devices. We provide an in-depth examination of several developments in the field, organized by the chemical properties of the materials. We conclude by surveying how some of the latest major topics of chemical research may be further integrated with bioelectronics.
Collapse
Affiliation(s)
- Yin Fang
- The James Franck Institute, University of Chicago, Chicago, IL 60637, USA
| | - Lingyuan Meng
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | | | - Erik Schaumann
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| | - Matthew Seebald
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| | - Bozhi Tian
- The James Franck Institute, University of Chicago, Chicago, IL 60637, USA
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
- The Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
45
|
Organic Electrochemical Transistors (OECTs) Toward Flexible and Wearable Bioelectronics. Molecules 2020; 25:molecules25225288. [PMID: 33202778 PMCID: PMC7698176 DOI: 10.3390/molecules25225288] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/02/2020] [Accepted: 11/10/2020] [Indexed: 11/17/2022] Open
Abstract
Organic electronics have emerged as a fascinating area of research and technology in the past two decades and are anticipated to replace classic inorganic semiconductors in many applications. Research on organic light-emitting diodes, organic photovoltaics, and organic thin-film transistors is already in an advanced stage, and the derived devices are commercially available. A more recent case is the organic electrochemical transistors (OECTs), whose core component is a conductive polymer in contact with ions and solvent molecules of an electrolyte, thus allowing it to simultaneously regulate electron and ion transport. OECTs are very effective in ion-to-electron transduction and sensor signal amplification. The use of synthetically tunable, biocompatible, and depositable organic materials in OECTs makes them specially interesting for biological applications and printable devices. In this review, we provide an overview of the history of OECTs, their physical characterization, and their operation mechanism. We analyze OECT performance improvements obtained by geometry design and active material selection (i.e., conductive polymers and small molecules) and conclude with their broad range of applications from biological sensors to wearable devices.
Collapse
|
46
|
Yan Y, Chen Q, Wu X, Wang X, Li E, Ke Y, Liu Y, Chen H, Guo T. High-Performance Organic Electrochemical Transistors with Nanoscale Channel Length and Their Application to Artificial Synapse. ACS APPLIED MATERIALS & INTERFACES 2020; 12:49915-49925. [PMID: 33084310 DOI: 10.1021/acsami.0c15553] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Organic electrochemical transistors (OECTs) have attracted considerable interests for various applications ranging from biosensors to digital logic circuits and artificial synapses. However, the majority of reported OECTs utilize large channel length up to several or several tens of micrometers, which limits the device performance and leads to low transistor densities. Here, we demonstrate a new design of vertical OECT architecture with a nanoscale channel length down to ∼100 nm. The devices exhibit a high on-state current of over 20 mA under a low bias voltage of 0.5 V, a fast transient response of less than 300 μs, and an extraordinary transconductance up to 68.88 mS, representing a record-high value for OECTs. The excellent electrical performance is attributed to the novel structure with a nanoscale channel length defined by the channel material thickness, which is intrinsically different from that of conventional OECTs with the channel length limited by the lithography resolution. Owing to the low thermal budget, we fabricate flexible devices on a flexible substrate, which exhibit unprecedented endurance characteristics and mechanical robustness after 1000 blending cycles. Furthermore, the proposed device is capable of mimicking biological inhibitory synapses for application in intelligent artificial neural networks. Our work not only pushes the performance limit of OECTs but also opens up a new design of OECTs for high-performance biosensors, digital logic, and neuromorphic devices.
Collapse
Affiliation(s)
- Yujie Yan
- Institute of Optoelectronic Display, National & Local United Engineering Lab of Flat Panel Display Technology, Fuzhou University, Fuzhou 350002, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350100, China
| | - Qizhen Chen
- Institute of Optoelectronic Display, National & Local United Engineering Lab of Flat Panel Display Technology, Fuzhou University, Fuzhou 350002, China
| | - Xiaomin Wu
- Institute of Optoelectronic Display, National & Local United Engineering Lab of Flat Panel Display Technology, Fuzhou University, Fuzhou 350002, China
| | - Xiumei Wang
- Institute of Optoelectronic Display, National & Local United Engineering Lab of Flat Panel Display Technology, Fuzhou University, Fuzhou 350002, China
| | - Enlong Li
- Institute of Optoelectronic Display, National & Local United Engineering Lab of Flat Panel Display Technology, Fuzhou University, Fuzhou 350002, China
| | - Yudan Ke
- Institute of Optoelectronic Display, National & Local United Engineering Lab of Flat Panel Display Technology, Fuzhou University, Fuzhou 350002, China
| | - Yuan Liu
- State Key Laboratory for Chemo/Biosensing and Chemometrics, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Huipeng Chen
- Institute of Optoelectronic Display, National & Local United Engineering Lab of Flat Panel Display Technology, Fuzhou University, Fuzhou 350002, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350100, China
| | - Tailiang Guo
- Institute of Optoelectronic Display, National & Local United Engineering Lab of Flat Panel Display Technology, Fuzhou University, Fuzhou 350002, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350100, China
| |
Collapse
|
47
|
Design of novel anthracene-based fluorescence sensor for sensitive and selective determination of iron in real samples. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2020.112819] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
48
|
Ko J, Wu X, Surendran A, Muhammad BT, Leong WL. Self-Healable Organic Electrochemical Transistor with High Transconductance, Fast Response, and Long-Term Stability. ACS APPLIED MATERIALS & INTERFACES 2020; 12:33979-33988. [PMID: 32615752 DOI: 10.1021/acsami.0c07913] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The major challenges in developing self-healable conjugated polymers for organic electrochemical transistors (OECTs) lie in maintaining good mixed electronic/ionic transport and the need for fast restoration to the original electronic and structural properties after the self-healing process. Herein, we provide the first report of an all-solid-state OECT that is self-healable and possesses good electrical performance, by utilizing a matrix of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) and a nonionic surfactant, Triton X-100, as a channel and an ion-conducting poly(vinyl alcohol) hydrogel as a quasi-solid-state polymer electrolyte. The fabricated OECT exhibits high transconductance (maximum 54 mS), an on/off current ratio of ∼1.5 × 103, a fast response time of 6.8 ms, and good operational stability after 68 days of storage. Simultaneously, the OECT showed remarkable self-healing and ion-sensing behaviors and recovered ∼95% of its ion sensitivity after healing. These findings will contribute to the development of high-performance and robust OECTs for wearable bioelectronic devices.
Collapse
Affiliation(s)
- Jieun Ko
- School of Electrical Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Xihu Wu
- School of Electrical Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Abhijith Surendran
- School of Electrical Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Bening Tirta Muhammad
- Interdisciplinary Graduate School, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Wei Lin Leong
- School of Electrical Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| |
Collapse
|
49
|
Romele P, Gkoupidenis P, Koutsouras DA, Lieberth K, Kovács-Vajna ZM, Blom PWM, Torricelli F. Multiscale real time and high sensitivity ion detection with complementary organic electrochemical transistors amplifier. Nat Commun 2020; 11:3743. [PMID: 32719350 PMCID: PMC7385487 DOI: 10.1038/s41467-020-17547-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 06/22/2020] [Indexed: 02/07/2023] Open
Abstract
Ions are ubiquitous biological regulators playing a key role for vital processes in animals and plants. The combined detection of ion concentration and real-time monitoring of small variations with respect to the resting conditions is a multiscale functionality providing important information on health states. This multiscale functionality is still an open challenge for current ion sensing approaches. Here we show multiscale real-time and high-sensitivity ion detection with complementary organic electrochemical transistors amplifiers. The ion-sensing amplifier integrates in the same device both selective ion-to-electron transduction and local signal amplification demonstrating a sensitivity larger than 2300 mV V-1 dec-1, which overcomes the fundamental limit. It provides both ion detection over a range of five orders of magnitude and real-time monitoring of variations two orders of magnitude lower than the detected concentration, viz. multiscale ion detection. The approach is generally applicable to several transistor technologies and opens opportunities for multifunctional enhanced bioelectronics.
Collapse
Affiliation(s)
- Paolo Romele
- University of Brescia, Department of Information Engineering, via Branze 38, 25123, Brescia, Italy
| | | | | | - Katharina Lieberth
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Zsolt M Kovács-Vajna
- University of Brescia, Department of Information Engineering, via Branze 38, 25123, Brescia, Italy
| | - Paul W M Blom
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Fabrizio Torricelli
- University of Brescia, Department of Information Engineering, via Branze 38, 25123, Brescia, Italy.
| |
Collapse
|
50
|
Water stable molecular n-doping produces organic electrochemical transistors with high transconductance and record stability. Nat Commun 2020; 11:3004. [PMID: 32532975 PMCID: PMC7293298 DOI: 10.1038/s41467-020-16648-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 05/15/2020] [Indexed: 11/08/2022] Open
Abstract
From established to emergent technologies, doping plays a crucial role in all semiconducting devices. Doping could, theoretically, be an excellent technique for improving repressively low transconductances in n-type organic electrochemical transistors – critical for advancing logic circuits for bioelectronic and neuromorphic technologies. However, the technical challenge is extreme: n-doped polymers are unstable in electrochemical transistor operating environments, air and water (electrolyte). Here, the first demonstration of doping in electron transporting organic electrochemical transistors is reported. The ammonium salt tetra-n-butylammonium fluoride is simply admixed with the conjugated polymer poly(N,N’-bis(7-glycol)-naphthalene-1,4,5,8-bis(dicarboximide)-co-2,2’-bithiophene-co-N,N’-bis(2-octyldodecyl)-naphthalene-1,4,5,8-bis(dicarboximide), and found to act as a simultaneous molecular dopant and morphology-additive. The combined effects enhance the n-type transconductance with improved channel capacitance and mobility. Furthermore, operational and shelf-life stability measurements showcase the first example of water-stable n-doping in a polymer. Overall, the results set a precedent for doping/additives to impact organic electrochemical transistors as powerfully as they have in other semiconducting devices. Improving electron transport and stability of n-type organic electrochemical transistors (OECTs) is required to realize a commercially-viable technology for bioelectronics applications. Here, the authors report water-stable doped n-type OECTs with enhanced transconductance and record stability.
Collapse
|